1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/ModuloSchedule.h" 10 #include "llvm/ADT/StringExtras.h" 11 #include "llvm/Analysis/MemoryLocation.h" 12 #include "llvm/CodeGen/LiveIntervals.h" 13 #include "llvm/CodeGen/MachineInstrBuilder.h" 14 #include "llvm/CodeGen/MachineLoopInfo.h" 15 #include "llvm/CodeGen/MachineRegisterInfo.h" 16 #include "llvm/InitializePasses.h" 17 #include "llvm/MC/MCContext.h" 18 #include "llvm/Support/Debug.h" 19 #include "llvm/Support/ErrorHandling.h" 20 #include "llvm/Support/raw_ostream.h" 21 22 #define DEBUG_TYPE "pipeliner" 23 using namespace llvm; 24 25 static cl::opt<bool> SwapBranchTargetsMVE( 26 "pipeliner-swap-branch-targets-mve", cl::Hidden, cl::init(false), 27 cl::desc("Swap target blocks of a conditional branch for MVE expander")); 28 29 void ModuloSchedule::print(raw_ostream &OS) { 30 for (MachineInstr *MI : ScheduledInstrs) 31 OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI; 32 } 33 34 //===----------------------------------------------------------------------===// 35 // ModuloScheduleExpander implementation 36 //===----------------------------------------------------------------------===// 37 38 /// Return the register values for the operands of a Phi instruction. 39 /// This function assume the instruction is a Phi. 40 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 41 unsigned &InitVal, unsigned &LoopVal) { 42 assert(Phi.isPHI() && "Expecting a Phi."); 43 44 InitVal = 0; 45 LoopVal = 0; 46 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 47 if (Phi.getOperand(i + 1).getMBB() != Loop) 48 InitVal = Phi.getOperand(i).getReg(); 49 else 50 LoopVal = Phi.getOperand(i).getReg(); 51 52 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 53 } 54 55 /// Return the Phi register value that comes from the incoming block. 56 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 57 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 58 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 59 return Phi.getOperand(i).getReg(); 60 return 0; 61 } 62 63 /// Return the Phi register value that comes the loop block. 64 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 65 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 66 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 67 return Phi.getOperand(i).getReg(); 68 return 0; 69 } 70 71 void ModuloScheduleExpander::expand() { 72 BB = Schedule.getLoop()->getTopBlock(); 73 Preheader = *BB->pred_begin(); 74 if (Preheader == BB) 75 Preheader = *std::next(BB->pred_begin()); 76 77 // Iterate over the definitions in each instruction, and compute the 78 // stage difference for each use. Keep the maximum value. 79 for (MachineInstr *MI : Schedule.getInstructions()) { 80 int DefStage = Schedule.getStage(MI); 81 for (const MachineOperand &Op : MI->all_defs()) { 82 Register Reg = Op.getReg(); 83 unsigned MaxDiff = 0; 84 bool PhiIsSwapped = false; 85 for (MachineOperand &UseOp : MRI.use_operands(Reg)) { 86 MachineInstr *UseMI = UseOp.getParent(); 87 int UseStage = Schedule.getStage(UseMI); 88 unsigned Diff = 0; 89 if (UseStage != -1 && UseStage >= DefStage) 90 Diff = UseStage - DefStage; 91 if (MI->isPHI()) { 92 if (isLoopCarried(*MI)) 93 ++Diff; 94 else 95 PhiIsSwapped = true; 96 } 97 MaxDiff = std::max(Diff, MaxDiff); 98 } 99 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 100 } 101 } 102 103 generatePipelinedLoop(); 104 } 105 106 void ModuloScheduleExpander::generatePipelinedLoop() { 107 LoopInfo = TII->analyzeLoopForPipelining(BB); 108 assert(LoopInfo && "Must be able to analyze loop!"); 109 110 // Create a new basic block for the kernel and add it to the CFG. 111 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 112 113 unsigned MaxStageCount = Schedule.getNumStages() - 1; 114 115 // Remember the registers that are used in different stages. The index is 116 // the iteration, or stage, that the instruction is scheduled in. This is 117 // a map between register names in the original block and the names created 118 // in each stage of the pipelined loop. 119 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 120 121 // The renaming destination by Phis for the registers across stages. 122 // This map is updated during Phis generation to point to the most recent 123 // renaming destination. 124 ValueMapTy *VRMapPhi = new ValueMapTy[(MaxStageCount + 1) * 2]; 125 126 InstrMapTy InstrMap; 127 128 SmallVector<MachineBasicBlock *, 4> PrologBBs; 129 130 // Generate the prolog instructions that set up the pipeline. 131 generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs); 132 MF.insert(BB->getIterator(), KernelBB); 133 LIS.insertMBBInMaps(KernelBB); 134 135 // Rearrange the instructions to generate the new, pipelined loop, 136 // and update register names as needed. 137 for (MachineInstr *CI : Schedule.getInstructions()) { 138 if (CI->isPHI()) 139 continue; 140 unsigned StageNum = Schedule.getStage(CI); 141 MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum); 142 updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap); 143 KernelBB->push_back(NewMI); 144 InstrMap[NewMI] = CI; 145 } 146 147 // Copy any terminator instructions to the new kernel, and update 148 // names as needed. 149 for (MachineInstr &MI : BB->terminators()) { 150 MachineInstr *NewMI = MF.CloneMachineInstr(&MI); 151 updateInstruction(NewMI, false, MaxStageCount, 0, VRMap); 152 KernelBB->push_back(NewMI); 153 InstrMap[NewMI] = &MI; 154 } 155 156 NewKernel = KernelBB; 157 KernelBB->transferSuccessors(BB); 158 KernelBB->replaceSuccessor(BB, KernelBB); 159 160 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, 161 InstrMap, MaxStageCount, MaxStageCount, false); 162 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, VRMapPhi, 163 InstrMap, MaxStageCount, MaxStageCount, false); 164 165 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 166 167 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 168 // Generate the epilog instructions to complete the pipeline. 169 generateEpilog(MaxStageCount, KernelBB, BB, VRMap, VRMapPhi, EpilogBBs, 170 PrologBBs); 171 172 // We need this step because the register allocation doesn't handle some 173 // situations well, so we insert copies to help out. 174 splitLifetimes(KernelBB, EpilogBBs); 175 176 // Remove dead instructions due to loop induction variables. 177 removeDeadInstructions(KernelBB, EpilogBBs); 178 179 // Add branches between prolog and epilog blocks. 180 addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); 181 182 delete[] VRMap; 183 delete[] VRMapPhi; 184 } 185 186 void ModuloScheduleExpander::cleanup() { 187 // Remove the original loop since it's no longer referenced. 188 for (auto &I : *BB) 189 LIS.RemoveMachineInstrFromMaps(I); 190 BB->clear(); 191 BB->eraseFromParent(); 192 } 193 194 /// Generate the pipeline prolog code. 195 void ModuloScheduleExpander::generateProlog(unsigned LastStage, 196 MachineBasicBlock *KernelBB, 197 ValueMapTy *VRMap, 198 MBBVectorTy &PrologBBs) { 199 MachineBasicBlock *PredBB = Preheader; 200 InstrMapTy InstrMap; 201 202 // Generate a basic block for each stage, not including the last stage, 203 // which will be generated in the kernel. Each basic block may contain 204 // instructions from multiple stages/iterations. 205 for (unsigned i = 0; i < LastStage; ++i) { 206 // Create and insert the prolog basic block prior to the original loop 207 // basic block. The original loop is removed later. 208 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 209 PrologBBs.push_back(NewBB); 210 MF.insert(BB->getIterator(), NewBB); 211 NewBB->transferSuccessors(PredBB); 212 PredBB->addSuccessor(NewBB); 213 PredBB = NewBB; 214 LIS.insertMBBInMaps(NewBB); 215 216 // Generate instructions for each appropriate stage. Process instructions 217 // in original program order. 218 for (int StageNum = i; StageNum >= 0; --StageNum) { 219 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 220 BBE = BB->getFirstTerminator(); 221 BBI != BBE; ++BBI) { 222 if (Schedule.getStage(&*BBI) == StageNum) { 223 if (BBI->isPHI()) 224 continue; 225 MachineInstr *NewMI = 226 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum); 227 updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap); 228 NewBB->push_back(NewMI); 229 InstrMap[NewMI] = &*BBI; 230 } 231 } 232 } 233 rewritePhiValues(NewBB, i, VRMap, InstrMap); 234 LLVM_DEBUG({ 235 dbgs() << "prolog:\n"; 236 NewBB->dump(); 237 }); 238 } 239 240 PredBB->replaceSuccessor(BB, KernelBB); 241 242 // Check if we need to remove the branch from the preheader to the original 243 // loop, and replace it with a branch to the new loop. 244 unsigned numBranches = TII->removeBranch(*Preheader); 245 if (numBranches) { 246 SmallVector<MachineOperand, 0> Cond; 247 TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc()); 248 } 249 } 250 251 /// Generate the pipeline epilog code. The epilog code finishes the iterations 252 /// that were started in either the prolog or the kernel. We create a basic 253 /// block for each stage that needs to complete. 254 void ModuloScheduleExpander::generateEpilog( 255 unsigned LastStage, MachineBasicBlock *KernelBB, MachineBasicBlock *OrigBB, 256 ValueMapTy *VRMap, ValueMapTy *VRMapPhi, MBBVectorTy &EpilogBBs, 257 MBBVectorTy &PrologBBs) { 258 // We need to change the branch from the kernel to the first epilog block, so 259 // this call to analyze branch uses the kernel rather than the original BB. 260 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 261 SmallVector<MachineOperand, 4> Cond; 262 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 263 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 264 if (checkBranch) 265 return; 266 267 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 268 if (*LoopExitI == KernelBB) 269 ++LoopExitI; 270 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 271 MachineBasicBlock *LoopExitBB = *LoopExitI; 272 273 MachineBasicBlock *PredBB = KernelBB; 274 MachineBasicBlock *EpilogStart = LoopExitBB; 275 InstrMapTy InstrMap; 276 277 // Generate a basic block for each stage, not including the last stage, 278 // which was generated for the kernel. Each basic block may contain 279 // instructions from multiple stages/iterations. 280 int EpilogStage = LastStage + 1; 281 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 282 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 283 EpilogBBs.push_back(NewBB); 284 MF.insert(BB->getIterator(), NewBB); 285 286 PredBB->replaceSuccessor(LoopExitBB, NewBB); 287 NewBB->addSuccessor(LoopExitBB); 288 LIS.insertMBBInMaps(NewBB); 289 290 if (EpilogStart == LoopExitBB) 291 EpilogStart = NewBB; 292 293 // Add instructions to the epilog depending on the current block. 294 // Process instructions in original program order. 295 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 296 for (auto &BBI : *BB) { 297 if (BBI.isPHI()) 298 continue; 299 MachineInstr *In = &BBI; 300 if ((unsigned)Schedule.getStage(In) == StageNum) { 301 // Instructions with memoperands in the epilog are updated with 302 // conservative values. 303 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 304 updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap); 305 NewBB->push_back(NewMI); 306 InstrMap[NewMI] = In; 307 } 308 } 309 } 310 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, 311 InstrMap, LastStage, EpilogStage, i == 1); 312 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, VRMapPhi, 313 InstrMap, LastStage, EpilogStage, i == 1); 314 PredBB = NewBB; 315 316 LLVM_DEBUG({ 317 dbgs() << "epilog:\n"; 318 NewBB->dump(); 319 }); 320 } 321 322 // Fix any Phi nodes in the loop exit block. 323 LoopExitBB->replacePhiUsesWith(BB, PredBB); 324 325 // Create a branch to the new epilog from the kernel. 326 // Remove the original branch and add a new branch to the epilog. 327 TII->removeBranch(*KernelBB); 328 assert((OrigBB == TBB || OrigBB == FBB) && 329 "Unable to determine looping branch direction"); 330 if (OrigBB != TBB) 331 TII->insertBranch(*KernelBB, EpilogStart, KernelBB, Cond, DebugLoc()); 332 else 333 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 334 // Add a branch to the loop exit. 335 if (EpilogBBs.size() > 0) { 336 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 337 SmallVector<MachineOperand, 4> Cond1; 338 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 339 } 340 } 341 342 /// Replace all uses of FromReg that appear outside the specified 343 /// basic block with ToReg. 344 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 345 MachineBasicBlock *MBB, 346 MachineRegisterInfo &MRI, 347 LiveIntervals &LIS) { 348 for (MachineOperand &O : 349 llvm::make_early_inc_range(MRI.use_operands(FromReg))) 350 if (O.getParent()->getParent() != MBB) 351 O.setReg(ToReg); 352 if (!LIS.hasInterval(ToReg)) 353 LIS.createEmptyInterval(ToReg); 354 } 355 356 /// Return true if the register has a use that occurs outside the 357 /// specified loop. 358 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 359 MachineRegisterInfo &MRI) { 360 for (const MachineOperand &MO : MRI.use_operands(Reg)) 361 if (MO.getParent()->getParent() != BB) 362 return true; 363 return false; 364 } 365 366 /// Generate Phis for the specific block in the generated pipelined code. 367 /// This function looks at the Phis from the original code to guide the 368 /// creation of new Phis. 369 void ModuloScheduleExpander::generateExistingPhis( 370 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 371 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 372 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 373 // Compute the stage number for the initial value of the Phi, which 374 // comes from the prolog. The prolog to use depends on to which kernel/ 375 // epilog that we're adding the Phi. 376 unsigned PrologStage = 0; 377 unsigned PrevStage = 0; 378 bool InKernel = (LastStageNum == CurStageNum); 379 if (InKernel) { 380 PrologStage = LastStageNum - 1; 381 PrevStage = CurStageNum; 382 } else { 383 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 384 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 385 } 386 387 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 388 BBE = BB->getFirstNonPHI(); 389 BBI != BBE; ++BBI) { 390 Register Def = BBI->getOperand(0).getReg(); 391 392 unsigned InitVal = 0; 393 unsigned LoopVal = 0; 394 getPhiRegs(*BBI, BB, InitVal, LoopVal); 395 396 unsigned PhiOp1 = 0; 397 // The Phi value from the loop body typically is defined in the loop, but 398 // not always. So, we need to check if the value is defined in the loop. 399 unsigned PhiOp2 = LoopVal; 400 if (VRMap[LastStageNum].count(LoopVal)) 401 PhiOp2 = VRMap[LastStageNum][LoopVal]; 402 403 int StageScheduled = Schedule.getStage(&*BBI); 404 int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal)); 405 unsigned NumStages = getStagesForReg(Def, CurStageNum); 406 if (NumStages == 0) { 407 // We don't need to generate a Phi anymore, but we need to rename any uses 408 // of the Phi value. 409 unsigned NewReg = VRMap[PrevStage][LoopVal]; 410 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def, 411 InitVal, NewReg); 412 if (VRMap[CurStageNum].count(LoopVal)) 413 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 414 } 415 // Adjust the number of Phis needed depending on the number of prologs left, 416 // and the distance from where the Phi is first scheduled. The number of 417 // Phis cannot exceed the number of prolog stages. Each stage can 418 // potentially define two values. 419 unsigned MaxPhis = PrologStage + 2; 420 if (!InKernel && (int)PrologStage <= LoopValStage) 421 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 422 unsigned NumPhis = std::min(NumStages, MaxPhis); 423 424 unsigned NewReg = 0; 425 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 426 // In the epilog, we may need to look back one stage to get the correct 427 // Phi name, because the epilog and prolog blocks execute the same stage. 428 // The correct name is from the previous block only when the Phi has 429 // been completely scheduled prior to the epilog, and Phi value is not 430 // needed in multiple stages. 431 int StageDiff = 0; 432 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 433 NumPhis == 1) 434 StageDiff = 1; 435 // Adjust the computations below when the phi and the loop definition 436 // are scheduled in different stages. 437 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 438 StageDiff = StageScheduled - LoopValStage; 439 for (unsigned np = 0; np < NumPhis; ++np) { 440 // If the Phi hasn't been scheduled, then use the initial Phi operand 441 // value. Otherwise, use the scheduled version of the instruction. This 442 // is a little complicated when a Phi references another Phi. 443 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 444 PhiOp1 = InitVal; 445 // Check if the Phi has already been scheduled in a prolog stage. 446 else if (PrologStage >= AccessStage + StageDiff + np && 447 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 448 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 449 // Check if the Phi has already been scheduled, but the loop instruction 450 // is either another Phi, or doesn't occur in the loop. 451 else if (PrologStage >= AccessStage + StageDiff + np) { 452 // If the Phi references another Phi, we need to examine the other 453 // Phi to get the correct value. 454 PhiOp1 = LoopVal; 455 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 456 int Indirects = 1; 457 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 458 int PhiStage = Schedule.getStage(InstOp1); 459 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 460 PhiOp1 = getInitPhiReg(*InstOp1, BB); 461 else 462 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 463 InstOp1 = MRI.getVRegDef(PhiOp1); 464 int PhiOpStage = Schedule.getStage(InstOp1); 465 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 466 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 467 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 468 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 469 break; 470 } 471 ++Indirects; 472 } 473 } else 474 PhiOp1 = InitVal; 475 // If this references a generated Phi in the kernel, get the Phi operand 476 // from the incoming block. 477 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 478 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 479 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 480 481 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 482 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 483 // In the epilog, a map lookup is needed to get the value from the kernel, 484 // or previous epilog block. How is does this depends on if the 485 // instruction is scheduled in the previous block. 486 if (!InKernel) { 487 int StageDiffAdj = 0; 488 if (LoopValStage != -1 && StageScheduled > LoopValStage) 489 StageDiffAdj = StageScheduled - LoopValStage; 490 // Use the loop value defined in the kernel, unless the kernel 491 // contains the last definition of the Phi. 492 if (np == 0 && PrevStage == LastStageNum && 493 (StageScheduled != 0 || LoopValStage != 0) && 494 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 495 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 496 // Use the value defined by the Phi. We add one because we switch 497 // from looking at the loop value to the Phi definition. 498 else if (np > 0 && PrevStage == LastStageNum && 499 VRMap[PrevStage - np + 1].count(Def)) 500 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 501 // Use the loop value defined in the kernel. 502 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 503 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 504 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 505 // Use the value defined by the Phi, unless we're generating the first 506 // epilog and the Phi refers to a Phi in a different stage. 507 else if (VRMap[PrevStage - np].count(Def) && 508 (!LoopDefIsPhi || (PrevStage != LastStageNum) || 509 (LoopValStage == StageScheduled))) 510 PhiOp2 = VRMap[PrevStage - np][Def]; 511 } 512 513 // Check if we can reuse an existing Phi. This occurs when a Phi 514 // references another Phi, and the other Phi is scheduled in an 515 // earlier stage. We can try to reuse an existing Phi up until the last 516 // stage of the current Phi. 517 if (LoopDefIsPhi) { 518 if (static_cast<int>(PrologStage - np) >= StageScheduled) { 519 int LVNumStages = getStagesForPhi(LoopVal); 520 int StageDiff = (StageScheduled - LoopValStage); 521 LVNumStages -= StageDiff; 522 // Make sure the loop value Phi has been processed already. 523 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 524 NewReg = PhiOp2; 525 unsigned ReuseStage = CurStageNum; 526 if (isLoopCarried(*PhiInst)) 527 ReuseStage -= LVNumStages; 528 // Check if the Phi to reuse has been generated yet. If not, then 529 // there is nothing to reuse. 530 if (VRMap[ReuseStage - np].count(LoopVal)) { 531 NewReg = VRMap[ReuseStage - np][LoopVal]; 532 533 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, 534 Def, NewReg); 535 // Update the map with the new Phi name. 536 VRMap[CurStageNum - np][Def] = NewReg; 537 PhiOp2 = NewReg; 538 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 539 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 540 541 if (IsLast && np == NumPhis - 1) 542 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 543 continue; 544 } 545 } 546 } 547 if (InKernel && StageDiff > 0 && 548 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 549 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 550 } 551 552 const TargetRegisterClass *RC = MRI.getRegClass(Def); 553 NewReg = MRI.createVirtualRegister(RC); 554 555 MachineInstrBuilder NewPhi = 556 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 557 TII->get(TargetOpcode::PHI), NewReg); 558 NewPhi.addReg(PhiOp1).addMBB(BB1); 559 NewPhi.addReg(PhiOp2).addMBB(BB2); 560 if (np == 0) 561 InstrMap[NewPhi] = &*BBI; 562 563 // We define the Phis after creating the new pipelined code, so 564 // we need to rename the Phi values in scheduled instructions. 565 566 unsigned PrevReg = 0; 567 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 568 PrevReg = VRMap[PrevStage - np][LoopVal]; 569 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 570 NewReg, PrevReg); 571 // If the Phi has been scheduled, use the new name for rewriting. 572 if (VRMap[CurStageNum - np].count(Def)) { 573 unsigned R = VRMap[CurStageNum - np][Def]; 574 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R, 575 NewReg); 576 } 577 578 // Check if we need to rename any uses that occurs after the loop. The 579 // register to replace depends on whether the Phi is scheduled in the 580 // epilog. 581 if (IsLast && np == NumPhis - 1) 582 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 583 584 // In the kernel, a dependent Phi uses the value from this Phi. 585 if (InKernel) 586 PhiOp2 = NewReg; 587 588 // Update the map with the new Phi name. 589 VRMap[CurStageNum - np][Def] = NewReg; 590 } 591 592 while (NumPhis++ < NumStages) { 593 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def, 594 NewReg, 0); 595 } 596 597 // Check if we need to rename a Phi that has been eliminated due to 598 // scheduling. 599 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 600 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 601 } 602 } 603 604 /// Generate Phis for the specified block in the generated pipelined code. 605 /// These are new Phis needed because the definition is scheduled after the 606 /// use in the pipelined sequence. 607 void ModuloScheduleExpander::generatePhis( 608 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 609 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, ValueMapTy *VRMapPhi, 610 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 611 bool IsLast) { 612 // Compute the stage number that contains the initial Phi value, and 613 // the Phi from the previous stage. 614 unsigned PrologStage = 0; 615 unsigned PrevStage = 0; 616 unsigned StageDiff = CurStageNum - LastStageNum; 617 bool InKernel = (StageDiff == 0); 618 if (InKernel) { 619 PrologStage = LastStageNum - 1; 620 PrevStage = CurStageNum; 621 } else { 622 PrologStage = LastStageNum - StageDiff; 623 PrevStage = LastStageNum + StageDiff - 1; 624 } 625 626 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 627 BBE = BB->instr_end(); 628 BBI != BBE; ++BBI) { 629 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 630 MachineOperand &MO = BBI->getOperand(i); 631 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 632 continue; 633 634 int StageScheduled = Schedule.getStage(&*BBI); 635 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 636 Register Def = MO.getReg(); 637 unsigned NumPhis = getStagesForReg(Def, CurStageNum); 638 // An instruction scheduled in stage 0 and is used after the loop 639 // requires a phi in the epilog for the last definition from either 640 // the kernel or prolog. 641 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 642 hasUseAfterLoop(Def, BB, MRI)) 643 NumPhis = 1; 644 if (!InKernel && (unsigned)StageScheduled > PrologStage) 645 continue; 646 647 unsigned PhiOp2; 648 if (InKernel) { 649 PhiOp2 = VRMap[PrevStage][Def]; 650 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 651 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 652 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 653 } 654 // The number of Phis can't exceed the number of prolog stages. The 655 // prolog stage number is zero based. 656 if (NumPhis > PrologStage + 1 - StageScheduled) 657 NumPhis = PrologStage + 1 - StageScheduled; 658 for (unsigned np = 0; np < NumPhis; ++np) { 659 // Example for 660 // Org: 661 // %Org = ... (Scheduled at Stage#0, NumPhi = 2) 662 // 663 // Prolog0 (Stage0): 664 // %Clone0 = ... 665 // Prolog1 (Stage1): 666 // %Clone1 = ... 667 // Kernel (Stage2): 668 // %Phi0 = Phi %Clone1, Prolog1, %Clone2, Kernel 669 // %Phi1 = Phi %Clone0, Prolog1, %Phi0, Kernel 670 // %Clone2 = ... 671 // Epilog0 (Stage3): 672 // %Phi2 = Phi %Clone1, Prolog1, %Clone2, Kernel 673 // %Phi3 = Phi %Clone0, Prolog1, %Phi0, Kernel 674 // Epilog1 (Stage4): 675 // %Phi4 = Phi %Clone0, Prolog0, %Phi2, Epilog0 676 // 677 // VRMap = {0: %Clone0, 1: %Clone1, 2: %Clone2} 678 // VRMapPhi (after Kernel) = {0: %Phi1, 1: %Phi0} 679 // VRMapPhi (after Epilog0) = {0: %Phi3, 1: %Phi2} 680 681 unsigned PhiOp1 = VRMap[PrologStage][Def]; 682 if (np <= PrologStage) 683 PhiOp1 = VRMap[PrologStage - np][Def]; 684 if (!InKernel) { 685 if (PrevStage == LastStageNum && np == 0) 686 PhiOp2 = VRMap[LastStageNum][Def]; 687 else 688 PhiOp2 = VRMapPhi[PrevStage - np][Def]; 689 } 690 691 const TargetRegisterClass *RC = MRI.getRegClass(Def); 692 Register NewReg = MRI.createVirtualRegister(RC); 693 694 MachineInstrBuilder NewPhi = 695 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 696 TII->get(TargetOpcode::PHI), NewReg); 697 NewPhi.addReg(PhiOp1).addMBB(BB1); 698 NewPhi.addReg(PhiOp2).addMBB(BB2); 699 if (np == 0) 700 InstrMap[NewPhi] = &*BBI; 701 702 // Rewrite uses and update the map. The actions depend upon whether 703 // we generating code for the kernel or epilog blocks. 704 if (InKernel) { 705 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1, 706 NewReg); 707 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2, 708 NewReg); 709 710 PhiOp2 = NewReg; 711 VRMapPhi[PrevStage - np - 1][Def] = NewReg; 712 } else { 713 VRMapPhi[CurStageNum - np][Def] = NewReg; 714 if (np == NumPhis - 1) 715 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 716 NewReg); 717 } 718 if (IsLast && np == NumPhis - 1) 719 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 720 } 721 } 722 } 723 } 724 725 /// Remove instructions that generate values with no uses. 726 /// Typically, these are induction variable operations that generate values 727 /// used in the loop itself. A dead instruction has a definition with 728 /// no uses, or uses that occur in the original loop only. 729 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, 730 MBBVectorTy &EpilogBBs) { 731 // For each epilog block, check that the value defined by each instruction 732 // is used. If not, delete it. 733 for (MachineBasicBlock *MBB : llvm::reverse(EpilogBBs)) 734 for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(), 735 ME = MBB->instr_rend(); 736 MI != ME;) { 737 // From DeadMachineInstructionElem. Don't delete inline assembly. 738 if (MI->isInlineAsm()) { 739 ++MI; 740 continue; 741 } 742 bool SawStore = false; 743 // Check if it's safe to remove the instruction due to side effects. 744 // We can, and want to, remove Phis here. 745 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 746 ++MI; 747 continue; 748 } 749 bool used = true; 750 for (const MachineOperand &MO : MI->all_defs()) { 751 Register reg = MO.getReg(); 752 // Assume physical registers are used, unless they are marked dead. 753 if (reg.isPhysical()) { 754 used = !MO.isDead(); 755 if (used) 756 break; 757 continue; 758 } 759 unsigned realUses = 0; 760 for (const MachineOperand &U : MRI.use_operands(reg)) { 761 // Check if there are any uses that occur only in the original 762 // loop. If so, that's not a real use. 763 if (U.getParent()->getParent() != BB) { 764 realUses++; 765 used = true; 766 break; 767 } 768 } 769 if (realUses > 0) 770 break; 771 used = false; 772 } 773 if (!used) { 774 LIS.RemoveMachineInstrFromMaps(*MI); 775 MI++->eraseFromParent(); 776 continue; 777 } 778 ++MI; 779 } 780 // In the kernel block, check if we can remove a Phi that generates a value 781 // used in an instruction removed in the epilog block. 782 for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) { 783 Register reg = MI.getOperand(0).getReg(); 784 if (MRI.use_begin(reg) == MRI.use_end()) { 785 LIS.RemoveMachineInstrFromMaps(MI); 786 MI.eraseFromParent(); 787 } 788 } 789 } 790 791 /// For loop carried definitions, we split the lifetime of a virtual register 792 /// that has uses past the definition in the next iteration. A copy with a new 793 /// virtual register is inserted before the definition, which helps with 794 /// generating a better register assignment. 795 /// 796 /// v1 = phi(a, v2) v1 = phi(a, v2) 797 /// v2 = phi(b, v3) v2 = phi(b, v3) 798 /// v3 = .. v4 = copy v1 799 /// .. = V1 v3 = .. 800 /// .. = v4 801 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, 802 MBBVectorTy &EpilogBBs) { 803 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 804 for (auto &PHI : KernelBB->phis()) { 805 Register Def = PHI.getOperand(0).getReg(); 806 // Check for any Phi definition that used as an operand of another Phi 807 // in the same block. 808 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 809 E = MRI.use_instr_end(); 810 I != E; ++I) { 811 if (I->isPHI() && I->getParent() == KernelBB) { 812 // Get the loop carried definition. 813 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 814 if (!LCDef) 815 continue; 816 MachineInstr *MI = MRI.getVRegDef(LCDef); 817 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 818 continue; 819 // Search through the rest of the block looking for uses of the Phi 820 // definition. If one occurs, then split the lifetime. 821 unsigned SplitReg = 0; 822 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 823 KernelBB->instr_end())) 824 if (BBJ.readsRegister(Def, /*TRI=*/nullptr)) { 825 // We split the lifetime when we find the first use. 826 if (SplitReg == 0) { 827 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 828 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 829 TII->get(TargetOpcode::COPY), SplitReg) 830 .addReg(Def); 831 } 832 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 833 } 834 if (!SplitReg) 835 continue; 836 // Search through each of the epilog blocks for any uses to be renamed. 837 for (auto &Epilog : EpilogBBs) 838 for (auto &I : *Epilog) 839 if (I.readsRegister(Def, /*TRI=*/nullptr)) 840 I.substituteRegister(Def, SplitReg, 0, *TRI); 841 break; 842 } 843 } 844 } 845 } 846 847 /// Remove the incoming block from the Phis in a basic block. 848 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 849 for (MachineInstr &MI : *BB) { 850 if (!MI.isPHI()) 851 break; 852 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 853 if (MI.getOperand(i + 1).getMBB() == Incoming) { 854 MI.removeOperand(i + 1); 855 MI.removeOperand(i); 856 break; 857 } 858 } 859 } 860 861 /// Create branches from each prolog basic block to the appropriate epilog 862 /// block. These edges are needed if the loop ends before reaching the 863 /// kernel. 864 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB, 865 MBBVectorTy &PrologBBs, 866 MachineBasicBlock *KernelBB, 867 MBBVectorTy &EpilogBBs, 868 ValueMapTy *VRMap) { 869 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 870 MachineBasicBlock *LastPro = KernelBB; 871 MachineBasicBlock *LastEpi = KernelBB; 872 873 // Start from the blocks connected to the kernel and work "out" 874 // to the first prolog and the last epilog blocks. 875 SmallVector<MachineInstr *, 4> PrevInsts; 876 unsigned MaxIter = PrologBBs.size() - 1; 877 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 878 // Add branches to the prolog that go to the corresponding 879 // epilog, and the fall-thru prolog/kernel block. 880 MachineBasicBlock *Prolog = PrologBBs[j]; 881 MachineBasicBlock *Epilog = EpilogBBs[i]; 882 883 SmallVector<MachineOperand, 4> Cond; 884 std::optional<bool> StaticallyGreater = 885 LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond); 886 unsigned numAdded = 0; 887 if (!StaticallyGreater) { 888 Prolog->addSuccessor(Epilog); 889 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 890 } else if (*StaticallyGreater == false) { 891 Prolog->addSuccessor(Epilog); 892 Prolog->removeSuccessor(LastPro); 893 LastEpi->removeSuccessor(Epilog); 894 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 895 removePhis(Epilog, LastEpi); 896 // Remove the blocks that are no longer referenced. 897 if (LastPro != LastEpi) { 898 LastEpi->clear(); 899 LastEpi->eraseFromParent(); 900 } 901 if (LastPro == KernelBB) { 902 LoopInfo->disposed(); 903 NewKernel = nullptr; 904 } 905 LastPro->clear(); 906 LastPro->eraseFromParent(); 907 } else { 908 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 909 removePhis(Epilog, Prolog); 910 } 911 LastPro = Prolog; 912 LastEpi = Epilog; 913 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 914 E = Prolog->instr_rend(); 915 I != E && numAdded > 0; ++I, --numAdded) 916 updateInstruction(&*I, false, j, 0, VRMap); 917 } 918 919 if (NewKernel) { 920 LoopInfo->setPreheader(PrologBBs[MaxIter]); 921 LoopInfo->adjustTripCount(-(MaxIter + 1)); 922 } 923 } 924 925 /// Return true if we can compute the amount the instruction changes 926 /// during each iteration. Set Delta to the amount of the change. 927 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { 928 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 929 const MachineOperand *BaseOp; 930 int64_t Offset; 931 bool OffsetIsScalable; 932 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 933 return false; 934 935 // FIXME: This algorithm assumes instructions have fixed-size offsets. 936 if (OffsetIsScalable) 937 return false; 938 939 if (!BaseOp->isReg()) 940 return false; 941 942 Register BaseReg = BaseOp->getReg(); 943 944 MachineRegisterInfo &MRI = MF.getRegInfo(); 945 // Check if there is a Phi. If so, get the definition in the loop. 946 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 947 if (BaseDef && BaseDef->isPHI()) { 948 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 949 BaseDef = MRI.getVRegDef(BaseReg); 950 } 951 if (!BaseDef) 952 return false; 953 954 int D = 0; 955 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 956 return false; 957 958 Delta = D; 959 return true; 960 } 961 962 /// Update the memory operand with a new offset when the pipeliner 963 /// generates a new copy of the instruction that refers to a 964 /// different memory location. 965 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, 966 MachineInstr &OldMI, 967 unsigned Num) { 968 if (Num == 0) 969 return; 970 // If the instruction has memory operands, then adjust the offset 971 // when the instruction appears in different stages. 972 if (NewMI.memoperands_empty()) 973 return; 974 SmallVector<MachineMemOperand *, 2> NewMMOs; 975 for (MachineMemOperand *MMO : NewMI.memoperands()) { 976 // TODO: Figure out whether isAtomic is really necessary (see D57601). 977 if (MMO->isVolatile() || MMO->isAtomic() || 978 (MMO->isInvariant() && MMO->isDereferenceable()) || 979 (!MMO->getValue())) { 980 NewMMOs.push_back(MMO); 981 continue; 982 } 983 unsigned Delta; 984 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 985 int64_t AdjOffset = Delta * Num; 986 NewMMOs.push_back( 987 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 988 } else { 989 NewMMOs.push_back(MF.getMachineMemOperand( 990 MMO, 0, LocationSize::beforeOrAfterPointer())); 991 } 992 } 993 NewMI.setMemRefs(MF, NewMMOs); 994 } 995 996 /// Clone the instruction for the new pipelined loop and update the 997 /// memory operands, if needed. 998 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, 999 unsigned CurStageNum, 1000 unsigned InstStageNum) { 1001 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 1002 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 1003 return NewMI; 1004 } 1005 1006 /// Clone the instruction for the new pipelined loop. If needed, this 1007 /// function updates the instruction using the values saved in the 1008 /// InstrChanges structure. 1009 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( 1010 MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { 1011 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 1012 auto It = InstrChanges.find(OldMI); 1013 if (It != InstrChanges.end()) { 1014 std::pair<unsigned, int64_t> RegAndOffset = It->second; 1015 unsigned BasePos, OffsetPos; 1016 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 1017 return nullptr; 1018 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 1019 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 1020 if (Schedule.getStage(LoopDef) > (signed)InstStageNum) 1021 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 1022 NewMI->getOperand(OffsetPos).setImm(NewOffset); 1023 } 1024 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 1025 return NewMI; 1026 } 1027 1028 /// Update the machine instruction with new virtual registers. This 1029 /// function may change the definitions and/or uses. 1030 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, 1031 bool LastDef, 1032 unsigned CurStageNum, 1033 unsigned InstrStageNum, 1034 ValueMapTy *VRMap) { 1035 for (MachineOperand &MO : NewMI->operands()) { 1036 if (!MO.isReg() || !MO.getReg().isVirtual()) 1037 continue; 1038 Register reg = MO.getReg(); 1039 if (MO.isDef()) { 1040 // Create a new virtual register for the definition. 1041 const TargetRegisterClass *RC = MRI.getRegClass(reg); 1042 Register NewReg = MRI.createVirtualRegister(RC); 1043 MO.setReg(NewReg); 1044 VRMap[CurStageNum][reg] = NewReg; 1045 if (LastDef) 1046 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 1047 } else if (MO.isUse()) { 1048 MachineInstr *Def = MRI.getVRegDef(reg); 1049 // Compute the stage that contains the last definition for instruction. 1050 int DefStageNum = Schedule.getStage(Def); 1051 unsigned StageNum = CurStageNum; 1052 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 1053 // Compute the difference in stages between the defintion and the use. 1054 unsigned StageDiff = (InstrStageNum - DefStageNum); 1055 // Make an adjustment to get the last definition. 1056 StageNum -= StageDiff; 1057 } 1058 if (VRMap[StageNum].count(reg)) 1059 MO.setReg(VRMap[StageNum][reg]); 1060 } 1061 } 1062 } 1063 1064 /// Return the instruction in the loop that defines the register. 1065 /// If the definition is a Phi, then follow the Phi operand to 1066 /// the instruction in the loop. 1067 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) { 1068 SmallPtrSet<MachineInstr *, 8> Visited; 1069 MachineInstr *Def = MRI.getVRegDef(Reg); 1070 while (Def->isPHI()) { 1071 if (!Visited.insert(Def).second) 1072 break; 1073 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 1074 if (Def->getOperand(i + 1).getMBB() == BB) { 1075 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 1076 break; 1077 } 1078 } 1079 return Def; 1080 } 1081 1082 /// Return the new name for the value from the previous stage. 1083 unsigned ModuloScheduleExpander::getPrevMapVal( 1084 unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, 1085 ValueMapTy *VRMap, MachineBasicBlock *BB) { 1086 unsigned PrevVal = 0; 1087 if (StageNum > PhiStage) { 1088 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 1089 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 1090 // The name is defined in the previous stage. 1091 PrevVal = VRMap[StageNum - 1][LoopVal]; 1092 else if (VRMap[StageNum].count(LoopVal)) 1093 // The previous name is defined in the current stage when the instruction 1094 // order is swapped. 1095 PrevVal = VRMap[StageNum][LoopVal]; 1096 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 1097 // The loop value hasn't yet been scheduled. 1098 PrevVal = LoopVal; 1099 else if (StageNum == PhiStage + 1) 1100 // The loop value is another phi, which has not been scheduled. 1101 PrevVal = getInitPhiReg(*LoopInst, BB); 1102 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 1103 // The loop value is another phi, which has been scheduled. 1104 PrevVal = 1105 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 1106 LoopStage, VRMap, BB); 1107 } 1108 return PrevVal; 1109 } 1110 1111 /// Rewrite the Phi values in the specified block to use the mappings 1112 /// from the initial operand. Once the Phi is scheduled, we switch 1113 /// to using the loop value instead of the Phi value, so those names 1114 /// do not need to be rewritten. 1115 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, 1116 unsigned StageNum, 1117 ValueMapTy *VRMap, 1118 InstrMapTy &InstrMap) { 1119 for (auto &PHI : BB->phis()) { 1120 unsigned InitVal = 0; 1121 unsigned LoopVal = 0; 1122 getPhiRegs(PHI, BB, InitVal, LoopVal); 1123 Register PhiDef = PHI.getOperand(0).getReg(); 1124 1125 unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef)); 1126 unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal)); 1127 unsigned NumPhis = getStagesForPhi(PhiDef); 1128 if (NumPhis > StageNum) 1129 NumPhis = StageNum; 1130 for (unsigned np = 0; np <= NumPhis; ++np) { 1131 unsigned NewVal = 1132 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 1133 if (!NewVal) 1134 NewVal = InitVal; 1135 rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef, 1136 NewVal); 1137 } 1138 } 1139 } 1140 1141 /// Rewrite a previously scheduled instruction to use the register value 1142 /// from the new instruction. Make sure the instruction occurs in the 1143 /// basic block, and we don't change the uses in the new instruction. 1144 void ModuloScheduleExpander::rewriteScheduledInstr( 1145 MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, 1146 unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, 1147 unsigned PrevReg) { 1148 bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); 1149 int StagePhi = Schedule.getStage(Phi) + PhiNum; 1150 // Rewrite uses that have been scheduled already to use the new 1151 // Phi register. 1152 for (MachineOperand &UseOp : 1153 llvm::make_early_inc_range(MRI.use_operands(OldReg))) { 1154 MachineInstr *UseMI = UseOp.getParent(); 1155 if (UseMI->getParent() != BB) 1156 continue; 1157 if (UseMI->isPHI()) { 1158 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 1159 continue; 1160 if (getLoopPhiReg(*UseMI, BB) != OldReg) 1161 continue; 1162 } 1163 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 1164 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 1165 MachineInstr *OrigMI = OrigInstr->second; 1166 int StageSched = Schedule.getStage(OrigMI); 1167 int CycleSched = Schedule.getCycle(OrigMI); 1168 unsigned ReplaceReg = 0; 1169 // This is the stage for the scheduled instruction. 1170 if (StagePhi == StageSched && Phi->isPHI()) { 1171 int CyclePhi = Schedule.getCycle(Phi); 1172 if (PrevReg && InProlog) 1173 ReplaceReg = PrevReg; 1174 else if (PrevReg && !isLoopCarried(*Phi) && 1175 (CyclePhi <= CycleSched || OrigMI->isPHI())) 1176 ReplaceReg = PrevReg; 1177 else 1178 ReplaceReg = NewReg; 1179 } 1180 // The scheduled instruction occurs before the scheduled Phi, and the 1181 // Phi is not loop carried. 1182 if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi)) 1183 ReplaceReg = NewReg; 1184 if (StagePhi > StageSched && Phi->isPHI()) 1185 ReplaceReg = NewReg; 1186 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 1187 ReplaceReg = NewReg; 1188 if (ReplaceReg) { 1189 const TargetRegisterClass *NRC = 1190 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 1191 if (NRC) 1192 UseOp.setReg(ReplaceReg); 1193 else { 1194 Register SplitReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 1195 BuildMI(*BB, UseMI, UseMI->getDebugLoc(), TII->get(TargetOpcode::COPY), 1196 SplitReg) 1197 .addReg(ReplaceReg); 1198 UseOp.setReg(SplitReg); 1199 } 1200 } 1201 } 1202 } 1203 1204 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { 1205 if (!Phi.isPHI()) 1206 return false; 1207 int DefCycle = Schedule.getCycle(&Phi); 1208 int DefStage = Schedule.getStage(&Phi); 1209 1210 unsigned InitVal = 0; 1211 unsigned LoopVal = 0; 1212 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 1213 MachineInstr *Use = MRI.getVRegDef(LoopVal); 1214 if (!Use || Use->isPHI()) 1215 return true; 1216 int LoopCycle = Schedule.getCycle(Use); 1217 int LoopStage = Schedule.getStage(Use); 1218 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 1219 } 1220 1221 //===----------------------------------------------------------------------===// 1222 // PeelingModuloScheduleExpander implementation 1223 //===----------------------------------------------------------------------===// 1224 // This is a reimplementation of ModuloScheduleExpander that works by creating 1225 // a fully correct steady-state kernel and peeling off the prolog and epilogs. 1226 //===----------------------------------------------------------------------===// 1227 1228 namespace { 1229 // Remove any dead phis in MBB. Dead phis either have only one block as input 1230 // (in which case they are the identity) or have no uses. 1231 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI, 1232 LiveIntervals *LIS, bool KeepSingleSrcPhi = false) { 1233 bool Changed = true; 1234 while (Changed) { 1235 Changed = false; 1236 for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) { 1237 assert(MI.isPHI()); 1238 if (MRI.use_empty(MI.getOperand(0).getReg())) { 1239 if (LIS) 1240 LIS->RemoveMachineInstrFromMaps(MI); 1241 MI.eraseFromParent(); 1242 Changed = true; 1243 } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) { 1244 const TargetRegisterClass *ConstrainRegClass = 1245 MRI.constrainRegClass(MI.getOperand(1).getReg(), 1246 MRI.getRegClass(MI.getOperand(0).getReg())); 1247 assert(ConstrainRegClass && 1248 "Expected a valid constrained register class!"); 1249 (void)ConstrainRegClass; 1250 MRI.replaceRegWith(MI.getOperand(0).getReg(), 1251 MI.getOperand(1).getReg()); 1252 if (LIS) 1253 LIS->RemoveMachineInstrFromMaps(MI); 1254 MI.eraseFromParent(); 1255 Changed = true; 1256 } 1257 } 1258 } 1259 } 1260 1261 /// Rewrites the kernel block in-place to adhere to the given schedule. 1262 /// KernelRewriter holds all of the state required to perform the rewriting. 1263 class KernelRewriter { 1264 ModuloSchedule &S; 1265 MachineBasicBlock *BB; 1266 MachineBasicBlock *PreheaderBB, *ExitBB; 1267 MachineRegisterInfo &MRI; 1268 const TargetInstrInfo *TII; 1269 LiveIntervals *LIS; 1270 1271 // Map from register class to canonical undef register for that class. 1272 DenseMap<const TargetRegisterClass *, Register> Undefs; 1273 // Map from <LoopReg, InitReg> to phi register for all created phis. Note that 1274 // this map is only used when InitReg is non-undef. 1275 DenseMap<std::pair<unsigned, unsigned>, Register> Phis; 1276 // Map from LoopReg to phi register where the InitReg is undef. 1277 DenseMap<Register, Register> UndefPhis; 1278 1279 // Reg is used by MI. Return the new register MI should use to adhere to the 1280 // schedule. Insert phis as necessary. 1281 Register remapUse(Register Reg, MachineInstr &MI); 1282 // Insert a phi that carries LoopReg from the loop body and InitReg otherwise. 1283 // If InitReg is not given it is chosen arbitrarily. It will either be undef 1284 // or will be chosen so as to share another phi. 1285 Register phi(Register LoopReg, std::optional<Register> InitReg = {}, 1286 const TargetRegisterClass *RC = nullptr); 1287 // Create an undef register of the given register class. 1288 Register undef(const TargetRegisterClass *RC); 1289 1290 public: 1291 KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB, 1292 LiveIntervals *LIS = nullptr); 1293 void rewrite(); 1294 }; 1295 } // namespace 1296 1297 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S, 1298 MachineBasicBlock *LoopBB, LiveIntervals *LIS) 1299 : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()), 1300 ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()), 1301 TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) { 1302 PreheaderBB = *BB->pred_begin(); 1303 if (PreheaderBB == BB) 1304 PreheaderBB = *std::next(BB->pred_begin()); 1305 } 1306 1307 void KernelRewriter::rewrite() { 1308 // Rearrange the loop to be in schedule order. Note that the schedule may 1309 // contain instructions that are not owned by the loop block (InstrChanges and 1310 // friends), so we gracefully handle unowned instructions and delete any 1311 // instructions that weren't in the schedule. 1312 auto InsertPt = BB->getFirstTerminator(); 1313 MachineInstr *FirstMI = nullptr; 1314 for (MachineInstr *MI : S.getInstructions()) { 1315 if (MI->isPHI()) 1316 continue; 1317 if (MI->getParent()) 1318 MI->removeFromParent(); 1319 BB->insert(InsertPt, MI); 1320 if (!FirstMI) 1321 FirstMI = MI; 1322 } 1323 assert(FirstMI && "Failed to find first MI in schedule"); 1324 1325 // At this point all of the scheduled instructions are between FirstMI 1326 // and the end of the block. Kill from the first non-phi to FirstMI. 1327 for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) { 1328 if (LIS) 1329 LIS->RemoveMachineInstrFromMaps(*I); 1330 (I++)->eraseFromParent(); 1331 } 1332 1333 // Now remap every instruction in the loop. 1334 for (MachineInstr &MI : *BB) { 1335 if (MI.isPHI() || MI.isTerminator()) 1336 continue; 1337 for (MachineOperand &MO : MI.uses()) { 1338 if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit()) 1339 continue; 1340 Register Reg = remapUse(MO.getReg(), MI); 1341 MO.setReg(Reg); 1342 } 1343 } 1344 EliminateDeadPhis(BB, MRI, LIS); 1345 1346 // Ensure a phi exists for all instructions that are either referenced by 1347 // an illegal phi or by an instruction outside the loop. This allows us to 1348 // treat remaps of these values the same as "normal" values that come from 1349 // loop-carried phis. 1350 for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) { 1351 if (MI->isPHI()) { 1352 Register R = MI->getOperand(0).getReg(); 1353 phi(R); 1354 continue; 1355 } 1356 1357 for (MachineOperand &Def : MI->defs()) { 1358 for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) { 1359 if (MI.getParent() != BB) { 1360 phi(Def.getReg()); 1361 break; 1362 } 1363 } 1364 } 1365 } 1366 } 1367 1368 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) { 1369 MachineInstr *Producer = MRI.getUniqueVRegDef(Reg); 1370 if (!Producer) 1371 return Reg; 1372 1373 int ConsumerStage = S.getStage(&MI); 1374 if (!Producer->isPHI()) { 1375 // Non-phi producers are simple to remap. Insert as many phis as the 1376 // difference between the consumer and producer stages. 1377 if (Producer->getParent() != BB) 1378 // Producer was not inside the loop. Use the register as-is. 1379 return Reg; 1380 int ProducerStage = S.getStage(Producer); 1381 assert(ConsumerStage != -1 && 1382 "In-loop consumer should always be scheduled!"); 1383 assert(ConsumerStage >= ProducerStage); 1384 unsigned StageDiff = ConsumerStage - ProducerStage; 1385 1386 for (unsigned I = 0; I < StageDiff; ++I) 1387 Reg = phi(Reg); 1388 return Reg; 1389 } 1390 1391 // First, dive through the phi chain to find the defaults for the generated 1392 // phis. 1393 SmallVector<std::optional<Register>, 4> Defaults; 1394 Register LoopReg = Reg; 1395 auto LoopProducer = Producer; 1396 while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) { 1397 LoopReg = getLoopPhiReg(*LoopProducer, BB); 1398 Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB)); 1399 LoopProducer = MRI.getUniqueVRegDef(LoopReg); 1400 assert(LoopProducer); 1401 } 1402 int LoopProducerStage = S.getStage(LoopProducer); 1403 1404 std::optional<Register> IllegalPhiDefault; 1405 1406 if (LoopProducerStage == -1) { 1407 // Do nothing. 1408 } else if (LoopProducerStage > ConsumerStage) { 1409 // This schedule is only representable if ProducerStage == ConsumerStage+1. 1410 // In addition, Consumer's cycle must be scheduled after Producer in the 1411 // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP 1412 // functions. 1413 #ifndef NDEBUG // Silence unused variables in non-asserts mode. 1414 int LoopProducerCycle = S.getCycle(LoopProducer); 1415 int ConsumerCycle = S.getCycle(&MI); 1416 #endif 1417 assert(LoopProducerCycle <= ConsumerCycle); 1418 assert(LoopProducerStage == ConsumerStage + 1); 1419 // Peel off the first phi from Defaults and insert a phi between producer 1420 // and consumer. This phi will not be at the front of the block so we 1421 // consider it illegal. It will only exist during the rewrite process; it 1422 // needs to exist while we peel off prologs because these could take the 1423 // default value. After that we can replace all uses with the loop producer 1424 // value. 1425 IllegalPhiDefault = Defaults.front(); 1426 Defaults.erase(Defaults.begin()); 1427 } else { 1428 assert(ConsumerStage >= LoopProducerStage); 1429 int StageDiff = ConsumerStage - LoopProducerStage; 1430 if (StageDiff > 0) { 1431 LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size() 1432 << " to " << (Defaults.size() + StageDiff) << "\n"); 1433 // If we need more phis than we have defaults for, pad out with undefs for 1434 // the earliest phis, which are at the end of the defaults chain (the 1435 // chain is in reverse order). 1436 Defaults.resize(Defaults.size() + StageDiff, 1437 Defaults.empty() ? std::optional<Register>() 1438 : Defaults.back()); 1439 } 1440 } 1441 1442 // Now we know the number of stages to jump back, insert the phi chain. 1443 auto DefaultI = Defaults.rbegin(); 1444 while (DefaultI != Defaults.rend()) 1445 LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg)); 1446 1447 if (IllegalPhiDefault) { 1448 // The consumer optionally consumes LoopProducer in the same iteration 1449 // (because the producer is scheduled at an earlier cycle than the consumer) 1450 // or the initial value. To facilitate this we create an illegal block here 1451 // by embedding a phi in the middle of the block. We will fix this up 1452 // immediately prior to pruning. 1453 auto RC = MRI.getRegClass(Reg); 1454 Register R = MRI.createVirtualRegister(RC); 1455 MachineInstr *IllegalPhi = 1456 BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1457 .addReg(*IllegalPhiDefault) 1458 .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect. 1459 .addReg(LoopReg) 1460 .addMBB(BB); // Block choice is arbitrary and has no effect. 1461 // Illegal phi should belong to the producer stage so that it can be 1462 // filtered correctly during peeling. 1463 S.setStage(IllegalPhi, LoopProducerStage); 1464 return R; 1465 } 1466 1467 return LoopReg; 1468 } 1469 1470 Register KernelRewriter::phi(Register LoopReg, std::optional<Register> InitReg, 1471 const TargetRegisterClass *RC) { 1472 // If the init register is not undef, try and find an existing phi. 1473 if (InitReg) { 1474 auto I = Phis.find({LoopReg, *InitReg}); 1475 if (I != Phis.end()) 1476 return I->second; 1477 } else { 1478 for (auto &KV : Phis) { 1479 if (KV.first.first == LoopReg) 1480 return KV.second; 1481 } 1482 } 1483 1484 // InitReg is either undef or no existing phi takes InitReg as input. Try and 1485 // find a phi that takes undef as input. 1486 auto I = UndefPhis.find(LoopReg); 1487 if (I != UndefPhis.end()) { 1488 Register R = I->second; 1489 if (!InitReg) 1490 // Found a phi taking undef as input, and this input is undef so return 1491 // without any more changes. 1492 return R; 1493 // Found a phi taking undef as input, so rewrite it to take InitReg. 1494 MachineInstr *MI = MRI.getVRegDef(R); 1495 MI->getOperand(1).setReg(*InitReg); 1496 Phis.insert({{LoopReg, *InitReg}, R}); 1497 const TargetRegisterClass *ConstrainRegClass = 1498 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); 1499 assert(ConstrainRegClass && "Expected a valid constrained register class!"); 1500 (void)ConstrainRegClass; 1501 UndefPhis.erase(I); 1502 return R; 1503 } 1504 1505 // Failed to find any existing phi to reuse, so create a new one. 1506 if (!RC) 1507 RC = MRI.getRegClass(LoopReg); 1508 Register R = MRI.createVirtualRegister(RC); 1509 if (InitReg) { 1510 const TargetRegisterClass *ConstrainRegClass = 1511 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); 1512 assert(ConstrainRegClass && "Expected a valid constrained register class!"); 1513 (void)ConstrainRegClass; 1514 } 1515 BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R) 1516 .addReg(InitReg ? *InitReg : undef(RC)) 1517 .addMBB(PreheaderBB) 1518 .addReg(LoopReg) 1519 .addMBB(BB); 1520 if (!InitReg) 1521 UndefPhis[LoopReg] = R; 1522 else 1523 Phis[{LoopReg, *InitReg}] = R; 1524 return R; 1525 } 1526 1527 Register KernelRewriter::undef(const TargetRegisterClass *RC) { 1528 Register &R = Undefs[RC]; 1529 if (R == 0) { 1530 // Create an IMPLICIT_DEF that defines this register if we need it. 1531 // All uses of this should be removed by the time we have finished unrolling 1532 // prologs and epilogs. 1533 R = MRI.createVirtualRegister(RC); 1534 auto *InsertBB = &PreheaderBB->getParent()->front(); 1535 BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(), 1536 TII->get(TargetOpcode::IMPLICIT_DEF), R); 1537 } 1538 return R; 1539 } 1540 1541 namespace { 1542 /// Describes an operand in the kernel of a pipelined loop. Characteristics of 1543 /// the operand are discovered, such as how many in-loop PHIs it has to jump 1544 /// through and defaults for these phis. 1545 class KernelOperandInfo { 1546 MachineBasicBlock *BB; 1547 MachineRegisterInfo &MRI; 1548 SmallVector<Register, 4> PhiDefaults; 1549 MachineOperand *Source; 1550 MachineOperand *Target; 1551 1552 public: 1553 KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI, 1554 const SmallPtrSetImpl<MachineInstr *> &IllegalPhis) 1555 : MRI(MRI) { 1556 Source = MO; 1557 BB = MO->getParent()->getParent(); 1558 while (isRegInLoop(MO)) { 1559 MachineInstr *MI = MRI.getVRegDef(MO->getReg()); 1560 if (MI->isFullCopy()) { 1561 MO = &MI->getOperand(1); 1562 continue; 1563 } 1564 if (!MI->isPHI()) 1565 break; 1566 // If this is an illegal phi, don't count it in distance. 1567 if (IllegalPhis.count(MI)) { 1568 MO = &MI->getOperand(3); 1569 continue; 1570 } 1571 1572 Register Default = getInitPhiReg(*MI, BB); 1573 MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1) 1574 : &MI->getOperand(3); 1575 PhiDefaults.push_back(Default); 1576 } 1577 Target = MO; 1578 } 1579 1580 bool operator==(const KernelOperandInfo &Other) const { 1581 return PhiDefaults.size() == Other.PhiDefaults.size(); 1582 } 1583 1584 void print(raw_ostream &OS) const { 1585 OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in " 1586 << *Source->getParent(); 1587 } 1588 1589 private: 1590 bool isRegInLoop(MachineOperand *MO) { 1591 return MO->isReg() && MO->getReg().isVirtual() && 1592 MRI.getVRegDef(MO->getReg())->getParent() == BB; 1593 } 1594 }; 1595 } // namespace 1596 1597 MachineBasicBlock * 1598 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) { 1599 MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII); 1600 if (LPD == LPD_Front) 1601 PeeledFront.push_back(NewBB); 1602 else 1603 PeeledBack.push_front(NewBB); 1604 for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator(); 1605 ++I, ++NI) { 1606 CanonicalMIs[&*I] = &*I; 1607 CanonicalMIs[&*NI] = &*I; 1608 BlockMIs[{NewBB, &*I}] = &*NI; 1609 BlockMIs[{BB, &*I}] = &*I; 1610 } 1611 return NewBB; 1612 } 1613 1614 void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB, 1615 int MinStage) { 1616 for (auto I = MB->getFirstInstrTerminator()->getReverseIterator(); 1617 I != std::next(MB->getFirstNonPHI()->getReverseIterator());) { 1618 MachineInstr *MI = &*I++; 1619 int Stage = getStage(MI); 1620 if (Stage == -1 || Stage >= MinStage) 1621 continue; 1622 1623 for (MachineOperand &DefMO : MI->defs()) { 1624 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1625 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1626 // Only PHIs can use values from this block by construction. 1627 // Match with the equivalent PHI in B. 1628 assert(UseMI.isPHI()); 1629 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1630 MI->getParent()); 1631 Subs.emplace_back(&UseMI, Reg); 1632 } 1633 for (auto &Sub : Subs) 1634 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1635 *MRI.getTargetRegisterInfo()); 1636 } 1637 if (LIS) 1638 LIS->RemoveMachineInstrFromMaps(*MI); 1639 MI->eraseFromParent(); 1640 } 1641 } 1642 1643 void PeelingModuloScheduleExpander::moveStageBetweenBlocks( 1644 MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) { 1645 auto InsertPt = DestBB->getFirstNonPHI(); 1646 DenseMap<Register, Register> Remaps; 1647 for (MachineInstr &MI : llvm::make_early_inc_range( 1648 llvm::make_range(SourceBB->getFirstNonPHI(), SourceBB->end()))) { 1649 if (MI.isPHI()) { 1650 // This is an illegal PHI. If we move any instructions using an illegal 1651 // PHI, we need to create a legal Phi. 1652 if (getStage(&MI) != Stage) { 1653 // The legal Phi is not necessary if the illegal phi's stage 1654 // is being moved. 1655 Register PhiR = MI.getOperand(0).getReg(); 1656 auto RC = MRI.getRegClass(PhiR); 1657 Register NR = MRI.createVirtualRegister(RC); 1658 MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(), 1659 DebugLoc(), TII->get(TargetOpcode::PHI), NR) 1660 .addReg(PhiR) 1661 .addMBB(SourceBB); 1662 BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI; 1663 CanonicalMIs[NI] = CanonicalMIs[&MI]; 1664 Remaps[PhiR] = NR; 1665 } 1666 } 1667 if (getStage(&MI) != Stage) 1668 continue; 1669 MI.removeFromParent(); 1670 DestBB->insert(InsertPt, &MI); 1671 auto *KernelMI = CanonicalMIs[&MI]; 1672 BlockMIs[{DestBB, KernelMI}] = &MI; 1673 BlockMIs.erase({SourceBB, KernelMI}); 1674 } 1675 SmallVector<MachineInstr *, 4> PhiToDelete; 1676 for (MachineInstr &MI : DestBB->phis()) { 1677 assert(MI.getNumOperands() == 3); 1678 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg()); 1679 // If the instruction referenced by the phi is moved inside the block 1680 // we don't need the phi anymore. 1681 if (getStage(Def) == Stage) { 1682 Register PhiReg = MI.getOperand(0).getReg(); 1683 assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg(), 1684 /*TRI=*/nullptr) != -1); 1685 MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 1686 MI.getOperand(0).setReg(PhiReg); 1687 PhiToDelete.push_back(&MI); 1688 } 1689 } 1690 for (auto *P : PhiToDelete) 1691 P->eraseFromParent(); 1692 InsertPt = DestBB->getFirstNonPHI(); 1693 // Helper to clone Phi instructions into the destination block. We clone Phi 1694 // greedily to avoid combinatorial explosion of Phi instructions. 1695 auto clonePhi = [&](MachineInstr *Phi) { 1696 MachineInstr *NewMI = MF.CloneMachineInstr(Phi); 1697 DestBB->insert(InsertPt, NewMI); 1698 Register OrigR = Phi->getOperand(0).getReg(); 1699 Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR)); 1700 NewMI->getOperand(0).setReg(R); 1701 NewMI->getOperand(1).setReg(OrigR); 1702 NewMI->getOperand(2).setMBB(*DestBB->pred_begin()); 1703 Remaps[OrigR] = R; 1704 CanonicalMIs[NewMI] = CanonicalMIs[Phi]; 1705 BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI; 1706 PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi]; 1707 return R; 1708 }; 1709 for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) { 1710 for (MachineOperand &MO : I->uses()) { 1711 if (!MO.isReg()) 1712 continue; 1713 if (Remaps.count(MO.getReg())) 1714 MO.setReg(Remaps[MO.getReg()]); 1715 else { 1716 // If we are using a phi from the source block we need to add a new phi 1717 // pointing to the old one. 1718 MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg()); 1719 if (Use && Use->isPHI() && Use->getParent() == SourceBB) { 1720 Register R = clonePhi(Use); 1721 MO.setReg(R); 1722 } 1723 } 1724 } 1725 } 1726 } 1727 1728 Register 1729 PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi, 1730 MachineInstr *Phi) { 1731 unsigned distance = PhiNodeLoopIteration[Phi]; 1732 MachineInstr *CanonicalUse = CanonicalPhi; 1733 Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg(); 1734 for (unsigned I = 0; I < distance; ++I) { 1735 assert(CanonicalUse->isPHI()); 1736 assert(CanonicalUse->getNumOperands() == 5); 1737 unsigned LoopRegIdx = 3, InitRegIdx = 1; 1738 if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent()) 1739 std::swap(LoopRegIdx, InitRegIdx); 1740 CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg(); 1741 CanonicalUse = MRI.getVRegDef(CanonicalUseReg); 1742 } 1743 return CanonicalUseReg; 1744 } 1745 1746 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() { 1747 BitVector LS(Schedule.getNumStages(), true); 1748 BitVector AS(Schedule.getNumStages(), true); 1749 LiveStages[BB] = LS; 1750 AvailableStages[BB] = AS; 1751 1752 // Peel out the prologs. 1753 LS.reset(); 1754 for (int I = 0; I < Schedule.getNumStages() - 1; ++I) { 1755 LS[I] = true; 1756 Prologs.push_back(peelKernel(LPD_Front)); 1757 LiveStages[Prologs.back()] = LS; 1758 AvailableStages[Prologs.back()] = LS; 1759 } 1760 1761 // Create a block that will end up as the new loop exiting block (dominated by 1762 // all prologs and epilogs). It will only contain PHIs, in the same order as 1763 // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property 1764 // that the exiting block is a (sub) clone of BB. This in turn gives us the 1765 // property that any value deffed in BB but used outside of BB is used by a 1766 // PHI in the exiting block. 1767 MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock(); 1768 EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1769 // Push out the epilogs, again in reverse order. 1770 // We can't assume anything about the minumum loop trip count at this point, 1771 // so emit a fairly complex epilog. 1772 1773 // We first peel number of stages minus one epilogue. Then we remove dead 1774 // stages and reorder instructions based on their stage. If we have 3 stages 1775 // we generate first: 1776 // E0[3, 2, 1] 1777 // E1[3', 2'] 1778 // E2[3''] 1779 // And then we move instructions based on their stages to have: 1780 // E0[3] 1781 // E1[2, 3'] 1782 // E2[1, 2', 3''] 1783 // The transformation is legal because we only move instructions past 1784 // instructions of a previous loop iteration. 1785 for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) { 1786 Epilogs.push_back(peelKernel(LPD_Back)); 1787 MachineBasicBlock *B = Epilogs.back(); 1788 filterInstructions(B, Schedule.getNumStages() - I); 1789 // Keep track at which iteration each phi belongs to. We need it to know 1790 // what version of the variable to use during prologue/epilogue stitching. 1791 EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1792 for (MachineInstr &Phi : B->phis()) 1793 PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I; 1794 } 1795 for (size_t I = 0; I < Epilogs.size(); I++) { 1796 LS.reset(); 1797 for (size_t J = I; J < Epilogs.size(); J++) { 1798 int Iteration = J; 1799 unsigned Stage = Schedule.getNumStages() - 1 + I - J; 1800 // Move stage one block at a time so that Phi nodes are updated correctly. 1801 for (size_t K = Iteration; K > I; K--) 1802 moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage); 1803 LS[Stage] = true; 1804 } 1805 LiveStages[Epilogs[I]] = LS; 1806 AvailableStages[Epilogs[I]] = AS; 1807 } 1808 1809 // Now we've defined all the prolog and epilog blocks as a fallthrough 1810 // sequence, add the edges that will be followed if the loop trip count is 1811 // lower than the number of stages (connecting prologs directly with epilogs). 1812 auto PI = Prologs.begin(); 1813 auto EI = Epilogs.begin(); 1814 assert(Prologs.size() == Epilogs.size()); 1815 for (; PI != Prologs.end(); ++PI, ++EI) { 1816 MachineBasicBlock *Pred = *(*EI)->pred_begin(); 1817 (*PI)->addSuccessor(*EI); 1818 for (MachineInstr &MI : (*EI)->phis()) { 1819 Register Reg = MI.getOperand(1).getReg(); 1820 MachineInstr *Use = MRI.getUniqueVRegDef(Reg); 1821 if (Use && Use->getParent() == Pred) { 1822 MachineInstr *CanonicalUse = CanonicalMIs[Use]; 1823 if (CanonicalUse->isPHI()) { 1824 // If the use comes from a phi we need to skip as many phi as the 1825 // distance between the epilogue and the kernel. Trace through the phi 1826 // chain to find the right value. 1827 Reg = getPhiCanonicalReg(CanonicalUse, Use); 1828 } 1829 Reg = getEquivalentRegisterIn(Reg, *PI); 1830 } 1831 MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 1832 MI.addOperand(MachineOperand::CreateMBB(*PI)); 1833 } 1834 } 1835 1836 // Create a list of all blocks in order. 1837 SmallVector<MachineBasicBlock *, 8> Blocks; 1838 llvm::copy(PeeledFront, std::back_inserter(Blocks)); 1839 Blocks.push_back(BB); 1840 llvm::copy(PeeledBack, std::back_inserter(Blocks)); 1841 1842 // Iterate in reverse order over all instructions, remapping as we go. 1843 for (MachineBasicBlock *B : reverse(Blocks)) { 1844 for (auto I = B->instr_rbegin(); 1845 I != std::next(B->getFirstNonPHI()->getReverseIterator());) { 1846 MachineBasicBlock::reverse_instr_iterator MI = I++; 1847 rewriteUsesOf(&*MI); 1848 } 1849 } 1850 for (auto *MI : IllegalPhisToDelete) { 1851 if (LIS) 1852 LIS->RemoveMachineInstrFromMaps(*MI); 1853 MI->eraseFromParent(); 1854 } 1855 IllegalPhisToDelete.clear(); 1856 1857 // Now all remapping has been done, we're free to optimize the generated code. 1858 for (MachineBasicBlock *B : reverse(Blocks)) 1859 EliminateDeadPhis(B, MRI, LIS); 1860 EliminateDeadPhis(ExitingBB, MRI, LIS); 1861 } 1862 1863 MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() { 1864 MachineFunction &MF = *BB->getParent(); 1865 MachineBasicBlock *Exit = *BB->succ_begin(); 1866 if (Exit == BB) 1867 Exit = *std::next(BB->succ_begin()); 1868 1869 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 1870 MF.insert(std::next(BB->getIterator()), NewBB); 1871 1872 // Clone all phis in BB into NewBB and rewrite. 1873 for (MachineInstr &MI : BB->phis()) { 1874 auto RC = MRI.getRegClass(MI.getOperand(0).getReg()); 1875 Register OldR = MI.getOperand(3).getReg(); 1876 Register R = MRI.createVirtualRegister(RC); 1877 SmallVector<MachineInstr *, 4> Uses; 1878 for (MachineInstr &Use : MRI.use_instructions(OldR)) 1879 if (Use.getParent() != BB) 1880 Uses.push_back(&Use); 1881 for (MachineInstr *Use : Uses) 1882 Use->substituteRegister(OldR, R, /*SubIdx=*/0, 1883 *MRI.getTargetRegisterInfo()); 1884 MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1885 .addReg(OldR) 1886 .addMBB(BB); 1887 BlockMIs[{NewBB, &MI}] = NI; 1888 CanonicalMIs[NI] = &MI; 1889 } 1890 BB->replaceSuccessor(Exit, NewBB); 1891 Exit->replacePhiUsesWith(BB, NewBB); 1892 NewBB->addSuccessor(Exit); 1893 1894 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1895 SmallVector<MachineOperand, 4> Cond; 1896 bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond); 1897 (void)CanAnalyzeBr; 1898 assert(CanAnalyzeBr && "Must be able to analyze the loop branch!"); 1899 TII->removeBranch(*BB); 1900 TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB, 1901 Cond, DebugLoc()); 1902 TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc()); 1903 return NewBB; 1904 } 1905 1906 Register 1907 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg, 1908 MachineBasicBlock *BB) { 1909 MachineInstr *MI = MRI.getUniqueVRegDef(Reg); 1910 unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg, /*TRI=*/nullptr); 1911 return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg(); 1912 } 1913 1914 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) { 1915 if (MI->isPHI()) { 1916 // This is an illegal PHI. The loop-carried (desired) value is operand 3, 1917 // and it is produced by this block. 1918 Register PhiR = MI->getOperand(0).getReg(); 1919 Register R = MI->getOperand(3).getReg(); 1920 int RMIStage = getStage(MRI.getUniqueVRegDef(R)); 1921 if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage)) 1922 R = MI->getOperand(1).getReg(); 1923 MRI.setRegClass(R, MRI.getRegClass(PhiR)); 1924 MRI.replaceRegWith(PhiR, R); 1925 // Postpone deleting the Phi as it may be referenced by BlockMIs and used 1926 // later to figure out how to remap registers. 1927 MI->getOperand(0).setReg(PhiR); 1928 IllegalPhisToDelete.push_back(MI); 1929 return; 1930 } 1931 1932 int Stage = getStage(MI); 1933 if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 || 1934 LiveStages[MI->getParent()].test(Stage)) 1935 // Instruction is live, no rewriting to do. 1936 return; 1937 1938 for (MachineOperand &DefMO : MI->defs()) { 1939 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1940 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1941 // Only PHIs can use values from this block by construction. 1942 // Match with the equivalent PHI in B. 1943 assert(UseMI.isPHI()); 1944 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1945 MI->getParent()); 1946 Subs.emplace_back(&UseMI, Reg); 1947 } 1948 for (auto &Sub : Subs) 1949 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1950 *MRI.getTargetRegisterInfo()); 1951 } 1952 if (LIS) 1953 LIS->RemoveMachineInstrFromMaps(*MI); 1954 MI->eraseFromParent(); 1955 } 1956 1957 void PeelingModuloScheduleExpander::fixupBranches() { 1958 // Work outwards from the kernel. 1959 bool KernelDisposed = false; 1960 int TC = Schedule.getNumStages() - 1; 1961 for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend(); 1962 ++PI, ++EI, --TC) { 1963 MachineBasicBlock *Prolog = *PI; 1964 MachineBasicBlock *Fallthrough = *Prolog->succ_begin(); 1965 MachineBasicBlock *Epilog = *EI; 1966 SmallVector<MachineOperand, 4> Cond; 1967 TII->removeBranch(*Prolog); 1968 std::optional<bool> StaticallyGreater = 1969 LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond); 1970 if (!StaticallyGreater) { 1971 LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n"); 1972 // Dynamically branch based on Cond. 1973 TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc()); 1974 } else if (*StaticallyGreater == false) { 1975 LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n"); 1976 // Prolog never falls through; branch to epilog and orphan interior 1977 // blocks. Leave it to unreachable-block-elim to clean up. 1978 Prolog->removeSuccessor(Fallthrough); 1979 for (MachineInstr &P : Fallthrough->phis()) { 1980 P.removeOperand(2); 1981 P.removeOperand(1); 1982 } 1983 TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc()); 1984 KernelDisposed = true; 1985 } else { 1986 LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n"); 1987 // Prolog always falls through; remove incoming values in epilog. 1988 Prolog->removeSuccessor(Epilog); 1989 for (MachineInstr &P : Epilog->phis()) { 1990 P.removeOperand(4); 1991 P.removeOperand(3); 1992 } 1993 } 1994 } 1995 1996 if (!KernelDisposed) { 1997 LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1)); 1998 LoopInfo->setPreheader(Prologs.back()); 1999 } else { 2000 LoopInfo->disposed(); 2001 } 2002 } 2003 2004 void PeelingModuloScheduleExpander::rewriteKernel() { 2005 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 2006 KR.rewrite(); 2007 } 2008 2009 void PeelingModuloScheduleExpander::expand() { 2010 BB = Schedule.getLoop()->getTopBlock(); 2011 Preheader = Schedule.getLoop()->getLoopPreheader(); 2012 LLVM_DEBUG(Schedule.dump()); 2013 LoopInfo = TII->analyzeLoopForPipelining(BB); 2014 assert(LoopInfo); 2015 2016 rewriteKernel(); 2017 peelPrologAndEpilogs(); 2018 fixupBranches(); 2019 } 2020 2021 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() { 2022 BB = Schedule.getLoop()->getTopBlock(); 2023 Preheader = Schedule.getLoop()->getLoopPreheader(); 2024 2025 // Dump the schedule before we invalidate and remap all its instructions. 2026 // Stash it in a string so we can print it if we found an error. 2027 std::string ScheduleDump; 2028 raw_string_ostream OS(ScheduleDump); 2029 Schedule.print(OS); 2030 OS.flush(); 2031 2032 // First, run the normal ModuleScheduleExpander. We don't support any 2033 // InstrChanges. 2034 assert(LIS && "Requires LiveIntervals!"); 2035 ModuloScheduleExpander MSE(MF, Schedule, *LIS, 2036 ModuloScheduleExpander::InstrChangesTy()); 2037 MSE.expand(); 2038 MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel(); 2039 if (!ExpandedKernel) { 2040 // The expander optimized away the kernel. We can't do any useful checking. 2041 MSE.cleanup(); 2042 return; 2043 } 2044 // Before running the KernelRewriter, re-add BB into the CFG. 2045 Preheader->addSuccessor(BB); 2046 2047 // Now run the new expansion algorithm. 2048 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 2049 KR.rewrite(); 2050 peelPrologAndEpilogs(); 2051 2052 // Collect all illegal phis that the new algorithm created. We'll give these 2053 // to KernelOperandInfo. 2054 SmallPtrSet<MachineInstr *, 4> IllegalPhis; 2055 for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) { 2056 if (NI->isPHI()) 2057 IllegalPhis.insert(&*NI); 2058 } 2059 2060 // Co-iterate across both kernels. We expect them to be identical apart from 2061 // phis and full COPYs (we look through both). 2062 SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs; 2063 auto OI = ExpandedKernel->begin(); 2064 auto NI = BB->begin(); 2065 for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) { 2066 while (OI->isPHI() || OI->isFullCopy()) 2067 ++OI; 2068 while (NI->isPHI() || NI->isFullCopy()) 2069 ++NI; 2070 assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!"); 2071 // Analyze every operand separately. 2072 for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin(); 2073 OOpI != OI->operands_end(); ++OOpI, ++NOpI) 2074 KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis), 2075 KernelOperandInfo(&*NOpI, MRI, IllegalPhis)); 2076 } 2077 2078 bool Failed = false; 2079 for (auto &OldAndNew : KOIs) { 2080 if (OldAndNew.first == OldAndNew.second) 2081 continue; 2082 Failed = true; 2083 errs() << "Modulo kernel validation error: [\n"; 2084 errs() << " [golden] "; 2085 OldAndNew.first.print(errs()); 2086 errs() << " "; 2087 OldAndNew.second.print(errs()); 2088 errs() << "]\n"; 2089 } 2090 2091 if (Failed) { 2092 errs() << "Golden reference kernel:\n"; 2093 ExpandedKernel->print(errs()); 2094 errs() << "New kernel:\n"; 2095 BB->print(errs()); 2096 errs() << ScheduleDump; 2097 report_fatal_error( 2098 "Modulo kernel validation (-pipeliner-experimental-cg) failed"); 2099 } 2100 2101 // Cleanup by removing BB from the CFG again as the original 2102 // ModuloScheduleExpander intended. 2103 Preheader->removeSuccessor(BB); 2104 MSE.cleanup(); 2105 } 2106 2107 MachineInstr *ModuloScheduleExpanderMVE::cloneInstr(MachineInstr *OldMI) { 2108 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 2109 2110 // TODO: Offset information needs to be corrected. 2111 NewMI->dropMemRefs(MF); 2112 2113 return NewMI; 2114 } 2115 2116 /// Create a dedicated exit for Loop. Exit is the original exit for Loop. 2117 /// If it is already dedicated exit, return it. Otherwise, insert a new 2118 /// block between them and return the new block. 2119 static MachineBasicBlock *createDedicatedExit(MachineBasicBlock *Loop, 2120 MachineBasicBlock *Exit) { 2121 if (Exit->pred_size() == 1) 2122 return Exit; 2123 2124 MachineFunction *MF = Loop->getParent(); 2125 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 2126 2127 MachineBasicBlock *NewExit = 2128 MF->CreateMachineBasicBlock(Loop->getBasicBlock()); 2129 MF->insert(Loop->getIterator(), NewExit); 2130 2131 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2132 SmallVector<MachineOperand, 4> Cond; 2133 TII->analyzeBranch(*Loop, TBB, FBB, Cond); 2134 if (TBB == Loop) 2135 FBB = NewExit; 2136 else if (FBB == Loop) 2137 TBB = NewExit; 2138 else 2139 llvm_unreachable("unexpected loop structure"); 2140 TII->removeBranch(*Loop); 2141 TII->insertBranch(*Loop, TBB, FBB, Cond, DebugLoc()); 2142 Loop->replaceSuccessor(Exit, NewExit); 2143 TII->insertUnconditionalBranch(*NewExit, Exit, DebugLoc()); 2144 NewExit->addSuccessor(Exit); 2145 2146 Exit->replacePhiUsesWith(Loop, NewExit); 2147 2148 return NewExit; 2149 } 2150 2151 /// Insert branch code into the end of MBB. It branches to GreaterThan if the 2152 /// remaining trip count for instructions in LastStage0Insts is greater than 2153 /// RequiredTC, and to Otherwise otherwise. 2154 void ModuloScheduleExpanderMVE::insertCondBranch(MachineBasicBlock &MBB, 2155 int RequiredTC, 2156 InstrMapTy &LastStage0Insts, 2157 MachineBasicBlock &GreaterThan, 2158 MachineBasicBlock &Otherwise) { 2159 SmallVector<MachineOperand, 4> Cond; 2160 LoopInfo->createRemainingIterationsGreaterCondition(RequiredTC, MBB, Cond, 2161 LastStage0Insts); 2162 2163 if (SwapBranchTargetsMVE) { 2164 // Set SwapBranchTargetsMVE to true if a target prefers to replace TBB and 2165 // FBB for optimal performance. 2166 if (TII->reverseBranchCondition(Cond)) 2167 llvm_unreachable("can not reverse branch condition"); 2168 TII->insertBranch(MBB, &Otherwise, &GreaterThan, Cond, DebugLoc()); 2169 } else { 2170 TII->insertBranch(MBB, &GreaterThan, &Otherwise, Cond, DebugLoc()); 2171 } 2172 } 2173 2174 /// Generate a pipelined loop that is unrolled by using MVE algorithm and any 2175 /// other necessary blocks. The control flow is modified to execute the 2176 /// pipelined loop if the trip count satisfies the condition, otherwise the 2177 /// original loop. The original loop is also used to execute the remainder 2178 /// iterations which occur due to unrolling. 2179 void ModuloScheduleExpanderMVE::generatePipelinedLoop() { 2180 // The control flow for pipelining with MVE: 2181 // 2182 // OrigPreheader: 2183 // // The block that is originally the loop preheader 2184 // goto Check 2185 // 2186 // Check: 2187 // // Check whether the trip count satisfies the requirements to pipeline. 2188 // if (LoopCounter > NumStages + NumUnroll - 2) 2189 // // The minimum number of iterations to pipeline = 2190 // // iterations executed in prolog/epilog (NumStages-1) + 2191 // // iterations executed in one kernel run (NumUnroll) 2192 // goto Prolog 2193 // // fallback to the original loop 2194 // goto NewPreheader 2195 // 2196 // Prolog: 2197 // // All prolog stages. There are no direct branches to the epilogue. 2198 // goto NewKernel 2199 // 2200 // NewKernel: 2201 // // NumUnroll copies of the kernel 2202 // if (LoopCounter > MVE-1) 2203 // goto NewKernel 2204 // goto Epilog 2205 // 2206 // Epilog: 2207 // // All epilog stages. 2208 // if (LoopCounter > 0) 2209 // // The remainder is executed in the original loop 2210 // goto NewPreheader 2211 // goto NewExit 2212 // 2213 // NewPreheader: 2214 // // Newly created preheader for the original loop. 2215 // // The initial values of the phis in the loop are merged from two paths. 2216 // NewInitVal = Phi OrigInitVal, Check, PipelineLastVal, Epilog 2217 // goto OrigKernel 2218 // 2219 // OrigKernel: 2220 // // The original loop block. 2221 // if (LoopCounter != 0) 2222 // goto OrigKernel 2223 // goto NewExit 2224 // 2225 // NewExit: 2226 // // Newly created dedicated exit for the original loop. 2227 // // Merge values which are referenced after the loop 2228 // Merged = Phi OrigVal, OrigKernel, PipelineVal, Epilog 2229 // goto OrigExit 2230 // 2231 // OrigExit: 2232 // // The block that is originally the loop exit. 2233 // // If it is already deicated exit, NewExit is not created. 2234 2235 // An example of where each stage is executed: 2236 // Assume #Stages 3, #MVE 4, #Iterations 12 2237 // Iter 0 1 2 3 4 5 6 7 8 9 10-11 2238 // ------------------------------------------------- 2239 // Stage 0 Prolog#0 2240 // Stage 1 0 Prolog#1 2241 // Stage 2 1 0 Kernel Unroll#0 Iter#0 2242 // Stage 2 1 0 Kernel Unroll#1 Iter#0 2243 // Stage 2 1 0 Kernel Unroll#2 Iter#0 2244 // Stage 2 1 0 Kernel Unroll#3 Iter#0 2245 // Stage 2 1 0 Kernel Unroll#0 Iter#1 2246 // Stage 2 1 0 Kernel Unroll#1 Iter#1 2247 // Stage 2 1 0 Kernel Unroll#2 Iter#1 2248 // Stage 2 1 0 Kernel Unroll#3 Iter#1 2249 // Stage 2 1 Epilog#0 2250 // Stage 2 Epilog#1 2251 // Stage 0-2 OrigKernel 2252 2253 LoopInfo = TII->analyzeLoopForPipelining(OrigKernel); 2254 assert(LoopInfo && "Must be able to analyze loop!"); 2255 2256 calcNumUnroll(); 2257 2258 Check = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock()); 2259 Prolog = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock()); 2260 NewKernel = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock()); 2261 Epilog = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock()); 2262 NewPreheader = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock()); 2263 2264 MF.insert(OrigKernel->getIterator(), Check); 2265 MF.insert(OrigKernel->getIterator(), Prolog); 2266 MF.insert(OrigKernel->getIterator(), NewKernel); 2267 MF.insert(OrigKernel->getIterator(), Epilog); 2268 MF.insert(OrigKernel->getIterator(), NewPreheader); 2269 2270 NewExit = createDedicatedExit(OrigKernel, OrigExit); 2271 2272 NewPreheader->transferSuccessorsAndUpdatePHIs(OrigPreheader); 2273 TII->insertUnconditionalBranch(*NewPreheader, OrigKernel, DebugLoc()); 2274 2275 OrigPreheader->addSuccessor(Check); 2276 TII->removeBranch(*OrigPreheader); 2277 TII->insertUnconditionalBranch(*OrigPreheader, Check, DebugLoc()); 2278 2279 Check->addSuccessor(Prolog); 2280 Check->addSuccessor(NewPreheader); 2281 2282 Prolog->addSuccessor(NewKernel); 2283 2284 NewKernel->addSuccessor(NewKernel); 2285 NewKernel->addSuccessor(Epilog); 2286 2287 Epilog->addSuccessor(NewPreheader); 2288 Epilog->addSuccessor(NewExit); 2289 2290 InstrMapTy LastStage0Insts; 2291 insertCondBranch(*Check, Schedule.getNumStages() + NumUnroll - 2, 2292 LastStage0Insts, *Prolog, *NewPreheader); 2293 2294 // VRMaps map (prolog/kernel/epilog phase#, original register#) to new 2295 // register# 2296 SmallVector<ValueMapTy> PrologVRMap, KernelVRMap, EpilogVRMap; 2297 generateProlog(PrologVRMap); 2298 generateKernel(PrologVRMap, KernelVRMap, LastStage0Insts); 2299 generateEpilog(KernelVRMap, EpilogVRMap, LastStage0Insts); 2300 } 2301 2302 /// Replace MI's use operands according to the maps. 2303 void ModuloScheduleExpanderMVE::updateInstrUse( 2304 MachineInstr *MI, int StageNum, int PhaseNum, 2305 SmallVectorImpl<ValueMapTy> &CurVRMap, 2306 SmallVectorImpl<ValueMapTy> *PrevVRMap) { 2307 // If MI is in the prolog/kernel/epilog block, CurVRMap is 2308 // PrologVRMap/KernelVRMap/EpilogVRMap respectively. 2309 // PrevVRMap is nullptr/PhiVRMap/KernelVRMap respectively. 2310 // Refer to the appropriate map according to the stage difference between 2311 // MI and the definition of an operand. 2312 2313 for (MachineOperand &UseMO : MI->uses()) { 2314 if (!UseMO.isReg() || !UseMO.getReg().isVirtual()) 2315 continue; 2316 int DiffStage = 0; 2317 Register OrigReg = UseMO.getReg(); 2318 MachineInstr *DefInst = MRI.getVRegDef(OrigReg); 2319 if (!DefInst || DefInst->getParent() != OrigKernel) 2320 continue; 2321 unsigned InitReg = 0; 2322 unsigned DefReg = OrigReg; 2323 if (DefInst->isPHI()) { 2324 ++DiffStage; 2325 unsigned LoopReg; 2326 getPhiRegs(*DefInst, OrigKernel, InitReg, LoopReg); 2327 // LoopReg is guaranteed to be defined within the loop by canApply() 2328 DefReg = LoopReg; 2329 DefInst = MRI.getVRegDef(LoopReg); 2330 } 2331 unsigned DefStageNum = Schedule.getStage(DefInst); 2332 DiffStage += StageNum - DefStageNum; 2333 Register NewReg; 2334 if (PhaseNum >= DiffStage && CurVRMap[PhaseNum - DiffStage].count(DefReg)) 2335 // NewReg is defined in a previous phase of the same block 2336 NewReg = CurVRMap[PhaseNum - DiffStage][DefReg]; 2337 else if (!PrevVRMap) 2338 // Since this is the first iteration, refer the initial register of the 2339 // loop 2340 NewReg = InitReg; 2341 else 2342 // Cases where DiffStage is larger than PhaseNum. 2343 // If MI is in the kernel block, the value is defined by the previous 2344 // iteration and PhiVRMap is referenced. If MI is in the epilog block, the 2345 // value is defined in the kernel block and KernelVRMap is referenced. 2346 NewReg = (*PrevVRMap)[PrevVRMap->size() - (DiffStage - PhaseNum)][DefReg]; 2347 2348 const TargetRegisterClass *NRC = 2349 MRI.constrainRegClass(NewReg, MRI.getRegClass(OrigReg)); 2350 if (NRC) 2351 UseMO.setReg(NewReg); 2352 else { 2353 Register SplitReg = MRI.createVirtualRegister(MRI.getRegClass(OrigReg)); 2354 BuildMI(*OrigKernel, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY), 2355 SplitReg) 2356 .addReg(NewReg); 2357 UseMO.setReg(SplitReg); 2358 } 2359 } 2360 } 2361 2362 /// Return a phi if Reg is referenced by the phi. 2363 /// canApply() guarantees that at most only one such phi exists. 2364 static MachineInstr *getLoopPhiUser(Register Reg, MachineBasicBlock *Loop) { 2365 for (MachineInstr &Phi : Loop->phis()) { 2366 unsigned InitVal, LoopVal; 2367 getPhiRegs(Phi, Loop, InitVal, LoopVal); 2368 if (LoopVal == Reg) 2369 return Φ 2370 } 2371 return nullptr; 2372 } 2373 2374 /// Generate phis for registers defined by OrigMI. 2375 void ModuloScheduleExpanderMVE::generatePhi( 2376 MachineInstr *OrigMI, int UnrollNum, 2377 SmallVectorImpl<ValueMapTy> &PrologVRMap, 2378 SmallVectorImpl<ValueMapTy> &KernelVRMap, 2379 SmallVectorImpl<ValueMapTy> &PhiVRMap) { 2380 int StageNum = Schedule.getStage(OrigMI); 2381 bool UsePrologReg; 2382 if (Schedule.getNumStages() - NumUnroll + UnrollNum - 1 >= StageNum) 2383 UsePrologReg = true; 2384 else if (Schedule.getNumStages() - NumUnroll + UnrollNum == StageNum) 2385 UsePrologReg = false; 2386 else 2387 return; 2388 2389 // Examples that show which stages are merged by phi. 2390 // Meaning of the symbol following the stage number: 2391 // a/b: Stages with the same letter are merged (UsePrologReg == true) 2392 // +: Merged with the initial value (UsePrologReg == false) 2393 // *: No phis required 2394 // 2395 // #Stages 3, #MVE 4 2396 // Iter 0 1 2 3 4 5 6 7 8 2397 // ----------------------------------------- 2398 // Stage 0a Prolog#0 2399 // Stage 1a 0b Prolog#1 2400 // Stage 2* 1* 0* Kernel Unroll#0 2401 // Stage 2* 1* 0+ Kernel Unroll#1 2402 // Stage 2* 1+ 0a Kernel Unroll#2 2403 // Stage 2+ 1a 0b Kernel Unroll#3 2404 // 2405 // #Stages 3, #MVE 2 2406 // Iter 0 1 2 3 4 5 6 7 8 2407 // ----------------------------------------- 2408 // Stage 0a Prolog#0 2409 // Stage 1a 0b Prolog#1 2410 // Stage 2* 1+ 0a Kernel Unroll#0 2411 // Stage 2+ 1a 0b Kernel Unroll#1 2412 // 2413 // #Stages 3, #MVE 1 2414 // Iter 0 1 2 3 4 5 6 7 8 2415 // ----------------------------------------- 2416 // Stage 0* Prolog#0 2417 // Stage 1a 0b Prolog#1 2418 // Stage 2+ 1a 0b Kernel Unroll#0 2419 2420 for (MachineOperand &DefMO : OrigMI->defs()) { 2421 if (!DefMO.isReg() || DefMO.isDead()) 2422 continue; 2423 Register OrigReg = DefMO.getReg(); 2424 auto NewReg = KernelVRMap[UnrollNum].find(OrigReg); 2425 if (NewReg == KernelVRMap[UnrollNum].end()) 2426 continue; 2427 Register CorrespondReg; 2428 if (UsePrologReg) { 2429 int PrologNum = Schedule.getNumStages() - NumUnroll + UnrollNum - 1; 2430 CorrespondReg = PrologVRMap[PrologNum][OrigReg]; 2431 } else { 2432 MachineInstr *Phi = getLoopPhiUser(OrigReg, OrigKernel); 2433 if (!Phi) 2434 continue; 2435 CorrespondReg = getInitPhiReg(*Phi, OrigKernel); 2436 } 2437 2438 assert(CorrespondReg.isValid()); 2439 Register PhiReg = MRI.createVirtualRegister(MRI.getRegClass(OrigReg)); 2440 BuildMI(*NewKernel, NewKernel->getFirstNonPHI(), DebugLoc(), 2441 TII->get(TargetOpcode::PHI), PhiReg) 2442 .addReg(NewReg->second) 2443 .addMBB(NewKernel) 2444 .addReg(CorrespondReg) 2445 .addMBB(Prolog); 2446 PhiVRMap[UnrollNum][OrigReg] = PhiReg; 2447 } 2448 } 2449 2450 static void replacePhiSrc(MachineInstr &Phi, Register OrigReg, Register NewReg, 2451 MachineBasicBlock *NewMBB) { 2452 for (unsigned Idx = 1; Idx < Phi.getNumOperands(); Idx += 2) { 2453 if (Phi.getOperand(Idx).getReg() == OrigReg) { 2454 Phi.getOperand(Idx).setReg(NewReg); 2455 Phi.getOperand(Idx + 1).setMBB(NewMBB); 2456 return; 2457 } 2458 } 2459 } 2460 2461 /// Generate phis that merge values from multiple routes 2462 void ModuloScheduleExpanderMVE::mergeRegUsesAfterPipeline(Register OrigReg, 2463 Register NewReg) { 2464 SmallVector<MachineOperand *> UsesAfterLoop; 2465 SmallVector<MachineInstr *> LoopPhis; 2466 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(OrigReg), 2467 E = MRI.use_end(); 2468 I != E; ++I) { 2469 MachineOperand &O = *I; 2470 if (O.getParent()->getParent() != OrigKernel && 2471 O.getParent()->getParent() != Prolog && 2472 O.getParent()->getParent() != NewKernel && 2473 O.getParent()->getParent() != Epilog) 2474 UsesAfterLoop.push_back(&O); 2475 if (O.getParent()->getParent() == OrigKernel && O.getParent()->isPHI()) 2476 LoopPhis.push_back(O.getParent()); 2477 } 2478 2479 // Merge the route that only execute the pipelined loop (when there are no 2480 // remaining iterations) with the route that execute the original loop. 2481 if (!UsesAfterLoop.empty()) { 2482 Register PhiReg = MRI.createVirtualRegister(MRI.getRegClass(OrigReg)); 2483 BuildMI(*NewExit, NewExit->getFirstNonPHI(), DebugLoc(), 2484 TII->get(TargetOpcode::PHI), PhiReg) 2485 .addReg(OrigReg) 2486 .addMBB(OrigKernel) 2487 .addReg(NewReg) 2488 .addMBB(Epilog); 2489 2490 for (MachineOperand *MO : UsesAfterLoop) 2491 MO->setReg(PhiReg); 2492 2493 if (!LIS.hasInterval(PhiReg)) 2494 LIS.createEmptyInterval(PhiReg); 2495 } 2496 2497 // Merge routes from the pipelined loop and the bypassed route before the 2498 // original loop 2499 if (!LoopPhis.empty()) { 2500 for (MachineInstr *Phi : LoopPhis) { 2501 unsigned InitReg, LoopReg; 2502 getPhiRegs(*Phi, OrigKernel, InitReg, LoopReg); 2503 Register NewInit = MRI.createVirtualRegister(MRI.getRegClass(InitReg)); 2504 BuildMI(*NewPreheader, NewPreheader->getFirstNonPHI(), Phi->getDebugLoc(), 2505 TII->get(TargetOpcode::PHI), NewInit) 2506 .addReg(InitReg) 2507 .addMBB(Check) 2508 .addReg(NewReg) 2509 .addMBB(Epilog); 2510 replacePhiSrc(*Phi, InitReg, NewInit, NewPreheader); 2511 } 2512 } 2513 } 2514 2515 void ModuloScheduleExpanderMVE::generateProlog( 2516 SmallVectorImpl<ValueMapTy> &PrologVRMap) { 2517 PrologVRMap.clear(); 2518 PrologVRMap.resize(Schedule.getNumStages() - 1); 2519 DenseMap<MachineInstr *, std::pair<int, int>> NewMIMap; 2520 for (int PrologNum = 0; PrologNum < Schedule.getNumStages() - 1; 2521 ++PrologNum) { 2522 for (MachineInstr *MI : Schedule.getInstructions()) { 2523 if (MI->isPHI()) 2524 continue; 2525 int StageNum = Schedule.getStage(MI); 2526 if (StageNum > PrologNum) 2527 continue; 2528 MachineInstr *NewMI = cloneInstr(MI); 2529 updateInstrDef(NewMI, PrologVRMap[PrologNum], false); 2530 NewMIMap[NewMI] = {PrologNum, StageNum}; 2531 Prolog->push_back(NewMI); 2532 } 2533 } 2534 2535 for (auto I : NewMIMap) { 2536 MachineInstr *MI = I.first; 2537 int PrologNum = I.second.first; 2538 int StageNum = I.second.second; 2539 updateInstrUse(MI, StageNum, PrologNum, PrologVRMap, nullptr); 2540 } 2541 2542 LLVM_DEBUG({ 2543 dbgs() << "prolog:\n"; 2544 Prolog->dump(); 2545 }); 2546 } 2547 2548 void ModuloScheduleExpanderMVE::generateKernel( 2549 SmallVectorImpl<ValueMapTy> &PrologVRMap, 2550 SmallVectorImpl<ValueMapTy> &KernelVRMap, InstrMapTy &LastStage0Insts) { 2551 KernelVRMap.clear(); 2552 KernelVRMap.resize(NumUnroll); 2553 SmallVector<ValueMapTy> PhiVRMap; 2554 PhiVRMap.resize(NumUnroll); 2555 DenseMap<MachineInstr *, std::pair<int, int>> NewMIMap; 2556 DenseMap<MachineInstr *, MachineInstr *> MIMapLastStage0; 2557 for (int UnrollNum = 0; UnrollNum < NumUnroll; ++UnrollNum) { 2558 for (MachineInstr *MI : Schedule.getInstructions()) { 2559 if (MI->isPHI()) 2560 continue; 2561 int StageNum = Schedule.getStage(MI); 2562 MachineInstr *NewMI = cloneInstr(MI); 2563 if (UnrollNum == NumUnroll - 1) 2564 LastStage0Insts[MI] = NewMI; 2565 updateInstrDef(NewMI, KernelVRMap[UnrollNum], 2566 (UnrollNum == NumUnroll - 1 && StageNum == 0)); 2567 generatePhi(MI, UnrollNum, PrologVRMap, KernelVRMap, PhiVRMap); 2568 NewMIMap[NewMI] = {UnrollNum, StageNum}; 2569 NewKernel->push_back(NewMI); 2570 } 2571 } 2572 2573 for (auto I : NewMIMap) { 2574 MachineInstr *MI = I.first; 2575 int UnrollNum = I.second.first; 2576 int StageNum = I.second.second; 2577 updateInstrUse(MI, StageNum, UnrollNum, KernelVRMap, &PhiVRMap); 2578 } 2579 2580 // If remaining trip count is greater than NumUnroll-1, loop continues 2581 insertCondBranch(*NewKernel, NumUnroll - 1, LastStage0Insts, *NewKernel, 2582 *Epilog); 2583 2584 LLVM_DEBUG({ 2585 dbgs() << "kernel:\n"; 2586 NewKernel->dump(); 2587 }); 2588 } 2589 2590 void ModuloScheduleExpanderMVE::generateEpilog( 2591 SmallVectorImpl<ValueMapTy> &KernelVRMap, 2592 SmallVectorImpl<ValueMapTy> &EpilogVRMap, InstrMapTy &LastStage0Insts) { 2593 EpilogVRMap.clear(); 2594 EpilogVRMap.resize(Schedule.getNumStages() - 1); 2595 DenseMap<MachineInstr *, std::pair<int, int>> NewMIMap; 2596 for (int EpilogNum = 0; EpilogNum < Schedule.getNumStages() - 1; 2597 ++EpilogNum) { 2598 for (MachineInstr *MI : Schedule.getInstructions()) { 2599 if (MI->isPHI()) 2600 continue; 2601 int StageNum = Schedule.getStage(MI); 2602 if (StageNum <= EpilogNum) 2603 continue; 2604 MachineInstr *NewMI = cloneInstr(MI); 2605 updateInstrDef(NewMI, EpilogVRMap[EpilogNum], StageNum - 1 == EpilogNum); 2606 NewMIMap[NewMI] = {EpilogNum, StageNum}; 2607 Epilog->push_back(NewMI); 2608 } 2609 } 2610 2611 for (auto I : NewMIMap) { 2612 MachineInstr *MI = I.first; 2613 int EpilogNum = I.second.first; 2614 int StageNum = I.second.second; 2615 updateInstrUse(MI, StageNum, EpilogNum, EpilogVRMap, &KernelVRMap); 2616 } 2617 2618 // If there are remaining iterations, they are executed in the original loop. 2619 // Instructions related to loop control, such as loop counter comparison, 2620 // are indicated by shouldIgnoreForPipelining() and are assumed to be placed 2621 // in stage 0. Thus, the map is for the last one in the kernel. 2622 insertCondBranch(*Epilog, 0, LastStage0Insts, *NewPreheader, *NewExit); 2623 2624 LLVM_DEBUG({ 2625 dbgs() << "epilog:\n"; 2626 Epilog->dump(); 2627 }); 2628 } 2629 2630 /// Calculate the number of unroll required and set it to NumUnroll 2631 void ModuloScheduleExpanderMVE::calcNumUnroll() { 2632 DenseMap<MachineInstr *, unsigned> Inst2Idx; 2633 NumUnroll = 1; 2634 for (unsigned I = 0; I < Schedule.getInstructions().size(); ++I) 2635 Inst2Idx[Schedule.getInstructions()[I]] = I; 2636 2637 for (MachineInstr *MI : Schedule.getInstructions()) { 2638 if (MI->isPHI()) 2639 continue; 2640 int StageNum = Schedule.getStage(MI); 2641 for (const MachineOperand &MO : MI->uses()) { 2642 if (!MO.isReg() || !MO.getReg().isVirtual()) 2643 continue; 2644 MachineInstr *DefMI = MRI.getVRegDef(MO.getReg()); 2645 if (DefMI->getParent() != OrigKernel) 2646 continue; 2647 2648 int NumUnrollLocal = 1; 2649 if (DefMI->isPHI()) { 2650 ++NumUnrollLocal; 2651 // canApply() guarantees that DefMI is not phi and is an instruction in 2652 // the loop 2653 DefMI = MRI.getVRegDef(getLoopPhiReg(*DefMI, OrigKernel)); 2654 } 2655 NumUnrollLocal += StageNum - Schedule.getStage(DefMI); 2656 if (Inst2Idx[MI] <= Inst2Idx[DefMI]) 2657 --NumUnrollLocal; 2658 NumUnroll = std::max(NumUnroll, NumUnrollLocal); 2659 } 2660 } 2661 LLVM_DEBUG(dbgs() << "NumUnroll: " << NumUnroll << "\n"); 2662 } 2663 2664 /// Create new virtual registers for definitions of NewMI and update NewMI. 2665 /// If the definitions are referenced after the pipelined loop, phis are 2666 /// created to merge with other routes. 2667 void ModuloScheduleExpanderMVE::updateInstrDef(MachineInstr *NewMI, 2668 ValueMapTy &VRMap, 2669 bool LastDef) { 2670 for (MachineOperand &MO : NewMI->operands()) { 2671 if (!MO.isReg() || !MO.getReg().isVirtual() || !MO.isDef()) 2672 continue; 2673 Register Reg = MO.getReg(); 2674 const TargetRegisterClass *RC = MRI.getRegClass(Reg); 2675 Register NewReg = MRI.createVirtualRegister(RC); 2676 MO.setReg(NewReg); 2677 VRMap[Reg] = NewReg; 2678 if (LastDef) 2679 mergeRegUsesAfterPipeline(Reg, NewReg); 2680 } 2681 } 2682 2683 void ModuloScheduleExpanderMVE::expand() { 2684 OrigKernel = Schedule.getLoop()->getTopBlock(); 2685 OrigPreheader = Schedule.getLoop()->getLoopPreheader(); 2686 OrigExit = Schedule.getLoop()->getExitBlock(); 2687 2688 LLVM_DEBUG(Schedule.dump()); 2689 2690 generatePipelinedLoop(); 2691 } 2692 2693 /// Check if ModuloScheduleExpanderMVE can be applied to L 2694 bool ModuloScheduleExpanderMVE::canApply(MachineLoop &L) { 2695 if (!L.getExitBlock()) { 2696 LLVM_DEBUG( 2697 dbgs() << "Can not apply MVE expander: No single exit block.\n";); 2698 return false; 2699 } 2700 2701 MachineBasicBlock *BB = L.getTopBlock(); 2702 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 2703 2704 // Put some constraints on the operands of the phis to simplify the 2705 // transformation 2706 DenseSet<unsigned> UsedByPhi; 2707 for (MachineInstr &MI : BB->phis()) { 2708 // Registers defined by phis must be used only inside the loop and be never 2709 // used by phis. 2710 for (MachineOperand &MO : MI.defs()) 2711 if (MO.isReg()) 2712 for (MachineInstr &Ref : MRI.use_instructions(MO.getReg())) 2713 if (Ref.getParent() != BB || Ref.isPHI()) { 2714 LLVM_DEBUG(dbgs() 2715 << "Can not apply MVE expander: A phi result is " 2716 "referenced outside of the loop or by phi.\n";); 2717 return false; 2718 } 2719 2720 // A source register from the loop block must be defined inside the loop. 2721 // A register defined inside the loop must be referenced by only one phi at 2722 // most. 2723 unsigned InitVal, LoopVal; 2724 getPhiRegs(MI, MI.getParent(), InitVal, LoopVal); 2725 if (!Register(LoopVal).isVirtual() || 2726 MRI.getVRegDef(LoopVal)->getParent() != BB) { 2727 LLVM_DEBUG( 2728 dbgs() << "Can not apply MVE expander: A phi source value coming " 2729 "from the loop is not defined in the loop.\n";); 2730 return false; 2731 } 2732 if (UsedByPhi.count(LoopVal)) { 2733 LLVM_DEBUG(dbgs() << "Can not apply MVE expander: A value defined in the " 2734 "loop is referenced by two or more phis.\n";); 2735 return false; 2736 } 2737 UsedByPhi.insert(LoopVal); 2738 } 2739 2740 return true; 2741 } 2742 2743 //===----------------------------------------------------------------------===// 2744 // ModuloScheduleTestPass implementation 2745 //===----------------------------------------------------------------------===// 2746 // This pass constructs a ModuloSchedule from its module and runs 2747 // ModuloScheduleExpander. 2748 // 2749 // The module is expected to contain a single-block analyzable loop. 2750 // The total order of instructions is taken from the loop as-is. 2751 // Instructions are expected to be annotated with a PostInstrSymbol. 2752 // This PostInstrSymbol must have the following format: 2753 // "Stage=%d Cycle=%d". 2754 //===----------------------------------------------------------------------===// 2755 2756 namespace { 2757 class ModuloScheduleTest : public MachineFunctionPass { 2758 public: 2759 static char ID; 2760 2761 ModuloScheduleTest() : MachineFunctionPass(ID) { 2762 initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); 2763 } 2764 2765 bool runOnMachineFunction(MachineFunction &MF) override; 2766 void runOnLoop(MachineFunction &MF, MachineLoop &L); 2767 2768 void getAnalysisUsage(AnalysisUsage &AU) const override { 2769 AU.addRequired<MachineLoopInfoWrapperPass>(); 2770 AU.addRequired<LiveIntervalsWrapperPass>(); 2771 MachineFunctionPass::getAnalysisUsage(AU); 2772 } 2773 }; 2774 } // namespace 2775 2776 char ModuloScheduleTest::ID = 0; 2777 2778 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test", 2779 "Modulo Schedule test pass", false, false) 2780 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 2781 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) 2782 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test", 2783 "Modulo Schedule test pass", false, false) 2784 2785 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { 2786 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 2787 for (auto *L : MLI) { 2788 if (L->getTopBlock() != L->getBottomBlock()) 2789 continue; 2790 runOnLoop(MF, *L); 2791 return false; 2792 } 2793 return false; 2794 } 2795 2796 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { 2797 std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_"); 2798 std::pair<StringRef, StringRef> StageTokenAndValue = 2799 getToken(StageAndCycle.first, "-"); 2800 std::pair<StringRef, StringRef> CycleTokenAndValue = 2801 getToken(StageAndCycle.second, "-"); 2802 if (StageTokenAndValue.first != "Stage" || 2803 CycleTokenAndValue.first != "_Cycle") { 2804 llvm_unreachable( 2805 "Bad post-instr symbol syntax: see comment in ModuloScheduleTest"); 2806 return; 2807 } 2808 2809 StageTokenAndValue.second.drop_front().getAsInteger(10, Stage); 2810 CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle); 2811 2812 dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n"; 2813 } 2814 2815 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { 2816 LiveIntervals &LIS = getAnalysis<LiveIntervalsWrapperPass>().getLIS(); 2817 MachineBasicBlock *BB = L.getTopBlock(); 2818 dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n"; 2819 2820 DenseMap<MachineInstr *, int> Cycle, Stage; 2821 std::vector<MachineInstr *> Instrs; 2822 for (MachineInstr &MI : *BB) { 2823 if (MI.isTerminator()) 2824 continue; 2825 Instrs.push_back(&MI); 2826 if (MCSymbol *Sym = MI.getPostInstrSymbol()) { 2827 dbgs() << "Parsing post-instr symbol for " << MI; 2828 parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]); 2829 } 2830 } 2831 2832 ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), 2833 std::move(Stage)); 2834 ModuloScheduleExpander MSE( 2835 MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); 2836 MSE.expand(); 2837 MSE.cleanup(); 2838 } 2839 2840 //===----------------------------------------------------------------------===// 2841 // ModuloScheduleTestAnnotater implementation 2842 //===----------------------------------------------------------------------===// 2843 2844 void ModuloScheduleTestAnnotater::annotate() { 2845 for (MachineInstr *MI : S.getInstructions()) { 2846 SmallVector<char, 16> SV; 2847 raw_svector_ostream OS(SV); 2848 OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); 2849 MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str()); 2850 MI->setPostInstrSymbol(MF, Sym); 2851 } 2852 } 2853