xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/PHIElimination.cpp (revision 77013d11e6483b970af25e13c9b892075742f7e5)
1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates machine instruction PHI nodes by inserting copy
10 // instructions.  This destroys SSA information, but is the desired input for
11 // some register allocators.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "PHIEliminationUtils.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "llvm/CodeGen/LiveIntervals.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetPassConfig.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <iterator>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "phi-node-elimination"
50 
51 static cl::opt<bool>
52 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
53                      cl::Hidden, cl::desc("Disable critical edge splitting "
54                                           "during PHI elimination"));
55 
56 static cl::opt<bool>
57 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
58                       cl::Hidden, cl::desc("Split all critical edges during "
59                                            "PHI elimination"));
60 
61 static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
62     "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
63     cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
64 
65 namespace {
66 
67   class PHIElimination : public MachineFunctionPass {
68     MachineRegisterInfo *MRI; // Machine register information
69     LiveVariables *LV;
70     LiveIntervals *LIS;
71 
72   public:
73     static char ID; // Pass identification, replacement for typeid
74 
75     PHIElimination() : MachineFunctionPass(ID) {
76       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
77     }
78 
79     bool runOnMachineFunction(MachineFunction &MF) override;
80     void getAnalysisUsage(AnalysisUsage &AU) const override;
81 
82   private:
83     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
84     /// in predecessor basic blocks.
85     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
86 
87     void LowerPHINode(MachineBasicBlock &MBB,
88                       MachineBasicBlock::iterator LastPHIIt);
89 
90     /// analyzePHINodes - Gather information about the PHI nodes in
91     /// here. In particular, we want to map the number of uses of a virtual
92     /// register which is used in a PHI node. We map that to the BB the
93     /// vreg is coming from. This is used later to determine when the vreg
94     /// is killed in the BB.
95     void analyzePHINodes(const MachineFunction& MF);
96 
97     /// Split critical edges where necessary for good coalescer performance.
98     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
99                        MachineLoopInfo *MLI,
100                        std::vector<SparseBitVector<>> *LiveInSets);
101 
102     // These functions are temporary abstractions around LiveVariables and
103     // LiveIntervals, so they can go away when LiveVariables does.
104     bool isLiveIn(Register Reg, const MachineBasicBlock *MBB);
105     bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB);
106 
107     using BBVRegPair = std::pair<unsigned, Register>;
108     using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
109 
110     VRegPHIUse VRegPHIUseCount;
111 
112     // Defs of PHI sources which are implicit_def.
113     SmallPtrSet<MachineInstr*, 4> ImpDefs;
114 
115     // Map reusable lowered PHI node -> incoming join register.
116     using LoweredPHIMap =
117         DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
118     LoweredPHIMap LoweredPHIs;
119   };
120 
121 } // end anonymous namespace
122 
123 STATISTIC(NumLowered, "Number of phis lowered");
124 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
125 STATISTIC(NumReused, "Number of reused lowered phis");
126 
127 char PHIElimination::ID = 0;
128 
129 char& llvm::PHIEliminationID = PHIElimination::ID;
130 
131 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
132                       "Eliminate PHI nodes for register allocation",
133                       false, false)
134 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
135 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
136                     "Eliminate PHI nodes for register allocation", false, false)
137 
138 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
139   AU.addUsedIfAvailable<LiveVariables>();
140   AU.addPreserved<LiveVariables>();
141   AU.addPreserved<SlotIndexes>();
142   AU.addPreserved<LiveIntervals>();
143   AU.addPreserved<MachineDominatorTree>();
144   AU.addPreserved<MachineLoopInfo>();
145   MachineFunctionPass::getAnalysisUsage(AU);
146 }
147 
148 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
149   MRI = &MF.getRegInfo();
150   LV = getAnalysisIfAvailable<LiveVariables>();
151   LIS = getAnalysisIfAvailable<LiveIntervals>();
152 
153   bool Changed = false;
154 
155   // Split critical edges to help the coalescer.
156   if (!DisableEdgeSplitting && (LV || LIS)) {
157     // A set of live-in regs for each MBB which is used to update LV
158     // efficiently also with large functions.
159     std::vector<SparseBitVector<>> LiveInSets;
160     if (LV) {
161       LiveInSets.resize(MF.size());
162       for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) {
163         // Set the bit for this register for each MBB where it is
164         // live-through or live-in (killed).
165         unsigned VirtReg = Register::index2VirtReg(Index);
166         MachineInstr *DefMI = MRI->getVRegDef(VirtReg);
167         if (!DefMI)
168           continue;
169         LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg);
170         SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin();
171         SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end();
172         while (AliveBlockItr != EndItr) {
173           unsigned BlockNum = *(AliveBlockItr++);
174           LiveInSets[BlockNum].set(Index);
175         }
176         // The register is live into an MBB in which it is killed but not
177         // defined. See comment for VarInfo in LiveVariables.h.
178         MachineBasicBlock *DefMBB = DefMI->getParent();
179         if (VI.Kills.size() > 1 ||
180             (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB))
181           for (auto *MI : VI.Kills)
182             LiveInSets[MI->getParent()->getNumber()].set(Index);
183       }
184     }
185 
186     MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
187     for (auto &MBB : MF)
188       Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr));
189   }
190 
191   // This pass takes the function out of SSA form.
192   MRI->leaveSSA();
193 
194   // Populate VRegPHIUseCount
195   analyzePHINodes(MF);
196 
197   // Eliminate PHI instructions by inserting copies into predecessor blocks.
198   for (auto &MBB : MF)
199     Changed |= EliminatePHINodes(MF, MBB);
200 
201   // Remove dead IMPLICIT_DEF instructions.
202   for (MachineInstr *DefMI : ImpDefs) {
203     Register DefReg = DefMI->getOperand(0).getReg();
204     if (MRI->use_nodbg_empty(DefReg)) {
205       if (LIS)
206         LIS->RemoveMachineInstrFromMaps(*DefMI);
207       DefMI->eraseFromParent();
208     }
209   }
210 
211   // Clean up the lowered PHI instructions.
212   for (auto &I : LoweredPHIs) {
213     if (LIS)
214       LIS->RemoveMachineInstrFromMaps(*I.first);
215     MF.DeleteMachineInstr(I.first);
216   }
217 
218   // TODO: we should use the incremental DomTree updater here.
219   if (Changed)
220     if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>())
221       MDT->getBase().recalculate(MF);
222 
223   LoweredPHIs.clear();
224   ImpDefs.clear();
225   VRegPHIUseCount.clear();
226 
227   MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
228 
229   return Changed;
230 }
231 
232 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
233 /// predecessor basic blocks.
234 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
235                                        MachineBasicBlock &MBB) {
236   if (MBB.empty() || !MBB.front().isPHI())
237     return false;   // Quick exit for basic blocks without PHIs.
238 
239   // Get an iterator to the last PHI node.
240   MachineBasicBlock::iterator LastPHIIt =
241     std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
242 
243   while (MBB.front().isPHI())
244     LowerPHINode(MBB, LastPHIIt);
245 
246   return true;
247 }
248 
249 /// Return true if all defs of VirtReg are implicit-defs.
250 /// This includes registers with no defs.
251 static bool isImplicitlyDefined(unsigned VirtReg,
252                                 const MachineRegisterInfo &MRI) {
253   for (MachineInstr &DI : MRI.def_instructions(VirtReg))
254     if (!DI.isImplicitDef())
255       return false;
256   return true;
257 }
258 
259 /// Return true if all sources of the phi node are implicit_def's, or undef's.
260 static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
261                                     const MachineRegisterInfo &MRI) {
262   for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
263     const MachineOperand &MO = MPhi.getOperand(I);
264     if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
265       return false;
266   }
267   return true;
268 }
269 /// LowerPHINode - Lower the PHI node at the top of the specified block.
270 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
271                                   MachineBasicBlock::iterator LastPHIIt) {
272   ++NumLowered;
273 
274   MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
275 
276   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
277   MachineInstr *MPhi = MBB.remove(&*MBB.begin());
278 
279   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
280   Register DestReg = MPhi->getOperand(0).getReg();
281   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
282   bool isDead = MPhi->getOperand(0).isDead();
283 
284   // Create a new register for the incoming PHI arguments.
285   MachineFunction &MF = *MBB.getParent();
286   unsigned IncomingReg = 0;
287   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
288 
289   // Insert a register to register copy at the top of the current block (but
290   // after any remaining phi nodes) which copies the new incoming register
291   // into the phi node destination.
292   MachineInstr *PHICopy = nullptr;
293   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
294   if (allPhiOperandsUndefined(*MPhi, *MRI))
295     // If all sources of a PHI node are implicit_def or undef uses, just emit an
296     // implicit_def instead of a copy.
297     PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
298             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
299   else {
300     // Can we reuse an earlier PHI node? This only happens for critical edges,
301     // typically those created by tail duplication.
302     unsigned &entry = LoweredPHIs[MPhi];
303     if (entry) {
304       // An identical PHI node was already lowered. Reuse the incoming register.
305       IncomingReg = entry;
306       reusedIncoming = true;
307       ++NumReused;
308       LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
309                         << *MPhi);
310     } else {
311       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
312       entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
313     }
314     // Give the target possiblity to handle special cases fallthrough otherwise
315     PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
316                                   IncomingReg, DestReg);
317   }
318 
319   // Update live variable information if there is any.
320   if (LV) {
321     if (IncomingReg) {
322       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
323 
324       // Increment use count of the newly created virtual register.
325       LV->setPHIJoin(IncomingReg);
326 
327       MachineInstr *OldKill = nullptr;
328       bool IsPHICopyAfterOldKill = false;
329 
330       if (reusedIncoming && (OldKill = VI.findKill(&MBB))) {
331         // Calculate whether the PHICopy is after the OldKill.
332         // In general, the PHICopy is inserted as the first non-phi instruction
333         // by default, so it's before the OldKill. But some Target hooks for
334         // createPHIDestinationCopy() may modify the default insert position of
335         // PHICopy.
336         for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end();
337              I != E; ++I) {
338           if (I == PHICopy)
339             break;
340 
341           if (I == OldKill) {
342             IsPHICopyAfterOldKill = true;
343             break;
344           }
345         }
346       }
347 
348       // When we are reusing the incoming register and it has been marked killed
349       // by OldKill, if the PHICopy is after the OldKill, we should remove the
350       // killed flag from OldKill.
351       if (IsPHICopyAfterOldKill) {
352         LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
353         LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
354         LLVM_DEBUG(MBB.dump());
355       }
356 
357       // Add information to LiveVariables to know that the first used incoming
358       // value or the resued incoming value whose PHICopy is after the OldKIll
359       // is killed. Note that because the value is defined in several places
360       // (once each for each incoming block), the "def" block and instruction
361       // fields for the VarInfo is not filled in.
362       if (!OldKill || IsPHICopyAfterOldKill)
363         LV->addVirtualRegisterKilled(IncomingReg, *PHICopy);
364     }
365 
366     // Since we are going to be deleting the PHI node, if it is the last use of
367     // any registers, or if the value itself is dead, we need to move this
368     // information over to the new copy we just inserted.
369     LV->removeVirtualRegistersKilled(*MPhi);
370 
371     // If the result is dead, update LV.
372     if (isDead) {
373       LV->addVirtualRegisterDead(DestReg, *PHICopy);
374       LV->removeVirtualRegisterDead(DestReg, *MPhi);
375     }
376   }
377 
378   // Update LiveIntervals for the new copy or implicit def.
379   if (LIS) {
380     SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy);
381 
382     SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
383     if (IncomingReg) {
384       // Add the region from the beginning of MBB to the copy instruction to
385       // IncomingReg's live interval.
386       LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
387       VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
388       if (!IncomingVNI)
389         IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
390                                               LIS->getVNInfoAllocator());
391       IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
392                                                   DestCopyIndex.getRegSlot(),
393                                                   IncomingVNI));
394     }
395 
396     LiveInterval &DestLI = LIS->getInterval(DestReg);
397     assert(!DestLI.empty() && "PHIs should have nonempty LiveIntervals.");
398     if (DestLI.endIndex().isDead()) {
399       // A dead PHI's live range begins and ends at the start of the MBB, but
400       // the lowered copy, which will still be dead, needs to begin and end at
401       // the copy instruction.
402       VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
403       assert(OrigDestVNI && "PHI destination should be live at block entry.");
404       DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
405       DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
406                            LIS->getVNInfoAllocator());
407       DestLI.removeValNo(OrigDestVNI);
408     } else {
409       // Otherwise, remove the region from the beginning of MBB to the copy
410       // instruction from DestReg's live interval.
411       DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
412       VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
413       assert(DestVNI && "PHI destination should be live at its definition.");
414       DestVNI->def = DestCopyIndex.getRegSlot();
415     }
416   }
417 
418   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
419   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
420     --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
421                                  MPhi->getOperand(i).getReg())];
422 
423   // Now loop over all of the incoming arguments, changing them to copy into the
424   // IncomingReg register in the corresponding predecessor basic block.
425   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
426   for (int i = NumSrcs - 1; i >= 0; --i) {
427     Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
428     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
429     bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
430       isImplicitlyDefined(SrcReg, *MRI);
431     assert(Register::isVirtualRegister(SrcReg) &&
432            "Machine PHI Operands must all be virtual registers!");
433 
434     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
435     // path the PHI.
436     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
437 
438     // Check to make sure we haven't already emitted the copy for this block.
439     // This can happen because PHI nodes may have multiple entries for the same
440     // basic block.
441     if (!MBBsInsertedInto.insert(&opBlock).second)
442       continue;  // If the copy has already been emitted, we're done.
443 
444     MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
445     if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) {
446       assert(SrcRegDef->getOperand(0).isReg() &&
447              SrcRegDef->getOperand(0).isDef() &&
448              "Expected operand 0 to be a reg def!");
449       // Now that the PHI's use has been removed (as the instruction was
450       // removed) there should be no other uses of the SrcReg.
451       assert(MRI->use_empty(SrcReg) &&
452              "Expected a single use from UnspillableTerminator");
453       SrcRegDef->getOperand(0).setReg(IncomingReg);
454       continue;
455     }
456 
457     // Find a safe location to insert the copy, this may be the first terminator
458     // in the block (or end()).
459     MachineBasicBlock::iterator InsertPos =
460       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
461 
462     // Insert the copy.
463     MachineInstr *NewSrcInstr = nullptr;
464     if (!reusedIncoming && IncomingReg) {
465       if (SrcUndef) {
466         // The source register is undefined, so there is no need for a real
467         // COPY, but we still need to ensure joint dominance by defs.
468         // Insert an IMPLICIT_DEF instruction.
469         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
470                               TII->get(TargetOpcode::IMPLICIT_DEF),
471                               IncomingReg);
472 
473         // Clean up the old implicit-def, if there even was one.
474         if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
475           if (DefMI->isImplicitDef())
476             ImpDefs.insert(DefMI);
477       } else {
478         NewSrcInstr =
479             TII->createPHISourceCopy(opBlock, InsertPos, MPhi->getDebugLoc(),
480                                      SrcReg, SrcSubReg, IncomingReg);
481       }
482     }
483 
484     // We only need to update the LiveVariables kill of SrcReg if this was the
485     // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
486     // out of the predecessor. We can also ignore undef sources.
487     if (LV && !SrcUndef &&
488         !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
489         !LV->isLiveOut(SrcReg, opBlock)) {
490       // We want to be able to insert a kill of the register if this PHI (aka,
491       // the copy we just inserted) is the last use of the source value. Live
492       // variable analysis conservatively handles this by saying that the value
493       // is live until the end of the block the PHI entry lives in. If the value
494       // really is dead at the PHI copy, there will be no successor blocks which
495       // have the value live-in.
496 
497       // Okay, if we now know that the value is not live out of the block, we
498       // can add a kill marker in this block saying that it kills the incoming
499       // value!
500 
501       // In our final twist, we have to decide which instruction kills the
502       // register.  In most cases this is the copy, however, terminator
503       // instructions at the end of the block may also use the value. In this
504       // case, we should mark the last such terminator as being the killing
505       // block, not the copy.
506       MachineBasicBlock::iterator KillInst = opBlock.end();
507       MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
508       for (MachineBasicBlock::iterator Term = FirstTerm;
509           Term != opBlock.end(); ++Term) {
510         if (Term->readsRegister(SrcReg))
511           KillInst = Term;
512       }
513 
514       if (KillInst == opBlock.end()) {
515         // No terminator uses the register.
516 
517         if (reusedIncoming || !IncomingReg) {
518           // We may have to rewind a bit if we didn't insert a copy this time.
519           KillInst = FirstTerm;
520           while (KillInst != opBlock.begin()) {
521             --KillInst;
522             if (KillInst->isDebugInstr())
523               continue;
524             if (KillInst->readsRegister(SrcReg))
525               break;
526           }
527         } else {
528           // We just inserted this copy.
529           KillInst = NewSrcInstr;
530         }
531       }
532       assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
533 
534       // Finally, mark it killed.
535       LV->addVirtualRegisterKilled(SrcReg, *KillInst);
536 
537       // This vreg no longer lives all of the way through opBlock.
538       unsigned opBlockNum = opBlock.getNumber();
539       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
540     }
541 
542     if (LIS) {
543       if (NewSrcInstr) {
544         LIS->InsertMachineInstrInMaps(*NewSrcInstr);
545         LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
546       }
547 
548       if (!SrcUndef &&
549           !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
550         LiveInterval &SrcLI = LIS->getInterval(SrcReg);
551 
552         bool isLiveOut = false;
553         for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
554              SE = opBlock.succ_end(); SI != SE; ++SI) {
555           SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
556           VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
557 
558           // Definitions by other PHIs are not truly live-in for our purposes.
559           if (VNI && VNI->def != startIdx) {
560             isLiveOut = true;
561             break;
562           }
563         }
564 
565         if (!isLiveOut) {
566           MachineBasicBlock::iterator KillInst = opBlock.end();
567           MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
568           for (MachineBasicBlock::iterator Term = FirstTerm;
569               Term != opBlock.end(); ++Term) {
570             if (Term->readsRegister(SrcReg))
571               KillInst = Term;
572           }
573 
574           if (KillInst == opBlock.end()) {
575             // No terminator uses the register.
576 
577             if (reusedIncoming || !IncomingReg) {
578               // We may have to rewind a bit if we didn't just insert a copy.
579               KillInst = FirstTerm;
580               while (KillInst != opBlock.begin()) {
581                 --KillInst;
582                 if (KillInst->isDebugInstr())
583                   continue;
584                 if (KillInst->readsRegister(SrcReg))
585                   break;
586               }
587             } else {
588               // We just inserted this copy.
589               KillInst = std::prev(InsertPos);
590             }
591           }
592           assert(KillInst->readsRegister(SrcReg) &&
593                  "Cannot find kill instruction");
594 
595           SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
596           SrcLI.removeSegment(LastUseIndex.getRegSlot(),
597                               LIS->getMBBEndIdx(&opBlock));
598         }
599       }
600     }
601   }
602 
603   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
604   if (reusedIncoming || !IncomingReg) {
605     if (LIS)
606       LIS->RemoveMachineInstrFromMaps(*MPhi);
607     MF.DeleteMachineInstr(MPhi);
608   }
609 }
610 
611 /// analyzePHINodes - Gather information about the PHI nodes in here. In
612 /// particular, we want to map the number of uses of a virtual register which is
613 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
614 /// used later to determine when the vreg is killed in the BB.
615 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
616   for (const auto &MBB : MF)
617     for (const auto &BBI : MBB) {
618       if (!BBI.isPHI())
619         break;
620       for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
621         ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
622                                      BBI.getOperand(i).getReg())];
623     }
624 }
625 
626 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
627                                    MachineBasicBlock &MBB,
628                                    MachineLoopInfo *MLI,
629                                    std::vector<SparseBitVector<>> *LiveInSets) {
630   if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
631     return false;   // Quick exit for basic blocks without PHIs.
632 
633   const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
634   bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
635 
636   bool Changed = false;
637   for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
638        BBI != BBE && BBI->isPHI(); ++BBI) {
639     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
640       Register Reg = BBI->getOperand(i).getReg();
641       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
642       // Is there a critical edge from PreMBB to MBB?
643       if (PreMBB->succ_size() == 1)
644         continue;
645 
646       // Avoid splitting backedges of loops. It would introduce small
647       // out-of-line blocks into the loop which is very bad for code placement.
648       if (PreMBB == &MBB && !SplitAllCriticalEdges)
649         continue;
650       const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
651       if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
652         continue;
653 
654       // LV doesn't consider a phi use live-out, so isLiveOut only returns true
655       // when the source register is live-out for some other reason than a phi
656       // use. That means the copy we will insert in PreMBB won't be a kill, and
657       // there is a risk it may not be coalesced away.
658       //
659       // If the copy would be a kill, there is no need to split the edge.
660       bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
661       if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
662         continue;
663       if (ShouldSplit) {
664         LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
665                           << printMBBReference(*PreMBB) << " -> "
666                           << printMBBReference(MBB) << ": " << *BBI);
667       }
668 
669       // If Reg is not live-in to MBB, it means it must be live-in to some
670       // other PreMBB successor, and we can avoid the interference by splitting
671       // the edge.
672       //
673       // If Reg *is* live-in to MBB, the interference is inevitable and a copy
674       // is likely to be left after coalescing. If we are looking at a loop
675       // exiting edge, split it so we won't insert code in the loop, otherwise
676       // don't bother.
677       ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
678 
679       // Check for a loop exiting edge.
680       if (!ShouldSplit && CurLoop != PreLoop) {
681         LLVM_DEBUG({
682           dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
683           if (PreLoop)
684             dbgs() << "PreLoop: " << *PreLoop;
685           if (CurLoop)
686             dbgs() << "CurLoop: " << *CurLoop;
687         });
688         // This edge could be entering a loop, exiting a loop, or it could be
689         // both: Jumping directly form one loop to the header of a sibling
690         // loop.
691         // Split unless this edge is entering CurLoop from an outer loop.
692         ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
693       }
694       if (!ShouldSplit && !SplitAllCriticalEdges)
695         continue;
696       if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) {
697         LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
698         continue;
699       }
700       Changed = true;
701       ++NumCriticalEdgesSplit;
702     }
703   }
704   return Changed;
705 }
706 
707 bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) {
708   assert((LV || LIS) &&
709          "isLiveIn() requires either LiveVariables or LiveIntervals");
710   if (LIS)
711     return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
712   else
713     return LV->isLiveIn(Reg, *MBB);
714 }
715 
716 bool PHIElimination::isLiveOutPastPHIs(Register Reg,
717                                        const MachineBasicBlock *MBB) {
718   assert((LV || LIS) &&
719          "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
720   // LiveVariables considers uses in PHIs to be in the predecessor basic block,
721   // so that a register used only in a PHI is not live out of the block. In
722   // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
723   // in the predecessor basic block, so that a register used only in a PHI is live
724   // out of the block.
725   if (LIS) {
726     const LiveInterval &LI = LIS->getInterval(Reg);
727     for (const MachineBasicBlock *SI : MBB->successors())
728       if (LI.liveAt(LIS->getMBBStartIdx(SI)))
729         return true;
730     return false;
731   } else {
732     return LV->isLiveOut(Reg, *MBB);
733   }
734 }
735