xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/ModuloSchedule.cpp (revision 6463b6b59152fb1695bbe0de78f6e2675c5a765a)
1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/CodeGen/ModuloSchedule.h"
10 #include "llvm/ADT/StringExtras.h"
11 #include "llvm/Analysis/MemoryLocation.h"
12 #include "llvm/CodeGen/LiveIntervals.h"
13 #include "llvm/CodeGen/MachineInstrBuilder.h"
14 #include "llvm/CodeGen/MachineLoopInfo.h"
15 #include "llvm/CodeGen/MachineRegisterInfo.h"
16 #include "llvm/InitializePasses.h"
17 #include "llvm/MC/MCContext.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/raw_ostream.h"
21 
22 #define DEBUG_TYPE "pipeliner"
23 using namespace llvm;
24 
25 static cl::opt<bool> SwapBranchTargetsMVE(
26     "pipeliner-swap-branch-targets-mve", cl::Hidden, cl::init(false),
27     cl::desc("Swap target blocks of a conditional branch for MVE expander"));
28 
29 void ModuloSchedule::print(raw_ostream &OS) {
30   for (MachineInstr *MI : ScheduledInstrs)
31     OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
32 }
33 
34 //===----------------------------------------------------------------------===//
35 // ModuloScheduleExpander implementation
36 //===----------------------------------------------------------------------===//
37 
38 /// Return the register values for  the operands of a Phi instruction.
39 /// This function assume the instruction is a Phi.
40 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
41                        unsigned &InitVal, unsigned &LoopVal) {
42   assert(Phi.isPHI() && "Expecting a Phi.");
43 
44   InitVal = 0;
45   LoopVal = 0;
46   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
47     if (Phi.getOperand(i + 1).getMBB() != Loop)
48       InitVal = Phi.getOperand(i).getReg();
49     else
50       LoopVal = Phi.getOperand(i).getReg();
51 
52   assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
53 }
54 
55 /// Return the Phi register value that comes from the incoming block.
56 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
57   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
58     if (Phi.getOperand(i + 1).getMBB() != LoopBB)
59       return Phi.getOperand(i).getReg();
60   return 0;
61 }
62 
63 /// Return the Phi register value that comes the loop block.
64 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
65   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
66     if (Phi.getOperand(i + 1).getMBB() == LoopBB)
67       return Phi.getOperand(i).getReg();
68   return 0;
69 }
70 
71 void ModuloScheduleExpander::expand() {
72   BB = Schedule.getLoop()->getTopBlock();
73   Preheader = *BB->pred_begin();
74   if (Preheader == BB)
75     Preheader = *std::next(BB->pred_begin());
76 
77   // Iterate over the definitions in each instruction, and compute the
78   // stage difference for each use.  Keep the maximum value.
79   for (MachineInstr *MI : Schedule.getInstructions()) {
80     int DefStage = Schedule.getStage(MI);
81     for (const MachineOperand &Op : MI->all_defs()) {
82       Register Reg = Op.getReg();
83       unsigned MaxDiff = 0;
84       bool PhiIsSwapped = false;
85       for (MachineOperand &UseOp : MRI.use_operands(Reg)) {
86         MachineInstr *UseMI = UseOp.getParent();
87         int UseStage = Schedule.getStage(UseMI);
88         unsigned Diff = 0;
89         if (UseStage != -1 && UseStage >= DefStage)
90           Diff = UseStage - DefStage;
91         if (MI->isPHI()) {
92           if (isLoopCarried(*MI))
93             ++Diff;
94           else
95             PhiIsSwapped = true;
96         }
97         MaxDiff = std::max(Diff, MaxDiff);
98       }
99       RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
100     }
101   }
102 
103   generatePipelinedLoop();
104 }
105 
106 void ModuloScheduleExpander::generatePipelinedLoop() {
107   LoopInfo = TII->analyzeLoopForPipelining(BB);
108   assert(LoopInfo && "Must be able to analyze loop!");
109 
110   // Create a new basic block for the kernel and add it to the CFG.
111   MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
112 
113   unsigned MaxStageCount = Schedule.getNumStages() - 1;
114 
115   // Remember the registers that are used in different stages. The index is
116   // the iteration, or stage, that the instruction is scheduled in.  This is
117   // a map between register names in the original block and the names created
118   // in each stage of the pipelined loop.
119   ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
120 
121   // The renaming destination by Phis for the registers across stages.
122   // This map is updated during Phis generation to point to the most recent
123   // renaming destination.
124   ValueMapTy *VRMapPhi = new ValueMapTy[(MaxStageCount + 1) * 2];
125 
126   InstrMapTy InstrMap;
127 
128   SmallVector<MachineBasicBlock *, 4> PrologBBs;
129 
130   // Generate the prolog instructions that set up the pipeline.
131   generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
132   MF.insert(BB->getIterator(), KernelBB);
133   LIS.insertMBBInMaps(KernelBB);
134 
135   // Rearrange the instructions to generate the new, pipelined loop,
136   // and update register names as needed.
137   for (MachineInstr *CI : Schedule.getInstructions()) {
138     if (CI->isPHI())
139       continue;
140     unsigned StageNum = Schedule.getStage(CI);
141     MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
142     updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
143     KernelBB->push_back(NewMI);
144     InstrMap[NewMI] = CI;
145   }
146 
147   // Copy any terminator instructions to the new kernel, and update
148   // names as needed.
149   for (MachineInstr &MI : BB->terminators()) {
150     MachineInstr *NewMI = MF.CloneMachineInstr(&MI);
151     updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
152     KernelBB->push_back(NewMI);
153     InstrMap[NewMI] = &MI;
154   }
155 
156   NewKernel = KernelBB;
157   KernelBB->transferSuccessors(BB);
158   KernelBB->replaceSuccessor(BB, KernelBB);
159 
160   generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
161                        InstrMap, MaxStageCount, MaxStageCount, false);
162   generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, VRMapPhi,
163                InstrMap, MaxStageCount, MaxStageCount, false);
164 
165   LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
166 
167   SmallVector<MachineBasicBlock *, 4> EpilogBBs;
168   // Generate the epilog instructions to complete the pipeline.
169   generateEpilog(MaxStageCount, KernelBB, BB, VRMap, VRMapPhi, EpilogBBs,
170                  PrologBBs);
171 
172   // We need this step because the register allocation doesn't handle some
173   // situations well, so we insert copies to help out.
174   splitLifetimes(KernelBB, EpilogBBs);
175 
176   // Remove dead instructions due to loop induction variables.
177   removeDeadInstructions(KernelBB, EpilogBBs);
178 
179   // Add branches between prolog and epilog blocks.
180   addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
181 
182   delete[] VRMap;
183   delete[] VRMapPhi;
184 }
185 
186 void ModuloScheduleExpander::cleanup() {
187   // Remove the original loop since it's no longer referenced.
188   for (auto &I : *BB)
189     LIS.RemoveMachineInstrFromMaps(I);
190   BB->clear();
191   BB->eraseFromParent();
192 }
193 
194 /// Generate the pipeline prolog code.
195 void ModuloScheduleExpander::generateProlog(unsigned LastStage,
196                                             MachineBasicBlock *KernelBB,
197                                             ValueMapTy *VRMap,
198                                             MBBVectorTy &PrologBBs) {
199   MachineBasicBlock *PredBB = Preheader;
200   InstrMapTy InstrMap;
201 
202   // Generate a basic block for each stage, not including the last stage,
203   // which will be generated in the kernel. Each basic block may contain
204   // instructions from multiple stages/iterations.
205   for (unsigned i = 0; i < LastStage; ++i) {
206     // Create and insert the prolog basic block prior to the original loop
207     // basic block.  The original loop is removed later.
208     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
209     PrologBBs.push_back(NewBB);
210     MF.insert(BB->getIterator(), NewBB);
211     NewBB->transferSuccessors(PredBB);
212     PredBB->addSuccessor(NewBB);
213     PredBB = NewBB;
214     LIS.insertMBBInMaps(NewBB);
215 
216     // Generate instructions for each appropriate stage. Process instructions
217     // in original program order.
218     for (int StageNum = i; StageNum >= 0; --StageNum) {
219       for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
220                                        BBE = BB->getFirstTerminator();
221            BBI != BBE; ++BBI) {
222         if (Schedule.getStage(&*BBI) == StageNum) {
223           if (BBI->isPHI())
224             continue;
225           MachineInstr *NewMI =
226               cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
227           updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
228           NewBB->push_back(NewMI);
229           InstrMap[NewMI] = &*BBI;
230         }
231       }
232     }
233     rewritePhiValues(NewBB, i, VRMap, InstrMap);
234     LLVM_DEBUG({
235       dbgs() << "prolog:\n";
236       NewBB->dump();
237     });
238   }
239 
240   PredBB->replaceSuccessor(BB, KernelBB);
241 
242   // Check if we need to remove the branch from the preheader to the original
243   // loop, and replace it with a branch to the new loop.
244   unsigned numBranches = TII->removeBranch(*Preheader);
245   if (numBranches) {
246     SmallVector<MachineOperand, 0> Cond;
247     TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
248   }
249 }
250 
251 /// Generate the pipeline epilog code. The epilog code finishes the iterations
252 /// that were started in either the prolog or the kernel.  We create a basic
253 /// block for each stage that needs to complete.
254 void ModuloScheduleExpander::generateEpilog(
255     unsigned LastStage, MachineBasicBlock *KernelBB, MachineBasicBlock *OrigBB,
256     ValueMapTy *VRMap, ValueMapTy *VRMapPhi, MBBVectorTy &EpilogBBs,
257     MBBVectorTy &PrologBBs) {
258   // We need to change the branch from the kernel to the first epilog block, so
259   // this call to analyze branch uses the kernel rather than the original BB.
260   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
261   SmallVector<MachineOperand, 4> Cond;
262   bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
263   assert(!checkBranch && "generateEpilog must be able to analyze the branch");
264   if (checkBranch)
265     return;
266 
267   MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
268   if (*LoopExitI == KernelBB)
269     ++LoopExitI;
270   assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
271   MachineBasicBlock *LoopExitBB = *LoopExitI;
272 
273   MachineBasicBlock *PredBB = KernelBB;
274   MachineBasicBlock *EpilogStart = LoopExitBB;
275   InstrMapTy InstrMap;
276 
277   // Generate a basic block for each stage, not including the last stage,
278   // which was generated for the kernel.  Each basic block may contain
279   // instructions from multiple stages/iterations.
280   int EpilogStage = LastStage + 1;
281   for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
282     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
283     EpilogBBs.push_back(NewBB);
284     MF.insert(BB->getIterator(), NewBB);
285 
286     PredBB->replaceSuccessor(LoopExitBB, NewBB);
287     NewBB->addSuccessor(LoopExitBB);
288     LIS.insertMBBInMaps(NewBB);
289 
290     if (EpilogStart == LoopExitBB)
291       EpilogStart = NewBB;
292 
293     // Add instructions to the epilog depending on the current block.
294     // Process instructions in original program order.
295     for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
296       for (auto &BBI : *BB) {
297         if (BBI.isPHI())
298           continue;
299         MachineInstr *In = &BBI;
300         if ((unsigned)Schedule.getStage(In) == StageNum) {
301           // Instructions with memoperands in the epilog are updated with
302           // conservative values.
303           MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
304           updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
305           NewBB->push_back(NewMI);
306           InstrMap[NewMI] = In;
307         }
308       }
309     }
310     generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
311                          InstrMap, LastStage, EpilogStage, i == 1);
312     generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, VRMapPhi,
313                  InstrMap, LastStage, EpilogStage, i == 1);
314     PredBB = NewBB;
315 
316     LLVM_DEBUG({
317       dbgs() << "epilog:\n";
318       NewBB->dump();
319     });
320   }
321 
322   // Fix any Phi nodes in the loop exit block.
323   LoopExitBB->replacePhiUsesWith(BB, PredBB);
324 
325   // Create a branch to the new epilog from the kernel.
326   // Remove the original branch and add a new branch to the epilog.
327   TII->removeBranch(*KernelBB);
328   assert((OrigBB == TBB || OrigBB == FBB) &&
329          "Unable to determine looping branch direction");
330   if (OrigBB != TBB)
331     TII->insertBranch(*KernelBB, EpilogStart, KernelBB, Cond, DebugLoc());
332   else
333     TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
334   // Add a branch to the loop exit.
335   if (EpilogBBs.size() > 0) {
336     MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
337     SmallVector<MachineOperand, 4> Cond1;
338     TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
339   }
340 }
341 
342 /// Replace all uses of FromReg that appear outside the specified
343 /// basic block with ToReg.
344 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
345                                     MachineBasicBlock *MBB,
346                                     MachineRegisterInfo &MRI,
347                                     LiveIntervals &LIS) {
348   for (MachineOperand &O :
349        llvm::make_early_inc_range(MRI.use_operands(FromReg)))
350     if (O.getParent()->getParent() != MBB)
351       O.setReg(ToReg);
352   if (!LIS.hasInterval(ToReg))
353     LIS.createEmptyInterval(ToReg);
354 }
355 
356 /// Return true if the register has a use that occurs outside the
357 /// specified loop.
358 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
359                             MachineRegisterInfo &MRI) {
360   for (const MachineOperand &MO : MRI.use_operands(Reg))
361     if (MO.getParent()->getParent() != BB)
362       return true;
363   return false;
364 }
365 
366 /// Generate Phis for the specific block in the generated pipelined code.
367 /// This function looks at the Phis from the original code to guide the
368 /// creation of new Phis.
369 void ModuloScheduleExpander::generateExistingPhis(
370     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
371     MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
372     unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
373   // Compute the stage number for the initial value of the Phi, which
374   // comes from the prolog. The prolog to use depends on to which kernel/
375   // epilog that we're adding the Phi.
376   unsigned PrologStage = 0;
377   unsigned PrevStage = 0;
378   bool InKernel = (LastStageNum == CurStageNum);
379   if (InKernel) {
380     PrologStage = LastStageNum - 1;
381     PrevStage = CurStageNum;
382   } else {
383     PrologStage = LastStageNum - (CurStageNum - LastStageNum);
384     PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
385   }
386 
387   for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
388                                    BBE = BB->getFirstNonPHI();
389        BBI != BBE; ++BBI) {
390     Register Def = BBI->getOperand(0).getReg();
391 
392     unsigned InitVal = 0;
393     unsigned LoopVal = 0;
394     getPhiRegs(*BBI, BB, InitVal, LoopVal);
395 
396     unsigned PhiOp1 = 0;
397     // The Phi value from the loop body typically is defined in the loop, but
398     // not always. So, we need to check if the value is defined in the loop.
399     unsigned PhiOp2 = LoopVal;
400     if (VRMap[LastStageNum].count(LoopVal))
401       PhiOp2 = VRMap[LastStageNum][LoopVal];
402 
403     int StageScheduled = Schedule.getStage(&*BBI);
404     int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
405     unsigned NumStages = getStagesForReg(Def, CurStageNum);
406     if (NumStages == 0) {
407       // We don't need to generate a Phi anymore, but we need to rename any uses
408       // of the Phi value.
409       unsigned NewReg = VRMap[PrevStage][LoopVal];
410       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
411                             InitVal, NewReg);
412       if (VRMap[CurStageNum].count(LoopVal))
413         VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
414     }
415     // Adjust the number of Phis needed depending on the number of prologs left,
416     // and the distance from where the Phi is first scheduled. The number of
417     // Phis cannot exceed the number of prolog stages. Each stage can
418     // potentially define two values.
419     unsigned MaxPhis = PrologStage + 2;
420     if (!InKernel && (int)PrologStage <= LoopValStage)
421       MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
422     unsigned NumPhis = std::min(NumStages, MaxPhis);
423 
424     unsigned NewReg = 0;
425     unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
426     // In the epilog, we may need to look back one stage to get the correct
427     // Phi name, because the epilog and prolog blocks execute the same stage.
428     // The correct name is from the previous block only when the Phi has
429     // been completely scheduled prior to the epilog, and Phi value is not
430     // needed in multiple stages.
431     int StageDiff = 0;
432     if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
433         NumPhis == 1)
434       StageDiff = 1;
435     // Adjust the computations below when the phi and the loop definition
436     // are scheduled in different stages.
437     if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
438       StageDiff = StageScheduled - LoopValStage;
439     for (unsigned np = 0; np < NumPhis; ++np) {
440       // If the Phi hasn't been scheduled, then use the initial Phi operand
441       // value. Otherwise, use the scheduled version of the instruction. This
442       // is a little complicated when a Phi references another Phi.
443       if (np > PrologStage || StageScheduled >= (int)LastStageNum)
444         PhiOp1 = InitVal;
445       // Check if the Phi has already been scheduled in a prolog stage.
446       else if (PrologStage >= AccessStage + StageDiff + np &&
447                VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
448         PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
449       // Check if the Phi has already been scheduled, but the loop instruction
450       // is either another Phi, or doesn't occur in the loop.
451       else if (PrologStage >= AccessStage + StageDiff + np) {
452         // If the Phi references another Phi, we need to examine the other
453         // Phi to get the correct value.
454         PhiOp1 = LoopVal;
455         MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
456         int Indirects = 1;
457         while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
458           int PhiStage = Schedule.getStage(InstOp1);
459           if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
460             PhiOp1 = getInitPhiReg(*InstOp1, BB);
461           else
462             PhiOp1 = getLoopPhiReg(*InstOp1, BB);
463           InstOp1 = MRI.getVRegDef(PhiOp1);
464           int PhiOpStage = Schedule.getStage(InstOp1);
465           int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
466           if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
467               VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
468             PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
469             break;
470           }
471           ++Indirects;
472         }
473       } else
474         PhiOp1 = InitVal;
475       // If this references a generated Phi in the kernel, get the Phi operand
476       // from the incoming block.
477       if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
478         if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
479           PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
480 
481       MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
482       bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
483       // In the epilog, a map lookup is needed to get the value from the kernel,
484       // or previous epilog block. How is does this depends on if the
485       // instruction is scheduled in the previous block.
486       if (!InKernel) {
487         int StageDiffAdj = 0;
488         if (LoopValStage != -1 && StageScheduled > LoopValStage)
489           StageDiffAdj = StageScheduled - LoopValStage;
490         // Use the loop value defined in the kernel, unless the kernel
491         // contains the last definition of the Phi.
492         if (np == 0 && PrevStage == LastStageNum &&
493             (StageScheduled != 0 || LoopValStage != 0) &&
494             VRMap[PrevStage - StageDiffAdj].count(LoopVal))
495           PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
496         // Use the value defined by the Phi. We add one because we switch
497         // from looking at the loop value to the Phi definition.
498         else if (np > 0 && PrevStage == LastStageNum &&
499                  VRMap[PrevStage - np + 1].count(Def))
500           PhiOp2 = VRMap[PrevStage - np + 1][Def];
501         // Use the loop value defined in the kernel.
502         else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
503                  VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
504           PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
505         // Use the value defined by the Phi, unless we're generating the first
506         // epilog and the Phi refers to a Phi in a different stage.
507         else if (VRMap[PrevStage - np].count(Def) &&
508                  (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
509                   (LoopValStage == StageScheduled)))
510           PhiOp2 = VRMap[PrevStage - np][Def];
511       }
512 
513       // Check if we can reuse an existing Phi. This occurs when a Phi
514       // references another Phi, and the other Phi is scheduled in an
515       // earlier stage. We can try to reuse an existing Phi up until the last
516       // stage of the current Phi.
517       if (LoopDefIsPhi) {
518         if (static_cast<int>(PrologStage - np) >= StageScheduled) {
519           int LVNumStages = getStagesForPhi(LoopVal);
520           int StageDiff = (StageScheduled - LoopValStage);
521           LVNumStages -= StageDiff;
522           // Make sure the loop value Phi has been processed already.
523           if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
524             NewReg = PhiOp2;
525             unsigned ReuseStage = CurStageNum;
526             if (isLoopCarried(*PhiInst))
527               ReuseStage -= LVNumStages;
528             // Check if the Phi to reuse has been generated yet. If not, then
529             // there is nothing to reuse.
530             if (VRMap[ReuseStage - np].count(LoopVal)) {
531               NewReg = VRMap[ReuseStage - np][LoopVal];
532 
533               rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
534                                     Def, NewReg);
535               // Update the map with the new Phi name.
536               VRMap[CurStageNum - np][Def] = NewReg;
537               PhiOp2 = NewReg;
538               if (VRMap[LastStageNum - np - 1].count(LoopVal))
539                 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
540 
541               if (IsLast && np == NumPhis - 1)
542                 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
543               continue;
544             }
545           }
546         }
547         if (InKernel && StageDiff > 0 &&
548             VRMap[CurStageNum - StageDiff - np].count(LoopVal))
549           PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
550       }
551 
552       const TargetRegisterClass *RC = MRI.getRegClass(Def);
553       NewReg = MRI.createVirtualRegister(RC);
554 
555       MachineInstrBuilder NewPhi =
556           BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
557                   TII->get(TargetOpcode::PHI), NewReg);
558       NewPhi.addReg(PhiOp1).addMBB(BB1);
559       NewPhi.addReg(PhiOp2).addMBB(BB2);
560       if (np == 0)
561         InstrMap[NewPhi] = &*BBI;
562 
563       // We define the Phis after creating the new pipelined code, so
564       // we need to rename the Phi values in scheduled instructions.
565 
566       unsigned PrevReg = 0;
567       if (InKernel && VRMap[PrevStage - np].count(LoopVal))
568         PrevReg = VRMap[PrevStage - np][LoopVal];
569       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
570                             NewReg, PrevReg);
571       // If the Phi has been scheduled, use the new name for rewriting.
572       if (VRMap[CurStageNum - np].count(Def)) {
573         unsigned R = VRMap[CurStageNum - np][Def];
574         rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
575                               NewReg);
576       }
577 
578       // Check if we need to rename any uses that occurs after the loop. The
579       // register to replace depends on whether the Phi is scheduled in the
580       // epilog.
581       if (IsLast && np == NumPhis - 1)
582         replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
583 
584       // In the kernel, a dependent Phi uses the value from this Phi.
585       if (InKernel)
586         PhiOp2 = NewReg;
587 
588       // Update the map with the new Phi name.
589       VRMap[CurStageNum - np][Def] = NewReg;
590     }
591 
592     while (NumPhis++ < NumStages) {
593       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
594                             NewReg, 0);
595     }
596 
597     // Check if we need to rename a Phi that has been eliminated due to
598     // scheduling.
599     if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
600       replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
601   }
602 }
603 
604 /// Generate Phis for the specified block in the generated pipelined code.
605 /// These are new Phis needed because the definition is scheduled after the
606 /// use in the pipelined sequence.
607 void ModuloScheduleExpander::generatePhis(
608     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
609     MachineBasicBlock *KernelBB, ValueMapTy *VRMap, ValueMapTy *VRMapPhi,
610     InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
611     bool IsLast) {
612   // Compute the stage number that contains the initial Phi value, and
613   // the Phi from the previous stage.
614   unsigned PrologStage = 0;
615   unsigned PrevStage = 0;
616   unsigned StageDiff = CurStageNum - LastStageNum;
617   bool InKernel = (StageDiff == 0);
618   if (InKernel) {
619     PrologStage = LastStageNum - 1;
620     PrevStage = CurStageNum;
621   } else {
622     PrologStage = LastStageNum - StageDiff;
623     PrevStage = LastStageNum + StageDiff - 1;
624   }
625 
626   for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
627                                    BBE = BB->instr_end();
628        BBI != BBE; ++BBI) {
629     for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
630       MachineOperand &MO = BBI->getOperand(i);
631       if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
632         continue;
633 
634       int StageScheduled = Schedule.getStage(&*BBI);
635       assert(StageScheduled != -1 && "Expecting scheduled instruction.");
636       Register Def = MO.getReg();
637       unsigned NumPhis = getStagesForReg(Def, CurStageNum);
638       // An instruction scheduled in stage 0 and is used after the loop
639       // requires a phi in the epilog for the last definition from either
640       // the kernel or prolog.
641       if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
642           hasUseAfterLoop(Def, BB, MRI))
643         NumPhis = 1;
644       if (!InKernel && (unsigned)StageScheduled > PrologStage)
645         continue;
646 
647       unsigned PhiOp2;
648       if (InKernel) {
649         PhiOp2 = VRMap[PrevStage][Def];
650         if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
651           if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
652             PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
653       }
654       // The number of Phis can't exceed the number of prolog stages. The
655       // prolog stage number is zero based.
656       if (NumPhis > PrologStage + 1 - StageScheduled)
657         NumPhis = PrologStage + 1 - StageScheduled;
658       for (unsigned np = 0; np < NumPhis; ++np) {
659         // Example for
660         // Org:
661         //   %Org = ... (Scheduled at Stage#0, NumPhi = 2)
662         //
663         // Prolog0 (Stage0):
664         //   %Clone0 = ...
665         // Prolog1 (Stage1):
666         //   %Clone1 = ...
667         // Kernel (Stage2):
668         //   %Phi0 = Phi %Clone1, Prolog1, %Clone2, Kernel
669         //   %Phi1 = Phi %Clone0, Prolog1, %Phi0, Kernel
670         //   %Clone2 = ...
671         // Epilog0 (Stage3):
672         //   %Phi2 = Phi %Clone1, Prolog1, %Clone2, Kernel
673         //   %Phi3 = Phi %Clone0, Prolog1, %Phi0, Kernel
674         // Epilog1 (Stage4):
675         //   %Phi4 = Phi %Clone0, Prolog0, %Phi2, Epilog0
676         //
677         // VRMap = {0: %Clone0, 1: %Clone1, 2: %Clone2}
678         // VRMapPhi (after Kernel) = {0: %Phi1, 1: %Phi0}
679         // VRMapPhi (after Epilog0) = {0: %Phi3, 1: %Phi2}
680 
681         unsigned PhiOp1 = VRMap[PrologStage][Def];
682         if (np <= PrologStage)
683           PhiOp1 = VRMap[PrologStage - np][Def];
684         if (!InKernel) {
685           if (PrevStage == LastStageNum && np == 0)
686             PhiOp2 = VRMap[LastStageNum][Def];
687           else
688             PhiOp2 = VRMapPhi[PrevStage - np][Def];
689         }
690 
691         const TargetRegisterClass *RC = MRI.getRegClass(Def);
692         Register NewReg = MRI.createVirtualRegister(RC);
693 
694         MachineInstrBuilder NewPhi =
695             BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
696                     TII->get(TargetOpcode::PHI), NewReg);
697         NewPhi.addReg(PhiOp1).addMBB(BB1);
698         NewPhi.addReg(PhiOp2).addMBB(BB2);
699         if (np == 0)
700           InstrMap[NewPhi] = &*BBI;
701 
702         // Rewrite uses and update the map. The actions depend upon whether
703         // we generating code for the kernel or epilog blocks.
704         if (InKernel) {
705           rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
706                                 NewReg);
707           rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
708                                 NewReg);
709 
710           PhiOp2 = NewReg;
711           VRMapPhi[PrevStage - np - 1][Def] = NewReg;
712         } else {
713           VRMapPhi[CurStageNum - np][Def] = NewReg;
714           if (np == NumPhis - 1)
715             rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
716                                   NewReg);
717         }
718         if (IsLast && np == NumPhis - 1)
719           replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
720       }
721     }
722   }
723 }
724 
725 /// Remove instructions that generate values with no uses.
726 /// Typically, these are induction variable operations that generate values
727 /// used in the loop itself.  A dead instruction has a definition with
728 /// no uses, or uses that occur in the original loop only.
729 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
730                                                     MBBVectorTy &EpilogBBs) {
731   // For each epilog block, check that the value defined by each instruction
732   // is used.  If not, delete it.
733   for (MachineBasicBlock *MBB : llvm::reverse(EpilogBBs))
734     for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(),
735                                                    ME = MBB->instr_rend();
736          MI != ME;) {
737       // From DeadMachineInstructionElem. Don't delete inline assembly.
738       if (MI->isInlineAsm()) {
739         ++MI;
740         continue;
741       }
742       bool SawStore = false;
743       // Check if it's safe to remove the instruction due to side effects.
744       // We can, and want to, remove Phis here.
745       if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
746         ++MI;
747         continue;
748       }
749       bool used = true;
750       for (const MachineOperand &MO : MI->all_defs()) {
751         Register reg = MO.getReg();
752         // Assume physical registers are used, unless they are marked dead.
753         if (reg.isPhysical()) {
754           used = !MO.isDead();
755           if (used)
756             break;
757           continue;
758         }
759         unsigned realUses = 0;
760         for (const MachineOperand &U : MRI.use_operands(reg)) {
761           // Check if there are any uses that occur only in the original
762           // loop.  If so, that's not a real use.
763           if (U.getParent()->getParent() != BB) {
764             realUses++;
765             used = true;
766             break;
767           }
768         }
769         if (realUses > 0)
770           break;
771         used = false;
772       }
773       if (!used) {
774         LIS.RemoveMachineInstrFromMaps(*MI);
775         MI++->eraseFromParent();
776         continue;
777       }
778       ++MI;
779     }
780   // In the kernel block, check if we can remove a Phi that generates a value
781   // used in an instruction removed in the epilog block.
782   for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) {
783     Register reg = MI.getOperand(0).getReg();
784     if (MRI.use_begin(reg) == MRI.use_end()) {
785       LIS.RemoveMachineInstrFromMaps(MI);
786       MI.eraseFromParent();
787     }
788   }
789 }
790 
791 /// For loop carried definitions, we split the lifetime of a virtual register
792 /// that has uses past the definition in the next iteration. A copy with a new
793 /// virtual register is inserted before the definition, which helps with
794 /// generating a better register assignment.
795 ///
796 ///   v1 = phi(a, v2)     v1 = phi(a, v2)
797 ///   v2 = phi(b, v3)     v2 = phi(b, v3)
798 ///   v3 = ..             v4 = copy v1
799 ///   .. = V1             v3 = ..
800 ///                       .. = v4
801 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
802                                             MBBVectorTy &EpilogBBs) {
803   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
804   for (auto &PHI : KernelBB->phis()) {
805     Register Def = PHI.getOperand(0).getReg();
806     // Check for any Phi definition that used as an operand of another Phi
807     // in the same block.
808     for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
809                                                  E = MRI.use_instr_end();
810          I != E; ++I) {
811       if (I->isPHI() && I->getParent() == KernelBB) {
812         // Get the loop carried definition.
813         unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
814         if (!LCDef)
815           continue;
816         MachineInstr *MI = MRI.getVRegDef(LCDef);
817         if (!MI || MI->getParent() != KernelBB || MI->isPHI())
818           continue;
819         // Search through the rest of the block looking for uses of the Phi
820         // definition. If one occurs, then split the lifetime.
821         unsigned SplitReg = 0;
822         for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
823                                     KernelBB->instr_end()))
824           if (BBJ.readsRegister(Def, /*TRI=*/nullptr)) {
825             // We split the lifetime when we find the first use.
826             if (SplitReg == 0) {
827               SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
828               BuildMI(*KernelBB, MI, MI->getDebugLoc(),
829                       TII->get(TargetOpcode::COPY), SplitReg)
830                   .addReg(Def);
831             }
832             BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
833           }
834         if (!SplitReg)
835           continue;
836         // Search through each of the epilog blocks for any uses to be renamed.
837         for (auto &Epilog : EpilogBBs)
838           for (auto &I : *Epilog)
839             if (I.readsRegister(Def, /*TRI=*/nullptr))
840               I.substituteRegister(Def, SplitReg, 0, *TRI);
841         break;
842       }
843     }
844   }
845 }
846 
847 /// Remove the incoming block from the Phis in a basic block.
848 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
849   for (MachineInstr &MI : *BB) {
850     if (!MI.isPHI())
851       break;
852     for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
853       if (MI.getOperand(i + 1).getMBB() == Incoming) {
854         MI.removeOperand(i + 1);
855         MI.removeOperand(i);
856         break;
857       }
858   }
859 }
860 
861 /// Create branches from each prolog basic block to the appropriate epilog
862 /// block.  These edges are needed if the loop ends before reaching the
863 /// kernel.
864 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
865                                          MBBVectorTy &PrologBBs,
866                                          MachineBasicBlock *KernelBB,
867                                          MBBVectorTy &EpilogBBs,
868                                          ValueMapTy *VRMap) {
869   assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
870   MachineBasicBlock *LastPro = KernelBB;
871   MachineBasicBlock *LastEpi = KernelBB;
872 
873   // Start from the blocks connected to the kernel and work "out"
874   // to the first prolog and the last epilog blocks.
875   SmallVector<MachineInstr *, 4> PrevInsts;
876   unsigned MaxIter = PrologBBs.size() - 1;
877   for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
878     // Add branches to the prolog that go to the corresponding
879     // epilog, and the fall-thru prolog/kernel block.
880     MachineBasicBlock *Prolog = PrologBBs[j];
881     MachineBasicBlock *Epilog = EpilogBBs[i];
882 
883     SmallVector<MachineOperand, 4> Cond;
884     std::optional<bool> StaticallyGreater =
885         LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond);
886     unsigned numAdded = 0;
887     if (!StaticallyGreater) {
888       Prolog->addSuccessor(Epilog);
889       numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
890     } else if (*StaticallyGreater == false) {
891       Prolog->addSuccessor(Epilog);
892       Prolog->removeSuccessor(LastPro);
893       LastEpi->removeSuccessor(Epilog);
894       numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
895       removePhis(Epilog, LastEpi);
896       // Remove the blocks that are no longer referenced.
897       if (LastPro != LastEpi) {
898         LastEpi->clear();
899         LastEpi->eraseFromParent();
900       }
901       if (LastPro == KernelBB) {
902         LoopInfo->disposed();
903         NewKernel = nullptr;
904       }
905       LastPro->clear();
906       LastPro->eraseFromParent();
907     } else {
908       numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
909       removePhis(Epilog, Prolog);
910     }
911     LastPro = Prolog;
912     LastEpi = Epilog;
913     for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
914                                                    E = Prolog->instr_rend();
915          I != E && numAdded > 0; ++I, --numAdded)
916       updateInstruction(&*I, false, j, 0, VRMap);
917   }
918 
919   if (NewKernel) {
920     LoopInfo->setPreheader(PrologBBs[MaxIter]);
921     LoopInfo->adjustTripCount(-(MaxIter + 1));
922   }
923 }
924 
925 /// Return true if we can compute the amount the instruction changes
926 /// during each iteration. Set Delta to the amount of the change.
927 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
928   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
929   const MachineOperand *BaseOp;
930   int64_t Offset;
931   bool OffsetIsScalable;
932   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
933     return false;
934 
935   // FIXME: This algorithm assumes instructions have fixed-size offsets.
936   if (OffsetIsScalable)
937     return false;
938 
939   if (!BaseOp->isReg())
940     return false;
941 
942   Register BaseReg = BaseOp->getReg();
943 
944   MachineRegisterInfo &MRI = MF.getRegInfo();
945   // Check if there is a Phi. If so, get the definition in the loop.
946   MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
947   if (BaseDef && BaseDef->isPHI()) {
948     BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
949     BaseDef = MRI.getVRegDef(BaseReg);
950   }
951   if (!BaseDef)
952     return false;
953 
954   int D = 0;
955   if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
956     return false;
957 
958   Delta = D;
959   return true;
960 }
961 
962 /// Update the memory operand with a new offset when the pipeliner
963 /// generates a new copy of the instruction that refers to a
964 /// different memory location.
965 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
966                                                MachineInstr &OldMI,
967                                                unsigned Num) {
968   if (Num == 0)
969     return;
970   // If the instruction has memory operands, then adjust the offset
971   // when the instruction appears in different stages.
972   if (NewMI.memoperands_empty())
973     return;
974   SmallVector<MachineMemOperand *, 2> NewMMOs;
975   for (MachineMemOperand *MMO : NewMI.memoperands()) {
976     // TODO: Figure out whether isAtomic is really necessary (see D57601).
977     if (MMO->isVolatile() || MMO->isAtomic() ||
978         (MMO->isInvariant() && MMO->isDereferenceable()) ||
979         (!MMO->getValue())) {
980       NewMMOs.push_back(MMO);
981       continue;
982     }
983     unsigned Delta;
984     if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
985       int64_t AdjOffset = Delta * Num;
986       NewMMOs.push_back(
987           MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
988     } else {
989       NewMMOs.push_back(MF.getMachineMemOperand(
990           MMO, 0, LocationSize::beforeOrAfterPointer()));
991     }
992   }
993   NewMI.setMemRefs(MF, NewMMOs);
994 }
995 
996 /// Clone the instruction for the new pipelined loop and update the
997 /// memory operands, if needed.
998 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
999                                                  unsigned CurStageNum,
1000                                                  unsigned InstStageNum) {
1001   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
1002   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1003   return NewMI;
1004 }
1005 
1006 /// Clone the instruction for the new pipelined loop. If needed, this
1007 /// function updates the instruction using the values saved in the
1008 /// InstrChanges structure.
1009 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
1010     MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
1011   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
1012   auto It = InstrChanges.find(OldMI);
1013   if (It != InstrChanges.end()) {
1014     std::pair<unsigned, int64_t> RegAndOffset = It->second;
1015     unsigned BasePos, OffsetPos;
1016     if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
1017       return nullptr;
1018     int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
1019     MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
1020     if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
1021       NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
1022     NewMI->getOperand(OffsetPos).setImm(NewOffset);
1023   }
1024   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1025   return NewMI;
1026 }
1027 
1028 /// Update the machine instruction with new virtual registers.  This
1029 /// function may change the definitions and/or uses.
1030 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
1031                                                bool LastDef,
1032                                                unsigned CurStageNum,
1033                                                unsigned InstrStageNum,
1034                                                ValueMapTy *VRMap) {
1035   for (MachineOperand &MO : NewMI->operands()) {
1036     if (!MO.isReg() || !MO.getReg().isVirtual())
1037       continue;
1038     Register reg = MO.getReg();
1039     if (MO.isDef()) {
1040       // Create a new virtual register for the definition.
1041       const TargetRegisterClass *RC = MRI.getRegClass(reg);
1042       Register NewReg = MRI.createVirtualRegister(RC);
1043       MO.setReg(NewReg);
1044       VRMap[CurStageNum][reg] = NewReg;
1045       if (LastDef)
1046         replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
1047     } else if (MO.isUse()) {
1048       MachineInstr *Def = MRI.getVRegDef(reg);
1049       // Compute the stage that contains the last definition for instruction.
1050       int DefStageNum = Schedule.getStage(Def);
1051       unsigned StageNum = CurStageNum;
1052       if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
1053         // Compute the difference in stages between the defintion and the use.
1054         unsigned StageDiff = (InstrStageNum - DefStageNum);
1055         // Make an adjustment to get the last definition.
1056         StageNum -= StageDiff;
1057       }
1058       if (VRMap[StageNum].count(reg))
1059         MO.setReg(VRMap[StageNum][reg]);
1060     }
1061   }
1062 }
1063 
1064 /// Return the instruction in the loop that defines the register.
1065 /// If the definition is a Phi, then follow the Phi operand to
1066 /// the instruction in the loop.
1067 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
1068   SmallPtrSet<MachineInstr *, 8> Visited;
1069   MachineInstr *Def = MRI.getVRegDef(Reg);
1070   while (Def->isPHI()) {
1071     if (!Visited.insert(Def).second)
1072       break;
1073     for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
1074       if (Def->getOperand(i + 1).getMBB() == BB) {
1075         Def = MRI.getVRegDef(Def->getOperand(i).getReg());
1076         break;
1077       }
1078   }
1079   return Def;
1080 }
1081 
1082 /// Return the new name for the value from the previous stage.
1083 unsigned ModuloScheduleExpander::getPrevMapVal(
1084     unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
1085     ValueMapTy *VRMap, MachineBasicBlock *BB) {
1086   unsigned PrevVal = 0;
1087   if (StageNum > PhiStage) {
1088     MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
1089     if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
1090       // The name is defined in the previous stage.
1091       PrevVal = VRMap[StageNum - 1][LoopVal];
1092     else if (VRMap[StageNum].count(LoopVal))
1093       // The previous name is defined in the current stage when the instruction
1094       // order is swapped.
1095       PrevVal = VRMap[StageNum][LoopVal];
1096     else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
1097       // The loop value hasn't yet been scheduled.
1098       PrevVal = LoopVal;
1099     else if (StageNum == PhiStage + 1)
1100       // The loop value is another phi, which has not been scheduled.
1101       PrevVal = getInitPhiReg(*LoopInst, BB);
1102     else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
1103       // The loop value is another phi, which has been scheduled.
1104       PrevVal =
1105           getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
1106                         LoopStage, VRMap, BB);
1107   }
1108   return PrevVal;
1109 }
1110 
1111 /// Rewrite the Phi values in the specified block to use the mappings
1112 /// from the initial operand. Once the Phi is scheduled, we switch
1113 /// to using the loop value instead of the Phi value, so those names
1114 /// do not need to be rewritten.
1115 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
1116                                               unsigned StageNum,
1117                                               ValueMapTy *VRMap,
1118                                               InstrMapTy &InstrMap) {
1119   for (auto &PHI : BB->phis()) {
1120     unsigned InitVal = 0;
1121     unsigned LoopVal = 0;
1122     getPhiRegs(PHI, BB, InitVal, LoopVal);
1123     Register PhiDef = PHI.getOperand(0).getReg();
1124 
1125     unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
1126     unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
1127     unsigned NumPhis = getStagesForPhi(PhiDef);
1128     if (NumPhis > StageNum)
1129       NumPhis = StageNum;
1130     for (unsigned np = 0; np <= NumPhis; ++np) {
1131       unsigned NewVal =
1132           getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
1133       if (!NewVal)
1134         NewVal = InitVal;
1135       rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
1136                             NewVal);
1137     }
1138   }
1139 }
1140 
1141 /// Rewrite a previously scheduled instruction to use the register value
1142 /// from the new instruction. Make sure the instruction occurs in the
1143 /// basic block, and we don't change the uses in the new instruction.
1144 void ModuloScheduleExpander::rewriteScheduledInstr(
1145     MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
1146     unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
1147     unsigned PrevReg) {
1148   bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
1149   int StagePhi = Schedule.getStage(Phi) + PhiNum;
1150   // Rewrite uses that have been scheduled already to use the new
1151   // Phi register.
1152   for (MachineOperand &UseOp :
1153        llvm::make_early_inc_range(MRI.use_operands(OldReg))) {
1154     MachineInstr *UseMI = UseOp.getParent();
1155     if (UseMI->getParent() != BB)
1156       continue;
1157     if (UseMI->isPHI()) {
1158       if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
1159         continue;
1160       if (getLoopPhiReg(*UseMI, BB) != OldReg)
1161         continue;
1162     }
1163     InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
1164     assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
1165     MachineInstr *OrigMI = OrigInstr->second;
1166     int StageSched = Schedule.getStage(OrigMI);
1167     int CycleSched = Schedule.getCycle(OrigMI);
1168     unsigned ReplaceReg = 0;
1169     // This is the stage for the scheduled instruction.
1170     if (StagePhi == StageSched && Phi->isPHI()) {
1171       int CyclePhi = Schedule.getCycle(Phi);
1172       if (PrevReg && InProlog)
1173         ReplaceReg = PrevReg;
1174       else if (PrevReg && !isLoopCarried(*Phi) &&
1175                (CyclePhi <= CycleSched || OrigMI->isPHI()))
1176         ReplaceReg = PrevReg;
1177       else
1178         ReplaceReg = NewReg;
1179     }
1180     // The scheduled instruction occurs before the scheduled Phi, and the
1181     // Phi is not loop carried.
1182     if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
1183       ReplaceReg = NewReg;
1184     if (StagePhi > StageSched && Phi->isPHI())
1185       ReplaceReg = NewReg;
1186     if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
1187       ReplaceReg = NewReg;
1188     if (ReplaceReg) {
1189       const TargetRegisterClass *NRC =
1190           MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
1191       if (NRC)
1192         UseOp.setReg(ReplaceReg);
1193       else {
1194         Register SplitReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
1195         BuildMI(*BB, UseMI, UseMI->getDebugLoc(), TII->get(TargetOpcode::COPY),
1196                 SplitReg)
1197             .addReg(ReplaceReg);
1198         UseOp.setReg(SplitReg);
1199       }
1200     }
1201   }
1202 }
1203 
1204 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
1205   if (!Phi.isPHI())
1206     return false;
1207   int DefCycle = Schedule.getCycle(&Phi);
1208   int DefStage = Schedule.getStage(&Phi);
1209 
1210   unsigned InitVal = 0;
1211   unsigned LoopVal = 0;
1212   getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
1213   MachineInstr *Use = MRI.getVRegDef(LoopVal);
1214   if (!Use || Use->isPHI())
1215     return true;
1216   int LoopCycle = Schedule.getCycle(Use);
1217   int LoopStage = Schedule.getStage(Use);
1218   return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
1219 }
1220 
1221 //===----------------------------------------------------------------------===//
1222 // PeelingModuloScheduleExpander implementation
1223 //===----------------------------------------------------------------------===//
1224 // This is a reimplementation of ModuloScheduleExpander that works by creating
1225 // a fully correct steady-state kernel and peeling off the prolog and epilogs.
1226 //===----------------------------------------------------------------------===//
1227 
1228 namespace {
1229 // Remove any dead phis in MBB. Dead phis either have only one block as input
1230 // (in which case they are the identity) or have no uses.
1231 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
1232                        LiveIntervals *LIS, bool KeepSingleSrcPhi = false) {
1233   bool Changed = true;
1234   while (Changed) {
1235     Changed = false;
1236     for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) {
1237       assert(MI.isPHI());
1238       if (MRI.use_empty(MI.getOperand(0).getReg())) {
1239         if (LIS)
1240           LIS->RemoveMachineInstrFromMaps(MI);
1241         MI.eraseFromParent();
1242         Changed = true;
1243       } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) {
1244         const TargetRegisterClass *ConstrainRegClass =
1245             MRI.constrainRegClass(MI.getOperand(1).getReg(),
1246                                   MRI.getRegClass(MI.getOperand(0).getReg()));
1247         assert(ConstrainRegClass &&
1248                "Expected a valid constrained register class!");
1249         (void)ConstrainRegClass;
1250         MRI.replaceRegWith(MI.getOperand(0).getReg(),
1251                            MI.getOperand(1).getReg());
1252         if (LIS)
1253           LIS->RemoveMachineInstrFromMaps(MI);
1254         MI.eraseFromParent();
1255         Changed = true;
1256       }
1257     }
1258   }
1259 }
1260 
1261 /// Rewrites the kernel block in-place to adhere to the given schedule.
1262 /// KernelRewriter holds all of the state required to perform the rewriting.
1263 class KernelRewriter {
1264   ModuloSchedule &S;
1265   MachineBasicBlock *BB;
1266   MachineBasicBlock *PreheaderBB, *ExitBB;
1267   MachineRegisterInfo &MRI;
1268   const TargetInstrInfo *TII;
1269   LiveIntervals *LIS;
1270 
1271   // Map from register class to canonical undef register for that class.
1272   DenseMap<const TargetRegisterClass *, Register> Undefs;
1273   // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
1274   // this map is only used when InitReg is non-undef.
1275   DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
1276   // Map from LoopReg to phi register where the InitReg is undef.
1277   DenseMap<Register, Register> UndefPhis;
1278 
1279   // Reg is used by MI. Return the new register MI should use to adhere to the
1280   // schedule. Insert phis as necessary.
1281   Register remapUse(Register Reg, MachineInstr &MI);
1282   // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
1283   // If InitReg is not given it is chosen arbitrarily. It will either be undef
1284   // or will be chosen so as to share another phi.
1285   Register phi(Register LoopReg, std::optional<Register> InitReg = {},
1286                const TargetRegisterClass *RC = nullptr);
1287   // Create an undef register of the given register class.
1288   Register undef(const TargetRegisterClass *RC);
1289 
1290 public:
1291   KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB,
1292                  LiveIntervals *LIS = nullptr);
1293   void rewrite();
1294 };
1295 } // namespace
1296 
1297 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1298                                MachineBasicBlock *LoopBB, LiveIntervals *LIS)
1299     : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()),
1300       ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
1301       TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
1302   PreheaderBB = *BB->pred_begin();
1303   if (PreheaderBB == BB)
1304     PreheaderBB = *std::next(BB->pred_begin());
1305 }
1306 
1307 void KernelRewriter::rewrite() {
1308   // Rearrange the loop to be in schedule order. Note that the schedule may
1309   // contain instructions that are not owned by the loop block (InstrChanges and
1310   // friends), so we gracefully handle unowned instructions and delete any
1311   // instructions that weren't in the schedule.
1312   auto InsertPt = BB->getFirstTerminator();
1313   MachineInstr *FirstMI = nullptr;
1314   for (MachineInstr *MI : S.getInstructions()) {
1315     if (MI->isPHI())
1316       continue;
1317     if (MI->getParent())
1318       MI->removeFromParent();
1319     BB->insert(InsertPt, MI);
1320     if (!FirstMI)
1321       FirstMI = MI;
1322   }
1323   assert(FirstMI && "Failed to find first MI in schedule");
1324 
1325   // At this point all of the scheduled instructions are between FirstMI
1326   // and the end of the block. Kill from the first non-phi to FirstMI.
1327   for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
1328     if (LIS)
1329       LIS->RemoveMachineInstrFromMaps(*I);
1330     (I++)->eraseFromParent();
1331   }
1332 
1333   // Now remap every instruction in the loop.
1334   for (MachineInstr &MI : *BB) {
1335     if (MI.isPHI() || MI.isTerminator())
1336       continue;
1337     for (MachineOperand &MO : MI.uses()) {
1338       if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
1339         continue;
1340       Register Reg = remapUse(MO.getReg(), MI);
1341       MO.setReg(Reg);
1342     }
1343   }
1344   EliminateDeadPhis(BB, MRI, LIS);
1345 
1346   // Ensure a phi exists for all instructions that are either referenced by
1347   // an illegal phi or by an instruction outside the loop. This allows us to
1348   // treat remaps of these values the same as "normal" values that come from
1349   // loop-carried phis.
1350   for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
1351     if (MI->isPHI()) {
1352       Register R = MI->getOperand(0).getReg();
1353       phi(R);
1354       continue;
1355     }
1356 
1357     for (MachineOperand &Def : MI->defs()) {
1358       for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
1359         if (MI.getParent() != BB) {
1360           phi(Def.getReg());
1361           break;
1362         }
1363       }
1364     }
1365   }
1366 }
1367 
1368 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
1369   MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
1370   if (!Producer)
1371     return Reg;
1372 
1373   int ConsumerStage = S.getStage(&MI);
1374   if (!Producer->isPHI()) {
1375     // Non-phi producers are simple to remap. Insert as many phis as the
1376     // difference between the consumer and producer stages.
1377     if (Producer->getParent() != BB)
1378       // Producer was not inside the loop. Use the register as-is.
1379       return Reg;
1380     int ProducerStage = S.getStage(Producer);
1381     assert(ConsumerStage != -1 &&
1382            "In-loop consumer should always be scheduled!");
1383     assert(ConsumerStage >= ProducerStage);
1384     unsigned StageDiff = ConsumerStage - ProducerStage;
1385 
1386     for (unsigned I = 0; I < StageDiff; ++I)
1387       Reg = phi(Reg);
1388     return Reg;
1389   }
1390 
1391   // First, dive through the phi chain to find the defaults for the generated
1392   // phis.
1393   SmallVector<std::optional<Register>, 4> Defaults;
1394   Register LoopReg = Reg;
1395   auto LoopProducer = Producer;
1396   while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
1397     LoopReg = getLoopPhiReg(*LoopProducer, BB);
1398     Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
1399     LoopProducer = MRI.getUniqueVRegDef(LoopReg);
1400     assert(LoopProducer);
1401   }
1402   int LoopProducerStage = S.getStage(LoopProducer);
1403 
1404   std::optional<Register> IllegalPhiDefault;
1405 
1406   if (LoopProducerStage == -1) {
1407     // Do nothing.
1408   } else if (LoopProducerStage > ConsumerStage) {
1409     // This schedule is only representable if ProducerStage == ConsumerStage+1.
1410     // In addition, Consumer's cycle must be scheduled after Producer in the
1411     // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
1412     // functions.
1413 #ifndef NDEBUG // Silence unused variables in non-asserts mode.
1414     int LoopProducerCycle = S.getCycle(LoopProducer);
1415     int ConsumerCycle = S.getCycle(&MI);
1416 #endif
1417     assert(LoopProducerCycle <= ConsumerCycle);
1418     assert(LoopProducerStage == ConsumerStage + 1);
1419     // Peel off the first phi from Defaults and insert a phi between producer
1420     // and consumer. This phi will not be at the front of the block so we
1421     // consider it illegal. It will only exist during the rewrite process; it
1422     // needs to exist while we peel off prologs because these could take the
1423     // default value. After that we can replace all uses with the loop producer
1424     // value.
1425     IllegalPhiDefault = Defaults.front();
1426     Defaults.erase(Defaults.begin());
1427   } else {
1428     assert(ConsumerStage >= LoopProducerStage);
1429     int StageDiff = ConsumerStage - LoopProducerStage;
1430     if (StageDiff > 0) {
1431       LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()
1432                         << " to " << (Defaults.size() + StageDiff) << "\n");
1433       // If we need more phis than we have defaults for, pad out with undefs for
1434       // the earliest phis, which are at the end of the defaults chain (the
1435       // chain is in reverse order).
1436       Defaults.resize(Defaults.size() + StageDiff,
1437                       Defaults.empty() ? std::optional<Register>()
1438                                        : Defaults.back());
1439     }
1440   }
1441 
1442   // Now we know the number of stages to jump back, insert the phi chain.
1443   auto DefaultI = Defaults.rbegin();
1444   while (DefaultI != Defaults.rend())
1445     LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));
1446 
1447   if (IllegalPhiDefault) {
1448     // The consumer optionally consumes LoopProducer in the same iteration
1449     // (because the producer is scheduled at an earlier cycle than the consumer)
1450     // or the initial value. To facilitate this we create an illegal block here
1451     // by embedding a phi in the middle of the block. We will fix this up
1452     // immediately prior to pruning.
1453     auto RC = MRI.getRegClass(Reg);
1454     Register R = MRI.createVirtualRegister(RC);
1455     MachineInstr *IllegalPhi =
1456         BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1457             .addReg(*IllegalPhiDefault)
1458             .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
1459             .addReg(LoopReg)
1460             .addMBB(BB); // Block choice is arbitrary and has no effect.
1461     // Illegal phi should belong to the producer stage so that it can be
1462     // filtered correctly during peeling.
1463     S.setStage(IllegalPhi, LoopProducerStage);
1464     return R;
1465   }
1466 
1467   return LoopReg;
1468 }
1469 
1470 Register KernelRewriter::phi(Register LoopReg, std::optional<Register> InitReg,
1471                              const TargetRegisterClass *RC) {
1472   // If the init register is not undef, try and find an existing phi.
1473   if (InitReg) {
1474     auto I = Phis.find({LoopReg, *InitReg});
1475     if (I != Phis.end())
1476       return I->second;
1477   } else {
1478     for (auto &KV : Phis) {
1479       if (KV.first.first == LoopReg)
1480         return KV.second;
1481     }
1482   }
1483 
1484   // InitReg is either undef or no existing phi takes InitReg as input. Try and
1485   // find a phi that takes undef as input.
1486   auto I = UndefPhis.find(LoopReg);
1487   if (I != UndefPhis.end()) {
1488     Register R = I->second;
1489     if (!InitReg)
1490       // Found a phi taking undef as input, and this input is undef so return
1491       // without any more changes.
1492       return R;
1493     // Found a phi taking undef as input, so rewrite it to take InitReg.
1494     MachineInstr *MI = MRI.getVRegDef(R);
1495     MI->getOperand(1).setReg(*InitReg);
1496     Phis.insert({{LoopReg, *InitReg}, R});
1497     const TargetRegisterClass *ConstrainRegClass =
1498         MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1499     assert(ConstrainRegClass && "Expected a valid constrained register class!");
1500     (void)ConstrainRegClass;
1501     UndefPhis.erase(I);
1502     return R;
1503   }
1504 
1505   // Failed to find any existing phi to reuse, so create a new one.
1506   if (!RC)
1507     RC = MRI.getRegClass(LoopReg);
1508   Register R = MRI.createVirtualRegister(RC);
1509   if (InitReg) {
1510     const TargetRegisterClass *ConstrainRegClass =
1511         MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1512     assert(ConstrainRegClass && "Expected a valid constrained register class!");
1513     (void)ConstrainRegClass;
1514   }
1515   BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
1516       .addReg(InitReg ? *InitReg : undef(RC))
1517       .addMBB(PreheaderBB)
1518       .addReg(LoopReg)
1519       .addMBB(BB);
1520   if (!InitReg)
1521     UndefPhis[LoopReg] = R;
1522   else
1523     Phis[{LoopReg, *InitReg}] = R;
1524   return R;
1525 }
1526 
1527 Register KernelRewriter::undef(const TargetRegisterClass *RC) {
1528   Register &R = Undefs[RC];
1529   if (R == 0) {
1530     // Create an IMPLICIT_DEF that defines this register if we need it.
1531     // All uses of this should be removed by the time we have finished unrolling
1532     // prologs and epilogs.
1533     R = MRI.createVirtualRegister(RC);
1534     auto *InsertBB = &PreheaderBB->getParent()->front();
1535     BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
1536             TII->get(TargetOpcode::IMPLICIT_DEF), R);
1537   }
1538   return R;
1539 }
1540 
1541 namespace {
1542 /// Describes an operand in the kernel of a pipelined loop. Characteristics of
1543 /// the operand are discovered, such as how many in-loop PHIs it has to jump
1544 /// through and defaults for these phis.
1545 class KernelOperandInfo {
1546   MachineBasicBlock *BB;
1547   MachineRegisterInfo &MRI;
1548   SmallVector<Register, 4> PhiDefaults;
1549   MachineOperand *Source;
1550   MachineOperand *Target;
1551 
1552 public:
1553   KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
1554                     const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
1555       : MRI(MRI) {
1556     Source = MO;
1557     BB = MO->getParent()->getParent();
1558     while (isRegInLoop(MO)) {
1559       MachineInstr *MI = MRI.getVRegDef(MO->getReg());
1560       if (MI->isFullCopy()) {
1561         MO = &MI->getOperand(1);
1562         continue;
1563       }
1564       if (!MI->isPHI())
1565         break;
1566       // If this is an illegal phi, don't count it in distance.
1567       if (IllegalPhis.count(MI)) {
1568         MO = &MI->getOperand(3);
1569         continue;
1570       }
1571 
1572       Register Default = getInitPhiReg(*MI, BB);
1573       MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
1574                                             : &MI->getOperand(3);
1575       PhiDefaults.push_back(Default);
1576     }
1577     Target = MO;
1578   }
1579 
1580   bool operator==(const KernelOperandInfo &Other) const {
1581     return PhiDefaults.size() == Other.PhiDefaults.size();
1582   }
1583 
1584   void print(raw_ostream &OS) const {
1585     OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
1586        << *Source->getParent();
1587   }
1588 
1589 private:
1590   bool isRegInLoop(MachineOperand *MO) {
1591     return MO->isReg() && MO->getReg().isVirtual() &&
1592            MRI.getVRegDef(MO->getReg())->getParent() == BB;
1593   }
1594 };
1595 } // namespace
1596 
1597 MachineBasicBlock *
1598 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) {
1599   MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII);
1600   if (LPD == LPD_Front)
1601     PeeledFront.push_back(NewBB);
1602   else
1603     PeeledBack.push_front(NewBB);
1604   for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator();
1605        ++I, ++NI) {
1606     CanonicalMIs[&*I] = &*I;
1607     CanonicalMIs[&*NI] = &*I;
1608     BlockMIs[{NewBB, &*I}] = &*NI;
1609     BlockMIs[{BB, &*I}] = &*I;
1610   }
1611   return NewBB;
1612 }
1613 
1614 void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB,
1615                                                        int MinStage) {
1616   for (auto I = MB->getFirstInstrTerminator()->getReverseIterator();
1617        I != std::next(MB->getFirstNonPHI()->getReverseIterator());) {
1618     MachineInstr *MI = &*I++;
1619     int Stage = getStage(MI);
1620     if (Stage == -1 || Stage >= MinStage)
1621       continue;
1622 
1623     for (MachineOperand &DefMO : MI->defs()) {
1624       SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1625       for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1626         // Only PHIs can use values from this block by construction.
1627         // Match with the equivalent PHI in B.
1628         assert(UseMI.isPHI());
1629         Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1630                                                MI->getParent());
1631         Subs.emplace_back(&UseMI, Reg);
1632       }
1633       for (auto &Sub : Subs)
1634         Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1635                                       *MRI.getTargetRegisterInfo());
1636     }
1637     if (LIS)
1638       LIS->RemoveMachineInstrFromMaps(*MI);
1639     MI->eraseFromParent();
1640   }
1641 }
1642 
1643 void PeelingModuloScheduleExpander::moveStageBetweenBlocks(
1644     MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) {
1645   auto InsertPt = DestBB->getFirstNonPHI();
1646   DenseMap<Register, Register> Remaps;
1647   for (MachineInstr &MI : llvm::make_early_inc_range(
1648            llvm::make_range(SourceBB->getFirstNonPHI(), SourceBB->end()))) {
1649     if (MI.isPHI()) {
1650       // This is an illegal PHI. If we move any instructions using an illegal
1651       // PHI, we need to create a legal Phi.
1652       if (getStage(&MI) != Stage) {
1653         // The legal Phi is not necessary if the illegal phi's stage
1654         // is being moved.
1655         Register PhiR = MI.getOperand(0).getReg();
1656         auto RC = MRI.getRegClass(PhiR);
1657         Register NR = MRI.createVirtualRegister(RC);
1658         MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(),
1659                                    DebugLoc(), TII->get(TargetOpcode::PHI), NR)
1660                                .addReg(PhiR)
1661                                .addMBB(SourceBB);
1662         BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI;
1663         CanonicalMIs[NI] = CanonicalMIs[&MI];
1664         Remaps[PhiR] = NR;
1665       }
1666     }
1667     if (getStage(&MI) != Stage)
1668       continue;
1669     MI.removeFromParent();
1670     DestBB->insert(InsertPt, &MI);
1671     auto *KernelMI = CanonicalMIs[&MI];
1672     BlockMIs[{DestBB, KernelMI}] = &MI;
1673     BlockMIs.erase({SourceBB, KernelMI});
1674   }
1675   SmallVector<MachineInstr *, 4> PhiToDelete;
1676   for (MachineInstr &MI : DestBB->phis()) {
1677     assert(MI.getNumOperands() == 3);
1678     MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg());
1679     // If the instruction referenced by the phi is moved inside the block
1680     // we don't need the phi anymore.
1681     if (getStage(Def) == Stage) {
1682       Register PhiReg = MI.getOperand(0).getReg();
1683       assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg(),
1684                                             /*TRI=*/nullptr) != -1);
1685       MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
1686       MI.getOperand(0).setReg(PhiReg);
1687       PhiToDelete.push_back(&MI);
1688     }
1689   }
1690   for (auto *P : PhiToDelete)
1691     P->eraseFromParent();
1692   InsertPt = DestBB->getFirstNonPHI();
1693   // Helper to clone Phi instructions into the destination block. We clone Phi
1694   // greedily to avoid combinatorial explosion of Phi instructions.
1695   auto clonePhi = [&](MachineInstr *Phi) {
1696     MachineInstr *NewMI = MF.CloneMachineInstr(Phi);
1697     DestBB->insert(InsertPt, NewMI);
1698     Register OrigR = Phi->getOperand(0).getReg();
1699     Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR));
1700     NewMI->getOperand(0).setReg(R);
1701     NewMI->getOperand(1).setReg(OrigR);
1702     NewMI->getOperand(2).setMBB(*DestBB->pred_begin());
1703     Remaps[OrigR] = R;
1704     CanonicalMIs[NewMI] = CanonicalMIs[Phi];
1705     BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI;
1706     PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi];
1707     return R;
1708   };
1709   for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) {
1710     for (MachineOperand &MO : I->uses()) {
1711       if (!MO.isReg())
1712         continue;
1713       if (Remaps.count(MO.getReg()))
1714         MO.setReg(Remaps[MO.getReg()]);
1715       else {
1716         // If we are using a phi from the source block we need to add a new phi
1717         // pointing to the old one.
1718         MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg());
1719         if (Use && Use->isPHI() && Use->getParent() == SourceBB) {
1720           Register R = clonePhi(Use);
1721           MO.setReg(R);
1722         }
1723       }
1724     }
1725   }
1726 }
1727 
1728 Register
1729 PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi,
1730                                                   MachineInstr *Phi) {
1731   unsigned distance = PhiNodeLoopIteration[Phi];
1732   MachineInstr *CanonicalUse = CanonicalPhi;
1733   Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg();
1734   for (unsigned I = 0; I < distance; ++I) {
1735     assert(CanonicalUse->isPHI());
1736     assert(CanonicalUse->getNumOperands() == 5);
1737     unsigned LoopRegIdx = 3, InitRegIdx = 1;
1738     if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent())
1739       std::swap(LoopRegIdx, InitRegIdx);
1740     CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg();
1741     CanonicalUse = MRI.getVRegDef(CanonicalUseReg);
1742   }
1743   return CanonicalUseReg;
1744 }
1745 
1746 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() {
1747   BitVector LS(Schedule.getNumStages(), true);
1748   BitVector AS(Schedule.getNumStages(), true);
1749   LiveStages[BB] = LS;
1750   AvailableStages[BB] = AS;
1751 
1752   // Peel out the prologs.
1753   LS.reset();
1754   for (int I = 0; I < Schedule.getNumStages() - 1; ++I) {
1755     LS[I] = true;
1756     Prologs.push_back(peelKernel(LPD_Front));
1757     LiveStages[Prologs.back()] = LS;
1758     AvailableStages[Prologs.back()] = LS;
1759   }
1760 
1761   // Create a block that will end up as the new loop exiting block (dominated by
1762   // all prologs and epilogs). It will only contain PHIs, in the same order as
1763   // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property
1764   // that the exiting block is a (sub) clone of BB. This in turn gives us the
1765   // property that any value deffed in BB but used outside of BB is used by a
1766   // PHI in the exiting block.
1767   MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock();
1768   EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1769   // Push out the epilogs, again in reverse order.
1770   // We can't assume anything about the minumum loop trip count at this point,
1771   // so emit a fairly complex epilog.
1772 
1773   // We first peel number of stages minus one epilogue. Then we remove dead
1774   // stages and reorder instructions based on their stage. If we have 3 stages
1775   // we generate first:
1776   // E0[3, 2, 1]
1777   // E1[3', 2']
1778   // E2[3'']
1779   // And then we move instructions based on their stages to have:
1780   // E0[3]
1781   // E1[2, 3']
1782   // E2[1, 2', 3'']
1783   // The transformation is legal because we only move instructions past
1784   // instructions of a previous loop iteration.
1785   for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) {
1786     Epilogs.push_back(peelKernel(LPD_Back));
1787     MachineBasicBlock *B = Epilogs.back();
1788     filterInstructions(B, Schedule.getNumStages() - I);
1789     // Keep track at which iteration each phi belongs to. We need it to know
1790     // what version of the variable to use during prologue/epilogue stitching.
1791     EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1792     for (MachineInstr &Phi : B->phis())
1793       PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I;
1794   }
1795   for (size_t I = 0; I < Epilogs.size(); I++) {
1796     LS.reset();
1797     for (size_t J = I; J < Epilogs.size(); J++) {
1798       int Iteration = J;
1799       unsigned Stage = Schedule.getNumStages() - 1 + I - J;
1800       // Move stage one block at a time so that Phi nodes are updated correctly.
1801       for (size_t K = Iteration; K > I; K--)
1802         moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage);
1803       LS[Stage] = true;
1804     }
1805     LiveStages[Epilogs[I]] = LS;
1806     AvailableStages[Epilogs[I]] = AS;
1807   }
1808 
1809   // Now we've defined all the prolog and epilog blocks as a fallthrough
1810   // sequence, add the edges that will be followed if the loop trip count is
1811   // lower than the number of stages (connecting prologs directly with epilogs).
1812   auto PI = Prologs.begin();
1813   auto EI = Epilogs.begin();
1814   assert(Prologs.size() == Epilogs.size());
1815   for (; PI != Prologs.end(); ++PI, ++EI) {
1816     MachineBasicBlock *Pred = *(*EI)->pred_begin();
1817     (*PI)->addSuccessor(*EI);
1818     for (MachineInstr &MI : (*EI)->phis()) {
1819       Register Reg = MI.getOperand(1).getReg();
1820       MachineInstr *Use = MRI.getUniqueVRegDef(Reg);
1821       if (Use && Use->getParent() == Pred) {
1822         MachineInstr *CanonicalUse = CanonicalMIs[Use];
1823         if (CanonicalUse->isPHI()) {
1824           // If the use comes from a phi we need to skip as many phi as the
1825           // distance between the epilogue and the kernel. Trace through the phi
1826           // chain to find the right value.
1827           Reg = getPhiCanonicalReg(CanonicalUse, Use);
1828         }
1829         Reg = getEquivalentRegisterIn(Reg, *PI);
1830       }
1831       MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false));
1832       MI.addOperand(MachineOperand::CreateMBB(*PI));
1833     }
1834   }
1835 
1836   // Create a list of all blocks in order.
1837   SmallVector<MachineBasicBlock *, 8> Blocks;
1838   llvm::copy(PeeledFront, std::back_inserter(Blocks));
1839   Blocks.push_back(BB);
1840   llvm::copy(PeeledBack, std::back_inserter(Blocks));
1841 
1842   // Iterate in reverse order over all instructions, remapping as we go.
1843   for (MachineBasicBlock *B : reverse(Blocks)) {
1844     for (auto I = B->instr_rbegin();
1845          I != std::next(B->getFirstNonPHI()->getReverseIterator());) {
1846       MachineBasicBlock::reverse_instr_iterator MI = I++;
1847       rewriteUsesOf(&*MI);
1848     }
1849   }
1850   for (auto *MI : IllegalPhisToDelete) {
1851     if (LIS)
1852       LIS->RemoveMachineInstrFromMaps(*MI);
1853     MI->eraseFromParent();
1854   }
1855   IllegalPhisToDelete.clear();
1856 
1857   // Now all remapping has been done, we're free to optimize the generated code.
1858   for (MachineBasicBlock *B : reverse(Blocks))
1859     EliminateDeadPhis(B, MRI, LIS);
1860   EliminateDeadPhis(ExitingBB, MRI, LIS);
1861 }
1862 
1863 MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() {
1864   MachineFunction &MF = *BB->getParent();
1865   MachineBasicBlock *Exit = *BB->succ_begin();
1866   if (Exit == BB)
1867     Exit = *std::next(BB->succ_begin());
1868 
1869   MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
1870   MF.insert(std::next(BB->getIterator()), NewBB);
1871 
1872   // Clone all phis in BB into NewBB and rewrite.
1873   for (MachineInstr &MI : BB->phis()) {
1874     auto RC = MRI.getRegClass(MI.getOperand(0).getReg());
1875     Register OldR = MI.getOperand(3).getReg();
1876     Register R = MRI.createVirtualRegister(RC);
1877     SmallVector<MachineInstr *, 4> Uses;
1878     for (MachineInstr &Use : MRI.use_instructions(OldR))
1879       if (Use.getParent() != BB)
1880         Uses.push_back(&Use);
1881     for (MachineInstr *Use : Uses)
1882       Use->substituteRegister(OldR, R, /*SubIdx=*/0,
1883                               *MRI.getTargetRegisterInfo());
1884     MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1885         .addReg(OldR)
1886         .addMBB(BB);
1887     BlockMIs[{NewBB, &MI}] = NI;
1888     CanonicalMIs[NI] = &MI;
1889   }
1890   BB->replaceSuccessor(Exit, NewBB);
1891   Exit->replacePhiUsesWith(BB, NewBB);
1892   NewBB->addSuccessor(Exit);
1893 
1894   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1895   SmallVector<MachineOperand, 4> Cond;
1896   bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond);
1897   (void)CanAnalyzeBr;
1898   assert(CanAnalyzeBr && "Must be able to analyze the loop branch!");
1899   TII->removeBranch(*BB);
1900   TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB,
1901                     Cond, DebugLoc());
1902   TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc());
1903   return NewBB;
1904 }
1905 
1906 Register
1907 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg,
1908                                                        MachineBasicBlock *BB) {
1909   MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
1910   unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg, /*TRI=*/nullptr);
1911   return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg();
1912 }
1913 
1914 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) {
1915   if (MI->isPHI()) {
1916     // This is an illegal PHI. The loop-carried (desired) value is operand 3,
1917     // and it is produced by this block.
1918     Register PhiR = MI->getOperand(0).getReg();
1919     Register R = MI->getOperand(3).getReg();
1920     int RMIStage = getStage(MRI.getUniqueVRegDef(R));
1921     if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage))
1922       R = MI->getOperand(1).getReg();
1923     MRI.setRegClass(R, MRI.getRegClass(PhiR));
1924     MRI.replaceRegWith(PhiR, R);
1925     // Postpone deleting the Phi as it may be referenced by BlockMIs and used
1926     // later to figure out how to remap registers.
1927     MI->getOperand(0).setReg(PhiR);
1928     IllegalPhisToDelete.push_back(MI);
1929     return;
1930   }
1931 
1932   int Stage = getStage(MI);
1933   if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 ||
1934       LiveStages[MI->getParent()].test(Stage))
1935     // Instruction is live, no rewriting to do.
1936     return;
1937 
1938   for (MachineOperand &DefMO : MI->defs()) {
1939     SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1940     for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1941       // Only PHIs can use values from this block by construction.
1942       // Match with the equivalent PHI in B.
1943       assert(UseMI.isPHI());
1944       Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1945                                              MI->getParent());
1946       Subs.emplace_back(&UseMI, Reg);
1947     }
1948     for (auto &Sub : Subs)
1949       Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1950                                     *MRI.getTargetRegisterInfo());
1951   }
1952   if (LIS)
1953     LIS->RemoveMachineInstrFromMaps(*MI);
1954   MI->eraseFromParent();
1955 }
1956 
1957 void PeelingModuloScheduleExpander::fixupBranches() {
1958   // Work outwards from the kernel.
1959   bool KernelDisposed = false;
1960   int TC = Schedule.getNumStages() - 1;
1961   for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend();
1962        ++PI, ++EI, --TC) {
1963     MachineBasicBlock *Prolog = *PI;
1964     MachineBasicBlock *Fallthrough = *Prolog->succ_begin();
1965     MachineBasicBlock *Epilog = *EI;
1966     SmallVector<MachineOperand, 4> Cond;
1967     TII->removeBranch(*Prolog);
1968     std::optional<bool> StaticallyGreater =
1969         LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond);
1970     if (!StaticallyGreater) {
1971       LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n");
1972       // Dynamically branch based on Cond.
1973       TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc());
1974     } else if (*StaticallyGreater == false) {
1975       LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n");
1976       // Prolog never falls through; branch to epilog and orphan interior
1977       // blocks. Leave it to unreachable-block-elim to clean up.
1978       Prolog->removeSuccessor(Fallthrough);
1979       for (MachineInstr &P : Fallthrough->phis()) {
1980         P.removeOperand(2);
1981         P.removeOperand(1);
1982       }
1983       TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc());
1984       KernelDisposed = true;
1985     } else {
1986       LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n");
1987       // Prolog always falls through; remove incoming values in epilog.
1988       Prolog->removeSuccessor(Epilog);
1989       for (MachineInstr &P : Epilog->phis()) {
1990         P.removeOperand(4);
1991         P.removeOperand(3);
1992       }
1993     }
1994   }
1995 
1996   if (!KernelDisposed) {
1997     LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1));
1998     LoopInfo->setPreheader(Prologs.back());
1999   } else {
2000     LoopInfo->disposed();
2001   }
2002 }
2003 
2004 void PeelingModuloScheduleExpander::rewriteKernel() {
2005   KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
2006   KR.rewrite();
2007 }
2008 
2009 void PeelingModuloScheduleExpander::expand() {
2010   BB = Schedule.getLoop()->getTopBlock();
2011   Preheader = Schedule.getLoop()->getLoopPreheader();
2012   LLVM_DEBUG(Schedule.dump());
2013   LoopInfo = TII->analyzeLoopForPipelining(BB);
2014   assert(LoopInfo);
2015 
2016   rewriteKernel();
2017   peelPrologAndEpilogs();
2018   fixupBranches();
2019 }
2020 
2021 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
2022   BB = Schedule.getLoop()->getTopBlock();
2023   Preheader = Schedule.getLoop()->getLoopPreheader();
2024 
2025   // Dump the schedule before we invalidate and remap all its instructions.
2026   // Stash it in a string so we can print it if we found an error.
2027   std::string ScheduleDump;
2028   raw_string_ostream OS(ScheduleDump);
2029   Schedule.print(OS);
2030   OS.flush();
2031 
2032   // First, run the normal ModuleScheduleExpander. We don't support any
2033   // InstrChanges.
2034   assert(LIS && "Requires LiveIntervals!");
2035   ModuloScheduleExpander MSE(MF, Schedule, *LIS,
2036                              ModuloScheduleExpander::InstrChangesTy());
2037   MSE.expand();
2038   MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
2039   if (!ExpandedKernel) {
2040     // The expander optimized away the kernel. We can't do any useful checking.
2041     MSE.cleanup();
2042     return;
2043   }
2044   // Before running the KernelRewriter, re-add BB into the CFG.
2045   Preheader->addSuccessor(BB);
2046 
2047   // Now run the new expansion algorithm.
2048   KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
2049   KR.rewrite();
2050   peelPrologAndEpilogs();
2051 
2052   // Collect all illegal phis that the new algorithm created. We'll give these
2053   // to KernelOperandInfo.
2054   SmallPtrSet<MachineInstr *, 4> IllegalPhis;
2055   for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
2056     if (NI->isPHI())
2057       IllegalPhis.insert(&*NI);
2058   }
2059 
2060   // Co-iterate across both kernels. We expect them to be identical apart from
2061   // phis and full COPYs (we look through both).
2062   SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
2063   auto OI = ExpandedKernel->begin();
2064   auto NI = BB->begin();
2065   for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
2066     while (OI->isPHI() || OI->isFullCopy())
2067       ++OI;
2068     while (NI->isPHI() || NI->isFullCopy())
2069       ++NI;
2070     assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!");
2071     // Analyze every operand separately.
2072     for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
2073          OOpI != OI->operands_end(); ++OOpI, ++NOpI)
2074       KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
2075                         KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
2076   }
2077 
2078   bool Failed = false;
2079   for (auto &OldAndNew : KOIs) {
2080     if (OldAndNew.first == OldAndNew.second)
2081       continue;
2082     Failed = true;
2083     errs() << "Modulo kernel validation error: [\n";
2084     errs() << " [golden] ";
2085     OldAndNew.first.print(errs());
2086     errs() << "          ";
2087     OldAndNew.second.print(errs());
2088     errs() << "]\n";
2089   }
2090 
2091   if (Failed) {
2092     errs() << "Golden reference kernel:\n";
2093     ExpandedKernel->print(errs());
2094     errs() << "New kernel:\n";
2095     BB->print(errs());
2096     errs() << ScheduleDump;
2097     report_fatal_error(
2098         "Modulo kernel validation (-pipeliner-experimental-cg) failed");
2099   }
2100 
2101   // Cleanup by removing BB from the CFG again as the original
2102   // ModuloScheduleExpander intended.
2103   Preheader->removeSuccessor(BB);
2104   MSE.cleanup();
2105 }
2106 
2107 MachineInstr *ModuloScheduleExpanderMVE::cloneInstr(MachineInstr *OldMI) {
2108   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
2109 
2110   // TODO: Offset information needs to be corrected.
2111   NewMI->dropMemRefs(MF);
2112 
2113   return NewMI;
2114 }
2115 
2116 /// Create a dedicated exit for Loop. Exit is the original exit for Loop.
2117 /// If it is already dedicated exit, return it. Otherwise, insert a new
2118 /// block between them and return the new block.
2119 static MachineBasicBlock *createDedicatedExit(MachineBasicBlock *Loop,
2120                                               MachineBasicBlock *Exit) {
2121   if (Exit->pred_size() == 1)
2122     return Exit;
2123 
2124   MachineFunction *MF = Loop->getParent();
2125   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
2126 
2127   MachineBasicBlock *NewExit =
2128       MF->CreateMachineBasicBlock(Loop->getBasicBlock());
2129   MF->insert(Loop->getIterator(), NewExit);
2130 
2131   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2132   SmallVector<MachineOperand, 4> Cond;
2133   TII->analyzeBranch(*Loop, TBB, FBB, Cond);
2134   if (TBB == Loop)
2135     FBB = NewExit;
2136   else if (FBB == Loop)
2137     TBB = NewExit;
2138   else
2139     llvm_unreachable("unexpected loop structure");
2140   TII->removeBranch(*Loop);
2141   TII->insertBranch(*Loop, TBB, FBB, Cond, DebugLoc());
2142   Loop->replaceSuccessor(Exit, NewExit);
2143   TII->insertUnconditionalBranch(*NewExit, Exit, DebugLoc());
2144   NewExit->addSuccessor(Exit);
2145 
2146   Exit->replacePhiUsesWith(Loop, NewExit);
2147 
2148   return NewExit;
2149 }
2150 
2151 /// Insert branch code into the end of MBB. It branches to GreaterThan if the
2152 /// remaining trip count for instructions in LastStage0Insts is greater than
2153 /// RequiredTC, and to Otherwise otherwise.
2154 void ModuloScheduleExpanderMVE::insertCondBranch(MachineBasicBlock &MBB,
2155                                                  int RequiredTC,
2156                                                  InstrMapTy &LastStage0Insts,
2157                                                  MachineBasicBlock &GreaterThan,
2158                                                  MachineBasicBlock &Otherwise) {
2159   SmallVector<MachineOperand, 4> Cond;
2160   LoopInfo->createRemainingIterationsGreaterCondition(RequiredTC, MBB, Cond,
2161                                                       LastStage0Insts);
2162 
2163   if (SwapBranchTargetsMVE) {
2164     // Set SwapBranchTargetsMVE to true if a target prefers to replace TBB and
2165     // FBB for optimal performance.
2166     if (TII->reverseBranchCondition(Cond))
2167       llvm_unreachable("can not reverse branch condition");
2168     TII->insertBranch(MBB, &Otherwise, &GreaterThan, Cond, DebugLoc());
2169   } else {
2170     TII->insertBranch(MBB, &GreaterThan, &Otherwise, Cond, DebugLoc());
2171   }
2172 }
2173 
2174 /// Generate a pipelined loop that is unrolled by using MVE algorithm and any
2175 /// other necessary blocks. The control flow is modified to execute the
2176 /// pipelined loop if the trip count satisfies the condition, otherwise the
2177 /// original loop. The original loop is also used to execute the remainder
2178 /// iterations which occur due to unrolling.
2179 void ModuloScheduleExpanderMVE::generatePipelinedLoop() {
2180   // The control flow for pipelining with MVE:
2181   //
2182   // OrigPreheader:
2183   //   // The block that is originally the loop preheader
2184   //   goto Check
2185   //
2186   // Check:
2187   //   // Check whether the trip count satisfies the requirements to pipeline.
2188   //   if (LoopCounter > NumStages + NumUnroll - 2)
2189   //     // The minimum number of iterations to pipeline =
2190   //     //   iterations executed in prolog/epilog (NumStages-1) +
2191   //     //   iterations executed in one kernel run (NumUnroll)
2192   //     goto Prolog
2193   //   // fallback to the original loop
2194   //   goto NewPreheader
2195   //
2196   // Prolog:
2197   //   // All prolog stages. There are no direct branches to the epilogue.
2198   //   goto NewKernel
2199   //
2200   // NewKernel:
2201   //   // NumUnroll copies of the kernel
2202   //   if (LoopCounter > MVE-1)
2203   //     goto NewKernel
2204   //   goto Epilog
2205   //
2206   // Epilog:
2207   //   // All epilog stages.
2208   //   if (LoopCounter > 0)
2209   //     // The remainder is executed in the original loop
2210   //     goto NewPreheader
2211   //   goto NewExit
2212   //
2213   // NewPreheader:
2214   //   // Newly created preheader for the original loop.
2215   //   // The initial values of the phis in the loop are merged from two paths.
2216   //   NewInitVal = Phi OrigInitVal, Check, PipelineLastVal, Epilog
2217   //   goto OrigKernel
2218   //
2219   // OrigKernel:
2220   //   // The original loop block.
2221   //   if (LoopCounter != 0)
2222   //     goto OrigKernel
2223   //   goto NewExit
2224   //
2225   // NewExit:
2226   //   // Newly created dedicated exit for the original loop.
2227   //   // Merge values which are referenced after the loop
2228   //   Merged = Phi OrigVal, OrigKernel, PipelineVal, Epilog
2229   //   goto OrigExit
2230   //
2231   // OrigExit:
2232   //   // The block that is originally the loop exit.
2233   //   // If it is already deicated exit, NewExit is not created.
2234 
2235   // An example of where each stage is executed:
2236   // Assume #Stages 3, #MVE 4, #Iterations 12
2237   // Iter   0 1 2 3 4 5 6 7 8 9 10-11
2238   // -------------------------------------------------
2239   // Stage  0                          Prolog#0
2240   // Stage  1 0                        Prolog#1
2241   // Stage  2 1 0                      Kernel Unroll#0 Iter#0
2242   // Stage    2 1 0                    Kernel Unroll#1 Iter#0
2243   // Stage      2 1 0                  Kernel Unroll#2 Iter#0
2244   // Stage        2 1 0                Kernel Unroll#3 Iter#0
2245   // Stage          2 1 0              Kernel Unroll#0 Iter#1
2246   // Stage            2 1 0            Kernel Unroll#1 Iter#1
2247   // Stage              2 1 0          Kernel Unroll#2 Iter#1
2248   // Stage                2 1 0        Kernel Unroll#3 Iter#1
2249   // Stage                  2 1        Epilog#0
2250   // Stage                    2        Epilog#1
2251   // Stage                      0-2    OrigKernel
2252 
2253   LoopInfo = TII->analyzeLoopForPipelining(OrigKernel);
2254   assert(LoopInfo && "Must be able to analyze loop!");
2255 
2256   calcNumUnroll();
2257 
2258   Check = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock());
2259   Prolog = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock());
2260   NewKernel = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock());
2261   Epilog = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock());
2262   NewPreheader = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock());
2263 
2264   MF.insert(OrigKernel->getIterator(), Check);
2265   MF.insert(OrigKernel->getIterator(), Prolog);
2266   MF.insert(OrigKernel->getIterator(), NewKernel);
2267   MF.insert(OrigKernel->getIterator(), Epilog);
2268   MF.insert(OrigKernel->getIterator(), NewPreheader);
2269 
2270   NewExit = createDedicatedExit(OrigKernel, OrigExit);
2271 
2272   NewPreheader->transferSuccessorsAndUpdatePHIs(OrigPreheader);
2273   TII->insertUnconditionalBranch(*NewPreheader, OrigKernel, DebugLoc());
2274 
2275   OrigPreheader->addSuccessor(Check);
2276   TII->removeBranch(*OrigPreheader);
2277   TII->insertUnconditionalBranch(*OrigPreheader, Check, DebugLoc());
2278 
2279   Check->addSuccessor(Prolog);
2280   Check->addSuccessor(NewPreheader);
2281 
2282   Prolog->addSuccessor(NewKernel);
2283 
2284   NewKernel->addSuccessor(NewKernel);
2285   NewKernel->addSuccessor(Epilog);
2286 
2287   Epilog->addSuccessor(NewPreheader);
2288   Epilog->addSuccessor(NewExit);
2289 
2290   InstrMapTy LastStage0Insts;
2291   insertCondBranch(*Check, Schedule.getNumStages() + NumUnroll - 2,
2292                    LastStage0Insts, *Prolog, *NewPreheader);
2293 
2294   // VRMaps map (prolog/kernel/epilog phase#, original register#) to new
2295   // register#
2296   SmallVector<ValueMapTy> PrologVRMap, KernelVRMap, EpilogVRMap;
2297   generateProlog(PrologVRMap);
2298   generateKernel(PrologVRMap, KernelVRMap, LastStage0Insts);
2299   generateEpilog(KernelVRMap, EpilogVRMap, LastStage0Insts);
2300 }
2301 
2302 /// Replace MI's use operands according to the maps.
2303 void ModuloScheduleExpanderMVE::updateInstrUse(
2304     MachineInstr *MI, int StageNum, int PhaseNum,
2305     SmallVectorImpl<ValueMapTy> &CurVRMap,
2306     SmallVectorImpl<ValueMapTy> *PrevVRMap) {
2307   // If MI is in the prolog/kernel/epilog block, CurVRMap is
2308   // PrologVRMap/KernelVRMap/EpilogVRMap respectively.
2309   // PrevVRMap is nullptr/PhiVRMap/KernelVRMap respectively.
2310   // Refer to the appropriate map according to the stage difference between
2311   // MI and the definition of an operand.
2312 
2313   for (MachineOperand &UseMO : MI->uses()) {
2314     if (!UseMO.isReg() || !UseMO.getReg().isVirtual())
2315       continue;
2316     int DiffStage = 0;
2317     Register OrigReg = UseMO.getReg();
2318     MachineInstr *DefInst = MRI.getVRegDef(OrigReg);
2319     if (!DefInst || DefInst->getParent() != OrigKernel)
2320       continue;
2321     unsigned InitReg = 0;
2322     unsigned DefReg = OrigReg;
2323     if (DefInst->isPHI()) {
2324       ++DiffStage;
2325       unsigned LoopReg;
2326       getPhiRegs(*DefInst, OrigKernel, InitReg, LoopReg);
2327       // LoopReg is guaranteed to be defined within the loop by canApply()
2328       DefReg = LoopReg;
2329       DefInst = MRI.getVRegDef(LoopReg);
2330     }
2331     unsigned DefStageNum = Schedule.getStage(DefInst);
2332     DiffStage += StageNum - DefStageNum;
2333     Register NewReg;
2334     if (PhaseNum >= DiffStage && CurVRMap[PhaseNum - DiffStage].count(DefReg))
2335       // NewReg is defined in a previous phase of the same block
2336       NewReg = CurVRMap[PhaseNum - DiffStage][DefReg];
2337     else if (!PrevVRMap)
2338       // Since this is the first iteration, refer the initial register of the
2339       // loop
2340       NewReg = InitReg;
2341     else
2342       // Cases where DiffStage is larger than PhaseNum.
2343       // If MI is in the kernel block, the value is defined by the previous
2344       // iteration and PhiVRMap is referenced. If MI is in the epilog block, the
2345       // value is defined in the kernel block and KernelVRMap is referenced.
2346       NewReg = (*PrevVRMap)[PrevVRMap->size() - (DiffStage - PhaseNum)][DefReg];
2347 
2348     const TargetRegisterClass *NRC =
2349         MRI.constrainRegClass(NewReg, MRI.getRegClass(OrigReg));
2350     if (NRC)
2351       UseMO.setReg(NewReg);
2352     else {
2353       Register SplitReg = MRI.createVirtualRegister(MRI.getRegClass(OrigReg));
2354       BuildMI(*OrigKernel, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY),
2355               SplitReg)
2356           .addReg(NewReg);
2357       UseMO.setReg(SplitReg);
2358     }
2359   }
2360 }
2361 
2362 /// Return a phi if Reg is referenced by the phi.
2363 /// canApply() guarantees that at most only one such phi exists.
2364 static MachineInstr *getLoopPhiUser(Register Reg, MachineBasicBlock *Loop) {
2365   for (MachineInstr &Phi : Loop->phis()) {
2366     unsigned InitVal, LoopVal;
2367     getPhiRegs(Phi, Loop, InitVal, LoopVal);
2368     if (LoopVal == Reg)
2369       return &Phi;
2370   }
2371   return nullptr;
2372 }
2373 
2374 /// Generate phis for registers defined by OrigMI.
2375 void ModuloScheduleExpanderMVE::generatePhi(
2376     MachineInstr *OrigMI, int UnrollNum,
2377     SmallVectorImpl<ValueMapTy> &PrologVRMap,
2378     SmallVectorImpl<ValueMapTy> &KernelVRMap,
2379     SmallVectorImpl<ValueMapTy> &PhiVRMap) {
2380   int StageNum = Schedule.getStage(OrigMI);
2381   bool UsePrologReg;
2382   if (Schedule.getNumStages() - NumUnroll + UnrollNum - 1 >= StageNum)
2383     UsePrologReg = true;
2384   else if (Schedule.getNumStages() - NumUnroll + UnrollNum == StageNum)
2385     UsePrologReg = false;
2386   else
2387     return;
2388 
2389   // Examples that show which stages are merged by phi.
2390   // Meaning of the symbol following the stage number:
2391   //   a/b: Stages with the same letter are merged (UsePrologReg == true)
2392   //   +: Merged with the initial value (UsePrologReg == false)
2393   //   *: No phis required
2394   //
2395   // #Stages 3, #MVE 4
2396   // Iter   0 1 2 3 4 5 6 7 8
2397   // -----------------------------------------
2398   // Stage  0a                 Prolog#0
2399   // Stage  1a 0b              Prolog#1
2400   // Stage  2* 1* 0*           Kernel Unroll#0
2401   // Stage     2* 1* 0+        Kernel Unroll#1
2402   // Stage        2* 1+ 0a     Kernel Unroll#2
2403   // Stage           2+ 1a 0b  Kernel Unroll#3
2404   //
2405   // #Stages 3, #MVE 2
2406   // Iter   0 1 2 3 4 5 6 7 8
2407   // -----------------------------------------
2408   // Stage  0a                 Prolog#0
2409   // Stage  1a 0b              Prolog#1
2410   // Stage  2* 1+ 0a           Kernel Unroll#0
2411   // Stage     2+ 1a 0b        Kernel Unroll#1
2412   //
2413   // #Stages 3, #MVE 1
2414   // Iter   0 1 2 3 4 5 6 7 8
2415   // -----------------------------------------
2416   // Stage  0*                 Prolog#0
2417   // Stage  1a 0b              Prolog#1
2418   // Stage  2+ 1a 0b           Kernel Unroll#0
2419 
2420   for (MachineOperand &DefMO : OrigMI->defs()) {
2421     if (!DefMO.isReg() || DefMO.isDead())
2422       continue;
2423     Register OrigReg = DefMO.getReg();
2424     auto NewReg = KernelVRMap[UnrollNum].find(OrigReg);
2425     if (NewReg == KernelVRMap[UnrollNum].end())
2426       continue;
2427     Register CorrespondReg;
2428     if (UsePrologReg) {
2429       int PrologNum = Schedule.getNumStages() - NumUnroll + UnrollNum - 1;
2430       CorrespondReg = PrologVRMap[PrologNum][OrigReg];
2431     } else {
2432       MachineInstr *Phi = getLoopPhiUser(OrigReg, OrigKernel);
2433       if (!Phi)
2434         continue;
2435       CorrespondReg = getInitPhiReg(*Phi, OrigKernel);
2436     }
2437 
2438     assert(CorrespondReg.isValid());
2439     Register PhiReg = MRI.createVirtualRegister(MRI.getRegClass(OrigReg));
2440     BuildMI(*NewKernel, NewKernel->getFirstNonPHI(), DebugLoc(),
2441             TII->get(TargetOpcode::PHI), PhiReg)
2442         .addReg(NewReg->second)
2443         .addMBB(NewKernel)
2444         .addReg(CorrespondReg)
2445         .addMBB(Prolog);
2446     PhiVRMap[UnrollNum][OrigReg] = PhiReg;
2447   }
2448 }
2449 
2450 static void replacePhiSrc(MachineInstr &Phi, Register OrigReg, Register NewReg,
2451                           MachineBasicBlock *NewMBB) {
2452   for (unsigned Idx = 1; Idx < Phi.getNumOperands(); Idx += 2) {
2453     if (Phi.getOperand(Idx).getReg() == OrigReg) {
2454       Phi.getOperand(Idx).setReg(NewReg);
2455       Phi.getOperand(Idx + 1).setMBB(NewMBB);
2456       return;
2457     }
2458   }
2459 }
2460 
2461 /// Generate phis that merge values from multiple routes
2462 void ModuloScheduleExpanderMVE::mergeRegUsesAfterPipeline(Register OrigReg,
2463                                                           Register NewReg) {
2464   SmallVector<MachineOperand *> UsesAfterLoop;
2465   SmallVector<MachineInstr *> LoopPhis;
2466   for (MachineRegisterInfo::use_iterator I = MRI.use_begin(OrigReg),
2467                                          E = MRI.use_end();
2468        I != E; ++I) {
2469     MachineOperand &O = *I;
2470     if (O.getParent()->getParent() != OrigKernel &&
2471         O.getParent()->getParent() != Prolog &&
2472         O.getParent()->getParent() != NewKernel &&
2473         O.getParent()->getParent() != Epilog)
2474       UsesAfterLoop.push_back(&O);
2475     if (O.getParent()->getParent() == OrigKernel && O.getParent()->isPHI())
2476       LoopPhis.push_back(O.getParent());
2477   }
2478 
2479   // Merge the route that only execute the pipelined loop (when there are no
2480   // remaining iterations) with the route that execute the original loop.
2481   if (!UsesAfterLoop.empty()) {
2482     Register PhiReg = MRI.createVirtualRegister(MRI.getRegClass(OrigReg));
2483     BuildMI(*NewExit, NewExit->getFirstNonPHI(), DebugLoc(),
2484             TII->get(TargetOpcode::PHI), PhiReg)
2485         .addReg(OrigReg)
2486         .addMBB(OrigKernel)
2487         .addReg(NewReg)
2488         .addMBB(Epilog);
2489 
2490     for (MachineOperand *MO : UsesAfterLoop)
2491       MO->setReg(PhiReg);
2492 
2493     if (!LIS.hasInterval(PhiReg))
2494       LIS.createEmptyInterval(PhiReg);
2495   }
2496 
2497   // Merge routes from the pipelined loop and the bypassed route before the
2498   // original loop
2499   if (!LoopPhis.empty()) {
2500     for (MachineInstr *Phi : LoopPhis) {
2501       unsigned InitReg, LoopReg;
2502       getPhiRegs(*Phi, OrigKernel, InitReg, LoopReg);
2503       Register NewInit = MRI.createVirtualRegister(MRI.getRegClass(InitReg));
2504       BuildMI(*NewPreheader, NewPreheader->getFirstNonPHI(), Phi->getDebugLoc(),
2505               TII->get(TargetOpcode::PHI), NewInit)
2506           .addReg(InitReg)
2507           .addMBB(Check)
2508           .addReg(NewReg)
2509           .addMBB(Epilog);
2510       replacePhiSrc(*Phi, InitReg, NewInit, NewPreheader);
2511     }
2512   }
2513 }
2514 
2515 void ModuloScheduleExpanderMVE::generateProlog(
2516     SmallVectorImpl<ValueMapTy> &PrologVRMap) {
2517   PrologVRMap.clear();
2518   PrologVRMap.resize(Schedule.getNumStages() - 1);
2519   DenseMap<MachineInstr *, std::pair<int, int>> NewMIMap;
2520   for (int PrologNum = 0; PrologNum < Schedule.getNumStages() - 1;
2521        ++PrologNum) {
2522     for (MachineInstr *MI : Schedule.getInstructions()) {
2523       if (MI->isPHI())
2524         continue;
2525       int StageNum = Schedule.getStage(MI);
2526       if (StageNum > PrologNum)
2527         continue;
2528       MachineInstr *NewMI = cloneInstr(MI);
2529       updateInstrDef(NewMI, PrologVRMap[PrologNum], false);
2530       NewMIMap[NewMI] = {PrologNum, StageNum};
2531       Prolog->push_back(NewMI);
2532     }
2533   }
2534 
2535   for (auto I : NewMIMap) {
2536     MachineInstr *MI = I.first;
2537     int PrologNum = I.second.first;
2538     int StageNum = I.second.second;
2539     updateInstrUse(MI, StageNum, PrologNum, PrologVRMap, nullptr);
2540   }
2541 
2542   LLVM_DEBUG({
2543     dbgs() << "prolog:\n";
2544     Prolog->dump();
2545   });
2546 }
2547 
2548 void ModuloScheduleExpanderMVE::generateKernel(
2549     SmallVectorImpl<ValueMapTy> &PrologVRMap,
2550     SmallVectorImpl<ValueMapTy> &KernelVRMap, InstrMapTy &LastStage0Insts) {
2551   KernelVRMap.clear();
2552   KernelVRMap.resize(NumUnroll);
2553   SmallVector<ValueMapTy> PhiVRMap;
2554   PhiVRMap.resize(NumUnroll);
2555   DenseMap<MachineInstr *, std::pair<int, int>> NewMIMap;
2556   DenseMap<MachineInstr *, MachineInstr *> MIMapLastStage0;
2557   for (int UnrollNum = 0; UnrollNum < NumUnroll; ++UnrollNum) {
2558     for (MachineInstr *MI : Schedule.getInstructions()) {
2559       if (MI->isPHI())
2560         continue;
2561       int StageNum = Schedule.getStage(MI);
2562       MachineInstr *NewMI = cloneInstr(MI);
2563       if (UnrollNum == NumUnroll - 1)
2564         LastStage0Insts[MI] = NewMI;
2565       updateInstrDef(NewMI, KernelVRMap[UnrollNum],
2566                      (UnrollNum == NumUnroll - 1 && StageNum == 0));
2567       generatePhi(MI, UnrollNum, PrologVRMap, KernelVRMap, PhiVRMap);
2568       NewMIMap[NewMI] = {UnrollNum, StageNum};
2569       NewKernel->push_back(NewMI);
2570     }
2571   }
2572 
2573   for (auto I : NewMIMap) {
2574     MachineInstr *MI = I.first;
2575     int UnrollNum = I.second.first;
2576     int StageNum = I.second.second;
2577     updateInstrUse(MI, StageNum, UnrollNum, KernelVRMap, &PhiVRMap);
2578   }
2579 
2580   // If remaining trip count is greater than NumUnroll-1, loop continues
2581   insertCondBranch(*NewKernel, NumUnroll - 1, LastStage0Insts, *NewKernel,
2582                    *Epilog);
2583 
2584   LLVM_DEBUG({
2585     dbgs() << "kernel:\n";
2586     NewKernel->dump();
2587   });
2588 }
2589 
2590 void ModuloScheduleExpanderMVE::generateEpilog(
2591     SmallVectorImpl<ValueMapTy> &KernelVRMap,
2592     SmallVectorImpl<ValueMapTy> &EpilogVRMap, InstrMapTy &LastStage0Insts) {
2593   EpilogVRMap.clear();
2594   EpilogVRMap.resize(Schedule.getNumStages() - 1);
2595   DenseMap<MachineInstr *, std::pair<int, int>> NewMIMap;
2596   for (int EpilogNum = 0; EpilogNum < Schedule.getNumStages() - 1;
2597        ++EpilogNum) {
2598     for (MachineInstr *MI : Schedule.getInstructions()) {
2599       if (MI->isPHI())
2600         continue;
2601       int StageNum = Schedule.getStage(MI);
2602       if (StageNum <= EpilogNum)
2603         continue;
2604       MachineInstr *NewMI = cloneInstr(MI);
2605       updateInstrDef(NewMI, EpilogVRMap[EpilogNum], StageNum - 1 == EpilogNum);
2606       NewMIMap[NewMI] = {EpilogNum, StageNum};
2607       Epilog->push_back(NewMI);
2608     }
2609   }
2610 
2611   for (auto I : NewMIMap) {
2612     MachineInstr *MI = I.first;
2613     int EpilogNum = I.second.first;
2614     int StageNum = I.second.second;
2615     updateInstrUse(MI, StageNum, EpilogNum, EpilogVRMap, &KernelVRMap);
2616   }
2617 
2618   // If there are remaining iterations, they are executed in the original loop.
2619   // Instructions related to loop control, such as loop counter comparison,
2620   // are indicated by shouldIgnoreForPipelining() and are assumed to be placed
2621   // in stage 0. Thus, the map is for the last one in the kernel.
2622   insertCondBranch(*Epilog, 0, LastStage0Insts, *NewPreheader, *NewExit);
2623 
2624   LLVM_DEBUG({
2625     dbgs() << "epilog:\n";
2626     Epilog->dump();
2627   });
2628 }
2629 
2630 /// Calculate the number of unroll required and set it to NumUnroll
2631 void ModuloScheduleExpanderMVE::calcNumUnroll() {
2632   DenseMap<MachineInstr *, unsigned> Inst2Idx;
2633   NumUnroll = 1;
2634   for (unsigned I = 0; I < Schedule.getInstructions().size(); ++I)
2635     Inst2Idx[Schedule.getInstructions()[I]] = I;
2636 
2637   for (MachineInstr *MI : Schedule.getInstructions()) {
2638     if (MI->isPHI())
2639       continue;
2640     int StageNum = Schedule.getStage(MI);
2641     for (const MachineOperand &MO : MI->uses()) {
2642       if (!MO.isReg() || !MO.getReg().isVirtual())
2643         continue;
2644       MachineInstr *DefMI = MRI.getVRegDef(MO.getReg());
2645       if (DefMI->getParent() != OrigKernel)
2646         continue;
2647 
2648       int NumUnrollLocal = 1;
2649       if (DefMI->isPHI()) {
2650         ++NumUnrollLocal;
2651         // canApply() guarantees that DefMI is not phi and is an instruction in
2652         // the loop
2653         DefMI = MRI.getVRegDef(getLoopPhiReg(*DefMI, OrigKernel));
2654       }
2655       NumUnrollLocal += StageNum - Schedule.getStage(DefMI);
2656       if (Inst2Idx[MI] <= Inst2Idx[DefMI])
2657         --NumUnrollLocal;
2658       NumUnroll = std::max(NumUnroll, NumUnrollLocal);
2659     }
2660   }
2661   LLVM_DEBUG(dbgs() << "NumUnroll: " << NumUnroll << "\n");
2662 }
2663 
2664 /// Create new virtual registers for definitions of NewMI and update NewMI.
2665 /// If the definitions are referenced after the pipelined loop, phis are
2666 /// created to merge with other routes.
2667 void ModuloScheduleExpanderMVE::updateInstrDef(MachineInstr *NewMI,
2668                                                ValueMapTy &VRMap,
2669                                                bool LastDef) {
2670   for (MachineOperand &MO : NewMI->operands()) {
2671     if (!MO.isReg() || !MO.getReg().isVirtual() || !MO.isDef())
2672       continue;
2673     Register Reg = MO.getReg();
2674     const TargetRegisterClass *RC = MRI.getRegClass(Reg);
2675     Register NewReg = MRI.createVirtualRegister(RC);
2676     MO.setReg(NewReg);
2677     VRMap[Reg] = NewReg;
2678     if (LastDef)
2679       mergeRegUsesAfterPipeline(Reg, NewReg);
2680   }
2681 }
2682 
2683 void ModuloScheduleExpanderMVE::expand() {
2684   OrigKernel = Schedule.getLoop()->getTopBlock();
2685   OrigPreheader = Schedule.getLoop()->getLoopPreheader();
2686   OrigExit = Schedule.getLoop()->getExitBlock();
2687 
2688   LLVM_DEBUG(Schedule.dump());
2689 
2690   generatePipelinedLoop();
2691 }
2692 
2693 /// Check if ModuloScheduleExpanderMVE can be applied to L
2694 bool ModuloScheduleExpanderMVE::canApply(MachineLoop &L) {
2695   if (!L.getExitBlock()) {
2696     LLVM_DEBUG(
2697         dbgs() << "Can not apply MVE expander: No single exit block.\n";);
2698     return false;
2699   }
2700 
2701   MachineBasicBlock *BB = L.getTopBlock();
2702   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
2703 
2704   // Put some constraints on the operands of the phis to simplify the
2705   // transformation
2706   DenseSet<unsigned> UsedByPhi;
2707   for (MachineInstr &MI : BB->phis()) {
2708     // Registers defined by phis must be used only inside the loop and be never
2709     // used by phis.
2710     for (MachineOperand &MO : MI.defs())
2711       if (MO.isReg())
2712         for (MachineInstr &Ref : MRI.use_instructions(MO.getReg()))
2713           if (Ref.getParent() != BB || Ref.isPHI()) {
2714             LLVM_DEBUG(dbgs()
2715                            << "Can not apply MVE expander: A phi result is "
2716                               "referenced outside of the loop or by phi.\n";);
2717             return false;
2718           }
2719 
2720     // A source register from the loop block must be defined inside the loop.
2721     // A register defined inside the loop must be referenced by only one phi at
2722     // most.
2723     unsigned InitVal, LoopVal;
2724     getPhiRegs(MI, MI.getParent(), InitVal, LoopVal);
2725     if (!Register(LoopVal).isVirtual() ||
2726         MRI.getVRegDef(LoopVal)->getParent() != BB) {
2727       LLVM_DEBUG(
2728           dbgs() << "Can not apply MVE expander: A phi source value coming "
2729                     "from the loop is not defined in the loop.\n";);
2730       return false;
2731     }
2732     if (UsedByPhi.count(LoopVal)) {
2733       LLVM_DEBUG(dbgs() << "Can not apply MVE expander: A value defined in the "
2734                            "loop is referenced by two or more phis.\n";);
2735       return false;
2736     }
2737     UsedByPhi.insert(LoopVal);
2738   }
2739 
2740   return true;
2741 }
2742 
2743 //===----------------------------------------------------------------------===//
2744 // ModuloScheduleTestPass implementation
2745 //===----------------------------------------------------------------------===//
2746 // This pass constructs a ModuloSchedule from its module and runs
2747 // ModuloScheduleExpander.
2748 //
2749 // The module is expected to contain a single-block analyzable loop.
2750 // The total order of instructions is taken from the loop as-is.
2751 // Instructions are expected to be annotated with a PostInstrSymbol.
2752 // This PostInstrSymbol must have the following format:
2753 //  "Stage=%d Cycle=%d".
2754 //===----------------------------------------------------------------------===//
2755 
2756 namespace {
2757 class ModuloScheduleTest : public MachineFunctionPass {
2758 public:
2759   static char ID;
2760 
2761   ModuloScheduleTest() : MachineFunctionPass(ID) {
2762     initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
2763   }
2764 
2765   bool runOnMachineFunction(MachineFunction &MF) override;
2766   void runOnLoop(MachineFunction &MF, MachineLoop &L);
2767 
2768   void getAnalysisUsage(AnalysisUsage &AU) const override {
2769     AU.addRequired<MachineLoopInfoWrapperPass>();
2770     AU.addRequired<LiveIntervalsWrapperPass>();
2771     MachineFunctionPass::getAnalysisUsage(AU);
2772   }
2773 };
2774 } // namespace
2775 
2776 char ModuloScheduleTest::ID = 0;
2777 
2778 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",
2779                       "Modulo Schedule test pass", false, false)
2780 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
2781 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass)
2782 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",
2783                     "Modulo Schedule test pass", false, false)
2784 
2785 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
2786   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI();
2787   for (auto *L : MLI) {
2788     if (L->getTopBlock() != L->getBottomBlock())
2789       continue;
2790     runOnLoop(MF, *L);
2791     return false;
2792   }
2793   return false;
2794 }
2795 
2796 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
2797   std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
2798   std::pair<StringRef, StringRef> StageTokenAndValue =
2799       getToken(StageAndCycle.first, "-");
2800   std::pair<StringRef, StringRef> CycleTokenAndValue =
2801       getToken(StageAndCycle.second, "-");
2802   if (StageTokenAndValue.first != "Stage" ||
2803       CycleTokenAndValue.first != "_Cycle") {
2804     llvm_unreachable(
2805         "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
2806     return;
2807   }
2808 
2809   StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
2810   CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);
2811 
2812   dbgs() << "  Stage=" << Stage << ", Cycle=" << Cycle << "\n";
2813 }
2814 
2815 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
2816   LiveIntervals &LIS = getAnalysis<LiveIntervalsWrapperPass>().getLIS();
2817   MachineBasicBlock *BB = L.getTopBlock();
2818   dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";
2819 
2820   DenseMap<MachineInstr *, int> Cycle, Stage;
2821   std::vector<MachineInstr *> Instrs;
2822   for (MachineInstr &MI : *BB) {
2823     if (MI.isTerminator())
2824       continue;
2825     Instrs.push_back(&MI);
2826     if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
2827       dbgs() << "Parsing post-instr symbol for " << MI;
2828       parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
2829     }
2830   }
2831 
2832   ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
2833                     std::move(Stage));
2834   ModuloScheduleExpander MSE(
2835       MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
2836   MSE.expand();
2837   MSE.cleanup();
2838 }
2839 
2840 //===----------------------------------------------------------------------===//
2841 // ModuloScheduleTestAnnotater implementation
2842 //===----------------------------------------------------------------------===//
2843 
2844 void ModuloScheduleTestAnnotater::annotate() {
2845   for (MachineInstr *MI : S.getInstructions()) {
2846     SmallVector<char, 16> SV;
2847     raw_svector_ostream OS(SV);
2848     OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
2849     MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
2850     MI->setPostInstrSymbol(MF, Sym);
2851   }
2852 }
2853