1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass eliminates machine instruction PHI nodes by inserting copy 10 // instructions. This destroys SSA information, but is the desired input for 11 // some register allocators. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "PHIEliminationUtils.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/CodeGen/LiveInterval.h" 21 #include "llvm/CodeGen/LiveIntervals.h" 22 #include "llvm/CodeGen/LiveVariables.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineLoopInfo.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/SlotIndexes.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetPassConfig.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <cassert> 44 #include <iterator> 45 #include <utility> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "phi-node-elimination" 50 51 static cl::opt<bool> 52 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 53 cl::Hidden, cl::desc("Disable critical edge splitting " 54 "during PHI elimination")); 55 56 static cl::opt<bool> 57 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), 58 cl::Hidden, cl::desc("Split all critical edges during " 59 "PHI elimination")); 60 61 static cl::opt<bool> NoPhiElimLiveOutEarlyExit( 62 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, 63 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true.")); 64 65 namespace { 66 67 class PHIElimination : public MachineFunctionPass { 68 MachineRegisterInfo *MRI; // Machine register information 69 LiveVariables *LV; 70 LiveIntervals *LIS; 71 72 public: 73 static char ID; // Pass identification, replacement for typeid 74 75 PHIElimination() : MachineFunctionPass(ID) { 76 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 77 } 78 79 bool runOnMachineFunction(MachineFunction &MF) override; 80 void getAnalysisUsage(AnalysisUsage &AU) const override; 81 82 private: 83 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 84 /// in predecessor basic blocks. 85 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 86 87 void LowerPHINode(MachineBasicBlock &MBB, 88 MachineBasicBlock::iterator LastPHIIt); 89 90 /// analyzePHINodes - Gather information about the PHI nodes in 91 /// here. In particular, we want to map the number of uses of a virtual 92 /// register which is used in a PHI node. We map that to the BB the 93 /// vreg is coming from. This is used later to determine when the vreg 94 /// is killed in the BB. 95 void analyzePHINodes(const MachineFunction& MF); 96 97 /// Split critical edges where necessary for good coalescer performance. 98 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 99 MachineLoopInfo *MLI, 100 std::vector<SparseBitVector<>> *LiveInSets); 101 102 // These functions are temporary abstractions around LiveVariables and 103 // LiveIntervals, so they can go away when LiveVariables does. 104 bool isLiveIn(Register Reg, const MachineBasicBlock *MBB); 105 bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB); 106 107 using BBVRegPair = std::pair<unsigned, Register>; 108 using VRegPHIUse = DenseMap<BBVRegPair, unsigned>; 109 110 // Count the number of non-undef PHI uses of each register in each BB. 111 VRegPHIUse VRegPHIUseCount; 112 113 // Defs of PHI sources which are implicit_def. 114 SmallPtrSet<MachineInstr*, 4> ImpDefs; 115 116 // Map reusable lowered PHI node -> incoming join register. 117 using LoweredPHIMap = 118 DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>; 119 LoweredPHIMap LoweredPHIs; 120 }; 121 122 } // end anonymous namespace 123 124 STATISTIC(NumLowered, "Number of phis lowered"); 125 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 126 STATISTIC(NumReused, "Number of reused lowered phis"); 127 128 char PHIElimination::ID = 0; 129 130 char& llvm::PHIEliminationID = PHIElimination::ID; 131 132 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE, 133 "Eliminate PHI nodes for register allocation", 134 false, false) 135 INITIALIZE_PASS_DEPENDENCY(LiveVariables) 136 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE, 137 "Eliminate PHI nodes for register allocation", false, false) 138 139 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 140 AU.addUsedIfAvailable<LiveVariables>(); 141 AU.addPreserved<LiveVariables>(); 142 AU.addPreserved<SlotIndexes>(); 143 AU.addPreserved<LiveIntervals>(); 144 AU.addPreserved<MachineDominatorTree>(); 145 AU.addPreserved<MachineLoopInfo>(); 146 MachineFunctionPass::getAnalysisUsage(AU); 147 } 148 149 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { 150 MRI = &MF.getRegInfo(); 151 LV = getAnalysisIfAvailable<LiveVariables>(); 152 LIS = getAnalysisIfAvailable<LiveIntervals>(); 153 154 bool Changed = false; 155 156 // Split critical edges to help the coalescer. 157 if (!DisableEdgeSplitting && (LV || LIS)) { 158 // A set of live-in regs for each MBB which is used to update LV 159 // efficiently also with large functions. 160 std::vector<SparseBitVector<>> LiveInSets; 161 if (LV) { 162 LiveInSets.resize(MF.size()); 163 for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) { 164 // Set the bit for this register for each MBB where it is 165 // live-through or live-in (killed). 166 unsigned VirtReg = Register::index2VirtReg(Index); 167 MachineInstr *DefMI = MRI->getVRegDef(VirtReg); 168 if (!DefMI) 169 continue; 170 LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg); 171 SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin(); 172 SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end(); 173 while (AliveBlockItr != EndItr) { 174 unsigned BlockNum = *(AliveBlockItr++); 175 LiveInSets[BlockNum].set(Index); 176 } 177 // The register is live into an MBB in which it is killed but not 178 // defined. See comment for VarInfo in LiveVariables.h. 179 MachineBasicBlock *DefMBB = DefMI->getParent(); 180 if (VI.Kills.size() > 1 || 181 (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB)) 182 for (auto *MI : VI.Kills) 183 LiveInSets[MI->getParent()->getNumber()].set(Index); 184 } 185 } 186 187 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 188 for (auto &MBB : MF) 189 Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr)); 190 } 191 192 // This pass takes the function out of SSA form. 193 MRI->leaveSSA(); 194 195 // Populate VRegPHIUseCount 196 analyzePHINodes(MF); 197 198 // Eliminate PHI instructions by inserting copies into predecessor blocks. 199 for (auto &MBB : MF) 200 Changed |= EliminatePHINodes(MF, MBB); 201 202 // Remove dead IMPLICIT_DEF instructions. 203 for (MachineInstr *DefMI : ImpDefs) { 204 Register DefReg = DefMI->getOperand(0).getReg(); 205 if (MRI->use_nodbg_empty(DefReg)) { 206 if (LIS) 207 LIS->RemoveMachineInstrFromMaps(*DefMI); 208 DefMI->eraseFromParent(); 209 } 210 } 211 212 // Clean up the lowered PHI instructions. 213 for (auto &I : LoweredPHIs) { 214 if (LIS) 215 LIS->RemoveMachineInstrFromMaps(*I.first); 216 MF.deleteMachineInstr(I.first); 217 } 218 219 // TODO: we should use the incremental DomTree updater here. 220 if (Changed) 221 if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>()) 222 MDT->getBase().recalculate(MF); 223 224 LoweredPHIs.clear(); 225 ImpDefs.clear(); 226 VRegPHIUseCount.clear(); 227 228 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); 229 230 return Changed; 231 } 232 233 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 234 /// predecessor basic blocks. 235 bool PHIElimination::EliminatePHINodes(MachineFunction &MF, 236 MachineBasicBlock &MBB) { 237 if (MBB.empty() || !MBB.front().isPHI()) 238 return false; // Quick exit for basic blocks without PHIs. 239 240 // Get an iterator to the last PHI node. 241 MachineBasicBlock::iterator LastPHIIt = 242 std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); 243 244 while (MBB.front().isPHI()) 245 LowerPHINode(MBB, LastPHIIt); 246 247 return true; 248 } 249 250 /// Return true if all defs of VirtReg are implicit-defs. 251 /// This includes registers with no defs. 252 static bool isImplicitlyDefined(unsigned VirtReg, 253 const MachineRegisterInfo &MRI) { 254 for (MachineInstr &DI : MRI.def_instructions(VirtReg)) 255 if (!DI.isImplicitDef()) 256 return false; 257 return true; 258 } 259 260 /// Return true if all sources of the phi node are implicit_def's, or undef's. 261 static bool allPhiOperandsUndefined(const MachineInstr &MPhi, 262 const MachineRegisterInfo &MRI) { 263 for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) { 264 const MachineOperand &MO = MPhi.getOperand(I); 265 if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef()) 266 return false; 267 } 268 return true; 269 } 270 /// LowerPHINode - Lower the PHI node at the top of the specified block. 271 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, 272 MachineBasicBlock::iterator LastPHIIt) { 273 ++NumLowered; 274 275 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); 276 277 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 278 MachineInstr *MPhi = MBB.remove(&*MBB.begin()); 279 280 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 281 Register DestReg = MPhi->getOperand(0).getReg(); 282 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 283 bool isDead = MPhi->getOperand(0).isDead(); 284 285 // Create a new register for the incoming PHI arguments. 286 MachineFunction &MF = *MBB.getParent(); 287 unsigned IncomingReg = 0; 288 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 289 290 // Insert a register to register copy at the top of the current block (but 291 // after any remaining phi nodes) which copies the new incoming register 292 // into the phi node destination. 293 MachineInstr *PHICopy = nullptr; 294 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 295 if (allPhiOperandsUndefined(*MPhi, *MRI)) 296 // If all sources of a PHI node are implicit_def or undef uses, just emit an 297 // implicit_def instead of a copy. 298 PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 299 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 300 else { 301 // Can we reuse an earlier PHI node? This only happens for critical edges, 302 // typically those created by tail duplication. 303 unsigned &entry = LoweredPHIs[MPhi]; 304 if (entry) { 305 // An identical PHI node was already lowered. Reuse the incoming register. 306 IncomingReg = entry; 307 reusedIncoming = true; 308 ++NumReused; 309 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for " 310 << *MPhi); 311 } else { 312 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 313 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 314 } 315 // Give the target possiblity to handle special cases fallthrough otherwise 316 PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 317 IncomingReg, DestReg); 318 } 319 320 if (MPhi->peekDebugInstrNum()) { 321 // If referred to by debug-info, store where this PHI was. 322 MachineFunction *MF = MBB.getParent(); 323 unsigned ID = MPhi->peekDebugInstrNum(); 324 auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0); 325 auto Res = MF->DebugPHIPositions.insert({ID, P}); 326 assert(Res.second); 327 (void)Res; 328 } 329 330 // Update live variable information if there is any. 331 if (LV) { 332 if (IncomingReg) { 333 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 334 335 // Increment use count of the newly created virtual register. 336 LV->setPHIJoin(IncomingReg); 337 338 MachineInstr *OldKill = nullptr; 339 bool IsPHICopyAfterOldKill = false; 340 341 if (reusedIncoming && (OldKill = VI.findKill(&MBB))) { 342 // Calculate whether the PHICopy is after the OldKill. 343 // In general, the PHICopy is inserted as the first non-phi instruction 344 // by default, so it's before the OldKill. But some Target hooks for 345 // createPHIDestinationCopy() may modify the default insert position of 346 // PHICopy. 347 for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end(); 348 I != E; ++I) { 349 if (I == PHICopy) 350 break; 351 352 if (I == OldKill) { 353 IsPHICopyAfterOldKill = true; 354 break; 355 } 356 } 357 } 358 359 // When we are reusing the incoming register and it has been marked killed 360 // by OldKill, if the PHICopy is after the OldKill, we should remove the 361 // killed flag from OldKill. 362 if (IsPHICopyAfterOldKill) { 363 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill); 364 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill); 365 LLVM_DEBUG(MBB.dump()); 366 } 367 368 // Add information to LiveVariables to know that the first used incoming 369 // value or the resued incoming value whose PHICopy is after the OldKIll 370 // is killed. Note that because the value is defined in several places 371 // (once each for each incoming block), the "def" block and instruction 372 // fields for the VarInfo is not filled in. 373 if (!OldKill || IsPHICopyAfterOldKill) 374 LV->addVirtualRegisterKilled(IncomingReg, *PHICopy); 375 } 376 377 // Since we are going to be deleting the PHI node, if it is the last use of 378 // any registers, or if the value itself is dead, we need to move this 379 // information over to the new copy we just inserted. 380 LV->removeVirtualRegistersKilled(*MPhi); 381 382 // If the result is dead, update LV. 383 if (isDead) { 384 LV->addVirtualRegisterDead(DestReg, *PHICopy); 385 LV->removeVirtualRegisterDead(DestReg, *MPhi); 386 } 387 } 388 389 // Update LiveIntervals for the new copy or implicit def. 390 if (LIS) { 391 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy); 392 393 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); 394 if (IncomingReg) { 395 // Add the region from the beginning of MBB to the copy instruction to 396 // IncomingReg's live interval. 397 LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg); 398 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); 399 if (!IncomingVNI) 400 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex, 401 LIS->getVNInfoAllocator()); 402 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex, 403 DestCopyIndex.getRegSlot(), 404 IncomingVNI)); 405 } 406 407 LiveInterval &DestLI = LIS->getInterval(DestReg); 408 assert(!DestLI.empty() && "PHIs should have nonempty LiveIntervals."); 409 if (DestLI.endIndex().isDead()) { 410 // A dead PHI's live range begins and ends at the start of the MBB, but 411 // the lowered copy, which will still be dead, needs to begin and end at 412 // the copy instruction. 413 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex); 414 assert(OrigDestVNI && "PHI destination should be live at block entry."); 415 DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot()); 416 DestLI.createDeadDef(DestCopyIndex.getRegSlot(), 417 LIS->getVNInfoAllocator()); 418 DestLI.removeValNo(OrigDestVNI); 419 } else { 420 // Otherwise, remove the region from the beginning of MBB to the copy 421 // instruction from DestReg's live interval. 422 DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot()); 423 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot()); 424 assert(DestVNI && "PHI destination should be live at its definition."); 425 DestVNI->def = DestCopyIndex.getRegSlot(); 426 } 427 } 428 429 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 430 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { 431 if (!MPhi->getOperand(i).isUndef()) { 432 --VRegPHIUseCount[BBVRegPair( 433 MPhi->getOperand(i + 1).getMBB()->getNumber(), 434 MPhi->getOperand(i).getReg())]; 435 } 436 } 437 438 // Now loop over all of the incoming arguments, changing them to copy into the 439 // IncomingReg register in the corresponding predecessor basic block. 440 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; 441 for (int i = NumSrcs - 1; i >= 0; --i) { 442 Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg(); 443 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); 444 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || 445 isImplicitlyDefined(SrcReg, *MRI); 446 assert(Register::isVirtualRegister(SrcReg) && 447 "Machine PHI Operands must all be virtual registers!"); 448 449 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 450 // path the PHI. 451 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); 452 453 // Check to make sure we haven't already emitted the copy for this block. 454 // This can happen because PHI nodes may have multiple entries for the same 455 // basic block. 456 if (!MBBsInsertedInto.insert(&opBlock).second) 457 continue; // If the copy has already been emitted, we're done. 458 459 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg); 460 if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) { 461 assert(SrcRegDef->getOperand(0).isReg() && 462 SrcRegDef->getOperand(0).isDef() && 463 "Expected operand 0 to be a reg def!"); 464 // Now that the PHI's use has been removed (as the instruction was 465 // removed) there should be no other uses of the SrcReg. 466 assert(MRI->use_empty(SrcReg) && 467 "Expected a single use from UnspillableTerminator"); 468 SrcRegDef->getOperand(0).setReg(IncomingReg); 469 470 // Update LiveVariables. 471 if (LV) { 472 LiveVariables::VarInfo &SrcVI = LV->getVarInfo(SrcReg); 473 LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(IncomingReg); 474 IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks); 475 SrcVI.AliveBlocks.clear(); 476 } 477 478 continue; 479 } 480 481 // Find a safe location to insert the copy, this may be the first terminator 482 // in the block (or end()). 483 MachineBasicBlock::iterator InsertPos = 484 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 485 486 // Insert the copy. 487 MachineInstr *NewSrcInstr = nullptr; 488 if (!reusedIncoming && IncomingReg) { 489 if (SrcUndef) { 490 // The source register is undefined, so there is no need for a real 491 // COPY, but we still need to ensure joint dominance by defs. 492 // Insert an IMPLICIT_DEF instruction. 493 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 494 TII->get(TargetOpcode::IMPLICIT_DEF), 495 IncomingReg); 496 497 // Clean up the old implicit-def, if there even was one. 498 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) 499 if (DefMI->isImplicitDef()) 500 ImpDefs.insert(DefMI); 501 } else { 502 // Delete the debug location, since the copy is inserted into a 503 // different basic block. 504 NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr, 505 SrcReg, SrcSubReg, IncomingReg); 506 } 507 } 508 509 // We only need to update the LiveVariables kill of SrcReg if this was the 510 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live 511 // out of the predecessor. We can also ignore undef sources. 512 if (LV && !SrcUndef && 513 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && 514 !LV->isLiveOut(SrcReg, opBlock)) { 515 // We want to be able to insert a kill of the register if this PHI (aka, 516 // the copy we just inserted) is the last use of the source value. Live 517 // variable analysis conservatively handles this by saying that the value 518 // is live until the end of the block the PHI entry lives in. If the value 519 // really is dead at the PHI copy, there will be no successor blocks which 520 // have the value live-in. 521 522 // Okay, if we now know that the value is not live out of the block, we 523 // can add a kill marker in this block saying that it kills the incoming 524 // value! 525 526 // In our final twist, we have to decide which instruction kills the 527 // register. In most cases this is the copy, however, terminator 528 // instructions at the end of the block may also use the value. In this 529 // case, we should mark the last such terminator as being the killing 530 // block, not the copy. 531 MachineBasicBlock::iterator KillInst = opBlock.end(); 532 for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end(); 533 ++Term) { 534 if (Term->readsRegister(SrcReg)) 535 KillInst = Term; 536 } 537 538 if (KillInst == opBlock.end()) { 539 // No terminator uses the register. 540 541 if (reusedIncoming || !IncomingReg) { 542 // We may have to rewind a bit if we didn't insert a copy this time. 543 KillInst = InsertPos; 544 while (KillInst != opBlock.begin()) { 545 --KillInst; 546 if (KillInst->isDebugInstr()) 547 continue; 548 if (KillInst->readsRegister(SrcReg)) 549 break; 550 } 551 } else { 552 // We just inserted this copy. 553 KillInst = NewSrcInstr; 554 } 555 } 556 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); 557 558 // Finally, mark it killed. 559 LV->addVirtualRegisterKilled(SrcReg, *KillInst); 560 561 // This vreg no longer lives all of the way through opBlock. 562 unsigned opBlockNum = opBlock.getNumber(); 563 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 564 } 565 566 if (LIS) { 567 if (NewSrcInstr) { 568 LIS->InsertMachineInstrInMaps(*NewSrcInstr); 569 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr); 570 } 571 572 if (!SrcUndef && 573 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { 574 LiveInterval &SrcLI = LIS->getInterval(SrcReg); 575 576 bool isLiveOut = false; 577 for (MachineBasicBlock *Succ : opBlock.successors()) { 578 SlotIndex startIdx = LIS->getMBBStartIdx(Succ); 579 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); 580 581 // Definitions by other PHIs are not truly live-in for our purposes. 582 if (VNI && VNI->def != startIdx) { 583 isLiveOut = true; 584 break; 585 } 586 } 587 588 if (!isLiveOut) { 589 MachineBasicBlock::iterator KillInst = opBlock.end(); 590 for (MachineBasicBlock::iterator Term = InsertPos; 591 Term != opBlock.end(); ++Term) { 592 if (Term->readsRegister(SrcReg)) 593 KillInst = Term; 594 } 595 596 if (KillInst == opBlock.end()) { 597 // No terminator uses the register. 598 599 if (reusedIncoming || !IncomingReg) { 600 // We may have to rewind a bit if we didn't just insert a copy. 601 KillInst = InsertPos; 602 while (KillInst != opBlock.begin()) { 603 --KillInst; 604 if (KillInst->isDebugInstr()) 605 continue; 606 if (KillInst->readsRegister(SrcReg)) 607 break; 608 } 609 } else { 610 // We just inserted this copy. 611 KillInst = std::prev(InsertPos); 612 } 613 } 614 assert(KillInst->readsRegister(SrcReg) && 615 "Cannot find kill instruction"); 616 617 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst); 618 SrcLI.removeSegment(LastUseIndex.getRegSlot(), 619 LIS->getMBBEndIdx(&opBlock)); 620 } 621 } 622 } 623 } 624 625 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 626 if (reusedIncoming || !IncomingReg) { 627 if (LIS) 628 LIS->RemoveMachineInstrFromMaps(*MPhi); 629 MF.deleteMachineInstr(MPhi); 630 } 631 } 632 633 /// analyzePHINodes - Gather information about the PHI nodes in here. In 634 /// particular, we want to map the number of uses of a virtual register which is 635 /// used in a PHI node. We map that to the BB the vreg is coming from. This is 636 /// used later to determine when the vreg is killed in the BB. 637 void PHIElimination::analyzePHINodes(const MachineFunction& MF) { 638 for (const auto &MBB : MF) { 639 for (const auto &BBI : MBB) { 640 if (!BBI.isPHI()) 641 break; 642 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 643 if (!BBI.getOperand(i).isUndef()) { 644 ++VRegPHIUseCount[BBVRegPair( 645 BBI.getOperand(i + 1).getMBB()->getNumber(), 646 BBI.getOperand(i).getReg())]; 647 } 648 } 649 } 650 } 651 } 652 653 bool PHIElimination::SplitPHIEdges(MachineFunction &MF, 654 MachineBasicBlock &MBB, 655 MachineLoopInfo *MLI, 656 std::vector<SparseBitVector<>> *LiveInSets) { 657 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) 658 return false; // Quick exit for basic blocks without PHIs. 659 660 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; 661 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); 662 663 bool Changed = false; 664 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); 665 BBI != BBE && BBI->isPHI(); ++BBI) { 666 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 667 Register Reg = BBI->getOperand(i).getReg(); 668 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); 669 // Is there a critical edge from PreMBB to MBB? 670 if (PreMBB->succ_size() == 1) 671 continue; 672 673 // Avoid splitting backedges of loops. It would introduce small 674 // out-of-line blocks into the loop which is very bad for code placement. 675 if (PreMBB == &MBB && !SplitAllCriticalEdges) 676 continue; 677 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; 678 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) 679 continue; 680 681 // LV doesn't consider a phi use live-out, so isLiveOut only returns true 682 // when the source register is live-out for some other reason than a phi 683 // use. That means the copy we will insert in PreMBB won't be a kill, and 684 // there is a risk it may not be coalesced away. 685 // 686 // If the copy would be a kill, there is no need to split the edge. 687 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB); 688 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) 689 continue; 690 if (ShouldSplit) { 691 LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge " 692 << printMBBReference(*PreMBB) << " -> " 693 << printMBBReference(MBB) << ": " << *BBI); 694 } 695 696 // If Reg is not live-in to MBB, it means it must be live-in to some 697 // other PreMBB successor, and we can avoid the interference by splitting 698 // the edge. 699 // 700 // If Reg *is* live-in to MBB, the interference is inevitable and a copy 701 // is likely to be left after coalescing. If we are looking at a loop 702 // exiting edge, split it so we won't insert code in the loop, otherwise 703 // don't bother. 704 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB); 705 706 // Check for a loop exiting edge. 707 if (!ShouldSplit && CurLoop != PreLoop) { 708 LLVM_DEBUG({ 709 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; 710 if (PreLoop) 711 dbgs() << "PreLoop: " << *PreLoop; 712 if (CurLoop) 713 dbgs() << "CurLoop: " << *CurLoop; 714 }); 715 // This edge could be entering a loop, exiting a loop, or it could be 716 // both: Jumping directly form one loop to the header of a sibling 717 // loop. 718 // Split unless this edge is entering CurLoop from an outer loop. 719 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); 720 } 721 if (!ShouldSplit && !SplitAllCriticalEdges) 722 continue; 723 if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) { 724 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n"); 725 continue; 726 } 727 Changed = true; 728 ++NumCriticalEdgesSplit; 729 } 730 } 731 return Changed; 732 } 733 734 bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) { 735 assert((LV || LIS) && 736 "isLiveIn() requires either LiveVariables or LiveIntervals"); 737 if (LIS) 738 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); 739 else 740 return LV->isLiveIn(Reg, *MBB); 741 } 742 743 bool PHIElimination::isLiveOutPastPHIs(Register Reg, 744 const MachineBasicBlock *MBB) { 745 assert((LV || LIS) && 746 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); 747 // LiveVariables considers uses in PHIs to be in the predecessor basic block, 748 // so that a register used only in a PHI is not live out of the block. In 749 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than 750 // in the predecessor basic block, so that a register used only in a PHI is live 751 // out of the block. 752 if (LIS) { 753 const LiveInterval &LI = LIS->getInterval(Reg); 754 for (const MachineBasicBlock *SI : MBB->successors()) 755 if (LI.liveAt(LIS->getMBBStartIdx(SI))) 756 return true; 757 return false; 758 } else { 759 return LV->isLiveOut(Reg, *MBB); 760 } 761 } 762