xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/PHIElimination.cpp (revision 3dd5524264095ed8612c28908e13f80668eff2f9)
1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates machine instruction PHI nodes by inserting copy
10 // instructions.  This destroys SSA information, but is the desired input for
11 // some register allocators.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "PHIEliminationUtils.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "llvm/CodeGen/LiveIntervals.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <cassert>
42 #include <iterator>
43 #include <utility>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "phi-node-elimination"
48 
49 static cl::opt<bool>
50 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
51                      cl::Hidden, cl::desc("Disable critical edge splitting "
52                                           "during PHI elimination"));
53 
54 static cl::opt<bool>
55 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
56                       cl::Hidden, cl::desc("Split all critical edges during "
57                                            "PHI elimination"));
58 
59 static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
60     "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
61     cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
62 
63 namespace {
64 
65   class PHIElimination : public MachineFunctionPass {
66     MachineRegisterInfo *MRI; // Machine register information
67     LiveVariables *LV;
68     LiveIntervals *LIS;
69 
70   public:
71     static char ID; // Pass identification, replacement for typeid
72 
73     PHIElimination() : MachineFunctionPass(ID) {
74       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
75     }
76 
77     bool runOnMachineFunction(MachineFunction &MF) override;
78     void getAnalysisUsage(AnalysisUsage &AU) const override;
79 
80   private:
81     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
82     /// in predecessor basic blocks.
83     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
84 
85     void LowerPHINode(MachineBasicBlock &MBB,
86                       MachineBasicBlock::iterator LastPHIIt);
87 
88     /// analyzePHINodes - Gather information about the PHI nodes in
89     /// here. In particular, we want to map the number of uses of a virtual
90     /// register which is used in a PHI node. We map that to the BB the
91     /// vreg is coming from. This is used later to determine when the vreg
92     /// is killed in the BB.
93     void analyzePHINodes(const MachineFunction& MF);
94 
95     /// Split critical edges where necessary for good coalescer performance.
96     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
97                        MachineLoopInfo *MLI,
98                        std::vector<SparseBitVector<>> *LiveInSets);
99 
100     // These functions are temporary abstractions around LiveVariables and
101     // LiveIntervals, so they can go away when LiveVariables does.
102     bool isLiveIn(Register Reg, const MachineBasicBlock *MBB);
103     bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB);
104 
105     using BBVRegPair = std::pair<unsigned, Register>;
106     using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
107 
108     // Count the number of non-undef PHI uses of each register in each BB.
109     VRegPHIUse VRegPHIUseCount;
110 
111     // Defs of PHI sources which are implicit_def.
112     SmallPtrSet<MachineInstr*, 4> ImpDefs;
113 
114     // Map reusable lowered PHI node -> incoming join register.
115     using LoweredPHIMap =
116         DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
117     LoweredPHIMap LoweredPHIs;
118   };
119 
120 } // end anonymous namespace
121 
122 STATISTIC(NumLowered, "Number of phis lowered");
123 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
124 STATISTIC(NumReused, "Number of reused lowered phis");
125 
126 char PHIElimination::ID = 0;
127 
128 char& llvm::PHIEliminationID = PHIElimination::ID;
129 
130 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
131                       "Eliminate PHI nodes for register allocation",
132                       false, false)
133 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
134 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
135                     "Eliminate PHI nodes for register allocation", false, false)
136 
137 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
138   AU.addUsedIfAvailable<LiveVariables>();
139   AU.addPreserved<LiveVariables>();
140   AU.addPreserved<SlotIndexes>();
141   AU.addPreserved<LiveIntervals>();
142   AU.addPreserved<MachineDominatorTree>();
143   AU.addPreserved<MachineLoopInfo>();
144   MachineFunctionPass::getAnalysisUsage(AU);
145 }
146 
147 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
148   MRI = &MF.getRegInfo();
149   LV = getAnalysisIfAvailable<LiveVariables>();
150   LIS = getAnalysisIfAvailable<LiveIntervals>();
151 
152   bool Changed = false;
153 
154   // Split critical edges to help the coalescer.
155   if (!DisableEdgeSplitting && (LV || LIS)) {
156     // A set of live-in regs for each MBB which is used to update LV
157     // efficiently also with large functions.
158     std::vector<SparseBitVector<>> LiveInSets;
159     if (LV) {
160       LiveInSets.resize(MF.size());
161       for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) {
162         // Set the bit for this register for each MBB where it is
163         // live-through or live-in (killed).
164         unsigned VirtReg = Register::index2VirtReg(Index);
165         MachineInstr *DefMI = MRI->getVRegDef(VirtReg);
166         if (!DefMI)
167           continue;
168         LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg);
169         SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin();
170         SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end();
171         while (AliveBlockItr != EndItr) {
172           unsigned BlockNum = *(AliveBlockItr++);
173           LiveInSets[BlockNum].set(Index);
174         }
175         // The register is live into an MBB in which it is killed but not
176         // defined. See comment for VarInfo in LiveVariables.h.
177         MachineBasicBlock *DefMBB = DefMI->getParent();
178         if (VI.Kills.size() > 1 ||
179             (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB))
180           for (auto *MI : VI.Kills)
181             LiveInSets[MI->getParent()->getNumber()].set(Index);
182       }
183     }
184 
185     MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
186     for (auto &MBB : MF)
187       Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr));
188   }
189 
190   // This pass takes the function out of SSA form.
191   MRI->leaveSSA();
192 
193   // Populate VRegPHIUseCount
194   analyzePHINodes(MF);
195 
196   // Eliminate PHI instructions by inserting copies into predecessor blocks.
197   for (auto &MBB : MF)
198     Changed |= EliminatePHINodes(MF, MBB);
199 
200   // Remove dead IMPLICIT_DEF instructions.
201   for (MachineInstr *DefMI : ImpDefs) {
202     Register DefReg = DefMI->getOperand(0).getReg();
203     if (MRI->use_nodbg_empty(DefReg)) {
204       if (LIS)
205         LIS->RemoveMachineInstrFromMaps(*DefMI);
206       DefMI->eraseFromParent();
207     }
208   }
209 
210   // Clean up the lowered PHI instructions.
211   for (auto &I : LoweredPHIs) {
212     if (LIS)
213       LIS->RemoveMachineInstrFromMaps(*I.first);
214     MF.deleteMachineInstr(I.first);
215   }
216 
217   // TODO: we should use the incremental DomTree updater here.
218   if (Changed)
219     if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>())
220       MDT->getBase().recalculate(MF);
221 
222   LoweredPHIs.clear();
223   ImpDefs.clear();
224   VRegPHIUseCount.clear();
225 
226   MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
227 
228   return Changed;
229 }
230 
231 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
232 /// predecessor basic blocks.
233 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
234                                        MachineBasicBlock &MBB) {
235   if (MBB.empty() || !MBB.front().isPHI())
236     return false;   // Quick exit for basic blocks without PHIs.
237 
238   // Get an iterator to the last PHI node.
239   MachineBasicBlock::iterator LastPHIIt =
240     std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
241 
242   while (MBB.front().isPHI())
243     LowerPHINode(MBB, LastPHIIt);
244 
245   return true;
246 }
247 
248 /// Return true if all defs of VirtReg are implicit-defs.
249 /// This includes registers with no defs.
250 static bool isImplicitlyDefined(unsigned VirtReg,
251                                 const MachineRegisterInfo &MRI) {
252   for (MachineInstr &DI : MRI.def_instructions(VirtReg))
253     if (!DI.isImplicitDef())
254       return false;
255   return true;
256 }
257 
258 /// Return true if all sources of the phi node are implicit_def's, or undef's.
259 static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
260                                     const MachineRegisterInfo &MRI) {
261   for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
262     const MachineOperand &MO = MPhi.getOperand(I);
263     if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
264       return false;
265   }
266   return true;
267 }
268 /// LowerPHINode - Lower the PHI node at the top of the specified block.
269 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
270                                   MachineBasicBlock::iterator LastPHIIt) {
271   ++NumLowered;
272 
273   MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
274 
275   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
276   MachineInstr *MPhi = MBB.remove(&*MBB.begin());
277 
278   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
279   Register DestReg = MPhi->getOperand(0).getReg();
280   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
281   bool isDead = MPhi->getOperand(0).isDead();
282 
283   // Create a new register for the incoming PHI arguments.
284   MachineFunction &MF = *MBB.getParent();
285   unsigned IncomingReg = 0;
286   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
287 
288   // Insert a register to register copy at the top of the current block (but
289   // after any remaining phi nodes) which copies the new incoming register
290   // into the phi node destination.
291   MachineInstr *PHICopy = nullptr;
292   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
293   if (allPhiOperandsUndefined(*MPhi, *MRI))
294     // If all sources of a PHI node are implicit_def or undef uses, just emit an
295     // implicit_def instead of a copy.
296     PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
297             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
298   else {
299     // Can we reuse an earlier PHI node? This only happens for critical edges,
300     // typically those created by tail duplication.
301     unsigned &entry = LoweredPHIs[MPhi];
302     if (entry) {
303       // An identical PHI node was already lowered. Reuse the incoming register.
304       IncomingReg = entry;
305       reusedIncoming = true;
306       ++NumReused;
307       LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
308                         << *MPhi);
309     } else {
310       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
311       entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
312     }
313     // Give the target possiblity to handle special cases fallthrough otherwise
314     PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
315                                   IncomingReg, DestReg);
316   }
317 
318   if (MPhi->peekDebugInstrNum()) {
319     // If referred to by debug-info, store where this PHI was.
320     MachineFunction *MF = MBB.getParent();
321     unsigned ID = MPhi->peekDebugInstrNum();
322     auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0);
323     auto Res = MF->DebugPHIPositions.insert({ID, P});
324     assert(Res.second);
325     (void)Res;
326   }
327 
328   // Update live variable information if there is any.
329   if (LV) {
330     if (IncomingReg) {
331       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
332 
333       // Increment use count of the newly created virtual register.
334       LV->setPHIJoin(IncomingReg);
335 
336       MachineInstr *OldKill = nullptr;
337       bool IsPHICopyAfterOldKill = false;
338 
339       if (reusedIncoming && (OldKill = VI.findKill(&MBB))) {
340         // Calculate whether the PHICopy is after the OldKill.
341         // In general, the PHICopy is inserted as the first non-phi instruction
342         // by default, so it's before the OldKill. But some Target hooks for
343         // createPHIDestinationCopy() may modify the default insert position of
344         // PHICopy.
345         for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end();
346              I != E; ++I) {
347           if (I == PHICopy)
348             break;
349 
350           if (I == OldKill) {
351             IsPHICopyAfterOldKill = true;
352             break;
353           }
354         }
355       }
356 
357       // When we are reusing the incoming register and it has been marked killed
358       // by OldKill, if the PHICopy is after the OldKill, we should remove the
359       // killed flag from OldKill.
360       if (IsPHICopyAfterOldKill) {
361         LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
362         LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
363         LLVM_DEBUG(MBB.dump());
364       }
365 
366       // Add information to LiveVariables to know that the first used incoming
367       // value or the resued incoming value whose PHICopy is after the OldKIll
368       // is killed. Note that because the value is defined in several places
369       // (once each for each incoming block), the "def" block and instruction
370       // fields for the VarInfo is not filled in.
371       if (!OldKill || IsPHICopyAfterOldKill)
372         LV->addVirtualRegisterKilled(IncomingReg, *PHICopy);
373     }
374 
375     // Since we are going to be deleting the PHI node, if it is the last use of
376     // any registers, or if the value itself is dead, we need to move this
377     // information over to the new copy we just inserted.
378     LV->removeVirtualRegistersKilled(*MPhi);
379 
380     // If the result is dead, update LV.
381     if (isDead) {
382       LV->addVirtualRegisterDead(DestReg, *PHICopy);
383       LV->removeVirtualRegisterDead(DestReg, *MPhi);
384     }
385   }
386 
387   // Update LiveIntervals for the new copy or implicit def.
388   if (LIS) {
389     SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy);
390 
391     SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
392     if (IncomingReg) {
393       // Add the region from the beginning of MBB to the copy instruction to
394       // IncomingReg's live interval.
395       LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
396       VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
397       if (!IncomingVNI)
398         IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
399                                               LIS->getVNInfoAllocator());
400       IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
401                                                   DestCopyIndex.getRegSlot(),
402                                                   IncomingVNI));
403     }
404 
405     LiveInterval &DestLI = LIS->getInterval(DestReg);
406     assert(!DestLI.empty() && "PHIs should have nonempty LiveIntervals.");
407     if (DestLI.endIndex().isDead()) {
408       // A dead PHI's live range begins and ends at the start of the MBB, but
409       // the lowered copy, which will still be dead, needs to begin and end at
410       // the copy instruction.
411       VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
412       assert(OrigDestVNI && "PHI destination should be live at block entry.");
413       DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
414       DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
415                            LIS->getVNInfoAllocator());
416       DestLI.removeValNo(OrigDestVNI);
417     } else {
418       // Otherwise, remove the region from the beginning of MBB to the copy
419       // instruction from DestReg's live interval.
420       DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
421       VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
422       assert(DestVNI && "PHI destination should be live at its definition.");
423       DestVNI->def = DestCopyIndex.getRegSlot();
424     }
425   }
426 
427   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
428   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
429     if (!MPhi->getOperand(i).isUndef()) {
430       --VRegPHIUseCount[BBVRegPair(
431           MPhi->getOperand(i + 1).getMBB()->getNumber(),
432           MPhi->getOperand(i).getReg())];
433     }
434   }
435 
436   // Now loop over all of the incoming arguments, changing them to copy into the
437   // IncomingReg register in the corresponding predecessor basic block.
438   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
439   for (int i = NumSrcs - 1; i >= 0; --i) {
440     Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
441     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
442     bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
443       isImplicitlyDefined(SrcReg, *MRI);
444     assert(Register::isVirtualRegister(SrcReg) &&
445            "Machine PHI Operands must all be virtual registers!");
446 
447     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
448     // path the PHI.
449     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
450 
451     // Check to make sure we haven't already emitted the copy for this block.
452     // This can happen because PHI nodes may have multiple entries for the same
453     // basic block.
454     if (!MBBsInsertedInto.insert(&opBlock).second)
455       continue;  // If the copy has already been emitted, we're done.
456 
457     MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
458     if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) {
459       assert(SrcRegDef->getOperand(0).isReg() &&
460              SrcRegDef->getOperand(0).isDef() &&
461              "Expected operand 0 to be a reg def!");
462       // Now that the PHI's use has been removed (as the instruction was
463       // removed) there should be no other uses of the SrcReg.
464       assert(MRI->use_empty(SrcReg) &&
465              "Expected a single use from UnspillableTerminator");
466       SrcRegDef->getOperand(0).setReg(IncomingReg);
467 
468       // Update LiveVariables.
469       if (LV) {
470         LiveVariables::VarInfo &SrcVI = LV->getVarInfo(SrcReg);
471         LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(IncomingReg);
472         IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks);
473         SrcVI.AliveBlocks.clear();
474       }
475 
476       continue;
477     }
478 
479     // Find a safe location to insert the copy, this may be the first terminator
480     // in the block (or end()).
481     MachineBasicBlock::iterator InsertPos =
482       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
483 
484     // Insert the copy.
485     MachineInstr *NewSrcInstr = nullptr;
486     if (!reusedIncoming && IncomingReg) {
487       if (SrcUndef) {
488         // The source register is undefined, so there is no need for a real
489         // COPY, but we still need to ensure joint dominance by defs.
490         // Insert an IMPLICIT_DEF instruction.
491         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
492                               TII->get(TargetOpcode::IMPLICIT_DEF),
493                               IncomingReg);
494 
495         // Clean up the old implicit-def, if there even was one.
496         if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
497           if (DefMI->isImplicitDef())
498             ImpDefs.insert(DefMI);
499       } else {
500         // Delete the debug location, since the copy is inserted into a
501         // different basic block.
502         NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr,
503                                                SrcReg, SrcSubReg, IncomingReg);
504       }
505     }
506 
507     // We only need to update the LiveVariables kill of SrcReg if this was the
508     // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
509     // out of the predecessor. We can also ignore undef sources.
510     if (LV && !SrcUndef &&
511         !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
512         !LV->isLiveOut(SrcReg, opBlock)) {
513       // We want to be able to insert a kill of the register if this PHI (aka,
514       // the copy we just inserted) is the last use of the source value. Live
515       // variable analysis conservatively handles this by saying that the value
516       // is live until the end of the block the PHI entry lives in. If the value
517       // really is dead at the PHI copy, there will be no successor blocks which
518       // have the value live-in.
519 
520       // Okay, if we now know that the value is not live out of the block, we
521       // can add a kill marker in this block saying that it kills the incoming
522       // value!
523 
524       // In our final twist, we have to decide which instruction kills the
525       // register.  In most cases this is the copy, however, terminator
526       // instructions at the end of the block may also use the value. In this
527       // case, we should mark the last such terminator as being the killing
528       // block, not the copy.
529       MachineBasicBlock::iterator KillInst = opBlock.end();
530       for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end();
531            ++Term) {
532         if (Term->readsRegister(SrcReg))
533           KillInst = Term;
534       }
535 
536       if (KillInst == opBlock.end()) {
537         // No terminator uses the register.
538 
539         if (reusedIncoming || !IncomingReg) {
540           // We may have to rewind a bit if we didn't insert a copy this time.
541           KillInst = InsertPos;
542           while (KillInst != opBlock.begin()) {
543             --KillInst;
544             if (KillInst->isDebugInstr())
545               continue;
546             if (KillInst->readsRegister(SrcReg))
547               break;
548           }
549         } else {
550           // We just inserted this copy.
551           KillInst = NewSrcInstr;
552         }
553       }
554       assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
555 
556       // Finally, mark it killed.
557       LV->addVirtualRegisterKilled(SrcReg, *KillInst);
558 
559       // This vreg no longer lives all of the way through opBlock.
560       unsigned opBlockNum = opBlock.getNumber();
561       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
562     }
563 
564     if (LIS) {
565       if (NewSrcInstr) {
566         LIS->InsertMachineInstrInMaps(*NewSrcInstr);
567         LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
568       }
569 
570       if (!SrcUndef &&
571           !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
572         LiveInterval &SrcLI = LIS->getInterval(SrcReg);
573 
574         bool isLiveOut = false;
575         for (MachineBasicBlock *Succ : opBlock.successors()) {
576           SlotIndex startIdx = LIS->getMBBStartIdx(Succ);
577           VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
578 
579           // Definitions by other PHIs are not truly live-in for our purposes.
580           if (VNI && VNI->def != startIdx) {
581             isLiveOut = true;
582             break;
583           }
584         }
585 
586         if (!isLiveOut) {
587           MachineBasicBlock::iterator KillInst = opBlock.end();
588           for (MachineBasicBlock::iterator Term = InsertPos;
589                Term != opBlock.end(); ++Term) {
590             if (Term->readsRegister(SrcReg))
591               KillInst = Term;
592           }
593 
594           if (KillInst == opBlock.end()) {
595             // No terminator uses the register.
596 
597             if (reusedIncoming || !IncomingReg) {
598               // We may have to rewind a bit if we didn't just insert a copy.
599               KillInst = InsertPos;
600               while (KillInst != opBlock.begin()) {
601                 --KillInst;
602                 if (KillInst->isDebugInstr())
603                   continue;
604                 if (KillInst->readsRegister(SrcReg))
605                   break;
606               }
607             } else {
608               // We just inserted this copy.
609               KillInst = std::prev(InsertPos);
610             }
611           }
612           assert(KillInst->readsRegister(SrcReg) &&
613                  "Cannot find kill instruction");
614 
615           SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
616           SrcLI.removeSegment(LastUseIndex.getRegSlot(),
617                               LIS->getMBBEndIdx(&opBlock));
618         }
619       }
620     }
621   }
622 
623   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
624   if (reusedIncoming || !IncomingReg) {
625     if (LIS)
626       LIS->RemoveMachineInstrFromMaps(*MPhi);
627     MF.deleteMachineInstr(MPhi);
628   }
629 }
630 
631 /// analyzePHINodes - Gather information about the PHI nodes in here. In
632 /// particular, we want to map the number of uses of a virtual register which is
633 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
634 /// used later to determine when the vreg is killed in the BB.
635 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
636   for (const auto &MBB : MF) {
637     for (const auto &BBI : MBB) {
638       if (!BBI.isPHI())
639         break;
640       for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
641         if (!BBI.getOperand(i).isUndef()) {
642           ++VRegPHIUseCount[BBVRegPair(
643               BBI.getOperand(i + 1).getMBB()->getNumber(),
644               BBI.getOperand(i).getReg())];
645         }
646       }
647     }
648   }
649 }
650 
651 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
652                                    MachineBasicBlock &MBB,
653                                    MachineLoopInfo *MLI,
654                                    std::vector<SparseBitVector<>> *LiveInSets) {
655   if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
656     return false;   // Quick exit for basic blocks without PHIs.
657 
658   const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
659   bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
660 
661   bool Changed = false;
662   for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
663        BBI != BBE && BBI->isPHI(); ++BBI) {
664     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
665       Register Reg = BBI->getOperand(i).getReg();
666       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
667       // Is there a critical edge from PreMBB to MBB?
668       if (PreMBB->succ_size() == 1)
669         continue;
670 
671       // Avoid splitting backedges of loops. It would introduce small
672       // out-of-line blocks into the loop which is very bad for code placement.
673       if (PreMBB == &MBB && !SplitAllCriticalEdges)
674         continue;
675       const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
676       if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
677         continue;
678 
679       // LV doesn't consider a phi use live-out, so isLiveOut only returns true
680       // when the source register is live-out for some other reason than a phi
681       // use. That means the copy we will insert in PreMBB won't be a kill, and
682       // there is a risk it may not be coalesced away.
683       //
684       // If the copy would be a kill, there is no need to split the edge.
685       bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
686       if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
687         continue;
688       if (ShouldSplit) {
689         LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
690                           << printMBBReference(*PreMBB) << " -> "
691                           << printMBBReference(MBB) << ": " << *BBI);
692       }
693 
694       // If Reg is not live-in to MBB, it means it must be live-in to some
695       // other PreMBB successor, and we can avoid the interference by splitting
696       // the edge.
697       //
698       // If Reg *is* live-in to MBB, the interference is inevitable and a copy
699       // is likely to be left after coalescing. If we are looking at a loop
700       // exiting edge, split it so we won't insert code in the loop, otherwise
701       // don't bother.
702       ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
703 
704       // Check for a loop exiting edge.
705       if (!ShouldSplit && CurLoop != PreLoop) {
706         LLVM_DEBUG({
707           dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
708           if (PreLoop)
709             dbgs() << "PreLoop: " << *PreLoop;
710           if (CurLoop)
711             dbgs() << "CurLoop: " << *CurLoop;
712         });
713         // This edge could be entering a loop, exiting a loop, or it could be
714         // both: Jumping directly form one loop to the header of a sibling
715         // loop.
716         // Split unless this edge is entering CurLoop from an outer loop.
717         ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
718       }
719       if (!ShouldSplit && !SplitAllCriticalEdges)
720         continue;
721       if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) {
722         LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
723         continue;
724       }
725       Changed = true;
726       ++NumCriticalEdgesSplit;
727     }
728   }
729   return Changed;
730 }
731 
732 bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) {
733   assert((LV || LIS) &&
734          "isLiveIn() requires either LiveVariables or LiveIntervals");
735   if (LIS)
736     return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
737   else
738     return LV->isLiveIn(Reg, *MBB);
739 }
740 
741 bool PHIElimination::isLiveOutPastPHIs(Register Reg,
742                                        const MachineBasicBlock *MBB) {
743   assert((LV || LIS) &&
744          "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
745   // LiveVariables considers uses in PHIs to be in the predecessor basic block,
746   // so that a register used only in a PHI is not live out of the block. In
747   // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
748   // in the predecessor basic block, so that a register used only in a PHI is live
749   // out of the block.
750   if (LIS) {
751     const LiveInterval &LI = LIS->getInterval(Reg);
752     for (const MachineBasicBlock *SI : MBB->successors())
753       if (LI.liveAt(LIS->getMBBStartIdx(SI)))
754         return true;
755     return false;
756   } else {
757     return LV->isLiveOut(Reg, *MBB);
758   }
759 }
760