1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/ModuloSchedule.h" 10 #include "llvm/ADT/StringExtras.h" 11 #include "llvm/Analysis/MemoryLocation.h" 12 #include "llvm/CodeGen/LiveIntervals.h" 13 #include "llvm/CodeGen/MachineInstrBuilder.h" 14 #include "llvm/CodeGen/MachineLoopUtils.h" 15 #include "llvm/CodeGen/MachineRegisterInfo.h" 16 #include "llvm/CodeGen/TargetInstrInfo.h" 17 #include "llvm/InitializePasses.h" 18 #include "llvm/MC/MCContext.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/raw_ostream.h" 22 23 #define DEBUG_TYPE "pipeliner" 24 using namespace llvm; 25 26 void ModuloSchedule::print(raw_ostream &OS) { 27 for (MachineInstr *MI : ScheduledInstrs) 28 OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI; 29 } 30 31 //===----------------------------------------------------------------------===// 32 // ModuloScheduleExpander implementation 33 //===----------------------------------------------------------------------===// 34 35 /// Return the register values for the operands of a Phi instruction. 36 /// This function assume the instruction is a Phi. 37 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 38 unsigned &InitVal, unsigned &LoopVal) { 39 assert(Phi.isPHI() && "Expecting a Phi."); 40 41 InitVal = 0; 42 LoopVal = 0; 43 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 44 if (Phi.getOperand(i + 1).getMBB() != Loop) 45 InitVal = Phi.getOperand(i).getReg(); 46 else 47 LoopVal = Phi.getOperand(i).getReg(); 48 49 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 50 } 51 52 /// Return the Phi register value that comes from the incoming block. 53 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 54 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 55 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 56 return Phi.getOperand(i).getReg(); 57 return 0; 58 } 59 60 /// Return the Phi register value that comes the loop block. 61 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 62 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 63 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 64 return Phi.getOperand(i).getReg(); 65 return 0; 66 } 67 68 void ModuloScheduleExpander::expand() { 69 BB = Schedule.getLoop()->getTopBlock(); 70 Preheader = *BB->pred_begin(); 71 if (Preheader == BB) 72 Preheader = *std::next(BB->pred_begin()); 73 74 // Iterate over the definitions in each instruction, and compute the 75 // stage difference for each use. Keep the maximum value. 76 for (MachineInstr *MI : Schedule.getInstructions()) { 77 int DefStage = Schedule.getStage(MI); 78 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 79 MachineOperand &Op = MI->getOperand(i); 80 if (!Op.isReg() || !Op.isDef()) 81 continue; 82 83 Register Reg = Op.getReg(); 84 unsigned MaxDiff = 0; 85 bool PhiIsSwapped = false; 86 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 87 EI = MRI.use_end(); 88 UI != EI; ++UI) { 89 MachineOperand &UseOp = *UI; 90 MachineInstr *UseMI = UseOp.getParent(); 91 int UseStage = Schedule.getStage(UseMI); 92 unsigned Diff = 0; 93 if (UseStage != -1 && UseStage >= DefStage) 94 Diff = UseStage - DefStage; 95 if (MI->isPHI()) { 96 if (isLoopCarried(*MI)) 97 ++Diff; 98 else 99 PhiIsSwapped = true; 100 } 101 MaxDiff = std::max(Diff, MaxDiff); 102 } 103 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 104 } 105 } 106 107 generatePipelinedLoop(); 108 } 109 110 void ModuloScheduleExpander::generatePipelinedLoop() { 111 LoopInfo = TII->analyzeLoopForPipelining(BB); 112 assert(LoopInfo && "Must be able to analyze loop!"); 113 114 // Create a new basic block for the kernel and add it to the CFG. 115 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 116 117 unsigned MaxStageCount = Schedule.getNumStages() - 1; 118 119 // Remember the registers that are used in different stages. The index is 120 // the iteration, or stage, that the instruction is scheduled in. This is 121 // a map between register names in the original block and the names created 122 // in each stage of the pipelined loop. 123 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 124 InstrMapTy InstrMap; 125 126 SmallVector<MachineBasicBlock *, 4> PrologBBs; 127 128 // Generate the prolog instructions that set up the pipeline. 129 generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs); 130 MF.insert(BB->getIterator(), KernelBB); 131 132 // Rearrange the instructions to generate the new, pipelined loop, 133 // and update register names as needed. 134 for (MachineInstr *CI : Schedule.getInstructions()) { 135 if (CI->isPHI()) 136 continue; 137 unsigned StageNum = Schedule.getStage(CI); 138 MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum); 139 updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap); 140 KernelBB->push_back(NewMI); 141 InstrMap[NewMI] = CI; 142 } 143 144 // Copy any terminator instructions to the new kernel, and update 145 // names as needed. 146 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 147 E = BB->instr_end(); 148 I != E; ++I) { 149 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 150 updateInstruction(NewMI, false, MaxStageCount, 0, VRMap); 151 KernelBB->push_back(NewMI); 152 InstrMap[NewMI] = &*I; 153 } 154 155 NewKernel = KernelBB; 156 KernelBB->transferSuccessors(BB); 157 KernelBB->replaceSuccessor(BB, KernelBB); 158 159 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, 160 InstrMap, MaxStageCount, MaxStageCount, false); 161 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap, 162 MaxStageCount, MaxStageCount, false); 163 164 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 165 166 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 167 // Generate the epilog instructions to complete the pipeline. 168 generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs); 169 170 // We need this step because the register allocation doesn't handle some 171 // situations well, so we insert copies to help out. 172 splitLifetimes(KernelBB, EpilogBBs); 173 174 // Remove dead instructions due to loop induction variables. 175 removeDeadInstructions(KernelBB, EpilogBBs); 176 177 // Add branches between prolog and epilog blocks. 178 addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); 179 180 delete[] VRMap; 181 } 182 183 void ModuloScheduleExpander::cleanup() { 184 // Remove the original loop since it's no longer referenced. 185 for (auto &I : *BB) 186 LIS.RemoveMachineInstrFromMaps(I); 187 BB->clear(); 188 BB->eraseFromParent(); 189 } 190 191 /// Generate the pipeline prolog code. 192 void ModuloScheduleExpander::generateProlog(unsigned LastStage, 193 MachineBasicBlock *KernelBB, 194 ValueMapTy *VRMap, 195 MBBVectorTy &PrologBBs) { 196 MachineBasicBlock *PredBB = Preheader; 197 InstrMapTy InstrMap; 198 199 // Generate a basic block for each stage, not including the last stage, 200 // which will be generated in the kernel. Each basic block may contain 201 // instructions from multiple stages/iterations. 202 for (unsigned i = 0; i < LastStage; ++i) { 203 // Create and insert the prolog basic block prior to the original loop 204 // basic block. The original loop is removed later. 205 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 206 PrologBBs.push_back(NewBB); 207 MF.insert(BB->getIterator(), NewBB); 208 NewBB->transferSuccessors(PredBB); 209 PredBB->addSuccessor(NewBB); 210 PredBB = NewBB; 211 212 // Generate instructions for each appropriate stage. Process instructions 213 // in original program order. 214 for (int StageNum = i; StageNum >= 0; --StageNum) { 215 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 216 BBE = BB->getFirstTerminator(); 217 BBI != BBE; ++BBI) { 218 if (Schedule.getStage(&*BBI) == StageNum) { 219 if (BBI->isPHI()) 220 continue; 221 MachineInstr *NewMI = 222 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum); 223 updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap); 224 NewBB->push_back(NewMI); 225 InstrMap[NewMI] = &*BBI; 226 } 227 } 228 } 229 rewritePhiValues(NewBB, i, VRMap, InstrMap); 230 LLVM_DEBUG({ 231 dbgs() << "prolog:\n"; 232 NewBB->dump(); 233 }); 234 } 235 236 PredBB->replaceSuccessor(BB, KernelBB); 237 238 // Check if we need to remove the branch from the preheader to the original 239 // loop, and replace it with a branch to the new loop. 240 unsigned numBranches = TII->removeBranch(*Preheader); 241 if (numBranches) { 242 SmallVector<MachineOperand, 0> Cond; 243 TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc()); 244 } 245 } 246 247 /// Generate the pipeline epilog code. The epilog code finishes the iterations 248 /// that were started in either the prolog or the kernel. We create a basic 249 /// block for each stage that needs to complete. 250 void ModuloScheduleExpander::generateEpilog(unsigned LastStage, 251 MachineBasicBlock *KernelBB, 252 ValueMapTy *VRMap, 253 MBBVectorTy &EpilogBBs, 254 MBBVectorTy &PrologBBs) { 255 // We need to change the branch from the kernel to the first epilog block, so 256 // this call to analyze branch uses the kernel rather than the original BB. 257 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 258 SmallVector<MachineOperand, 4> Cond; 259 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 260 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 261 if (checkBranch) 262 return; 263 264 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 265 if (*LoopExitI == KernelBB) 266 ++LoopExitI; 267 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 268 MachineBasicBlock *LoopExitBB = *LoopExitI; 269 270 MachineBasicBlock *PredBB = KernelBB; 271 MachineBasicBlock *EpilogStart = LoopExitBB; 272 InstrMapTy InstrMap; 273 274 // Generate a basic block for each stage, not including the last stage, 275 // which was generated for the kernel. Each basic block may contain 276 // instructions from multiple stages/iterations. 277 int EpilogStage = LastStage + 1; 278 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 279 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 280 EpilogBBs.push_back(NewBB); 281 MF.insert(BB->getIterator(), NewBB); 282 283 PredBB->replaceSuccessor(LoopExitBB, NewBB); 284 NewBB->addSuccessor(LoopExitBB); 285 286 if (EpilogStart == LoopExitBB) 287 EpilogStart = NewBB; 288 289 // Add instructions to the epilog depending on the current block. 290 // Process instructions in original program order. 291 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 292 for (auto &BBI : *BB) { 293 if (BBI.isPHI()) 294 continue; 295 MachineInstr *In = &BBI; 296 if ((unsigned)Schedule.getStage(In) == StageNum) { 297 // Instructions with memoperands in the epilog are updated with 298 // conservative values. 299 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 300 updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap); 301 NewBB->push_back(NewMI); 302 InstrMap[NewMI] = In; 303 } 304 } 305 } 306 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, 307 InstrMap, LastStage, EpilogStage, i == 1); 308 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap, 309 LastStage, EpilogStage, i == 1); 310 PredBB = NewBB; 311 312 LLVM_DEBUG({ 313 dbgs() << "epilog:\n"; 314 NewBB->dump(); 315 }); 316 } 317 318 // Fix any Phi nodes in the loop exit block. 319 LoopExitBB->replacePhiUsesWith(BB, PredBB); 320 321 // Create a branch to the new epilog from the kernel. 322 // Remove the original branch and add a new branch to the epilog. 323 TII->removeBranch(*KernelBB); 324 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 325 // Add a branch to the loop exit. 326 if (EpilogBBs.size() > 0) { 327 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 328 SmallVector<MachineOperand, 4> Cond1; 329 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 330 } 331 } 332 333 /// Replace all uses of FromReg that appear outside the specified 334 /// basic block with ToReg. 335 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 336 MachineBasicBlock *MBB, 337 MachineRegisterInfo &MRI, 338 LiveIntervals &LIS) { 339 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 340 E = MRI.use_end(); 341 I != E;) { 342 MachineOperand &O = *I; 343 ++I; 344 if (O.getParent()->getParent() != MBB) 345 O.setReg(ToReg); 346 } 347 if (!LIS.hasInterval(ToReg)) 348 LIS.createEmptyInterval(ToReg); 349 } 350 351 /// Return true if the register has a use that occurs outside the 352 /// specified loop. 353 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 354 MachineRegisterInfo &MRI) { 355 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 356 E = MRI.use_end(); 357 I != E; ++I) 358 if (I->getParent()->getParent() != BB) 359 return true; 360 return false; 361 } 362 363 /// Generate Phis for the specific block in the generated pipelined code. 364 /// This function looks at the Phis from the original code to guide the 365 /// creation of new Phis. 366 void ModuloScheduleExpander::generateExistingPhis( 367 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 368 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 369 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 370 // Compute the stage number for the initial value of the Phi, which 371 // comes from the prolog. The prolog to use depends on to which kernel/ 372 // epilog that we're adding the Phi. 373 unsigned PrologStage = 0; 374 unsigned PrevStage = 0; 375 bool InKernel = (LastStageNum == CurStageNum); 376 if (InKernel) { 377 PrologStage = LastStageNum - 1; 378 PrevStage = CurStageNum; 379 } else { 380 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 381 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 382 } 383 384 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 385 BBE = BB->getFirstNonPHI(); 386 BBI != BBE; ++BBI) { 387 Register Def = BBI->getOperand(0).getReg(); 388 389 unsigned InitVal = 0; 390 unsigned LoopVal = 0; 391 getPhiRegs(*BBI, BB, InitVal, LoopVal); 392 393 unsigned PhiOp1 = 0; 394 // The Phi value from the loop body typically is defined in the loop, but 395 // not always. So, we need to check if the value is defined in the loop. 396 unsigned PhiOp2 = LoopVal; 397 if (VRMap[LastStageNum].count(LoopVal)) 398 PhiOp2 = VRMap[LastStageNum][LoopVal]; 399 400 int StageScheduled = Schedule.getStage(&*BBI); 401 int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal)); 402 unsigned NumStages = getStagesForReg(Def, CurStageNum); 403 if (NumStages == 0) { 404 // We don't need to generate a Phi anymore, but we need to rename any uses 405 // of the Phi value. 406 unsigned NewReg = VRMap[PrevStage][LoopVal]; 407 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def, 408 InitVal, NewReg); 409 if (VRMap[CurStageNum].count(LoopVal)) 410 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 411 } 412 // Adjust the number of Phis needed depending on the number of prologs left, 413 // and the distance from where the Phi is first scheduled. The number of 414 // Phis cannot exceed the number of prolog stages. Each stage can 415 // potentially define two values. 416 unsigned MaxPhis = PrologStage + 2; 417 if (!InKernel && (int)PrologStage <= LoopValStage) 418 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 419 unsigned NumPhis = std::min(NumStages, MaxPhis); 420 421 unsigned NewReg = 0; 422 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 423 // In the epilog, we may need to look back one stage to get the correct 424 // Phi name, because the epilog and prolog blocks execute the same stage. 425 // The correct name is from the previous block only when the Phi has 426 // been completely scheduled prior to the epilog, and Phi value is not 427 // needed in multiple stages. 428 int StageDiff = 0; 429 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 430 NumPhis == 1) 431 StageDiff = 1; 432 // Adjust the computations below when the phi and the loop definition 433 // are scheduled in different stages. 434 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 435 StageDiff = StageScheduled - LoopValStage; 436 for (unsigned np = 0; np < NumPhis; ++np) { 437 // If the Phi hasn't been scheduled, then use the initial Phi operand 438 // value. Otherwise, use the scheduled version of the instruction. This 439 // is a little complicated when a Phi references another Phi. 440 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 441 PhiOp1 = InitVal; 442 // Check if the Phi has already been scheduled in a prolog stage. 443 else if (PrologStage >= AccessStage + StageDiff + np && 444 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 445 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 446 // Check if the Phi has already been scheduled, but the loop instruction 447 // is either another Phi, or doesn't occur in the loop. 448 else if (PrologStage >= AccessStage + StageDiff + np) { 449 // If the Phi references another Phi, we need to examine the other 450 // Phi to get the correct value. 451 PhiOp1 = LoopVal; 452 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 453 int Indirects = 1; 454 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 455 int PhiStage = Schedule.getStage(InstOp1); 456 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 457 PhiOp1 = getInitPhiReg(*InstOp1, BB); 458 else 459 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 460 InstOp1 = MRI.getVRegDef(PhiOp1); 461 int PhiOpStage = Schedule.getStage(InstOp1); 462 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 463 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 464 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 465 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 466 break; 467 } 468 ++Indirects; 469 } 470 } else 471 PhiOp1 = InitVal; 472 // If this references a generated Phi in the kernel, get the Phi operand 473 // from the incoming block. 474 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 475 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 476 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 477 478 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 479 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 480 // In the epilog, a map lookup is needed to get the value from the kernel, 481 // or previous epilog block. How is does this depends on if the 482 // instruction is scheduled in the previous block. 483 if (!InKernel) { 484 int StageDiffAdj = 0; 485 if (LoopValStage != -1 && StageScheduled > LoopValStage) 486 StageDiffAdj = StageScheduled - LoopValStage; 487 // Use the loop value defined in the kernel, unless the kernel 488 // contains the last definition of the Phi. 489 if (np == 0 && PrevStage == LastStageNum && 490 (StageScheduled != 0 || LoopValStage != 0) && 491 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 492 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 493 // Use the value defined by the Phi. We add one because we switch 494 // from looking at the loop value to the Phi definition. 495 else if (np > 0 && PrevStage == LastStageNum && 496 VRMap[PrevStage - np + 1].count(Def)) 497 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 498 // Use the loop value defined in the kernel. 499 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 500 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 501 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 502 // Use the value defined by the Phi, unless we're generating the first 503 // epilog and the Phi refers to a Phi in a different stage. 504 else if (VRMap[PrevStage - np].count(Def) && 505 (!LoopDefIsPhi || (PrevStage != LastStageNum) || 506 (LoopValStage == StageScheduled))) 507 PhiOp2 = VRMap[PrevStage - np][Def]; 508 } 509 510 // Check if we can reuse an existing Phi. This occurs when a Phi 511 // references another Phi, and the other Phi is scheduled in an 512 // earlier stage. We can try to reuse an existing Phi up until the last 513 // stage of the current Phi. 514 if (LoopDefIsPhi) { 515 if (static_cast<int>(PrologStage - np) >= StageScheduled) { 516 int LVNumStages = getStagesForPhi(LoopVal); 517 int StageDiff = (StageScheduled - LoopValStage); 518 LVNumStages -= StageDiff; 519 // Make sure the loop value Phi has been processed already. 520 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 521 NewReg = PhiOp2; 522 unsigned ReuseStage = CurStageNum; 523 if (isLoopCarried(*PhiInst)) 524 ReuseStage -= LVNumStages; 525 // Check if the Phi to reuse has been generated yet. If not, then 526 // there is nothing to reuse. 527 if (VRMap[ReuseStage - np].count(LoopVal)) { 528 NewReg = VRMap[ReuseStage - np][LoopVal]; 529 530 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, 531 Def, NewReg); 532 // Update the map with the new Phi name. 533 VRMap[CurStageNum - np][Def] = NewReg; 534 PhiOp2 = NewReg; 535 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 536 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 537 538 if (IsLast && np == NumPhis - 1) 539 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 540 continue; 541 } 542 } 543 } 544 if (InKernel && StageDiff > 0 && 545 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 546 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 547 } 548 549 const TargetRegisterClass *RC = MRI.getRegClass(Def); 550 NewReg = MRI.createVirtualRegister(RC); 551 552 MachineInstrBuilder NewPhi = 553 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 554 TII->get(TargetOpcode::PHI), NewReg); 555 NewPhi.addReg(PhiOp1).addMBB(BB1); 556 NewPhi.addReg(PhiOp2).addMBB(BB2); 557 if (np == 0) 558 InstrMap[NewPhi] = &*BBI; 559 560 // We define the Phis after creating the new pipelined code, so 561 // we need to rename the Phi values in scheduled instructions. 562 563 unsigned PrevReg = 0; 564 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 565 PrevReg = VRMap[PrevStage - np][LoopVal]; 566 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 567 NewReg, PrevReg); 568 // If the Phi has been scheduled, use the new name for rewriting. 569 if (VRMap[CurStageNum - np].count(Def)) { 570 unsigned R = VRMap[CurStageNum - np][Def]; 571 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R, 572 NewReg); 573 } 574 575 // Check if we need to rename any uses that occurs after the loop. The 576 // register to replace depends on whether the Phi is scheduled in the 577 // epilog. 578 if (IsLast && np == NumPhis - 1) 579 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 580 581 // In the kernel, a dependent Phi uses the value from this Phi. 582 if (InKernel) 583 PhiOp2 = NewReg; 584 585 // Update the map with the new Phi name. 586 VRMap[CurStageNum - np][Def] = NewReg; 587 } 588 589 while (NumPhis++ < NumStages) { 590 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def, 591 NewReg, 0); 592 } 593 594 // Check if we need to rename a Phi that has been eliminated due to 595 // scheduling. 596 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 597 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 598 } 599 } 600 601 /// Generate Phis for the specified block in the generated pipelined code. 602 /// These are new Phis needed because the definition is scheduled after the 603 /// use in the pipelined sequence. 604 void ModuloScheduleExpander::generatePhis( 605 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 606 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 607 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 608 // Compute the stage number that contains the initial Phi value, and 609 // the Phi from the previous stage. 610 unsigned PrologStage = 0; 611 unsigned PrevStage = 0; 612 unsigned StageDiff = CurStageNum - LastStageNum; 613 bool InKernel = (StageDiff == 0); 614 if (InKernel) { 615 PrologStage = LastStageNum - 1; 616 PrevStage = CurStageNum; 617 } else { 618 PrologStage = LastStageNum - StageDiff; 619 PrevStage = LastStageNum + StageDiff - 1; 620 } 621 622 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 623 BBE = BB->instr_end(); 624 BBI != BBE; ++BBI) { 625 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 626 MachineOperand &MO = BBI->getOperand(i); 627 if (!MO.isReg() || !MO.isDef() || 628 !Register::isVirtualRegister(MO.getReg())) 629 continue; 630 631 int StageScheduled = Schedule.getStage(&*BBI); 632 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 633 Register Def = MO.getReg(); 634 unsigned NumPhis = getStagesForReg(Def, CurStageNum); 635 // An instruction scheduled in stage 0 and is used after the loop 636 // requires a phi in the epilog for the last definition from either 637 // the kernel or prolog. 638 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 639 hasUseAfterLoop(Def, BB, MRI)) 640 NumPhis = 1; 641 if (!InKernel && (unsigned)StageScheduled > PrologStage) 642 continue; 643 644 unsigned PhiOp2 = VRMap[PrevStage][Def]; 645 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 646 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 647 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 648 // The number of Phis can't exceed the number of prolog stages. The 649 // prolog stage number is zero based. 650 if (NumPhis > PrologStage + 1 - StageScheduled) 651 NumPhis = PrologStage + 1 - StageScheduled; 652 for (unsigned np = 0; np < NumPhis; ++np) { 653 unsigned PhiOp1 = VRMap[PrologStage][Def]; 654 if (np <= PrologStage) 655 PhiOp1 = VRMap[PrologStage - np][Def]; 656 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 657 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 658 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 659 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 660 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 661 } 662 if (!InKernel) 663 PhiOp2 = VRMap[PrevStage - np][Def]; 664 665 const TargetRegisterClass *RC = MRI.getRegClass(Def); 666 Register NewReg = MRI.createVirtualRegister(RC); 667 668 MachineInstrBuilder NewPhi = 669 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 670 TII->get(TargetOpcode::PHI), NewReg); 671 NewPhi.addReg(PhiOp1).addMBB(BB1); 672 NewPhi.addReg(PhiOp2).addMBB(BB2); 673 if (np == 0) 674 InstrMap[NewPhi] = &*BBI; 675 676 // Rewrite uses and update the map. The actions depend upon whether 677 // we generating code for the kernel or epilog blocks. 678 if (InKernel) { 679 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1, 680 NewReg); 681 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2, 682 NewReg); 683 684 PhiOp2 = NewReg; 685 VRMap[PrevStage - np - 1][Def] = NewReg; 686 } else { 687 VRMap[CurStageNum - np][Def] = NewReg; 688 if (np == NumPhis - 1) 689 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 690 NewReg); 691 } 692 if (IsLast && np == NumPhis - 1) 693 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 694 } 695 } 696 } 697 } 698 699 /// Remove instructions that generate values with no uses. 700 /// Typically, these are induction variable operations that generate values 701 /// used in the loop itself. A dead instruction has a definition with 702 /// no uses, or uses that occur in the original loop only. 703 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, 704 MBBVectorTy &EpilogBBs) { 705 // For each epilog block, check that the value defined by each instruction 706 // is used. If not, delete it. 707 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 708 MBE = EpilogBBs.rend(); 709 MBB != MBE; ++MBB) 710 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 711 ME = (*MBB)->instr_rend(); 712 MI != ME;) { 713 // From DeadMachineInstructionElem. Don't delete inline assembly. 714 if (MI->isInlineAsm()) { 715 ++MI; 716 continue; 717 } 718 bool SawStore = false; 719 // Check if it's safe to remove the instruction due to side effects. 720 // We can, and want to, remove Phis here. 721 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 722 ++MI; 723 continue; 724 } 725 bool used = true; 726 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 727 MOE = MI->operands_end(); 728 MOI != MOE; ++MOI) { 729 if (!MOI->isReg() || !MOI->isDef()) 730 continue; 731 Register reg = MOI->getReg(); 732 // Assume physical registers are used, unless they are marked dead. 733 if (Register::isPhysicalRegister(reg)) { 734 used = !MOI->isDead(); 735 if (used) 736 break; 737 continue; 738 } 739 unsigned realUses = 0; 740 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 741 EI = MRI.use_end(); 742 UI != EI; ++UI) { 743 // Check if there are any uses that occur only in the original 744 // loop. If so, that's not a real use. 745 if (UI->getParent()->getParent() != BB) { 746 realUses++; 747 used = true; 748 break; 749 } 750 } 751 if (realUses > 0) 752 break; 753 used = false; 754 } 755 if (!used) { 756 LIS.RemoveMachineInstrFromMaps(*MI); 757 MI++->eraseFromParent(); 758 continue; 759 } 760 ++MI; 761 } 762 // In the kernel block, check if we can remove a Phi that generates a value 763 // used in an instruction removed in the epilog block. 764 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 765 BBE = KernelBB->getFirstNonPHI(); 766 BBI != BBE;) { 767 MachineInstr *MI = &*BBI; 768 ++BBI; 769 Register reg = MI->getOperand(0).getReg(); 770 if (MRI.use_begin(reg) == MRI.use_end()) { 771 LIS.RemoveMachineInstrFromMaps(*MI); 772 MI->eraseFromParent(); 773 } 774 } 775 } 776 777 /// For loop carried definitions, we split the lifetime of a virtual register 778 /// that has uses past the definition in the next iteration. A copy with a new 779 /// virtual register is inserted before the definition, which helps with 780 /// generating a better register assignment. 781 /// 782 /// v1 = phi(a, v2) v1 = phi(a, v2) 783 /// v2 = phi(b, v3) v2 = phi(b, v3) 784 /// v3 = .. v4 = copy v1 785 /// .. = V1 v3 = .. 786 /// .. = v4 787 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, 788 MBBVectorTy &EpilogBBs) { 789 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 790 for (auto &PHI : KernelBB->phis()) { 791 Register Def = PHI.getOperand(0).getReg(); 792 // Check for any Phi definition that used as an operand of another Phi 793 // in the same block. 794 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 795 E = MRI.use_instr_end(); 796 I != E; ++I) { 797 if (I->isPHI() && I->getParent() == KernelBB) { 798 // Get the loop carried definition. 799 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 800 if (!LCDef) 801 continue; 802 MachineInstr *MI = MRI.getVRegDef(LCDef); 803 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 804 continue; 805 // Search through the rest of the block looking for uses of the Phi 806 // definition. If one occurs, then split the lifetime. 807 unsigned SplitReg = 0; 808 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 809 KernelBB->instr_end())) 810 if (BBJ.readsRegister(Def)) { 811 // We split the lifetime when we find the first use. 812 if (SplitReg == 0) { 813 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 814 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 815 TII->get(TargetOpcode::COPY), SplitReg) 816 .addReg(Def); 817 } 818 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 819 } 820 if (!SplitReg) 821 continue; 822 // Search through each of the epilog blocks for any uses to be renamed. 823 for (auto &Epilog : EpilogBBs) 824 for (auto &I : *Epilog) 825 if (I.readsRegister(Def)) 826 I.substituteRegister(Def, SplitReg, 0, *TRI); 827 break; 828 } 829 } 830 } 831 } 832 833 /// Remove the incoming block from the Phis in a basic block. 834 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 835 for (MachineInstr &MI : *BB) { 836 if (!MI.isPHI()) 837 break; 838 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 839 if (MI.getOperand(i + 1).getMBB() == Incoming) { 840 MI.RemoveOperand(i + 1); 841 MI.RemoveOperand(i); 842 break; 843 } 844 } 845 } 846 847 /// Create branches from each prolog basic block to the appropriate epilog 848 /// block. These edges are needed if the loop ends before reaching the 849 /// kernel. 850 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB, 851 MBBVectorTy &PrologBBs, 852 MachineBasicBlock *KernelBB, 853 MBBVectorTy &EpilogBBs, 854 ValueMapTy *VRMap) { 855 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 856 MachineBasicBlock *LastPro = KernelBB; 857 MachineBasicBlock *LastEpi = KernelBB; 858 859 // Start from the blocks connected to the kernel and work "out" 860 // to the first prolog and the last epilog blocks. 861 SmallVector<MachineInstr *, 4> PrevInsts; 862 unsigned MaxIter = PrologBBs.size() - 1; 863 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 864 // Add branches to the prolog that go to the corresponding 865 // epilog, and the fall-thru prolog/kernel block. 866 MachineBasicBlock *Prolog = PrologBBs[j]; 867 MachineBasicBlock *Epilog = EpilogBBs[i]; 868 869 SmallVector<MachineOperand, 4> Cond; 870 Optional<bool> StaticallyGreater = 871 LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond); 872 unsigned numAdded = 0; 873 if (!StaticallyGreater.hasValue()) { 874 Prolog->addSuccessor(Epilog); 875 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 876 } else if (*StaticallyGreater == false) { 877 Prolog->addSuccessor(Epilog); 878 Prolog->removeSuccessor(LastPro); 879 LastEpi->removeSuccessor(Epilog); 880 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 881 removePhis(Epilog, LastEpi); 882 // Remove the blocks that are no longer referenced. 883 if (LastPro != LastEpi) { 884 LastEpi->clear(); 885 LastEpi->eraseFromParent(); 886 } 887 if (LastPro == KernelBB) { 888 LoopInfo->disposed(); 889 NewKernel = nullptr; 890 } 891 LastPro->clear(); 892 LastPro->eraseFromParent(); 893 } else { 894 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 895 removePhis(Epilog, Prolog); 896 } 897 LastPro = Prolog; 898 LastEpi = Epilog; 899 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 900 E = Prolog->instr_rend(); 901 I != E && numAdded > 0; ++I, --numAdded) 902 updateInstruction(&*I, false, j, 0, VRMap); 903 } 904 905 if (NewKernel) { 906 LoopInfo->setPreheader(PrologBBs[MaxIter]); 907 LoopInfo->adjustTripCount(-(MaxIter + 1)); 908 } 909 } 910 911 /// Return true if we can compute the amount the instruction changes 912 /// during each iteration. Set Delta to the amount of the change. 913 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { 914 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 915 const MachineOperand *BaseOp; 916 int64_t Offset; 917 bool OffsetIsScalable; 918 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 919 return false; 920 921 // FIXME: This algorithm assumes instructions have fixed-size offsets. 922 if (OffsetIsScalable) 923 return false; 924 925 if (!BaseOp->isReg()) 926 return false; 927 928 Register BaseReg = BaseOp->getReg(); 929 930 MachineRegisterInfo &MRI = MF.getRegInfo(); 931 // Check if there is a Phi. If so, get the definition in the loop. 932 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 933 if (BaseDef && BaseDef->isPHI()) { 934 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 935 BaseDef = MRI.getVRegDef(BaseReg); 936 } 937 if (!BaseDef) 938 return false; 939 940 int D = 0; 941 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 942 return false; 943 944 Delta = D; 945 return true; 946 } 947 948 /// Update the memory operand with a new offset when the pipeliner 949 /// generates a new copy of the instruction that refers to a 950 /// different memory location. 951 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, 952 MachineInstr &OldMI, 953 unsigned Num) { 954 if (Num == 0) 955 return; 956 // If the instruction has memory operands, then adjust the offset 957 // when the instruction appears in different stages. 958 if (NewMI.memoperands_empty()) 959 return; 960 SmallVector<MachineMemOperand *, 2> NewMMOs; 961 for (MachineMemOperand *MMO : NewMI.memoperands()) { 962 // TODO: Figure out whether isAtomic is really necessary (see D57601). 963 if (MMO->isVolatile() || MMO->isAtomic() || 964 (MMO->isInvariant() && MMO->isDereferenceable()) || 965 (!MMO->getValue())) { 966 NewMMOs.push_back(MMO); 967 continue; 968 } 969 unsigned Delta; 970 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 971 int64_t AdjOffset = Delta * Num; 972 NewMMOs.push_back( 973 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 974 } else { 975 NewMMOs.push_back( 976 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); 977 } 978 } 979 NewMI.setMemRefs(MF, NewMMOs); 980 } 981 982 /// Clone the instruction for the new pipelined loop and update the 983 /// memory operands, if needed. 984 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, 985 unsigned CurStageNum, 986 unsigned InstStageNum) { 987 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 988 // Check for tied operands in inline asm instructions. This should be handled 989 // elsewhere, but I'm not sure of the best solution. 990 if (OldMI->isInlineAsm()) 991 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 992 const auto &MO = OldMI->getOperand(i); 993 if (MO.isReg() && MO.isUse()) 994 break; 995 unsigned UseIdx; 996 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 997 NewMI->tieOperands(i, UseIdx); 998 } 999 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 1000 return NewMI; 1001 } 1002 1003 /// Clone the instruction for the new pipelined loop. If needed, this 1004 /// function updates the instruction using the values saved in the 1005 /// InstrChanges structure. 1006 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( 1007 MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { 1008 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 1009 auto It = InstrChanges.find(OldMI); 1010 if (It != InstrChanges.end()) { 1011 std::pair<unsigned, int64_t> RegAndOffset = It->second; 1012 unsigned BasePos, OffsetPos; 1013 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 1014 return nullptr; 1015 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 1016 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 1017 if (Schedule.getStage(LoopDef) > (signed)InstStageNum) 1018 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 1019 NewMI->getOperand(OffsetPos).setImm(NewOffset); 1020 } 1021 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 1022 return NewMI; 1023 } 1024 1025 /// Update the machine instruction with new virtual registers. This 1026 /// function may change the defintions and/or uses. 1027 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, 1028 bool LastDef, 1029 unsigned CurStageNum, 1030 unsigned InstrStageNum, 1031 ValueMapTy *VRMap) { 1032 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 1033 MachineOperand &MO = NewMI->getOperand(i); 1034 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 1035 continue; 1036 Register reg = MO.getReg(); 1037 if (MO.isDef()) { 1038 // Create a new virtual register for the definition. 1039 const TargetRegisterClass *RC = MRI.getRegClass(reg); 1040 Register NewReg = MRI.createVirtualRegister(RC); 1041 MO.setReg(NewReg); 1042 VRMap[CurStageNum][reg] = NewReg; 1043 if (LastDef) 1044 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 1045 } else if (MO.isUse()) { 1046 MachineInstr *Def = MRI.getVRegDef(reg); 1047 // Compute the stage that contains the last definition for instruction. 1048 int DefStageNum = Schedule.getStage(Def); 1049 unsigned StageNum = CurStageNum; 1050 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 1051 // Compute the difference in stages between the defintion and the use. 1052 unsigned StageDiff = (InstrStageNum - DefStageNum); 1053 // Make an adjustment to get the last definition. 1054 StageNum -= StageDiff; 1055 } 1056 if (VRMap[StageNum].count(reg)) 1057 MO.setReg(VRMap[StageNum][reg]); 1058 } 1059 } 1060 } 1061 1062 /// Return the instruction in the loop that defines the register. 1063 /// If the definition is a Phi, then follow the Phi operand to 1064 /// the instruction in the loop. 1065 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) { 1066 SmallPtrSet<MachineInstr *, 8> Visited; 1067 MachineInstr *Def = MRI.getVRegDef(Reg); 1068 while (Def->isPHI()) { 1069 if (!Visited.insert(Def).second) 1070 break; 1071 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 1072 if (Def->getOperand(i + 1).getMBB() == BB) { 1073 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 1074 break; 1075 } 1076 } 1077 return Def; 1078 } 1079 1080 /// Return the new name for the value from the previous stage. 1081 unsigned ModuloScheduleExpander::getPrevMapVal( 1082 unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, 1083 ValueMapTy *VRMap, MachineBasicBlock *BB) { 1084 unsigned PrevVal = 0; 1085 if (StageNum > PhiStage) { 1086 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 1087 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 1088 // The name is defined in the previous stage. 1089 PrevVal = VRMap[StageNum - 1][LoopVal]; 1090 else if (VRMap[StageNum].count(LoopVal)) 1091 // The previous name is defined in the current stage when the instruction 1092 // order is swapped. 1093 PrevVal = VRMap[StageNum][LoopVal]; 1094 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 1095 // The loop value hasn't yet been scheduled. 1096 PrevVal = LoopVal; 1097 else if (StageNum == PhiStage + 1) 1098 // The loop value is another phi, which has not been scheduled. 1099 PrevVal = getInitPhiReg(*LoopInst, BB); 1100 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 1101 // The loop value is another phi, which has been scheduled. 1102 PrevVal = 1103 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 1104 LoopStage, VRMap, BB); 1105 } 1106 return PrevVal; 1107 } 1108 1109 /// Rewrite the Phi values in the specified block to use the mappings 1110 /// from the initial operand. Once the Phi is scheduled, we switch 1111 /// to using the loop value instead of the Phi value, so those names 1112 /// do not need to be rewritten. 1113 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, 1114 unsigned StageNum, 1115 ValueMapTy *VRMap, 1116 InstrMapTy &InstrMap) { 1117 for (auto &PHI : BB->phis()) { 1118 unsigned InitVal = 0; 1119 unsigned LoopVal = 0; 1120 getPhiRegs(PHI, BB, InitVal, LoopVal); 1121 Register PhiDef = PHI.getOperand(0).getReg(); 1122 1123 unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef)); 1124 unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal)); 1125 unsigned NumPhis = getStagesForPhi(PhiDef); 1126 if (NumPhis > StageNum) 1127 NumPhis = StageNum; 1128 for (unsigned np = 0; np <= NumPhis; ++np) { 1129 unsigned NewVal = 1130 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 1131 if (!NewVal) 1132 NewVal = InitVal; 1133 rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef, 1134 NewVal); 1135 } 1136 } 1137 } 1138 1139 /// Rewrite a previously scheduled instruction to use the register value 1140 /// from the new instruction. Make sure the instruction occurs in the 1141 /// basic block, and we don't change the uses in the new instruction. 1142 void ModuloScheduleExpander::rewriteScheduledInstr( 1143 MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, 1144 unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, 1145 unsigned PrevReg) { 1146 bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); 1147 int StagePhi = Schedule.getStage(Phi) + PhiNum; 1148 // Rewrite uses that have been scheduled already to use the new 1149 // Phi register. 1150 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 1151 EI = MRI.use_end(); 1152 UI != EI;) { 1153 MachineOperand &UseOp = *UI; 1154 MachineInstr *UseMI = UseOp.getParent(); 1155 ++UI; 1156 if (UseMI->getParent() != BB) 1157 continue; 1158 if (UseMI->isPHI()) { 1159 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 1160 continue; 1161 if (getLoopPhiReg(*UseMI, BB) != OldReg) 1162 continue; 1163 } 1164 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 1165 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 1166 MachineInstr *OrigMI = OrigInstr->second; 1167 int StageSched = Schedule.getStage(OrigMI); 1168 int CycleSched = Schedule.getCycle(OrigMI); 1169 unsigned ReplaceReg = 0; 1170 // This is the stage for the scheduled instruction. 1171 if (StagePhi == StageSched && Phi->isPHI()) { 1172 int CyclePhi = Schedule.getCycle(Phi); 1173 if (PrevReg && InProlog) 1174 ReplaceReg = PrevReg; 1175 else if (PrevReg && !isLoopCarried(*Phi) && 1176 (CyclePhi <= CycleSched || OrigMI->isPHI())) 1177 ReplaceReg = PrevReg; 1178 else 1179 ReplaceReg = NewReg; 1180 } 1181 // The scheduled instruction occurs before the scheduled Phi, and the 1182 // Phi is not loop carried. 1183 if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi)) 1184 ReplaceReg = NewReg; 1185 if (StagePhi > StageSched && Phi->isPHI()) 1186 ReplaceReg = NewReg; 1187 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 1188 ReplaceReg = NewReg; 1189 if (ReplaceReg) { 1190 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 1191 UseOp.setReg(ReplaceReg); 1192 } 1193 } 1194 } 1195 1196 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { 1197 if (!Phi.isPHI()) 1198 return false; 1199 int DefCycle = Schedule.getCycle(&Phi); 1200 int DefStage = Schedule.getStage(&Phi); 1201 1202 unsigned InitVal = 0; 1203 unsigned LoopVal = 0; 1204 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 1205 MachineInstr *Use = MRI.getVRegDef(LoopVal); 1206 if (!Use || Use->isPHI()) 1207 return true; 1208 int LoopCycle = Schedule.getCycle(Use); 1209 int LoopStage = Schedule.getStage(Use); 1210 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 1211 } 1212 1213 //===----------------------------------------------------------------------===// 1214 // PeelingModuloScheduleExpander implementation 1215 //===----------------------------------------------------------------------===// 1216 // This is a reimplementation of ModuloScheduleExpander that works by creating 1217 // a fully correct steady-state kernel and peeling off the prolog and epilogs. 1218 //===----------------------------------------------------------------------===// 1219 1220 namespace { 1221 // Remove any dead phis in MBB. Dead phis either have only one block as input 1222 // (in which case they are the identity) or have no uses. 1223 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI, 1224 LiveIntervals *LIS, bool KeepSingleSrcPhi = false) { 1225 bool Changed = true; 1226 while (Changed) { 1227 Changed = false; 1228 for (auto I = MBB->begin(); I != MBB->getFirstNonPHI();) { 1229 MachineInstr &MI = *I++; 1230 assert(MI.isPHI()); 1231 if (MRI.use_empty(MI.getOperand(0).getReg())) { 1232 if (LIS) 1233 LIS->RemoveMachineInstrFromMaps(MI); 1234 MI.eraseFromParent(); 1235 Changed = true; 1236 } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) { 1237 MRI.constrainRegClass(MI.getOperand(1).getReg(), 1238 MRI.getRegClass(MI.getOperand(0).getReg())); 1239 MRI.replaceRegWith(MI.getOperand(0).getReg(), 1240 MI.getOperand(1).getReg()); 1241 if (LIS) 1242 LIS->RemoveMachineInstrFromMaps(MI); 1243 MI.eraseFromParent(); 1244 Changed = true; 1245 } 1246 } 1247 } 1248 } 1249 1250 /// Rewrites the kernel block in-place to adhere to the given schedule. 1251 /// KernelRewriter holds all of the state required to perform the rewriting. 1252 class KernelRewriter { 1253 ModuloSchedule &S; 1254 MachineBasicBlock *BB; 1255 MachineBasicBlock *PreheaderBB, *ExitBB; 1256 MachineRegisterInfo &MRI; 1257 const TargetInstrInfo *TII; 1258 LiveIntervals *LIS; 1259 1260 // Map from register class to canonical undef register for that class. 1261 DenseMap<const TargetRegisterClass *, Register> Undefs; 1262 // Map from <LoopReg, InitReg> to phi register for all created phis. Note that 1263 // this map is only used when InitReg is non-undef. 1264 DenseMap<std::pair<unsigned, unsigned>, Register> Phis; 1265 // Map from LoopReg to phi register where the InitReg is undef. 1266 DenseMap<Register, Register> UndefPhis; 1267 1268 // Reg is used by MI. Return the new register MI should use to adhere to the 1269 // schedule. Insert phis as necessary. 1270 Register remapUse(Register Reg, MachineInstr &MI); 1271 // Insert a phi that carries LoopReg from the loop body and InitReg otherwise. 1272 // If InitReg is not given it is chosen arbitrarily. It will either be undef 1273 // or will be chosen so as to share another phi. 1274 Register phi(Register LoopReg, Optional<Register> InitReg = {}, 1275 const TargetRegisterClass *RC = nullptr); 1276 // Create an undef register of the given register class. 1277 Register undef(const TargetRegisterClass *RC); 1278 1279 public: 1280 KernelRewriter(MachineLoop &L, ModuloSchedule &S, 1281 LiveIntervals *LIS = nullptr); 1282 void rewrite(); 1283 }; 1284 } // namespace 1285 1286 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S, 1287 LiveIntervals *LIS) 1288 : S(S), BB(L.getTopBlock()), PreheaderBB(L.getLoopPreheader()), 1289 ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()), 1290 TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) { 1291 PreheaderBB = *BB->pred_begin(); 1292 if (PreheaderBB == BB) 1293 PreheaderBB = *std::next(BB->pred_begin()); 1294 } 1295 1296 void KernelRewriter::rewrite() { 1297 // Rearrange the loop to be in schedule order. Note that the schedule may 1298 // contain instructions that are not owned by the loop block (InstrChanges and 1299 // friends), so we gracefully handle unowned instructions and delete any 1300 // instructions that weren't in the schedule. 1301 auto InsertPt = BB->getFirstTerminator(); 1302 MachineInstr *FirstMI = nullptr; 1303 for (MachineInstr *MI : S.getInstructions()) { 1304 if (MI->isPHI()) 1305 continue; 1306 if (MI->getParent()) 1307 MI->removeFromParent(); 1308 BB->insert(InsertPt, MI); 1309 if (!FirstMI) 1310 FirstMI = MI; 1311 } 1312 assert(FirstMI && "Failed to find first MI in schedule"); 1313 1314 // At this point all of the scheduled instructions are between FirstMI 1315 // and the end of the block. Kill from the first non-phi to FirstMI. 1316 for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) { 1317 if (LIS) 1318 LIS->RemoveMachineInstrFromMaps(*I); 1319 (I++)->eraseFromParent(); 1320 } 1321 1322 // Now remap every instruction in the loop. 1323 for (MachineInstr &MI : *BB) { 1324 if (MI.isPHI() || MI.isTerminator()) 1325 continue; 1326 for (MachineOperand &MO : MI.uses()) { 1327 if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit()) 1328 continue; 1329 Register Reg = remapUse(MO.getReg(), MI); 1330 MO.setReg(Reg); 1331 } 1332 } 1333 EliminateDeadPhis(BB, MRI, LIS); 1334 1335 // Ensure a phi exists for all instructions that are either referenced by 1336 // an illegal phi or by an instruction outside the loop. This allows us to 1337 // treat remaps of these values the same as "normal" values that come from 1338 // loop-carried phis. 1339 for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) { 1340 if (MI->isPHI()) { 1341 Register R = MI->getOperand(0).getReg(); 1342 phi(R); 1343 continue; 1344 } 1345 1346 for (MachineOperand &Def : MI->defs()) { 1347 for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) { 1348 if (MI.getParent() != BB) { 1349 phi(Def.getReg()); 1350 break; 1351 } 1352 } 1353 } 1354 } 1355 } 1356 1357 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) { 1358 MachineInstr *Producer = MRI.getUniqueVRegDef(Reg); 1359 if (!Producer) 1360 return Reg; 1361 1362 int ConsumerStage = S.getStage(&MI); 1363 if (!Producer->isPHI()) { 1364 // Non-phi producers are simple to remap. Insert as many phis as the 1365 // difference between the consumer and producer stages. 1366 if (Producer->getParent() != BB) 1367 // Producer was not inside the loop. Use the register as-is. 1368 return Reg; 1369 int ProducerStage = S.getStage(Producer); 1370 assert(ConsumerStage != -1 && 1371 "In-loop consumer should always be scheduled!"); 1372 assert(ConsumerStage >= ProducerStage); 1373 unsigned StageDiff = ConsumerStage - ProducerStage; 1374 1375 for (unsigned I = 0; I < StageDiff; ++I) 1376 Reg = phi(Reg); 1377 return Reg; 1378 } 1379 1380 // First, dive through the phi chain to find the defaults for the generated 1381 // phis. 1382 SmallVector<Optional<Register>, 4> Defaults; 1383 Register LoopReg = Reg; 1384 auto LoopProducer = Producer; 1385 while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) { 1386 LoopReg = getLoopPhiReg(*LoopProducer, BB); 1387 Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB)); 1388 LoopProducer = MRI.getUniqueVRegDef(LoopReg); 1389 assert(LoopProducer); 1390 } 1391 int LoopProducerStage = S.getStage(LoopProducer); 1392 1393 Optional<Register> IllegalPhiDefault; 1394 1395 if (LoopProducerStage == -1) { 1396 // Do nothing. 1397 } else if (LoopProducerStage > ConsumerStage) { 1398 // This schedule is only representable if ProducerStage == ConsumerStage+1. 1399 // In addition, Consumer's cycle must be scheduled after Producer in the 1400 // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP 1401 // functions. 1402 #ifndef NDEBUG // Silence unused variables in non-asserts mode. 1403 int LoopProducerCycle = S.getCycle(LoopProducer); 1404 int ConsumerCycle = S.getCycle(&MI); 1405 #endif 1406 assert(LoopProducerCycle <= ConsumerCycle); 1407 assert(LoopProducerStage == ConsumerStage + 1); 1408 // Peel off the first phi from Defaults and insert a phi between producer 1409 // and consumer. This phi will not be at the front of the block so we 1410 // consider it illegal. It will only exist during the rewrite process; it 1411 // needs to exist while we peel off prologs because these could take the 1412 // default value. After that we can replace all uses with the loop producer 1413 // value. 1414 IllegalPhiDefault = Defaults.front(); 1415 Defaults.erase(Defaults.begin()); 1416 } else { 1417 assert(ConsumerStage >= LoopProducerStage); 1418 int StageDiff = ConsumerStage - LoopProducerStage; 1419 if (StageDiff > 0) { 1420 LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size() 1421 << " to " << (Defaults.size() + StageDiff) << "\n"); 1422 // If we need more phis than we have defaults for, pad out with undefs for 1423 // the earliest phis, which are at the end of the defaults chain (the 1424 // chain is in reverse order). 1425 Defaults.resize(Defaults.size() + StageDiff, Defaults.empty() 1426 ? Optional<Register>() 1427 : Defaults.back()); 1428 } 1429 } 1430 1431 // Now we know the number of stages to jump back, insert the phi chain. 1432 auto DefaultI = Defaults.rbegin(); 1433 while (DefaultI != Defaults.rend()) 1434 LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg)); 1435 1436 if (IllegalPhiDefault.hasValue()) { 1437 // The consumer optionally consumes LoopProducer in the same iteration 1438 // (because the producer is scheduled at an earlier cycle than the consumer) 1439 // or the initial value. To facilitate this we create an illegal block here 1440 // by embedding a phi in the middle of the block. We will fix this up 1441 // immediately prior to pruning. 1442 auto RC = MRI.getRegClass(Reg); 1443 Register R = MRI.createVirtualRegister(RC); 1444 MachineInstr *IllegalPhi = 1445 BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1446 .addReg(IllegalPhiDefault.getValue()) 1447 .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect. 1448 .addReg(LoopReg) 1449 .addMBB(BB); // Block choice is arbitrary and has no effect. 1450 // Illegal phi should belong to the producer stage so that it can be 1451 // filtered correctly during peeling. 1452 S.setStage(IllegalPhi, LoopProducerStage); 1453 return R; 1454 } 1455 1456 return LoopReg; 1457 } 1458 1459 Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg, 1460 const TargetRegisterClass *RC) { 1461 // If the init register is not undef, try and find an existing phi. 1462 if (InitReg.hasValue()) { 1463 auto I = Phis.find({LoopReg, InitReg.getValue()}); 1464 if (I != Phis.end()) 1465 return I->second; 1466 } else { 1467 for (auto &KV : Phis) { 1468 if (KV.first.first == LoopReg) 1469 return KV.second; 1470 } 1471 } 1472 1473 // InitReg is either undef or no existing phi takes InitReg as input. Try and 1474 // find a phi that takes undef as input. 1475 auto I = UndefPhis.find(LoopReg); 1476 if (I != UndefPhis.end()) { 1477 Register R = I->second; 1478 if (!InitReg.hasValue()) 1479 // Found a phi taking undef as input, and this input is undef so return 1480 // without any more changes. 1481 return R; 1482 // Found a phi taking undef as input, so rewrite it to take InitReg. 1483 MachineInstr *MI = MRI.getVRegDef(R); 1484 MI->getOperand(1).setReg(InitReg.getValue()); 1485 Phis.insert({{LoopReg, InitReg.getValue()}, R}); 1486 MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue())); 1487 UndefPhis.erase(I); 1488 return R; 1489 } 1490 1491 // Failed to find any existing phi to reuse, so create a new one. 1492 if (!RC) 1493 RC = MRI.getRegClass(LoopReg); 1494 Register R = MRI.createVirtualRegister(RC); 1495 if (InitReg.hasValue()) 1496 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); 1497 BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R) 1498 .addReg(InitReg.hasValue() ? *InitReg : undef(RC)) 1499 .addMBB(PreheaderBB) 1500 .addReg(LoopReg) 1501 .addMBB(BB); 1502 if (!InitReg.hasValue()) 1503 UndefPhis[LoopReg] = R; 1504 else 1505 Phis[{LoopReg, *InitReg}] = R; 1506 return R; 1507 } 1508 1509 Register KernelRewriter::undef(const TargetRegisterClass *RC) { 1510 Register &R = Undefs[RC]; 1511 if (R == 0) { 1512 // Create an IMPLICIT_DEF that defines this register if we need it. 1513 // All uses of this should be removed by the time we have finished unrolling 1514 // prologs and epilogs. 1515 R = MRI.createVirtualRegister(RC); 1516 auto *InsertBB = &PreheaderBB->getParent()->front(); 1517 BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(), 1518 TII->get(TargetOpcode::IMPLICIT_DEF), R); 1519 } 1520 return R; 1521 } 1522 1523 namespace { 1524 /// Describes an operand in the kernel of a pipelined loop. Characteristics of 1525 /// the operand are discovered, such as how many in-loop PHIs it has to jump 1526 /// through and defaults for these phis. 1527 class KernelOperandInfo { 1528 MachineBasicBlock *BB; 1529 MachineRegisterInfo &MRI; 1530 SmallVector<Register, 4> PhiDefaults; 1531 MachineOperand *Source; 1532 MachineOperand *Target; 1533 1534 public: 1535 KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI, 1536 const SmallPtrSetImpl<MachineInstr *> &IllegalPhis) 1537 : MRI(MRI) { 1538 Source = MO; 1539 BB = MO->getParent()->getParent(); 1540 while (isRegInLoop(MO)) { 1541 MachineInstr *MI = MRI.getVRegDef(MO->getReg()); 1542 if (MI->isFullCopy()) { 1543 MO = &MI->getOperand(1); 1544 continue; 1545 } 1546 if (!MI->isPHI()) 1547 break; 1548 // If this is an illegal phi, don't count it in distance. 1549 if (IllegalPhis.count(MI)) { 1550 MO = &MI->getOperand(3); 1551 continue; 1552 } 1553 1554 Register Default = getInitPhiReg(*MI, BB); 1555 MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1) 1556 : &MI->getOperand(3); 1557 PhiDefaults.push_back(Default); 1558 } 1559 Target = MO; 1560 } 1561 1562 bool operator==(const KernelOperandInfo &Other) const { 1563 return PhiDefaults.size() == Other.PhiDefaults.size(); 1564 } 1565 1566 void print(raw_ostream &OS) const { 1567 OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in " 1568 << *Source->getParent(); 1569 } 1570 1571 private: 1572 bool isRegInLoop(MachineOperand *MO) { 1573 return MO->isReg() && MO->getReg().isVirtual() && 1574 MRI.getVRegDef(MO->getReg())->getParent() == BB; 1575 } 1576 }; 1577 } // namespace 1578 1579 MachineBasicBlock * 1580 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) { 1581 MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII); 1582 if (LPD == LPD_Front) 1583 PeeledFront.push_back(NewBB); 1584 else 1585 PeeledBack.push_front(NewBB); 1586 for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator(); 1587 ++I, ++NI) { 1588 CanonicalMIs[&*I] = &*I; 1589 CanonicalMIs[&*NI] = &*I; 1590 BlockMIs[{NewBB, &*I}] = &*NI; 1591 BlockMIs[{BB, &*I}] = &*I; 1592 } 1593 return NewBB; 1594 } 1595 1596 void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB, 1597 int MinStage) { 1598 for (auto I = MB->getFirstInstrTerminator()->getReverseIterator(); 1599 I != std::next(MB->getFirstNonPHI()->getReverseIterator());) { 1600 MachineInstr *MI = &*I++; 1601 int Stage = getStage(MI); 1602 if (Stage == -1 || Stage >= MinStage) 1603 continue; 1604 1605 for (MachineOperand &DefMO : MI->defs()) { 1606 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1607 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1608 // Only PHIs can use values from this block by construction. 1609 // Match with the equivalent PHI in B. 1610 assert(UseMI.isPHI()); 1611 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1612 MI->getParent()); 1613 Subs.emplace_back(&UseMI, Reg); 1614 } 1615 for (auto &Sub : Subs) 1616 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1617 *MRI.getTargetRegisterInfo()); 1618 } 1619 if (LIS) 1620 LIS->RemoveMachineInstrFromMaps(*MI); 1621 MI->eraseFromParent(); 1622 } 1623 } 1624 1625 void PeelingModuloScheduleExpander::moveStageBetweenBlocks( 1626 MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) { 1627 auto InsertPt = DestBB->getFirstNonPHI(); 1628 DenseMap<Register, Register> Remaps; 1629 for (auto I = SourceBB->getFirstNonPHI(); I != SourceBB->end();) { 1630 MachineInstr *MI = &*I++; 1631 if (MI->isPHI()) { 1632 // This is an illegal PHI. If we move any instructions using an illegal 1633 // PHI, we need to create a legal Phi. 1634 if (getStage(MI) != Stage) { 1635 // The legal Phi is not necessary if the illegal phi's stage 1636 // is being moved. 1637 Register PhiR = MI->getOperand(0).getReg(); 1638 auto RC = MRI.getRegClass(PhiR); 1639 Register NR = MRI.createVirtualRegister(RC); 1640 MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(), 1641 DebugLoc(), TII->get(TargetOpcode::PHI), NR) 1642 .addReg(PhiR) 1643 .addMBB(SourceBB); 1644 BlockMIs[{DestBB, CanonicalMIs[MI]}] = NI; 1645 CanonicalMIs[NI] = CanonicalMIs[MI]; 1646 Remaps[PhiR] = NR; 1647 } 1648 } 1649 if (getStage(MI) != Stage) 1650 continue; 1651 MI->removeFromParent(); 1652 DestBB->insert(InsertPt, MI); 1653 auto *KernelMI = CanonicalMIs[MI]; 1654 BlockMIs[{DestBB, KernelMI}] = MI; 1655 BlockMIs.erase({SourceBB, KernelMI}); 1656 } 1657 SmallVector<MachineInstr *, 4> PhiToDelete; 1658 for (MachineInstr &MI : DestBB->phis()) { 1659 assert(MI.getNumOperands() == 3); 1660 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg()); 1661 // If the instruction referenced by the phi is moved inside the block 1662 // we don't need the phi anymore. 1663 if (getStage(Def) == Stage) { 1664 Register PhiReg = MI.getOperand(0).getReg(); 1665 assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1); 1666 MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 1667 MI.getOperand(0).setReg(PhiReg); 1668 PhiToDelete.push_back(&MI); 1669 } 1670 } 1671 for (auto *P : PhiToDelete) 1672 P->eraseFromParent(); 1673 InsertPt = DestBB->getFirstNonPHI(); 1674 // Helper to clone Phi instructions into the destination block. We clone Phi 1675 // greedily to avoid combinatorial explosion of Phi instructions. 1676 auto clonePhi = [&](MachineInstr *Phi) { 1677 MachineInstr *NewMI = MF.CloneMachineInstr(Phi); 1678 DestBB->insert(InsertPt, NewMI); 1679 Register OrigR = Phi->getOperand(0).getReg(); 1680 Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR)); 1681 NewMI->getOperand(0).setReg(R); 1682 NewMI->getOperand(1).setReg(OrigR); 1683 NewMI->getOperand(2).setMBB(*DestBB->pred_begin()); 1684 Remaps[OrigR] = R; 1685 CanonicalMIs[NewMI] = CanonicalMIs[Phi]; 1686 BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI; 1687 PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi]; 1688 return R; 1689 }; 1690 for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) { 1691 for (MachineOperand &MO : I->uses()) { 1692 if (!MO.isReg()) 1693 continue; 1694 if (Remaps.count(MO.getReg())) 1695 MO.setReg(Remaps[MO.getReg()]); 1696 else { 1697 // If we are using a phi from the source block we need to add a new phi 1698 // pointing to the old one. 1699 MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg()); 1700 if (Use && Use->isPHI() && Use->getParent() == SourceBB) { 1701 Register R = clonePhi(Use); 1702 MO.setReg(R); 1703 } 1704 } 1705 } 1706 } 1707 } 1708 1709 Register 1710 PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi, 1711 MachineInstr *Phi) { 1712 unsigned distance = PhiNodeLoopIteration[Phi]; 1713 MachineInstr *CanonicalUse = CanonicalPhi; 1714 Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg(); 1715 for (unsigned I = 0; I < distance; ++I) { 1716 assert(CanonicalUse->isPHI()); 1717 assert(CanonicalUse->getNumOperands() == 5); 1718 unsigned LoopRegIdx = 3, InitRegIdx = 1; 1719 if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent()) 1720 std::swap(LoopRegIdx, InitRegIdx); 1721 CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg(); 1722 CanonicalUse = MRI.getVRegDef(CanonicalUseReg); 1723 } 1724 return CanonicalUseReg; 1725 } 1726 1727 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() { 1728 BitVector LS(Schedule.getNumStages(), true); 1729 BitVector AS(Schedule.getNumStages(), true); 1730 LiveStages[BB] = LS; 1731 AvailableStages[BB] = AS; 1732 1733 // Peel out the prologs. 1734 LS.reset(); 1735 for (int I = 0; I < Schedule.getNumStages() - 1; ++I) { 1736 LS[I] = 1; 1737 Prologs.push_back(peelKernel(LPD_Front)); 1738 LiveStages[Prologs.back()] = LS; 1739 AvailableStages[Prologs.back()] = LS; 1740 } 1741 1742 // Create a block that will end up as the new loop exiting block (dominated by 1743 // all prologs and epilogs). It will only contain PHIs, in the same order as 1744 // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property 1745 // that the exiting block is a (sub) clone of BB. This in turn gives us the 1746 // property that any value deffed in BB but used outside of BB is used by a 1747 // PHI in the exiting block. 1748 MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock(); 1749 EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1750 // Push out the epilogs, again in reverse order. 1751 // We can't assume anything about the minumum loop trip count at this point, 1752 // so emit a fairly complex epilog. 1753 1754 // We first peel number of stages minus one epilogue. Then we remove dead 1755 // stages and reorder instructions based on their stage. If we have 3 stages 1756 // we generate first: 1757 // E0[3, 2, 1] 1758 // E1[3', 2'] 1759 // E2[3''] 1760 // And then we move instructions based on their stages to have: 1761 // E0[3] 1762 // E1[2, 3'] 1763 // E2[1, 2', 3''] 1764 // The transformation is legal because we only move instructions past 1765 // instructions of a previous loop iteration. 1766 for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) { 1767 Epilogs.push_back(peelKernel(LPD_Back)); 1768 MachineBasicBlock *B = Epilogs.back(); 1769 filterInstructions(B, Schedule.getNumStages() - I); 1770 // Keep track at which iteration each phi belongs to. We need it to know 1771 // what version of the variable to use during prologue/epilogue stitching. 1772 EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1773 for (auto Phi = B->begin(), IE = B->getFirstNonPHI(); Phi != IE; ++Phi) 1774 PhiNodeLoopIteration[&*Phi] = Schedule.getNumStages() - I; 1775 } 1776 for (size_t I = 0; I < Epilogs.size(); I++) { 1777 LS.reset(); 1778 for (size_t J = I; J < Epilogs.size(); J++) { 1779 int Iteration = J; 1780 unsigned Stage = Schedule.getNumStages() - 1 + I - J; 1781 // Move stage one block at a time so that Phi nodes are updated correctly. 1782 for (size_t K = Iteration; K > I; K--) 1783 moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage); 1784 LS[Stage] = 1; 1785 } 1786 LiveStages[Epilogs[I]] = LS; 1787 AvailableStages[Epilogs[I]] = AS; 1788 } 1789 1790 // Now we've defined all the prolog and epilog blocks as a fallthrough 1791 // sequence, add the edges that will be followed if the loop trip count is 1792 // lower than the number of stages (connecting prologs directly with epilogs). 1793 auto PI = Prologs.begin(); 1794 auto EI = Epilogs.begin(); 1795 assert(Prologs.size() == Epilogs.size()); 1796 for (; PI != Prologs.end(); ++PI, ++EI) { 1797 MachineBasicBlock *Pred = *(*EI)->pred_begin(); 1798 (*PI)->addSuccessor(*EI); 1799 for (MachineInstr &MI : (*EI)->phis()) { 1800 Register Reg = MI.getOperand(1).getReg(); 1801 MachineInstr *Use = MRI.getUniqueVRegDef(Reg); 1802 if (Use && Use->getParent() == Pred) { 1803 MachineInstr *CanonicalUse = CanonicalMIs[Use]; 1804 if (CanonicalUse->isPHI()) { 1805 // If the use comes from a phi we need to skip as many phi as the 1806 // distance between the epilogue and the kernel. Trace through the phi 1807 // chain to find the right value. 1808 Reg = getPhiCanonicalReg(CanonicalUse, Use); 1809 } 1810 Reg = getEquivalentRegisterIn(Reg, *PI); 1811 } 1812 MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 1813 MI.addOperand(MachineOperand::CreateMBB(*PI)); 1814 } 1815 } 1816 1817 // Create a list of all blocks in order. 1818 SmallVector<MachineBasicBlock *, 8> Blocks; 1819 llvm::copy(PeeledFront, std::back_inserter(Blocks)); 1820 Blocks.push_back(BB); 1821 llvm::copy(PeeledBack, std::back_inserter(Blocks)); 1822 1823 // Iterate in reverse order over all instructions, remapping as we go. 1824 for (MachineBasicBlock *B : reverse(Blocks)) { 1825 for (auto I = B->getFirstInstrTerminator()->getReverseIterator(); 1826 I != std::next(B->getFirstNonPHI()->getReverseIterator());) { 1827 MachineInstr *MI = &*I++; 1828 rewriteUsesOf(MI); 1829 } 1830 } 1831 for (auto *MI : IllegalPhisToDelete) { 1832 if (LIS) 1833 LIS->RemoveMachineInstrFromMaps(*MI); 1834 MI->eraseFromParent(); 1835 } 1836 IllegalPhisToDelete.clear(); 1837 1838 // Now all remapping has been done, we're free to optimize the generated code. 1839 for (MachineBasicBlock *B : reverse(Blocks)) 1840 EliminateDeadPhis(B, MRI, LIS); 1841 EliminateDeadPhis(ExitingBB, MRI, LIS); 1842 } 1843 1844 MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() { 1845 MachineFunction &MF = *BB->getParent(); 1846 MachineBasicBlock *Exit = *BB->succ_begin(); 1847 if (Exit == BB) 1848 Exit = *std::next(BB->succ_begin()); 1849 1850 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 1851 MF.insert(std::next(BB->getIterator()), NewBB); 1852 1853 // Clone all phis in BB into NewBB and rewrite. 1854 for (MachineInstr &MI : BB->phis()) { 1855 auto RC = MRI.getRegClass(MI.getOperand(0).getReg()); 1856 Register OldR = MI.getOperand(3).getReg(); 1857 Register R = MRI.createVirtualRegister(RC); 1858 SmallVector<MachineInstr *, 4> Uses; 1859 for (MachineInstr &Use : MRI.use_instructions(OldR)) 1860 if (Use.getParent() != BB) 1861 Uses.push_back(&Use); 1862 for (MachineInstr *Use : Uses) 1863 Use->substituteRegister(OldR, R, /*SubIdx=*/0, 1864 *MRI.getTargetRegisterInfo()); 1865 MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1866 .addReg(OldR) 1867 .addMBB(BB); 1868 BlockMIs[{NewBB, &MI}] = NI; 1869 CanonicalMIs[NI] = &MI; 1870 } 1871 BB->replaceSuccessor(Exit, NewBB); 1872 Exit->replacePhiUsesWith(BB, NewBB); 1873 NewBB->addSuccessor(Exit); 1874 1875 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1876 SmallVector<MachineOperand, 4> Cond; 1877 bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond); 1878 (void)CanAnalyzeBr; 1879 assert(CanAnalyzeBr && "Must be able to analyze the loop branch!"); 1880 TII->removeBranch(*BB); 1881 TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB, 1882 Cond, DebugLoc()); 1883 TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc()); 1884 return NewBB; 1885 } 1886 1887 Register 1888 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg, 1889 MachineBasicBlock *BB) { 1890 MachineInstr *MI = MRI.getUniqueVRegDef(Reg); 1891 unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg); 1892 return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg(); 1893 } 1894 1895 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) { 1896 if (MI->isPHI()) { 1897 // This is an illegal PHI. The loop-carried (desired) value is operand 3, 1898 // and it is produced by this block. 1899 Register PhiR = MI->getOperand(0).getReg(); 1900 Register R = MI->getOperand(3).getReg(); 1901 int RMIStage = getStage(MRI.getUniqueVRegDef(R)); 1902 if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage)) 1903 R = MI->getOperand(1).getReg(); 1904 MRI.setRegClass(R, MRI.getRegClass(PhiR)); 1905 MRI.replaceRegWith(PhiR, R); 1906 // Postpone deleting the Phi as it may be referenced by BlockMIs and used 1907 // later to figure out how to remap registers. 1908 MI->getOperand(0).setReg(PhiR); 1909 IllegalPhisToDelete.push_back(MI); 1910 return; 1911 } 1912 1913 int Stage = getStage(MI); 1914 if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 || 1915 LiveStages[MI->getParent()].test(Stage)) 1916 // Instruction is live, no rewriting to do. 1917 return; 1918 1919 for (MachineOperand &DefMO : MI->defs()) { 1920 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1921 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1922 // Only PHIs can use values from this block by construction. 1923 // Match with the equivalent PHI in B. 1924 assert(UseMI.isPHI()); 1925 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1926 MI->getParent()); 1927 Subs.emplace_back(&UseMI, Reg); 1928 } 1929 for (auto &Sub : Subs) 1930 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1931 *MRI.getTargetRegisterInfo()); 1932 } 1933 if (LIS) 1934 LIS->RemoveMachineInstrFromMaps(*MI); 1935 MI->eraseFromParent(); 1936 } 1937 1938 void PeelingModuloScheduleExpander::fixupBranches() { 1939 // Work outwards from the kernel. 1940 bool KernelDisposed = false; 1941 int TC = Schedule.getNumStages() - 1; 1942 for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend(); 1943 ++PI, ++EI, --TC) { 1944 MachineBasicBlock *Prolog = *PI; 1945 MachineBasicBlock *Fallthrough = *Prolog->succ_begin(); 1946 MachineBasicBlock *Epilog = *EI; 1947 SmallVector<MachineOperand, 4> Cond; 1948 TII->removeBranch(*Prolog); 1949 Optional<bool> StaticallyGreater = 1950 LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond); 1951 if (!StaticallyGreater.hasValue()) { 1952 LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n"); 1953 // Dynamically branch based on Cond. 1954 TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc()); 1955 } else if (*StaticallyGreater == false) { 1956 LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n"); 1957 // Prolog never falls through; branch to epilog and orphan interior 1958 // blocks. Leave it to unreachable-block-elim to clean up. 1959 Prolog->removeSuccessor(Fallthrough); 1960 for (MachineInstr &P : Fallthrough->phis()) { 1961 P.RemoveOperand(2); 1962 P.RemoveOperand(1); 1963 } 1964 TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc()); 1965 KernelDisposed = true; 1966 } else { 1967 LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n"); 1968 // Prolog always falls through; remove incoming values in epilog. 1969 Prolog->removeSuccessor(Epilog); 1970 for (MachineInstr &P : Epilog->phis()) { 1971 P.RemoveOperand(4); 1972 P.RemoveOperand(3); 1973 } 1974 } 1975 } 1976 1977 if (!KernelDisposed) { 1978 LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1)); 1979 LoopInfo->setPreheader(Prologs.back()); 1980 } else { 1981 LoopInfo->disposed(); 1982 } 1983 } 1984 1985 void PeelingModuloScheduleExpander::rewriteKernel() { 1986 KernelRewriter KR(*Schedule.getLoop(), Schedule); 1987 KR.rewrite(); 1988 } 1989 1990 void PeelingModuloScheduleExpander::expand() { 1991 BB = Schedule.getLoop()->getTopBlock(); 1992 Preheader = Schedule.getLoop()->getLoopPreheader(); 1993 LLVM_DEBUG(Schedule.dump()); 1994 LoopInfo = TII->analyzeLoopForPipelining(BB); 1995 assert(LoopInfo); 1996 1997 rewriteKernel(); 1998 peelPrologAndEpilogs(); 1999 fixupBranches(); 2000 } 2001 2002 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() { 2003 BB = Schedule.getLoop()->getTopBlock(); 2004 Preheader = Schedule.getLoop()->getLoopPreheader(); 2005 2006 // Dump the schedule before we invalidate and remap all its instructions. 2007 // Stash it in a string so we can print it if we found an error. 2008 std::string ScheduleDump; 2009 raw_string_ostream OS(ScheduleDump); 2010 Schedule.print(OS); 2011 OS.flush(); 2012 2013 // First, run the normal ModuleScheduleExpander. We don't support any 2014 // InstrChanges. 2015 assert(LIS && "Requires LiveIntervals!"); 2016 ModuloScheduleExpander MSE(MF, Schedule, *LIS, 2017 ModuloScheduleExpander::InstrChangesTy()); 2018 MSE.expand(); 2019 MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel(); 2020 if (!ExpandedKernel) { 2021 // The expander optimized away the kernel. We can't do any useful checking. 2022 MSE.cleanup(); 2023 return; 2024 } 2025 // Before running the KernelRewriter, re-add BB into the CFG. 2026 Preheader->addSuccessor(BB); 2027 2028 // Now run the new expansion algorithm. 2029 KernelRewriter KR(*Schedule.getLoop(), Schedule); 2030 KR.rewrite(); 2031 peelPrologAndEpilogs(); 2032 2033 // Collect all illegal phis that the new algorithm created. We'll give these 2034 // to KernelOperandInfo. 2035 SmallPtrSet<MachineInstr *, 4> IllegalPhis; 2036 for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) { 2037 if (NI->isPHI()) 2038 IllegalPhis.insert(&*NI); 2039 } 2040 2041 // Co-iterate across both kernels. We expect them to be identical apart from 2042 // phis and full COPYs (we look through both). 2043 SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs; 2044 auto OI = ExpandedKernel->begin(); 2045 auto NI = BB->begin(); 2046 for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) { 2047 while (OI->isPHI() || OI->isFullCopy()) 2048 ++OI; 2049 while (NI->isPHI() || NI->isFullCopy()) 2050 ++NI; 2051 assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!"); 2052 // Analyze every operand separately. 2053 for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin(); 2054 OOpI != OI->operands_end(); ++OOpI, ++NOpI) 2055 KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis), 2056 KernelOperandInfo(&*NOpI, MRI, IllegalPhis)); 2057 } 2058 2059 bool Failed = false; 2060 for (auto &OldAndNew : KOIs) { 2061 if (OldAndNew.first == OldAndNew.second) 2062 continue; 2063 Failed = true; 2064 errs() << "Modulo kernel validation error: [\n"; 2065 errs() << " [golden] "; 2066 OldAndNew.first.print(errs()); 2067 errs() << " "; 2068 OldAndNew.second.print(errs()); 2069 errs() << "]\n"; 2070 } 2071 2072 if (Failed) { 2073 errs() << "Golden reference kernel:\n"; 2074 ExpandedKernel->print(errs()); 2075 errs() << "New kernel:\n"; 2076 BB->print(errs()); 2077 errs() << ScheduleDump; 2078 report_fatal_error( 2079 "Modulo kernel validation (-pipeliner-experimental-cg) failed"); 2080 } 2081 2082 // Cleanup by removing BB from the CFG again as the original 2083 // ModuloScheduleExpander intended. 2084 Preheader->removeSuccessor(BB); 2085 MSE.cleanup(); 2086 } 2087 2088 //===----------------------------------------------------------------------===// 2089 // ModuloScheduleTestPass implementation 2090 //===----------------------------------------------------------------------===// 2091 // This pass constructs a ModuloSchedule from its module and runs 2092 // ModuloScheduleExpander. 2093 // 2094 // The module is expected to contain a single-block analyzable loop. 2095 // The total order of instructions is taken from the loop as-is. 2096 // Instructions are expected to be annotated with a PostInstrSymbol. 2097 // This PostInstrSymbol must have the following format: 2098 // "Stage=%d Cycle=%d". 2099 //===----------------------------------------------------------------------===// 2100 2101 namespace { 2102 class ModuloScheduleTest : public MachineFunctionPass { 2103 public: 2104 static char ID; 2105 2106 ModuloScheduleTest() : MachineFunctionPass(ID) { 2107 initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); 2108 } 2109 2110 bool runOnMachineFunction(MachineFunction &MF) override; 2111 void runOnLoop(MachineFunction &MF, MachineLoop &L); 2112 2113 void getAnalysisUsage(AnalysisUsage &AU) const override { 2114 AU.addRequired<MachineLoopInfo>(); 2115 AU.addRequired<LiveIntervals>(); 2116 MachineFunctionPass::getAnalysisUsage(AU); 2117 } 2118 }; 2119 } // namespace 2120 2121 char ModuloScheduleTest::ID = 0; 2122 2123 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test", 2124 "Modulo Schedule test pass", false, false) 2125 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 2126 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 2127 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test", 2128 "Modulo Schedule test pass", false, false) 2129 2130 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { 2131 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 2132 for (auto *L : MLI) { 2133 if (L->getTopBlock() != L->getBottomBlock()) 2134 continue; 2135 runOnLoop(MF, *L); 2136 return false; 2137 } 2138 return false; 2139 } 2140 2141 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { 2142 std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_"); 2143 std::pair<StringRef, StringRef> StageTokenAndValue = 2144 getToken(StageAndCycle.first, "-"); 2145 std::pair<StringRef, StringRef> CycleTokenAndValue = 2146 getToken(StageAndCycle.second, "-"); 2147 if (StageTokenAndValue.first != "Stage" || 2148 CycleTokenAndValue.first != "_Cycle") { 2149 llvm_unreachable( 2150 "Bad post-instr symbol syntax: see comment in ModuloScheduleTest"); 2151 return; 2152 } 2153 2154 StageTokenAndValue.second.drop_front().getAsInteger(10, Stage); 2155 CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle); 2156 2157 dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n"; 2158 } 2159 2160 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { 2161 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 2162 MachineBasicBlock *BB = L.getTopBlock(); 2163 dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n"; 2164 2165 DenseMap<MachineInstr *, int> Cycle, Stage; 2166 std::vector<MachineInstr *> Instrs; 2167 for (MachineInstr &MI : *BB) { 2168 if (MI.isTerminator()) 2169 continue; 2170 Instrs.push_back(&MI); 2171 if (MCSymbol *Sym = MI.getPostInstrSymbol()) { 2172 dbgs() << "Parsing post-instr symbol for " << MI; 2173 parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]); 2174 } 2175 } 2176 2177 ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), 2178 std::move(Stage)); 2179 ModuloScheduleExpander MSE( 2180 MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); 2181 MSE.expand(); 2182 MSE.cleanup(); 2183 } 2184 2185 //===----------------------------------------------------------------------===// 2186 // ModuloScheduleTestAnnotater implementation 2187 //===----------------------------------------------------------------------===// 2188 2189 void ModuloScheduleTestAnnotater::annotate() { 2190 for (MachineInstr *MI : S.getInstructions()) { 2191 SmallVector<char, 16> SV; 2192 raw_svector_ostream OS(SV); 2193 OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); 2194 MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str()); 2195 MI->setPostInstrSymbol(MF, Sym); 2196 } 2197 } 2198