xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/PHIElimination.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates machine instruction PHI nodes by inserting copy
10 // instructions.  This destroys SSA information, but is the desired input for
11 // some register allocators.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "PHIEliminationUtils.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "llvm/CodeGen/LiveIntervals.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetPassConfig.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <iterator>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "phi-node-elimination"
50 
51 static cl::opt<bool>
52 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
53                      cl::Hidden, cl::desc("Disable critical edge splitting "
54                                           "during PHI elimination"));
55 
56 static cl::opt<bool>
57 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
58                       cl::Hidden, cl::desc("Split all critical edges during "
59                                            "PHI elimination"));
60 
61 static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
62     "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
63     cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
64 
65 namespace {
66 
67   class PHIElimination : public MachineFunctionPass {
68     MachineRegisterInfo *MRI; // Machine register information
69     LiveVariables *LV;
70     LiveIntervals *LIS;
71 
72   public:
73     static char ID; // Pass identification, replacement for typeid
74 
75     PHIElimination() : MachineFunctionPass(ID) {
76       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
77     }
78 
79     bool runOnMachineFunction(MachineFunction &MF) override;
80     void getAnalysisUsage(AnalysisUsage &AU) const override;
81 
82   private:
83     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
84     /// in predecessor basic blocks.
85     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
86 
87     void LowerPHINode(MachineBasicBlock &MBB,
88                       MachineBasicBlock::iterator LastPHIIt);
89 
90     /// analyzePHINodes - Gather information about the PHI nodes in
91     /// here. In particular, we want to map the number of uses of a virtual
92     /// register which is used in a PHI node. We map that to the BB the
93     /// vreg is coming from. This is used later to determine when the vreg
94     /// is killed in the BB.
95     void analyzePHINodes(const MachineFunction& MF);
96 
97     /// Split critical edges where necessary for good coalescer performance.
98     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
99                        MachineLoopInfo *MLI,
100                        std::vector<SparseBitVector<>> *LiveInSets);
101 
102     // These functions are temporary abstractions around LiveVariables and
103     // LiveIntervals, so they can go away when LiveVariables does.
104     bool isLiveIn(Register Reg, const MachineBasicBlock *MBB);
105     bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB);
106 
107     using BBVRegPair = std::pair<unsigned, Register>;
108     using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
109 
110     // Count the number of non-undef PHI uses of each register in each BB.
111     VRegPHIUse VRegPHIUseCount;
112 
113     // Defs of PHI sources which are implicit_def.
114     SmallPtrSet<MachineInstr*, 4> ImpDefs;
115 
116     // Map reusable lowered PHI node -> incoming join register.
117     using LoweredPHIMap =
118         DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
119     LoweredPHIMap LoweredPHIs;
120   };
121 
122 } // end anonymous namespace
123 
124 STATISTIC(NumLowered, "Number of phis lowered");
125 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
126 STATISTIC(NumReused, "Number of reused lowered phis");
127 
128 char PHIElimination::ID = 0;
129 
130 char& llvm::PHIEliminationID = PHIElimination::ID;
131 
132 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
133                       "Eliminate PHI nodes for register allocation",
134                       false, false)
135 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
136 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
137                     "Eliminate PHI nodes for register allocation", false, false)
138 
139 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
140   AU.addUsedIfAvailable<LiveVariables>();
141   AU.addPreserved<LiveVariables>();
142   AU.addPreserved<SlotIndexes>();
143   AU.addPreserved<LiveIntervals>();
144   AU.addPreserved<MachineDominatorTree>();
145   AU.addPreserved<MachineLoopInfo>();
146   MachineFunctionPass::getAnalysisUsage(AU);
147 }
148 
149 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
150   MRI = &MF.getRegInfo();
151   LV = getAnalysisIfAvailable<LiveVariables>();
152   LIS = getAnalysisIfAvailable<LiveIntervals>();
153 
154   bool Changed = false;
155 
156   // Split critical edges to help the coalescer.
157   if (!DisableEdgeSplitting && (LV || LIS)) {
158     // A set of live-in regs for each MBB which is used to update LV
159     // efficiently also with large functions.
160     std::vector<SparseBitVector<>> LiveInSets;
161     if (LV) {
162       LiveInSets.resize(MF.size());
163       for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) {
164         // Set the bit for this register for each MBB where it is
165         // live-through or live-in (killed).
166         unsigned VirtReg = Register::index2VirtReg(Index);
167         MachineInstr *DefMI = MRI->getVRegDef(VirtReg);
168         if (!DefMI)
169           continue;
170         LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg);
171         SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin();
172         SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end();
173         while (AliveBlockItr != EndItr) {
174           unsigned BlockNum = *(AliveBlockItr++);
175           LiveInSets[BlockNum].set(Index);
176         }
177         // The register is live into an MBB in which it is killed but not
178         // defined. See comment for VarInfo in LiveVariables.h.
179         MachineBasicBlock *DefMBB = DefMI->getParent();
180         if (VI.Kills.size() > 1 ||
181             (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB))
182           for (auto *MI : VI.Kills)
183             LiveInSets[MI->getParent()->getNumber()].set(Index);
184       }
185     }
186 
187     MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
188     for (auto &MBB : MF)
189       Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr));
190   }
191 
192   // This pass takes the function out of SSA form.
193   MRI->leaveSSA();
194 
195   // Populate VRegPHIUseCount
196   analyzePHINodes(MF);
197 
198   // Eliminate PHI instructions by inserting copies into predecessor blocks.
199   for (auto &MBB : MF)
200     Changed |= EliminatePHINodes(MF, MBB);
201 
202   // Remove dead IMPLICIT_DEF instructions.
203   for (MachineInstr *DefMI : ImpDefs) {
204     Register DefReg = DefMI->getOperand(0).getReg();
205     if (MRI->use_nodbg_empty(DefReg)) {
206       if (LIS)
207         LIS->RemoveMachineInstrFromMaps(*DefMI);
208       DefMI->eraseFromParent();
209     }
210   }
211 
212   // Clean up the lowered PHI instructions.
213   for (auto &I : LoweredPHIs) {
214     if (LIS)
215       LIS->RemoveMachineInstrFromMaps(*I.first);
216     MF.DeleteMachineInstr(I.first);
217   }
218 
219   // TODO: we should use the incremental DomTree updater here.
220   if (Changed)
221     if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>())
222       MDT->getBase().recalculate(MF);
223 
224   LoweredPHIs.clear();
225   ImpDefs.clear();
226   VRegPHIUseCount.clear();
227 
228   MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
229 
230   return Changed;
231 }
232 
233 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
234 /// predecessor basic blocks.
235 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
236                                        MachineBasicBlock &MBB) {
237   if (MBB.empty() || !MBB.front().isPHI())
238     return false;   // Quick exit for basic blocks without PHIs.
239 
240   // Get an iterator to the last PHI node.
241   MachineBasicBlock::iterator LastPHIIt =
242     std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
243 
244   while (MBB.front().isPHI())
245     LowerPHINode(MBB, LastPHIIt);
246 
247   return true;
248 }
249 
250 /// Return true if all defs of VirtReg are implicit-defs.
251 /// This includes registers with no defs.
252 static bool isImplicitlyDefined(unsigned VirtReg,
253                                 const MachineRegisterInfo &MRI) {
254   for (MachineInstr &DI : MRI.def_instructions(VirtReg))
255     if (!DI.isImplicitDef())
256       return false;
257   return true;
258 }
259 
260 /// Return true if all sources of the phi node are implicit_def's, or undef's.
261 static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
262                                     const MachineRegisterInfo &MRI) {
263   for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
264     const MachineOperand &MO = MPhi.getOperand(I);
265     if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
266       return false;
267   }
268   return true;
269 }
270 /// LowerPHINode - Lower the PHI node at the top of the specified block.
271 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
272                                   MachineBasicBlock::iterator LastPHIIt) {
273   ++NumLowered;
274 
275   MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
276 
277   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
278   MachineInstr *MPhi = MBB.remove(&*MBB.begin());
279 
280   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
281   Register DestReg = MPhi->getOperand(0).getReg();
282   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
283   bool isDead = MPhi->getOperand(0).isDead();
284 
285   // Create a new register for the incoming PHI arguments.
286   MachineFunction &MF = *MBB.getParent();
287   unsigned IncomingReg = 0;
288   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
289 
290   // Insert a register to register copy at the top of the current block (but
291   // after any remaining phi nodes) which copies the new incoming register
292   // into the phi node destination.
293   MachineInstr *PHICopy = nullptr;
294   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
295   if (allPhiOperandsUndefined(*MPhi, *MRI))
296     // If all sources of a PHI node are implicit_def or undef uses, just emit an
297     // implicit_def instead of a copy.
298     PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
299             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
300   else {
301     // Can we reuse an earlier PHI node? This only happens for critical edges,
302     // typically those created by tail duplication.
303     unsigned &entry = LoweredPHIs[MPhi];
304     if (entry) {
305       // An identical PHI node was already lowered. Reuse the incoming register.
306       IncomingReg = entry;
307       reusedIncoming = true;
308       ++NumReused;
309       LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
310                         << *MPhi);
311     } else {
312       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
313       entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
314     }
315     // Give the target possiblity to handle special cases fallthrough otherwise
316     PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
317                                   IncomingReg, DestReg);
318   }
319 
320   if (MPhi->peekDebugInstrNum()) {
321     // If referred to by debug-info, store where this PHI was.
322     MachineFunction *MF = MBB.getParent();
323     unsigned ID = MPhi->peekDebugInstrNum();
324     auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0);
325     auto Res = MF->DebugPHIPositions.insert({ID, P});
326     assert(Res.second);
327     (void)Res;
328   }
329 
330   // Update live variable information if there is any.
331   if (LV) {
332     if (IncomingReg) {
333       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
334 
335       // Increment use count of the newly created virtual register.
336       LV->setPHIJoin(IncomingReg);
337 
338       MachineInstr *OldKill = nullptr;
339       bool IsPHICopyAfterOldKill = false;
340 
341       if (reusedIncoming && (OldKill = VI.findKill(&MBB))) {
342         // Calculate whether the PHICopy is after the OldKill.
343         // In general, the PHICopy is inserted as the first non-phi instruction
344         // by default, so it's before the OldKill. But some Target hooks for
345         // createPHIDestinationCopy() may modify the default insert position of
346         // PHICopy.
347         for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end();
348              I != E; ++I) {
349           if (I == PHICopy)
350             break;
351 
352           if (I == OldKill) {
353             IsPHICopyAfterOldKill = true;
354             break;
355           }
356         }
357       }
358 
359       // When we are reusing the incoming register and it has been marked killed
360       // by OldKill, if the PHICopy is after the OldKill, we should remove the
361       // killed flag from OldKill.
362       if (IsPHICopyAfterOldKill) {
363         LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
364         LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
365         LLVM_DEBUG(MBB.dump());
366       }
367 
368       // Add information to LiveVariables to know that the first used incoming
369       // value or the resued incoming value whose PHICopy is after the OldKIll
370       // is killed. Note that because the value is defined in several places
371       // (once each for each incoming block), the "def" block and instruction
372       // fields for the VarInfo is not filled in.
373       if (!OldKill || IsPHICopyAfterOldKill)
374         LV->addVirtualRegisterKilled(IncomingReg, *PHICopy);
375     }
376 
377     // Since we are going to be deleting the PHI node, if it is the last use of
378     // any registers, or if the value itself is dead, we need to move this
379     // information over to the new copy we just inserted.
380     LV->removeVirtualRegistersKilled(*MPhi);
381 
382     // If the result is dead, update LV.
383     if (isDead) {
384       LV->addVirtualRegisterDead(DestReg, *PHICopy);
385       LV->removeVirtualRegisterDead(DestReg, *MPhi);
386     }
387   }
388 
389   // Update LiveIntervals for the new copy or implicit def.
390   if (LIS) {
391     SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy);
392 
393     SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
394     if (IncomingReg) {
395       // Add the region from the beginning of MBB to the copy instruction to
396       // IncomingReg's live interval.
397       LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
398       VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
399       if (!IncomingVNI)
400         IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
401                                               LIS->getVNInfoAllocator());
402       IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
403                                                   DestCopyIndex.getRegSlot(),
404                                                   IncomingVNI));
405     }
406 
407     LiveInterval &DestLI = LIS->getInterval(DestReg);
408     assert(!DestLI.empty() && "PHIs should have nonempty LiveIntervals.");
409     if (DestLI.endIndex().isDead()) {
410       // A dead PHI's live range begins and ends at the start of the MBB, but
411       // the lowered copy, which will still be dead, needs to begin and end at
412       // the copy instruction.
413       VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
414       assert(OrigDestVNI && "PHI destination should be live at block entry.");
415       DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
416       DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
417                            LIS->getVNInfoAllocator());
418       DestLI.removeValNo(OrigDestVNI);
419     } else {
420       // Otherwise, remove the region from the beginning of MBB to the copy
421       // instruction from DestReg's live interval.
422       DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
423       VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
424       assert(DestVNI && "PHI destination should be live at its definition.");
425       DestVNI->def = DestCopyIndex.getRegSlot();
426     }
427   }
428 
429   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
430   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
431     if (!MPhi->getOperand(i).isUndef()) {
432       --VRegPHIUseCount[BBVRegPair(
433           MPhi->getOperand(i + 1).getMBB()->getNumber(),
434           MPhi->getOperand(i).getReg())];
435     }
436   }
437 
438   // Now loop over all of the incoming arguments, changing them to copy into the
439   // IncomingReg register in the corresponding predecessor basic block.
440   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
441   for (int i = NumSrcs - 1; i >= 0; --i) {
442     Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
443     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
444     bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
445       isImplicitlyDefined(SrcReg, *MRI);
446     assert(Register::isVirtualRegister(SrcReg) &&
447            "Machine PHI Operands must all be virtual registers!");
448 
449     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
450     // path the PHI.
451     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
452 
453     // Check to make sure we haven't already emitted the copy for this block.
454     // This can happen because PHI nodes may have multiple entries for the same
455     // basic block.
456     if (!MBBsInsertedInto.insert(&opBlock).second)
457       continue;  // If the copy has already been emitted, we're done.
458 
459     MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
460     if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) {
461       assert(SrcRegDef->getOperand(0).isReg() &&
462              SrcRegDef->getOperand(0).isDef() &&
463              "Expected operand 0 to be a reg def!");
464       // Now that the PHI's use has been removed (as the instruction was
465       // removed) there should be no other uses of the SrcReg.
466       assert(MRI->use_empty(SrcReg) &&
467              "Expected a single use from UnspillableTerminator");
468       SrcRegDef->getOperand(0).setReg(IncomingReg);
469 
470       // Update LiveVariables.
471       if (LV) {
472         LiveVariables::VarInfo &SrcVI = LV->getVarInfo(SrcReg);
473         LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(IncomingReg);
474         IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks);
475         SrcVI.AliveBlocks.clear();
476       }
477 
478       continue;
479     }
480 
481     // Find a safe location to insert the copy, this may be the first terminator
482     // in the block (or end()).
483     MachineBasicBlock::iterator InsertPos =
484       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
485 
486     // Insert the copy.
487     MachineInstr *NewSrcInstr = nullptr;
488     if (!reusedIncoming && IncomingReg) {
489       if (SrcUndef) {
490         // The source register is undefined, so there is no need for a real
491         // COPY, but we still need to ensure joint dominance by defs.
492         // Insert an IMPLICIT_DEF instruction.
493         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
494                               TII->get(TargetOpcode::IMPLICIT_DEF),
495                               IncomingReg);
496 
497         // Clean up the old implicit-def, if there even was one.
498         if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
499           if (DefMI->isImplicitDef())
500             ImpDefs.insert(DefMI);
501       } else {
502         // Delete the debug location, since the copy is inserted into a
503         // different basic block.
504         NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr,
505                                                SrcReg, SrcSubReg, IncomingReg);
506       }
507     }
508 
509     // We only need to update the LiveVariables kill of SrcReg if this was the
510     // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
511     // out of the predecessor. We can also ignore undef sources.
512     if (LV && !SrcUndef &&
513         !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
514         !LV->isLiveOut(SrcReg, opBlock)) {
515       // We want to be able to insert a kill of the register if this PHI (aka,
516       // the copy we just inserted) is the last use of the source value. Live
517       // variable analysis conservatively handles this by saying that the value
518       // is live until the end of the block the PHI entry lives in. If the value
519       // really is dead at the PHI copy, there will be no successor blocks which
520       // have the value live-in.
521 
522       // Okay, if we now know that the value is not live out of the block, we
523       // can add a kill marker in this block saying that it kills the incoming
524       // value!
525 
526       // In our final twist, we have to decide which instruction kills the
527       // register.  In most cases this is the copy, however, terminator
528       // instructions at the end of the block may also use the value. In this
529       // case, we should mark the last such terminator as being the killing
530       // block, not the copy.
531       MachineBasicBlock::iterator KillInst = opBlock.end();
532       for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end();
533            ++Term) {
534         if (Term->readsRegister(SrcReg))
535           KillInst = Term;
536       }
537 
538       if (KillInst == opBlock.end()) {
539         // No terminator uses the register.
540 
541         if (reusedIncoming || !IncomingReg) {
542           // We may have to rewind a bit if we didn't insert a copy this time.
543           KillInst = InsertPos;
544           while (KillInst != opBlock.begin()) {
545             --KillInst;
546             if (KillInst->isDebugInstr())
547               continue;
548             if (KillInst->readsRegister(SrcReg))
549               break;
550           }
551         } else {
552           // We just inserted this copy.
553           KillInst = NewSrcInstr;
554         }
555       }
556       assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
557 
558       // Finally, mark it killed.
559       LV->addVirtualRegisterKilled(SrcReg, *KillInst);
560 
561       // This vreg no longer lives all of the way through opBlock.
562       unsigned opBlockNum = opBlock.getNumber();
563       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
564     }
565 
566     if (LIS) {
567       if (NewSrcInstr) {
568         LIS->InsertMachineInstrInMaps(*NewSrcInstr);
569         LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
570       }
571 
572       if (!SrcUndef &&
573           !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
574         LiveInterval &SrcLI = LIS->getInterval(SrcReg);
575 
576         bool isLiveOut = false;
577         for (MachineBasicBlock *Succ : opBlock.successors()) {
578           SlotIndex startIdx = LIS->getMBBStartIdx(Succ);
579           VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
580 
581           // Definitions by other PHIs are not truly live-in for our purposes.
582           if (VNI && VNI->def != startIdx) {
583             isLiveOut = true;
584             break;
585           }
586         }
587 
588         if (!isLiveOut) {
589           MachineBasicBlock::iterator KillInst = opBlock.end();
590           for (MachineBasicBlock::iterator Term = InsertPos;
591                Term != opBlock.end(); ++Term) {
592             if (Term->readsRegister(SrcReg))
593               KillInst = Term;
594           }
595 
596           if (KillInst == opBlock.end()) {
597             // No terminator uses the register.
598 
599             if (reusedIncoming || !IncomingReg) {
600               // We may have to rewind a bit if we didn't just insert a copy.
601               KillInst = InsertPos;
602               while (KillInst != opBlock.begin()) {
603                 --KillInst;
604                 if (KillInst->isDebugInstr())
605                   continue;
606                 if (KillInst->readsRegister(SrcReg))
607                   break;
608               }
609             } else {
610               // We just inserted this copy.
611               KillInst = std::prev(InsertPos);
612             }
613           }
614           assert(KillInst->readsRegister(SrcReg) &&
615                  "Cannot find kill instruction");
616 
617           SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
618           SrcLI.removeSegment(LastUseIndex.getRegSlot(),
619                               LIS->getMBBEndIdx(&opBlock));
620         }
621       }
622     }
623   }
624 
625   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
626   if (reusedIncoming || !IncomingReg) {
627     if (LIS)
628       LIS->RemoveMachineInstrFromMaps(*MPhi);
629     MF.DeleteMachineInstr(MPhi);
630   }
631 }
632 
633 /// analyzePHINodes - Gather information about the PHI nodes in here. In
634 /// particular, we want to map the number of uses of a virtual register which is
635 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
636 /// used later to determine when the vreg is killed in the BB.
637 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
638   for (const auto &MBB : MF) {
639     for (const auto &BBI : MBB) {
640       if (!BBI.isPHI())
641         break;
642       for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
643         if (!BBI.getOperand(i).isUndef()) {
644           ++VRegPHIUseCount[BBVRegPair(
645               BBI.getOperand(i + 1).getMBB()->getNumber(),
646               BBI.getOperand(i).getReg())];
647         }
648       }
649     }
650   }
651 }
652 
653 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
654                                    MachineBasicBlock &MBB,
655                                    MachineLoopInfo *MLI,
656                                    std::vector<SparseBitVector<>> *LiveInSets) {
657   if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
658     return false;   // Quick exit for basic blocks without PHIs.
659 
660   const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
661   bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
662 
663   bool Changed = false;
664   for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
665        BBI != BBE && BBI->isPHI(); ++BBI) {
666     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
667       Register Reg = BBI->getOperand(i).getReg();
668       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
669       // Is there a critical edge from PreMBB to MBB?
670       if (PreMBB->succ_size() == 1)
671         continue;
672 
673       // Avoid splitting backedges of loops. It would introduce small
674       // out-of-line blocks into the loop which is very bad for code placement.
675       if (PreMBB == &MBB && !SplitAllCriticalEdges)
676         continue;
677       const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
678       if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
679         continue;
680 
681       // LV doesn't consider a phi use live-out, so isLiveOut only returns true
682       // when the source register is live-out for some other reason than a phi
683       // use. That means the copy we will insert in PreMBB won't be a kill, and
684       // there is a risk it may not be coalesced away.
685       //
686       // If the copy would be a kill, there is no need to split the edge.
687       bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
688       if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
689         continue;
690       if (ShouldSplit) {
691         LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
692                           << printMBBReference(*PreMBB) << " -> "
693                           << printMBBReference(MBB) << ": " << *BBI);
694       }
695 
696       // If Reg is not live-in to MBB, it means it must be live-in to some
697       // other PreMBB successor, and we can avoid the interference by splitting
698       // the edge.
699       //
700       // If Reg *is* live-in to MBB, the interference is inevitable and a copy
701       // is likely to be left after coalescing. If we are looking at a loop
702       // exiting edge, split it so we won't insert code in the loop, otherwise
703       // don't bother.
704       ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
705 
706       // Check for a loop exiting edge.
707       if (!ShouldSplit && CurLoop != PreLoop) {
708         LLVM_DEBUG({
709           dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
710           if (PreLoop)
711             dbgs() << "PreLoop: " << *PreLoop;
712           if (CurLoop)
713             dbgs() << "CurLoop: " << *CurLoop;
714         });
715         // This edge could be entering a loop, exiting a loop, or it could be
716         // both: Jumping directly form one loop to the header of a sibling
717         // loop.
718         // Split unless this edge is entering CurLoop from an outer loop.
719         ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
720       }
721       if (!ShouldSplit && !SplitAllCriticalEdges)
722         continue;
723       if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) {
724         LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
725         continue;
726       }
727       Changed = true;
728       ++NumCriticalEdgesSplit;
729     }
730   }
731   return Changed;
732 }
733 
734 bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) {
735   assert((LV || LIS) &&
736          "isLiveIn() requires either LiveVariables or LiveIntervals");
737   if (LIS)
738     return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
739   else
740     return LV->isLiveIn(Reg, *MBB);
741 }
742 
743 bool PHIElimination::isLiveOutPastPHIs(Register Reg,
744                                        const MachineBasicBlock *MBB) {
745   assert((LV || LIS) &&
746          "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
747   // LiveVariables considers uses in PHIs to be in the predecessor basic block,
748   // so that a register used only in a PHI is not live out of the block. In
749   // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
750   // in the predecessor basic block, so that a register used only in a PHI is live
751   // out of the block.
752   if (LIS) {
753     const LiveInterval &LI = LIS->getInterval(Reg);
754     for (const MachineBasicBlock *SI : MBB->successors())
755       if (LI.liveAt(LIS->getMBBStartIdx(SI)))
756         return true;
757     return false;
758   } else {
759     return LV->isLiveOut(Reg, *MBB);
760   }
761 }
762