1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/ModuloSchedule.h" 10 #include "llvm/ADT/StringExtras.h" 11 #include "llvm/Analysis/MemoryLocation.h" 12 #include "llvm/CodeGen/LiveIntervals.h" 13 #include "llvm/CodeGen/MachineInstrBuilder.h" 14 #include "llvm/CodeGen/MachineRegisterInfo.h" 15 #include "llvm/InitializePasses.h" 16 #include "llvm/MC/MCContext.h" 17 #include "llvm/Support/Debug.h" 18 #include "llvm/Support/ErrorHandling.h" 19 #include "llvm/Support/raw_ostream.h" 20 21 #define DEBUG_TYPE "pipeliner" 22 using namespace llvm; 23 24 void ModuloSchedule::print(raw_ostream &OS) { 25 for (MachineInstr *MI : ScheduledInstrs) 26 OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI; 27 } 28 29 //===----------------------------------------------------------------------===// 30 // ModuloScheduleExpander implementation 31 //===----------------------------------------------------------------------===// 32 33 /// Return the register values for the operands of a Phi instruction. 34 /// This function assume the instruction is a Phi. 35 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 36 unsigned &InitVal, unsigned &LoopVal) { 37 assert(Phi.isPHI() && "Expecting a Phi."); 38 39 InitVal = 0; 40 LoopVal = 0; 41 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 42 if (Phi.getOperand(i + 1).getMBB() != Loop) 43 InitVal = Phi.getOperand(i).getReg(); 44 else 45 LoopVal = Phi.getOperand(i).getReg(); 46 47 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 48 } 49 50 /// Return the Phi register value that comes from the incoming block. 51 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 52 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 53 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 54 return Phi.getOperand(i).getReg(); 55 return 0; 56 } 57 58 /// Return the Phi register value that comes the loop block. 59 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 60 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 61 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 62 return Phi.getOperand(i).getReg(); 63 return 0; 64 } 65 66 void ModuloScheduleExpander::expand() { 67 BB = Schedule.getLoop()->getTopBlock(); 68 Preheader = *BB->pred_begin(); 69 if (Preheader == BB) 70 Preheader = *std::next(BB->pred_begin()); 71 72 // Iterate over the definitions in each instruction, and compute the 73 // stage difference for each use. Keep the maximum value. 74 for (MachineInstr *MI : Schedule.getInstructions()) { 75 int DefStage = Schedule.getStage(MI); 76 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 77 MachineOperand &Op = MI->getOperand(i); 78 if (!Op.isReg() || !Op.isDef()) 79 continue; 80 81 Register Reg = Op.getReg(); 82 unsigned MaxDiff = 0; 83 bool PhiIsSwapped = false; 84 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 85 EI = MRI.use_end(); 86 UI != EI; ++UI) { 87 MachineOperand &UseOp = *UI; 88 MachineInstr *UseMI = UseOp.getParent(); 89 int UseStage = Schedule.getStage(UseMI); 90 unsigned Diff = 0; 91 if (UseStage != -1 && UseStage >= DefStage) 92 Diff = UseStage - DefStage; 93 if (MI->isPHI()) { 94 if (isLoopCarried(*MI)) 95 ++Diff; 96 else 97 PhiIsSwapped = true; 98 } 99 MaxDiff = std::max(Diff, MaxDiff); 100 } 101 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 102 } 103 } 104 105 generatePipelinedLoop(); 106 } 107 108 void ModuloScheduleExpander::generatePipelinedLoop() { 109 LoopInfo = TII->analyzeLoopForPipelining(BB); 110 assert(LoopInfo && "Must be able to analyze loop!"); 111 112 // Create a new basic block for the kernel and add it to the CFG. 113 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 114 115 unsigned MaxStageCount = Schedule.getNumStages() - 1; 116 117 // Remember the registers that are used in different stages. The index is 118 // the iteration, or stage, that the instruction is scheduled in. This is 119 // a map between register names in the original block and the names created 120 // in each stage of the pipelined loop. 121 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 122 InstrMapTy InstrMap; 123 124 SmallVector<MachineBasicBlock *, 4> PrologBBs; 125 126 // Generate the prolog instructions that set up the pipeline. 127 generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs); 128 MF.insert(BB->getIterator(), KernelBB); 129 130 // Rearrange the instructions to generate the new, pipelined loop, 131 // and update register names as needed. 132 for (MachineInstr *CI : Schedule.getInstructions()) { 133 if (CI->isPHI()) 134 continue; 135 unsigned StageNum = Schedule.getStage(CI); 136 MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum); 137 updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap); 138 KernelBB->push_back(NewMI); 139 InstrMap[NewMI] = CI; 140 } 141 142 // Copy any terminator instructions to the new kernel, and update 143 // names as needed. 144 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 145 E = BB->instr_end(); 146 I != E; ++I) { 147 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 148 updateInstruction(NewMI, false, MaxStageCount, 0, VRMap); 149 KernelBB->push_back(NewMI); 150 InstrMap[NewMI] = &*I; 151 } 152 153 NewKernel = KernelBB; 154 KernelBB->transferSuccessors(BB); 155 KernelBB->replaceSuccessor(BB, KernelBB); 156 157 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, 158 InstrMap, MaxStageCount, MaxStageCount, false); 159 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap, 160 MaxStageCount, MaxStageCount, false); 161 162 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 163 164 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 165 // Generate the epilog instructions to complete the pipeline. 166 generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs); 167 168 // We need this step because the register allocation doesn't handle some 169 // situations well, so we insert copies to help out. 170 splitLifetimes(KernelBB, EpilogBBs); 171 172 // Remove dead instructions due to loop induction variables. 173 removeDeadInstructions(KernelBB, EpilogBBs); 174 175 // Add branches between prolog and epilog blocks. 176 addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); 177 178 delete[] VRMap; 179 } 180 181 void ModuloScheduleExpander::cleanup() { 182 // Remove the original loop since it's no longer referenced. 183 for (auto &I : *BB) 184 LIS.RemoveMachineInstrFromMaps(I); 185 BB->clear(); 186 BB->eraseFromParent(); 187 } 188 189 /// Generate the pipeline prolog code. 190 void ModuloScheduleExpander::generateProlog(unsigned LastStage, 191 MachineBasicBlock *KernelBB, 192 ValueMapTy *VRMap, 193 MBBVectorTy &PrologBBs) { 194 MachineBasicBlock *PredBB = Preheader; 195 InstrMapTy InstrMap; 196 197 // Generate a basic block for each stage, not including the last stage, 198 // which will be generated in the kernel. Each basic block may contain 199 // instructions from multiple stages/iterations. 200 for (unsigned i = 0; i < LastStage; ++i) { 201 // Create and insert the prolog basic block prior to the original loop 202 // basic block. The original loop is removed later. 203 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 204 PrologBBs.push_back(NewBB); 205 MF.insert(BB->getIterator(), NewBB); 206 NewBB->transferSuccessors(PredBB); 207 PredBB->addSuccessor(NewBB); 208 PredBB = NewBB; 209 210 // Generate instructions for each appropriate stage. Process instructions 211 // in original program order. 212 for (int StageNum = i; StageNum >= 0; --StageNum) { 213 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 214 BBE = BB->getFirstTerminator(); 215 BBI != BBE; ++BBI) { 216 if (Schedule.getStage(&*BBI) == StageNum) { 217 if (BBI->isPHI()) 218 continue; 219 MachineInstr *NewMI = 220 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum); 221 updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap); 222 NewBB->push_back(NewMI); 223 InstrMap[NewMI] = &*BBI; 224 } 225 } 226 } 227 rewritePhiValues(NewBB, i, VRMap, InstrMap); 228 LLVM_DEBUG({ 229 dbgs() << "prolog:\n"; 230 NewBB->dump(); 231 }); 232 } 233 234 PredBB->replaceSuccessor(BB, KernelBB); 235 236 // Check if we need to remove the branch from the preheader to the original 237 // loop, and replace it with a branch to the new loop. 238 unsigned numBranches = TII->removeBranch(*Preheader); 239 if (numBranches) { 240 SmallVector<MachineOperand, 0> Cond; 241 TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc()); 242 } 243 } 244 245 /// Generate the pipeline epilog code. The epilog code finishes the iterations 246 /// that were started in either the prolog or the kernel. We create a basic 247 /// block for each stage that needs to complete. 248 void ModuloScheduleExpander::generateEpilog(unsigned LastStage, 249 MachineBasicBlock *KernelBB, 250 ValueMapTy *VRMap, 251 MBBVectorTy &EpilogBBs, 252 MBBVectorTy &PrologBBs) { 253 // We need to change the branch from the kernel to the first epilog block, so 254 // this call to analyze branch uses the kernel rather than the original BB. 255 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 256 SmallVector<MachineOperand, 4> Cond; 257 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 258 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 259 if (checkBranch) 260 return; 261 262 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 263 if (*LoopExitI == KernelBB) 264 ++LoopExitI; 265 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 266 MachineBasicBlock *LoopExitBB = *LoopExitI; 267 268 MachineBasicBlock *PredBB = KernelBB; 269 MachineBasicBlock *EpilogStart = LoopExitBB; 270 InstrMapTy InstrMap; 271 272 // Generate a basic block for each stage, not including the last stage, 273 // which was generated for the kernel. Each basic block may contain 274 // instructions from multiple stages/iterations. 275 int EpilogStage = LastStage + 1; 276 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 277 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 278 EpilogBBs.push_back(NewBB); 279 MF.insert(BB->getIterator(), NewBB); 280 281 PredBB->replaceSuccessor(LoopExitBB, NewBB); 282 NewBB->addSuccessor(LoopExitBB); 283 284 if (EpilogStart == LoopExitBB) 285 EpilogStart = NewBB; 286 287 // Add instructions to the epilog depending on the current block. 288 // Process instructions in original program order. 289 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 290 for (auto &BBI : *BB) { 291 if (BBI.isPHI()) 292 continue; 293 MachineInstr *In = &BBI; 294 if ((unsigned)Schedule.getStage(In) == StageNum) { 295 // Instructions with memoperands in the epilog are updated with 296 // conservative values. 297 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 298 updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap); 299 NewBB->push_back(NewMI); 300 InstrMap[NewMI] = In; 301 } 302 } 303 } 304 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, 305 InstrMap, LastStage, EpilogStage, i == 1); 306 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap, 307 LastStage, EpilogStage, i == 1); 308 PredBB = NewBB; 309 310 LLVM_DEBUG({ 311 dbgs() << "epilog:\n"; 312 NewBB->dump(); 313 }); 314 } 315 316 // Fix any Phi nodes in the loop exit block. 317 LoopExitBB->replacePhiUsesWith(BB, PredBB); 318 319 // Create a branch to the new epilog from the kernel. 320 // Remove the original branch and add a new branch to the epilog. 321 TII->removeBranch(*KernelBB); 322 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 323 // Add a branch to the loop exit. 324 if (EpilogBBs.size() > 0) { 325 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 326 SmallVector<MachineOperand, 4> Cond1; 327 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 328 } 329 } 330 331 /// Replace all uses of FromReg that appear outside the specified 332 /// basic block with ToReg. 333 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 334 MachineBasicBlock *MBB, 335 MachineRegisterInfo &MRI, 336 LiveIntervals &LIS) { 337 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 338 E = MRI.use_end(); 339 I != E;) { 340 MachineOperand &O = *I; 341 ++I; 342 if (O.getParent()->getParent() != MBB) 343 O.setReg(ToReg); 344 } 345 if (!LIS.hasInterval(ToReg)) 346 LIS.createEmptyInterval(ToReg); 347 } 348 349 /// Return true if the register has a use that occurs outside the 350 /// specified loop. 351 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 352 MachineRegisterInfo &MRI) { 353 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 354 E = MRI.use_end(); 355 I != E; ++I) 356 if (I->getParent()->getParent() != BB) 357 return true; 358 return false; 359 } 360 361 /// Generate Phis for the specific block in the generated pipelined code. 362 /// This function looks at the Phis from the original code to guide the 363 /// creation of new Phis. 364 void ModuloScheduleExpander::generateExistingPhis( 365 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 366 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 367 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 368 // Compute the stage number for the initial value of the Phi, which 369 // comes from the prolog. The prolog to use depends on to which kernel/ 370 // epilog that we're adding the Phi. 371 unsigned PrologStage = 0; 372 unsigned PrevStage = 0; 373 bool InKernel = (LastStageNum == CurStageNum); 374 if (InKernel) { 375 PrologStage = LastStageNum - 1; 376 PrevStage = CurStageNum; 377 } else { 378 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 379 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 380 } 381 382 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 383 BBE = BB->getFirstNonPHI(); 384 BBI != BBE; ++BBI) { 385 Register Def = BBI->getOperand(0).getReg(); 386 387 unsigned InitVal = 0; 388 unsigned LoopVal = 0; 389 getPhiRegs(*BBI, BB, InitVal, LoopVal); 390 391 unsigned PhiOp1 = 0; 392 // The Phi value from the loop body typically is defined in the loop, but 393 // not always. So, we need to check if the value is defined in the loop. 394 unsigned PhiOp2 = LoopVal; 395 if (VRMap[LastStageNum].count(LoopVal)) 396 PhiOp2 = VRMap[LastStageNum][LoopVal]; 397 398 int StageScheduled = Schedule.getStage(&*BBI); 399 int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal)); 400 unsigned NumStages = getStagesForReg(Def, CurStageNum); 401 if (NumStages == 0) { 402 // We don't need to generate a Phi anymore, but we need to rename any uses 403 // of the Phi value. 404 unsigned NewReg = VRMap[PrevStage][LoopVal]; 405 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def, 406 InitVal, NewReg); 407 if (VRMap[CurStageNum].count(LoopVal)) 408 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 409 } 410 // Adjust the number of Phis needed depending on the number of prologs left, 411 // and the distance from where the Phi is first scheduled. The number of 412 // Phis cannot exceed the number of prolog stages. Each stage can 413 // potentially define two values. 414 unsigned MaxPhis = PrologStage + 2; 415 if (!InKernel && (int)PrologStage <= LoopValStage) 416 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 417 unsigned NumPhis = std::min(NumStages, MaxPhis); 418 419 unsigned NewReg = 0; 420 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 421 // In the epilog, we may need to look back one stage to get the correct 422 // Phi name, because the epilog and prolog blocks execute the same stage. 423 // The correct name is from the previous block only when the Phi has 424 // been completely scheduled prior to the epilog, and Phi value is not 425 // needed in multiple stages. 426 int StageDiff = 0; 427 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 428 NumPhis == 1) 429 StageDiff = 1; 430 // Adjust the computations below when the phi and the loop definition 431 // are scheduled in different stages. 432 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 433 StageDiff = StageScheduled - LoopValStage; 434 for (unsigned np = 0; np < NumPhis; ++np) { 435 // If the Phi hasn't been scheduled, then use the initial Phi operand 436 // value. Otherwise, use the scheduled version of the instruction. This 437 // is a little complicated when a Phi references another Phi. 438 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 439 PhiOp1 = InitVal; 440 // Check if the Phi has already been scheduled in a prolog stage. 441 else if (PrologStage >= AccessStage + StageDiff + np && 442 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 443 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 444 // Check if the Phi has already been scheduled, but the loop instruction 445 // is either another Phi, or doesn't occur in the loop. 446 else if (PrologStage >= AccessStage + StageDiff + np) { 447 // If the Phi references another Phi, we need to examine the other 448 // Phi to get the correct value. 449 PhiOp1 = LoopVal; 450 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 451 int Indirects = 1; 452 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 453 int PhiStage = Schedule.getStage(InstOp1); 454 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 455 PhiOp1 = getInitPhiReg(*InstOp1, BB); 456 else 457 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 458 InstOp1 = MRI.getVRegDef(PhiOp1); 459 int PhiOpStage = Schedule.getStage(InstOp1); 460 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 461 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 462 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 463 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 464 break; 465 } 466 ++Indirects; 467 } 468 } else 469 PhiOp1 = InitVal; 470 // If this references a generated Phi in the kernel, get the Phi operand 471 // from the incoming block. 472 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 473 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 474 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 475 476 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 477 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 478 // In the epilog, a map lookup is needed to get the value from the kernel, 479 // or previous epilog block. How is does this depends on if the 480 // instruction is scheduled in the previous block. 481 if (!InKernel) { 482 int StageDiffAdj = 0; 483 if (LoopValStage != -1 && StageScheduled > LoopValStage) 484 StageDiffAdj = StageScheduled - LoopValStage; 485 // Use the loop value defined in the kernel, unless the kernel 486 // contains the last definition of the Phi. 487 if (np == 0 && PrevStage == LastStageNum && 488 (StageScheduled != 0 || LoopValStage != 0) && 489 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 490 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 491 // Use the value defined by the Phi. We add one because we switch 492 // from looking at the loop value to the Phi definition. 493 else if (np > 0 && PrevStage == LastStageNum && 494 VRMap[PrevStage - np + 1].count(Def)) 495 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 496 // Use the loop value defined in the kernel. 497 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 498 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 499 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 500 // Use the value defined by the Phi, unless we're generating the first 501 // epilog and the Phi refers to a Phi in a different stage. 502 else if (VRMap[PrevStage - np].count(Def) && 503 (!LoopDefIsPhi || (PrevStage != LastStageNum) || 504 (LoopValStage == StageScheduled))) 505 PhiOp2 = VRMap[PrevStage - np][Def]; 506 } 507 508 // Check if we can reuse an existing Phi. This occurs when a Phi 509 // references another Phi, and the other Phi is scheduled in an 510 // earlier stage. We can try to reuse an existing Phi up until the last 511 // stage of the current Phi. 512 if (LoopDefIsPhi) { 513 if (static_cast<int>(PrologStage - np) >= StageScheduled) { 514 int LVNumStages = getStagesForPhi(LoopVal); 515 int StageDiff = (StageScheduled - LoopValStage); 516 LVNumStages -= StageDiff; 517 // Make sure the loop value Phi has been processed already. 518 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 519 NewReg = PhiOp2; 520 unsigned ReuseStage = CurStageNum; 521 if (isLoopCarried(*PhiInst)) 522 ReuseStage -= LVNumStages; 523 // Check if the Phi to reuse has been generated yet. If not, then 524 // there is nothing to reuse. 525 if (VRMap[ReuseStage - np].count(LoopVal)) { 526 NewReg = VRMap[ReuseStage - np][LoopVal]; 527 528 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, 529 Def, NewReg); 530 // Update the map with the new Phi name. 531 VRMap[CurStageNum - np][Def] = NewReg; 532 PhiOp2 = NewReg; 533 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 534 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 535 536 if (IsLast && np == NumPhis - 1) 537 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 538 continue; 539 } 540 } 541 } 542 if (InKernel && StageDiff > 0 && 543 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 544 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 545 } 546 547 const TargetRegisterClass *RC = MRI.getRegClass(Def); 548 NewReg = MRI.createVirtualRegister(RC); 549 550 MachineInstrBuilder NewPhi = 551 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 552 TII->get(TargetOpcode::PHI), NewReg); 553 NewPhi.addReg(PhiOp1).addMBB(BB1); 554 NewPhi.addReg(PhiOp2).addMBB(BB2); 555 if (np == 0) 556 InstrMap[NewPhi] = &*BBI; 557 558 // We define the Phis after creating the new pipelined code, so 559 // we need to rename the Phi values in scheduled instructions. 560 561 unsigned PrevReg = 0; 562 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 563 PrevReg = VRMap[PrevStage - np][LoopVal]; 564 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 565 NewReg, PrevReg); 566 // If the Phi has been scheduled, use the new name for rewriting. 567 if (VRMap[CurStageNum - np].count(Def)) { 568 unsigned R = VRMap[CurStageNum - np][Def]; 569 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R, 570 NewReg); 571 } 572 573 // Check if we need to rename any uses that occurs after the loop. The 574 // register to replace depends on whether the Phi is scheduled in the 575 // epilog. 576 if (IsLast && np == NumPhis - 1) 577 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 578 579 // In the kernel, a dependent Phi uses the value from this Phi. 580 if (InKernel) 581 PhiOp2 = NewReg; 582 583 // Update the map with the new Phi name. 584 VRMap[CurStageNum - np][Def] = NewReg; 585 } 586 587 while (NumPhis++ < NumStages) { 588 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def, 589 NewReg, 0); 590 } 591 592 // Check if we need to rename a Phi that has been eliminated due to 593 // scheduling. 594 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 595 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 596 } 597 } 598 599 /// Generate Phis for the specified block in the generated pipelined code. 600 /// These are new Phis needed because the definition is scheduled after the 601 /// use in the pipelined sequence. 602 void ModuloScheduleExpander::generatePhis( 603 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 604 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 605 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 606 // Compute the stage number that contains the initial Phi value, and 607 // the Phi from the previous stage. 608 unsigned PrologStage = 0; 609 unsigned PrevStage = 0; 610 unsigned StageDiff = CurStageNum - LastStageNum; 611 bool InKernel = (StageDiff == 0); 612 if (InKernel) { 613 PrologStage = LastStageNum - 1; 614 PrevStage = CurStageNum; 615 } else { 616 PrologStage = LastStageNum - StageDiff; 617 PrevStage = LastStageNum + StageDiff - 1; 618 } 619 620 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 621 BBE = BB->instr_end(); 622 BBI != BBE; ++BBI) { 623 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 624 MachineOperand &MO = BBI->getOperand(i); 625 if (!MO.isReg() || !MO.isDef() || 626 !Register::isVirtualRegister(MO.getReg())) 627 continue; 628 629 int StageScheduled = Schedule.getStage(&*BBI); 630 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 631 Register Def = MO.getReg(); 632 unsigned NumPhis = getStagesForReg(Def, CurStageNum); 633 // An instruction scheduled in stage 0 and is used after the loop 634 // requires a phi in the epilog for the last definition from either 635 // the kernel or prolog. 636 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 637 hasUseAfterLoop(Def, BB, MRI)) 638 NumPhis = 1; 639 if (!InKernel && (unsigned)StageScheduled > PrologStage) 640 continue; 641 642 unsigned PhiOp2 = VRMap[PrevStage][Def]; 643 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 644 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 645 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 646 // The number of Phis can't exceed the number of prolog stages. The 647 // prolog stage number is zero based. 648 if (NumPhis > PrologStage + 1 - StageScheduled) 649 NumPhis = PrologStage + 1 - StageScheduled; 650 for (unsigned np = 0; np < NumPhis; ++np) { 651 unsigned PhiOp1 = VRMap[PrologStage][Def]; 652 if (np <= PrologStage) 653 PhiOp1 = VRMap[PrologStage - np][Def]; 654 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 655 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 656 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 657 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 658 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 659 } 660 if (!InKernel) 661 PhiOp2 = VRMap[PrevStage - np][Def]; 662 663 const TargetRegisterClass *RC = MRI.getRegClass(Def); 664 Register NewReg = MRI.createVirtualRegister(RC); 665 666 MachineInstrBuilder NewPhi = 667 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 668 TII->get(TargetOpcode::PHI), NewReg); 669 NewPhi.addReg(PhiOp1).addMBB(BB1); 670 NewPhi.addReg(PhiOp2).addMBB(BB2); 671 if (np == 0) 672 InstrMap[NewPhi] = &*BBI; 673 674 // Rewrite uses and update the map. The actions depend upon whether 675 // we generating code for the kernel or epilog blocks. 676 if (InKernel) { 677 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1, 678 NewReg); 679 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2, 680 NewReg); 681 682 PhiOp2 = NewReg; 683 VRMap[PrevStage - np - 1][Def] = NewReg; 684 } else { 685 VRMap[CurStageNum - np][Def] = NewReg; 686 if (np == NumPhis - 1) 687 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 688 NewReg); 689 } 690 if (IsLast && np == NumPhis - 1) 691 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 692 } 693 } 694 } 695 } 696 697 /// Remove instructions that generate values with no uses. 698 /// Typically, these are induction variable operations that generate values 699 /// used in the loop itself. A dead instruction has a definition with 700 /// no uses, or uses that occur in the original loop only. 701 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, 702 MBBVectorTy &EpilogBBs) { 703 // For each epilog block, check that the value defined by each instruction 704 // is used. If not, delete it. 705 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 706 MBE = EpilogBBs.rend(); 707 MBB != MBE; ++MBB) 708 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 709 ME = (*MBB)->instr_rend(); 710 MI != ME;) { 711 // From DeadMachineInstructionElem. Don't delete inline assembly. 712 if (MI->isInlineAsm()) { 713 ++MI; 714 continue; 715 } 716 bool SawStore = false; 717 // Check if it's safe to remove the instruction due to side effects. 718 // We can, and want to, remove Phis here. 719 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 720 ++MI; 721 continue; 722 } 723 bool used = true; 724 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 725 MOE = MI->operands_end(); 726 MOI != MOE; ++MOI) { 727 if (!MOI->isReg() || !MOI->isDef()) 728 continue; 729 Register reg = MOI->getReg(); 730 // Assume physical registers are used, unless they are marked dead. 731 if (Register::isPhysicalRegister(reg)) { 732 used = !MOI->isDead(); 733 if (used) 734 break; 735 continue; 736 } 737 unsigned realUses = 0; 738 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 739 EI = MRI.use_end(); 740 UI != EI; ++UI) { 741 // Check if there are any uses that occur only in the original 742 // loop. If so, that's not a real use. 743 if (UI->getParent()->getParent() != BB) { 744 realUses++; 745 used = true; 746 break; 747 } 748 } 749 if (realUses > 0) 750 break; 751 used = false; 752 } 753 if (!used) { 754 LIS.RemoveMachineInstrFromMaps(*MI); 755 MI++->eraseFromParent(); 756 continue; 757 } 758 ++MI; 759 } 760 // In the kernel block, check if we can remove a Phi that generates a value 761 // used in an instruction removed in the epilog block. 762 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 763 BBE = KernelBB->getFirstNonPHI(); 764 BBI != BBE;) { 765 MachineInstr *MI = &*BBI; 766 ++BBI; 767 Register reg = MI->getOperand(0).getReg(); 768 if (MRI.use_begin(reg) == MRI.use_end()) { 769 LIS.RemoveMachineInstrFromMaps(*MI); 770 MI->eraseFromParent(); 771 } 772 } 773 } 774 775 /// For loop carried definitions, we split the lifetime of a virtual register 776 /// that has uses past the definition in the next iteration. A copy with a new 777 /// virtual register is inserted before the definition, which helps with 778 /// generating a better register assignment. 779 /// 780 /// v1 = phi(a, v2) v1 = phi(a, v2) 781 /// v2 = phi(b, v3) v2 = phi(b, v3) 782 /// v3 = .. v4 = copy v1 783 /// .. = V1 v3 = .. 784 /// .. = v4 785 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, 786 MBBVectorTy &EpilogBBs) { 787 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 788 for (auto &PHI : KernelBB->phis()) { 789 Register Def = PHI.getOperand(0).getReg(); 790 // Check for any Phi definition that used as an operand of another Phi 791 // in the same block. 792 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 793 E = MRI.use_instr_end(); 794 I != E; ++I) { 795 if (I->isPHI() && I->getParent() == KernelBB) { 796 // Get the loop carried definition. 797 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 798 if (!LCDef) 799 continue; 800 MachineInstr *MI = MRI.getVRegDef(LCDef); 801 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 802 continue; 803 // Search through the rest of the block looking for uses of the Phi 804 // definition. If one occurs, then split the lifetime. 805 unsigned SplitReg = 0; 806 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 807 KernelBB->instr_end())) 808 if (BBJ.readsRegister(Def)) { 809 // We split the lifetime when we find the first use. 810 if (SplitReg == 0) { 811 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 812 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 813 TII->get(TargetOpcode::COPY), SplitReg) 814 .addReg(Def); 815 } 816 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 817 } 818 if (!SplitReg) 819 continue; 820 // Search through each of the epilog blocks for any uses to be renamed. 821 for (auto &Epilog : EpilogBBs) 822 for (auto &I : *Epilog) 823 if (I.readsRegister(Def)) 824 I.substituteRegister(Def, SplitReg, 0, *TRI); 825 break; 826 } 827 } 828 } 829 } 830 831 /// Remove the incoming block from the Phis in a basic block. 832 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 833 for (MachineInstr &MI : *BB) { 834 if (!MI.isPHI()) 835 break; 836 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 837 if (MI.getOperand(i + 1).getMBB() == Incoming) { 838 MI.RemoveOperand(i + 1); 839 MI.RemoveOperand(i); 840 break; 841 } 842 } 843 } 844 845 /// Create branches from each prolog basic block to the appropriate epilog 846 /// block. These edges are needed if the loop ends before reaching the 847 /// kernel. 848 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB, 849 MBBVectorTy &PrologBBs, 850 MachineBasicBlock *KernelBB, 851 MBBVectorTy &EpilogBBs, 852 ValueMapTy *VRMap) { 853 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 854 MachineBasicBlock *LastPro = KernelBB; 855 MachineBasicBlock *LastEpi = KernelBB; 856 857 // Start from the blocks connected to the kernel and work "out" 858 // to the first prolog and the last epilog blocks. 859 SmallVector<MachineInstr *, 4> PrevInsts; 860 unsigned MaxIter = PrologBBs.size() - 1; 861 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 862 // Add branches to the prolog that go to the corresponding 863 // epilog, and the fall-thru prolog/kernel block. 864 MachineBasicBlock *Prolog = PrologBBs[j]; 865 MachineBasicBlock *Epilog = EpilogBBs[i]; 866 867 SmallVector<MachineOperand, 4> Cond; 868 Optional<bool> StaticallyGreater = 869 LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond); 870 unsigned numAdded = 0; 871 if (!StaticallyGreater.hasValue()) { 872 Prolog->addSuccessor(Epilog); 873 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 874 } else if (*StaticallyGreater == false) { 875 Prolog->addSuccessor(Epilog); 876 Prolog->removeSuccessor(LastPro); 877 LastEpi->removeSuccessor(Epilog); 878 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 879 removePhis(Epilog, LastEpi); 880 // Remove the blocks that are no longer referenced. 881 if (LastPro != LastEpi) { 882 LastEpi->clear(); 883 LastEpi->eraseFromParent(); 884 } 885 if (LastPro == KernelBB) { 886 LoopInfo->disposed(); 887 NewKernel = nullptr; 888 } 889 LastPro->clear(); 890 LastPro->eraseFromParent(); 891 } else { 892 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 893 removePhis(Epilog, Prolog); 894 } 895 LastPro = Prolog; 896 LastEpi = Epilog; 897 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 898 E = Prolog->instr_rend(); 899 I != E && numAdded > 0; ++I, --numAdded) 900 updateInstruction(&*I, false, j, 0, VRMap); 901 } 902 903 if (NewKernel) { 904 LoopInfo->setPreheader(PrologBBs[MaxIter]); 905 LoopInfo->adjustTripCount(-(MaxIter + 1)); 906 } 907 } 908 909 /// Return true if we can compute the amount the instruction changes 910 /// during each iteration. Set Delta to the amount of the change. 911 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { 912 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 913 const MachineOperand *BaseOp; 914 int64_t Offset; 915 bool OffsetIsScalable; 916 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 917 return false; 918 919 // FIXME: This algorithm assumes instructions have fixed-size offsets. 920 if (OffsetIsScalable) 921 return false; 922 923 if (!BaseOp->isReg()) 924 return false; 925 926 Register BaseReg = BaseOp->getReg(); 927 928 MachineRegisterInfo &MRI = MF.getRegInfo(); 929 // Check if there is a Phi. If so, get the definition in the loop. 930 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 931 if (BaseDef && BaseDef->isPHI()) { 932 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 933 BaseDef = MRI.getVRegDef(BaseReg); 934 } 935 if (!BaseDef) 936 return false; 937 938 int D = 0; 939 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 940 return false; 941 942 Delta = D; 943 return true; 944 } 945 946 /// Update the memory operand with a new offset when the pipeliner 947 /// generates a new copy of the instruction that refers to a 948 /// different memory location. 949 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, 950 MachineInstr &OldMI, 951 unsigned Num) { 952 if (Num == 0) 953 return; 954 // If the instruction has memory operands, then adjust the offset 955 // when the instruction appears in different stages. 956 if (NewMI.memoperands_empty()) 957 return; 958 SmallVector<MachineMemOperand *, 2> NewMMOs; 959 for (MachineMemOperand *MMO : NewMI.memoperands()) { 960 // TODO: Figure out whether isAtomic is really necessary (see D57601). 961 if (MMO->isVolatile() || MMO->isAtomic() || 962 (MMO->isInvariant() && MMO->isDereferenceable()) || 963 (!MMO->getValue())) { 964 NewMMOs.push_back(MMO); 965 continue; 966 } 967 unsigned Delta; 968 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 969 int64_t AdjOffset = Delta * Num; 970 NewMMOs.push_back( 971 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 972 } else { 973 NewMMOs.push_back( 974 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); 975 } 976 } 977 NewMI.setMemRefs(MF, NewMMOs); 978 } 979 980 /// Clone the instruction for the new pipelined loop and update the 981 /// memory operands, if needed. 982 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, 983 unsigned CurStageNum, 984 unsigned InstStageNum) { 985 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 986 // Check for tied operands in inline asm instructions. This should be handled 987 // elsewhere, but I'm not sure of the best solution. 988 if (OldMI->isInlineAsm()) 989 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 990 const auto &MO = OldMI->getOperand(i); 991 if (MO.isReg() && MO.isUse()) 992 break; 993 unsigned UseIdx; 994 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 995 NewMI->tieOperands(i, UseIdx); 996 } 997 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 998 return NewMI; 999 } 1000 1001 /// Clone the instruction for the new pipelined loop. If needed, this 1002 /// function updates the instruction using the values saved in the 1003 /// InstrChanges structure. 1004 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( 1005 MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { 1006 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 1007 auto It = InstrChanges.find(OldMI); 1008 if (It != InstrChanges.end()) { 1009 std::pair<unsigned, int64_t> RegAndOffset = It->second; 1010 unsigned BasePos, OffsetPos; 1011 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 1012 return nullptr; 1013 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 1014 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 1015 if (Schedule.getStage(LoopDef) > (signed)InstStageNum) 1016 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 1017 NewMI->getOperand(OffsetPos).setImm(NewOffset); 1018 } 1019 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 1020 return NewMI; 1021 } 1022 1023 /// Update the machine instruction with new virtual registers. This 1024 /// function may change the defintions and/or uses. 1025 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, 1026 bool LastDef, 1027 unsigned CurStageNum, 1028 unsigned InstrStageNum, 1029 ValueMapTy *VRMap) { 1030 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 1031 MachineOperand &MO = NewMI->getOperand(i); 1032 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 1033 continue; 1034 Register reg = MO.getReg(); 1035 if (MO.isDef()) { 1036 // Create a new virtual register for the definition. 1037 const TargetRegisterClass *RC = MRI.getRegClass(reg); 1038 Register NewReg = MRI.createVirtualRegister(RC); 1039 MO.setReg(NewReg); 1040 VRMap[CurStageNum][reg] = NewReg; 1041 if (LastDef) 1042 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 1043 } else if (MO.isUse()) { 1044 MachineInstr *Def = MRI.getVRegDef(reg); 1045 // Compute the stage that contains the last definition for instruction. 1046 int DefStageNum = Schedule.getStage(Def); 1047 unsigned StageNum = CurStageNum; 1048 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 1049 // Compute the difference in stages between the defintion and the use. 1050 unsigned StageDiff = (InstrStageNum - DefStageNum); 1051 // Make an adjustment to get the last definition. 1052 StageNum -= StageDiff; 1053 } 1054 if (VRMap[StageNum].count(reg)) 1055 MO.setReg(VRMap[StageNum][reg]); 1056 } 1057 } 1058 } 1059 1060 /// Return the instruction in the loop that defines the register. 1061 /// If the definition is a Phi, then follow the Phi operand to 1062 /// the instruction in the loop. 1063 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) { 1064 SmallPtrSet<MachineInstr *, 8> Visited; 1065 MachineInstr *Def = MRI.getVRegDef(Reg); 1066 while (Def->isPHI()) { 1067 if (!Visited.insert(Def).second) 1068 break; 1069 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 1070 if (Def->getOperand(i + 1).getMBB() == BB) { 1071 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 1072 break; 1073 } 1074 } 1075 return Def; 1076 } 1077 1078 /// Return the new name for the value from the previous stage. 1079 unsigned ModuloScheduleExpander::getPrevMapVal( 1080 unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, 1081 ValueMapTy *VRMap, MachineBasicBlock *BB) { 1082 unsigned PrevVal = 0; 1083 if (StageNum > PhiStage) { 1084 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 1085 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 1086 // The name is defined in the previous stage. 1087 PrevVal = VRMap[StageNum - 1][LoopVal]; 1088 else if (VRMap[StageNum].count(LoopVal)) 1089 // The previous name is defined in the current stage when the instruction 1090 // order is swapped. 1091 PrevVal = VRMap[StageNum][LoopVal]; 1092 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 1093 // The loop value hasn't yet been scheduled. 1094 PrevVal = LoopVal; 1095 else if (StageNum == PhiStage + 1) 1096 // The loop value is another phi, which has not been scheduled. 1097 PrevVal = getInitPhiReg(*LoopInst, BB); 1098 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 1099 // The loop value is another phi, which has been scheduled. 1100 PrevVal = 1101 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 1102 LoopStage, VRMap, BB); 1103 } 1104 return PrevVal; 1105 } 1106 1107 /// Rewrite the Phi values in the specified block to use the mappings 1108 /// from the initial operand. Once the Phi is scheduled, we switch 1109 /// to using the loop value instead of the Phi value, so those names 1110 /// do not need to be rewritten. 1111 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, 1112 unsigned StageNum, 1113 ValueMapTy *VRMap, 1114 InstrMapTy &InstrMap) { 1115 for (auto &PHI : BB->phis()) { 1116 unsigned InitVal = 0; 1117 unsigned LoopVal = 0; 1118 getPhiRegs(PHI, BB, InitVal, LoopVal); 1119 Register PhiDef = PHI.getOperand(0).getReg(); 1120 1121 unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef)); 1122 unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal)); 1123 unsigned NumPhis = getStagesForPhi(PhiDef); 1124 if (NumPhis > StageNum) 1125 NumPhis = StageNum; 1126 for (unsigned np = 0; np <= NumPhis; ++np) { 1127 unsigned NewVal = 1128 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 1129 if (!NewVal) 1130 NewVal = InitVal; 1131 rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef, 1132 NewVal); 1133 } 1134 } 1135 } 1136 1137 /// Rewrite a previously scheduled instruction to use the register value 1138 /// from the new instruction. Make sure the instruction occurs in the 1139 /// basic block, and we don't change the uses in the new instruction. 1140 void ModuloScheduleExpander::rewriteScheduledInstr( 1141 MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, 1142 unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, 1143 unsigned PrevReg) { 1144 bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); 1145 int StagePhi = Schedule.getStage(Phi) + PhiNum; 1146 // Rewrite uses that have been scheduled already to use the new 1147 // Phi register. 1148 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 1149 EI = MRI.use_end(); 1150 UI != EI;) { 1151 MachineOperand &UseOp = *UI; 1152 MachineInstr *UseMI = UseOp.getParent(); 1153 ++UI; 1154 if (UseMI->getParent() != BB) 1155 continue; 1156 if (UseMI->isPHI()) { 1157 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 1158 continue; 1159 if (getLoopPhiReg(*UseMI, BB) != OldReg) 1160 continue; 1161 } 1162 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 1163 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 1164 MachineInstr *OrigMI = OrigInstr->second; 1165 int StageSched = Schedule.getStage(OrigMI); 1166 int CycleSched = Schedule.getCycle(OrigMI); 1167 unsigned ReplaceReg = 0; 1168 // This is the stage for the scheduled instruction. 1169 if (StagePhi == StageSched && Phi->isPHI()) { 1170 int CyclePhi = Schedule.getCycle(Phi); 1171 if (PrevReg && InProlog) 1172 ReplaceReg = PrevReg; 1173 else if (PrevReg && !isLoopCarried(*Phi) && 1174 (CyclePhi <= CycleSched || OrigMI->isPHI())) 1175 ReplaceReg = PrevReg; 1176 else 1177 ReplaceReg = NewReg; 1178 } 1179 // The scheduled instruction occurs before the scheduled Phi, and the 1180 // Phi is not loop carried. 1181 if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi)) 1182 ReplaceReg = NewReg; 1183 if (StagePhi > StageSched && Phi->isPHI()) 1184 ReplaceReg = NewReg; 1185 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 1186 ReplaceReg = NewReg; 1187 if (ReplaceReg) { 1188 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 1189 UseOp.setReg(ReplaceReg); 1190 } 1191 } 1192 } 1193 1194 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { 1195 if (!Phi.isPHI()) 1196 return false; 1197 int DefCycle = Schedule.getCycle(&Phi); 1198 int DefStage = Schedule.getStage(&Phi); 1199 1200 unsigned InitVal = 0; 1201 unsigned LoopVal = 0; 1202 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 1203 MachineInstr *Use = MRI.getVRegDef(LoopVal); 1204 if (!Use || Use->isPHI()) 1205 return true; 1206 int LoopCycle = Schedule.getCycle(Use); 1207 int LoopStage = Schedule.getStage(Use); 1208 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 1209 } 1210 1211 //===----------------------------------------------------------------------===// 1212 // PeelingModuloScheduleExpander implementation 1213 //===----------------------------------------------------------------------===// 1214 // This is a reimplementation of ModuloScheduleExpander that works by creating 1215 // a fully correct steady-state kernel and peeling off the prolog and epilogs. 1216 //===----------------------------------------------------------------------===// 1217 1218 namespace { 1219 // Remove any dead phis in MBB. Dead phis either have only one block as input 1220 // (in which case they are the identity) or have no uses. 1221 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI, 1222 LiveIntervals *LIS, bool KeepSingleSrcPhi = false) { 1223 bool Changed = true; 1224 while (Changed) { 1225 Changed = false; 1226 for (auto I = MBB->begin(); I != MBB->getFirstNonPHI();) { 1227 MachineInstr &MI = *I++; 1228 assert(MI.isPHI()); 1229 if (MRI.use_empty(MI.getOperand(0).getReg())) { 1230 if (LIS) 1231 LIS->RemoveMachineInstrFromMaps(MI); 1232 MI.eraseFromParent(); 1233 Changed = true; 1234 } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) { 1235 MRI.constrainRegClass(MI.getOperand(1).getReg(), 1236 MRI.getRegClass(MI.getOperand(0).getReg())); 1237 MRI.replaceRegWith(MI.getOperand(0).getReg(), 1238 MI.getOperand(1).getReg()); 1239 if (LIS) 1240 LIS->RemoveMachineInstrFromMaps(MI); 1241 MI.eraseFromParent(); 1242 Changed = true; 1243 } 1244 } 1245 } 1246 } 1247 1248 /// Rewrites the kernel block in-place to adhere to the given schedule. 1249 /// KernelRewriter holds all of the state required to perform the rewriting. 1250 class KernelRewriter { 1251 ModuloSchedule &S; 1252 MachineBasicBlock *BB; 1253 MachineBasicBlock *PreheaderBB, *ExitBB; 1254 MachineRegisterInfo &MRI; 1255 const TargetInstrInfo *TII; 1256 LiveIntervals *LIS; 1257 1258 // Map from register class to canonical undef register for that class. 1259 DenseMap<const TargetRegisterClass *, Register> Undefs; 1260 // Map from <LoopReg, InitReg> to phi register for all created phis. Note that 1261 // this map is only used when InitReg is non-undef. 1262 DenseMap<std::pair<unsigned, unsigned>, Register> Phis; 1263 // Map from LoopReg to phi register where the InitReg is undef. 1264 DenseMap<Register, Register> UndefPhis; 1265 1266 // Reg is used by MI. Return the new register MI should use to adhere to the 1267 // schedule. Insert phis as necessary. 1268 Register remapUse(Register Reg, MachineInstr &MI); 1269 // Insert a phi that carries LoopReg from the loop body and InitReg otherwise. 1270 // If InitReg is not given it is chosen arbitrarily. It will either be undef 1271 // or will be chosen so as to share another phi. 1272 Register phi(Register LoopReg, Optional<Register> InitReg = {}, 1273 const TargetRegisterClass *RC = nullptr); 1274 // Create an undef register of the given register class. 1275 Register undef(const TargetRegisterClass *RC); 1276 1277 public: 1278 KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB, 1279 LiveIntervals *LIS = nullptr); 1280 void rewrite(); 1281 }; 1282 } // namespace 1283 1284 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S, 1285 MachineBasicBlock *LoopBB, LiveIntervals *LIS) 1286 : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()), 1287 ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()), 1288 TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) { 1289 PreheaderBB = *BB->pred_begin(); 1290 if (PreheaderBB == BB) 1291 PreheaderBB = *std::next(BB->pred_begin()); 1292 } 1293 1294 void KernelRewriter::rewrite() { 1295 // Rearrange the loop to be in schedule order. Note that the schedule may 1296 // contain instructions that are not owned by the loop block (InstrChanges and 1297 // friends), so we gracefully handle unowned instructions and delete any 1298 // instructions that weren't in the schedule. 1299 auto InsertPt = BB->getFirstTerminator(); 1300 MachineInstr *FirstMI = nullptr; 1301 for (MachineInstr *MI : S.getInstructions()) { 1302 if (MI->isPHI()) 1303 continue; 1304 if (MI->getParent()) 1305 MI->removeFromParent(); 1306 BB->insert(InsertPt, MI); 1307 if (!FirstMI) 1308 FirstMI = MI; 1309 } 1310 assert(FirstMI && "Failed to find first MI in schedule"); 1311 1312 // At this point all of the scheduled instructions are between FirstMI 1313 // and the end of the block. Kill from the first non-phi to FirstMI. 1314 for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) { 1315 if (LIS) 1316 LIS->RemoveMachineInstrFromMaps(*I); 1317 (I++)->eraseFromParent(); 1318 } 1319 1320 // Now remap every instruction in the loop. 1321 for (MachineInstr &MI : *BB) { 1322 if (MI.isPHI() || MI.isTerminator()) 1323 continue; 1324 for (MachineOperand &MO : MI.uses()) { 1325 if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit()) 1326 continue; 1327 Register Reg = remapUse(MO.getReg(), MI); 1328 MO.setReg(Reg); 1329 } 1330 } 1331 EliminateDeadPhis(BB, MRI, LIS); 1332 1333 // Ensure a phi exists for all instructions that are either referenced by 1334 // an illegal phi or by an instruction outside the loop. This allows us to 1335 // treat remaps of these values the same as "normal" values that come from 1336 // loop-carried phis. 1337 for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) { 1338 if (MI->isPHI()) { 1339 Register R = MI->getOperand(0).getReg(); 1340 phi(R); 1341 continue; 1342 } 1343 1344 for (MachineOperand &Def : MI->defs()) { 1345 for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) { 1346 if (MI.getParent() != BB) { 1347 phi(Def.getReg()); 1348 break; 1349 } 1350 } 1351 } 1352 } 1353 } 1354 1355 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) { 1356 MachineInstr *Producer = MRI.getUniqueVRegDef(Reg); 1357 if (!Producer) 1358 return Reg; 1359 1360 int ConsumerStage = S.getStage(&MI); 1361 if (!Producer->isPHI()) { 1362 // Non-phi producers are simple to remap. Insert as many phis as the 1363 // difference between the consumer and producer stages. 1364 if (Producer->getParent() != BB) 1365 // Producer was not inside the loop. Use the register as-is. 1366 return Reg; 1367 int ProducerStage = S.getStage(Producer); 1368 assert(ConsumerStage != -1 && 1369 "In-loop consumer should always be scheduled!"); 1370 assert(ConsumerStage >= ProducerStage); 1371 unsigned StageDiff = ConsumerStage - ProducerStage; 1372 1373 for (unsigned I = 0; I < StageDiff; ++I) 1374 Reg = phi(Reg); 1375 return Reg; 1376 } 1377 1378 // First, dive through the phi chain to find the defaults for the generated 1379 // phis. 1380 SmallVector<Optional<Register>, 4> Defaults; 1381 Register LoopReg = Reg; 1382 auto LoopProducer = Producer; 1383 while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) { 1384 LoopReg = getLoopPhiReg(*LoopProducer, BB); 1385 Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB)); 1386 LoopProducer = MRI.getUniqueVRegDef(LoopReg); 1387 assert(LoopProducer); 1388 } 1389 int LoopProducerStage = S.getStage(LoopProducer); 1390 1391 Optional<Register> IllegalPhiDefault; 1392 1393 if (LoopProducerStage == -1) { 1394 // Do nothing. 1395 } else if (LoopProducerStage > ConsumerStage) { 1396 // This schedule is only representable if ProducerStage == ConsumerStage+1. 1397 // In addition, Consumer's cycle must be scheduled after Producer in the 1398 // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP 1399 // functions. 1400 #ifndef NDEBUG // Silence unused variables in non-asserts mode. 1401 int LoopProducerCycle = S.getCycle(LoopProducer); 1402 int ConsumerCycle = S.getCycle(&MI); 1403 #endif 1404 assert(LoopProducerCycle <= ConsumerCycle); 1405 assert(LoopProducerStage == ConsumerStage + 1); 1406 // Peel off the first phi from Defaults and insert a phi between producer 1407 // and consumer. This phi will not be at the front of the block so we 1408 // consider it illegal. It will only exist during the rewrite process; it 1409 // needs to exist while we peel off prologs because these could take the 1410 // default value. After that we can replace all uses with the loop producer 1411 // value. 1412 IllegalPhiDefault = Defaults.front(); 1413 Defaults.erase(Defaults.begin()); 1414 } else { 1415 assert(ConsumerStage >= LoopProducerStage); 1416 int StageDiff = ConsumerStage - LoopProducerStage; 1417 if (StageDiff > 0) { 1418 LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size() 1419 << " to " << (Defaults.size() + StageDiff) << "\n"); 1420 // If we need more phis than we have defaults for, pad out with undefs for 1421 // the earliest phis, which are at the end of the defaults chain (the 1422 // chain is in reverse order). 1423 Defaults.resize(Defaults.size() + StageDiff, Defaults.empty() 1424 ? Optional<Register>() 1425 : Defaults.back()); 1426 } 1427 } 1428 1429 // Now we know the number of stages to jump back, insert the phi chain. 1430 auto DefaultI = Defaults.rbegin(); 1431 while (DefaultI != Defaults.rend()) 1432 LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg)); 1433 1434 if (IllegalPhiDefault.hasValue()) { 1435 // The consumer optionally consumes LoopProducer in the same iteration 1436 // (because the producer is scheduled at an earlier cycle than the consumer) 1437 // or the initial value. To facilitate this we create an illegal block here 1438 // by embedding a phi in the middle of the block. We will fix this up 1439 // immediately prior to pruning. 1440 auto RC = MRI.getRegClass(Reg); 1441 Register R = MRI.createVirtualRegister(RC); 1442 MachineInstr *IllegalPhi = 1443 BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1444 .addReg(IllegalPhiDefault.getValue()) 1445 .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect. 1446 .addReg(LoopReg) 1447 .addMBB(BB); // Block choice is arbitrary and has no effect. 1448 // Illegal phi should belong to the producer stage so that it can be 1449 // filtered correctly during peeling. 1450 S.setStage(IllegalPhi, LoopProducerStage); 1451 return R; 1452 } 1453 1454 return LoopReg; 1455 } 1456 1457 Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg, 1458 const TargetRegisterClass *RC) { 1459 // If the init register is not undef, try and find an existing phi. 1460 if (InitReg.hasValue()) { 1461 auto I = Phis.find({LoopReg, InitReg.getValue()}); 1462 if (I != Phis.end()) 1463 return I->second; 1464 } else { 1465 for (auto &KV : Phis) { 1466 if (KV.first.first == LoopReg) 1467 return KV.second; 1468 } 1469 } 1470 1471 // InitReg is either undef or no existing phi takes InitReg as input. Try and 1472 // find a phi that takes undef as input. 1473 auto I = UndefPhis.find(LoopReg); 1474 if (I != UndefPhis.end()) { 1475 Register R = I->second; 1476 if (!InitReg.hasValue()) 1477 // Found a phi taking undef as input, and this input is undef so return 1478 // without any more changes. 1479 return R; 1480 // Found a phi taking undef as input, so rewrite it to take InitReg. 1481 MachineInstr *MI = MRI.getVRegDef(R); 1482 MI->getOperand(1).setReg(InitReg.getValue()); 1483 Phis.insert({{LoopReg, InitReg.getValue()}, R}); 1484 MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue())); 1485 UndefPhis.erase(I); 1486 return R; 1487 } 1488 1489 // Failed to find any existing phi to reuse, so create a new one. 1490 if (!RC) 1491 RC = MRI.getRegClass(LoopReg); 1492 Register R = MRI.createVirtualRegister(RC); 1493 if (InitReg.hasValue()) 1494 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); 1495 BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R) 1496 .addReg(InitReg.hasValue() ? *InitReg : undef(RC)) 1497 .addMBB(PreheaderBB) 1498 .addReg(LoopReg) 1499 .addMBB(BB); 1500 if (!InitReg.hasValue()) 1501 UndefPhis[LoopReg] = R; 1502 else 1503 Phis[{LoopReg, *InitReg}] = R; 1504 return R; 1505 } 1506 1507 Register KernelRewriter::undef(const TargetRegisterClass *RC) { 1508 Register &R = Undefs[RC]; 1509 if (R == 0) { 1510 // Create an IMPLICIT_DEF that defines this register if we need it. 1511 // All uses of this should be removed by the time we have finished unrolling 1512 // prologs and epilogs. 1513 R = MRI.createVirtualRegister(RC); 1514 auto *InsertBB = &PreheaderBB->getParent()->front(); 1515 BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(), 1516 TII->get(TargetOpcode::IMPLICIT_DEF), R); 1517 } 1518 return R; 1519 } 1520 1521 namespace { 1522 /// Describes an operand in the kernel of a pipelined loop. Characteristics of 1523 /// the operand are discovered, such as how many in-loop PHIs it has to jump 1524 /// through and defaults for these phis. 1525 class KernelOperandInfo { 1526 MachineBasicBlock *BB; 1527 MachineRegisterInfo &MRI; 1528 SmallVector<Register, 4> PhiDefaults; 1529 MachineOperand *Source; 1530 MachineOperand *Target; 1531 1532 public: 1533 KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI, 1534 const SmallPtrSetImpl<MachineInstr *> &IllegalPhis) 1535 : MRI(MRI) { 1536 Source = MO; 1537 BB = MO->getParent()->getParent(); 1538 while (isRegInLoop(MO)) { 1539 MachineInstr *MI = MRI.getVRegDef(MO->getReg()); 1540 if (MI->isFullCopy()) { 1541 MO = &MI->getOperand(1); 1542 continue; 1543 } 1544 if (!MI->isPHI()) 1545 break; 1546 // If this is an illegal phi, don't count it in distance. 1547 if (IllegalPhis.count(MI)) { 1548 MO = &MI->getOperand(3); 1549 continue; 1550 } 1551 1552 Register Default = getInitPhiReg(*MI, BB); 1553 MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1) 1554 : &MI->getOperand(3); 1555 PhiDefaults.push_back(Default); 1556 } 1557 Target = MO; 1558 } 1559 1560 bool operator==(const KernelOperandInfo &Other) const { 1561 return PhiDefaults.size() == Other.PhiDefaults.size(); 1562 } 1563 1564 void print(raw_ostream &OS) const { 1565 OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in " 1566 << *Source->getParent(); 1567 } 1568 1569 private: 1570 bool isRegInLoop(MachineOperand *MO) { 1571 return MO->isReg() && MO->getReg().isVirtual() && 1572 MRI.getVRegDef(MO->getReg())->getParent() == BB; 1573 } 1574 }; 1575 } // namespace 1576 1577 MachineBasicBlock * 1578 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) { 1579 MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII); 1580 if (LPD == LPD_Front) 1581 PeeledFront.push_back(NewBB); 1582 else 1583 PeeledBack.push_front(NewBB); 1584 for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator(); 1585 ++I, ++NI) { 1586 CanonicalMIs[&*I] = &*I; 1587 CanonicalMIs[&*NI] = &*I; 1588 BlockMIs[{NewBB, &*I}] = &*NI; 1589 BlockMIs[{BB, &*I}] = &*I; 1590 } 1591 return NewBB; 1592 } 1593 1594 void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB, 1595 int MinStage) { 1596 for (auto I = MB->getFirstInstrTerminator()->getReverseIterator(); 1597 I != std::next(MB->getFirstNonPHI()->getReverseIterator());) { 1598 MachineInstr *MI = &*I++; 1599 int Stage = getStage(MI); 1600 if (Stage == -1 || Stage >= MinStage) 1601 continue; 1602 1603 for (MachineOperand &DefMO : MI->defs()) { 1604 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1605 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1606 // Only PHIs can use values from this block by construction. 1607 // Match with the equivalent PHI in B. 1608 assert(UseMI.isPHI()); 1609 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1610 MI->getParent()); 1611 Subs.emplace_back(&UseMI, Reg); 1612 } 1613 for (auto &Sub : Subs) 1614 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1615 *MRI.getTargetRegisterInfo()); 1616 } 1617 if (LIS) 1618 LIS->RemoveMachineInstrFromMaps(*MI); 1619 MI->eraseFromParent(); 1620 } 1621 } 1622 1623 void PeelingModuloScheduleExpander::moveStageBetweenBlocks( 1624 MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) { 1625 auto InsertPt = DestBB->getFirstNonPHI(); 1626 DenseMap<Register, Register> Remaps; 1627 for (auto I = SourceBB->getFirstNonPHI(); I != SourceBB->end();) { 1628 MachineInstr *MI = &*I++; 1629 if (MI->isPHI()) { 1630 // This is an illegal PHI. If we move any instructions using an illegal 1631 // PHI, we need to create a legal Phi. 1632 if (getStage(MI) != Stage) { 1633 // The legal Phi is not necessary if the illegal phi's stage 1634 // is being moved. 1635 Register PhiR = MI->getOperand(0).getReg(); 1636 auto RC = MRI.getRegClass(PhiR); 1637 Register NR = MRI.createVirtualRegister(RC); 1638 MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(), 1639 DebugLoc(), TII->get(TargetOpcode::PHI), NR) 1640 .addReg(PhiR) 1641 .addMBB(SourceBB); 1642 BlockMIs[{DestBB, CanonicalMIs[MI]}] = NI; 1643 CanonicalMIs[NI] = CanonicalMIs[MI]; 1644 Remaps[PhiR] = NR; 1645 } 1646 } 1647 if (getStage(MI) != Stage) 1648 continue; 1649 MI->removeFromParent(); 1650 DestBB->insert(InsertPt, MI); 1651 auto *KernelMI = CanonicalMIs[MI]; 1652 BlockMIs[{DestBB, KernelMI}] = MI; 1653 BlockMIs.erase({SourceBB, KernelMI}); 1654 } 1655 SmallVector<MachineInstr *, 4> PhiToDelete; 1656 for (MachineInstr &MI : DestBB->phis()) { 1657 assert(MI.getNumOperands() == 3); 1658 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg()); 1659 // If the instruction referenced by the phi is moved inside the block 1660 // we don't need the phi anymore. 1661 if (getStage(Def) == Stage) { 1662 Register PhiReg = MI.getOperand(0).getReg(); 1663 assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1); 1664 MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 1665 MI.getOperand(0).setReg(PhiReg); 1666 PhiToDelete.push_back(&MI); 1667 } 1668 } 1669 for (auto *P : PhiToDelete) 1670 P->eraseFromParent(); 1671 InsertPt = DestBB->getFirstNonPHI(); 1672 // Helper to clone Phi instructions into the destination block. We clone Phi 1673 // greedily to avoid combinatorial explosion of Phi instructions. 1674 auto clonePhi = [&](MachineInstr *Phi) { 1675 MachineInstr *NewMI = MF.CloneMachineInstr(Phi); 1676 DestBB->insert(InsertPt, NewMI); 1677 Register OrigR = Phi->getOperand(0).getReg(); 1678 Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR)); 1679 NewMI->getOperand(0).setReg(R); 1680 NewMI->getOperand(1).setReg(OrigR); 1681 NewMI->getOperand(2).setMBB(*DestBB->pred_begin()); 1682 Remaps[OrigR] = R; 1683 CanonicalMIs[NewMI] = CanonicalMIs[Phi]; 1684 BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI; 1685 PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi]; 1686 return R; 1687 }; 1688 for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) { 1689 for (MachineOperand &MO : I->uses()) { 1690 if (!MO.isReg()) 1691 continue; 1692 if (Remaps.count(MO.getReg())) 1693 MO.setReg(Remaps[MO.getReg()]); 1694 else { 1695 // If we are using a phi from the source block we need to add a new phi 1696 // pointing to the old one. 1697 MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg()); 1698 if (Use && Use->isPHI() && Use->getParent() == SourceBB) { 1699 Register R = clonePhi(Use); 1700 MO.setReg(R); 1701 } 1702 } 1703 } 1704 } 1705 } 1706 1707 Register 1708 PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi, 1709 MachineInstr *Phi) { 1710 unsigned distance = PhiNodeLoopIteration[Phi]; 1711 MachineInstr *CanonicalUse = CanonicalPhi; 1712 Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg(); 1713 for (unsigned I = 0; I < distance; ++I) { 1714 assert(CanonicalUse->isPHI()); 1715 assert(CanonicalUse->getNumOperands() == 5); 1716 unsigned LoopRegIdx = 3, InitRegIdx = 1; 1717 if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent()) 1718 std::swap(LoopRegIdx, InitRegIdx); 1719 CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg(); 1720 CanonicalUse = MRI.getVRegDef(CanonicalUseReg); 1721 } 1722 return CanonicalUseReg; 1723 } 1724 1725 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() { 1726 BitVector LS(Schedule.getNumStages(), true); 1727 BitVector AS(Schedule.getNumStages(), true); 1728 LiveStages[BB] = LS; 1729 AvailableStages[BB] = AS; 1730 1731 // Peel out the prologs. 1732 LS.reset(); 1733 for (int I = 0; I < Schedule.getNumStages() - 1; ++I) { 1734 LS[I] = 1; 1735 Prologs.push_back(peelKernel(LPD_Front)); 1736 LiveStages[Prologs.back()] = LS; 1737 AvailableStages[Prologs.back()] = LS; 1738 } 1739 1740 // Create a block that will end up as the new loop exiting block (dominated by 1741 // all prologs and epilogs). It will only contain PHIs, in the same order as 1742 // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property 1743 // that the exiting block is a (sub) clone of BB. This in turn gives us the 1744 // property that any value deffed in BB but used outside of BB is used by a 1745 // PHI in the exiting block. 1746 MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock(); 1747 EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1748 // Push out the epilogs, again in reverse order. 1749 // We can't assume anything about the minumum loop trip count at this point, 1750 // so emit a fairly complex epilog. 1751 1752 // We first peel number of stages minus one epilogue. Then we remove dead 1753 // stages and reorder instructions based on their stage. If we have 3 stages 1754 // we generate first: 1755 // E0[3, 2, 1] 1756 // E1[3', 2'] 1757 // E2[3''] 1758 // And then we move instructions based on their stages to have: 1759 // E0[3] 1760 // E1[2, 3'] 1761 // E2[1, 2', 3''] 1762 // The transformation is legal because we only move instructions past 1763 // instructions of a previous loop iteration. 1764 for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) { 1765 Epilogs.push_back(peelKernel(LPD_Back)); 1766 MachineBasicBlock *B = Epilogs.back(); 1767 filterInstructions(B, Schedule.getNumStages() - I); 1768 // Keep track at which iteration each phi belongs to. We need it to know 1769 // what version of the variable to use during prologue/epilogue stitching. 1770 EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1771 for (auto Phi = B->begin(), IE = B->getFirstNonPHI(); Phi != IE; ++Phi) 1772 PhiNodeLoopIteration[&*Phi] = Schedule.getNumStages() - I; 1773 } 1774 for (size_t I = 0; I < Epilogs.size(); I++) { 1775 LS.reset(); 1776 for (size_t J = I; J < Epilogs.size(); J++) { 1777 int Iteration = J; 1778 unsigned Stage = Schedule.getNumStages() - 1 + I - J; 1779 // Move stage one block at a time so that Phi nodes are updated correctly. 1780 for (size_t K = Iteration; K > I; K--) 1781 moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage); 1782 LS[Stage] = 1; 1783 } 1784 LiveStages[Epilogs[I]] = LS; 1785 AvailableStages[Epilogs[I]] = AS; 1786 } 1787 1788 // Now we've defined all the prolog and epilog blocks as a fallthrough 1789 // sequence, add the edges that will be followed if the loop trip count is 1790 // lower than the number of stages (connecting prologs directly with epilogs). 1791 auto PI = Prologs.begin(); 1792 auto EI = Epilogs.begin(); 1793 assert(Prologs.size() == Epilogs.size()); 1794 for (; PI != Prologs.end(); ++PI, ++EI) { 1795 MachineBasicBlock *Pred = *(*EI)->pred_begin(); 1796 (*PI)->addSuccessor(*EI); 1797 for (MachineInstr &MI : (*EI)->phis()) { 1798 Register Reg = MI.getOperand(1).getReg(); 1799 MachineInstr *Use = MRI.getUniqueVRegDef(Reg); 1800 if (Use && Use->getParent() == Pred) { 1801 MachineInstr *CanonicalUse = CanonicalMIs[Use]; 1802 if (CanonicalUse->isPHI()) { 1803 // If the use comes from a phi we need to skip as many phi as the 1804 // distance between the epilogue and the kernel. Trace through the phi 1805 // chain to find the right value. 1806 Reg = getPhiCanonicalReg(CanonicalUse, Use); 1807 } 1808 Reg = getEquivalentRegisterIn(Reg, *PI); 1809 } 1810 MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 1811 MI.addOperand(MachineOperand::CreateMBB(*PI)); 1812 } 1813 } 1814 1815 // Create a list of all blocks in order. 1816 SmallVector<MachineBasicBlock *, 8> Blocks; 1817 llvm::copy(PeeledFront, std::back_inserter(Blocks)); 1818 Blocks.push_back(BB); 1819 llvm::copy(PeeledBack, std::back_inserter(Blocks)); 1820 1821 // Iterate in reverse order over all instructions, remapping as we go. 1822 for (MachineBasicBlock *B : reverse(Blocks)) { 1823 for (auto I = B->getFirstInstrTerminator()->getReverseIterator(); 1824 I != std::next(B->getFirstNonPHI()->getReverseIterator());) { 1825 MachineInstr *MI = &*I++; 1826 rewriteUsesOf(MI); 1827 } 1828 } 1829 for (auto *MI : IllegalPhisToDelete) { 1830 if (LIS) 1831 LIS->RemoveMachineInstrFromMaps(*MI); 1832 MI->eraseFromParent(); 1833 } 1834 IllegalPhisToDelete.clear(); 1835 1836 // Now all remapping has been done, we're free to optimize the generated code. 1837 for (MachineBasicBlock *B : reverse(Blocks)) 1838 EliminateDeadPhis(B, MRI, LIS); 1839 EliminateDeadPhis(ExitingBB, MRI, LIS); 1840 } 1841 1842 MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() { 1843 MachineFunction &MF = *BB->getParent(); 1844 MachineBasicBlock *Exit = *BB->succ_begin(); 1845 if (Exit == BB) 1846 Exit = *std::next(BB->succ_begin()); 1847 1848 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 1849 MF.insert(std::next(BB->getIterator()), NewBB); 1850 1851 // Clone all phis in BB into NewBB and rewrite. 1852 for (MachineInstr &MI : BB->phis()) { 1853 auto RC = MRI.getRegClass(MI.getOperand(0).getReg()); 1854 Register OldR = MI.getOperand(3).getReg(); 1855 Register R = MRI.createVirtualRegister(RC); 1856 SmallVector<MachineInstr *, 4> Uses; 1857 for (MachineInstr &Use : MRI.use_instructions(OldR)) 1858 if (Use.getParent() != BB) 1859 Uses.push_back(&Use); 1860 for (MachineInstr *Use : Uses) 1861 Use->substituteRegister(OldR, R, /*SubIdx=*/0, 1862 *MRI.getTargetRegisterInfo()); 1863 MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1864 .addReg(OldR) 1865 .addMBB(BB); 1866 BlockMIs[{NewBB, &MI}] = NI; 1867 CanonicalMIs[NI] = &MI; 1868 } 1869 BB->replaceSuccessor(Exit, NewBB); 1870 Exit->replacePhiUsesWith(BB, NewBB); 1871 NewBB->addSuccessor(Exit); 1872 1873 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1874 SmallVector<MachineOperand, 4> Cond; 1875 bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond); 1876 (void)CanAnalyzeBr; 1877 assert(CanAnalyzeBr && "Must be able to analyze the loop branch!"); 1878 TII->removeBranch(*BB); 1879 TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB, 1880 Cond, DebugLoc()); 1881 TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc()); 1882 return NewBB; 1883 } 1884 1885 Register 1886 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg, 1887 MachineBasicBlock *BB) { 1888 MachineInstr *MI = MRI.getUniqueVRegDef(Reg); 1889 unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg); 1890 return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg(); 1891 } 1892 1893 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) { 1894 if (MI->isPHI()) { 1895 // This is an illegal PHI. The loop-carried (desired) value is operand 3, 1896 // and it is produced by this block. 1897 Register PhiR = MI->getOperand(0).getReg(); 1898 Register R = MI->getOperand(3).getReg(); 1899 int RMIStage = getStage(MRI.getUniqueVRegDef(R)); 1900 if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage)) 1901 R = MI->getOperand(1).getReg(); 1902 MRI.setRegClass(R, MRI.getRegClass(PhiR)); 1903 MRI.replaceRegWith(PhiR, R); 1904 // Postpone deleting the Phi as it may be referenced by BlockMIs and used 1905 // later to figure out how to remap registers. 1906 MI->getOperand(0).setReg(PhiR); 1907 IllegalPhisToDelete.push_back(MI); 1908 return; 1909 } 1910 1911 int Stage = getStage(MI); 1912 if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 || 1913 LiveStages[MI->getParent()].test(Stage)) 1914 // Instruction is live, no rewriting to do. 1915 return; 1916 1917 for (MachineOperand &DefMO : MI->defs()) { 1918 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1919 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1920 // Only PHIs can use values from this block by construction. 1921 // Match with the equivalent PHI in B. 1922 assert(UseMI.isPHI()); 1923 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1924 MI->getParent()); 1925 Subs.emplace_back(&UseMI, Reg); 1926 } 1927 for (auto &Sub : Subs) 1928 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1929 *MRI.getTargetRegisterInfo()); 1930 } 1931 if (LIS) 1932 LIS->RemoveMachineInstrFromMaps(*MI); 1933 MI->eraseFromParent(); 1934 } 1935 1936 void PeelingModuloScheduleExpander::fixupBranches() { 1937 // Work outwards from the kernel. 1938 bool KernelDisposed = false; 1939 int TC = Schedule.getNumStages() - 1; 1940 for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend(); 1941 ++PI, ++EI, --TC) { 1942 MachineBasicBlock *Prolog = *PI; 1943 MachineBasicBlock *Fallthrough = *Prolog->succ_begin(); 1944 MachineBasicBlock *Epilog = *EI; 1945 SmallVector<MachineOperand, 4> Cond; 1946 TII->removeBranch(*Prolog); 1947 Optional<bool> StaticallyGreater = 1948 LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond); 1949 if (!StaticallyGreater.hasValue()) { 1950 LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n"); 1951 // Dynamically branch based on Cond. 1952 TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc()); 1953 } else if (*StaticallyGreater == false) { 1954 LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n"); 1955 // Prolog never falls through; branch to epilog and orphan interior 1956 // blocks. Leave it to unreachable-block-elim to clean up. 1957 Prolog->removeSuccessor(Fallthrough); 1958 for (MachineInstr &P : Fallthrough->phis()) { 1959 P.RemoveOperand(2); 1960 P.RemoveOperand(1); 1961 } 1962 TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc()); 1963 KernelDisposed = true; 1964 } else { 1965 LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n"); 1966 // Prolog always falls through; remove incoming values in epilog. 1967 Prolog->removeSuccessor(Epilog); 1968 for (MachineInstr &P : Epilog->phis()) { 1969 P.RemoveOperand(4); 1970 P.RemoveOperand(3); 1971 } 1972 } 1973 } 1974 1975 if (!KernelDisposed) { 1976 LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1)); 1977 LoopInfo->setPreheader(Prologs.back()); 1978 } else { 1979 LoopInfo->disposed(); 1980 } 1981 } 1982 1983 void PeelingModuloScheduleExpander::rewriteKernel() { 1984 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 1985 KR.rewrite(); 1986 } 1987 1988 void PeelingModuloScheduleExpander::expand() { 1989 BB = Schedule.getLoop()->getTopBlock(); 1990 Preheader = Schedule.getLoop()->getLoopPreheader(); 1991 LLVM_DEBUG(Schedule.dump()); 1992 LoopInfo = TII->analyzeLoopForPipelining(BB); 1993 assert(LoopInfo); 1994 1995 rewriteKernel(); 1996 peelPrologAndEpilogs(); 1997 fixupBranches(); 1998 } 1999 2000 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() { 2001 BB = Schedule.getLoop()->getTopBlock(); 2002 Preheader = Schedule.getLoop()->getLoopPreheader(); 2003 2004 // Dump the schedule before we invalidate and remap all its instructions. 2005 // Stash it in a string so we can print it if we found an error. 2006 std::string ScheduleDump; 2007 raw_string_ostream OS(ScheduleDump); 2008 Schedule.print(OS); 2009 OS.flush(); 2010 2011 // First, run the normal ModuleScheduleExpander. We don't support any 2012 // InstrChanges. 2013 assert(LIS && "Requires LiveIntervals!"); 2014 ModuloScheduleExpander MSE(MF, Schedule, *LIS, 2015 ModuloScheduleExpander::InstrChangesTy()); 2016 MSE.expand(); 2017 MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel(); 2018 if (!ExpandedKernel) { 2019 // The expander optimized away the kernel. We can't do any useful checking. 2020 MSE.cleanup(); 2021 return; 2022 } 2023 // Before running the KernelRewriter, re-add BB into the CFG. 2024 Preheader->addSuccessor(BB); 2025 2026 // Now run the new expansion algorithm. 2027 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 2028 KR.rewrite(); 2029 peelPrologAndEpilogs(); 2030 2031 // Collect all illegal phis that the new algorithm created. We'll give these 2032 // to KernelOperandInfo. 2033 SmallPtrSet<MachineInstr *, 4> IllegalPhis; 2034 for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) { 2035 if (NI->isPHI()) 2036 IllegalPhis.insert(&*NI); 2037 } 2038 2039 // Co-iterate across both kernels. We expect them to be identical apart from 2040 // phis and full COPYs (we look through both). 2041 SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs; 2042 auto OI = ExpandedKernel->begin(); 2043 auto NI = BB->begin(); 2044 for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) { 2045 while (OI->isPHI() || OI->isFullCopy()) 2046 ++OI; 2047 while (NI->isPHI() || NI->isFullCopy()) 2048 ++NI; 2049 assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!"); 2050 // Analyze every operand separately. 2051 for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin(); 2052 OOpI != OI->operands_end(); ++OOpI, ++NOpI) 2053 KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis), 2054 KernelOperandInfo(&*NOpI, MRI, IllegalPhis)); 2055 } 2056 2057 bool Failed = false; 2058 for (auto &OldAndNew : KOIs) { 2059 if (OldAndNew.first == OldAndNew.second) 2060 continue; 2061 Failed = true; 2062 errs() << "Modulo kernel validation error: [\n"; 2063 errs() << " [golden] "; 2064 OldAndNew.first.print(errs()); 2065 errs() << " "; 2066 OldAndNew.second.print(errs()); 2067 errs() << "]\n"; 2068 } 2069 2070 if (Failed) { 2071 errs() << "Golden reference kernel:\n"; 2072 ExpandedKernel->print(errs()); 2073 errs() << "New kernel:\n"; 2074 BB->print(errs()); 2075 errs() << ScheduleDump; 2076 report_fatal_error( 2077 "Modulo kernel validation (-pipeliner-experimental-cg) failed"); 2078 } 2079 2080 // Cleanup by removing BB from the CFG again as the original 2081 // ModuloScheduleExpander intended. 2082 Preheader->removeSuccessor(BB); 2083 MSE.cleanup(); 2084 } 2085 2086 //===----------------------------------------------------------------------===// 2087 // ModuloScheduleTestPass implementation 2088 //===----------------------------------------------------------------------===// 2089 // This pass constructs a ModuloSchedule from its module and runs 2090 // ModuloScheduleExpander. 2091 // 2092 // The module is expected to contain a single-block analyzable loop. 2093 // The total order of instructions is taken from the loop as-is. 2094 // Instructions are expected to be annotated with a PostInstrSymbol. 2095 // This PostInstrSymbol must have the following format: 2096 // "Stage=%d Cycle=%d". 2097 //===----------------------------------------------------------------------===// 2098 2099 namespace { 2100 class ModuloScheduleTest : public MachineFunctionPass { 2101 public: 2102 static char ID; 2103 2104 ModuloScheduleTest() : MachineFunctionPass(ID) { 2105 initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); 2106 } 2107 2108 bool runOnMachineFunction(MachineFunction &MF) override; 2109 void runOnLoop(MachineFunction &MF, MachineLoop &L); 2110 2111 void getAnalysisUsage(AnalysisUsage &AU) const override { 2112 AU.addRequired<MachineLoopInfo>(); 2113 AU.addRequired<LiveIntervals>(); 2114 MachineFunctionPass::getAnalysisUsage(AU); 2115 } 2116 }; 2117 } // namespace 2118 2119 char ModuloScheduleTest::ID = 0; 2120 2121 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test", 2122 "Modulo Schedule test pass", false, false) 2123 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 2124 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 2125 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test", 2126 "Modulo Schedule test pass", false, false) 2127 2128 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { 2129 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 2130 for (auto *L : MLI) { 2131 if (L->getTopBlock() != L->getBottomBlock()) 2132 continue; 2133 runOnLoop(MF, *L); 2134 return false; 2135 } 2136 return false; 2137 } 2138 2139 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { 2140 std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_"); 2141 std::pair<StringRef, StringRef> StageTokenAndValue = 2142 getToken(StageAndCycle.first, "-"); 2143 std::pair<StringRef, StringRef> CycleTokenAndValue = 2144 getToken(StageAndCycle.second, "-"); 2145 if (StageTokenAndValue.first != "Stage" || 2146 CycleTokenAndValue.first != "_Cycle") { 2147 llvm_unreachable( 2148 "Bad post-instr symbol syntax: see comment in ModuloScheduleTest"); 2149 return; 2150 } 2151 2152 StageTokenAndValue.second.drop_front().getAsInteger(10, Stage); 2153 CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle); 2154 2155 dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n"; 2156 } 2157 2158 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { 2159 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 2160 MachineBasicBlock *BB = L.getTopBlock(); 2161 dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n"; 2162 2163 DenseMap<MachineInstr *, int> Cycle, Stage; 2164 std::vector<MachineInstr *> Instrs; 2165 for (MachineInstr &MI : *BB) { 2166 if (MI.isTerminator()) 2167 continue; 2168 Instrs.push_back(&MI); 2169 if (MCSymbol *Sym = MI.getPostInstrSymbol()) { 2170 dbgs() << "Parsing post-instr symbol for " << MI; 2171 parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]); 2172 } 2173 } 2174 2175 ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), 2176 std::move(Stage)); 2177 ModuloScheduleExpander MSE( 2178 MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); 2179 MSE.expand(); 2180 MSE.cleanup(); 2181 } 2182 2183 //===----------------------------------------------------------------------===// 2184 // ModuloScheduleTestAnnotater implementation 2185 //===----------------------------------------------------------------------===// 2186 2187 void ModuloScheduleTestAnnotater::annotate() { 2188 for (MachineInstr *MI : S.getInstructions()) { 2189 SmallVector<char, 16> SV; 2190 raw_svector_ostream OS(SV); 2191 OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); 2192 MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str()); 2193 MI->setPostInstrSymbol(MF, Sym); 2194 } 2195 } 2196