xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/ModuloSchedule.cpp (revision ab71bbb75a92412f6327ff152ebe638568e9021c)
1  //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  
9  #include "llvm/CodeGen/ModuloSchedule.h"
10  #include "llvm/ADT/StringExtras.h"
11  #include "llvm/Analysis/MemoryLocation.h"
12  #include "llvm/CodeGen/LiveIntervals.h"
13  #include "llvm/CodeGen/MachineInstrBuilder.h"
14  #include "llvm/CodeGen/MachineRegisterInfo.h"
15  #include "llvm/InitializePasses.h"
16  #include "llvm/MC/MCContext.h"
17  #include "llvm/Support/Debug.h"
18  #include "llvm/Support/ErrorHandling.h"
19  #include "llvm/Support/raw_ostream.h"
20  
21  #define DEBUG_TYPE "pipeliner"
22  using namespace llvm;
23  
24  void ModuloSchedule::print(raw_ostream &OS) {
25    for (MachineInstr *MI : ScheduledInstrs)
26      OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
27  }
28  
29  //===----------------------------------------------------------------------===//
30  // ModuloScheduleExpander implementation
31  //===----------------------------------------------------------------------===//
32  
33  /// Return the register values for  the operands of a Phi instruction.
34  /// This function assume the instruction is a Phi.
35  static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
36                         unsigned &InitVal, unsigned &LoopVal) {
37    assert(Phi.isPHI() && "Expecting a Phi.");
38  
39    InitVal = 0;
40    LoopVal = 0;
41    for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
42      if (Phi.getOperand(i + 1).getMBB() != Loop)
43        InitVal = Phi.getOperand(i).getReg();
44      else
45        LoopVal = Phi.getOperand(i).getReg();
46  
47    assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
48  }
49  
50  /// Return the Phi register value that comes from the incoming block.
51  static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
52    for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
53      if (Phi.getOperand(i + 1).getMBB() != LoopBB)
54        return Phi.getOperand(i).getReg();
55    return 0;
56  }
57  
58  /// Return the Phi register value that comes the loop block.
59  static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
60    for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
61      if (Phi.getOperand(i + 1).getMBB() == LoopBB)
62        return Phi.getOperand(i).getReg();
63    return 0;
64  }
65  
66  void ModuloScheduleExpander::expand() {
67    BB = Schedule.getLoop()->getTopBlock();
68    Preheader = *BB->pred_begin();
69    if (Preheader == BB)
70      Preheader = *std::next(BB->pred_begin());
71  
72    // Iterate over the definitions in each instruction, and compute the
73    // stage difference for each use.  Keep the maximum value.
74    for (MachineInstr *MI : Schedule.getInstructions()) {
75      int DefStage = Schedule.getStage(MI);
76      for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
77        MachineOperand &Op = MI->getOperand(i);
78        if (!Op.isReg() || !Op.isDef())
79          continue;
80  
81        Register Reg = Op.getReg();
82        unsigned MaxDiff = 0;
83        bool PhiIsSwapped = false;
84        for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
85                                               EI = MRI.use_end();
86             UI != EI; ++UI) {
87          MachineOperand &UseOp = *UI;
88          MachineInstr *UseMI = UseOp.getParent();
89          int UseStage = Schedule.getStage(UseMI);
90          unsigned Diff = 0;
91          if (UseStage != -1 && UseStage >= DefStage)
92            Diff = UseStage - DefStage;
93          if (MI->isPHI()) {
94            if (isLoopCarried(*MI))
95              ++Diff;
96            else
97              PhiIsSwapped = true;
98          }
99          MaxDiff = std::max(Diff, MaxDiff);
100        }
101        RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
102      }
103    }
104  
105    generatePipelinedLoop();
106  }
107  
108  void ModuloScheduleExpander::generatePipelinedLoop() {
109    LoopInfo = TII->analyzeLoopForPipelining(BB);
110    assert(LoopInfo && "Must be able to analyze loop!");
111  
112    // Create a new basic block for the kernel and add it to the CFG.
113    MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
114  
115    unsigned MaxStageCount = Schedule.getNumStages() - 1;
116  
117    // Remember the registers that are used in different stages. The index is
118    // the iteration, or stage, that the instruction is scheduled in.  This is
119    // a map between register names in the original block and the names created
120    // in each stage of the pipelined loop.
121    ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
122    InstrMapTy InstrMap;
123  
124    SmallVector<MachineBasicBlock *, 4> PrologBBs;
125  
126    // Generate the prolog instructions that set up the pipeline.
127    generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
128    MF.insert(BB->getIterator(), KernelBB);
129  
130    // Rearrange the instructions to generate the new, pipelined loop,
131    // and update register names as needed.
132    for (MachineInstr *CI : Schedule.getInstructions()) {
133      if (CI->isPHI())
134        continue;
135      unsigned StageNum = Schedule.getStage(CI);
136      MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
137      updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
138      KernelBB->push_back(NewMI);
139      InstrMap[NewMI] = CI;
140    }
141  
142    // Copy any terminator instructions to the new kernel, and update
143    // names as needed.
144    for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
145                                     E = BB->instr_end();
146         I != E; ++I) {
147      MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
148      updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
149      KernelBB->push_back(NewMI);
150      InstrMap[NewMI] = &*I;
151    }
152  
153    NewKernel = KernelBB;
154    KernelBB->transferSuccessors(BB);
155    KernelBB->replaceSuccessor(BB, KernelBB);
156  
157    generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
158                         InstrMap, MaxStageCount, MaxStageCount, false);
159    generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap,
160                 MaxStageCount, MaxStageCount, false);
161  
162    LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
163  
164    SmallVector<MachineBasicBlock *, 4> EpilogBBs;
165    // Generate the epilog instructions to complete the pipeline.
166    generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs);
167  
168    // We need this step because the register allocation doesn't handle some
169    // situations well, so we insert copies to help out.
170    splitLifetimes(KernelBB, EpilogBBs);
171  
172    // Remove dead instructions due to loop induction variables.
173    removeDeadInstructions(KernelBB, EpilogBBs);
174  
175    // Add branches between prolog and epilog blocks.
176    addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
177  
178    delete[] VRMap;
179  }
180  
181  void ModuloScheduleExpander::cleanup() {
182    // Remove the original loop since it's no longer referenced.
183    for (auto &I : *BB)
184      LIS.RemoveMachineInstrFromMaps(I);
185    BB->clear();
186    BB->eraseFromParent();
187  }
188  
189  /// Generate the pipeline prolog code.
190  void ModuloScheduleExpander::generateProlog(unsigned LastStage,
191                                              MachineBasicBlock *KernelBB,
192                                              ValueMapTy *VRMap,
193                                              MBBVectorTy &PrologBBs) {
194    MachineBasicBlock *PredBB = Preheader;
195    InstrMapTy InstrMap;
196  
197    // Generate a basic block for each stage, not including the last stage,
198    // which will be generated in the kernel. Each basic block may contain
199    // instructions from multiple stages/iterations.
200    for (unsigned i = 0; i < LastStage; ++i) {
201      // Create and insert the prolog basic block prior to the original loop
202      // basic block.  The original loop is removed later.
203      MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
204      PrologBBs.push_back(NewBB);
205      MF.insert(BB->getIterator(), NewBB);
206      NewBB->transferSuccessors(PredBB);
207      PredBB->addSuccessor(NewBB);
208      PredBB = NewBB;
209  
210      // Generate instructions for each appropriate stage. Process instructions
211      // in original program order.
212      for (int StageNum = i; StageNum >= 0; --StageNum) {
213        for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
214                                         BBE = BB->getFirstTerminator();
215             BBI != BBE; ++BBI) {
216          if (Schedule.getStage(&*BBI) == StageNum) {
217            if (BBI->isPHI())
218              continue;
219            MachineInstr *NewMI =
220                cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
221            updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
222            NewBB->push_back(NewMI);
223            InstrMap[NewMI] = &*BBI;
224          }
225        }
226      }
227      rewritePhiValues(NewBB, i, VRMap, InstrMap);
228      LLVM_DEBUG({
229        dbgs() << "prolog:\n";
230        NewBB->dump();
231      });
232    }
233  
234    PredBB->replaceSuccessor(BB, KernelBB);
235  
236    // Check if we need to remove the branch from the preheader to the original
237    // loop, and replace it with a branch to the new loop.
238    unsigned numBranches = TII->removeBranch(*Preheader);
239    if (numBranches) {
240      SmallVector<MachineOperand, 0> Cond;
241      TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
242    }
243  }
244  
245  /// Generate the pipeline epilog code. The epilog code finishes the iterations
246  /// that were started in either the prolog or the kernel.  We create a basic
247  /// block for each stage that needs to complete.
248  void ModuloScheduleExpander::generateEpilog(unsigned LastStage,
249                                              MachineBasicBlock *KernelBB,
250                                              ValueMapTy *VRMap,
251                                              MBBVectorTy &EpilogBBs,
252                                              MBBVectorTy &PrologBBs) {
253    // We need to change the branch from the kernel to the first epilog block, so
254    // this call to analyze branch uses the kernel rather than the original BB.
255    MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
256    SmallVector<MachineOperand, 4> Cond;
257    bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
258    assert(!checkBranch && "generateEpilog must be able to analyze the branch");
259    if (checkBranch)
260      return;
261  
262    MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
263    if (*LoopExitI == KernelBB)
264      ++LoopExitI;
265    assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
266    MachineBasicBlock *LoopExitBB = *LoopExitI;
267  
268    MachineBasicBlock *PredBB = KernelBB;
269    MachineBasicBlock *EpilogStart = LoopExitBB;
270    InstrMapTy InstrMap;
271  
272    // Generate a basic block for each stage, not including the last stage,
273    // which was generated for the kernel.  Each basic block may contain
274    // instructions from multiple stages/iterations.
275    int EpilogStage = LastStage + 1;
276    for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
277      MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
278      EpilogBBs.push_back(NewBB);
279      MF.insert(BB->getIterator(), NewBB);
280  
281      PredBB->replaceSuccessor(LoopExitBB, NewBB);
282      NewBB->addSuccessor(LoopExitBB);
283  
284      if (EpilogStart == LoopExitBB)
285        EpilogStart = NewBB;
286  
287      // Add instructions to the epilog depending on the current block.
288      // Process instructions in original program order.
289      for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
290        for (auto &BBI : *BB) {
291          if (BBI.isPHI())
292            continue;
293          MachineInstr *In = &BBI;
294          if ((unsigned)Schedule.getStage(In) == StageNum) {
295            // Instructions with memoperands in the epilog are updated with
296            // conservative values.
297            MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
298            updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
299            NewBB->push_back(NewMI);
300            InstrMap[NewMI] = In;
301          }
302        }
303      }
304      generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
305                           InstrMap, LastStage, EpilogStage, i == 1);
306      generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap,
307                   LastStage, EpilogStage, i == 1);
308      PredBB = NewBB;
309  
310      LLVM_DEBUG({
311        dbgs() << "epilog:\n";
312        NewBB->dump();
313      });
314    }
315  
316    // Fix any Phi nodes in the loop exit block.
317    LoopExitBB->replacePhiUsesWith(BB, PredBB);
318  
319    // Create a branch to the new epilog from the kernel.
320    // Remove the original branch and add a new branch to the epilog.
321    TII->removeBranch(*KernelBB);
322    TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
323    // Add a branch to the loop exit.
324    if (EpilogBBs.size() > 0) {
325      MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
326      SmallVector<MachineOperand, 4> Cond1;
327      TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
328    }
329  }
330  
331  /// Replace all uses of FromReg that appear outside the specified
332  /// basic block with ToReg.
333  static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
334                                      MachineBasicBlock *MBB,
335                                      MachineRegisterInfo &MRI,
336                                      LiveIntervals &LIS) {
337    for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
338                                           E = MRI.use_end();
339         I != E;) {
340      MachineOperand &O = *I;
341      ++I;
342      if (O.getParent()->getParent() != MBB)
343        O.setReg(ToReg);
344    }
345    if (!LIS.hasInterval(ToReg))
346      LIS.createEmptyInterval(ToReg);
347  }
348  
349  /// Return true if the register has a use that occurs outside the
350  /// specified loop.
351  static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
352                              MachineRegisterInfo &MRI) {
353    for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
354                                           E = MRI.use_end();
355         I != E; ++I)
356      if (I->getParent()->getParent() != BB)
357        return true;
358    return false;
359  }
360  
361  /// Generate Phis for the specific block in the generated pipelined code.
362  /// This function looks at the Phis from the original code to guide the
363  /// creation of new Phis.
364  void ModuloScheduleExpander::generateExistingPhis(
365      MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
366      MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
367      unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
368    // Compute the stage number for the initial value of the Phi, which
369    // comes from the prolog. The prolog to use depends on to which kernel/
370    // epilog that we're adding the Phi.
371    unsigned PrologStage = 0;
372    unsigned PrevStage = 0;
373    bool InKernel = (LastStageNum == CurStageNum);
374    if (InKernel) {
375      PrologStage = LastStageNum - 1;
376      PrevStage = CurStageNum;
377    } else {
378      PrologStage = LastStageNum - (CurStageNum - LastStageNum);
379      PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
380    }
381  
382    for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
383                                     BBE = BB->getFirstNonPHI();
384         BBI != BBE; ++BBI) {
385      Register Def = BBI->getOperand(0).getReg();
386  
387      unsigned InitVal = 0;
388      unsigned LoopVal = 0;
389      getPhiRegs(*BBI, BB, InitVal, LoopVal);
390  
391      unsigned PhiOp1 = 0;
392      // The Phi value from the loop body typically is defined in the loop, but
393      // not always. So, we need to check if the value is defined in the loop.
394      unsigned PhiOp2 = LoopVal;
395      if (VRMap[LastStageNum].count(LoopVal))
396        PhiOp2 = VRMap[LastStageNum][LoopVal];
397  
398      int StageScheduled = Schedule.getStage(&*BBI);
399      int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
400      unsigned NumStages = getStagesForReg(Def, CurStageNum);
401      if (NumStages == 0) {
402        // We don't need to generate a Phi anymore, but we need to rename any uses
403        // of the Phi value.
404        unsigned NewReg = VRMap[PrevStage][LoopVal];
405        rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
406                              InitVal, NewReg);
407        if (VRMap[CurStageNum].count(LoopVal))
408          VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
409      }
410      // Adjust the number of Phis needed depending on the number of prologs left,
411      // and the distance from where the Phi is first scheduled. The number of
412      // Phis cannot exceed the number of prolog stages. Each stage can
413      // potentially define two values.
414      unsigned MaxPhis = PrologStage + 2;
415      if (!InKernel && (int)PrologStage <= LoopValStage)
416        MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
417      unsigned NumPhis = std::min(NumStages, MaxPhis);
418  
419      unsigned NewReg = 0;
420      unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
421      // In the epilog, we may need to look back one stage to get the correct
422      // Phi name, because the epilog and prolog blocks execute the same stage.
423      // The correct name is from the previous block only when the Phi has
424      // been completely scheduled prior to the epilog, and Phi value is not
425      // needed in multiple stages.
426      int StageDiff = 0;
427      if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
428          NumPhis == 1)
429        StageDiff = 1;
430      // Adjust the computations below when the phi and the loop definition
431      // are scheduled in different stages.
432      if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
433        StageDiff = StageScheduled - LoopValStage;
434      for (unsigned np = 0; np < NumPhis; ++np) {
435        // If the Phi hasn't been scheduled, then use the initial Phi operand
436        // value. Otherwise, use the scheduled version of the instruction. This
437        // is a little complicated when a Phi references another Phi.
438        if (np > PrologStage || StageScheduled >= (int)LastStageNum)
439          PhiOp1 = InitVal;
440        // Check if the Phi has already been scheduled in a prolog stage.
441        else if (PrologStage >= AccessStage + StageDiff + np &&
442                 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
443          PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
444        // Check if the Phi has already been scheduled, but the loop instruction
445        // is either another Phi, or doesn't occur in the loop.
446        else if (PrologStage >= AccessStage + StageDiff + np) {
447          // If the Phi references another Phi, we need to examine the other
448          // Phi to get the correct value.
449          PhiOp1 = LoopVal;
450          MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
451          int Indirects = 1;
452          while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
453            int PhiStage = Schedule.getStage(InstOp1);
454            if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
455              PhiOp1 = getInitPhiReg(*InstOp1, BB);
456            else
457              PhiOp1 = getLoopPhiReg(*InstOp1, BB);
458            InstOp1 = MRI.getVRegDef(PhiOp1);
459            int PhiOpStage = Schedule.getStage(InstOp1);
460            int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
461            if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
462                VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
463              PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
464              break;
465            }
466            ++Indirects;
467          }
468        } else
469          PhiOp1 = InitVal;
470        // If this references a generated Phi in the kernel, get the Phi operand
471        // from the incoming block.
472        if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
473          if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
474            PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
475  
476        MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
477        bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
478        // In the epilog, a map lookup is needed to get the value from the kernel,
479        // or previous epilog block. How is does this depends on if the
480        // instruction is scheduled in the previous block.
481        if (!InKernel) {
482          int StageDiffAdj = 0;
483          if (LoopValStage != -1 && StageScheduled > LoopValStage)
484            StageDiffAdj = StageScheduled - LoopValStage;
485          // Use the loop value defined in the kernel, unless the kernel
486          // contains the last definition of the Phi.
487          if (np == 0 && PrevStage == LastStageNum &&
488              (StageScheduled != 0 || LoopValStage != 0) &&
489              VRMap[PrevStage - StageDiffAdj].count(LoopVal))
490            PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
491          // Use the value defined by the Phi. We add one because we switch
492          // from looking at the loop value to the Phi definition.
493          else if (np > 0 && PrevStage == LastStageNum &&
494                   VRMap[PrevStage - np + 1].count(Def))
495            PhiOp2 = VRMap[PrevStage - np + 1][Def];
496          // Use the loop value defined in the kernel.
497          else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
498                   VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
499            PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
500          // Use the value defined by the Phi, unless we're generating the first
501          // epilog and the Phi refers to a Phi in a different stage.
502          else if (VRMap[PrevStage - np].count(Def) &&
503                   (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
504                    (LoopValStage == StageScheduled)))
505            PhiOp2 = VRMap[PrevStage - np][Def];
506        }
507  
508        // Check if we can reuse an existing Phi. This occurs when a Phi
509        // references another Phi, and the other Phi is scheduled in an
510        // earlier stage. We can try to reuse an existing Phi up until the last
511        // stage of the current Phi.
512        if (LoopDefIsPhi) {
513          if (static_cast<int>(PrologStage - np) >= StageScheduled) {
514            int LVNumStages = getStagesForPhi(LoopVal);
515            int StageDiff = (StageScheduled - LoopValStage);
516            LVNumStages -= StageDiff;
517            // Make sure the loop value Phi has been processed already.
518            if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
519              NewReg = PhiOp2;
520              unsigned ReuseStage = CurStageNum;
521              if (isLoopCarried(*PhiInst))
522                ReuseStage -= LVNumStages;
523              // Check if the Phi to reuse has been generated yet. If not, then
524              // there is nothing to reuse.
525              if (VRMap[ReuseStage - np].count(LoopVal)) {
526                NewReg = VRMap[ReuseStage - np][LoopVal];
527  
528                rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
529                                      Def, NewReg);
530                // Update the map with the new Phi name.
531                VRMap[CurStageNum - np][Def] = NewReg;
532                PhiOp2 = NewReg;
533                if (VRMap[LastStageNum - np - 1].count(LoopVal))
534                  PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
535  
536                if (IsLast && np == NumPhis - 1)
537                  replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
538                continue;
539              }
540            }
541          }
542          if (InKernel && StageDiff > 0 &&
543              VRMap[CurStageNum - StageDiff - np].count(LoopVal))
544            PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
545        }
546  
547        const TargetRegisterClass *RC = MRI.getRegClass(Def);
548        NewReg = MRI.createVirtualRegister(RC);
549  
550        MachineInstrBuilder NewPhi =
551            BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
552                    TII->get(TargetOpcode::PHI), NewReg);
553        NewPhi.addReg(PhiOp1).addMBB(BB1);
554        NewPhi.addReg(PhiOp2).addMBB(BB2);
555        if (np == 0)
556          InstrMap[NewPhi] = &*BBI;
557  
558        // We define the Phis after creating the new pipelined code, so
559        // we need to rename the Phi values in scheduled instructions.
560  
561        unsigned PrevReg = 0;
562        if (InKernel && VRMap[PrevStage - np].count(LoopVal))
563          PrevReg = VRMap[PrevStage - np][LoopVal];
564        rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
565                              NewReg, PrevReg);
566        // If the Phi has been scheduled, use the new name for rewriting.
567        if (VRMap[CurStageNum - np].count(Def)) {
568          unsigned R = VRMap[CurStageNum - np][Def];
569          rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
570                                NewReg);
571        }
572  
573        // Check if we need to rename any uses that occurs after the loop. The
574        // register to replace depends on whether the Phi is scheduled in the
575        // epilog.
576        if (IsLast && np == NumPhis - 1)
577          replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
578  
579        // In the kernel, a dependent Phi uses the value from this Phi.
580        if (InKernel)
581          PhiOp2 = NewReg;
582  
583        // Update the map with the new Phi name.
584        VRMap[CurStageNum - np][Def] = NewReg;
585      }
586  
587      while (NumPhis++ < NumStages) {
588        rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
589                              NewReg, 0);
590      }
591  
592      // Check if we need to rename a Phi that has been eliminated due to
593      // scheduling.
594      if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
595        replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
596    }
597  }
598  
599  /// Generate Phis for the specified block in the generated pipelined code.
600  /// These are new Phis needed because the definition is scheduled after the
601  /// use in the pipelined sequence.
602  void ModuloScheduleExpander::generatePhis(
603      MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
604      MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
605      unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
606    // Compute the stage number that contains the initial Phi value, and
607    // the Phi from the previous stage.
608    unsigned PrologStage = 0;
609    unsigned PrevStage = 0;
610    unsigned StageDiff = CurStageNum - LastStageNum;
611    bool InKernel = (StageDiff == 0);
612    if (InKernel) {
613      PrologStage = LastStageNum - 1;
614      PrevStage = CurStageNum;
615    } else {
616      PrologStage = LastStageNum - StageDiff;
617      PrevStage = LastStageNum + StageDiff - 1;
618    }
619  
620    for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
621                                     BBE = BB->instr_end();
622         BBI != BBE; ++BBI) {
623      for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
624        MachineOperand &MO = BBI->getOperand(i);
625        if (!MO.isReg() || !MO.isDef() ||
626            !Register::isVirtualRegister(MO.getReg()))
627          continue;
628  
629        int StageScheduled = Schedule.getStage(&*BBI);
630        assert(StageScheduled != -1 && "Expecting scheduled instruction.");
631        Register Def = MO.getReg();
632        unsigned NumPhis = getStagesForReg(Def, CurStageNum);
633        // An instruction scheduled in stage 0 and is used after the loop
634        // requires a phi in the epilog for the last definition from either
635        // the kernel or prolog.
636        if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
637            hasUseAfterLoop(Def, BB, MRI))
638          NumPhis = 1;
639        if (!InKernel && (unsigned)StageScheduled > PrologStage)
640          continue;
641  
642        unsigned PhiOp2 = VRMap[PrevStage][Def];
643        if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
644          if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
645            PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
646        // The number of Phis can't exceed the number of prolog stages. The
647        // prolog stage number is zero based.
648        if (NumPhis > PrologStage + 1 - StageScheduled)
649          NumPhis = PrologStage + 1 - StageScheduled;
650        for (unsigned np = 0; np < NumPhis; ++np) {
651          unsigned PhiOp1 = VRMap[PrologStage][Def];
652          if (np <= PrologStage)
653            PhiOp1 = VRMap[PrologStage - np][Def];
654          if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
655            if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
656              PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
657            if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
658              PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
659          }
660          if (!InKernel)
661            PhiOp2 = VRMap[PrevStage - np][Def];
662  
663          const TargetRegisterClass *RC = MRI.getRegClass(Def);
664          Register NewReg = MRI.createVirtualRegister(RC);
665  
666          MachineInstrBuilder NewPhi =
667              BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
668                      TII->get(TargetOpcode::PHI), NewReg);
669          NewPhi.addReg(PhiOp1).addMBB(BB1);
670          NewPhi.addReg(PhiOp2).addMBB(BB2);
671          if (np == 0)
672            InstrMap[NewPhi] = &*BBI;
673  
674          // Rewrite uses and update the map. The actions depend upon whether
675          // we generating code for the kernel or epilog blocks.
676          if (InKernel) {
677            rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
678                                  NewReg);
679            rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
680                                  NewReg);
681  
682            PhiOp2 = NewReg;
683            VRMap[PrevStage - np - 1][Def] = NewReg;
684          } else {
685            VRMap[CurStageNum - np][Def] = NewReg;
686            if (np == NumPhis - 1)
687              rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
688                                    NewReg);
689          }
690          if (IsLast && np == NumPhis - 1)
691            replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
692        }
693      }
694    }
695  }
696  
697  /// Remove instructions that generate values with no uses.
698  /// Typically, these are induction variable operations that generate values
699  /// used in the loop itself.  A dead instruction has a definition with
700  /// no uses, or uses that occur in the original loop only.
701  void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
702                                                      MBBVectorTy &EpilogBBs) {
703    // For each epilog block, check that the value defined by each instruction
704    // is used.  If not, delete it.
705    for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
706                                       MBE = EpilogBBs.rend();
707         MBB != MBE; ++MBB)
708      for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
709                                                     ME = (*MBB)->instr_rend();
710           MI != ME;) {
711        // From DeadMachineInstructionElem. Don't delete inline assembly.
712        if (MI->isInlineAsm()) {
713          ++MI;
714          continue;
715        }
716        bool SawStore = false;
717        // Check if it's safe to remove the instruction due to side effects.
718        // We can, and want to, remove Phis here.
719        if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
720          ++MI;
721          continue;
722        }
723        bool used = true;
724        for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
725                                        MOE = MI->operands_end();
726             MOI != MOE; ++MOI) {
727          if (!MOI->isReg() || !MOI->isDef())
728            continue;
729          Register reg = MOI->getReg();
730          // Assume physical registers are used, unless they are marked dead.
731          if (Register::isPhysicalRegister(reg)) {
732            used = !MOI->isDead();
733            if (used)
734              break;
735            continue;
736          }
737          unsigned realUses = 0;
738          for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
739                                                 EI = MRI.use_end();
740               UI != EI; ++UI) {
741            // Check if there are any uses that occur only in the original
742            // loop.  If so, that's not a real use.
743            if (UI->getParent()->getParent() != BB) {
744              realUses++;
745              used = true;
746              break;
747            }
748          }
749          if (realUses > 0)
750            break;
751          used = false;
752        }
753        if (!used) {
754          LIS.RemoveMachineInstrFromMaps(*MI);
755          MI++->eraseFromParent();
756          continue;
757        }
758        ++MI;
759      }
760    // In the kernel block, check if we can remove a Phi that generates a value
761    // used in an instruction removed in the epilog block.
762    for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
763                                     BBE = KernelBB->getFirstNonPHI();
764         BBI != BBE;) {
765      MachineInstr *MI = &*BBI;
766      ++BBI;
767      Register reg = MI->getOperand(0).getReg();
768      if (MRI.use_begin(reg) == MRI.use_end()) {
769        LIS.RemoveMachineInstrFromMaps(*MI);
770        MI->eraseFromParent();
771      }
772    }
773  }
774  
775  /// For loop carried definitions, we split the lifetime of a virtual register
776  /// that has uses past the definition in the next iteration. A copy with a new
777  /// virtual register is inserted before the definition, which helps with
778  /// generating a better register assignment.
779  ///
780  ///   v1 = phi(a, v2)     v1 = phi(a, v2)
781  ///   v2 = phi(b, v3)     v2 = phi(b, v3)
782  ///   v3 = ..             v4 = copy v1
783  ///   .. = V1             v3 = ..
784  ///                       .. = v4
785  void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
786                                              MBBVectorTy &EpilogBBs) {
787    const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
788    for (auto &PHI : KernelBB->phis()) {
789      Register Def = PHI.getOperand(0).getReg();
790      // Check for any Phi definition that used as an operand of another Phi
791      // in the same block.
792      for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
793                                                   E = MRI.use_instr_end();
794           I != E; ++I) {
795        if (I->isPHI() && I->getParent() == KernelBB) {
796          // Get the loop carried definition.
797          unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
798          if (!LCDef)
799            continue;
800          MachineInstr *MI = MRI.getVRegDef(LCDef);
801          if (!MI || MI->getParent() != KernelBB || MI->isPHI())
802            continue;
803          // Search through the rest of the block looking for uses of the Phi
804          // definition. If one occurs, then split the lifetime.
805          unsigned SplitReg = 0;
806          for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
807                                      KernelBB->instr_end()))
808            if (BBJ.readsRegister(Def)) {
809              // We split the lifetime when we find the first use.
810              if (SplitReg == 0) {
811                SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
812                BuildMI(*KernelBB, MI, MI->getDebugLoc(),
813                        TII->get(TargetOpcode::COPY), SplitReg)
814                    .addReg(Def);
815              }
816              BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
817            }
818          if (!SplitReg)
819            continue;
820          // Search through each of the epilog blocks for any uses to be renamed.
821          for (auto &Epilog : EpilogBBs)
822            for (auto &I : *Epilog)
823              if (I.readsRegister(Def))
824                I.substituteRegister(Def, SplitReg, 0, *TRI);
825          break;
826        }
827      }
828    }
829  }
830  
831  /// Remove the incoming block from the Phis in a basic block.
832  static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
833    for (MachineInstr &MI : *BB) {
834      if (!MI.isPHI())
835        break;
836      for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
837        if (MI.getOperand(i + 1).getMBB() == Incoming) {
838          MI.RemoveOperand(i + 1);
839          MI.RemoveOperand(i);
840          break;
841        }
842    }
843  }
844  
845  /// Create branches from each prolog basic block to the appropriate epilog
846  /// block.  These edges are needed if the loop ends before reaching the
847  /// kernel.
848  void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
849                                           MBBVectorTy &PrologBBs,
850                                           MachineBasicBlock *KernelBB,
851                                           MBBVectorTy &EpilogBBs,
852                                           ValueMapTy *VRMap) {
853    assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
854    MachineBasicBlock *LastPro = KernelBB;
855    MachineBasicBlock *LastEpi = KernelBB;
856  
857    // Start from the blocks connected to the kernel and work "out"
858    // to the first prolog and the last epilog blocks.
859    SmallVector<MachineInstr *, 4> PrevInsts;
860    unsigned MaxIter = PrologBBs.size() - 1;
861    for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
862      // Add branches to the prolog that go to the corresponding
863      // epilog, and the fall-thru prolog/kernel block.
864      MachineBasicBlock *Prolog = PrologBBs[j];
865      MachineBasicBlock *Epilog = EpilogBBs[i];
866  
867      SmallVector<MachineOperand, 4> Cond;
868      Optional<bool> StaticallyGreater =
869          LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond);
870      unsigned numAdded = 0;
871      if (!StaticallyGreater.hasValue()) {
872        Prolog->addSuccessor(Epilog);
873        numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
874      } else if (*StaticallyGreater == false) {
875        Prolog->addSuccessor(Epilog);
876        Prolog->removeSuccessor(LastPro);
877        LastEpi->removeSuccessor(Epilog);
878        numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
879        removePhis(Epilog, LastEpi);
880        // Remove the blocks that are no longer referenced.
881        if (LastPro != LastEpi) {
882          LastEpi->clear();
883          LastEpi->eraseFromParent();
884        }
885        if (LastPro == KernelBB) {
886          LoopInfo->disposed();
887          NewKernel = nullptr;
888        }
889        LastPro->clear();
890        LastPro->eraseFromParent();
891      } else {
892        numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
893        removePhis(Epilog, Prolog);
894      }
895      LastPro = Prolog;
896      LastEpi = Epilog;
897      for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
898                                                     E = Prolog->instr_rend();
899           I != E && numAdded > 0; ++I, --numAdded)
900        updateInstruction(&*I, false, j, 0, VRMap);
901    }
902  
903    if (NewKernel) {
904      LoopInfo->setPreheader(PrologBBs[MaxIter]);
905      LoopInfo->adjustTripCount(-(MaxIter + 1));
906    }
907  }
908  
909  /// Return true if we can compute the amount the instruction changes
910  /// during each iteration. Set Delta to the amount of the change.
911  bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
912    const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
913    const MachineOperand *BaseOp;
914    int64_t Offset;
915    bool OffsetIsScalable;
916    if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
917      return false;
918  
919    // FIXME: This algorithm assumes instructions have fixed-size offsets.
920    if (OffsetIsScalable)
921      return false;
922  
923    if (!BaseOp->isReg())
924      return false;
925  
926    Register BaseReg = BaseOp->getReg();
927  
928    MachineRegisterInfo &MRI = MF.getRegInfo();
929    // Check if there is a Phi. If so, get the definition in the loop.
930    MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
931    if (BaseDef && BaseDef->isPHI()) {
932      BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
933      BaseDef = MRI.getVRegDef(BaseReg);
934    }
935    if (!BaseDef)
936      return false;
937  
938    int D = 0;
939    if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
940      return false;
941  
942    Delta = D;
943    return true;
944  }
945  
946  /// Update the memory operand with a new offset when the pipeliner
947  /// generates a new copy of the instruction that refers to a
948  /// different memory location.
949  void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
950                                                 MachineInstr &OldMI,
951                                                 unsigned Num) {
952    if (Num == 0)
953      return;
954    // If the instruction has memory operands, then adjust the offset
955    // when the instruction appears in different stages.
956    if (NewMI.memoperands_empty())
957      return;
958    SmallVector<MachineMemOperand *, 2> NewMMOs;
959    for (MachineMemOperand *MMO : NewMI.memoperands()) {
960      // TODO: Figure out whether isAtomic is really necessary (see D57601).
961      if (MMO->isVolatile() || MMO->isAtomic() ||
962          (MMO->isInvariant() && MMO->isDereferenceable()) ||
963          (!MMO->getValue())) {
964        NewMMOs.push_back(MMO);
965        continue;
966      }
967      unsigned Delta;
968      if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
969        int64_t AdjOffset = Delta * Num;
970        NewMMOs.push_back(
971            MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
972      } else {
973        NewMMOs.push_back(
974            MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
975      }
976    }
977    NewMI.setMemRefs(MF, NewMMOs);
978  }
979  
980  /// Clone the instruction for the new pipelined loop and update the
981  /// memory operands, if needed.
982  MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
983                                                   unsigned CurStageNum,
984                                                   unsigned InstStageNum) {
985    MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
986    // Check for tied operands in inline asm instructions. This should be handled
987    // elsewhere, but I'm not sure of the best solution.
988    if (OldMI->isInlineAsm())
989      for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
990        const auto &MO = OldMI->getOperand(i);
991        if (MO.isReg() && MO.isUse())
992          break;
993        unsigned UseIdx;
994        if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
995          NewMI->tieOperands(i, UseIdx);
996      }
997    updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
998    return NewMI;
999  }
1000  
1001  /// Clone the instruction for the new pipelined loop. If needed, this
1002  /// function updates the instruction using the values saved in the
1003  /// InstrChanges structure.
1004  MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
1005      MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
1006    MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
1007    auto It = InstrChanges.find(OldMI);
1008    if (It != InstrChanges.end()) {
1009      std::pair<unsigned, int64_t> RegAndOffset = It->second;
1010      unsigned BasePos, OffsetPos;
1011      if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
1012        return nullptr;
1013      int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
1014      MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
1015      if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
1016        NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
1017      NewMI->getOperand(OffsetPos).setImm(NewOffset);
1018    }
1019    updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1020    return NewMI;
1021  }
1022  
1023  /// Update the machine instruction with new virtual registers.  This
1024  /// function may change the defintions and/or uses.
1025  void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
1026                                                 bool LastDef,
1027                                                 unsigned CurStageNum,
1028                                                 unsigned InstrStageNum,
1029                                                 ValueMapTy *VRMap) {
1030    for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
1031      MachineOperand &MO = NewMI->getOperand(i);
1032      if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
1033        continue;
1034      Register reg = MO.getReg();
1035      if (MO.isDef()) {
1036        // Create a new virtual register for the definition.
1037        const TargetRegisterClass *RC = MRI.getRegClass(reg);
1038        Register NewReg = MRI.createVirtualRegister(RC);
1039        MO.setReg(NewReg);
1040        VRMap[CurStageNum][reg] = NewReg;
1041        if (LastDef)
1042          replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
1043      } else if (MO.isUse()) {
1044        MachineInstr *Def = MRI.getVRegDef(reg);
1045        // Compute the stage that contains the last definition for instruction.
1046        int DefStageNum = Schedule.getStage(Def);
1047        unsigned StageNum = CurStageNum;
1048        if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
1049          // Compute the difference in stages between the defintion and the use.
1050          unsigned StageDiff = (InstrStageNum - DefStageNum);
1051          // Make an adjustment to get the last definition.
1052          StageNum -= StageDiff;
1053        }
1054        if (VRMap[StageNum].count(reg))
1055          MO.setReg(VRMap[StageNum][reg]);
1056      }
1057    }
1058  }
1059  
1060  /// Return the instruction in the loop that defines the register.
1061  /// If the definition is a Phi, then follow the Phi operand to
1062  /// the instruction in the loop.
1063  MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
1064    SmallPtrSet<MachineInstr *, 8> Visited;
1065    MachineInstr *Def = MRI.getVRegDef(Reg);
1066    while (Def->isPHI()) {
1067      if (!Visited.insert(Def).second)
1068        break;
1069      for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
1070        if (Def->getOperand(i + 1).getMBB() == BB) {
1071          Def = MRI.getVRegDef(Def->getOperand(i).getReg());
1072          break;
1073        }
1074    }
1075    return Def;
1076  }
1077  
1078  /// Return the new name for the value from the previous stage.
1079  unsigned ModuloScheduleExpander::getPrevMapVal(
1080      unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
1081      ValueMapTy *VRMap, MachineBasicBlock *BB) {
1082    unsigned PrevVal = 0;
1083    if (StageNum > PhiStage) {
1084      MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
1085      if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
1086        // The name is defined in the previous stage.
1087        PrevVal = VRMap[StageNum - 1][LoopVal];
1088      else if (VRMap[StageNum].count(LoopVal))
1089        // The previous name is defined in the current stage when the instruction
1090        // order is swapped.
1091        PrevVal = VRMap[StageNum][LoopVal];
1092      else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
1093        // The loop value hasn't yet been scheduled.
1094        PrevVal = LoopVal;
1095      else if (StageNum == PhiStage + 1)
1096        // The loop value is another phi, which has not been scheduled.
1097        PrevVal = getInitPhiReg(*LoopInst, BB);
1098      else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
1099        // The loop value is another phi, which has been scheduled.
1100        PrevVal =
1101            getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
1102                          LoopStage, VRMap, BB);
1103    }
1104    return PrevVal;
1105  }
1106  
1107  /// Rewrite the Phi values in the specified block to use the mappings
1108  /// from the initial operand. Once the Phi is scheduled, we switch
1109  /// to using the loop value instead of the Phi value, so those names
1110  /// do not need to be rewritten.
1111  void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
1112                                                unsigned StageNum,
1113                                                ValueMapTy *VRMap,
1114                                                InstrMapTy &InstrMap) {
1115    for (auto &PHI : BB->phis()) {
1116      unsigned InitVal = 0;
1117      unsigned LoopVal = 0;
1118      getPhiRegs(PHI, BB, InitVal, LoopVal);
1119      Register PhiDef = PHI.getOperand(0).getReg();
1120  
1121      unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
1122      unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
1123      unsigned NumPhis = getStagesForPhi(PhiDef);
1124      if (NumPhis > StageNum)
1125        NumPhis = StageNum;
1126      for (unsigned np = 0; np <= NumPhis; ++np) {
1127        unsigned NewVal =
1128            getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
1129        if (!NewVal)
1130          NewVal = InitVal;
1131        rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
1132                              NewVal);
1133      }
1134    }
1135  }
1136  
1137  /// Rewrite a previously scheduled instruction to use the register value
1138  /// from the new instruction. Make sure the instruction occurs in the
1139  /// basic block, and we don't change the uses in the new instruction.
1140  void ModuloScheduleExpander::rewriteScheduledInstr(
1141      MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
1142      unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
1143      unsigned PrevReg) {
1144    bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
1145    int StagePhi = Schedule.getStage(Phi) + PhiNum;
1146    // Rewrite uses that have been scheduled already to use the new
1147    // Phi register.
1148    for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
1149                                           EI = MRI.use_end();
1150         UI != EI;) {
1151      MachineOperand &UseOp = *UI;
1152      MachineInstr *UseMI = UseOp.getParent();
1153      ++UI;
1154      if (UseMI->getParent() != BB)
1155        continue;
1156      if (UseMI->isPHI()) {
1157        if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
1158          continue;
1159        if (getLoopPhiReg(*UseMI, BB) != OldReg)
1160          continue;
1161      }
1162      InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
1163      assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
1164      MachineInstr *OrigMI = OrigInstr->second;
1165      int StageSched = Schedule.getStage(OrigMI);
1166      int CycleSched = Schedule.getCycle(OrigMI);
1167      unsigned ReplaceReg = 0;
1168      // This is the stage for the scheduled instruction.
1169      if (StagePhi == StageSched && Phi->isPHI()) {
1170        int CyclePhi = Schedule.getCycle(Phi);
1171        if (PrevReg && InProlog)
1172          ReplaceReg = PrevReg;
1173        else if (PrevReg && !isLoopCarried(*Phi) &&
1174                 (CyclePhi <= CycleSched || OrigMI->isPHI()))
1175          ReplaceReg = PrevReg;
1176        else
1177          ReplaceReg = NewReg;
1178      }
1179      // The scheduled instruction occurs before the scheduled Phi, and the
1180      // Phi is not loop carried.
1181      if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
1182        ReplaceReg = NewReg;
1183      if (StagePhi > StageSched && Phi->isPHI())
1184        ReplaceReg = NewReg;
1185      if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
1186        ReplaceReg = NewReg;
1187      if (ReplaceReg) {
1188        MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
1189        UseOp.setReg(ReplaceReg);
1190      }
1191    }
1192  }
1193  
1194  bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
1195    if (!Phi.isPHI())
1196      return false;
1197    int DefCycle = Schedule.getCycle(&Phi);
1198    int DefStage = Schedule.getStage(&Phi);
1199  
1200    unsigned InitVal = 0;
1201    unsigned LoopVal = 0;
1202    getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
1203    MachineInstr *Use = MRI.getVRegDef(LoopVal);
1204    if (!Use || Use->isPHI())
1205      return true;
1206    int LoopCycle = Schedule.getCycle(Use);
1207    int LoopStage = Schedule.getStage(Use);
1208    return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
1209  }
1210  
1211  //===----------------------------------------------------------------------===//
1212  // PeelingModuloScheduleExpander implementation
1213  //===----------------------------------------------------------------------===//
1214  // This is a reimplementation of ModuloScheduleExpander that works by creating
1215  // a fully correct steady-state kernel and peeling off the prolog and epilogs.
1216  //===----------------------------------------------------------------------===//
1217  
1218  namespace {
1219  // Remove any dead phis in MBB. Dead phis either have only one block as input
1220  // (in which case they are the identity) or have no uses.
1221  void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
1222                         LiveIntervals *LIS, bool KeepSingleSrcPhi = false) {
1223    bool Changed = true;
1224    while (Changed) {
1225      Changed = false;
1226      for (auto I = MBB->begin(); I != MBB->getFirstNonPHI();) {
1227        MachineInstr &MI = *I++;
1228        assert(MI.isPHI());
1229        if (MRI.use_empty(MI.getOperand(0).getReg())) {
1230          if (LIS)
1231            LIS->RemoveMachineInstrFromMaps(MI);
1232          MI.eraseFromParent();
1233          Changed = true;
1234        } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) {
1235          MRI.constrainRegClass(MI.getOperand(1).getReg(),
1236                                MRI.getRegClass(MI.getOperand(0).getReg()));
1237          MRI.replaceRegWith(MI.getOperand(0).getReg(),
1238                             MI.getOperand(1).getReg());
1239          if (LIS)
1240            LIS->RemoveMachineInstrFromMaps(MI);
1241          MI.eraseFromParent();
1242          Changed = true;
1243        }
1244      }
1245    }
1246  }
1247  
1248  /// Rewrites the kernel block in-place to adhere to the given schedule.
1249  /// KernelRewriter holds all of the state required to perform the rewriting.
1250  class KernelRewriter {
1251    ModuloSchedule &S;
1252    MachineBasicBlock *BB;
1253    MachineBasicBlock *PreheaderBB, *ExitBB;
1254    MachineRegisterInfo &MRI;
1255    const TargetInstrInfo *TII;
1256    LiveIntervals *LIS;
1257  
1258    // Map from register class to canonical undef register for that class.
1259    DenseMap<const TargetRegisterClass *, Register> Undefs;
1260    // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
1261    // this map is only used when InitReg is non-undef.
1262    DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
1263    // Map from LoopReg to phi register where the InitReg is undef.
1264    DenseMap<Register, Register> UndefPhis;
1265  
1266    // Reg is used by MI. Return the new register MI should use to adhere to the
1267    // schedule. Insert phis as necessary.
1268    Register remapUse(Register Reg, MachineInstr &MI);
1269    // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
1270    // If InitReg is not given it is chosen arbitrarily. It will either be undef
1271    // or will be chosen so as to share another phi.
1272    Register phi(Register LoopReg, Optional<Register> InitReg = {},
1273                 const TargetRegisterClass *RC = nullptr);
1274    // Create an undef register of the given register class.
1275    Register undef(const TargetRegisterClass *RC);
1276  
1277  public:
1278    KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB,
1279                   LiveIntervals *LIS = nullptr);
1280    void rewrite();
1281  };
1282  } // namespace
1283  
1284  KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1285                                 MachineBasicBlock *LoopBB, LiveIntervals *LIS)
1286      : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()),
1287        ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
1288        TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
1289    PreheaderBB = *BB->pred_begin();
1290    if (PreheaderBB == BB)
1291      PreheaderBB = *std::next(BB->pred_begin());
1292  }
1293  
1294  void KernelRewriter::rewrite() {
1295    // Rearrange the loop to be in schedule order. Note that the schedule may
1296    // contain instructions that are not owned by the loop block (InstrChanges and
1297    // friends), so we gracefully handle unowned instructions and delete any
1298    // instructions that weren't in the schedule.
1299    auto InsertPt = BB->getFirstTerminator();
1300    MachineInstr *FirstMI = nullptr;
1301    for (MachineInstr *MI : S.getInstructions()) {
1302      if (MI->isPHI())
1303        continue;
1304      if (MI->getParent())
1305        MI->removeFromParent();
1306      BB->insert(InsertPt, MI);
1307      if (!FirstMI)
1308        FirstMI = MI;
1309    }
1310    assert(FirstMI && "Failed to find first MI in schedule");
1311  
1312    // At this point all of the scheduled instructions are between FirstMI
1313    // and the end of the block. Kill from the first non-phi to FirstMI.
1314    for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
1315      if (LIS)
1316        LIS->RemoveMachineInstrFromMaps(*I);
1317      (I++)->eraseFromParent();
1318    }
1319  
1320    // Now remap every instruction in the loop.
1321    for (MachineInstr &MI : *BB) {
1322      if (MI.isPHI() || MI.isTerminator())
1323        continue;
1324      for (MachineOperand &MO : MI.uses()) {
1325        if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
1326          continue;
1327        Register Reg = remapUse(MO.getReg(), MI);
1328        MO.setReg(Reg);
1329      }
1330    }
1331    EliminateDeadPhis(BB, MRI, LIS);
1332  
1333    // Ensure a phi exists for all instructions that are either referenced by
1334    // an illegal phi or by an instruction outside the loop. This allows us to
1335    // treat remaps of these values the same as "normal" values that come from
1336    // loop-carried phis.
1337    for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
1338      if (MI->isPHI()) {
1339        Register R = MI->getOperand(0).getReg();
1340        phi(R);
1341        continue;
1342      }
1343  
1344      for (MachineOperand &Def : MI->defs()) {
1345        for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
1346          if (MI.getParent() != BB) {
1347            phi(Def.getReg());
1348            break;
1349          }
1350        }
1351      }
1352    }
1353  }
1354  
1355  Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
1356    MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
1357    if (!Producer)
1358      return Reg;
1359  
1360    int ConsumerStage = S.getStage(&MI);
1361    if (!Producer->isPHI()) {
1362      // Non-phi producers are simple to remap. Insert as many phis as the
1363      // difference between the consumer and producer stages.
1364      if (Producer->getParent() != BB)
1365        // Producer was not inside the loop. Use the register as-is.
1366        return Reg;
1367      int ProducerStage = S.getStage(Producer);
1368      assert(ConsumerStage != -1 &&
1369             "In-loop consumer should always be scheduled!");
1370      assert(ConsumerStage >= ProducerStage);
1371      unsigned StageDiff = ConsumerStage - ProducerStage;
1372  
1373      for (unsigned I = 0; I < StageDiff; ++I)
1374        Reg = phi(Reg);
1375      return Reg;
1376    }
1377  
1378    // First, dive through the phi chain to find the defaults for the generated
1379    // phis.
1380    SmallVector<Optional<Register>, 4> Defaults;
1381    Register LoopReg = Reg;
1382    auto LoopProducer = Producer;
1383    while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
1384      LoopReg = getLoopPhiReg(*LoopProducer, BB);
1385      Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
1386      LoopProducer = MRI.getUniqueVRegDef(LoopReg);
1387      assert(LoopProducer);
1388    }
1389    int LoopProducerStage = S.getStage(LoopProducer);
1390  
1391    Optional<Register> IllegalPhiDefault;
1392  
1393    if (LoopProducerStage == -1) {
1394      // Do nothing.
1395    } else if (LoopProducerStage > ConsumerStage) {
1396      // This schedule is only representable if ProducerStage == ConsumerStage+1.
1397      // In addition, Consumer's cycle must be scheduled after Producer in the
1398      // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
1399      // functions.
1400  #ifndef NDEBUG // Silence unused variables in non-asserts mode.
1401      int LoopProducerCycle = S.getCycle(LoopProducer);
1402      int ConsumerCycle = S.getCycle(&MI);
1403  #endif
1404      assert(LoopProducerCycle <= ConsumerCycle);
1405      assert(LoopProducerStage == ConsumerStage + 1);
1406      // Peel off the first phi from Defaults and insert a phi between producer
1407      // and consumer. This phi will not be at the front of the block so we
1408      // consider it illegal. It will only exist during the rewrite process; it
1409      // needs to exist while we peel off prologs because these could take the
1410      // default value. After that we can replace all uses with the loop producer
1411      // value.
1412      IllegalPhiDefault = Defaults.front();
1413      Defaults.erase(Defaults.begin());
1414    } else {
1415      assert(ConsumerStage >= LoopProducerStage);
1416      int StageDiff = ConsumerStage - LoopProducerStage;
1417      if (StageDiff > 0) {
1418        LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()
1419                          << " to " << (Defaults.size() + StageDiff) << "\n");
1420        // If we need more phis than we have defaults for, pad out with undefs for
1421        // the earliest phis, which are at the end of the defaults chain (the
1422        // chain is in reverse order).
1423        Defaults.resize(Defaults.size() + StageDiff, Defaults.empty()
1424                                                         ? Optional<Register>()
1425                                                         : Defaults.back());
1426      }
1427    }
1428  
1429    // Now we know the number of stages to jump back, insert the phi chain.
1430    auto DefaultI = Defaults.rbegin();
1431    while (DefaultI != Defaults.rend())
1432      LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));
1433  
1434    if (IllegalPhiDefault.hasValue()) {
1435      // The consumer optionally consumes LoopProducer in the same iteration
1436      // (because the producer is scheduled at an earlier cycle than the consumer)
1437      // or the initial value. To facilitate this we create an illegal block here
1438      // by embedding a phi in the middle of the block. We will fix this up
1439      // immediately prior to pruning.
1440      auto RC = MRI.getRegClass(Reg);
1441      Register R = MRI.createVirtualRegister(RC);
1442      MachineInstr *IllegalPhi =
1443          BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1444              .addReg(IllegalPhiDefault.getValue())
1445              .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
1446              .addReg(LoopReg)
1447              .addMBB(BB); // Block choice is arbitrary and has no effect.
1448      // Illegal phi should belong to the producer stage so that it can be
1449      // filtered correctly during peeling.
1450      S.setStage(IllegalPhi, LoopProducerStage);
1451      return R;
1452    }
1453  
1454    return LoopReg;
1455  }
1456  
1457  Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg,
1458                               const TargetRegisterClass *RC) {
1459    // If the init register is not undef, try and find an existing phi.
1460    if (InitReg.hasValue()) {
1461      auto I = Phis.find({LoopReg, InitReg.getValue()});
1462      if (I != Phis.end())
1463        return I->second;
1464    } else {
1465      for (auto &KV : Phis) {
1466        if (KV.first.first == LoopReg)
1467          return KV.second;
1468      }
1469    }
1470  
1471    // InitReg is either undef or no existing phi takes InitReg as input. Try and
1472    // find a phi that takes undef as input.
1473    auto I = UndefPhis.find(LoopReg);
1474    if (I != UndefPhis.end()) {
1475      Register R = I->second;
1476      if (!InitReg.hasValue())
1477        // Found a phi taking undef as input, and this input is undef so return
1478        // without any more changes.
1479        return R;
1480      // Found a phi taking undef as input, so rewrite it to take InitReg.
1481      MachineInstr *MI = MRI.getVRegDef(R);
1482      MI->getOperand(1).setReg(InitReg.getValue());
1483      Phis.insert({{LoopReg, InitReg.getValue()}, R});
1484      MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue()));
1485      UndefPhis.erase(I);
1486      return R;
1487    }
1488  
1489    // Failed to find any existing phi to reuse, so create a new one.
1490    if (!RC)
1491      RC = MRI.getRegClass(LoopReg);
1492    Register R = MRI.createVirtualRegister(RC);
1493    if (InitReg.hasValue())
1494      MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1495    BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
1496        .addReg(InitReg.hasValue() ? *InitReg : undef(RC))
1497        .addMBB(PreheaderBB)
1498        .addReg(LoopReg)
1499        .addMBB(BB);
1500    if (!InitReg.hasValue())
1501      UndefPhis[LoopReg] = R;
1502    else
1503      Phis[{LoopReg, *InitReg}] = R;
1504    return R;
1505  }
1506  
1507  Register KernelRewriter::undef(const TargetRegisterClass *RC) {
1508    Register &R = Undefs[RC];
1509    if (R == 0) {
1510      // Create an IMPLICIT_DEF that defines this register if we need it.
1511      // All uses of this should be removed by the time we have finished unrolling
1512      // prologs and epilogs.
1513      R = MRI.createVirtualRegister(RC);
1514      auto *InsertBB = &PreheaderBB->getParent()->front();
1515      BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
1516              TII->get(TargetOpcode::IMPLICIT_DEF), R);
1517    }
1518    return R;
1519  }
1520  
1521  namespace {
1522  /// Describes an operand in the kernel of a pipelined loop. Characteristics of
1523  /// the operand are discovered, such as how many in-loop PHIs it has to jump
1524  /// through and defaults for these phis.
1525  class KernelOperandInfo {
1526    MachineBasicBlock *BB;
1527    MachineRegisterInfo &MRI;
1528    SmallVector<Register, 4> PhiDefaults;
1529    MachineOperand *Source;
1530    MachineOperand *Target;
1531  
1532  public:
1533    KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
1534                      const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
1535        : MRI(MRI) {
1536      Source = MO;
1537      BB = MO->getParent()->getParent();
1538      while (isRegInLoop(MO)) {
1539        MachineInstr *MI = MRI.getVRegDef(MO->getReg());
1540        if (MI->isFullCopy()) {
1541          MO = &MI->getOperand(1);
1542          continue;
1543        }
1544        if (!MI->isPHI())
1545          break;
1546        // If this is an illegal phi, don't count it in distance.
1547        if (IllegalPhis.count(MI)) {
1548          MO = &MI->getOperand(3);
1549          continue;
1550        }
1551  
1552        Register Default = getInitPhiReg(*MI, BB);
1553        MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
1554                                              : &MI->getOperand(3);
1555        PhiDefaults.push_back(Default);
1556      }
1557      Target = MO;
1558    }
1559  
1560    bool operator==(const KernelOperandInfo &Other) const {
1561      return PhiDefaults.size() == Other.PhiDefaults.size();
1562    }
1563  
1564    void print(raw_ostream &OS) const {
1565      OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
1566         << *Source->getParent();
1567    }
1568  
1569  private:
1570    bool isRegInLoop(MachineOperand *MO) {
1571      return MO->isReg() && MO->getReg().isVirtual() &&
1572             MRI.getVRegDef(MO->getReg())->getParent() == BB;
1573    }
1574  };
1575  } // namespace
1576  
1577  MachineBasicBlock *
1578  PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) {
1579    MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII);
1580    if (LPD == LPD_Front)
1581      PeeledFront.push_back(NewBB);
1582    else
1583      PeeledBack.push_front(NewBB);
1584    for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator();
1585         ++I, ++NI) {
1586      CanonicalMIs[&*I] = &*I;
1587      CanonicalMIs[&*NI] = &*I;
1588      BlockMIs[{NewBB, &*I}] = &*NI;
1589      BlockMIs[{BB, &*I}] = &*I;
1590    }
1591    return NewBB;
1592  }
1593  
1594  void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB,
1595                                                         int MinStage) {
1596    for (auto I = MB->getFirstInstrTerminator()->getReverseIterator();
1597         I != std::next(MB->getFirstNonPHI()->getReverseIterator());) {
1598      MachineInstr *MI = &*I++;
1599      int Stage = getStage(MI);
1600      if (Stage == -1 || Stage >= MinStage)
1601        continue;
1602  
1603      for (MachineOperand &DefMO : MI->defs()) {
1604        SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1605        for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1606          // Only PHIs can use values from this block by construction.
1607          // Match with the equivalent PHI in B.
1608          assert(UseMI.isPHI());
1609          Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1610                                                 MI->getParent());
1611          Subs.emplace_back(&UseMI, Reg);
1612        }
1613        for (auto &Sub : Subs)
1614          Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1615                                        *MRI.getTargetRegisterInfo());
1616      }
1617      if (LIS)
1618        LIS->RemoveMachineInstrFromMaps(*MI);
1619      MI->eraseFromParent();
1620    }
1621  }
1622  
1623  void PeelingModuloScheduleExpander::moveStageBetweenBlocks(
1624      MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) {
1625    auto InsertPt = DestBB->getFirstNonPHI();
1626    DenseMap<Register, Register> Remaps;
1627    for (auto I = SourceBB->getFirstNonPHI(); I != SourceBB->end();) {
1628      MachineInstr *MI = &*I++;
1629      if (MI->isPHI()) {
1630        // This is an illegal PHI. If we move any instructions using an illegal
1631        // PHI, we need to create a legal Phi.
1632        if (getStage(MI) != Stage) {
1633          // The legal Phi is not necessary if the illegal phi's stage
1634          // is being moved.
1635          Register PhiR = MI->getOperand(0).getReg();
1636          auto RC = MRI.getRegClass(PhiR);
1637          Register NR = MRI.createVirtualRegister(RC);
1638          MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(),
1639                                     DebugLoc(), TII->get(TargetOpcode::PHI), NR)
1640                                 .addReg(PhiR)
1641                                 .addMBB(SourceBB);
1642          BlockMIs[{DestBB, CanonicalMIs[MI]}] = NI;
1643          CanonicalMIs[NI] = CanonicalMIs[MI];
1644          Remaps[PhiR] = NR;
1645        }
1646      }
1647      if (getStage(MI) != Stage)
1648        continue;
1649      MI->removeFromParent();
1650      DestBB->insert(InsertPt, MI);
1651      auto *KernelMI = CanonicalMIs[MI];
1652      BlockMIs[{DestBB, KernelMI}] = MI;
1653      BlockMIs.erase({SourceBB, KernelMI});
1654    }
1655    SmallVector<MachineInstr *, 4> PhiToDelete;
1656    for (MachineInstr &MI : DestBB->phis()) {
1657      assert(MI.getNumOperands() == 3);
1658      MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg());
1659      // If the instruction referenced by the phi is moved inside the block
1660      // we don't need the phi anymore.
1661      if (getStage(Def) == Stage) {
1662        Register PhiReg = MI.getOperand(0).getReg();
1663        assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1);
1664        MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
1665        MI.getOperand(0).setReg(PhiReg);
1666        PhiToDelete.push_back(&MI);
1667      }
1668    }
1669    for (auto *P : PhiToDelete)
1670      P->eraseFromParent();
1671    InsertPt = DestBB->getFirstNonPHI();
1672    // Helper to clone Phi instructions into the destination block. We clone Phi
1673    // greedily to avoid combinatorial explosion of Phi instructions.
1674    auto clonePhi = [&](MachineInstr *Phi) {
1675      MachineInstr *NewMI = MF.CloneMachineInstr(Phi);
1676      DestBB->insert(InsertPt, NewMI);
1677      Register OrigR = Phi->getOperand(0).getReg();
1678      Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR));
1679      NewMI->getOperand(0).setReg(R);
1680      NewMI->getOperand(1).setReg(OrigR);
1681      NewMI->getOperand(2).setMBB(*DestBB->pred_begin());
1682      Remaps[OrigR] = R;
1683      CanonicalMIs[NewMI] = CanonicalMIs[Phi];
1684      BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI;
1685      PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi];
1686      return R;
1687    };
1688    for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) {
1689      for (MachineOperand &MO : I->uses()) {
1690        if (!MO.isReg())
1691          continue;
1692        if (Remaps.count(MO.getReg()))
1693          MO.setReg(Remaps[MO.getReg()]);
1694        else {
1695          // If we are using a phi from the source block we need to add a new phi
1696          // pointing to the old one.
1697          MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg());
1698          if (Use && Use->isPHI() && Use->getParent() == SourceBB) {
1699            Register R = clonePhi(Use);
1700            MO.setReg(R);
1701          }
1702        }
1703      }
1704    }
1705  }
1706  
1707  Register
1708  PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi,
1709                                                    MachineInstr *Phi) {
1710    unsigned distance = PhiNodeLoopIteration[Phi];
1711    MachineInstr *CanonicalUse = CanonicalPhi;
1712    Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg();
1713    for (unsigned I = 0; I < distance; ++I) {
1714      assert(CanonicalUse->isPHI());
1715      assert(CanonicalUse->getNumOperands() == 5);
1716      unsigned LoopRegIdx = 3, InitRegIdx = 1;
1717      if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent())
1718        std::swap(LoopRegIdx, InitRegIdx);
1719      CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg();
1720      CanonicalUse = MRI.getVRegDef(CanonicalUseReg);
1721    }
1722    return CanonicalUseReg;
1723  }
1724  
1725  void PeelingModuloScheduleExpander::peelPrologAndEpilogs() {
1726    BitVector LS(Schedule.getNumStages(), true);
1727    BitVector AS(Schedule.getNumStages(), true);
1728    LiveStages[BB] = LS;
1729    AvailableStages[BB] = AS;
1730  
1731    // Peel out the prologs.
1732    LS.reset();
1733    for (int I = 0; I < Schedule.getNumStages() - 1; ++I) {
1734      LS[I] = 1;
1735      Prologs.push_back(peelKernel(LPD_Front));
1736      LiveStages[Prologs.back()] = LS;
1737      AvailableStages[Prologs.back()] = LS;
1738    }
1739  
1740    // Create a block that will end up as the new loop exiting block (dominated by
1741    // all prologs and epilogs). It will only contain PHIs, in the same order as
1742    // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property
1743    // that the exiting block is a (sub) clone of BB. This in turn gives us the
1744    // property that any value deffed in BB but used outside of BB is used by a
1745    // PHI in the exiting block.
1746    MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock();
1747    EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1748    // Push out the epilogs, again in reverse order.
1749    // We can't assume anything about the minumum loop trip count at this point,
1750    // so emit a fairly complex epilog.
1751  
1752    // We first peel number of stages minus one epilogue. Then we remove dead
1753    // stages and reorder instructions based on their stage. If we have 3 stages
1754    // we generate first:
1755    // E0[3, 2, 1]
1756    // E1[3', 2']
1757    // E2[3'']
1758    // And then we move instructions based on their stages to have:
1759    // E0[3]
1760    // E1[2, 3']
1761    // E2[1, 2', 3'']
1762    // The transformation is legal because we only move instructions past
1763    // instructions of a previous loop iteration.
1764    for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) {
1765      Epilogs.push_back(peelKernel(LPD_Back));
1766      MachineBasicBlock *B = Epilogs.back();
1767      filterInstructions(B, Schedule.getNumStages() - I);
1768      // Keep track at which iteration each phi belongs to. We need it to know
1769      // what version of the variable to use during prologue/epilogue stitching.
1770      EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1771      for (auto Phi = B->begin(), IE = B->getFirstNonPHI(); Phi != IE; ++Phi)
1772        PhiNodeLoopIteration[&*Phi] = Schedule.getNumStages() - I;
1773    }
1774    for (size_t I = 0; I < Epilogs.size(); I++) {
1775      LS.reset();
1776      for (size_t J = I; J < Epilogs.size(); J++) {
1777        int Iteration = J;
1778        unsigned Stage = Schedule.getNumStages() - 1 + I - J;
1779        // Move stage one block at a time so that Phi nodes are updated correctly.
1780        for (size_t K = Iteration; K > I; K--)
1781          moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage);
1782        LS[Stage] = 1;
1783      }
1784      LiveStages[Epilogs[I]] = LS;
1785      AvailableStages[Epilogs[I]] = AS;
1786    }
1787  
1788    // Now we've defined all the prolog and epilog blocks as a fallthrough
1789    // sequence, add the edges that will be followed if the loop trip count is
1790    // lower than the number of stages (connecting prologs directly with epilogs).
1791    auto PI = Prologs.begin();
1792    auto EI = Epilogs.begin();
1793    assert(Prologs.size() == Epilogs.size());
1794    for (; PI != Prologs.end(); ++PI, ++EI) {
1795      MachineBasicBlock *Pred = *(*EI)->pred_begin();
1796      (*PI)->addSuccessor(*EI);
1797      for (MachineInstr &MI : (*EI)->phis()) {
1798        Register Reg = MI.getOperand(1).getReg();
1799        MachineInstr *Use = MRI.getUniqueVRegDef(Reg);
1800        if (Use && Use->getParent() == Pred) {
1801          MachineInstr *CanonicalUse = CanonicalMIs[Use];
1802          if (CanonicalUse->isPHI()) {
1803            // If the use comes from a phi we need to skip as many phi as the
1804            // distance between the epilogue and the kernel. Trace through the phi
1805            // chain to find the right value.
1806            Reg = getPhiCanonicalReg(CanonicalUse, Use);
1807          }
1808          Reg = getEquivalentRegisterIn(Reg, *PI);
1809        }
1810        MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false));
1811        MI.addOperand(MachineOperand::CreateMBB(*PI));
1812      }
1813    }
1814  
1815    // Create a list of all blocks in order.
1816    SmallVector<MachineBasicBlock *, 8> Blocks;
1817    llvm::copy(PeeledFront, std::back_inserter(Blocks));
1818    Blocks.push_back(BB);
1819    llvm::copy(PeeledBack, std::back_inserter(Blocks));
1820  
1821    // Iterate in reverse order over all instructions, remapping as we go.
1822    for (MachineBasicBlock *B : reverse(Blocks)) {
1823      for (auto I = B->getFirstInstrTerminator()->getReverseIterator();
1824           I != std::next(B->getFirstNonPHI()->getReverseIterator());) {
1825        MachineInstr *MI = &*I++;
1826        rewriteUsesOf(MI);
1827      }
1828    }
1829    for (auto *MI : IllegalPhisToDelete) {
1830      if (LIS)
1831        LIS->RemoveMachineInstrFromMaps(*MI);
1832      MI->eraseFromParent();
1833    }
1834    IllegalPhisToDelete.clear();
1835  
1836    // Now all remapping has been done, we're free to optimize the generated code.
1837    for (MachineBasicBlock *B : reverse(Blocks))
1838      EliminateDeadPhis(B, MRI, LIS);
1839    EliminateDeadPhis(ExitingBB, MRI, LIS);
1840  }
1841  
1842  MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() {
1843    MachineFunction &MF = *BB->getParent();
1844    MachineBasicBlock *Exit = *BB->succ_begin();
1845    if (Exit == BB)
1846      Exit = *std::next(BB->succ_begin());
1847  
1848    MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
1849    MF.insert(std::next(BB->getIterator()), NewBB);
1850  
1851    // Clone all phis in BB into NewBB and rewrite.
1852    for (MachineInstr &MI : BB->phis()) {
1853      auto RC = MRI.getRegClass(MI.getOperand(0).getReg());
1854      Register OldR = MI.getOperand(3).getReg();
1855      Register R = MRI.createVirtualRegister(RC);
1856      SmallVector<MachineInstr *, 4> Uses;
1857      for (MachineInstr &Use : MRI.use_instructions(OldR))
1858        if (Use.getParent() != BB)
1859          Uses.push_back(&Use);
1860      for (MachineInstr *Use : Uses)
1861        Use->substituteRegister(OldR, R, /*SubIdx=*/0,
1862                                *MRI.getTargetRegisterInfo());
1863      MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1864          .addReg(OldR)
1865          .addMBB(BB);
1866      BlockMIs[{NewBB, &MI}] = NI;
1867      CanonicalMIs[NI] = &MI;
1868    }
1869    BB->replaceSuccessor(Exit, NewBB);
1870    Exit->replacePhiUsesWith(BB, NewBB);
1871    NewBB->addSuccessor(Exit);
1872  
1873    MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1874    SmallVector<MachineOperand, 4> Cond;
1875    bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond);
1876    (void)CanAnalyzeBr;
1877    assert(CanAnalyzeBr && "Must be able to analyze the loop branch!");
1878    TII->removeBranch(*BB);
1879    TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB,
1880                      Cond, DebugLoc());
1881    TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc());
1882    return NewBB;
1883  }
1884  
1885  Register
1886  PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg,
1887                                                         MachineBasicBlock *BB) {
1888    MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
1889    unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg);
1890    return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg();
1891  }
1892  
1893  void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) {
1894    if (MI->isPHI()) {
1895      // This is an illegal PHI. The loop-carried (desired) value is operand 3,
1896      // and it is produced by this block.
1897      Register PhiR = MI->getOperand(0).getReg();
1898      Register R = MI->getOperand(3).getReg();
1899      int RMIStage = getStage(MRI.getUniqueVRegDef(R));
1900      if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage))
1901        R = MI->getOperand(1).getReg();
1902      MRI.setRegClass(R, MRI.getRegClass(PhiR));
1903      MRI.replaceRegWith(PhiR, R);
1904      // Postpone deleting the Phi as it may be referenced by BlockMIs and used
1905      // later to figure out how to remap registers.
1906      MI->getOperand(0).setReg(PhiR);
1907      IllegalPhisToDelete.push_back(MI);
1908      return;
1909    }
1910  
1911    int Stage = getStage(MI);
1912    if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 ||
1913        LiveStages[MI->getParent()].test(Stage))
1914      // Instruction is live, no rewriting to do.
1915      return;
1916  
1917    for (MachineOperand &DefMO : MI->defs()) {
1918      SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1919      for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1920        // Only PHIs can use values from this block by construction.
1921        // Match with the equivalent PHI in B.
1922        assert(UseMI.isPHI());
1923        Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1924                                               MI->getParent());
1925        Subs.emplace_back(&UseMI, Reg);
1926      }
1927      for (auto &Sub : Subs)
1928        Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1929                                      *MRI.getTargetRegisterInfo());
1930    }
1931    if (LIS)
1932      LIS->RemoveMachineInstrFromMaps(*MI);
1933    MI->eraseFromParent();
1934  }
1935  
1936  void PeelingModuloScheduleExpander::fixupBranches() {
1937    // Work outwards from the kernel.
1938    bool KernelDisposed = false;
1939    int TC = Schedule.getNumStages() - 1;
1940    for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend();
1941         ++PI, ++EI, --TC) {
1942      MachineBasicBlock *Prolog = *PI;
1943      MachineBasicBlock *Fallthrough = *Prolog->succ_begin();
1944      MachineBasicBlock *Epilog = *EI;
1945      SmallVector<MachineOperand, 4> Cond;
1946      TII->removeBranch(*Prolog);
1947      Optional<bool> StaticallyGreater =
1948          LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond);
1949      if (!StaticallyGreater.hasValue()) {
1950        LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n");
1951        // Dynamically branch based on Cond.
1952        TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc());
1953      } else if (*StaticallyGreater == false) {
1954        LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n");
1955        // Prolog never falls through; branch to epilog and orphan interior
1956        // blocks. Leave it to unreachable-block-elim to clean up.
1957        Prolog->removeSuccessor(Fallthrough);
1958        for (MachineInstr &P : Fallthrough->phis()) {
1959          P.RemoveOperand(2);
1960          P.RemoveOperand(1);
1961        }
1962        TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc());
1963        KernelDisposed = true;
1964      } else {
1965        LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n");
1966        // Prolog always falls through; remove incoming values in epilog.
1967        Prolog->removeSuccessor(Epilog);
1968        for (MachineInstr &P : Epilog->phis()) {
1969          P.RemoveOperand(4);
1970          P.RemoveOperand(3);
1971        }
1972      }
1973    }
1974  
1975    if (!KernelDisposed) {
1976      LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1));
1977      LoopInfo->setPreheader(Prologs.back());
1978    } else {
1979      LoopInfo->disposed();
1980    }
1981  }
1982  
1983  void PeelingModuloScheduleExpander::rewriteKernel() {
1984    KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
1985    KR.rewrite();
1986  }
1987  
1988  void PeelingModuloScheduleExpander::expand() {
1989    BB = Schedule.getLoop()->getTopBlock();
1990    Preheader = Schedule.getLoop()->getLoopPreheader();
1991    LLVM_DEBUG(Schedule.dump());
1992    LoopInfo = TII->analyzeLoopForPipelining(BB);
1993    assert(LoopInfo);
1994  
1995    rewriteKernel();
1996    peelPrologAndEpilogs();
1997    fixupBranches();
1998  }
1999  
2000  void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
2001    BB = Schedule.getLoop()->getTopBlock();
2002    Preheader = Schedule.getLoop()->getLoopPreheader();
2003  
2004    // Dump the schedule before we invalidate and remap all its instructions.
2005    // Stash it in a string so we can print it if we found an error.
2006    std::string ScheduleDump;
2007    raw_string_ostream OS(ScheduleDump);
2008    Schedule.print(OS);
2009    OS.flush();
2010  
2011    // First, run the normal ModuleScheduleExpander. We don't support any
2012    // InstrChanges.
2013    assert(LIS && "Requires LiveIntervals!");
2014    ModuloScheduleExpander MSE(MF, Schedule, *LIS,
2015                               ModuloScheduleExpander::InstrChangesTy());
2016    MSE.expand();
2017    MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
2018    if (!ExpandedKernel) {
2019      // The expander optimized away the kernel. We can't do any useful checking.
2020      MSE.cleanup();
2021      return;
2022    }
2023    // Before running the KernelRewriter, re-add BB into the CFG.
2024    Preheader->addSuccessor(BB);
2025  
2026    // Now run the new expansion algorithm.
2027    KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
2028    KR.rewrite();
2029    peelPrologAndEpilogs();
2030  
2031    // Collect all illegal phis that the new algorithm created. We'll give these
2032    // to KernelOperandInfo.
2033    SmallPtrSet<MachineInstr *, 4> IllegalPhis;
2034    for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
2035      if (NI->isPHI())
2036        IllegalPhis.insert(&*NI);
2037    }
2038  
2039    // Co-iterate across both kernels. We expect them to be identical apart from
2040    // phis and full COPYs (we look through both).
2041    SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
2042    auto OI = ExpandedKernel->begin();
2043    auto NI = BB->begin();
2044    for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
2045      while (OI->isPHI() || OI->isFullCopy())
2046        ++OI;
2047      while (NI->isPHI() || NI->isFullCopy())
2048        ++NI;
2049      assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!");
2050      // Analyze every operand separately.
2051      for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
2052           OOpI != OI->operands_end(); ++OOpI, ++NOpI)
2053        KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
2054                          KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
2055    }
2056  
2057    bool Failed = false;
2058    for (auto &OldAndNew : KOIs) {
2059      if (OldAndNew.first == OldAndNew.second)
2060        continue;
2061      Failed = true;
2062      errs() << "Modulo kernel validation error: [\n";
2063      errs() << " [golden] ";
2064      OldAndNew.first.print(errs());
2065      errs() << "          ";
2066      OldAndNew.second.print(errs());
2067      errs() << "]\n";
2068    }
2069  
2070    if (Failed) {
2071      errs() << "Golden reference kernel:\n";
2072      ExpandedKernel->print(errs());
2073      errs() << "New kernel:\n";
2074      BB->print(errs());
2075      errs() << ScheduleDump;
2076      report_fatal_error(
2077          "Modulo kernel validation (-pipeliner-experimental-cg) failed");
2078    }
2079  
2080    // Cleanup by removing BB from the CFG again as the original
2081    // ModuloScheduleExpander intended.
2082    Preheader->removeSuccessor(BB);
2083    MSE.cleanup();
2084  }
2085  
2086  //===----------------------------------------------------------------------===//
2087  // ModuloScheduleTestPass implementation
2088  //===----------------------------------------------------------------------===//
2089  // This pass constructs a ModuloSchedule from its module and runs
2090  // ModuloScheduleExpander.
2091  //
2092  // The module is expected to contain a single-block analyzable loop.
2093  // The total order of instructions is taken from the loop as-is.
2094  // Instructions are expected to be annotated with a PostInstrSymbol.
2095  // This PostInstrSymbol must have the following format:
2096  //  "Stage=%d Cycle=%d".
2097  //===----------------------------------------------------------------------===//
2098  
2099  namespace {
2100  class ModuloScheduleTest : public MachineFunctionPass {
2101  public:
2102    static char ID;
2103  
2104    ModuloScheduleTest() : MachineFunctionPass(ID) {
2105      initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
2106    }
2107  
2108    bool runOnMachineFunction(MachineFunction &MF) override;
2109    void runOnLoop(MachineFunction &MF, MachineLoop &L);
2110  
2111    void getAnalysisUsage(AnalysisUsage &AU) const override {
2112      AU.addRequired<MachineLoopInfo>();
2113      AU.addRequired<LiveIntervals>();
2114      MachineFunctionPass::getAnalysisUsage(AU);
2115    }
2116  };
2117  } // namespace
2118  
2119  char ModuloScheduleTest::ID = 0;
2120  
2121  INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",
2122                        "Modulo Schedule test pass", false, false)
2123  INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
2124  INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
2125  INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",
2126                      "Modulo Schedule test pass", false, false)
2127  
2128  bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
2129    MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
2130    for (auto *L : MLI) {
2131      if (L->getTopBlock() != L->getBottomBlock())
2132        continue;
2133      runOnLoop(MF, *L);
2134      return false;
2135    }
2136    return false;
2137  }
2138  
2139  static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
2140    std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
2141    std::pair<StringRef, StringRef> StageTokenAndValue =
2142        getToken(StageAndCycle.first, "-");
2143    std::pair<StringRef, StringRef> CycleTokenAndValue =
2144        getToken(StageAndCycle.second, "-");
2145    if (StageTokenAndValue.first != "Stage" ||
2146        CycleTokenAndValue.first != "_Cycle") {
2147      llvm_unreachable(
2148          "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
2149      return;
2150    }
2151  
2152    StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
2153    CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);
2154  
2155    dbgs() << "  Stage=" << Stage << ", Cycle=" << Cycle << "\n";
2156  }
2157  
2158  void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
2159    LiveIntervals &LIS = getAnalysis<LiveIntervals>();
2160    MachineBasicBlock *BB = L.getTopBlock();
2161    dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";
2162  
2163    DenseMap<MachineInstr *, int> Cycle, Stage;
2164    std::vector<MachineInstr *> Instrs;
2165    for (MachineInstr &MI : *BB) {
2166      if (MI.isTerminator())
2167        continue;
2168      Instrs.push_back(&MI);
2169      if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
2170        dbgs() << "Parsing post-instr symbol for " << MI;
2171        parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
2172      }
2173    }
2174  
2175    ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
2176                      std::move(Stage));
2177    ModuloScheduleExpander MSE(
2178        MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
2179    MSE.expand();
2180    MSE.cleanup();
2181  }
2182  
2183  //===----------------------------------------------------------------------===//
2184  // ModuloScheduleTestAnnotater implementation
2185  //===----------------------------------------------------------------------===//
2186  
2187  void ModuloScheduleTestAnnotater::annotate() {
2188    for (MachineInstr *MI : S.getInstructions()) {
2189      SmallVector<char, 16> SV;
2190      raw_svector_ostream OS(SV);
2191      OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
2192      MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
2193      MI->setPostInstrSymbol(MF, Sym);
2194    }
2195  }
2196