xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/ModuloSchedule.cpp (revision a2464ee12761660f50d0b6f59f233949ebcacc87)
1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/CodeGen/ModuloSchedule.h"
10 #include "llvm/ADT/StringExtras.h"
11 #include "llvm/Analysis/MemoryLocation.h"
12 #include "llvm/CodeGen/LiveIntervals.h"
13 #include "llvm/CodeGen/MachineInstrBuilder.h"
14 #include "llvm/CodeGen/MachineRegisterInfo.h"
15 #include "llvm/InitializePasses.h"
16 #include "llvm/MC/MCContext.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/ErrorHandling.h"
19 #include "llvm/Support/raw_ostream.h"
20 
21 #define DEBUG_TYPE "pipeliner"
22 using namespace llvm;
23 
24 void ModuloSchedule::print(raw_ostream &OS) {
25   for (MachineInstr *MI : ScheduledInstrs)
26     OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
27 }
28 
29 //===----------------------------------------------------------------------===//
30 // ModuloScheduleExpander implementation
31 //===----------------------------------------------------------------------===//
32 
33 /// Return the register values for  the operands of a Phi instruction.
34 /// This function assume the instruction is a Phi.
35 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
36                        unsigned &InitVal, unsigned &LoopVal) {
37   assert(Phi.isPHI() && "Expecting a Phi.");
38 
39   InitVal = 0;
40   LoopVal = 0;
41   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
42     if (Phi.getOperand(i + 1).getMBB() != Loop)
43       InitVal = Phi.getOperand(i).getReg();
44     else
45       LoopVal = Phi.getOperand(i).getReg();
46 
47   assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
48 }
49 
50 /// Return the Phi register value that comes from the incoming block.
51 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
52   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
53     if (Phi.getOperand(i + 1).getMBB() != LoopBB)
54       return Phi.getOperand(i).getReg();
55   return 0;
56 }
57 
58 /// Return the Phi register value that comes the loop block.
59 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
60   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
61     if (Phi.getOperand(i + 1).getMBB() == LoopBB)
62       return Phi.getOperand(i).getReg();
63   return 0;
64 }
65 
66 void ModuloScheduleExpander::expand() {
67   BB = Schedule.getLoop()->getTopBlock();
68   Preheader = *BB->pred_begin();
69   if (Preheader == BB)
70     Preheader = *std::next(BB->pred_begin());
71 
72   // Iterate over the definitions in each instruction, and compute the
73   // stage difference for each use.  Keep the maximum value.
74   for (MachineInstr *MI : Schedule.getInstructions()) {
75     int DefStage = Schedule.getStage(MI);
76     for (const MachineOperand &Op : MI->operands()) {
77       if (!Op.isReg() || !Op.isDef())
78         continue;
79 
80       Register Reg = Op.getReg();
81       unsigned MaxDiff = 0;
82       bool PhiIsSwapped = false;
83       for (MachineOperand &UseOp : MRI.use_operands(Reg)) {
84         MachineInstr *UseMI = UseOp.getParent();
85         int UseStage = Schedule.getStage(UseMI);
86         unsigned Diff = 0;
87         if (UseStage != -1 && UseStage >= DefStage)
88           Diff = UseStage - DefStage;
89         if (MI->isPHI()) {
90           if (isLoopCarried(*MI))
91             ++Diff;
92           else
93             PhiIsSwapped = true;
94         }
95         MaxDiff = std::max(Diff, MaxDiff);
96       }
97       RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
98     }
99   }
100 
101   generatePipelinedLoop();
102 }
103 
104 void ModuloScheduleExpander::generatePipelinedLoop() {
105   LoopInfo = TII->analyzeLoopForPipelining(BB);
106   assert(LoopInfo && "Must be able to analyze loop!");
107 
108   // Create a new basic block for the kernel and add it to the CFG.
109   MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
110 
111   unsigned MaxStageCount = Schedule.getNumStages() - 1;
112 
113   // Remember the registers that are used in different stages. The index is
114   // the iteration, or stage, that the instruction is scheduled in.  This is
115   // a map between register names in the original block and the names created
116   // in each stage of the pipelined loop.
117   ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
118   InstrMapTy InstrMap;
119 
120   SmallVector<MachineBasicBlock *, 4> PrologBBs;
121 
122   // Generate the prolog instructions that set up the pipeline.
123   generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
124   MF.insert(BB->getIterator(), KernelBB);
125 
126   // Rearrange the instructions to generate the new, pipelined loop,
127   // and update register names as needed.
128   for (MachineInstr *CI : Schedule.getInstructions()) {
129     if (CI->isPHI())
130       continue;
131     unsigned StageNum = Schedule.getStage(CI);
132     MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
133     updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
134     KernelBB->push_back(NewMI);
135     InstrMap[NewMI] = CI;
136   }
137 
138   // Copy any terminator instructions to the new kernel, and update
139   // names as needed.
140   for (MachineInstr &MI : BB->terminators()) {
141     MachineInstr *NewMI = MF.CloneMachineInstr(&MI);
142     updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
143     KernelBB->push_back(NewMI);
144     InstrMap[NewMI] = &MI;
145   }
146 
147   NewKernel = KernelBB;
148   KernelBB->transferSuccessors(BB);
149   KernelBB->replaceSuccessor(BB, KernelBB);
150 
151   generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
152                        InstrMap, MaxStageCount, MaxStageCount, false);
153   generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap,
154                MaxStageCount, MaxStageCount, false);
155 
156   LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
157 
158   SmallVector<MachineBasicBlock *, 4> EpilogBBs;
159   // Generate the epilog instructions to complete the pipeline.
160   generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs);
161 
162   // We need this step because the register allocation doesn't handle some
163   // situations well, so we insert copies to help out.
164   splitLifetimes(KernelBB, EpilogBBs);
165 
166   // Remove dead instructions due to loop induction variables.
167   removeDeadInstructions(KernelBB, EpilogBBs);
168 
169   // Add branches between prolog and epilog blocks.
170   addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
171 
172   delete[] VRMap;
173 }
174 
175 void ModuloScheduleExpander::cleanup() {
176   // Remove the original loop since it's no longer referenced.
177   for (auto &I : *BB)
178     LIS.RemoveMachineInstrFromMaps(I);
179   BB->clear();
180   BB->eraseFromParent();
181 }
182 
183 /// Generate the pipeline prolog code.
184 void ModuloScheduleExpander::generateProlog(unsigned LastStage,
185                                             MachineBasicBlock *KernelBB,
186                                             ValueMapTy *VRMap,
187                                             MBBVectorTy &PrologBBs) {
188   MachineBasicBlock *PredBB = Preheader;
189   InstrMapTy InstrMap;
190 
191   // Generate a basic block for each stage, not including the last stage,
192   // which will be generated in the kernel. Each basic block may contain
193   // instructions from multiple stages/iterations.
194   for (unsigned i = 0; i < LastStage; ++i) {
195     // Create and insert the prolog basic block prior to the original loop
196     // basic block.  The original loop is removed later.
197     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
198     PrologBBs.push_back(NewBB);
199     MF.insert(BB->getIterator(), NewBB);
200     NewBB->transferSuccessors(PredBB);
201     PredBB->addSuccessor(NewBB);
202     PredBB = NewBB;
203 
204     // Generate instructions for each appropriate stage. Process instructions
205     // in original program order.
206     for (int StageNum = i; StageNum >= 0; --StageNum) {
207       for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
208                                        BBE = BB->getFirstTerminator();
209            BBI != BBE; ++BBI) {
210         if (Schedule.getStage(&*BBI) == StageNum) {
211           if (BBI->isPHI())
212             continue;
213           MachineInstr *NewMI =
214               cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
215           updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
216           NewBB->push_back(NewMI);
217           InstrMap[NewMI] = &*BBI;
218         }
219       }
220     }
221     rewritePhiValues(NewBB, i, VRMap, InstrMap);
222     LLVM_DEBUG({
223       dbgs() << "prolog:\n";
224       NewBB->dump();
225     });
226   }
227 
228   PredBB->replaceSuccessor(BB, KernelBB);
229 
230   // Check if we need to remove the branch from the preheader to the original
231   // loop, and replace it with a branch to the new loop.
232   unsigned numBranches = TII->removeBranch(*Preheader);
233   if (numBranches) {
234     SmallVector<MachineOperand, 0> Cond;
235     TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
236   }
237 }
238 
239 /// Generate the pipeline epilog code. The epilog code finishes the iterations
240 /// that were started in either the prolog or the kernel.  We create a basic
241 /// block for each stage that needs to complete.
242 void ModuloScheduleExpander::generateEpilog(unsigned LastStage,
243                                             MachineBasicBlock *KernelBB,
244                                             ValueMapTy *VRMap,
245                                             MBBVectorTy &EpilogBBs,
246                                             MBBVectorTy &PrologBBs) {
247   // We need to change the branch from the kernel to the first epilog block, so
248   // this call to analyze branch uses the kernel rather than the original BB.
249   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
250   SmallVector<MachineOperand, 4> Cond;
251   bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
252   assert(!checkBranch && "generateEpilog must be able to analyze the branch");
253   if (checkBranch)
254     return;
255 
256   MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
257   if (*LoopExitI == KernelBB)
258     ++LoopExitI;
259   assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
260   MachineBasicBlock *LoopExitBB = *LoopExitI;
261 
262   MachineBasicBlock *PredBB = KernelBB;
263   MachineBasicBlock *EpilogStart = LoopExitBB;
264   InstrMapTy InstrMap;
265 
266   // Generate a basic block for each stage, not including the last stage,
267   // which was generated for the kernel.  Each basic block may contain
268   // instructions from multiple stages/iterations.
269   int EpilogStage = LastStage + 1;
270   for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
271     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
272     EpilogBBs.push_back(NewBB);
273     MF.insert(BB->getIterator(), NewBB);
274 
275     PredBB->replaceSuccessor(LoopExitBB, NewBB);
276     NewBB->addSuccessor(LoopExitBB);
277 
278     if (EpilogStart == LoopExitBB)
279       EpilogStart = NewBB;
280 
281     // Add instructions to the epilog depending on the current block.
282     // Process instructions in original program order.
283     for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
284       for (auto &BBI : *BB) {
285         if (BBI.isPHI())
286           continue;
287         MachineInstr *In = &BBI;
288         if ((unsigned)Schedule.getStage(In) == StageNum) {
289           // Instructions with memoperands in the epilog are updated with
290           // conservative values.
291           MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
292           updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
293           NewBB->push_back(NewMI);
294           InstrMap[NewMI] = In;
295         }
296       }
297     }
298     generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
299                          InstrMap, LastStage, EpilogStage, i == 1);
300     generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap,
301                  LastStage, EpilogStage, i == 1);
302     PredBB = NewBB;
303 
304     LLVM_DEBUG({
305       dbgs() << "epilog:\n";
306       NewBB->dump();
307     });
308   }
309 
310   // Fix any Phi nodes in the loop exit block.
311   LoopExitBB->replacePhiUsesWith(BB, PredBB);
312 
313   // Create a branch to the new epilog from the kernel.
314   // Remove the original branch and add a new branch to the epilog.
315   TII->removeBranch(*KernelBB);
316   TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
317   // Add a branch to the loop exit.
318   if (EpilogBBs.size() > 0) {
319     MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
320     SmallVector<MachineOperand, 4> Cond1;
321     TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
322   }
323 }
324 
325 /// Replace all uses of FromReg that appear outside the specified
326 /// basic block with ToReg.
327 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
328                                     MachineBasicBlock *MBB,
329                                     MachineRegisterInfo &MRI,
330                                     LiveIntervals &LIS) {
331   for (MachineOperand &O :
332        llvm::make_early_inc_range(MRI.use_operands(FromReg)))
333     if (O.getParent()->getParent() != MBB)
334       O.setReg(ToReg);
335   if (!LIS.hasInterval(ToReg))
336     LIS.createEmptyInterval(ToReg);
337 }
338 
339 /// Return true if the register has a use that occurs outside the
340 /// specified loop.
341 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
342                             MachineRegisterInfo &MRI) {
343   for (const MachineOperand &MO : MRI.use_operands(Reg))
344     if (MO.getParent()->getParent() != BB)
345       return true;
346   return false;
347 }
348 
349 /// Generate Phis for the specific block in the generated pipelined code.
350 /// This function looks at the Phis from the original code to guide the
351 /// creation of new Phis.
352 void ModuloScheduleExpander::generateExistingPhis(
353     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
354     MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
355     unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
356   // Compute the stage number for the initial value of the Phi, which
357   // comes from the prolog. The prolog to use depends on to which kernel/
358   // epilog that we're adding the Phi.
359   unsigned PrologStage = 0;
360   unsigned PrevStage = 0;
361   bool InKernel = (LastStageNum == CurStageNum);
362   if (InKernel) {
363     PrologStage = LastStageNum - 1;
364     PrevStage = CurStageNum;
365   } else {
366     PrologStage = LastStageNum - (CurStageNum - LastStageNum);
367     PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
368   }
369 
370   for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
371                                    BBE = BB->getFirstNonPHI();
372        BBI != BBE; ++BBI) {
373     Register Def = BBI->getOperand(0).getReg();
374 
375     unsigned InitVal = 0;
376     unsigned LoopVal = 0;
377     getPhiRegs(*BBI, BB, InitVal, LoopVal);
378 
379     unsigned PhiOp1 = 0;
380     // The Phi value from the loop body typically is defined in the loop, but
381     // not always. So, we need to check if the value is defined in the loop.
382     unsigned PhiOp2 = LoopVal;
383     if (VRMap[LastStageNum].count(LoopVal))
384       PhiOp2 = VRMap[LastStageNum][LoopVal];
385 
386     int StageScheduled = Schedule.getStage(&*BBI);
387     int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
388     unsigned NumStages = getStagesForReg(Def, CurStageNum);
389     if (NumStages == 0) {
390       // We don't need to generate a Phi anymore, but we need to rename any uses
391       // of the Phi value.
392       unsigned NewReg = VRMap[PrevStage][LoopVal];
393       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
394                             InitVal, NewReg);
395       if (VRMap[CurStageNum].count(LoopVal))
396         VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
397     }
398     // Adjust the number of Phis needed depending on the number of prologs left,
399     // and the distance from where the Phi is first scheduled. The number of
400     // Phis cannot exceed the number of prolog stages. Each stage can
401     // potentially define two values.
402     unsigned MaxPhis = PrologStage + 2;
403     if (!InKernel && (int)PrologStage <= LoopValStage)
404       MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
405     unsigned NumPhis = std::min(NumStages, MaxPhis);
406 
407     unsigned NewReg = 0;
408     unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
409     // In the epilog, we may need to look back one stage to get the correct
410     // Phi name, because the epilog and prolog blocks execute the same stage.
411     // The correct name is from the previous block only when the Phi has
412     // been completely scheduled prior to the epilog, and Phi value is not
413     // needed in multiple stages.
414     int StageDiff = 0;
415     if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
416         NumPhis == 1)
417       StageDiff = 1;
418     // Adjust the computations below when the phi and the loop definition
419     // are scheduled in different stages.
420     if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
421       StageDiff = StageScheduled - LoopValStage;
422     for (unsigned np = 0; np < NumPhis; ++np) {
423       // If the Phi hasn't been scheduled, then use the initial Phi operand
424       // value. Otherwise, use the scheduled version of the instruction. This
425       // is a little complicated when a Phi references another Phi.
426       if (np > PrologStage || StageScheduled >= (int)LastStageNum)
427         PhiOp1 = InitVal;
428       // Check if the Phi has already been scheduled in a prolog stage.
429       else if (PrologStage >= AccessStage + StageDiff + np &&
430                VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
431         PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
432       // Check if the Phi has already been scheduled, but the loop instruction
433       // is either another Phi, or doesn't occur in the loop.
434       else if (PrologStage >= AccessStage + StageDiff + np) {
435         // If the Phi references another Phi, we need to examine the other
436         // Phi to get the correct value.
437         PhiOp1 = LoopVal;
438         MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
439         int Indirects = 1;
440         while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
441           int PhiStage = Schedule.getStage(InstOp1);
442           if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
443             PhiOp1 = getInitPhiReg(*InstOp1, BB);
444           else
445             PhiOp1 = getLoopPhiReg(*InstOp1, BB);
446           InstOp1 = MRI.getVRegDef(PhiOp1);
447           int PhiOpStage = Schedule.getStage(InstOp1);
448           int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
449           if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
450               VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
451             PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
452             break;
453           }
454           ++Indirects;
455         }
456       } else
457         PhiOp1 = InitVal;
458       // If this references a generated Phi in the kernel, get the Phi operand
459       // from the incoming block.
460       if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
461         if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
462           PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
463 
464       MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
465       bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
466       // In the epilog, a map lookup is needed to get the value from the kernel,
467       // or previous epilog block. How is does this depends on if the
468       // instruction is scheduled in the previous block.
469       if (!InKernel) {
470         int StageDiffAdj = 0;
471         if (LoopValStage != -1 && StageScheduled > LoopValStage)
472           StageDiffAdj = StageScheduled - LoopValStage;
473         // Use the loop value defined in the kernel, unless the kernel
474         // contains the last definition of the Phi.
475         if (np == 0 && PrevStage == LastStageNum &&
476             (StageScheduled != 0 || LoopValStage != 0) &&
477             VRMap[PrevStage - StageDiffAdj].count(LoopVal))
478           PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
479         // Use the value defined by the Phi. We add one because we switch
480         // from looking at the loop value to the Phi definition.
481         else if (np > 0 && PrevStage == LastStageNum &&
482                  VRMap[PrevStage - np + 1].count(Def))
483           PhiOp2 = VRMap[PrevStage - np + 1][Def];
484         // Use the loop value defined in the kernel.
485         else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
486                  VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
487           PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
488         // Use the value defined by the Phi, unless we're generating the first
489         // epilog and the Phi refers to a Phi in a different stage.
490         else if (VRMap[PrevStage - np].count(Def) &&
491                  (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
492                   (LoopValStage == StageScheduled)))
493           PhiOp2 = VRMap[PrevStage - np][Def];
494       }
495 
496       // Check if we can reuse an existing Phi. This occurs when a Phi
497       // references another Phi, and the other Phi is scheduled in an
498       // earlier stage. We can try to reuse an existing Phi up until the last
499       // stage of the current Phi.
500       if (LoopDefIsPhi) {
501         if (static_cast<int>(PrologStage - np) >= StageScheduled) {
502           int LVNumStages = getStagesForPhi(LoopVal);
503           int StageDiff = (StageScheduled - LoopValStage);
504           LVNumStages -= StageDiff;
505           // Make sure the loop value Phi has been processed already.
506           if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
507             NewReg = PhiOp2;
508             unsigned ReuseStage = CurStageNum;
509             if (isLoopCarried(*PhiInst))
510               ReuseStage -= LVNumStages;
511             // Check if the Phi to reuse has been generated yet. If not, then
512             // there is nothing to reuse.
513             if (VRMap[ReuseStage - np].count(LoopVal)) {
514               NewReg = VRMap[ReuseStage - np][LoopVal];
515 
516               rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
517                                     Def, NewReg);
518               // Update the map with the new Phi name.
519               VRMap[CurStageNum - np][Def] = NewReg;
520               PhiOp2 = NewReg;
521               if (VRMap[LastStageNum - np - 1].count(LoopVal))
522                 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
523 
524               if (IsLast && np == NumPhis - 1)
525                 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
526               continue;
527             }
528           }
529         }
530         if (InKernel && StageDiff > 0 &&
531             VRMap[CurStageNum - StageDiff - np].count(LoopVal))
532           PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
533       }
534 
535       const TargetRegisterClass *RC = MRI.getRegClass(Def);
536       NewReg = MRI.createVirtualRegister(RC);
537 
538       MachineInstrBuilder NewPhi =
539           BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
540                   TII->get(TargetOpcode::PHI), NewReg);
541       NewPhi.addReg(PhiOp1).addMBB(BB1);
542       NewPhi.addReg(PhiOp2).addMBB(BB2);
543       if (np == 0)
544         InstrMap[NewPhi] = &*BBI;
545 
546       // We define the Phis after creating the new pipelined code, so
547       // we need to rename the Phi values in scheduled instructions.
548 
549       unsigned PrevReg = 0;
550       if (InKernel && VRMap[PrevStage - np].count(LoopVal))
551         PrevReg = VRMap[PrevStage - np][LoopVal];
552       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
553                             NewReg, PrevReg);
554       // If the Phi has been scheduled, use the new name for rewriting.
555       if (VRMap[CurStageNum - np].count(Def)) {
556         unsigned R = VRMap[CurStageNum - np][Def];
557         rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
558                               NewReg);
559       }
560 
561       // Check if we need to rename any uses that occurs after the loop. The
562       // register to replace depends on whether the Phi is scheduled in the
563       // epilog.
564       if (IsLast && np == NumPhis - 1)
565         replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
566 
567       // In the kernel, a dependent Phi uses the value from this Phi.
568       if (InKernel)
569         PhiOp2 = NewReg;
570 
571       // Update the map with the new Phi name.
572       VRMap[CurStageNum - np][Def] = NewReg;
573     }
574 
575     while (NumPhis++ < NumStages) {
576       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
577                             NewReg, 0);
578     }
579 
580     // Check if we need to rename a Phi that has been eliminated due to
581     // scheduling.
582     if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
583       replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
584   }
585 }
586 
587 /// Generate Phis for the specified block in the generated pipelined code.
588 /// These are new Phis needed because the definition is scheduled after the
589 /// use in the pipelined sequence.
590 void ModuloScheduleExpander::generatePhis(
591     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
592     MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
593     unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
594   // Compute the stage number that contains the initial Phi value, and
595   // the Phi from the previous stage.
596   unsigned PrologStage = 0;
597   unsigned PrevStage = 0;
598   unsigned StageDiff = CurStageNum - LastStageNum;
599   bool InKernel = (StageDiff == 0);
600   if (InKernel) {
601     PrologStage = LastStageNum - 1;
602     PrevStage = CurStageNum;
603   } else {
604     PrologStage = LastStageNum - StageDiff;
605     PrevStage = LastStageNum + StageDiff - 1;
606   }
607 
608   for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
609                                    BBE = BB->instr_end();
610        BBI != BBE; ++BBI) {
611     for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
612       MachineOperand &MO = BBI->getOperand(i);
613       if (!MO.isReg() || !MO.isDef() ||
614           !Register::isVirtualRegister(MO.getReg()))
615         continue;
616 
617       int StageScheduled = Schedule.getStage(&*BBI);
618       assert(StageScheduled != -1 && "Expecting scheduled instruction.");
619       Register Def = MO.getReg();
620       unsigned NumPhis = getStagesForReg(Def, CurStageNum);
621       // An instruction scheduled in stage 0 and is used after the loop
622       // requires a phi in the epilog for the last definition from either
623       // the kernel or prolog.
624       if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
625           hasUseAfterLoop(Def, BB, MRI))
626         NumPhis = 1;
627       if (!InKernel && (unsigned)StageScheduled > PrologStage)
628         continue;
629 
630       unsigned PhiOp2 = VRMap[PrevStage][Def];
631       if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
632         if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
633           PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
634       // The number of Phis can't exceed the number of prolog stages. The
635       // prolog stage number is zero based.
636       if (NumPhis > PrologStage + 1 - StageScheduled)
637         NumPhis = PrologStage + 1 - StageScheduled;
638       for (unsigned np = 0; np < NumPhis; ++np) {
639         unsigned PhiOp1 = VRMap[PrologStage][Def];
640         if (np <= PrologStage)
641           PhiOp1 = VRMap[PrologStage - np][Def];
642         if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
643           if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
644             PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
645           if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
646             PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
647         }
648         if (!InKernel)
649           PhiOp2 = VRMap[PrevStage - np][Def];
650 
651         const TargetRegisterClass *RC = MRI.getRegClass(Def);
652         Register NewReg = MRI.createVirtualRegister(RC);
653 
654         MachineInstrBuilder NewPhi =
655             BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
656                     TII->get(TargetOpcode::PHI), NewReg);
657         NewPhi.addReg(PhiOp1).addMBB(BB1);
658         NewPhi.addReg(PhiOp2).addMBB(BB2);
659         if (np == 0)
660           InstrMap[NewPhi] = &*BBI;
661 
662         // Rewrite uses and update the map. The actions depend upon whether
663         // we generating code for the kernel or epilog blocks.
664         if (InKernel) {
665           rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
666                                 NewReg);
667           rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
668                                 NewReg);
669 
670           PhiOp2 = NewReg;
671           VRMap[PrevStage - np - 1][Def] = NewReg;
672         } else {
673           VRMap[CurStageNum - np][Def] = NewReg;
674           if (np == NumPhis - 1)
675             rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
676                                   NewReg);
677         }
678         if (IsLast && np == NumPhis - 1)
679           replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
680       }
681     }
682   }
683 }
684 
685 /// Remove instructions that generate values with no uses.
686 /// Typically, these are induction variable operations that generate values
687 /// used in the loop itself.  A dead instruction has a definition with
688 /// no uses, or uses that occur in the original loop only.
689 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
690                                                     MBBVectorTy &EpilogBBs) {
691   // For each epilog block, check that the value defined by each instruction
692   // is used.  If not, delete it.
693   for (MachineBasicBlock *MBB : llvm::reverse(EpilogBBs))
694     for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(),
695                                                    ME = MBB->instr_rend();
696          MI != ME;) {
697       // From DeadMachineInstructionElem. Don't delete inline assembly.
698       if (MI->isInlineAsm()) {
699         ++MI;
700         continue;
701       }
702       bool SawStore = false;
703       // Check if it's safe to remove the instruction due to side effects.
704       // We can, and want to, remove Phis here.
705       if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
706         ++MI;
707         continue;
708       }
709       bool used = true;
710       for (const MachineOperand &MO : MI->operands()) {
711         if (!MO.isReg() || !MO.isDef())
712           continue;
713         Register reg = MO.getReg();
714         // Assume physical registers are used, unless they are marked dead.
715         if (Register::isPhysicalRegister(reg)) {
716           used = !MO.isDead();
717           if (used)
718             break;
719           continue;
720         }
721         unsigned realUses = 0;
722         for (const MachineOperand &U : MRI.use_operands(reg)) {
723           // Check if there are any uses that occur only in the original
724           // loop.  If so, that's not a real use.
725           if (U.getParent()->getParent() != BB) {
726             realUses++;
727             used = true;
728             break;
729           }
730         }
731         if (realUses > 0)
732           break;
733         used = false;
734       }
735       if (!used) {
736         LIS.RemoveMachineInstrFromMaps(*MI);
737         MI++->eraseFromParent();
738         continue;
739       }
740       ++MI;
741     }
742   // In the kernel block, check if we can remove a Phi that generates a value
743   // used in an instruction removed in the epilog block.
744   for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) {
745     Register reg = MI.getOperand(0).getReg();
746     if (MRI.use_begin(reg) == MRI.use_end()) {
747       LIS.RemoveMachineInstrFromMaps(MI);
748       MI.eraseFromParent();
749     }
750   }
751 }
752 
753 /// For loop carried definitions, we split the lifetime of a virtual register
754 /// that has uses past the definition in the next iteration. A copy with a new
755 /// virtual register is inserted before the definition, which helps with
756 /// generating a better register assignment.
757 ///
758 ///   v1 = phi(a, v2)     v1 = phi(a, v2)
759 ///   v2 = phi(b, v3)     v2 = phi(b, v3)
760 ///   v3 = ..             v4 = copy v1
761 ///   .. = V1             v3 = ..
762 ///                       .. = v4
763 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
764                                             MBBVectorTy &EpilogBBs) {
765   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
766   for (auto &PHI : KernelBB->phis()) {
767     Register Def = PHI.getOperand(0).getReg();
768     // Check for any Phi definition that used as an operand of another Phi
769     // in the same block.
770     for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
771                                                  E = MRI.use_instr_end();
772          I != E; ++I) {
773       if (I->isPHI() && I->getParent() == KernelBB) {
774         // Get the loop carried definition.
775         unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
776         if (!LCDef)
777           continue;
778         MachineInstr *MI = MRI.getVRegDef(LCDef);
779         if (!MI || MI->getParent() != KernelBB || MI->isPHI())
780           continue;
781         // Search through the rest of the block looking for uses of the Phi
782         // definition. If one occurs, then split the lifetime.
783         unsigned SplitReg = 0;
784         for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
785                                     KernelBB->instr_end()))
786           if (BBJ.readsRegister(Def)) {
787             // We split the lifetime when we find the first use.
788             if (SplitReg == 0) {
789               SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
790               BuildMI(*KernelBB, MI, MI->getDebugLoc(),
791                       TII->get(TargetOpcode::COPY), SplitReg)
792                   .addReg(Def);
793             }
794             BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
795           }
796         if (!SplitReg)
797           continue;
798         // Search through each of the epilog blocks for any uses to be renamed.
799         for (auto &Epilog : EpilogBBs)
800           for (auto &I : *Epilog)
801             if (I.readsRegister(Def))
802               I.substituteRegister(Def, SplitReg, 0, *TRI);
803         break;
804       }
805     }
806   }
807 }
808 
809 /// Remove the incoming block from the Phis in a basic block.
810 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
811   for (MachineInstr &MI : *BB) {
812     if (!MI.isPHI())
813       break;
814     for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
815       if (MI.getOperand(i + 1).getMBB() == Incoming) {
816         MI.RemoveOperand(i + 1);
817         MI.RemoveOperand(i);
818         break;
819       }
820   }
821 }
822 
823 /// Create branches from each prolog basic block to the appropriate epilog
824 /// block.  These edges are needed if the loop ends before reaching the
825 /// kernel.
826 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
827                                          MBBVectorTy &PrologBBs,
828                                          MachineBasicBlock *KernelBB,
829                                          MBBVectorTy &EpilogBBs,
830                                          ValueMapTy *VRMap) {
831   assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
832   MachineBasicBlock *LastPro = KernelBB;
833   MachineBasicBlock *LastEpi = KernelBB;
834 
835   // Start from the blocks connected to the kernel and work "out"
836   // to the first prolog and the last epilog blocks.
837   SmallVector<MachineInstr *, 4> PrevInsts;
838   unsigned MaxIter = PrologBBs.size() - 1;
839   for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
840     // Add branches to the prolog that go to the corresponding
841     // epilog, and the fall-thru prolog/kernel block.
842     MachineBasicBlock *Prolog = PrologBBs[j];
843     MachineBasicBlock *Epilog = EpilogBBs[i];
844 
845     SmallVector<MachineOperand, 4> Cond;
846     Optional<bool> StaticallyGreater =
847         LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond);
848     unsigned numAdded = 0;
849     if (!StaticallyGreater.hasValue()) {
850       Prolog->addSuccessor(Epilog);
851       numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
852     } else if (*StaticallyGreater == false) {
853       Prolog->addSuccessor(Epilog);
854       Prolog->removeSuccessor(LastPro);
855       LastEpi->removeSuccessor(Epilog);
856       numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
857       removePhis(Epilog, LastEpi);
858       // Remove the blocks that are no longer referenced.
859       if (LastPro != LastEpi) {
860         LastEpi->clear();
861         LastEpi->eraseFromParent();
862       }
863       if (LastPro == KernelBB) {
864         LoopInfo->disposed();
865         NewKernel = nullptr;
866       }
867       LastPro->clear();
868       LastPro->eraseFromParent();
869     } else {
870       numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
871       removePhis(Epilog, Prolog);
872     }
873     LastPro = Prolog;
874     LastEpi = Epilog;
875     for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
876                                                    E = Prolog->instr_rend();
877          I != E && numAdded > 0; ++I, --numAdded)
878       updateInstruction(&*I, false, j, 0, VRMap);
879   }
880 
881   if (NewKernel) {
882     LoopInfo->setPreheader(PrologBBs[MaxIter]);
883     LoopInfo->adjustTripCount(-(MaxIter + 1));
884   }
885 }
886 
887 /// Return true if we can compute the amount the instruction changes
888 /// during each iteration. Set Delta to the amount of the change.
889 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
890   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
891   const MachineOperand *BaseOp;
892   int64_t Offset;
893   bool OffsetIsScalable;
894   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
895     return false;
896 
897   // FIXME: This algorithm assumes instructions have fixed-size offsets.
898   if (OffsetIsScalable)
899     return false;
900 
901   if (!BaseOp->isReg())
902     return false;
903 
904   Register BaseReg = BaseOp->getReg();
905 
906   MachineRegisterInfo &MRI = MF.getRegInfo();
907   // Check if there is a Phi. If so, get the definition in the loop.
908   MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
909   if (BaseDef && BaseDef->isPHI()) {
910     BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
911     BaseDef = MRI.getVRegDef(BaseReg);
912   }
913   if (!BaseDef)
914     return false;
915 
916   int D = 0;
917   if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
918     return false;
919 
920   Delta = D;
921   return true;
922 }
923 
924 /// Update the memory operand with a new offset when the pipeliner
925 /// generates a new copy of the instruction that refers to a
926 /// different memory location.
927 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
928                                                MachineInstr &OldMI,
929                                                unsigned Num) {
930   if (Num == 0)
931     return;
932   // If the instruction has memory operands, then adjust the offset
933   // when the instruction appears in different stages.
934   if (NewMI.memoperands_empty())
935     return;
936   SmallVector<MachineMemOperand *, 2> NewMMOs;
937   for (MachineMemOperand *MMO : NewMI.memoperands()) {
938     // TODO: Figure out whether isAtomic is really necessary (see D57601).
939     if (MMO->isVolatile() || MMO->isAtomic() ||
940         (MMO->isInvariant() && MMO->isDereferenceable()) ||
941         (!MMO->getValue())) {
942       NewMMOs.push_back(MMO);
943       continue;
944     }
945     unsigned Delta;
946     if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
947       int64_t AdjOffset = Delta * Num;
948       NewMMOs.push_back(
949           MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
950     } else {
951       NewMMOs.push_back(
952           MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
953     }
954   }
955   NewMI.setMemRefs(MF, NewMMOs);
956 }
957 
958 /// Clone the instruction for the new pipelined loop and update the
959 /// memory operands, if needed.
960 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
961                                                  unsigned CurStageNum,
962                                                  unsigned InstStageNum) {
963   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
964   // Check for tied operands in inline asm instructions. This should be handled
965   // elsewhere, but I'm not sure of the best solution.
966   if (OldMI->isInlineAsm())
967     for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
968       const auto &MO = OldMI->getOperand(i);
969       if (MO.isReg() && MO.isUse())
970         break;
971       unsigned UseIdx;
972       if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
973         NewMI->tieOperands(i, UseIdx);
974     }
975   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
976   return NewMI;
977 }
978 
979 /// Clone the instruction for the new pipelined loop. If needed, this
980 /// function updates the instruction using the values saved in the
981 /// InstrChanges structure.
982 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
983     MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
984   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
985   auto It = InstrChanges.find(OldMI);
986   if (It != InstrChanges.end()) {
987     std::pair<unsigned, int64_t> RegAndOffset = It->second;
988     unsigned BasePos, OffsetPos;
989     if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
990       return nullptr;
991     int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
992     MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
993     if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
994       NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
995     NewMI->getOperand(OffsetPos).setImm(NewOffset);
996   }
997   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
998   return NewMI;
999 }
1000 
1001 /// Update the machine instruction with new virtual registers.  This
1002 /// function may change the defintions and/or uses.
1003 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
1004                                                bool LastDef,
1005                                                unsigned CurStageNum,
1006                                                unsigned InstrStageNum,
1007                                                ValueMapTy *VRMap) {
1008   for (MachineOperand &MO : NewMI->operands()) {
1009     if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
1010       continue;
1011     Register reg = MO.getReg();
1012     if (MO.isDef()) {
1013       // Create a new virtual register for the definition.
1014       const TargetRegisterClass *RC = MRI.getRegClass(reg);
1015       Register NewReg = MRI.createVirtualRegister(RC);
1016       MO.setReg(NewReg);
1017       VRMap[CurStageNum][reg] = NewReg;
1018       if (LastDef)
1019         replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
1020     } else if (MO.isUse()) {
1021       MachineInstr *Def = MRI.getVRegDef(reg);
1022       // Compute the stage that contains the last definition for instruction.
1023       int DefStageNum = Schedule.getStage(Def);
1024       unsigned StageNum = CurStageNum;
1025       if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
1026         // Compute the difference in stages between the defintion and the use.
1027         unsigned StageDiff = (InstrStageNum - DefStageNum);
1028         // Make an adjustment to get the last definition.
1029         StageNum -= StageDiff;
1030       }
1031       if (VRMap[StageNum].count(reg))
1032         MO.setReg(VRMap[StageNum][reg]);
1033     }
1034   }
1035 }
1036 
1037 /// Return the instruction in the loop that defines the register.
1038 /// If the definition is a Phi, then follow the Phi operand to
1039 /// the instruction in the loop.
1040 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
1041   SmallPtrSet<MachineInstr *, 8> Visited;
1042   MachineInstr *Def = MRI.getVRegDef(Reg);
1043   while (Def->isPHI()) {
1044     if (!Visited.insert(Def).second)
1045       break;
1046     for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
1047       if (Def->getOperand(i + 1).getMBB() == BB) {
1048         Def = MRI.getVRegDef(Def->getOperand(i).getReg());
1049         break;
1050       }
1051   }
1052   return Def;
1053 }
1054 
1055 /// Return the new name for the value from the previous stage.
1056 unsigned ModuloScheduleExpander::getPrevMapVal(
1057     unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
1058     ValueMapTy *VRMap, MachineBasicBlock *BB) {
1059   unsigned PrevVal = 0;
1060   if (StageNum > PhiStage) {
1061     MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
1062     if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
1063       // The name is defined in the previous stage.
1064       PrevVal = VRMap[StageNum - 1][LoopVal];
1065     else if (VRMap[StageNum].count(LoopVal))
1066       // The previous name is defined in the current stage when the instruction
1067       // order is swapped.
1068       PrevVal = VRMap[StageNum][LoopVal];
1069     else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
1070       // The loop value hasn't yet been scheduled.
1071       PrevVal = LoopVal;
1072     else if (StageNum == PhiStage + 1)
1073       // The loop value is another phi, which has not been scheduled.
1074       PrevVal = getInitPhiReg(*LoopInst, BB);
1075     else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
1076       // The loop value is another phi, which has been scheduled.
1077       PrevVal =
1078           getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
1079                         LoopStage, VRMap, BB);
1080   }
1081   return PrevVal;
1082 }
1083 
1084 /// Rewrite the Phi values in the specified block to use the mappings
1085 /// from the initial operand. Once the Phi is scheduled, we switch
1086 /// to using the loop value instead of the Phi value, so those names
1087 /// do not need to be rewritten.
1088 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
1089                                               unsigned StageNum,
1090                                               ValueMapTy *VRMap,
1091                                               InstrMapTy &InstrMap) {
1092   for (auto &PHI : BB->phis()) {
1093     unsigned InitVal = 0;
1094     unsigned LoopVal = 0;
1095     getPhiRegs(PHI, BB, InitVal, LoopVal);
1096     Register PhiDef = PHI.getOperand(0).getReg();
1097 
1098     unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
1099     unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
1100     unsigned NumPhis = getStagesForPhi(PhiDef);
1101     if (NumPhis > StageNum)
1102       NumPhis = StageNum;
1103     for (unsigned np = 0; np <= NumPhis; ++np) {
1104       unsigned NewVal =
1105           getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
1106       if (!NewVal)
1107         NewVal = InitVal;
1108       rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
1109                             NewVal);
1110     }
1111   }
1112 }
1113 
1114 /// Rewrite a previously scheduled instruction to use the register value
1115 /// from the new instruction. Make sure the instruction occurs in the
1116 /// basic block, and we don't change the uses in the new instruction.
1117 void ModuloScheduleExpander::rewriteScheduledInstr(
1118     MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
1119     unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
1120     unsigned PrevReg) {
1121   bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
1122   int StagePhi = Schedule.getStage(Phi) + PhiNum;
1123   // Rewrite uses that have been scheduled already to use the new
1124   // Phi register.
1125   for (MachineOperand &UseOp :
1126        llvm::make_early_inc_range(MRI.use_operands(OldReg))) {
1127     MachineInstr *UseMI = UseOp.getParent();
1128     if (UseMI->getParent() != BB)
1129       continue;
1130     if (UseMI->isPHI()) {
1131       if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
1132         continue;
1133       if (getLoopPhiReg(*UseMI, BB) != OldReg)
1134         continue;
1135     }
1136     InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
1137     assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
1138     MachineInstr *OrigMI = OrigInstr->second;
1139     int StageSched = Schedule.getStage(OrigMI);
1140     int CycleSched = Schedule.getCycle(OrigMI);
1141     unsigned ReplaceReg = 0;
1142     // This is the stage for the scheduled instruction.
1143     if (StagePhi == StageSched && Phi->isPHI()) {
1144       int CyclePhi = Schedule.getCycle(Phi);
1145       if (PrevReg && InProlog)
1146         ReplaceReg = PrevReg;
1147       else if (PrevReg && !isLoopCarried(*Phi) &&
1148                (CyclePhi <= CycleSched || OrigMI->isPHI()))
1149         ReplaceReg = PrevReg;
1150       else
1151         ReplaceReg = NewReg;
1152     }
1153     // The scheduled instruction occurs before the scheduled Phi, and the
1154     // Phi is not loop carried.
1155     if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
1156       ReplaceReg = NewReg;
1157     if (StagePhi > StageSched && Phi->isPHI())
1158       ReplaceReg = NewReg;
1159     if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
1160       ReplaceReg = NewReg;
1161     if (ReplaceReg) {
1162       MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
1163       UseOp.setReg(ReplaceReg);
1164     }
1165   }
1166 }
1167 
1168 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
1169   if (!Phi.isPHI())
1170     return false;
1171   int DefCycle = Schedule.getCycle(&Phi);
1172   int DefStage = Schedule.getStage(&Phi);
1173 
1174   unsigned InitVal = 0;
1175   unsigned LoopVal = 0;
1176   getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
1177   MachineInstr *Use = MRI.getVRegDef(LoopVal);
1178   if (!Use || Use->isPHI())
1179     return true;
1180   int LoopCycle = Schedule.getCycle(Use);
1181   int LoopStage = Schedule.getStage(Use);
1182   return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
1183 }
1184 
1185 //===----------------------------------------------------------------------===//
1186 // PeelingModuloScheduleExpander implementation
1187 //===----------------------------------------------------------------------===//
1188 // This is a reimplementation of ModuloScheduleExpander that works by creating
1189 // a fully correct steady-state kernel and peeling off the prolog and epilogs.
1190 //===----------------------------------------------------------------------===//
1191 
1192 namespace {
1193 // Remove any dead phis in MBB. Dead phis either have only one block as input
1194 // (in which case they are the identity) or have no uses.
1195 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
1196                        LiveIntervals *LIS, bool KeepSingleSrcPhi = false) {
1197   bool Changed = true;
1198   while (Changed) {
1199     Changed = false;
1200     for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) {
1201       assert(MI.isPHI());
1202       if (MRI.use_empty(MI.getOperand(0).getReg())) {
1203         if (LIS)
1204           LIS->RemoveMachineInstrFromMaps(MI);
1205         MI.eraseFromParent();
1206         Changed = true;
1207       } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) {
1208         MRI.constrainRegClass(MI.getOperand(1).getReg(),
1209                               MRI.getRegClass(MI.getOperand(0).getReg()));
1210         MRI.replaceRegWith(MI.getOperand(0).getReg(),
1211                            MI.getOperand(1).getReg());
1212         if (LIS)
1213           LIS->RemoveMachineInstrFromMaps(MI);
1214         MI.eraseFromParent();
1215         Changed = true;
1216       }
1217     }
1218   }
1219 }
1220 
1221 /// Rewrites the kernel block in-place to adhere to the given schedule.
1222 /// KernelRewriter holds all of the state required to perform the rewriting.
1223 class KernelRewriter {
1224   ModuloSchedule &S;
1225   MachineBasicBlock *BB;
1226   MachineBasicBlock *PreheaderBB, *ExitBB;
1227   MachineRegisterInfo &MRI;
1228   const TargetInstrInfo *TII;
1229   LiveIntervals *LIS;
1230 
1231   // Map from register class to canonical undef register for that class.
1232   DenseMap<const TargetRegisterClass *, Register> Undefs;
1233   // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
1234   // this map is only used when InitReg is non-undef.
1235   DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
1236   // Map from LoopReg to phi register where the InitReg is undef.
1237   DenseMap<Register, Register> UndefPhis;
1238 
1239   // Reg is used by MI. Return the new register MI should use to adhere to the
1240   // schedule. Insert phis as necessary.
1241   Register remapUse(Register Reg, MachineInstr &MI);
1242   // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
1243   // If InitReg is not given it is chosen arbitrarily. It will either be undef
1244   // or will be chosen so as to share another phi.
1245   Register phi(Register LoopReg, Optional<Register> InitReg = {},
1246                const TargetRegisterClass *RC = nullptr);
1247   // Create an undef register of the given register class.
1248   Register undef(const TargetRegisterClass *RC);
1249 
1250 public:
1251   KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB,
1252                  LiveIntervals *LIS = nullptr);
1253   void rewrite();
1254 };
1255 } // namespace
1256 
1257 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1258                                MachineBasicBlock *LoopBB, LiveIntervals *LIS)
1259     : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()),
1260       ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
1261       TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
1262   PreheaderBB = *BB->pred_begin();
1263   if (PreheaderBB == BB)
1264     PreheaderBB = *std::next(BB->pred_begin());
1265 }
1266 
1267 void KernelRewriter::rewrite() {
1268   // Rearrange the loop to be in schedule order. Note that the schedule may
1269   // contain instructions that are not owned by the loop block (InstrChanges and
1270   // friends), so we gracefully handle unowned instructions and delete any
1271   // instructions that weren't in the schedule.
1272   auto InsertPt = BB->getFirstTerminator();
1273   MachineInstr *FirstMI = nullptr;
1274   for (MachineInstr *MI : S.getInstructions()) {
1275     if (MI->isPHI())
1276       continue;
1277     if (MI->getParent())
1278       MI->removeFromParent();
1279     BB->insert(InsertPt, MI);
1280     if (!FirstMI)
1281       FirstMI = MI;
1282   }
1283   assert(FirstMI && "Failed to find first MI in schedule");
1284 
1285   // At this point all of the scheduled instructions are between FirstMI
1286   // and the end of the block. Kill from the first non-phi to FirstMI.
1287   for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
1288     if (LIS)
1289       LIS->RemoveMachineInstrFromMaps(*I);
1290     (I++)->eraseFromParent();
1291   }
1292 
1293   // Now remap every instruction in the loop.
1294   for (MachineInstr &MI : *BB) {
1295     if (MI.isPHI() || MI.isTerminator())
1296       continue;
1297     for (MachineOperand &MO : MI.uses()) {
1298       if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
1299         continue;
1300       Register Reg = remapUse(MO.getReg(), MI);
1301       MO.setReg(Reg);
1302     }
1303   }
1304   EliminateDeadPhis(BB, MRI, LIS);
1305 
1306   // Ensure a phi exists for all instructions that are either referenced by
1307   // an illegal phi or by an instruction outside the loop. This allows us to
1308   // treat remaps of these values the same as "normal" values that come from
1309   // loop-carried phis.
1310   for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
1311     if (MI->isPHI()) {
1312       Register R = MI->getOperand(0).getReg();
1313       phi(R);
1314       continue;
1315     }
1316 
1317     for (MachineOperand &Def : MI->defs()) {
1318       for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
1319         if (MI.getParent() != BB) {
1320           phi(Def.getReg());
1321           break;
1322         }
1323       }
1324     }
1325   }
1326 }
1327 
1328 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
1329   MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
1330   if (!Producer)
1331     return Reg;
1332 
1333   int ConsumerStage = S.getStage(&MI);
1334   if (!Producer->isPHI()) {
1335     // Non-phi producers are simple to remap. Insert as many phis as the
1336     // difference between the consumer and producer stages.
1337     if (Producer->getParent() != BB)
1338       // Producer was not inside the loop. Use the register as-is.
1339       return Reg;
1340     int ProducerStage = S.getStage(Producer);
1341     assert(ConsumerStage != -1 &&
1342            "In-loop consumer should always be scheduled!");
1343     assert(ConsumerStage >= ProducerStage);
1344     unsigned StageDiff = ConsumerStage - ProducerStage;
1345 
1346     for (unsigned I = 0; I < StageDiff; ++I)
1347       Reg = phi(Reg);
1348     return Reg;
1349   }
1350 
1351   // First, dive through the phi chain to find the defaults for the generated
1352   // phis.
1353   SmallVector<Optional<Register>, 4> Defaults;
1354   Register LoopReg = Reg;
1355   auto LoopProducer = Producer;
1356   while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
1357     LoopReg = getLoopPhiReg(*LoopProducer, BB);
1358     Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
1359     LoopProducer = MRI.getUniqueVRegDef(LoopReg);
1360     assert(LoopProducer);
1361   }
1362   int LoopProducerStage = S.getStage(LoopProducer);
1363 
1364   Optional<Register> IllegalPhiDefault;
1365 
1366   if (LoopProducerStage == -1) {
1367     // Do nothing.
1368   } else if (LoopProducerStage > ConsumerStage) {
1369     // This schedule is only representable if ProducerStage == ConsumerStage+1.
1370     // In addition, Consumer's cycle must be scheduled after Producer in the
1371     // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
1372     // functions.
1373 #ifndef NDEBUG // Silence unused variables in non-asserts mode.
1374     int LoopProducerCycle = S.getCycle(LoopProducer);
1375     int ConsumerCycle = S.getCycle(&MI);
1376 #endif
1377     assert(LoopProducerCycle <= ConsumerCycle);
1378     assert(LoopProducerStage == ConsumerStage + 1);
1379     // Peel off the first phi from Defaults and insert a phi between producer
1380     // and consumer. This phi will not be at the front of the block so we
1381     // consider it illegal. It will only exist during the rewrite process; it
1382     // needs to exist while we peel off prologs because these could take the
1383     // default value. After that we can replace all uses with the loop producer
1384     // value.
1385     IllegalPhiDefault = Defaults.front();
1386     Defaults.erase(Defaults.begin());
1387   } else {
1388     assert(ConsumerStage >= LoopProducerStage);
1389     int StageDiff = ConsumerStage - LoopProducerStage;
1390     if (StageDiff > 0) {
1391       LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()
1392                         << " to " << (Defaults.size() + StageDiff) << "\n");
1393       // If we need more phis than we have defaults for, pad out with undefs for
1394       // the earliest phis, which are at the end of the defaults chain (the
1395       // chain is in reverse order).
1396       Defaults.resize(Defaults.size() + StageDiff, Defaults.empty()
1397                                                        ? Optional<Register>()
1398                                                        : Defaults.back());
1399     }
1400   }
1401 
1402   // Now we know the number of stages to jump back, insert the phi chain.
1403   auto DefaultI = Defaults.rbegin();
1404   while (DefaultI != Defaults.rend())
1405     LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));
1406 
1407   if (IllegalPhiDefault.hasValue()) {
1408     // The consumer optionally consumes LoopProducer in the same iteration
1409     // (because the producer is scheduled at an earlier cycle than the consumer)
1410     // or the initial value. To facilitate this we create an illegal block here
1411     // by embedding a phi in the middle of the block. We will fix this up
1412     // immediately prior to pruning.
1413     auto RC = MRI.getRegClass(Reg);
1414     Register R = MRI.createVirtualRegister(RC);
1415     MachineInstr *IllegalPhi =
1416         BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1417             .addReg(IllegalPhiDefault.getValue())
1418             .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
1419             .addReg(LoopReg)
1420             .addMBB(BB); // Block choice is arbitrary and has no effect.
1421     // Illegal phi should belong to the producer stage so that it can be
1422     // filtered correctly during peeling.
1423     S.setStage(IllegalPhi, LoopProducerStage);
1424     return R;
1425   }
1426 
1427   return LoopReg;
1428 }
1429 
1430 Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg,
1431                              const TargetRegisterClass *RC) {
1432   // If the init register is not undef, try and find an existing phi.
1433   if (InitReg.hasValue()) {
1434     auto I = Phis.find({LoopReg, InitReg.getValue()});
1435     if (I != Phis.end())
1436       return I->second;
1437   } else {
1438     for (auto &KV : Phis) {
1439       if (KV.first.first == LoopReg)
1440         return KV.second;
1441     }
1442   }
1443 
1444   // InitReg is either undef or no existing phi takes InitReg as input. Try and
1445   // find a phi that takes undef as input.
1446   auto I = UndefPhis.find(LoopReg);
1447   if (I != UndefPhis.end()) {
1448     Register R = I->second;
1449     if (!InitReg.hasValue())
1450       // Found a phi taking undef as input, and this input is undef so return
1451       // without any more changes.
1452       return R;
1453     // Found a phi taking undef as input, so rewrite it to take InitReg.
1454     MachineInstr *MI = MRI.getVRegDef(R);
1455     MI->getOperand(1).setReg(InitReg.getValue());
1456     Phis.insert({{LoopReg, InitReg.getValue()}, R});
1457     MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue()));
1458     UndefPhis.erase(I);
1459     return R;
1460   }
1461 
1462   // Failed to find any existing phi to reuse, so create a new one.
1463   if (!RC)
1464     RC = MRI.getRegClass(LoopReg);
1465   Register R = MRI.createVirtualRegister(RC);
1466   if (InitReg.hasValue())
1467     MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1468   BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
1469       .addReg(InitReg.hasValue() ? *InitReg : undef(RC))
1470       .addMBB(PreheaderBB)
1471       .addReg(LoopReg)
1472       .addMBB(BB);
1473   if (!InitReg.hasValue())
1474     UndefPhis[LoopReg] = R;
1475   else
1476     Phis[{LoopReg, *InitReg}] = R;
1477   return R;
1478 }
1479 
1480 Register KernelRewriter::undef(const TargetRegisterClass *RC) {
1481   Register &R = Undefs[RC];
1482   if (R == 0) {
1483     // Create an IMPLICIT_DEF that defines this register if we need it.
1484     // All uses of this should be removed by the time we have finished unrolling
1485     // prologs and epilogs.
1486     R = MRI.createVirtualRegister(RC);
1487     auto *InsertBB = &PreheaderBB->getParent()->front();
1488     BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
1489             TII->get(TargetOpcode::IMPLICIT_DEF), R);
1490   }
1491   return R;
1492 }
1493 
1494 namespace {
1495 /// Describes an operand in the kernel of a pipelined loop. Characteristics of
1496 /// the operand are discovered, such as how many in-loop PHIs it has to jump
1497 /// through and defaults for these phis.
1498 class KernelOperandInfo {
1499   MachineBasicBlock *BB;
1500   MachineRegisterInfo &MRI;
1501   SmallVector<Register, 4> PhiDefaults;
1502   MachineOperand *Source;
1503   MachineOperand *Target;
1504 
1505 public:
1506   KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
1507                     const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
1508       : MRI(MRI) {
1509     Source = MO;
1510     BB = MO->getParent()->getParent();
1511     while (isRegInLoop(MO)) {
1512       MachineInstr *MI = MRI.getVRegDef(MO->getReg());
1513       if (MI->isFullCopy()) {
1514         MO = &MI->getOperand(1);
1515         continue;
1516       }
1517       if (!MI->isPHI())
1518         break;
1519       // If this is an illegal phi, don't count it in distance.
1520       if (IllegalPhis.count(MI)) {
1521         MO = &MI->getOperand(3);
1522         continue;
1523       }
1524 
1525       Register Default = getInitPhiReg(*MI, BB);
1526       MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
1527                                             : &MI->getOperand(3);
1528       PhiDefaults.push_back(Default);
1529     }
1530     Target = MO;
1531   }
1532 
1533   bool operator==(const KernelOperandInfo &Other) const {
1534     return PhiDefaults.size() == Other.PhiDefaults.size();
1535   }
1536 
1537   void print(raw_ostream &OS) const {
1538     OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
1539        << *Source->getParent();
1540   }
1541 
1542 private:
1543   bool isRegInLoop(MachineOperand *MO) {
1544     return MO->isReg() && MO->getReg().isVirtual() &&
1545            MRI.getVRegDef(MO->getReg())->getParent() == BB;
1546   }
1547 };
1548 } // namespace
1549 
1550 MachineBasicBlock *
1551 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) {
1552   MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII);
1553   if (LPD == LPD_Front)
1554     PeeledFront.push_back(NewBB);
1555   else
1556     PeeledBack.push_front(NewBB);
1557   for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator();
1558        ++I, ++NI) {
1559     CanonicalMIs[&*I] = &*I;
1560     CanonicalMIs[&*NI] = &*I;
1561     BlockMIs[{NewBB, &*I}] = &*NI;
1562     BlockMIs[{BB, &*I}] = &*I;
1563   }
1564   return NewBB;
1565 }
1566 
1567 void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB,
1568                                                        int MinStage) {
1569   for (auto I = MB->getFirstInstrTerminator()->getReverseIterator();
1570        I != std::next(MB->getFirstNonPHI()->getReverseIterator());) {
1571     MachineInstr *MI = &*I++;
1572     int Stage = getStage(MI);
1573     if (Stage == -1 || Stage >= MinStage)
1574       continue;
1575 
1576     for (MachineOperand &DefMO : MI->defs()) {
1577       SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1578       for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1579         // Only PHIs can use values from this block by construction.
1580         // Match with the equivalent PHI in B.
1581         assert(UseMI.isPHI());
1582         Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1583                                                MI->getParent());
1584         Subs.emplace_back(&UseMI, Reg);
1585       }
1586       for (auto &Sub : Subs)
1587         Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1588                                       *MRI.getTargetRegisterInfo());
1589     }
1590     if (LIS)
1591       LIS->RemoveMachineInstrFromMaps(*MI);
1592     MI->eraseFromParent();
1593   }
1594 }
1595 
1596 void PeelingModuloScheduleExpander::moveStageBetweenBlocks(
1597     MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) {
1598   auto InsertPt = DestBB->getFirstNonPHI();
1599   DenseMap<Register, Register> Remaps;
1600   for (MachineInstr &MI : llvm::make_early_inc_range(
1601            llvm::make_range(SourceBB->getFirstNonPHI(), SourceBB->end()))) {
1602     if (MI.isPHI()) {
1603       // This is an illegal PHI. If we move any instructions using an illegal
1604       // PHI, we need to create a legal Phi.
1605       if (getStage(&MI) != Stage) {
1606         // The legal Phi is not necessary if the illegal phi's stage
1607         // is being moved.
1608         Register PhiR = MI.getOperand(0).getReg();
1609         auto RC = MRI.getRegClass(PhiR);
1610         Register NR = MRI.createVirtualRegister(RC);
1611         MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(),
1612                                    DebugLoc(), TII->get(TargetOpcode::PHI), NR)
1613                                .addReg(PhiR)
1614                                .addMBB(SourceBB);
1615         BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI;
1616         CanonicalMIs[NI] = CanonicalMIs[&MI];
1617         Remaps[PhiR] = NR;
1618       }
1619     }
1620     if (getStage(&MI) != Stage)
1621       continue;
1622     MI.removeFromParent();
1623     DestBB->insert(InsertPt, &MI);
1624     auto *KernelMI = CanonicalMIs[&MI];
1625     BlockMIs[{DestBB, KernelMI}] = &MI;
1626     BlockMIs.erase({SourceBB, KernelMI});
1627   }
1628   SmallVector<MachineInstr *, 4> PhiToDelete;
1629   for (MachineInstr &MI : DestBB->phis()) {
1630     assert(MI.getNumOperands() == 3);
1631     MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg());
1632     // If the instruction referenced by the phi is moved inside the block
1633     // we don't need the phi anymore.
1634     if (getStage(Def) == Stage) {
1635       Register PhiReg = MI.getOperand(0).getReg();
1636       assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1);
1637       MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
1638       MI.getOperand(0).setReg(PhiReg);
1639       PhiToDelete.push_back(&MI);
1640     }
1641   }
1642   for (auto *P : PhiToDelete)
1643     P->eraseFromParent();
1644   InsertPt = DestBB->getFirstNonPHI();
1645   // Helper to clone Phi instructions into the destination block. We clone Phi
1646   // greedily to avoid combinatorial explosion of Phi instructions.
1647   auto clonePhi = [&](MachineInstr *Phi) {
1648     MachineInstr *NewMI = MF.CloneMachineInstr(Phi);
1649     DestBB->insert(InsertPt, NewMI);
1650     Register OrigR = Phi->getOperand(0).getReg();
1651     Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR));
1652     NewMI->getOperand(0).setReg(R);
1653     NewMI->getOperand(1).setReg(OrigR);
1654     NewMI->getOperand(2).setMBB(*DestBB->pred_begin());
1655     Remaps[OrigR] = R;
1656     CanonicalMIs[NewMI] = CanonicalMIs[Phi];
1657     BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI;
1658     PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi];
1659     return R;
1660   };
1661   for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) {
1662     for (MachineOperand &MO : I->uses()) {
1663       if (!MO.isReg())
1664         continue;
1665       if (Remaps.count(MO.getReg()))
1666         MO.setReg(Remaps[MO.getReg()]);
1667       else {
1668         // If we are using a phi from the source block we need to add a new phi
1669         // pointing to the old one.
1670         MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg());
1671         if (Use && Use->isPHI() && Use->getParent() == SourceBB) {
1672           Register R = clonePhi(Use);
1673           MO.setReg(R);
1674         }
1675       }
1676     }
1677   }
1678 }
1679 
1680 Register
1681 PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi,
1682                                                   MachineInstr *Phi) {
1683   unsigned distance = PhiNodeLoopIteration[Phi];
1684   MachineInstr *CanonicalUse = CanonicalPhi;
1685   Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg();
1686   for (unsigned I = 0; I < distance; ++I) {
1687     assert(CanonicalUse->isPHI());
1688     assert(CanonicalUse->getNumOperands() == 5);
1689     unsigned LoopRegIdx = 3, InitRegIdx = 1;
1690     if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent())
1691       std::swap(LoopRegIdx, InitRegIdx);
1692     CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg();
1693     CanonicalUse = MRI.getVRegDef(CanonicalUseReg);
1694   }
1695   return CanonicalUseReg;
1696 }
1697 
1698 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() {
1699   BitVector LS(Schedule.getNumStages(), true);
1700   BitVector AS(Schedule.getNumStages(), true);
1701   LiveStages[BB] = LS;
1702   AvailableStages[BB] = AS;
1703 
1704   // Peel out the prologs.
1705   LS.reset();
1706   for (int I = 0; I < Schedule.getNumStages() - 1; ++I) {
1707     LS[I] = true;
1708     Prologs.push_back(peelKernel(LPD_Front));
1709     LiveStages[Prologs.back()] = LS;
1710     AvailableStages[Prologs.back()] = LS;
1711   }
1712 
1713   // Create a block that will end up as the new loop exiting block (dominated by
1714   // all prologs and epilogs). It will only contain PHIs, in the same order as
1715   // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property
1716   // that the exiting block is a (sub) clone of BB. This in turn gives us the
1717   // property that any value deffed in BB but used outside of BB is used by a
1718   // PHI in the exiting block.
1719   MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock();
1720   EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1721   // Push out the epilogs, again in reverse order.
1722   // We can't assume anything about the minumum loop trip count at this point,
1723   // so emit a fairly complex epilog.
1724 
1725   // We first peel number of stages minus one epilogue. Then we remove dead
1726   // stages and reorder instructions based on their stage. If we have 3 stages
1727   // we generate first:
1728   // E0[3, 2, 1]
1729   // E1[3', 2']
1730   // E2[3'']
1731   // And then we move instructions based on their stages to have:
1732   // E0[3]
1733   // E1[2, 3']
1734   // E2[1, 2', 3'']
1735   // The transformation is legal because we only move instructions past
1736   // instructions of a previous loop iteration.
1737   for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) {
1738     Epilogs.push_back(peelKernel(LPD_Back));
1739     MachineBasicBlock *B = Epilogs.back();
1740     filterInstructions(B, Schedule.getNumStages() - I);
1741     // Keep track at which iteration each phi belongs to. We need it to know
1742     // what version of the variable to use during prologue/epilogue stitching.
1743     EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1744     for (MachineInstr &Phi : B->phis())
1745       PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I;
1746   }
1747   for (size_t I = 0; I < Epilogs.size(); I++) {
1748     LS.reset();
1749     for (size_t J = I; J < Epilogs.size(); J++) {
1750       int Iteration = J;
1751       unsigned Stage = Schedule.getNumStages() - 1 + I - J;
1752       // Move stage one block at a time so that Phi nodes are updated correctly.
1753       for (size_t K = Iteration; K > I; K--)
1754         moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage);
1755       LS[Stage] = true;
1756     }
1757     LiveStages[Epilogs[I]] = LS;
1758     AvailableStages[Epilogs[I]] = AS;
1759   }
1760 
1761   // Now we've defined all the prolog and epilog blocks as a fallthrough
1762   // sequence, add the edges that will be followed if the loop trip count is
1763   // lower than the number of stages (connecting prologs directly with epilogs).
1764   auto PI = Prologs.begin();
1765   auto EI = Epilogs.begin();
1766   assert(Prologs.size() == Epilogs.size());
1767   for (; PI != Prologs.end(); ++PI, ++EI) {
1768     MachineBasicBlock *Pred = *(*EI)->pred_begin();
1769     (*PI)->addSuccessor(*EI);
1770     for (MachineInstr &MI : (*EI)->phis()) {
1771       Register Reg = MI.getOperand(1).getReg();
1772       MachineInstr *Use = MRI.getUniqueVRegDef(Reg);
1773       if (Use && Use->getParent() == Pred) {
1774         MachineInstr *CanonicalUse = CanonicalMIs[Use];
1775         if (CanonicalUse->isPHI()) {
1776           // If the use comes from a phi we need to skip as many phi as the
1777           // distance between the epilogue and the kernel. Trace through the phi
1778           // chain to find the right value.
1779           Reg = getPhiCanonicalReg(CanonicalUse, Use);
1780         }
1781         Reg = getEquivalentRegisterIn(Reg, *PI);
1782       }
1783       MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false));
1784       MI.addOperand(MachineOperand::CreateMBB(*PI));
1785     }
1786   }
1787 
1788   // Create a list of all blocks in order.
1789   SmallVector<MachineBasicBlock *, 8> Blocks;
1790   llvm::copy(PeeledFront, std::back_inserter(Blocks));
1791   Blocks.push_back(BB);
1792   llvm::copy(PeeledBack, std::back_inserter(Blocks));
1793 
1794   // Iterate in reverse order over all instructions, remapping as we go.
1795   for (MachineBasicBlock *B : reverse(Blocks)) {
1796     for (auto I = B->getFirstInstrTerminator()->getReverseIterator();
1797          I != std::next(B->getFirstNonPHI()->getReverseIterator());) {
1798       MachineInstr *MI = &*I++;
1799       rewriteUsesOf(MI);
1800     }
1801   }
1802   for (auto *MI : IllegalPhisToDelete) {
1803     if (LIS)
1804       LIS->RemoveMachineInstrFromMaps(*MI);
1805     MI->eraseFromParent();
1806   }
1807   IllegalPhisToDelete.clear();
1808 
1809   // Now all remapping has been done, we're free to optimize the generated code.
1810   for (MachineBasicBlock *B : reverse(Blocks))
1811     EliminateDeadPhis(B, MRI, LIS);
1812   EliminateDeadPhis(ExitingBB, MRI, LIS);
1813 }
1814 
1815 MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() {
1816   MachineFunction &MF = *BB->getParent();
1817   MachineBasicBlock *Exit = *BB->succ_begin();
1818   if (Exit == BB)
1819     Exit = *std::next(BB->succ_begin());
1820 
1821   MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
1822   MF.insert(std::next(BB->getIterator()), NewBB);
1823 
1824   // Clone all phis in BB into NewBB and rewrite.
1825   for (MachineInstr &MI : BB->phis()) {
1826     auto RC = MRI.getRegClass(MI.getOperand(0).getReg());
1827     Register OldR = MI.getOperand(3).getReg();
1828     Register R = MRI.createVirtualRegister(RC);
1829     SmallVector<MachineInstr *, 4> Uses;
1830     for (MachineInstr &Use : MRI.use_instructions(OldR))
1831       if (Use.getParent() != BB)
1832         Uses.push_back(&Use);
1833     for (MachineInstr *Use : Uses)
1834       Use->substituteRegister(OldR, R, /*SubIdx=*/0,
1835                               *MRI.getTargetRegisterInfo());
1836     MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1837         .addReg(OldR)
1838         .addMBB(BB);
1839     BlockMIs[{NewBB, &MI}] = NI;
1840     CanonicalMIs[NI] = &MI;
1841   }
1842   BB->replaceSuccessor(Exit, NewBB);
1843   Exit->replacePhiUsesWith(BB, NewBB);
1844   NewBB->addSuccessor(Exit);
1845 
1846   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1847   SmallVector<MachineOperand, 4> Cond;
1848   bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond);
1849   (void)CanAnalyzeBr;
1850   assert(CanAnalyzeBr && "Must be able to analyze the loop branch!");
1851   TII->removeBranch(*BB);
1852   TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB,
1853                     Cond, DebugLoc());
1854   TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc());
1855   return NewBB;
1856 }
1857 
1858 Register
1859 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg,
1860                                                        MachineBasicBlock *BB) {
1861   MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
1862   unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg);
1863   return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg();
1864 }
1865 
1866 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) {
1867   if (MI->isPHI()) {
1868     // This is an illegal PHI. The loop-carried (desired) value is operand 3,
1869     // and it is produced by this block.
1870     Register PhiR = MI->getOperand(0).getReg();
1871     Register R = MI->getOperand(3).getReg();
1872     int RMIStage = getStage(MRI.getUniqueVRegDef(R));
1873     if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage))
1874       R = MI->getOperand(1).getReg();
1875     MRI.setRegClass(R, MRI.getRegClass(PhiR));
1876     MRI.replaceRegWith(PhiR, R);
1877     // Postpone deleting the Phi as it may be referenced by BlockMIs and used
1878     // later to figure out how to remap registers.
1879     MI->getOperand(0).setReg(PhiR);
1880     IllegalPhisToDelete.push_back(MI);
1881     return;
1882   }
1883 
1884   int Stage = getStage(MI);
1885   if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 ||
1886       LiveStages[MI->getParent()].test(Stage))
1887     // Instruction is live, no rewriting to do.
1888     return;
1889 
1890   for (MachineOperand &DefMO : MI->defs()) {
1891     SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1892     for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1893       // Only PHIs can use values from this block by construction.
1894       // Match with the equivalent PHI in B.
1895       assert(UseMI.isPHI());
1896       Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1897                                              MI->getParent());
1898       Subs.emplace_back(&UseMI, Reg);
1899     }
1900     for (auto &Sub : Subs)
1901       Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1902                                     *MRI.getTargetRegisterInfo());
1903   }
1904   if (LIS)
1905     LIS->RemoveMachineInstrFromMaps(*MI);
1906   MI->eraseFromParent();
1907 }
1908 
1909 void PeelingModuloScheduleExpander::fixupBranches() {
1910   // Work outwards from the kernel.
1911   bool KernelDisposed = false;
1912   int TC = Schedule.getNumStages() - 1;
1913   for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend();
1914        ++PI, ++EI, --TC) {
1915     MachineBasicBlock *Prolog = *PI;
1916     MachineBasicBlock *Fallthrough = *Prolog->succ_begin();
1917     MachineBasicBlock *Epilog = *EI;
1918     SmallVector<MachineOperand, 4> Cond;
1919     TII->removeBranch(*Prolog);
1920     Optional<bool> StaticallyGreater =
1921         LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond);
1922     if (!StaticallyGreater.hasValue()) {
1923       LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n");
1924       // Dynamically branch based on Cond.
1925       TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc());
1926     } else if (*StaticallyGreater == false) {
1927       LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n");
1928       // Prolog never falls through; branch to epilog and orphan interior
1929       // blocks. Leave it to unreachable-block-elim to clean up.
1930       Prolog->removeSuccessor(Fallthrough);
1931       for (MachineInstr &P : Fallthrough->phis()) {
1932         P.RemoveOperand(2);
1933         P.RemoveOperand(1);
1934       }
1935       TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc());
1936       KernelDisposed = true;
1937     } else {
1938       LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n");
1939       // Prolog always falls through; remove incoming values in epilog.
1940       Prolog->removeSuccessor(Epilog);
1941       for (MachineInstr &P : Epilog->phis()) {
1942         P.RemoveOperand(4);
1943         P.RemoveOperand(3);
1944       }
1945     }
1946   }
1947 
1948   if (!KernelDisposed) {
1949     LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1));
1950     LoopInfo->setPreheader(Prologs.back());
1951   } else {
1952     LoopInfo->disposed();
1953   }
1954 }
1955 
1956 void PeelingModuloScheduleExpander::rewriteKernel() {
1957   KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
1958   KR.rewrite();
1959 }
1960 
1961 void PeelingModuloScheduleExpander::expand() {
1962   BB = Schedule.getLoop()->getTopBlock();
1963   Preheader = Schedule.getLoop()->getLoopPreheader();
1964   LLVM_DEBUG(Schedule.dump());
1965   LoopInfo = TII->analyzeLoopForPipelining(BB);
1966   assert(LoopInfo);
1967 
1968   rewriteKernel();
1969   peelPrologAndEpilogs();
1970   fixupBranches();
1971 }
1972 
1973 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
1974   BB = Schedule.getLoop()->getTopBlock();
1975   Preheader = Schedule.getLoop()->getLoopPreheader();
1976 
1977   // Dump the schedule before we invalidate and remap all its instructions.
1978   // Stash it in a string so we can print it if we found an error.
1979   std::string ScheduleDump;
1980   raw_string_ostream OS(ScheduleDump);
1981   Schedule.print(OS);
1982   OS.flush();
1983 
1984   // First, run the normal ModuleScheduleExpander. We don't support any
1985   // InstrChanges.
1986   assert(LIS && "Requires LiveIntervals!");
1987   ModuloScheduleExpander MSE(MF, Schedule, *LIS,
1988                              ModuloScheduleExpander::InstrChangesTy());
1989   MSE.expand();
1990   MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
1991   if (!ExpandedKernel) {
1992     // The expander optimized away the kernel. We can't do any useful checking.
1993     MSE.cleanup();
1994     return;
1995   }
1996   // Before running the KernelRewriter, re-add BB into the CFG.
1997   Preheader->addSuccessor(BB);
1998 
1999   // Now run the new expansion algorithm.
2000   KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
2001   KR.rewrite();
2002   peelPrologAndEpilogs();
2003 
2004   // Collect all illegal phis that the new algorithm created. We'll give these
2005   // to KernelOperandInfo.
2006   SmallPtrSet<MachineInstr *, 4> IllegalPhis;
2007   for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
2008     if (NI->isPHI())
2009       IllegalPhis.insert(&*NI);
2010   }
2011 
2012   // Co-iterate across both kernels. We expect them to be identical apart from
2013   // phis and full COPYs (we look through both).
2014   SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
2015   auto OI = ExpandedKernel->begin();
2016   auto NI = BB->begin();
2017   for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
2018     while (OI->isPHI() || OI->isFullCopy())
2019       ++OI;
2020     while (NI->isPHI() || NI->isFullCopy())
2021       ++NI;
2022     assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!");
2023     // Analyze every operand separately.
2024     for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
2025          OOpI != OI->operands_end(); ++OOpI, ++NOpI)
2026       KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
2027                         KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
2028   }
2029 
2030   bool Failed = false;
2031   for (auto &OldAndNew : KOIs) {
2032     if (OldAndNew.first == OldAndNew.second)
2033       continue;
2034     Failed = true;
2035     errs() << "Modulo kernel validation error: [\n";
2036     errs() << " [golden] ";
2037     OldAndNew.first.print(errs());
2038     errs() << "          ";
2039     OldAndNew.second.print(errs());
2040     errs() << "]\n";
2041   }
2042 
2043   if (Failed) {
2044     errs() << "Golden reference kernel:\n";
2045     ExpandedKernel->print(errs());
2046     errs() << "New kernel:\n";
2047     BB->print(errs());
2048     errs() << ScheduleDump;
2049     report_fatal_error(
2050         "Modulo kernel validation (-pipeliner-experimental-cg) failed");
2051   }
2052 
2053   // Cleanup by removing BB from the CFG again as the original
2054   // ModuloScheduleExpander intended.
2055   Preheader->removeSuccessor(BB);
2056   MSE.cleanup();
2057 }
2058 
2059 //===----------------------------------------------------------------------===//
2060 // ModuloScheduleTestPass implementation
2061 //===----------------------------------------------------------------------===//
2062 // This pass constructs a ModuloSchedule from its module and runs
2063 // ModuloScheduleExpander.
2064 //
2065 // The module is expected to contain a single-block analyzable loop.
2066 // The total order of instructions is taken from the loop as-is.
2067 // Instructions are expected to be annotated with a PostInstrSymbol.
2068 // This PostInstrSymbol must have the following format:
2069 //  "Stage=%d Cycle=%d".
2070 //===----------------------------------------------------------------------===//
2071 
2072 namespace {
2073 class ModuloScheduleTest : public MachineFunctionPass {
2074 public:
2075   static char ID;
2076 
2077   ModuloScheduleTest() : MachineFunctionPass(ID) {
2078     initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
2079   }
2080 
2081   bool runOnMachineFunction(MachineFunction &MF) override;
2082   void runOnLoop(MachineFunction &MF, MachineLoop &L);
2083 
2084   void getAnalysisUsage(AnalysisUsage &AU) const override {
2085     AU.addRequired<MachineLoopInfo>();
2086     AU.addRequired<LiveIntervals>();
2087     MachineFunctionPass::getAnalysisUsage(AU);
2088   }
2089 };
2090 } // namespace
2091 
2092 char ModuloScheduleTest::ID = 0;
2093 
2094 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",
2095                       "Modulo Schedule test pass", false, false)
2096 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
2097 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
2098 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",
2099                     "Modulo Schedule test pass", false, false)
2100 
2101 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
2102   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
2103   for (auto *L : MLI) {
2104     if (L->getTopBlock() != L->getBottomBlock())
2105       continue;
2106     runOnLoop(MF, *L);
2107     return false;
2108   }
2109   return false;
2110 }
2111 
2112 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
2113   std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
2114   std::pair<StringRef, StringRef> StageTokenAndValue =
2115       getToken(StageAndCycle.first, "-");
2116   std::pair<StringRef, StringRef> CycleTokenAndValue =
2117       getToken(StageAndCycle.second, "-");
2118   if (StageTokenAndValue.first != "Stage" ||
2119       CycleTokenAndValue.first != "_Cycle") {
2120     llvm_unreachable(
2121         "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
2122     return;
2123   }
2124 
2125   StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
2126   CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);
2127 
2128   dbgs() << "  Stage=" << Stage << ", Cycle=" << Cycle << "\n";
2129 }
2130 
2131 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
2132   LiveIntervals &LIS = getAnalysis<LiveIntervals>();
2133   MachineBasicBlock *BB = L.getTopBlock();
2134   dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";
2135 
2136   DenseMap<MachineInstr *, int> Cycle, Stage;
2137   std::vector<MachineInstr *> Instrs;
2138   for (MachineInstr &MI : *BB) {
2139     if (MI.isTerminator())
2140       continue;
2141     Instrs.push_back(&MI);
2142     if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
2143       dbgs() << "Parsing post-instr symbol for " << MI;
2144       parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
2145     }
2146   }
2147 
2148   ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
2149                     std::move(Stage));
2150   ModuloScheduleExpander MSE(
2151       MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
2152   MSE.expand();
2153   MSE.cleanup();
2154 }
2155 
2156 //===----------------------------------------------------------------------===//
2157 // ModuloScheduleTestAnnotater implementation
2158 //===----------------------------------------------------------------------===//
2159 
2160 void ModuloScheduleTestAnnotater::annotate() {
2161   for (MachineInstr *MI : S.getInstructions()) {
2162     SmallVector<char, 16> SV;
2163     raw_svector_ostream OS(SV);
2164     OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
2165     MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
2166     MI->setPostInstrSymbol(MF, Sym);
2167   }
2168 }
2169