1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/ModuloSchedule.h" 10 #include "llvm/ADT/StringExtras.h" 11 #include "llvm/Analysis/MemoryLocation.h" 12 #include "llvm/CodeGen/LiveIntervals.h" 13 #include "llvm/CodeGen/MachineInstrBuilder.h" 14 #include "llvm/CodeGen/MachineRegisterInfo.h" 15 #include "llvm/InitializePasses.h" 16 #include "llvm/MC/MCContext.h" 17 #include "llvm/Support/Debug.h" 18 #include "llvm/Support/ErrorHandling.h" 19 #include "llvm/Support/raw_ostream.h" 20 21 #define DEBUG_TYPE "pipeliner" 22 using namespace llvm; 23 24 void ModuloSchedule::print(raw_ostream &OS) { 25 for (MachineInstr *MI : ScheduledInstrs) 26 OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI; 27 } 28 29 //===----------------------------------------------------------------------===// 30 // ModuloScheduleExpander implementation 31 //===----------------------------------------------------------------------===// 32 33 /// Return the register values for the operands of a Phi instruction. 34 /// This function assume the instruction is a Phi. 35 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 36 unsigned &InitVal, unsigned &LoopVal) { 37 assert(Phi.isPHI() && "Expecting a Phi."); 38 39 InitVal = 0; 40 LoopVal = 0; 41 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 42 if (Phi.getOperand(i + 1).getMBB() != Loop) 43 InitVal = Phi.getOperand(i).getReg(); 44 else 45 LoopVal = Phi.getOperand(i).getReg(); 46 47 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 48 } 49 50 /// Return the Phi register value that comes from the incoming block. 51 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 52 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 53 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 54 return Phi.getOperand(i).getReg(); 55 return 0; 56 } 57 58 /// Return the Phi register value that comes the loop block. 59 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 60 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 61 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 62 return Phi.getOperand(i).getReg(); 63 return 0; 64 } 65 66 void ModuloScheduleExpander::expand() { 67 BB = Schedule.getLoop()->getTopBlock(); 68 Preheader = *BB->pred_begin(); 69 if (Preheader == BB) 70 Preheader = *std::next(BB->pred_begin()); 71 72 // Iterate over the definitions in each instruction, and compute the 73 // stage difference for each use. Keep the maximum value. 74 for (MachineInstr *MI : Schedule.getInstructions()) { 75 int DefStage = Schedule.getStage(MI); 76 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 77 MachineOperand &Op = MI->getOperand(i); 78 if (!Op.isReg() || !Op.isDef()) 79 continue; 80 81 Register Reg = Op.getReg(); 82 unsigned MaxDiff = 0; 83 bool PhiIsSwapped = false; 84 for (MachineOperand &UseOp : MRI.use_operands(Reg)) { 85 MachineInstr *UseMI = UseOp.getParent(); 86 int UseStage = Schedule.getStage(UseMI); 87 unsigned Diff = 0; 88 if (UseStage != -1 && UseStage >= DefStage) 89 Diff = UseStage - DefStage; 90 if (MI->isPHI()) { 91 if (isLoopCarried(*MI)) 92 ++Diff; 93 else 94 PhiIsSwapped = true; 95 } 96 MaxDiff = std::max(Diff, MaxDiff); 97 } 98 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 99 } 100 } 101 102 generatePipelinedLoop(); 103 } 104 105 void ModuloScheduleExpander::generatePipelinedLoop() { 106 LoopInfo = TII->analyzeLoopForPipelining(BB); 107 assert(LoopInfo && "Must be able to analyze loop!"); 108 109 // Create a new basic block for the kernel and add it to the CFG. 110 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 111 112 unsigned MaxStageCount = Schedule.getNumStages() - 1; 113 114 // Remember the registers that are used in different stages. The index is 115 // the iteration, or stage, that the instruction is scheduled in. This is 116 // a map between register names in the original block and the names created 117 // in each stage of the pipelined loop. 118 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 119 InstrMapTy InstrMap; 120 121 SmallVector<MachineBasicBlock *, 4> PrologBBs; 122 123 // Generate the prolog instructions that set up the pipeline. 124 generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs); 125 MF.insert(BB->getIterator(), KernelBB); 126 127 // Rearrange the instructions to generate the new, pipelined loop, 128 // and update register names as needed. 129 for (MachineInstr *CI : Schedule.getInstructions()) { 130 if (CI->isPHI()) 131 continue; 132 unsigned StageNum = Schedule.getStage(CI); 133 MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum); 134 updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap); 135 KernelBB->push_back(NewMI); 136 InstrMap[NewMI] = CI; 137 } 138 139 // Copy any terminator instructions to the new kernel, and update 140 // names as needed. 141 for (MachineInstr &MI : BB->terminators()) { 142 MachineInstr *NewMI = MF.CloneMachineInstr(&MI); 143 updateInstruction(NewMI, false, MaxStageCount, 0, VRMap); 144 KernelBB->push_back(NewMI); 145 InstrMap[NewMI] = &MI; 146 } 147 148 NewKernel = KernelBB; 149 KernelBB->transferSuccessors(BB); 150 KernelBB->replaceSuccessor(BB, KernelBB); 151 152 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, 153 InstrMap, MaxStageCount, MaxStageCount, false); 154 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap, 155 MaxStageCount, MaxStageCount, false); 156 157 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 158 159 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 160 // Generate the epilog instructions to complete the pipeline. 161 generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs); 162 163 // We need this step because the register allocation doesn't handle some 164 // situations well, so we insert copies to help out. 165 splitLifetimes(KernelBB, EpilogBBs); 166 167 // Remove dead instructions due to loop induction variables. 168 removeDeadInstructions(KernelBB, EpilogBBs); 169 170 // Add branches between prolog and epilog blocks. 171 addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); 172 173 delete[] VRMap; 174 } 175 176 void ModuloScheduleExpander::cleanup() { 177 // Remove the original loop since it's no longer referenced. 178 for (auto &I : *BB) 179 LIS.RemoveMachineInstrFromMaps(I); 180 BB->clear(); 181 BB->eraseFromParent(); 182 } 183 184 /// Generate the pipeline prolog code. 185 void ModuloScheduleExpander::generateProlog(unsigned LastStage, 186 MachineBasicBlock *KernelBB, 187 ValueMapTy *VRMap, 188 MBBVectorTy &PrologBBs) { 189 MachineBasicBlock *PredBB = Preheader; 190 InstrMapTy InstrMap; 191 192 // Generate a basic block for each stage, not including the last stage, 193 // which will be generated in the kernel. Each basic block may contain 194 // instructions from multiple stages/iterations. 195 for (unsigned i = 0; i < LastStage; ++i) { 196 // Create and insert the prolog basic block prior to the original loop 197 // basic block. The original loop is removed later. 198 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 199 PrologBBs.push_back(NewBB); 200 MF.insert(BB->getIterator(), NewBB); 201 NewBB->transferSuccessors(PredBB); 202 PredBB->addSuccessor(NewBB); 203 PredBB = NewBB; 204 205 // Generate instructions for each appropriate stage. Process instructions 206 // in original program order. 207 for (int StageNum = i; StageNum >= 0; --StageNum) { 208 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 209 BBE = BB->getFirstTerminator(); 210 BBI != BBE; ++BBI) { 211 if (Schedule.getStage(&*BBI) == StageNum) { 212 if (BBI->isPHI()) 213 continue; 214 MachineInstr *NewMI = 215 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum); 216 updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap); 217 NewBB->push_back(NewMI); 218 InstrMap[NewMI] = &*BBI; 219 } 220 } 221 } 222 rewritePhiValues(NewBB, i, VRMap, InstrMap); 223 LLVM_DEBUG({ 224 dbgs() << "prolog:\n"; 225 NewBB->dump(); 226 }); 227 } 228 229 PredBB->replaceSuccessor(BB, KernelBB); 230 231 // Check if we need to remove the branch from the preheader to the original 232 // loop, and replace it with a branch to the new loop. 233 unsigned numBranches = TII->removeBranch(*Preheader); 234 if (numBranches) { 235 SmallVector<MachineOperand, 0> Cond; 236 TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc()); 237 } 238 } 239 240 /// Generate the pipeline epilog code. The epilog code finishes the iterations 241 /// that were started in either the prolog or the kernel. We create a basic 242 /// block for each stage that needs to complete. 243 void ModuloScheduleExpander::generateEpilog(unsigned LastStage, 244 MachineBasicBlock *KernelBB, 245 ValueMapTy *VRMap, 246 MBBVectorTy &EpilogBBs, 247 MBBVectorTy &PrologBBs) { 248 // We need to change the branch from the kernel to the first epilog block, so 249 // this call to analyze branch uses the kernel rather than the original BB. 250 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 251 SmallVector<MachineOperand, 4> Cond; 252 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 253 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 254 if (checkBranch) 255 return; 256 257 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 258 if (*LoopExitI == KernelBB) 259 ++LoopExitI; 260 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 261 MachineBasicBlock *LoopExitBB = *LoopExitI; 262 263 MachineBasicBlock *PredBB = KernelBB; 264 MachineBasicBlock *EpilogStart = LoopExitBB; 265 InstrMapTy InstrMap; 266 267 // Generate a basic block for each stage, not including the last stage, 268 // which was generated for the kernel. Each basic block may contain 269 // instructions from multiple stages/iterations. 270 int EpilogStage = LastStage + 1; 271 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 272 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 273 EpilogBBs.push_back(NewBB); 274 MF.insert(BB->getIterator(), NewBB); 275 276 PredBB->replaceSuccessor(LoopExitBB, NewBB); 277 NewBB->addSuccessor(LoopExitBB); 278 279 if (EpilogStart == LoopExitBB) 280 EpilogStart = NewBB; 281 282 // Add instructions to the epilog depending on the current block. 283 // Process instructions in original program order. 284 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 285 for (auto &BBI : *BB) { 286 if (BBI.isPHI()) 287 continue; 288 MachineInstr *In = &BBI; 289 if ((unsigned)Schedule.getStage(In) == StageNum) { 290 // Instructions with memoperands in the epilog are updated with 291 // conservative values. 292 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 293 updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap); 294 NewBB->push_back(NewMI); 295 InstrMap[NewMI] = In; 296 } 297 } 298 } 299 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, 300 InstrMap, LastStage, EpilogStage, i == 1); 301 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap, 302 LastStage, EpilogStage, i == 1); 303 PredBB = NewBB; 304 305 LLVM_DEBUG({ 306 dbgs() << "epilog:\n"; 307 NewBB->dump(); 308 }); 309 } 310 311 // Fix any Phi nodes in the loop exit block. 312 LoopExitBB->replacePhiUsesWith(BB, PredBB); 313 314 // Create a branch to the new epilog from the kernel. 315 // Remove the original branch and add a new branch to the epilog. 316 TII->removeBranch(*KernelBB); 317 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 318 // Add a branch to the loop exit. 319 if (EpilogBBs.size() > 0) { 320 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 321 SmallVector<MachineOperand, 4> Cond1; 322 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 323 } 324 } 325 326 /// Replace all uses of FromReg that appear outside the specified 327 /// basic block with ToReg. 328 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 329 MachineBasicBlock *MBB, 330 MachineRegisterInfo &MRI, 331 LiveIntervals &LIS) { 332 for (MachineOperand &O : 333 llvm::make_early_inc_range(MRI.use_operands(FromReg))) 334 if (O.getParent()->getParent() != MBB) 335 O.setReg(ToReg); 336 if (!LIS.hasInterval(ToReg)) 337 LIS.createEmptyInterval(ToReg); 338 } 339 340 /// Return true if the register has a use that occurs outside the 341 /// specified loop. 342 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 343 MachineRegisterInfo &MRI) { 344 for (const MachineOperand &MO : MRI.use_operands(Reg)) 345 if (MO.getParent()->getParent() != BB) 346 return true; 347 return false; 348 } 349 350 /// Generate Phis for the specific block in the generated pipelined code. 351 /// This function looks at the Phis from the original code to guide the 352 /// creation of new Phis. 353 void ModuloScheduleExpander::generateExistingPhis( 354 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 355 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 356 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 357 // Compute the stage number for the initial value of the Phi, which 358 // comes from the prolog. The prolog to use depends on to which kernel/ 359 // epilog that we're adding the Phi. 360 unsigned PrologStage = 0; 361 unsigned PrevStage = 0; 362 bool InKernel = (LastStageNum == CurStageNum); 363 if (InKernel) { 364 PrologStage = LastStageNum - 1; 365 PrevStage = CurStageNum; 366 } else { 367 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 368 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 369 } 370 371 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 372 BBE = BB->getFirstNonPHI(); 373 BBI != BBE; ++BBI) { 374 Register Def = BBI->getOperand(0).getReg(); 375 376 unsigned InitVal = 0; 377 unsigned LoopVal = 0; 378 getPhiRegs(*BBI, BB, InitVal, LoopVal); 379 380 unsigned PhiOp1 = 0; 381 // The Phi value from the loop body typically is defined in the loop, but 382 // not always. So, we need to check if the value is defined in the loop. 383 unsigned PhiOp2 = LoopVal; 384 if (VRMap[LastStageNum].count(LoopVal)) 385 PhiOp2 = VRMap[LastStageNum][LoopVal]; 386 387 int StageScheduled = Schedule.getStage(&*BBI); 388 int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal)); 389 unsigned NumStages = getStagesForReg(Def, CurStageNum); 390 if (NumStages == 0) { 391 // We don't need to generate a Phi anymore, but we need to rename any uses 392 // of the Phi value. 393 unsigned NewReg = VRMap[PrevStage][LoopVal]; 394 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def, 395 InitVal, NewReg); 396 if (VRMap[CurStageNum].count(LoopVal)) 397 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 398 } 399 // Adjust the number of Phis needed depending on the number of prologs left, 400 // and the distance from where the Phi is first scheduled. The number of 401 // Phis cannot exceed the number of prolog stages. Each stage can 402 // potentially define two values. 403 unsigned MaxPhis = PrologStage + 2; 404 if (!InKernel && (int)PrologStage <= LoopValStage) 405 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 406 unsigned NumPhis = std::min(NumStages, MaxPhis); 407 408 unsigned NewReg = 0; 409 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 410 // In the epilog, we may need to look back one stage to get the correct 411 // Phi name, because the epilog and prolog blocks execute the same stage. 412 // The correct name is from the previous block only when the Phi has 413 // been completely scheduled prior to the epilog, and Phi value is not 414 // needed in multiple stages. 415 int StageDiff = 0; 416 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 417 NumPhis == 1) 418 StageDiff = 1; 419 // Adjust the computations below when the phi and the loop definition 420 // are scheduled in different stages. 421 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 422 StageDiff = StageScheduled - LoopValStage; 423 for (unsigned np = 0; np < NumPhis; ++np) { 424 // If the Phi hasn't been scheduled, then use the initial Phi operand 425 // value. Otherwise, use the scheduled version of the instruction. This 426 // is a little complicated when a Phi references another Phi. 427 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 428 PhiOp1 = InitVal; 429 // Check if the Phi has already been scheduled in a prolog stage. 430 else if (PrologStage >= AccessStage + StageDiff + np && 431 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 432 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 433 // Check if the Phi has already been scheduled, but the loop instruction 434 // is either another Phi, or doesn't occur in the loop. 435 else if (PrologStage >= AccessStage + StageDiff + np) { 436 // If the Phi references another Phi, we need to examine the other 437 // Phi to get the correct value. 438 PhiOp1 = LoopVal; 439 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 440 int Indirects = 1; 441 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 442 int PhiStage = Schedule.getStage(InstOp1); 443 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 444 PhiOp1 = getInitPhiReg(*InstOp1, BB); 445 else 446 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 447 InstOp1 = MRI.getVRegDef(PhiOp1); 448 int PhiOpStage = Schedule.getStage(InstOp1); 449 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 450 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 451 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 452 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 453 break; 454 } 455 ++Indirects; 456 } 457 } else 458 PhiOp1 = InitVal; 459 // If this references a generated Phi in the kernel, get the Phi operand 460 // from the incoming block. 461 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 462 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 463 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 464 465 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 466 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 467 // In the epilog, a map lookup is needed to get the value from the kernel, 468 // or previous epilog block. How is does this depends on if the 469 // instruction is scheduled in the previous block. 470 if (!InKernel) { 471 int StageDiffAdj = 0; 472 if (LoopValStage != -1 && StageScheduled > LoopValStage) 473 StageDiffAdj = StageScheduled - LoopValStage; 474 // Use the loop value defined in the kernel, unless the kernel 475 // contains the last definition of the Phi. 476 if (np == 0 && PrevStage == LastStageNum && 477 (StageScheduled != 0 || LoopValStage != 0) && 478 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 479 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 480 // Use the value defined by the Phi. We add one because we switch 481 // from looking at the loop value to the Phi definition. 482 else if (np > 0 && PrevStage == LastStageNum && 483 VRMap[PrevStage - np + 1].count(Def)) 484 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 485 // Use the loop value defined in the kernel. 486 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 487 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 488 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 489 // Use the value defined by the Phi, unless we're generating the first 490 // epilog and the Phi refers to a Phi in a different stage. 491 else if (VRMap[PrevStage - np].count(Def) && 492 (!LoopDefIsPhi || (PrevStage != LastStageNum) || 493 (LoopValStage == StageScheduled))) 494 PhiOp2 = VRMap[PrevStage - np][Def]; 495 } 496 497 // Check if we can reuse an existing Phi. This occurs when a Phi 498 // references another Phi, and the other Phi is scheduled in an 499 // earlier stage. We can try to reuse an existing Phi up until the last 500 // stage of the current Phi. 501 if (LoopDefIsPhi) { 502 if (static_cast<int>(PrologStage - np) >= StageScheduled) { 503 int LVNumStages = getStagesForPhi(LoopVal); 504 int StageDiff = (StageScheduled - LoopValStage); 505 LVNumStages -= StageDiff; 506 // Make sure the loop value Phi has been processed already. 507 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 508 NewReg = PhiOp2; 509 unsigned ReuseStage = CurStageNum; 510 if (isLoopCarried(*PhiInst)) 511 ReuseStage -= LVNumStages; 512 // Check if the Phi to reuse has been generated yet. If not, then 513 // there is nothing to reuse. 514 if (VRMap[ReuseStage - np].count(LoopVal)) { 515 NewReg = VRMap[ReuseStage - np][LoopVal]; 516 517 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, 518 Def, NewReg); 519 // Update the map with the new Phi name. 520 VRMap[CurStageNum - np][Def] = NewReg; 521 PhiOp2 = NewReg; 522 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 523 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 524 525 if (IsLast && np == NumPhis - 1) 526 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 527 continue; 528 } 529 } 530 } 531 if (InKernel && StageDiff > 0 && 532 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 533 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 534 } 535 536 const TargetRegisterClass *RC = MRI.getRegClass(Def); 537 NewReg = MRI.createVirtualRegister(RC); 538 539 MachineInstrBuilder NewPhi = 540 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 541 TII->get(TargetOpcode::PHI), NewReg); 542 NewPhi.addReg(PhiOp1).addMBB(BB1); 543 NewPhi.addReg(PhiOp2).addMBB(BB2); 544 if (np == 0) 545 InstrMap[NewPhi] = &*BBI; 546 547 // We define the Phis after creating the new pipelined code, so 548 // we need to rename the Phi values in scheduled instructions. 549 550 unsigned PrevReg = 0; 551 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 552 PrevReg = VRMap[PrevStage - np][LoopVal]; 553 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 554 NewReg, PrevReg); 555 // If the Phi has been scheduled, use the new name for rewriting. 556 if (VRMap[CurStageNum - np].count(Def)) { 557 unsigned R = VRMap[CurStageNum - np][Def]; 558 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R, 559 NewReg); 560 } 561 562 // Check if we need to rename any uses that occurs after the loop. The 563 // register to replace depends on whether the Phi is scheduled in the 564 // epilog. 565 if (IsLast && np == NumPhis - 1) 566 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 567 568 // In the kernel, a dependent Phi uses the value from this Phi. 569 if (InKernel) 570 PhiOp2 = NewReg; 571 572 // Update the map with the new Phi name. 573 VRMap[CurStageNum - np][Def] = NewReg; 574 } 575 576 while (NumPhis++ < NumStages) { 577 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def, 578 NewReg, 0); 579 } 580 581 // Check if we need to rename a Phi that has been eliminated due to 582 // scheduling. 583 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 584 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 585 } 586 } 587 588 /// Generate Phis for the specified block in the generated pipelined code. 589 /// These are new Phis needed because the definition is scheduled after the 590 /// use in the pipelined sequence. 591 void ModuloScheduleExpander::generatePhis( 592 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 593 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 594 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 595 // Compute the stage number that contains the initial Phi value, and 596 // the Phi from the previous stage. 597 unsigned PrologStage = 0; 598 unsigned PrevStage = 0; 599 unsigned StageDiff = CurStageNum - LastStageNum; 600 bool InKernel = (StageDiff == 0); 601 if (InKernel) { 602 PrologStage = LastStageNum - 1; 603 PrevStage = CurStageNum; 604 } else { 605 PrologStage = LastStageNum - StageDiff; 606 PrevStage = LastStageNum + StageDiff - 1; 607 } 608 609 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 610 BBE = BB->instr_end(); 611 BBI != BBE; ++BBI) { 612 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 613 MachineOperand &MO = BBI->getOperand(i); 614 if (!MO.isReg() || !MO.isDef() || 615 !Register::isVirtualRegister(MO.getReg())) 616 continue; 617 618 int StageScheduled = Schedule.getStage(&*BBI); 619 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 620 Register Def = MO.getReg(); 621 unsigned NumPhis = getStagesForReg(Def, CurStageNum); 622 // An instruction scheduled in stage 0 and is used after the loop 623 // requires a phi in the epilog for the last definition from either 624 // the kernel or prolog. 625 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 626 hasUseAfterLoop(Def, BB, MRI)) 627 NumPhis = 1; 628 if (!InKernel && (unsigned)StageScheduled > PrologStage) 629 continue; 630 631 unsigned PhiOp2 = VRMap[PrevStage][Def]; 632 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 633 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 634 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 635 // The number of Phis can't exceed the number of prolog stages. The 636 // prolog stage number is zero based. 637 if (NumPhis > PrologStage + 1 - StageScheduled) 638 NumPhis = PrologStage + 1 - StageScheduled; 639 for (unsigned np = 0; np < NumPhis; ++np) { 640 unsigned PhiOp1 = VRMap[PrologStage][Def]; 641 if (np <= PrologStage) 642 PhiOp1 = VRMap[PrologStage - np][Def]; 643 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 644 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 645 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 646 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 647 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 648 } 649 if (!InKernel) 650 PhiOp2 = VRMap[PrevStage - np][Def]; 651 652 const TargetRegisterClass *RC = MRI.getRegClass(Def); 653 Register NewReg = MRI.createVirtualRegister(RC); 654 655 MachineInstrBuilder NewPhi = 656 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 657 TII->get(TargetOpcode::PHI), NewReg); 658 NewPhi.addReg(PhiOp1).addMBB(BB1); 659 NewPhi.addReg(PhiOp2).addMBB(BB2); 660 if (np == 0) 661 InstrMap[NewPhi] = &*BBI; 662 663 // Rewrite uses and update the map. The actions depend upon whether 664 // we generating code for the kernel or epilog blocks. 665 if (InKernel) { 666 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1, 667 NewReg); 668 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2, 669 NewReg); 670 671 PhiOp2 = NewReg; 672 VRMap[PrevStage - np - 1][Def] = NewReg; 673 } else { 674 VRMap[CurStageNum - np][Def] = NewReg; 675 if (np == NumPhis - 1) 676 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 677 NewReg); 678 } 679 if (IsLast && np == NumPhis - 1) 680 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 681 } 682 } 683 } 684 } 685 686 /// Remove instructions that generate values with no uses. 687 /// Typically, these are induction variable operations that generate values 688 /// used in the loop itself. A dead instruction has a definition with 689 /// no uses, or uses that occur in the original loop only. 690 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, 691 MBBVectorTy &EpilogBBs) { 692 // For each epilog block, check that the value defined by each instruction 693 // is used. If not, delete it. 694 for (MachineBasicBlock *MBB : llvm::reverse(EpilogBBs)) 695 for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(), 696 ME = MBB->instr_rend(); 697 MI != ME;) { 698 // From DeadMachineInstructionElem. Don't delete inline assembly. 699 if (MI->isInlineAsm()) { 700 ++MI; 701 continue; 702 } 703 bool SawStore = false; 704 // Check if it's safe to remove the instruction due to side effects. 705 // We can, and want to, remove Phis here. 706 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 707 ++MI; 708 continue; 709 } 710 bool used = true; 711 for (const MachineOperand &MO : MI->operands()) { 712 if (!MO.isReg() || !MO.isDef()) 713 continue; 714 Register reg = MO.getReg(); 715 // Assume physical registers are used, unless they are marked dead. 716 if (Register::isPhysicalRegister(reg)) { 717 used = !MO.isDead(); 718 if (used) 719 break; 720 continue; 721 } 722 unsigned realUses = 0; 723 for (const MachineOperand &U : MRI.use_operands(reg)) { 724 // Check if there are any uses that occur only in the original 725 // loop. If so, that's not a real use. 726 if (U.getParent()->getParent() != BB) { 727 realUses++; 728 used = true; 729 break; 730 } 731 } 732 if (realUses > 0) 733 break; 734 used = false; 735 } 736 if (!used) { 737 LIS.RemoveMachineInstrFromMaps(*MI); 738 MI++->eraseFromParent(); 739 continue; 740 } 741 ++MI; 742 } 743 // In the kernel block, check if we can remove a Phi that generates a value 744 // used in an instruction removed in the epilog block. 745 for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) { 746 Register reg = MI.getOperand(0).getReg(); 747 if (MRI.use_begin(reg) == MRI.use_end()) { 748 LIS.RemoveMachineInstrFromMaps(MI); 749 MI.eraseFromParent(); 750 } 751 } 752 } 753 754 /// For loop carried definitions, we split the lifetime of a virtual register 755 /// that has uses past the definition in the next iteration. A copy with a new 756 /// virtual register is inserted before the definition, which helps with 757 /// generating a better register assignment. 758 /// 759 /// v1 = phi(a, v2) v1 = phi(a, v2) 760 /// v2 = phi(b, v3) v2 = phi(b, v3) 761 /// v3 = .. v4 = copy v1 762 /// .. = V1 v3 = .. 763 /// .. = v4 764 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, 765 MBBVectorTy &EpilogBBs) { 766 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 767 for (auto &PHI : KernelBB->phis()) { 768 Register Def = PHI.getOperand(0).getReg(); 769 // Check for any Phi definition that used as an operand of another Phi 770 // in the same block. 771 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 772 E = MRI.use_instr_end(); 773 I != E; ++I) { 774 if (I->isPHI() && I->getParent() == KernelBB) { 775 // Get the loop carried definition. 776 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 777 if (!LCDef) 778 continue; 779 MachineInstr *MI = MRI.getVRegDef(LCDef); 780 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 781 continue; 782 // Search through the rest of the block looking for uses of the Phi 783 // definition. If one occurs, then split the lifetime. 784 unsigned SplitReg = 0; 785 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 786 KernelBB->instr_end())) 787 if (BBJ.readsRegister(Def)) { 788 // We split the lifetime when we find the first use. 789 if (SplitReg == 0) { 790 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 791 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 792 TII->get(TargetOpcode::COPY), SplitReg) 793 .addReg(Def); 794 } 795 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 796 } 797 if (!SplitReg) 798 continue; 799 // Search through each of the epilog blocks for any uses to be renamed. 800 for (auto &Epilog : EpilogBBs) 801 for (auto &I : *Epilog) 802 if (I.readsRegister(Def)) 803 I.substituteRegister(Def, SplitReg, 0, *TRI); 804 break; 805 } 806 } 807 } 808 } 809 810 /// Remove the incoming block from the Phis in a basic block. 811 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 812 for (MachineInstr &MI : *BB) { 813 if (!MI.isPHI()) 814 break; 815 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 816 if (MI.getOperand(i + 1).getMBB() == Incoming) { 817 MI.RemoveOperand(i + 1); 818 MI.RemoveOperand(i); 819 break; 820 } 821 } 822 } 823 824 /// Create branches from each prolog basic block to the appropriate epilog 825 /// block. These edges are needed if the loop ends before reaching the 826 /// kernel. 827 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB, 828 MBBVectorTy &PrologBBs, 829 MachineBasicBlock *KernelBB, 830 MBBVectorTy &EpilogBBs, 831 ValueMapTy *VRMap) { 832 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 833 MachineBasicBlock *LastPro = KernelBB; 834 MachineBasicBlock *LastEpi = KernelBB; 835 836 // Start from the blocks connected to the kernel and work "out" 837 // to the first prolog and the last epilog blocks. 838 SmallVector<MachineInstr *, 4> PrevInsts; 839 unsigned MaxIter = PrologBBs.size() - 1; 840 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 841 // Add branches to the prolog that go to the corresponding 842 // epilog, and the fall-thru prolog/kernel block. 843 MachineBasicBlock *Prolog = PrologBBs[j]; 844 MachineBasicBlock *Epilog = EpilogBBs[i]; 845 846 SmallVector<MachineOperand, 4> Cond; 847 Optional<bool> StaticallyGreater = 848 LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond); 849 unsigned numAdded = 0; 850 if (!StaticallyGreater.hasValue()) { 851 Prolog->addSuccessor(Epilog); 852 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 853 } else if (*StaticallyGreater == false) { 854 Prolog->addSuccessor(Epilog); 855 Prolog->removeSuccessor(LastPro); 856 LastEpi->removeSuccessor(Epilog); 857 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 858 removePhis(Epilog, LastEpi); 859 // Remove the blocks that are no longer referenced. 860 if (LastPro != LastEpi) { 861 LastEpi->clear(); 862 LastEpi->eraseFromParent(); 863 } 864 if (LastPro == KernelBB) { 865 LoopInfo->disposed(); 866 NewKernel = nullptr; 867 } 868 LastPro->clear(); 869 LastPro->eraseFromParent(); 870 } else { 871 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 872 removePhis(Epilog, Prolog); 873 } 874 LastPro = Prolog; 875 LastEpi = Epilog; 876 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 877 E = Prolog->instr_rend(); 878 I != E && numAdded > 0; ++I, --numAdded) 879 updateInstruction(&*I, false, j, 0, VRMap); 880 } 881 882 if (NewKernel) { 883 LoopInfo->setPreheader(PrologBBs[MaxIter]); 884 LoopInfo->adjustTripCount(-(MaxIter + 1)); 885 } 886 } 887 888 /// Return true if we can compute the amount the instruction changes 889 /// during each iteration. Set Delta to the amount of the change. 890 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { 891 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 892 const MachineOperand *BaseOp; 893 int64_t Offset; 894 bool OffsetIsScalable; 895 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 896 return false; 897 898 // FIXME: This algorithm assumes instructions have fixed-size offsets. 899 if (OffsetIsScalable) 900 return false; 901 902 if (!BaseOp->isReg()) 903 return false; 904 905 Register BaseReg = BaseOp->getReg(); 906 907 MachineRegisterInfo &MRI = MF.getRegInfo(); 908 // Check if there is a Phi. If so, get the definition in the loop. 909 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 910 if (BaseDef && BaseDef->isPHI()) { 911 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 912 BaseDef = MRI.getVRegDef(BaseReg); 913 } 914 if (!BaseDef) 915 return false; 916 917 int D = 0; 918 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 919 return false; 920 921 Delta = D; 922 return true; 923 } 924 925 /// Update the memory operand with a new offset when the pipeliner 926 /// generates a new copy of the instruction that refers to a 927 /// different memory location. 928 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, 929 MachineInstr &OldMI, 930 unsigned Num) { 931 if (Num == 0) 932 return; 933 // If the instruction has memory operands, then adjust the offset 934 // when the instruction appears in different stages. 935 if (NewMI.memoperands_empty()) 936 return; 937 SmallVector<MachineMemOperand *, 2> NewMMOs; 938 for (MachineMemOperand *MMO : NewMI.memoperands()) { 939 // TODO: Figure out whether isAtomic is really necessary (see D57601). 940 if (MMO->isVolatile() || MMO->isAtomic() || 941 (MMO->isInvariant() && MMO->isDereferenceable()) || 942 (!MMO->getValue())) { 943 NewMMOs.push_back(MMO); 944 continue; 945 } 946 unsigned Delta; 947 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 948 int64_t AdjOffset = Delta * Num; 949 NewMMOs.push_back( 950 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 951 } else { 952 NewMMOs.push_back( 953 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); 954 } 955 } 956 NewMI.setMemRefs(MF, NewMMOs); 957 } 958 959 /// Clone the instruction for the new pipelined loop and update the 960 /// memory operands, if needed. 961 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, 962 unsigned CurStageNum, 963 unsigned InstStageNum) { 964 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 965 // Check for tied operands in inline asm instructions. This should be handled 966 // elsewhere, but I'm not sure of the best solution. 967 if (OldMI->isInlineAsm()) 968 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 969 const auto &MO = OldMI->getOperand(i); 970 if (MO.isReg() && MO.isUse()) 971 break; 972 unsigned UseIdx; 973 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 974 NewMI->tieOperands(i, UseIdx); 975 } 976 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 977 return NewMI; 978 } 979 980 /// Clone the instruction for the new pipelined loop. If needed, this 981 /// function updates the instruction using the values saved in the 982 /// InstrChanges structure. 983 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( 984 MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { 985 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 986 auto It = InstrChanges.find(OldMI); 987 if (It != InstrChanges.end()) { 988 std::pair<unsigned, int64_t> RegAndOffset = It->second; 989 unsigned BasePos, OffsetPos; 990 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 991 return nullptr; 992 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 993 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 994 if (Schedule.getStage(LoopDef) > (signed)InstStageNum) 995 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 996 NewMI->getOperand(OffsetPos).setImm(NewOffset); 997 } 998 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 999 return NewMI; 1000 } 1001 1002 /// Update the machine instruction with new virtual registers. This 1003 /// function may change the defintions and/or uses. 1004 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, 1005 bool LastDef, 1006 unsigned CurStageNum, 1007 unsigned InstrStageNum, 1008 ValueMapTy *VRMap) { 1009 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 1010 MachineOperand &MO = NewMI->getOperand(i); 1011 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 1012 continue; 1013 Register reg = MO.getReg(); 1014 if (MO.isDef()) { 1015 // Create a new virtual register for the definition. 1016 const TargetRegisterClass *RC = MRI.getRegClass(reg); 1017 Register NewReg = MRI.createVirtualRegister(RC); 1018 MO.setReg(NewReg); 1019 VRMap[CurStageNum][reg] = NewReg; 1020 if (LastDef) 1021 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 1022 } else if (MO.isUse()) { 1023 MachineInstr *Def = MRI.getVRegDef(reg); 1024 // Compute the stage that contains the last definition for instruction. 1025 int DefStageNum = Schedule.getStage(Def); 1026 unsigned StageNum = CurStageNum; 1027 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 1028 // Compute the difference in stages between the defintion and the use. 1029 unsigned StageDiff = (InstrStageNum - DefStageNum); 1030 // Make an adjustment to get the last definition. 1031 StageNum -= StageDiff; 1032 } 1033 if (VRMap[StageNum].count(reg)) 1034 MO.setReg(VRMap[StageNum][reg]); 1035 } 1036 } 1037 } 1038 1039 /// Return the instruction in the loop that defines the register. 1040 /// If the definition is a Phi, then follow the Phi operand to 1041 /// the instruction in the loop. 1042 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) { 1043 SmallPtrSet<MachineInstr *, 8> Visited; 1044 MachineInstr *Def = MRI.getVRegDef(Reg); 1045 while (Def->isPHI()) { 1046 if (!Visited.insert(Def).second) 1047 break; 1048 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 1049 if (Def->getOperand(i + 1).getMBB() == BB) { 1050 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 1051 break; 1052 } 1053 } 1054 return Def; 1055 } 1056 1057 /// Return the new name for the value from the previous stage. 1058 unsigned ModuloScheduleExpander::getPrevMapVal( 1059 unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, 1060 ValueMapTy *VRMap, MachineBasicBlock *BB) { 1061 unsigned PrevVal = 0; 1062 if (StageNum > PhiStage) { 1063 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 1064 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 1065 // The name is defined in the previous stage. 1066 PrevVal = VRMap[StageNum - 1][LoopVal]; 1067 else if (VRMap[StageNum].count(LoopVal)) 1068 // The previous name is defined in the current stage when the instruction 1069 // order is swapped. 1070 PrevVal = VRMap[StageNum][LoopVal]; 1071 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 1072 // The loop value hasn't yet been scheduled. 1073 PrevVal = LoopVal; 1074 else if (StageNum == PhiStage + 1) 1075 // The loop value is another phi, which has not been scheduled. 1076 PrevVal = getInitPhiReg(*LoopInst, BB); 1077 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 1078 // The loop value is another phi, which has been scheduled. 1079 PrevVal = 1080 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 1081 LoopStage, VRMap, BB); 1082 } 1083 return PrevVal; 1084 } 1085 1086 /// Rewrite the Phi values in the specified block to use the mappings 1087 /// from the initial operand. Once the Phi is scheduled, we switch 1088 /// to using the loop value instead of the Phi value, so those names 1089 /// do not need to be rewritten. 1090 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, 1091 unsigned StageNum, 1092 ValueMapTy *VRMap, 1093 InstrMapTy &InstrMap) { 1094 for (auto &PHI : BB->phis()) { 1095 unsigned InitVal = 0; 1096 unsigned LoopVal = 0; 1097 getPhiRegs(PHI, BB, InitVal, LoopVal); 1098 Register PhiDef = PHI.getOperand(0).getReg(); 1099 1100 unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef)); 1101 unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal)); 1102 unsigned NumPhis = getStagesForPhi(PhiDef); 1103 if (NumPhis > StageNum) 1104 NumPhis = StageNum; 1105 for (unsigned np = 0; np <= NumPhis; ++np) { 1106 unsigned NewVal = 1107 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 1108 if (!NewVal) 1109 NewVal = InitVal; 1110 rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef, 1111 NewVal); 1112 } 1113 } 1114 } 1115 1116 /// Rewrite a previously scheduled instruction to use the register value 1117 /// from the new instruction. Make sure the instruction occurs in the 1118 /// basic block, and we don't change the uses in the new instruction. 1119 void ModuloScheduleExpander::rewriteScheduledInstr( 1120 MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, 1121 unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, 1122 unsigned PrevReg) { 1123 bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); 1124 int StagePhi = Schedule.getStage(Phi) + PhiNum; 1125 // Rewrite uses that have been scheduled already to use the new 1126 // Phi register. 1127 for (MachineOperand &UseOp : 1128 llvm::make_early_inc_range(MRI.use_operands(OldReg))) { 1129 MachineInstr *UseMI = UseOp.getParent(); 1130 if (UseMI->getParent() != BB) 1131 continue; 1132 if (UseMI->isPHI()) { 1133 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 1134 continue; 1135 if (getLoopPhiReg(*UseMI, BB) != OldReg) 1136 continue; 1137 } 1138 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 1139 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 1140 MachineInstr *OrigMI = OrigInstr->second; 1141 int StageSched = Schedule.getStage(OrigMI); 1142 int CycleSched = Schedule.getCycle(OrigMI); 1143 unsigned ReplaceReg = 0; 1144 // This is the stage for the scheduled instruction. 1145 if (StagePhi == StageSched && Phi->isPHI()) { 1146 int CyclePhi = Schedule.getCycle(Phi); 1147 if (PrevReg && InProlog) 1148 ReplaceReg = PrevReg; 1149 else if (PrevReg && !isLoopCarried(*Phi) && 1150 (CyclePhi <= CycleSched || OrigMI->isPHI())) 1151 ReplaceReg = PrevReg; 1152 else 1153 ReplaceReg = NewReg; 1154 } 1155 // The scheduled instruction occurs before the scheduled Phi, and the 1156 // Phi is not loop carried. 1157 if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi)) 1158 ReplaceReg = NewReg; 1159 if (StagePhi > StageSched && Phi->isPHI()) 1160 ReplaceReg = NewReg; 1161 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 1162 ReplaceReg = NewReg; 1163 if (ReplaceReg) { 1164 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 1165 UseOp.setReg(ReplaceReg); 1166 } 1167 } 1168 } 1169 1170 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { 1171 if (!Phi.isPHI()) 1172 return false; 1173 int DefCycle = Schedule.getCycle(&Phi); 1174 int DefStage = Schedule.getStage(&Phi); 1175 1176 unsigned InitVal = 0; 1177 unsigned LoopVal = 0; 1178 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 1179 MachineInstr *Use = MRI.getVRegDef(LoopVal); 1180 if (!Use || Use->isPHI()) 1181 return true; 1182 int LoopCycle = Schedule.getCycle(Use); 1183 int LoopStage = Schedule.getStage(Use); 1184 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 1185 } 1186 1187 //===----------------------------------------------------------------------===// 1188 // PeelingModuloScheduleExpander implementation 1189 //===----------------------------------------------------------------------===// 1190 // This is a reimplementation of ModuloScheduleExpander that works by creating 1191 // a fully correct steady-state kernel and peeling off the prolog and epilogs. 1192 //===----------------------------------------------------------------------===// 1193 1194 namespace { 1195 // Remove any dead phis in MBB. Dead phis either have only one block as input 1196 // (in which case they are the identity) or have no uses. 1197 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI, 1198 LiveIntervals *LIS, bool KeepSingleSrcPhi = false) { 1199 bool Changed = true; 1200 while (Changed) { 1201 Changed = false; 1202 for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) { 1203 assert(MI.isPHI()); 1204 if (MRI.use_empty(MI.getOperand(0).getReg())) { 1205 if (LIS) 1206 LIS->RemoveMachineInstrFromMaps(MI); 1207 MI.eraseFromParent(); 1208 Changed = true; 1209 } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) { 1210 MRI.constrainRegClass(MI.getOperand(1).getReg(), 1211 MRI.getRegClass(MI.getOperand(0).getReg())); 1212 MRI.replaceRegWith(MI.getOperand(0).getReg(), 1213 MI.getOperand(1).getReg()); 1214 if (LIS) 1215 LIS->RemoveMachineInstrFromMaps(MI); 1216 MI.eraseFromParent(); 1217 Changed = true; 1218 } 1219 } 1220 } 1221 } 1222 1223 /// Rewrites the kernel block in-place to adhere to the given schedule. 1224 /// KernelRewriter holds all of the state required to perform the rewriting. 1225 class KernelRewriter { 1226 ModuloSchedule &S; 1227 MachineBasicBlock *BB; 1228 MachineBasicBlock *PreheaderBB, *ExitBB; 1229 MachineRegisterInfo &MRI; 1230 const TargetInstrInfo *TII; 1231 LiveIntervals *LIS; 1232 1233 // Map from register class to canonical undef register for that class. 1234 DenseMap<const TargetRegisterClass *, Register> Undefs; 1235 // Map from <LoopReg, InitReg> to phi register for all created phis. Note that 1236 // this map is only used when InitReg is non-undef. 1237 DenseMap<std::pair<unsigned, unsigned>, Register> Phis; 1238 // Map from LoopReg to phi register where the InitReg is undef. 1239 DenseMap<Register, Register> UndefPhis; 1240 1241 // Reg is used by MI. Return the new register MI should use to adhere to the 1242 // schedule. Insert phis as necessary. 1243 Register remapUse(Register Reg, MachineInstr &MI); 1244 // Insert a phi that carries LoopReg from the loop body and InitReg otherwise. 1245 // If InitReg is not given it is chosen arbitrarily. It will either be undef 1246 // or will be chosen so as to share another phi. 1247 Register phi(Register LoopReg, Optional<Register> InitReg = {}, 1248 const TargetRegisterClass *RC = nullptr); 1249 // Create an undef register of the given register class. 1250 Register undef(const TargetRegisterClass *RC); 1251 1252 public: 1253 KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB, 1254 LiveIntervals *LIS = nullptr); 1255 void rewrite(); 1256 }; 1257 } // namespace 1258 1259 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S, 1260 MachineBasicBlock *LoopBB, LiveIntervals *LIS) 1261 : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()), 1262 ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()), 1263 TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) { 1264 PreheaderBB = *BB->pred_begin(); 1265 if (PreheaderBB == BB) 1266 PreheaderBB = *std::next(BB->pred_begin()); 1267 } 1268 1269 void KernelRewriter::rewrite() { 1270 // Rearrange the loop to be in schedule order. Note that the schedule may 1271 // contain instructions that are not owned by the loop block (InstrChanges and 1272 // friends), so we gracefully handle unowned instructions and delete any 1273 // instructions that weren't in the schedule. 1274 auto InsertPt = BB->getFirstTerminator(); 1275 MachineInstr *FirstMI = nullptr; 1276 for (MachineInstr *MI : S.getInstructions()) { 1277 if (MI->isPHI()) 1278 continue; 1279 if (MI->getParent()) 1280 MI->removeFromParent(); 1281 BB->insert(InsertPt, MI); 1282 if (!FirstMI) 1283 FirstMI = MI; 1284 } 1285 assert(FirstMI && "Failed to find first MI in schedule"); 1286 1287 // At this point all of the scheduled instructions are between FirstMI 1288 // and the end of the block. Kill from the first non-phi to FirstMI. 1289 for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) { 1290 if (LIS) 1291 LIS->RemoveMachineInstrFromMaps(*I); 1292 (I++)->eraseFromParent(); 1293 } 1294 1295 // Now remap every instruction in the loop. 1296 for (MachineInstr &MI : *BB) { 1297 if (MI.isPHI() || MI.isTerminator()) 1298 continue; 1299 for (MachineOperand &MO : MI.uses()) { 1300 if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit()) 1301 continue; 1302 Register Reg = remapUse(MO.getReg(), MI); 1303 MO.setReg(Reg); 1304 } 1305 } 1306 EliminateDeadPhis(BB, MRI, LIS); 1307 1308 // Ensure a phi exists for all instructions that are either referenced by 1309 // an illegal phi or by an instruction outside the loop. This allows us to 1310 // treat remaps of these values the same as "normal" values that come from 1311 // loop-carried phis. 1312 for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) { 1313 if (MI->isPHI()) { 1314 Register R = MI->getOperand(0).getReg(); 1315 phi(R); 1316 continue; 1317 } 1318 1319 for (MachineOperand &Def : MI->defs()) { 1320 for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) { 1321 if (MI.getParent() != BB) { 1322 phi(Def.getReg()); 1323 break; 1324 } 1325 } 1326 } 1327 } 1328 } 1329 1330 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) { 1331 MachineInstr *Producer = MRI.getUniqueVRegDef(Reg); 1332 if (!Producer) 1333 return Reg; 1334 1335 int ConsumerStage = S.getStage(&MI); 1336 if (!Producer->isPHI()) { 1337 // Non-phi producers are simple to remap. Insert as many phis as the 1338 // difference between the consumer and producer stages. 1339 if (Producer->getParent() != BB) 1340 // Producer was not inside the loop. Use the register as-is. 1341 return Reg; 1342 int ProducerStage = S.getStage(Producer); 1343 assert(ConsumerStage != -1 && 1344 "In-loop consumer should always be scheduled!"); 1345 assert(ConsumerStage >= ProducerStage); 1346 unsigned StageDiff = ConsumerStage - ProducerStage; 1347 1348 for (unsigned I = 0; I < StageDiff; ++I) 1349 Reg = phi(Reg); 1350 return Reg; 1351 } 1352 1353 // First, dive through the phi chain to find the defaults for the generated 1354 // phis. 1355 SmallVector<Optional<Register>, 4> Defaults; 1356 Register LoopReg = Reg; 1357 auto LoopProducer = Producer; 1358 while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) { 1359 LoopReg = getLoopPhiReg(*LoopProducer, BB); 1360 Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB)); 1361 LoopProducer = MRI.getUniqueVRegDef(LoopReg); 1362 assert(LoopProducer); 1363 } 1364 int LoopProducerStage = S.getStage(LoopProducer); 1365 1366 Optional<Register> IllegalPhiDefault; 1367 1368 if (LoopProducerStage == -1) { 1369 // Do nothing. 1370 } else if (LoopProducerStage > ConsumerStage) { 1371 // This schedule is only representable if ProducerStage == ConsumerStage+1. 1372 // In addition, Consumer's cycle must be scheduled after Producer in the 1373 // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP 1374 // functions. 1375 #ifndef NDEBUG // Silence unused variables in non-asserts mode. 1376 int LoopProducerCycle = S.getCycle(LoopProducer); 1377 int ConsumerCycle = S.getCycle(&MI); 1378 #endif 1379 assert(LoopProducerCycle <= ConsumerCycle); 1380 assert(LoopProducerStage == ConsumerStage + 1); 1381 // Peel off the first phi from Defaults and insert a phi between producer 1382 // and consumer. This phi will not be at the front of the block so we 1383 // consider it illegal. It will only exist during the rewrite process; it 1384 // needs to exist while we peel off prologs because these could take the 1385 // default value. After that we can replace all uses with the loop producer 1386 // value. 1387 IllegalPhiDefault = Defaults.front(); 1388 Defaults.erase(Defaults.begin()); 1389 } else { 1390 assert(ConsumerStage >= LoopProducerStage); 1391 int StageDiff = ConsumerStage - LoopProducerStage; 1392 if (StageDiff > 0) { 1393 LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size() 1394 << " to " << (Defaults.size() + StageDiff) << "\n"); 1395 // If we need more phis than we have defaults for, pad out with undefs for 1396 // the earliest phis, which are at the end of the defaults chain (the 1397 // chain is in reverse order). 1398 Defaults.resize(Defaults.size() + StageDiff, Defaults.empty() 1399 ? Optional<Register>() 1400 : Defaults.back()); 1401 } 1402 } 1403 1404 // Now we know the number of stages to jump back, insert the phi chain. 1405 auto DefaultI = Defaults.rbegin(); 1406 while (DefaultI != Defaults.rend()) 1407 LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg)); 1408 1409 if (IllegalPhiDefault.hasValue()) { 1410 // The consumer optionally consumes LoopProducer in the same iteration 1411 // (because the producer is scheduled at an earlier cycle than the consumer) 1412 // or the initial value. To facilitate this we create an illegal block here 1413 // by embedding a phi in the middle of the block. We will fix this up 1414 // immediately prior to pruning. 1415 auto RC = MRI.getRegClass(Reg); 1416 Register R = MRI.createVirtualRegister(RC); 1417 MachineInstr *IllegalPhi = 1418 BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1419 .addReg(IllegalPhiDefault.getValue()) 1420 .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect. 1421 .addReg(LoopReg) 1422 .addMBB(BB); // Block choice is arbitrary and has no effect. 1423 // Illegal phi should belong to the producer stage so that it can be 1424 // filtered correctly during peeling. 1425 S.setStage(IllegalPhi, LoopProducerStage); 1426 return R; 1427 } 1428 1429 return LoopReg; 1430 } 1431 1432 Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg, 1433 const TargetRegisterClass *RC) { 1434 // If the init register is not undef, try and find an existing phi. 1435 if (InitReg.hasValue()) { 1436 auto I = Phis.find({LoopReg, InitReg.getValue()}); 1437 if (I != Phis.end()) 1438 return I->second; 1439 } else { 1440 for (auto &KV : Phis) { 1441 if (KV.first.first == LoopReg) 1442 return KV.second; 1443 } 1444 } 1445 1446 // InitReg is either undef or no existing phi takes InitReg as input. Try and 1447 // find a phi that takes undef as input. 1448 auto I = UndefPhis.find(LoopReg); 1449 if (I != UndefPhis.end()) { 1450 Register R = I->second; 1451 if (!InitReg.hasValue()) 1452 // Found a phi taking undef as input, and this input is undef so return 1453 // without any more changes. 1454 return R; 1455 // Found a phi taking undef as input, so rewrite it to take InitReg. 1456 MachineInstr *MI = MRI.getVRegDef(R); 1457 MI->getOperand(1).setReg(InitReg.getValue()); 1458 Phis.insert({{LoopReg, InitReg.getValue()}, R}); 1459 MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue())); 1460 UndefPhis.erase(I); 1461 return R; 1462 } 1463 1464 // Failed to find any existing phi to reuse, so create a new one. 1465 if (!RC) 1466 RC = MRI.getRegClass(LoopReg); 1467 Register R = MRI.createVirtualRegister(RC); 1468 if (InitReg.hasValue()) 1469 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); 1470 BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R) 1471 .addReg(InitReg.hasValue() ? *InitReg : undef(RC)) 1472 .addMBB(PreheaderBB) 1473 .addReg(LoopReg) 1474 .addMBB(BB); 1475 if (!InitReg.hasValue()) 1476 UndefPhis[LoopReg] = R; 1477 else 1478 Phis[{LoopReg, *InitReg}] = R; 1479 return R; 1480 } 1481 1482 Register KernelRewriter::undef(const TargetRegisterClass *RC) { 1483 Register &R = Undefs[RC]; 1484 if (R == 0) { 1485 // Create an IMPLICIT_DEF that defines this register if we need it. 1486 // All uses of this should be removed by the time we have finished unrolling 1487 // prologs and epilogs. 1488 R = MRI.createVirtualRegister(RC); 1489 auto *InsertBB = &PreheaderBB->getParent()->front(); 1490 BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(), 1491 TII->get(TargetOpcode::IMPLICIT_DEF), R); 1492 } 1493 return R; 1494 } 1495 1496 namespace { 1497 /// Describes an operand in the kernel of a pipelined loop. Characteristics of 1498 /// the operand are discovered, such as how many in-loop PHIs it has to jump 1499 /// through and defaults for these phis. 1500 class KernelOperandInfo { 1501 MachineBasicBlock *BB; 1502 MachineRegisterInfo &MRI; 1503 SmallVector<Register, 4> PhiDefaults; 1504 MachineOperand *Source; 1505 MachineOperand *Target; 1506 1507 public: 1508 KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI, 1509 const SmallPtrSetImpl<MachineInstr *> &IllegalPhis) 1510 : MRI(MRI) { 1511 Source = MO; 1512 BB = MO->getParent()->getParent(); 1513 while (isRegInLoop(MO)) { 1514 MachineInstr *MI = MRI.getVRegDef(MO->getReg()); 1515 if (MI->isFullCopy()) { 1516 MO = &MI->getOperand(1); 1517 continue; 1518 } 1519 if (!MI->isPHI()) 1520 break; 1521 // If this is an illegal phi, don't count it in distance. 1522 if (IllegalPhis.count(MI)) { 1523 MO = &MI->getOperand(3); 1524 continue; 1525 } 1526 1527 Register Default = getInitPhiReg(*MI, BB); 1528 MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1) 1529 : &MI->getOperand(3); 1530 PhiDefaults.push_back(Default); 1531 } 1532 Target = MO; 1533 } 1534 1535 bool operator==(const KernelOperandInfo &Other) const { 1536 return PhiDefaults.size() == Other.PhiDefaults.size(); 1537 } 1538 1539 void print(raw_ostream &OS) const { 1540 OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in " 1541 << *Source->getParent(); 1542 } 1543 1544 private: 1545 bool isRegInLoop(MachineOperand *MO) { 1546 return MO->isReg() && MO->getReg().isVirtual() && 1547 MRI.getVRegDef(MO->getReg())->getParent() == BB; 1548 } 1549 }; 1550 } // namespace 1551 1552 MachineBasicBlock * 1553 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) { 1554 MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII); 1555 if (LPD == LPD_Front) 1556 PeeledFront.push_back(NewBB); 1557 else 1558 PeeledBack.push_front(NewBB); 1559 for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator(); 1560 ++I, ++NI) { 1561 CanonicalMIs[&*I] = &*I; 1562 CanonicalMIs[&*NI] = &*I; 1563 BlockMIs[{NewBB, &*I}] = &*NI; 1564 BlockMIs[{BB, &*I}] = &*I; 1565 } 1566 return NewBB; 1567 } 1568 1569 void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB, 1570 int MinStage) { 1571 for (auto I = MB->getFirstInstrTerminator()->getReverseIterator(); 1572 I != std::next(MB->getFirstNonPHI()->getReverseIterator());) { 1573 MachineInstr *MI = &*I++; 1574 int Stage = getStage(MI); 1575 if (Stage == -1 || Stage >= MinStage) 1576 continue; 1577 1578 for (MachineOperand &DefMO : MI->defs()) { 1579 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1580 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1581 // Only PHIs can use values from this block by construction. 1582 // Match with the equivalent PHI in B. 1583 assert(UseMI.isPHI()); 1584 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1585 MI->getParent()); 1586 Subs.emplace_back(&UseMI, Reg); 1587 } 1588 for (auto &Sub : Subs) 1589 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1590 *MRI.getTargetRegisterInfo()); 1591 } 1592 if (LIS) 1593 LIS->RemoveMachineInstrFromMaps(*MI); 1594 MI->eraseFromParent(); 1595 } 1596 } 1597 1598 void PeelingModuloScheduleExpander::moveStageBetweenBlocks( 1599 MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) { 1600 auto InsertPt = DestBB->getFirstNonPHI(); 1601 DenseMap<Register, Register> Remaps; 1602 for (MachineInstr &MI : llvm::make_early_inc_range( 1603 llvm::make_range(SourceBB->getFirstNonPHI(), SourceBB->end()))) { 1604 if (MI.isPHI()) { 1605 // This is an illegal PHI. If we move any instructions using an illegal 1606 // PHI, we need to create a legal Phi. 1607 if (getStage(&MI) != Stage) { 1608 // The legal Phi is not necessary if the illegal phi's stage 1609 // is being moved. 1610 Register PhiR = MI.getOperand(0).getReg(); 1611 auto RC = MRI.getRegClass(PhiR); 1612 Register NR = MRI.createVirtualRegister(RC); 1613 MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(), 1614 DebugLoc(), TII->get(TargetOpcode::PHI), NR) 1615 .addReg(PhiR) 1616 .addMBB(SourceBB); 1617 BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI; 1618 CanonicalMIs[NI] = CanonicalMIs[&MI]; 1619 Remaps[PhiR] = NR; 1620 } 1621 } 1622 if (getStage(&MI) != Stage) 1623 continue; 1624 MI.removeFromParent(); 1625 DestBB->insert(InsertPt, &MI); 1626 auto *KernelMI = CanonicalMIs[&MI]; 1627 BlockMIs[{DestBB, KernelMI}] = &MI; 1628 BlockMIs.erase({SourceBB, KernelMI}); 1629 } 1630 SmallVector<MachineInstr *, 4> PhiToDelete; 1631 for (MachineInstr &MI : DestBB->phis()) { 1632 assert(MI.getNumOperands() == 3); 1633 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg()); 1634 // If the instruction referenced by the phi is moved inside the block 1635 // we don't need the phi anymore. 1636 if (getStage(Def) == Stage) { 1637 Register PhiReg = MI.getOperand(0).getReg(); 1638 assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1); 1639 MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 1640 MI.getOperand(0).setReg(PhiReg); 1641 PhiToDelete.push_back(&MI); 1642 } 1643 } 1644 for (auto *P : PhiToDelete) 1645 P->eraseFromParent(); 1646 InsertPt = DestBB->getFirstNonPHI(); 1647 // Helper to clone Phi instructions into the destination block. We clone Phi 1648 // greedily to avoid combinatorial explosion of Phi instructions. 1649 auto clonePhi = [&](MachineInstr *Phi) { 1650 MachineInstr *NewMI = MF.CloneMachineInstr(Phi); 1651 DestBB->insert(InsertPt, NewMI); 1652 Register OrigR = Phi->getOperand(0).getReg(); 1653 Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR)); 1654 NewMI->getOperand(0).setReg(R); 1655 NewMI->getOperand(1).setReg(OrigR); 1656 NewMI->getOperand(2).setMBB(*DestBB->pred_begin()); 1657 Remaps[OrigR] = R; 1658 CanonicalMIs[NewMI] = CanonicalMIs[Phi]; 1659 BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI; 1660 PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi]; 1661 return R; 1662 }; 1663 for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) { 1664 for (MachineOperand &MO : I->uses()) { 1665 if (!MO.isReg()) 1666 continue; 1667 if (Remaps.count(MO.getReg())) 1668 MO.setReg(Remaps[MO.getReg()]); 1669 else { 1670 // If we are using a phi from the source block we need to add a new phi 1671 // pointing to the old one. 1672 MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg()); 1673 if (Use && Use->isPHI() && Use->getParent() == SourceBB) { 1674 Register R = clonePhi(Use); 1675 MO.setReg(R); 1676 } 1677 } 1678 } 1679 } 1680 } 1681 1682 Register 1683 PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi, 1684 MachineInstr *Phi) { 1685 unsigned distance = PhiNodeLoopIteration[Phi]; 1686 MachineInstr *CanonicalUse = CanonicalPhi; 1687 Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg(); 1688 for (unsigned I = 0; I < distance; ++I) { 1689 assert(CanonicalUse->isPHI()); 1690 assert(CanonicalUse->getNumOperands() == 5); 1691 unsigned LoopRegIdx = 3, InitRegIdx = 1; 1692 if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent()) 1693 std::swap(LoopRegIdx, InitRegIdx); 1694 CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg(); 1695 CanonicalUse = MRI.getVRegDef(CanonicalUseReg); 1696 } 1697 return CanonicalUseReg; 1698 } 1699 1700 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() { 1701 BitVector LS(Schedule.getNumStages(), true); 1702 BitVector AS(Schedule.getNumStages(), true); 1703 LiveStages[BB] = LS; 1704 AvailableStages[BB] = AS; 1705 1706 // Peel out the prologs. 1707 LS.reset(); 1708 for (int I = 0; I < Schedule.getNumStages() - 1; ++I) { 1709 LS[I] = 1; 1710 Prologs.push_back(peelKernel(LPD_Front)); 1711 LiveStages[Prologs.back()] = LS; 1712 AvailableStages[Prologs.back()] = LS; 1713 } 1714 1715 // Create a block that will end up as the new loop exiting block (dominated by 1716 // all prologs and epilogs). It will only contain PHIs, in the same order as 1717 // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property 1718 // that the exiting block is a (sub) clone of BB. This in turn gives us the 1719 // property that any value deffed in BB but used outside of BB is used by a 1720 // PHI in the exiting block. 1721 MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock(); 1722 EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1723 // Push out the epilogs, again in reverse order. 1724 // We can't assume anything about the minumum loop trip count at this point, 1725 // so emit a fairly complex epilog. 1726 1727 // We first peel number of stages minus one epilogue. Then we remove dead 1728 // stages and reorder instructions based on their stage. If we have 3 stages 1729 // we generate first: 1730 // E0[3, 2, 1] 1731 // E1[3', 2'] 1732 // E2[3''] 1733 // And then we move instructions based on their stages to have: 1734 // E0[3] 1735 // E1[2, 3'] 1736 // E2[1, 2', 3''] 1737 // The transformation is legal because we only move instructions past 1738 // instructions of a previous loop iteration. 1739 for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) { 1740 Epilogs.push_back(peelKernel(LPD_Back)); 1741 MachineBasicBlock *B = Epilogs.back(); 1742 filterInstructions(B, Schedule.getNumStages() - I); 1743 // Keep track at which iteration each phi belongs to. We need it to know 1744 // what version of the variable to use during prologue/epilogue stitching. 1745 EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1746 for (MachineInstr &Phi : B->phis()) 1747 PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I; 1748 } 1749 for (size_t I = 0; I < Epilogs.size(); I++) { 1750 LS.reset(); 1751 for (size_t J = I; J < Epilogs.size(); J++) { 1752 int Iteration = J; 1753 unsigned Stage = Schedule.getNumStages() - 1 + I - J; 1754 // Move stage one block at a time so that Phi nodes are updated correctly. 1755 for (size_t K = Iteration; K > I; K--) 1756 moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage); 1757 LS[Stage] = 1; 1758 } 1759 LiveStages[Epilogs[I]] = LS; 1760 AvailableStages[Epilogs[I]] = AS; 1761 } 1762 1763 // Now we've defined all the prolog and epilog blocks as a fallthrough 1764 // sequence, add the edges that will be followed if the loop trip count is 1765 // lower than the number of stages (connecting prologs directly with epilogs). 1766 auto PI = Prologs.begin(); 1767 auto EI = Epilogs.begin(); 1768 assert(Prologs.size() == Epilogs.size()); 1769 for (; PI != Prologs.end(); ++PI, ++EI) { 1770 MachineBasicBlock *Pred = *(*EI)->pred_begin(); 1771 (*PI)->addSuccessor(*EI); 1772 for (MachineInstr &MI : (*EI)->phis()) { 1773 Register Reg = MI.getOperand(1).getReg(); 1774 MachineInstr *Use = MRI.getUniqueVRegDef(Reg); 1775 if (Use && Use->getParent() == Pred) { 1776 MachineInstr *CanonicalUse = CanonicalMIs[Use]; 1777 if (CanonicalUse->isPHI()) { 1778 // If the use comes from a phi we need to skip as many phi as the 1779 // distance between the epilogue and the kernel. Trace through the phi 1780 // chain to find the right value. 1781 Reg = getPhiCanonicalReg(CanonicalUse, Use); 1782 } 1783 Reg = getEquivalentRegisterIn(Reg, *PI); 1784 } 1785 MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 1786 MI.addOperand(MachineOperand::CreateMBB(*PI)); 1787 } 1788 } 1789 1790 // Create a list of all blocks in order. 1791 SmallVector<MachineBasicBlock *, 8> Blocks; 1792 llvm::copy(PeeledFront, std::back_inserter(Blocks)); 1793 Blocks.push_back(BB); 1794 llvm::copy(PeeledBack, std::back_inserter(Blocks)); 1795 1796 // Iterate in reverse order over all instructions, remapping as we go. 1797 for (MachineBasicBlock *B : reverse(Blocks)) { 1798 for (auto I = B->getFirstInstrTerminator()->getReverseIterator(); 1799 I != std::next(B->getFirstNonPHI()->getReverseIterator());) { 1800 MachineInstr *MI = &*I++; 1801 rewriteUsesOf(MI); 1802 } 1803 } 1804 for (auto *MI : IllegalPhisToDelete) { 1805 if (LIS) 1806 LIS->RemoveMachineInstrFromMaps(*MI); 1807 MI->eraseFromParent(); 1808 } 1809 IllegalPhisToDelete.clear(); 1810 1811 // Now all remapping has been done, we're free to optimize the generated code. 1812 for (MachineBasicBlock *B : reverse(Blocks)) 1813 EliminateDeadPhis(B, MRI, LIS); 1814 EliminateDeadPhis(ExitingBB, MRI, LIS); 1815 } 1816 1817 MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() { 1818 MachineFunction &MF = *BB->getParent(); 1819 MachineBasicBlock *Exit = *BB->succ_begin(); 1820 if (Exit == BB) 1821 Exit = *std::next(BB->succ_begin()); 1822 1823 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 1824 MF.insert(std::next(BB->getIterator()), NewBB); 1825 1826 // Clone all phis in BB into NewBB and rewrite. 1827 for (MachineInstr &MI : BB->phis()) { 1828 auto RC = MRI.getRegClass(MI.getOperand(0).getReg()); 1829 Register OldR = MI.getOperand(3).getReg(); 1830 Register R = MRI.createVirtualRegister(RC); 1831 SmallVector<MachineInstr *, 4> Uses; 1832 for (MachineInstr &Use : MRI.use_instructions(OldR)) 1833 if (Use.getParent() != BB) 1834 Uses.push_back(&Use); 1835 for (MachineInstr *Use : Uses) 1836 Use->substituteRegister(OldR, R, /*SubIdx=*/0, 1837 *MRI.getTargetRegisterInfo()); 1838 MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1839 .addReg(OldR) 1840 .addMBB(BB); 1841 BlockMIs[{NewBB, &MI}] = NI; 1842 CanonicalMIs[NI] = &MI; 1843 } 1844 BB->replaceSuccessor(Exit, NewBB); 1845 Exit->replacePhiUsesWith(BB, NewBB); 1846 NewBB->addSuccessor(Exit); 1847 1848 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1849 SmallVector<MachineOperand, 4> Cond; 1850 bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond); 1851 (void)CanAnalyzeBr; 1852 assert(CanAnalyzeBr && "Must be able to analyze the loop branch!"); 1853 TII->removeBranch(*BB); 1854 TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB, 1855 Cond, DebugLoc()); 1856 TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc()); 1857 return NewBB; 1858 } 1859 1860 Register 1861 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg, 1862 MachineBasicBlock *BB) { 1863 MachineInstr *MI = MRI.getUniqueVRegDef(Reg); 1864 unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg); 1865 return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg(); 1866 } 1867 1868 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) { 1869 if (MI->isPHI()) { 1870 // This is an illegal PHI. The loop-carried (desired) value is operand 3, 1871 // and it is produced by this block. 1872 Register PhiR = MI->getOperand(0).getReg(); 1873 Register R = MI->getOperand(3).getReg(); 1874 int RMIStage = getStage(MRI.getUniqueVRegDef(R)); 1875 if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage)) 1876 R = MI->getOperand(1).getReg(); 1877 MRI.setRegClass(R, MRI.getRegClass(PhiR)); 1878 MRI.replaceRegWith(PhiR, R); 1879 // Postpone deleting the Phi as it may be referenced by BlockMIs and used 1880 // later to figure out how to remap registers. 1881 MI->getOperand(0).setReg(PhiR); 1882 IllegalPhisToDelete.push_back(MI); 1883 return; 1884 } 1885 1886 int Stage = getStage(MI); 1887 if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 || 1888 LiveStages[MI->getParent()].test(Stage)) 1889 // Instruction is live, no rewriting to do. 1890 return; 1891 1892 for (MachineOperand &DefMO : MI->defs()) { 1893 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1894 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1895 // Only PHIs can use values from this block by construction. 1896 // Match with the equivalent PHI in B. 1897 assert(UseMI.isPHI()); 1898 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1899 MI->getParent()); 1900 Subs.emplace_back(&UseMI, Reg); 1901 } 1902 for (auto &Sub : Subs) 1903 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1904 *MRI.getTargetRegisterInfo()); 1905 } 1906 if (LIS) 1907 LIS->RemoveMachineInstrFromMaps(*MI); 1908 MI->eraseFromParent(); 1909 } 1910 1911 void PeelingModuloScheduleExpander::fixupBranches() { 1912 // Work outwards from the kernel. 1913 bool KernelDisposed = false; 1914 int TC = Schedule.getNumStages() - 1; 1915 for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend(); 1916 ++PI, ++EI, --TC) { 1917 MachineBasicBlock *Prolog = *PI; 1918 MachineBasicBlock *Fallthrough = *Prolog->succ_begin(); 1919 MachineBasicBlock *Epilog = *EI; 1920 SmallVector<MachineOperand, 4> Cond; 1921 TII->removeBranch(*Prolog); 1922 Optional<bool> StaticallyGreater = 1923 LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond); 1924 if (!StaticallyGreater.hasValue()) { 1925 LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n"); 1926 // Dynamically branch based on Cond. 1927 TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc()); 1928 } else if (*StaticallyGreater == false) { 1929 LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n"); 1930 // Prolog never falls through; branch to epilog and orphan interior 1931 // blocks. Leave it to unreachable-block-elim to clean up. 1932 Prolog->removeSuccessor(Fallthrough); 1933 for (MachineInstr &P : Fallthrough->phis()) { 1934 P.RemoveOperand(2); 1935 P.RemoveOperand(1); 1936 } 1937 TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc()); 1938 KernelDisposed = true; 1939 } else { 1940 LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n"); 1941 // Prolog always falls through; remove incoming values in epilog. 1942 Prolog->removeSuccessor(Epilog); 1943 for (MachineInstr &P : Epilog->phis()) { 1944 P.RemoveOperand(4); 1945 P.RemoveOperand(3); 1946 } 1947 } 1948 } 1949 1950 if (!KernelDisposed) { 1951 LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1)); 1952 LoopInfo->setPreheader(Prologs.back()); 1953 } else { 1954 LoopInfo->disposed(); 1955 } 1956 } 1957 1958 void PeelingModuloScheduleExpander::rewriteKernel() { 1959 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 1960 KR.rewrite(); 1961 } 1962 1963 void PeelingModuloScheduleExpander::expand() { 1964 BB = Schedule.getLoop()->getTopBlock(); 1965 Preheader = Schedule.getLoop()->getLoopPreheader(); 1966 LLVM_DEBUG(Schedule.dump()); 1967 LoopInfo = TII->analyzeLoopForPipelining(BB); 1968 assert(LoopInfo); 1969 1970 rewriteKernel(); 1971 peelPrologAndEpilogs(); 1972 fixupBranches(); 1973 } 1974 1975 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() { 1976 BB = Schedule.getLoop()->getTopBlock(); 1977 Preheader = Schedule.getLoop()->getLoopPreheader(); 1978 1979 // Dump the schedule before we invalidate and remap all its instructions. 1980 // Stash it in a string so we can print it if we found an error. 1981 std::string ScheduleDump; 1982 raw_string_ostream OS(ScheduleDump); 1983 Schedule.print(OS); 1984 OS.flush(); 1985 1986 // First, run the normal ModuleScheduleExpander. We don't support any 1987 // InstrChanges. 1988 assert(LIS && "Requires LiveIntervals!"); 1989 ModuloScheduleExpander MSE(MF, Schedule, *LIS, 1990 ModuloScheduleExpander::InstrChangesTy()); 1991 MSE.expand(); 1992 MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel(); 1993 if (!ExpandedKernel) { 1994 // The expander optimized away the kernel. We can't do any useful checking. 1995 MSE.cleanup(); 1996 return; 1997 } 1998 // Before running the KernelRewriter, re-add BB into the CFG. 1999 Preheader->addSuccessor(BB); 2000 2001 // Now run the new expansion algorithm. 2002 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 2003 KR.rewrite(); 2004 peelPrologAndEpilogs(); 2005 2006 // Collect all illegal phis that the new algorithm created. We'll give these 2007 // to KernelOperandInfo. 2008 SmallPtrSet<MachineInstr *, 4> IllegalPhis; 2009 for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) { 2010 if (NI->isPHI()) 2011 IllegalPhis.insert(&*NI); 2012 } 2013 2014 // Co-iterate across both kernels. We expect them to be identical apart from 2015 // phis and full COPYs (we look through both). 2016 SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs; 2017 auto OI = ExpandedKernel->begin(); 2018 auto NI = BB->begin(); 2019 for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) { 2020 while (OI->isPHI() || OI->isFullCopy()) 2021 ++OI; 2022 while (NI->isPHI() || NI->isFullCopy()) 2023 ++NI; 2024 assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!"); 2025 // Analyze every operand separately. 2026 for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin(); 2027 OOpI != OI->operands_end(); ++OOpI, ++NOpI) 2028 KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis), 2029 KernelOperandInfo(&*NOpI, MRI, IllegalPhis)); 2030 } 2031 2032 bool Failed = false; 2033 for (auto &OldAndNew : KOIs) { 2034 if (OldAndNew.first == OldAndNew.second) 2035 continue; 2036 Failed = true; 2037 errs() << "Modulo kernel validation error: [\n"; 2038 errs() << " [golden] "; 2039 OldAndNew.first.print(errs()); 2040 errs() << " "; 2041 OldAndNew.second.print(errs()); 2042 errs() << "]\n"; 2043 } 2044 2045 if (Failed) { 2046 errs() << "Golden reference kernel:\n"; 2047 ExpandedKernel->print(errs()); 2048 errs() << "New kernel:\n"; 2049 BB->print(errs()); 2050 errs() << ScheduleDump; 2051 report_fatal_error( 2052 "Modulo kernel validation (-pipeliner-experimental-cg) failed"); 2053 } 2054 2055 // Cleanup by removing BB from the CFG again as the original 2056 // ModuloScheduleExpander intended. 2057 Preheader->removeSuccessor(BB); 2058 MSE.cleanup(); 2059 } 2060 2061 //===----------------------------------------------------------------------===// 2062 // ModuloScheduleTestPass implementation 2063 //===----------------------------------------------------------------------===// 2064 // This pass constructs a ModuloSchedule from its module and runs 2065 // ModuloScheduleExpander. 2066 // 2067 // The module is expected to contain a single-block analyzable loop. 2068 // The total order of instructions is taken from the loop as-is. 2069 // Instructions are expected to be annotated with a PostInstrSymbol. 2070 // This PostInstrSymbol must have the following format: 2071 // "Stage=%d Cycle=%d". 2072 //===----------------------------------------------------------------------===// 2073 2074 namespace { 2075 class ModuloScheduleTest : public MachineFunctionPass { 2076 public: 2077 static char ID; 2078 2079 ModuloScheduleTest() : MachineFunctionPass(ID) { 2080 initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); 2081 } 2082 2083 bool runOnMachineFunction(MachineFunction &MF) override; 2084 void runOnLoop(MachineFunction &MF, MachineLoop &L); 2085 2086 void getAnalysisUsage(AnalysisUsage &AU) const override { 2087 AU.addRequired<MachineLoopInfo>(); 2088 AU.addRequired<LiveIntervals>(); 2089 MachineFunctionPass::getAnalysisUsage(AU); 2090 } 2091 }; 2092 } // namespace 2093 2094 char ModuloScheduleTest::ID = 0; 2095 2096 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test", 2097 "Modulo Schedule test pass", false, false) 2098 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 2099 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 2100 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test", 2101 "Modulo Schedule test pass", false, false) 2102 2103 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { 2104 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 2105 for (auto *L : MLI) { 2106 if (L->getTopBlock() != L->getBottomBlock()) 2107 continue; 2108 runOnLoop(MF, *L); 2109 return false; 2110 } 2111 return false; 2112 } 2113 2114 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { 2115 std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_"); 2116 std::pair<StringRef, StringRef> StageTokenAndValue = 2117 getToken(StageAndCycle.first, "-"); 2118 std::pair<StringRef, StringRef> CycleTokenAndValue = 2119 getToken(StageAndCycle.second, "-"); 2120 if (StageTokenAndValue.first != "Stage" || 2121 CycleTokenAndValue.first != "_Cycle") { 2122 llvm_unreachable( 2123 "Bad post-instr symbol syntax: see comment in ModuloScheduleTest"); 2124 return; 2125 } 2126 2127 StageTokenAndValue.second.drop_front().getAsInteger(10, Stage); 2128 CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle); 2129 2130 dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n"; 2131 } 2132 2133 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { 2134 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 2135 MachineBasicBlock *BB = L.getTopBlock(); 2136 dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n"; 2137 2138 DenseMap<MachineInstr *, int> Cycle, Stage; 2139 std::vector<MachineInstr *> Instrs; 2140 for (MachineInstr &MI : *BB) { 2141 if (MI.isTerminator()) 2142 continue; 2143 Instrs.push_back(&MI); 2144 if (MCSymbol *Sym = MI.getPostInstrSymbol()) { 2145 dbgs() << "Parsing post-instr symbol for " << MI; 2146 parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]); 2147 } 2148 } 2149 2150 ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), 2151 std::move(Stage)); 2152 ModuloScheduleExpander MSE( 2153 MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); 2154 MSE.expand(); 2155 MSE.cleanup(); 2156 } 2157 2158 //===----------------------------------------------------------------------===// 2159 // ModuloScheduleTestAnnotater implementation 2160 //===----------------------------------------------------------------------===// 2161 2162 void ModuloScheduleTestAnnotater::annotate() { 2163 for (MachineInstr *MI : S.getInstructions()) { 2164 SmallVector<char, 16> SV; 2165 raw_svector_ostream OS(SV); 2166 OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); 2167 MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str()); 2168 MI->setPostInstrSymbol(MF, Sym); 2169 } 2170 } 2171