1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass eliminates machine instruction PHI nodes by inserting copy 10 // instructions. This destroys SSA information, but is the desired input for 11 // some register allocators. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "PHIEliminationUtils.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/CodeGen/LiveInterval.h" 21 #include "llvm/CodeGen/LiveIntervals.h" 22 #include "llvm/CodeGen/LiveVariables.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineLoopInfo.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/SlotIndexes.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetOpcodes.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <cassert> 42 #include <iterator> 43 #include <utility> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "phi-node-elimination" 48 49 static cl::opt<bool> 50 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 51 cl::Hidden, cl::desc("Disable critical edge splitting " 52 "during PHI elimination")); 53 54 static cl::opt<bool> 55 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), 56 cl::Hidden, cl::desc("Split all critical edges during " 57 "PHI elimination")); 58 59 static cl::opt<bool> NoPhiElimLiveOutEarlyExit( 60 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, 61 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true.")); 62 63 namespace { 64 65 class PHIElimination : public MachineFunctionPass { 66 MachineRegisterInfo *MRI = nullptr; // Machine register information 67 LiveVariables *LV = nullptr; 68 LiveIntervals *LIS = nullptr; 69 70 public: 71 static char ID; // Pass identification, replacement for typeid 72 73 PHIElimination() : MachineFunctionPass(ID) { 74 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 75 } 76 77 bool runOnMachineFunction(MachineFunction &MF) override; 78 void getAnalysisUsage(AnalysisUsage &AU) const override; 79 80 private: 81 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 82 /// in predecessor basic blocks. 83 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 84 85 void LowerPHINode(MachineBasicBlock &MBB, 86 MachineBasicBlock::iterator LastPHIIt); 87 88 /// analyzePHINodes - Gather information about the PHI nodes in 89 /// here. In particular, we want to map the number of uses of a virtual 90 /// register which is used in a PHI node. We map that to the BB the 91 /// vreg is coming from. This is used later to determine when the vreg 92 /// is killed in the BB. 93 void analyzePHINodes(const MachineFunction& MF); 94 95 /// Split critical edges where necessary for good coalescer performance. 96 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 97 MachineLoopInfo *MLI, 98 std::vector<SparseBitVector<>> *LiveInSets); 99 100 // These functions are temporary abstractions around LiveVariables and 101 // LiveIntervals, so they can go away when LiveVariables does. 102 bool isLiveIn(Register Reg, const MachineBasicBlock *MBB); 103 bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB); 104 105 using BBVRegPair = std::pair<unsigned, Register>; 106 using VRegPHIUse = DenseMap<BBVRegPair, unsigned>; 107 108 // Count the number of non-undef PHI uses of each register in each BB. 109 VRegPHIUse VRegPHIUseCount; 110 111 // Defs of PHI sources which are implicit_def. 112 SmallPtrSet<MachineInstr*, 4> ImpDefs; 113 114 // Map reusable lowered PHI node -> incoming join register. 115 using LoweredPHIMap = 116 DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>; 117 LoweredPHIMap LoweredPHIs; 118 }; 119 120 } // end anonymous namespace 121 122 STATISTIC(NumLowered, "Number of phis lowered"); 123 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 124 STATISTIC(NumReused, "Number of reused lowered phis"); 125 126 char PHIElimination::ID = 0; 127 128 char& llvm::PHIEliminationID = PHIElimination::ID; 129 130 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE, 131 "Eliminate PHI nodes for register allocation", 132 false, false) 133 INITIALIZE_PASS_DEPENDENCY(LiveVariables) 134 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE, 135 "Eliminate PHI nodes for register allocation", false, false) 136 137 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 138 AU.addUsedIfAvailable<LiveVariables>(); 139 AU.addPreserved<LiveVariables>(); 140 AU.addPreserved<SlotIndexes>(); 141 AU.addPreserved<LiveIntervals>(); 142 AU.addPreserved<MachineDominatorTree>(); 143 AU.addPreserved<MachineLoopInfo>(); 144 MachineFunctionPass::getAnalysisUsage(AU); 145 } 146 147 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { 148 MRI = &MF.getRegInfo(); 149 LV = getAnalysisIfAvailable<LiveVariables>(); 150 LIS = getAnalysisIfAvailable<LiveIntervals>(); 151 152 bool Changed = false; 153 154 // Split critical edges to help the coalescer. 155 if (!DisableEdgeSplitting && (LV || LIS)) { 156 // A set of live-in regs for each MBB which is used to update LV 157 // efficiently also with large functions. 158 std::vector<SparseBitVector<>> LiveInSets; 159 if (LV) { 160 LiveInSets.resize(MF.size()); 161 for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) { 162 // Set the bit for this register for each MBB where it is 163 // live-through or live-in (killed). 164 Register VirtReg = Register::index2VirtReg(Index); 165 MachineInstr *DefMI = MRI->getVRegDef(VirtReg); 166 if (!DefMI) 167 continue; 168 LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg); 169 SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin(); 170 SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end(); 171 while (AliveBlockItr != EndItr) { 172 unsigned BlockNum = *(AliveBlockItr++); 173 LiveInSets[BlockNum].set(Index); 174 } 175 // The register is live into an MBB in which it is killed but not 176 // defined. See comment for VarInfo in LiveVariables.h. 177 MachineBasicBlock *DefMBB = DefMI->getParent(); 178 if (VI.Kills.size() > 1 || 179 (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB)) 180 for (auto *MI : VI.Kills) 181 LiveInSets[MI->getParent()->getNumber()].set(Index); 182 } 183 } 184 185 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 186 for (auto &MBB : MF) 187 Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr)); 188 } 189 190 // This pass takes the function out of SSA form. 191 MRI->leaveSSA(); 192 193 // Populate VRegPHIUseCount 194 analyzePHINodes(MF); 195 196 // Eliminate PHI instructions by inserting copies into predecessor blocks. 197 for (auto &MBB : MF) 198 Changed |= EliminatePHINodes(MF, MBB); 199 200 // Remove dead IMPLICIT_DEF instructions. 201 for (MachineInstr *DefMI : ImpDefs) { 202 Register DefReg = DefMI->getOperand(0).getReg(); 203 if (MRI->use_nodbg_empty(DefReg)) { 204 if (LIS) 205 LIS->RemoveMachineInstrFromMaps(*DefMI); 206 DefMI->eraseFromParent(); 207 } 208 } 209 210 // Clean up the lowered PHI instructions. 211 for (auto &I : LoweredPHIs) { 212 if (LIS) 213 LIS->RemoveMachineInstrFromMaps(*I.first); 214 MF.deleteMachineInstr(I.first); 215 } 216 217 // TODO: we should use the incremental DomTree updater here. 218 if (Changed) 219 if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>()) 220 MDT->getBase().recalculate(MF); 221 222 LoweredPHIs.clear(); 223 ImpDefs.clear(); 224 VRegPHIUseCount.clear(); 225 226 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); 227 228 return Changed; 229 } 230 231 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 232 /// predecessor basic blocks. 233 bool PHIElimination::EliminatePHINodes(MachineFunction &MF, 234 MachineBasicBlock &MBB) { 235 if (MBB.empty() || !MBB.front().isPHI()) 236 return false; // Quick exit for basic blocks without PHIs. 237 238 // Get an iterator to the last PHI node. 239 MachineBasicBlock::iterator LastPHIIt = 240 std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); 241 242 while (MBB.front().isPHI()) 243 LowerPHINode(MBB, LastPHIIt); 244 245 return true; 246 } 247 248 /// Return true if all defs of VirtReg are implicit-defs. 249 /// This includes registers with no defs. 250 static bool isImplicitlyDefined(unsigned VirtReg, 251 const MachineRegisterInfo &MRI) { 252 for (MachineInstr &DI : MRI.def_instructions(VirtReg)) 253 if (!DI.isImplicitDef()) 254 return false; 255 return true; 256 } 257 258 /// Return true if all sources of the phi node are implicit_def's, or undef's. 259 static bool allPhiOperandsUndefined(const MachineInstr &MPhi, 260 const MachineRegisterInfo &MRI) { 261 for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) { 262 const MachineOperand &MO = MPhi.getOperand(I); 263 if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef()) 264 return false; 265 } 266 return true; 267 } 268 /// LowerPHINode - Lower the PHI node at the top of the specified block. 269 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, 270 MachineBasicBlock::iterator LastPHIIt) { 271 ++NumLowered; 272 273 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); 274 275 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 276 MachineInstr *MPhi = MBB.remove(&*MBB.begin()); 277 278 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 279 Register DestReg = MPhi->getOperand(0).getReg(); 280 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 281 bool isDead = MPhi->getOperand(0).isDead(); 282 283 // Create a new register for the incoming PHI arguments. 284 MachineFunction &MF = *MBB.getParent(); 285 unsigned IncomingReg = 0; 286 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 287 288 // Insert a register to register copy at the top of the current block (but 289 // after any remaining phi nodes) which copies the new incoming register 290 // into the phi node destination. 291 MachineInstr *PHICopy = nullptr; 292 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 293 if (allPhiOperandsUndefined(*MPhi, *MRI)) 294 // If all sources of a PHI node are implicit_def or undef uses, just emit an 295 // implicit_def instead of a copy. 296 PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 297 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 298 else { 299 // Can we reuse an earlier PHI node? This only happens for critical edges, 300 // typically those created by tail duplication. 301 unsigned &entry = LoweredPHIs[MPhi]; 302 if (entry) { 303 // An identical PHI node was already lowered. Reuse the incoming register. 304 IncomingReg = entry; 305 reusedIncoming = true; 306 ++NumReused; 307 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for " 308 << *MPhi); 309 } else { 310 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 311 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 312 } 313 // Give the target possiblity to handle special cases fallthrough otherwise 314 PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 315 IncomingReg, DestReg); 316 } 317 318 if (MPhi->peekDebugInstrNum()) { 319 // If referred to by debug-info, store where this PHI was. 320 MachineFunction *MF = MBB.getParent(); 321 unsigned ID = MPhi->peekDebugInstrNum(); 322 auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0); 323 auto Res = MF->DebugPHIPositions.insert({ID, P}); 324 assert(Res.second); 325 (void)Res; 326 } 327 328 // Update live variable information if there is any. 329 if (LV) { 330 if (IncomingReg) { 331 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 332 333 // Increment use count of the newly created virtual register. 334 LV->setPHIJoin(IncomingReg); 335 336 MachineInstr *OldKill = nullptr; 337 bool IsPHICopyAfterOldKill = false; 338 339 if (reusedIncoming && (OldKill = VI.findKill(&MBB))) { 340 // Calculate whether the PHICopy is after the OldKill. 341 // In general, the PHICopy is inserted as the first non-phi instruction 342 // by default, so it's before the OldKill. But some Target hooks for 343 // createPHIDestinationCopy() may modify the default insert position of 344 // PHICopy. 345 for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end(); 346 I != E; ++I) { 347 if (I == PHICopy) 348 break; 349 350 if (I == OldKill) { 351 IsPHICopyAfterOldKill = true; 352 break; 353 } 354 } 355 } 356 357 // When we are reusing the incoming register and it has been marked killed 358 // by OldKill, if the PHICopy is after the OldKill, we should remove the 359 // killed flag from OldKill. 360 if (IsPHICopyAfterOldKill) { 361 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill); 362 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill); 363 LLVM_DEBUG(MBB.dump()); 364 } 365 366 // Add information to LiveVariables to know that the first used incoming 367 // value or the resued incoming value whose PHICopy is after the OldKIll 368 // is killed. Note that because the value is defined in several places 369 // (once each for each incoming block), the "def" block and instruction 370 // fields for the VarInfo is not filled in. 371 if (!OldKill || IsPHICopyAfterOldKill) 372 LV->addVirtualRegisterKilled(IncomingReg, *PHICopy); 373 } 374 375 // Since we are going to be deleting the PHI node, if it is the last use of 376 // any registers, or if the value itself is dead, we need to move this 377 // information over to the new copy we just inserted. 378 LV->removeVirtualRegistersKilled(*MPhi); 379 380 // If the result is dead, update LV. 381 if (isDead) { 382 LV->addVirtualRegisterDead(DestReg, *PHICopy); 383 LV->removeVirtualRegisterDead(DestReg, *MPhi); 384 } 385 } 386 387 // Update LiveIntervals for the new copy or implicit def. 388 if (LIS) { 389 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy); 390 391 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); 392 if (IncomingReg) { 393 // Add the region from the beginning of MBB to the copy instruction to 394 // IncomingReg's live interval. 395 LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg); 396 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); 397 if (!IncomingVNI) 398 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex, 399 LIS->getVNInfoAllocator()); 400 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex, 401 DestCopyIndex.getRegSlot(), 402 IncomingVNI)); 403 } 404 405 LiveInterval &DestLI = LIS->getInterval(DestReg); 406 assert(!DestLI.empty() && "PHIs should have nonempty LiveIntervals."); 407 if (DestLI.endIndex().isDead()) { 408 // A dead PHI's live range begins and ends at the start of the MBB, but 409 // the lowered copy, which will still be dead, needs to begin and end at 410 // the copy instruction. 411 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex); 412 assert(OrigDestVNI && "PHI destination should be live at block entry."); 413 DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot()); 414 DestLI.createDeadDef(DestCopyIndex.getRegSlot(), 415 LIS->getVNInfoAllocator()); 416 DestLI.removeValNo(OrigDestVNI); 417 } else { 418 // Otherwise, remove the region from the beginning of MBB to the copy 419 // instruction from DestReg's live interval. 420 DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot()); 421 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot()); 422 assert(DestVNI && "PHI destination should be live at its definition."); 423 DestVNI->def = DestCopyIndex.getRegSlot(); 424 } 425 } 426 427 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 428 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { 429 if (!MPhi->getOperand(i).isUndef()) { 430 --VRegPHIUseCount[BBVRegPair( 431 MPhi->getOperand(i + 1).getMBB()->getNumber(), 432 MPhi->getOperand(i).getReg())]; 433 } 434 } 435 436 // Now loop over all of the incoming arguments, changing them to copy into the 437 // IncomingReg register in the corresponding predecessor basic block. 438 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; 439 for (int i = NumSrcs - 1; i >= 0; --i) { 440 Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg(); 441 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); 442 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || 443 isImplicitlyDefined(SrcReg, *MRI); 444 assert(SrcReg.isVirtual() && 445 "Machine PHI Operands must all be virtual registers!"); 446 447 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 448 // path the PHI. 449 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); 450 451 // Check to make sure we haven't already emitted the copy for this block. 452 // This can happen because PHI nodes may have multiple entries for the same 453 // basic block. 454 if (!MBBsInsertedInto.insert(&opBlock).second) 455 continue; // If the copy has already been emitted, we're done. 456 457 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg); 458 if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) { 459 assert(SrcRegDef->getOperand(0).isReg() && 460 SrcRegDef->getOperand(0).isDef() && 461 "Expected operand 0 to be a reg def!"); 462 // Now that the PHI's use has been removed (as the instruction was 463 // removed) there should be no other uses of the SrcReg. 464 assert(MRI->use_empty(SrcReg) && 465 "Expected a single use from UnspillableTerminator"); 466 SrcRegDef->getOperand(0).setReg(IncomingReg); 467 468 // Update LiveVariables. 469 if (LV) { 470 LiveVariables::VarInfo &SrcVI = LV->getVarInfo(SrcReg); 471 LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(IncomingReg); 472 IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks); 473 SrcVI.AliveBlocks.clear(); 474 } 475 476 continue; 477 } 478 479 // Find a safe location to insert the copy, this may be the first terminator 480 // in the block (or end()). 481 MachineBasicBlock::iterator InsertPos = 482 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 483 484 // Insert the copy. 485 MachineInstr *NewSrcInstr = nullptr; 486 if (!reusedIncoming && IncomingReg) { 487 if (SrcUndef) { 488 // The source register is undefined, so there is no need for a real 489 // COPY, but we still need to ensure joint dominance by defs. 490 // Insert an IMPLICIT_DEF instruction. 491 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 492 TII->get(TargetOpcode::IMPLICIT_DEF), 493 IncomingReg); 494 495 // Clean up the old implicit-def, if there even was one. 496 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) 497 if (DefMI->isImplicitDef()) 498 ImpDefs.insert(DefMI); 499 } else { 500 // Delete the debug location, since the copy is inserted into a 501 // different basic block. 502 NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr, 503 SrcReg, SrcSubReg, IncomingReg); 504 } 505 } 506 507 // We only need to update the LiveVariables kill of SrcReg if this was the 508 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live 509 // out of the predecessor. We can also ignore undef sources. 510 if (LV && !SrcUndef && 511 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && 512 !LV->isLiveOut(SrcReg, opBlock)) { 513 // We want to be able to insert a kill of the register if this PHI (aka, 514 // the copy we just inserted) is the last use of the source value. Live 515 // variable analysis conservatively handles this by saying that the value 516 // is live until the end of the block the PHI entry lives in. If the value 517 // really is dead at the PHI copy, there will be no successor blocks which 518 // have the value live-in. 519 520 // Okay, if we now know that the value is not live out of the block, we 521 // can add a kill marker in this block saying that it kills the incoming 522 // value! 523 524 // In our final twist, we have to decide which instruction kills the 525 // register. In most cases this is the copy, however, terminator 526 // instructions at the end of the block may also use the value. In this 527 // case, we should mark the last such terminator as being the killing 528 // block, not the copy. 529 MachineBasicBlock::iterator KillInst = opBlock.end(); 530 for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end(); 531 ++Term) { 532 if (Term->readsRegister(SrcReg)) 533 KillInst = Term; 534 } 535 536 if (KillInst == opBlock.end()) { 537 // No terminator uses the register. 538 539 if (reusedIncoming || !IncomingReg) { 540 // We may have to rewind a bit if we didn't insert a copy this time. 541 KillInst = InsertPos; 542 while (KillInst != opBlock.begin()) { 543 --KillInst; 544 if (KillInst->isDebugInstr()) 545 continue; 546 if (KillInst->readsRegister(SrcReg)) 547 break; 548 } 549 } else { 550 // We just inserted this copy. 551 KillInst = NewSrcInstr; 552 } 553 } 554 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); 555 556 // Finally, mark it killed. 557 LV->addVirtualRegisterKilled(SrcReg, *KillInst); 558 559 // This vreg no longer lives all of the way through opBlock. 560 unsigned opBlockNum = opBlock.getNumber(); 561 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 562 } 563 564 if (LIS) { 565 if (NewSrcInstr) { 566 LIS->InsertMachineInstrInMaps(*NewSrcInstr); 567 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr); 568 } 569 570 if (!SrcUndef && 571 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { 572 LiveInterval &SrcLI = LIS->getInterval(SrcReg); 573 574 bool isLiveOut = false; 575 for (MachineBasicBlock *Succ : opBlock.successors()) { 576 SlotIndex startIdx = LIS->getMBBStartIdx(Succ); 577 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); 578 579 // Definitions by other PHIs are not truly live-in for our purposes. 580 if (VNI && VNI->def != startIdx) { 581 isLiveOut = true; 582 break; 583 } 584 } 585 586 if (!isLiveOut) { 587 MachineBasicBlock::iterator KillInst = opBlock.end(); 588 for (MachineBasicBlock::iterator Term = InsertPos; 589 Term != opBlock.end(); ++Term) { 590 if (Term->readsRegister(SrcReg)) 591 KillInst = Term; 592 } 593 594 if (KillInst == opBlock.end()) { 595 // No terminator uses the register. 596 597 if (reusedIncoming || !IncomingReg) { 598 // We may have to rewind a bit if we didn't just insert a copy. 599 KillInst = InsertPos; 600 while (KillInst != opBlock.begin()) { 601 --KillInst; 602 if (KillInst->isDebugInstr()) 603 continue; 604 if (KillInst->readsRegister(SrcReg)) 605 break; 606 } 607 } else { 608 // We just inserted this copy. 609 KillInst = std::prev(InsertPos); 610 } 611 } 612 assert(KillInst->readsRegister(SrcReg) && 613 "Cannot find kill instruction"); 614 615 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst); 616 SrcLI.removeSegment(LastUseIndex.getRegSlot(), 617 LIS->getMBBEndIdx(&opBlock)); 618 } 619 } 620 } 621 } 622 623 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 624 if (reusedIncoming || !IncomingReg) { 625 if (LIS) 626 LIS->RemoveMachineInstrFromMaps(*MPhi); 627 MF.deleteMachineInstr(MPhi); 628 } 629 } 630 631 /// analyzePHINodes - Gather information about the PHI nodes in here. In 632 /// particular, we want to map the number of uses of a virtual register which is 633 /// used in a PHI node. We map that to the BB the vreg is coming from. This is 634 /// used later to determine when the vreg is killed in the BB. 635 void PHIElimination::analyzePHINodes(const MachineFunction& MF) { 636 for (const auto &MBB : MF) { 637 for (const auto &BBI : MBB) { 638 if (!BBI.isPHI()) 639 break; 640 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 641 if (!BBI.getOperand(i).isUndef()) { 642 ++VRegPHIUseCount[BBVRegPair( 643 BBI.getOperand(i + 1).getMBB()->getNumber(), 644 BBI.getOperand(i).getReg())]; 645 } 646 } 647 } 648 } 649 } 650 651 bool PHIElimination::SplitPHIEdges(MachineFunction &MF, 652 MachineBasicBlock &MBB, 653 MachineLoopInfo *MLI, 654 std::vector<SparseBitVector<>> *LiveInSets) { 655 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) 656 return false; // Quick exit for basic blocks without PHIs. 657 658 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; 659 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); 660 661 bool Changed = false; 662 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); 663 BBI != BBE && BBI->isPHI(); ++BBI) { 664 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 665 Register Reg = BBI->getOperand(i).getReg(); 666 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); 667 // Is there a critical edge from PreMBB to MBB? 668 if (PreMBB->succ_size() == 1) 669 continue; 670 671 // Avoid splitting backedges of loops. It would introduce small 672 // out-of-line blocks into the loop which is very bad for code placement. 673 if (PreMBB == &MBB && !SplitAllCriticalEdges) 674 continue; 675 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; 676 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) 677 continue; 678 679 // LV doesn't consider a phi use live-out, so isLiveOut only returns true 680 // when the source register is live-out for some other reason than a phi 681 // use. That means the copy we will insert in PreMBB won't be a kill, and 682 // there is a risk it may not be coalesced away. 683 // 684 // If the copy would be a kill, there is no need to split the edge. 685 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB); 686 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) 687 continue; 688 if (ShouldSplit) { 689 LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge " 690 << printMBBReference(*PreMBB) << " -> " 691 << printMBBReference(MBB) << ": " << *BBI); 692 } 693 694 // If Reg is not live-in to MBB, it means it must be live-in to some 695 // other PreMBB successor, and we can avoid the interference by splitting 696 // the edge. 697 // 698 // If Reg *is* live-in to MBB, the interference is inevitable and a copy 699 // is likely to be left after coalescing. If we are looking at a loop 700 // exiting edge, split it so we won't insert code in the loop, otherwise 701 // don't bother. 702 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB); 703 704 // Check for a loop exiting edge. 705 if (!ShouldSplit && CurLoop != PreLoop) { 706 LLVM_DEBUG({ 707 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; 708 if (PreLoop) 709 dbgs() << "PreLoop: " << *PreLoop; 710 if (CurLoop) 711 dbgs() << "CurLoop: " << *CurLoop; 712 }); 713 // This edge could be entering a loop, exiting a loop, or it could be 714 // both: Jumping directly form one loop to the header of a sibling 715 // loop. 716 // Split unless this edge is entering CurLoop from an outer loop. 717 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); 718 } 719 if (!ShouldSplit && !SplitAllCriticalEdges) 720 continue; 721 if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) { 722 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n"); 723 continue; 724 } 725 Changed = true; 726 ++NumCriticalEdgesSplit; 727 } 728 } 729 return Changed; 730 } 731 732 bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) { 733 assert((LV || LIS) && 734 "isLiveIn() requires either LiveVariables or LiveIntervals"); 735 if (LIS) 736 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); 737 else 738 return LV->isLiveIn(Reg, *MBB); 739 } 740 741 bool PHIElimination::isLiveOutPastPHIs(Register Reg, 742 const MachineBasicBlock *MBB) { 743 assert((LV || LIS) && 744 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); 745 // LiveVariables considers uses in PHIs to be in the predecessor basic block, 746 // so that a register used only in a PHI is not live out of the block. In 747 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than 748 // in the predecessor basic block, so that a register used only in a PHI is live 749 // out of the block. 750 if (LIS) { 751 const LiveInterval &LI = LIS->getInterval(Reg); 752 for (const MachineBasicBlock *SI : MBB->successors()) 753 if (LI.liveAt(LIS->getMBBStartIdx(SI))) 754 return true; 755 return false; 756 } else { 757 return LV->isLiveOut(Reg, *MBB); 758 } 759 } 760