1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/ModuloSchedule.h" 10 #include "llvm/ADT/StringExtras.h" 11 #include "llvm/Analysis/MemoryLocation.h" 12 #include "llvm/CodeGen/LiveIntervals.h" 13 #include "llvm/CodeGen/MachineInstrBuilder.h" 14 #include "llvm/CodeGen/MachineLoopInfo.h" 15 #include "llvm/CodeGen/MachineRegisterInfo.h" 16 #include "llvm/InitializePasses.h" 17 #include "llvm/MC/MCContext.h" 18 #include "llvm/Support/Debug.h" 19 #include "llvm/Support/ErrorHandling.h" 20 #include "llvm/Support/raw_ostream.h" 21 22 #define DEBUG_TYPE "pipeliner" 23 using namespace llvm; 24 25 void ModuloSchedule::print(raw_ostream &OS) { 26 for (MachineInstr *MI : ScheduledInstrs) 27 OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI; 28 } 29 30 //===----------------------------------------------------------------------===// 31 // ModuloScheduleExpander implementation 32 //===----------------------------------------------------------------------===// 33 34 /// Return the register values for the operands of a Phi instruction. 35 /// This function assume the instruction is a Phi. 36 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 37 unsigned &InitVal, unsigned &LoopVal) { 38 assert(Phi.isPHI() && "Expecting a Phi."); 39 40 InitVal = 0; 41 LoopVal = 0; 42 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 43 if (Phi.getOperand(i + 1).getMBB() != Loop) 44 InitVal = Phi.getOperand(i).getReg(); 45 else 46 LoopVal = Phi.getOperand(i).getReg(); 47 48 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 49 } 50 51 /// Return the Phi register value that comes from the incoming block. 52 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 53 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 54 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 55 return Phi.getOperand(i).getReg(); 56 return 0; 57 } 58 59 /// Return the Phi register value that comes the loop block. 60 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 61 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 62 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 63 return Phi.getOperand(i).getReg(); 64 return 0; 65 } 66 67 void ModuloScheduleExpander::expand() { 68 BB = Schedule.getLoop()->getTopBlock(); 69 Preheader = *BB->pred_begin(); 70 if (Preheader == BB) 71 Preheader = *std::next(BB->pred_begin()); 72 73 // Iterate over the definitions in each instruction, and compute the 74 // stage difference for each use. Keep the maximum value. 75 for (MachineInstr *MI : Schedule.getInstructions()) { 76 int DefStage = Schedule.getStage(MI); 77 for (const MachineOperand &Op : MI->operands()) { 78 if (!Op.isReg() || !Op.isDef()) 79 continue; 80 81 Register Reg = Op.getReg(); 82 unsigned MaxDiff = 0; 83 bool PhiIsSwapped = false; 84 for (MachineOperand &UseOp : MRI.use_operands(Reg)) { 85 MachineInstr *UseMI = UseOp.getParent(); 86 int UseStage = Schedule.getStage(UseMI); 87 unsigned Diff = 0; 88 if (UseStage != -1 && UseStage >= DefStage) 89 Diff = UseStage - DefStage; 90 if (MI->isPHI()) { 91 if (isLoopCarried(*MI)) 92 ++Diff; 93 else 94 PhiIsSwapped = true; 95 } 96 MaxDiff = std::max(Diff, MaxDiff); 97 } 98 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 99 } 100 } 101 102 generatePipelinedLoop(); 103 } 104 105 void ModuloScheduleExpander::generatePipelinedLoop() { 106 LoopInfo = TII->analyzeLoopForPipelining(BB); 107 assert(LoopInfo && "Must be able to analyze loop!"); 108 109 // Create a new basic block for the kernel and add it to the CFG. 110 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 111 112 unsigned MaxStageCount = Schedule.getNumStages() - 1; 113 114 // Remember the registers that are used in different stages. The index is 115 // the iteration, or stage, that the instruction is scheduled in. This is 116 // a map between register names in the original block and the names created 117 // in each stage of the pipelined loop. 118 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 119 InstrMapTy InstrMap; 120 121 SmallVector<MachineBasicBlock *, 4> PrologBBs; 122 123 // Generate the prolog instructions that set up the pipeline. 124 generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs); 125 MF.insert(BB->getIterator(), KernelBB); 126 127 // Rearrange the instructions to generate the new, pipelined loop, 128 // and update register names as needed. 129 for (MachineInstr *CI : Schedule.getInstructions()) { 130 if (CI->isPHI()) 131 continue; 132 unsigned StageNum = Schedule.getStage(CI); 133 MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum); 134 updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap); 135 KernelBB->push_back(NewMI); 136 InstrMap[NewMI] = CI; 137 } 138 139 // Copy any terminator instructions to the new kernel, and update 140 // names as needed. 141 for (MachineInstr &MI : BB->terminators()) { 142 MachineInstr *NewMI = MF.CloneMachineInstr(&MI); 143 updateInstruction(NewMI, false, MaxStageCount, 0, VRMap); 144 KernelBB->push_back(NewMI); 145 InstrMap[NewMI] = &MI; 146 } 147 148 NewKernel = KernelBB; 149 KernelBB->transferSuccessors(BB); 150 KernelBB->replaceSuccessor(BB, KernelBB); 151 152 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, 153 InstrMap, MaxStageCount, MaxStageCount, false); 154 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap, 155 MaxStageCount, MaxStageCount, false); 156 157 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 158 159 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 160 // Generate the epilog instructions to complete the pipeline. 161 generateEpilog(MaxStageCount, KernelBB, BB, VRMap, EpilogBBs, PrologBBs); 162 163 // We need this step because the register allocation doesn't handle some 164 // situations well, so we insert copies to help out. 165 splitLifetimes(KernelBB, EpilogBBs); 166 167 // Remove dead instructions due to loop induction variables. 168 removeDeadInstructions(KernelBB, EpilogBBs); 169 170 // Add branches between prolog and epilog blocks. 171 addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); 172 173 delete[] VRMap; 174 } 175 176 void ModuloScheduleExpander::cleanup() { 177 // Remove the original loop since it's no longer referenced. 178 for (auto &I : *BB) 179 LIS.RemoveMachineInstrFromMaps(I); 180 BB->clear(); 181 BB->eraseFromParent(); 182 } 183 184 /// Generate the pipeline prolog code. 185 void ModuloScheduleExpander::generateProlog(unsigned LastStage, 186 MachineBasicBlock *KernelBB, 187 ValueMapTy *VRMap, 188 MBBVectorTy &PrologBBs) { 189 MachineBasicBlock *PredBB = Preheader; 190 InstrMapTy InstrMap; 191 192 // Generate a basic block for each stage, not including the last stage, 193 // which will be generated in the kernel. Each basic block may contain 194 // instructions from multiple stages/iterations. 195 for (unsigned i = 0; i < LastStage; ++i) { 196 // Create and insert the prolog basic block prior to the original loop 197 // basic block. The original loop is removed later. 198 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 199 PrologBBs.push_back(NewBB); 200 MF.insert(BB->getIterator(), NewBB); 201 NewBB->transferSuccessors(PredBB); 202 PredBB->addSuccessor(NewBB); 203 PredBB = NewBB; 204 205 // Generate instructions for each appropriate stage. Process instructions 206 // in original program order. 207 for (int StageNum = i; StageNum >= 0; --StageNum) { 208 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 209 BBE = BB->getFirstTerminator(); 210 BBI != BBE; ++BBI) { 211 if (Schedule.getStage(&*BBI) == StageNum) { 212 if (BBI->isPHI()) 213 continue; 214 MachineInstr *NewMI = 215 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum); 216 updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap); 217 NewBB->push_back(NewMI); 218 InstrMap[NewMI] = &*BBI; 219 } 220 } 221 } 222 rewritePhiValues(NewBB, i, VRMap, InstrMap); 223 LLVM_DEBUG({ 224 dbgs() << "prolog:\n"; 225 NewBB->dump(); 226 }); 227 } 228 229 PredBB->replaceSuccessor(BB, KernelBB); 230 231 // Check if we need to remove the branch from the preheader to the original 232 // loop, and replace it with a branch to the new loop. 233 unsigned numBranches = TII->removeBranch(*Preheader); 234 if (numBranches) { 235 SmallVector<MachineOperand, 0> Cond; 236 TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc()); 237 } 238 } 239 240 /// Generate the pipeline epilog code. The epilog code finishes the iterations 241 /// that were started in either the prolog or the kernel. We create a basic 242 /// block for each stage that needs to complete. 243 void ModuloScheduleExpander::generateEpilog( 244 unsigned LastStage, MachineBasicBlock *KernelBB, MachineBasicBlock *OrigBB, 245 ValueMapTy *VRMap, MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs) { 246 // We need to change the branch from the kernel to the first epilog block, so 247 // this call to analyze branch uses the kernel rather than the original BB. 248 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 249 SmallVector<MachineOperand, 4> Cond; 250 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 251 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 252 if (checkBranch) 253 return; 254 255 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 256 if (*LoopExitI == KernelBB) 257 ++LoopExitI; 258 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 259 MachineBasicBlock *LoopExitBB = *LoopExitI; 260 261 MachineBasicBlock *PredBB = KernelBB; 262 MachineBasicBlock *EpilogStart = LoopExitBB; 263 InstrMapTy InstrMap; 264 265 // Generate a basic block for each stage, not including the last stage, 266 // which was generated for the kernel. Each basic block may contain 267 // instructions from multiple stages/iterations. 268 int EpilogStage = LastStage + 1; 269 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 270 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 271 EpilogBBs.push_back(NewBB); 272 MF.insert(BB->getIterator(), NewBB); 273 274 PredBB->replaceSuccessor(LoopExitBB, NewBB); 275 NewBB->addSuccessor(LoopExitBB); 276 277 if (EpilogStart == LoopExitBB) 278 EpilogStart = NewBB; 279 280 // Add instructions to the epilog depending on the current block. 281 // Process instructions in original program order. 282 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 283 for (auto &BBI : *BB) { 284 if (BBI.isPHI()) 285 continue; 286 MachineInstr *In = &BBI; 287 if ((unsigned)Schedule.getStage(In) == StageNum) { 288 // Instructions with memoperands in the epilog are updated with 289 // conservative values. 290 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 291 updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap); 292 NewBB->push_back(NewMI); 293 InstrMap[NewMI] = In; 294 } 295 } 296 } 297 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, 298 InstrMap, LastStage, EpilogStage, i == 1); 299 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap, 300 LastStage, EpilogStage, i == 1); 301 PredBB = NewBB; 302 303 LLVM_DEBUG({ 304 dbgs() << "epilog:\n"; 305 NewBB->dump(); 306 }); 307 } 308 309 // Fix any Phi nodes in the loop exit block. 310 LoopExitBB->replacePhiUsesWith(BB, PredBB); 311 312 // Create a branch to the new epilog from the kernel. 313 // Remove the original branch and add a new branch to the epilog. 314 TII->removeBranch(*KernelBB); 315 assert((OrigBB == TBB || OrigBB == FBB) && 316 "Unable to determine looping branch direction"); 317 if (OrigBB != TBB) 318 TII->insertBranch(*KernelBB, EpilogStart, KernelBB, Cond, DebugLoc()); 319 else 320 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 321 // Add a branch to the loop exit. 322 if (EpilogBBs.size() > 0) { 323 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 324 SmallVector<MachineOperand, 4> Cond1; 325 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 326 } 327 } 328 329 /// Replace all uses of FromReg that appear outside the specified 330 /// basic block with ToReg. 331 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 332 MachineBasicBlock *MBB, 333 MachineRegisterInfo &MRI, 334 LiveIntervals &LIS) { 335 for (MachineOperand &O : 336 llvm::make_early_inc_range(MRI.use_operands(FromReg))) 337 if (O.getParent()->getParent() != MBB) 338 O.setReg(ToReg); 339 if (!LIS.hasInterval(ToReg)) 340 LIS.createEmptyInterval(ToReg); 341 } 342 343 /// Return true if the register has a use that occurs outside the 344 /// specified loop. 345 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 346 MachineRegisterInfo &MRI) { 347 for (const MachineOperand &MO : MRI.use_operands(Reg)) 348 if (MO.getParent()->getParent() != BB) 349 return true; 350 return false; 351 } 352 353 /// Generate Phis for the specific block in the generated pipelined code. 354 /// This function looks at the Phis from the original code to guide the 355 /// creation of new Phis. 356 void ModuloScheduleExpander::generateExistingPhis( 357 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 358 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 359 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 360 // Compute the stage number for the initial value of the Phi, which 361 // comes from the prolog. The prolog to use depends on to which kernel/ 362 // epilog that we're adding the Phi. 363 unsigned PrologStage = 0; 364 unsigned PrevStage = 0; 365 bool InKernel = (LastStageNum == CurStageNum); 366 if (InKernel) { 367 PrologStage = LastStageNum - 1; 368 PrevStage = CurStageNum; 369 } else { 370 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 371 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 372 } 373 374 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 375 BBE = BB->getFirstNonPHI(); 376 BBI != BBE; ++BBI) { 377 Register Def = BBI->getOperand(0).getReg(); 378 379 unsigned InitVal = 0; 380 unsigned LoopVal = 0; 381 getPhiRegs(*BBI, BB, InitVal, LoopVal); 382 383 unsigned PhiOp1 = 0; 384 // The Phi value from the loop body typically is defined in the loop, but 385 // not always. So, we need to check if the value is defined in the loop. 386 unsigned PhiOp2 = LoopVal; 387 if (VRMap[LastStageNum].count(LoopVal)) 388 PhiOp2 = VRMap[LastStageNum][LoopVal]; 389 390 int StageScheduled = Schedule.getStage(&*BBI); 391 int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal)); 392 unsigned NumStages = getStagesForReg(Def, CurStageNum); 393 if (NumStages == 0) { 394 // We don't need to generate a Phi anymore, but we need to rename any uses 395 // of the Phi value. 396 unsigned NewReg = VRMap[PrevStage][LoopVal]; 397 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def, 398 InitVal, NewReg); 399 if (VRMap[CurStageNum].count(LoopVal)) 400 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 401 } 402 // Adjust the number of Phis needed depending on the number of prologs left, 403 // and the distance from where the Phi is first scheduled. The number of 404 // Phis cannot exceed the number of prolog stages. Each stage can 405 // potentially define two values. 406 unsigned MaxPhis = PrologStage + 2; 407 if (!InKernel && (int)PrologStage <= LoopValStage) 408 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 409 unsigned NumPhis = std::min(NumStages, MaxPhis); 410 411 unsigned NewReg = 0; 412 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 413 // In the epilog, we may need to look back one stage to get the correct 414 // Phi name, because the epilog and prolog blocks execute the same stage. 415 // The correct name is from the previous block only when the Phi has 416 // been completely scheduled prior to the epilog, and Phi value is not 417 // needed in multiple stages. 418 int StageDiff = 0; 419 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 420 NumPhis == 1) 421 StageDiff = 1; 422 // Adjust the computations below when the phi and the loop definition 423 // are scheduled in different stages. 424 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 425 StageDiff = StageScheduled - LoopValStage; 426 for (unsigned np = 0; np < NumPhis; ++np) { 427 // If the Phi hasn't been scheduled, then use the initial Phi operand 428 // value. Otherwise, use the scheduled version of the instruction. This 429 // is a little complicated when a Phi references another Phi. 430 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 431 PhiOp1 = InitVal; 432 // Check if the Phi has already been scheduled in a prolog stage. 433 else if (PrologStage >= AccessStage + StageDiff + np && 434 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 435 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 436 // Check if the Phi has already been scheduled, but the loop instruction 437 // is either another Phi, or doesn't occur in the loop. 438 else if (PrologStage >= AccessStage + StageDiff + np) { 439 // If the Phi references another Phi, we need to examine the other 440 // Phi to get the correct value. 441 PhiOp1 = LoopVal; 442 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 443 int Indirects = 1; 444 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 445 int PhiStage = Schedule.getStage(InstOp1); 446 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 447 PhiOp1 = getInitPhiReg(*InstOp1, BB); 448 else 449 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 450 InstOp1 = MRI.getVRegDef(PhiOp1); 451 int PhiOpStage = Schedule.getStage(InstOp1); 452 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 453 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 454 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 455 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 456 break; 457 } 458 ++Indirects; 459 } 460 } else 461 PhiOp1 = InitVal; 462 // If this references a generated Phi in the kernel, get the Phi operand 463 // from the incoming block. 464 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 465 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 466 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 467 468 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 469 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 470 // In the epilog, a map lookup is needed to get the value from the kernel, 471 // or previous epilog block. How is does this depends on if the 472 // instruction is scheduled in the previous block. 473 if (!InKernel) { 474 int StageDiffAdj = 0; 475 if (LoopValStage != -1 && StageScheduled > LoopValStage) 476 StageDiffAdj = StageScheduled - LoopValStage; 477 // Use the loop value defined in the kernel, unless the kernel 478 // contains the last definition of the Phi. 479 if (np == 0 && PrevStage == LastStageNum && 480 (StageScheduled != 0 || LoopValStage != 0) && 481 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 482 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 483 // Use the value defined by the Phi. We add one because we switch 484 // from looking at the loop value to the Phi definition. 485 else if (np > 0 && PrevStage == LastStageNum && 486 VRMap[PrevStage - np + 1].count(Def)) 487 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 488 // Use the loop value defined in the kernel. 489 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 490 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 491 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 492 // Use the value defined by the Phi, unless we're generating the first 493 // epilog and the Phi refers to a Phi in a different stage. 494 else if (VRMap[PrevStage - np].count(Def) && 495 (!LoopDefIsPhi || (PrevStage != LastStageNum) || 496 (LoopValStage == StageScheduled))) 497 PhiOp2 = VRMap[PrevStage - np][Def]; 498 } 499 500 // Check if we can reuse an existing Phi. This occurs when a Phi 501 // references another Phi, and the other Phi is scheduled in an 502 // earlier stage. We can try to reuse an existing Phi up until the last 503 // stage of the current Phi. 504 if (LoopDefIsPhi) { 505 if (static_cast<int>(PrologStage - np) >= StageScheduled) { 506 int LVNumStages = getStagesForPhi(LoopVal); 507 int StageDiff = (StageScheduled - LoopValStage); 508 LVNumStages -= StageDiff; 509 // Make sure the loop value Phi has been processed already. 510 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 511 NewReg = PhiOp2; 512 unsigned ReuseStage = CurStageNum; 513 if (isLoopCarried(*PhiInst)) 514 ReuseStage -= LVNumStages; 515 // Check if the Phi to reuse has been generated yet. If not, then 516 // there is nothing to reuse. 517 if (VRMap[ReuseStage - np].count(LoopVal)) { 518 NewReg = VRMap[ReuseStage - np][LoopVal]; 519 520 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, 521 Def, NewReg); 522 // Update the map with the new Phi name. 523 VRMap[CurStageNum - np][Def] = NewReg; 524 PhiOp2 = NewReg; 525 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 526 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 527 528 if (IsLast && np == NumPhis - 1) 529 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 530 continue; 531 } 532 } 533 } 534 if (InKernel && StageDiff > 0 && 535 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 536 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 537 } 538 539 const TargetRegisterClass *RC = MRI.getRegClass(Def); 540 NewReg = MRI.createVirtualRegister(RC); 541 542 MachineInstrBuilder NewPhi = 543 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 544 TII->get(TargetOpcode::PHI), NewReg); 545 NewPhi.addReg(PhiOp1).addMBB(BB1); 546 NewPhi.addReg(PhiOp2).addMBB(BB2); 547 if (np == 0) 548 InstrMap[NewPhi] = &*BBI; 549 550 // We define the Phis after creating the new pipelined code, so 551 // we need to rename the Phi values in scheduled instructions. 552 553 unsigned PrevReg = 0; 554 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 555 PrevReg = VRMap[PrevStage - np][LoopVal]; 556 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 557 NewReg, PrevReg); 558 // If the Phi has been scheduled, use the new name for rewriting. 559 if (VRMap[CurStageNum - np].count(Def)) { 560 unsigned R = VRMap[CurStageNum - np][Def]; 561 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R, 562 NewReg); 563 } 564 565 // Check if we need to rename any uses that occurs after the loop. The 566 // register to replace depends on whether the Phi is scheduled in the 567 // epilog. 568 if (IsLast && np == NumPhis - 1) 569 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 570 571 // In the kernel, a dependent Phi uses the value from this Phi. 572 if (InKernel) 573 PhiOp2 = NewReg; 574 575 // Update the map with the new Phi name. 576 VRMap[CurStageNum - np][Def] = NewReg; 577 } 578 579 while (NumPhis++ < NumStages) { 580 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def, 581 NewReg, 0); 582 } 583 584 // Check if we need to rename a Phi that has been eliminated due to 585 // scheduling. 586 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 587 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 588 } 589 } 590 591 /// Generate Phis for the specified block in the generated pipelined code. 592 /// These are new Phis needed because the definition is scheduled after the 593 /// use in the pipelined sequence. 594 void ModuloScheduleExpander::generatePhis( 595 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 596 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 597 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 598 // Compute the stage number that contains the initial Phi value, and 599 // the Phi from the previous stage. 600 unsigned PrologStage = 0; 601 unsigned PrevStage = 0; 602 unsigned StageDiff = CurStageNum - LastStageNum; 603 bool InKernel = (StageDiff == 0); 604 if (InKernel) { 605 PrologStage = LastStageNum - 1; 606 PrevStage = CurStageNum; 607 } else { 608 PrologStage = LastStageNum - StageDiff; 609 PrevStage = LastStageNum + StageDiff - 1; 610 } 611 612 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 613 BBE = BB->instr_end(); 614 BBI != BBE; ++BBI) { 615 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 616 MachineOperand &MO = BBI->getOperand(i); 617 if (!MO.isReg() || !MO.isDef() || 618 !Register::isVirtualRegister(MO.getReg())) 619 continue; 620 621 int StageScheduled = Schedule.getStage(&*BBI); 622 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 623 Register Def = MO.getReg(); 624 unsigned NumPhis = getStagesForReg(Def, CurStageNum); 625 // An instruction scheduled in stage 0 and is used after the loop 626 // requires a phi in the epilog for the last definition from either 627 // the kernel or prolog. 628 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 629 hasUseAfterLoop(Def, BB, MRI)) 630 NumPhis = 1; 631 if (!InKernel && (unsigned)StageScheduled > PrologStage) 632 continue; 633 634 unsigned PhiOp2 = VRMap[PrevStage][Def]; 635 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 636 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 637 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 638 // The number of Phis can't exceed the number of prolog stages. The 639 // prolog stage number is zero based. 640 if (NumPhis > PrologStage + 1 - StageScheduled) 641 NumPhis = PrologStage + 1 - StageScheduled; 642 for (unsigned np = 0; np < NumPhis; ++np) { 643 unsigned PhiOp1 = VRMap[PrologStage][Def]; 644 if (np <= PrologStage) 645 PhiOp1 = VRMap[PrologStage - np][Def]; 646 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 647 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 648 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 649 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 650 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 651 } 652 if (!InKernel) 653 PhiOp2 = VRMap[PrevStage - np][Def]; 654 655 const TargetRegisterClass *RC = MRI.getRegClass(Def); 656 Register NewReg = MRI.createVirtualRegister(RC); 657 658 MachineInstrBuilder NewPhi = 659 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 660 TII->get(TargetOpcode::PHI), NewReg); 661 NewPhi.addReg(PhiOp1).addMBB(BB1); 662 NewPhi.addReg(PhiOp2).addMBB(BB2); 663 if (np == 0) 664 InstrMap[NewPhi] = &*BBI; 665 666 // Rewrite uses and update the map. The actions depend upon whether 667 // we generating code for the kernel or epilog blocks. 668 if (InKernel) { 669 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1, 670 NewReg); 671 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2, 672 NewReg); 673 674 PhiOp2 = NewReg; 675 VRMap[PrevStage - np - 1][Def] = NewReg; 676 } else { 677 VRMap[CurStageNum - np][Def] = NewReg; 678 if (np == NumPhis - 1) 679 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 680 NewReg); 681 } 682 if (IsLast && np == NumPhis - 1) 683 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 684 } 685 } 686 } 687 } 688 689 /// Remove instructions that generate values with no uses. 690 /// Typically, these are induction variable operations that generate values 691 /// used in the loop itself. A dead instruction has a definition with 692 /// no uses, or uses that occur in the original loop only. 693 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, 694 MBBVectorTy &EpilogBBs) { 695 // For each epilog block, check that the value defined by each instruction 696 // is used. If not, delete it. 697 for (MachineBasicBlock *MBB : llvm::reverse(EpilogBBs)) 698 for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(), 699 ME = MBB->instr_rend(); 700 MI != ME;) { 701 // From DeadMachineInstructionElem. Don't delete inline assembly. 702 if (MI->isInlineAsm()) { 703 ++MI; 704 continue; 705 } 706 bool SawStore = false; 707 // Check if it's safe to remove the instruction due to side effects. 708 // We can, and want to, remove Phis here. 709 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 710 ++MI; 711 continue; 712 } 713 bool used = true; 714 for (const MachineOperand &MO : MI->operands()) { 715 if (!MO.isReg() || !MO.isDef()) 716 continue; 717 Register reg = MO.getReg(); 718 // Assume physical registers are used, unless they are marked dead. 719 if (Register::isPhysicalRegister(reg)) { 720 used = !MO.isDead(); 721 if (used) 722 break; 723 continue; 724 } 725 unsigned realUses = 0; 726 for (const MachineOperand &U : MRI.use_operands(reg)) { 727 // Check if there are any uses that occur only in the original 728 // loop. If so, that's not a real use. 729 if (U.getParent()->getParent() != BB) { 730 realUses++; 731 used = true; 732 break; 733 } 734 } 735 if (realUses > 0) 736 break; 737 used = false; 738 } 739 if (!used) { 740 LIS.RemoveMachineInstrFromMaps(*MI); 741 MI++->eraseFromParent(); 742 continue; 743 } 744 ++MI; 745 } 746 // In the kernel block, check if we can remove a Phi that generates a value 747 // used in an instruction removed in the epilog block. 748 for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) { 749 Register reg = MI.getOperand(0).getReg(); 750 if (MRI.use_begin(reg) == MRI.use_end()) { 751 LIS.RemoveMachineInstrFromMaps(MI); 752 MI.eraseFromParent(); 753 } 754 } 755 } 756 757 /// For loop carried definitions, we split the lifetime of a virtual register 758 /// that has uses past the definition in the next iteration. A copy with a new 759 /// virtual register is inserted before the definition, which helps with 760 /// generating a better register assignment. 761 /// 762 /// v1 = phi(a, v2) v1 = phi(a, v2) 763 /// v2 = phi(b, v3) v2 = phi(b, v3) 764 /// v3 = .. v4 = copy v1 765 /// .. = V1 v3 = .. 766 /// .. = v4 767 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, 768 MBBVectorTy &EpilogBBs) { 769 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 770 for (auto &PHI : KernelBB->phis()) { 771 Register Def = PHI.getOperand(0).getReg(); 772 // Check for any Phi definition that used as an operand of another Phi 773 // in the same block. 774 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 775 E = MRI.use_instr_end(); 776 I != E; ++I) { 777 if (I->isPHI() && I->getParent() == KernelBB) { 778 // Get the loop carried definition. 779 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 780 if (!LCDef) 781 continue; 782 MachineInstr *MI = MRI.getVRegDef(LCDef); 783 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 784 continue; 785 // Search through the rest of the block looking for uses of the Phi 786 // definition. If one occurs, then split the lifetime. 787 unsigned SplitReg = 0; 788 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 789 KernelBB->instr_end())) 790 if (BBJ.readsRegister(Def)) { 791 // We split the lifetime when we find the first use. 792 if (SplitReg == 0) { 793 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 794 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 795 TII->get(TargetOpcode::COPY), SplitReg) 796 .addReg(Def); 797 } 798 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 799 } 800 if (!SplitReg) 801 continue; 802 // Search through each of the epilog blocks for any uses to be renamed. 803 for (auto &Epilog : EpilogBBs) 804 for (auto &I : *Epilog) 805 if (I.readsRegister(Def)) 806 I.substituteRegister(Def, SplitReg, 0, *TRI); 807 break; 808 } 809 } 810 } 811 } 812 813 /// Remove the incoming block from the Phis in a basic block. 814 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 815 for (MachineInstr &MI : *BB) { 816 if (!MI.isPHI()) 817 break; 818 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 819 if (MI.getOperand(i + 1).getMBB() == Incoming) { 820 MI.removeOperand(i + 1); 821 MI.removeOperand(i); 822 break; 823 } 824 } 825 } 826 827 /// Create branches from each prolog basic block to the appropriate epilog 828 /// block. These edges are needed if the loop ends before reaching the 829 /// kernel. 830 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB, 831 MBBVectorTy &PrologBBs, 832 MachineBasicBlock *KernelBB, 833 MBBVectorTy &EpilogBBs, 834 ValueMapTy *VRMap) { 835 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 836 MachineBasicBlock *LastPro = KernelBB; 837 MachineBasicBlock *LastEpi = KernelBB; 838 839 // Start from the blocks connected to the kernel and work "out" 840 // to the first prolog and the last epilog blocks. 841 SmallVector<MachineInstr *, 4> PrevInsts; 842 unsigned MaxIter = PrologBBs.size() - 1; 843 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 844 // Add branches to the prolog that go to the corresponding 845 // epilog, and the fall-thru prolog/kernel block. 846 MachineBasicBlock *Prolog = PrologBBs[j]; 847 MachineBasicBlock *Epilog = EpilogBBs[i]; 848 849 SmallVector<MachineOperand, 4> Cond; 850 Optional<bool> StaticallyGreater = 851 LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond); 852 unsigned numAdded = 0; 853 if (!StaticallyGreater) { 854 Prolog->addSuccessor(Epilog); 855 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 856 } else if (*StaticallyGreater == false) { 857 Prolog->addSuccessor(Epilog); 858 Prolog->removeSuccessor(LastPro); 859 LastEpi->removeSuccessor(Epilog); 860 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 861 removePhis(Epilog, LastEpi); 862 // Remove the blocks that are no longer referenced. 863 if (LastPro != LastEpi) { 864 LastEpi->clear(); 865 LastEpi->eraseFromParent(); 866 } 867 if (LastPro == KernelBB) { 868 LoopInfo->disposed(); 869 NewKernel = nullptr; 870 } 871 LastPro->clear(); 872 LastPro->eraseFromParent(); 873 } else { 874 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 875 removePhis(Epilog, Prolog); 876 } 877 LastPro = Prolog; 878 LastEpi = Epilog; 879 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 880 E = Prolog->instr_rend(); 881 I != E && numAdded > 0; ++I, --numAdded) 882 updateInstruction(&*I, false, j, 0, VRMap); 883 } 884 885 if (NewKernel) { 886 LoopInfo->setPreheader(PrologBBs[MaxIter]); 887 LoopInfo->adjustTripCount(-(MaxIter + 1)); 888 } 889 } 890 891 /// Return true if we can compute the amount the instruction changes 892 /// during each iteration. Set Delta to the amount of the change. 893 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { 894 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 895 const MachineOperand *BaseOp; 896 int64_t Offset; 897 bool OffsetIsScalable; 898 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 899 return false; 900 901 // FIXME: This algorithm assumes instructions have fixed-size offsets. 902 if (OffsetIsScalable) 903 return false; 904 905 if (!BaseOp->isReg()) 906 return false; 907 908 Register BaseReg = BaseOp->getReg(); 909 910 MachineRegisterInfo &MRI = MF.getRegInfo(); 911 // Check if there is a Phi. If so, get the definition in the loop. 912 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 913 if (BaseDef && BaseDef->isPHI()) { 914 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 915 BaseDef = MRI.getVRegDef(BaseReg); 916 } 917 if (!BaseDef) 918 return false; 919 920 int D = 0; 921 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 922 return false; 923 924 Delta = D; 925 return true; 926 } 927 928 /// Update the memory operand with a new offset when the pipeliner 929 /// generates a new copy of the instruction that refers to a 930 /// different memory location. 931 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, 932 MachineInstr &OldMI, 933 unsigned Num) { 934 if (Num == 0) 935 return; 936 // If the instruction has memory operands, then adjust the offset 937 // when the instruction appears in different stages. 938 if (NewMI.memoperands_empty()) 939 return; 940 SmallVector<MachineMemOperand *, 2> NewMMOs; 941 for (MachineMemOperand *MMO : NewMI.memoperands()) { 942 // TODO: Figure out whether isAtomic is really necessary (see D57601). 943 if (MMO->isVolatile() || MMO->isAtomic() || 944 (MMO->isInvariant() && MMO->isDereferenceable()) || 945 (!MMO->getValue())) { 946 NewMMOs.push_back(MMO); 947 continue; 948 } 949 unsigned Delta; 950 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 951 int64_t AdjOffset = Delta * Num; 952 NewMMOs.push_back( 953 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 954 } else { 955 NewMMOs.push_back( 956 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); 957 } 958 } 959 NewMI.setMemRefs(MF, NewMMOs); 960 } 961 962 /// Clone the instruction for the new pipelined loop and update the 963 /// memory operands, if needed. 964 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, 965 unsigned CurStageNum, 966 unsigned InstStageNum) { 967 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 968 // Check for tied operands in inline asm instructions. This should be handled 969 // elsewhere, but I'm not sure of the best solution. 970 if (OldMI->isInlineAsm()) 971 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 972 const auto &MO = OldMI->getOperand(i); 973 if (MO.isReg() && MO.isUse()) 974 break; 975 unsigned UseIdx; 976 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 977 NewMI->tieOperands(i, UseIdx); 978 } 979 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 980 return NewMI; 981 } 982 983 /// Clone the instruction for the new pipelined loop. If needed, this 984 /// function updates the instruction using the values saved in the 985 /// InstrChanges structure. 986 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( 987 MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { 988 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 989 auto It = InstrChanges.find(OldMI); 990 if (It != InstrChanges.end()) { 991 std::pair<unsigned, int64_t> RegAndOffset = It->second; 992 unsigned BasePos, OffsetPos; 993 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 994 return nullptr; 995 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 996 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 997 if (Schedule.getStage(LoopDef) > (signed)InstStageNum) 998 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 999 NewMI->getOperand(OffsetPos).setImm(NewOffset); 1000 } 1001 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 1002 return NewMI; 1003 } 1004 1005 /// Update the machine instruction with new virtual registers. This 1006 /// function may change the definitions and/or uses. 1007 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, 1008 bool LastDef, 1009 unsigned CurStageNum, 1010 unsigned InstrStageNum, 1011 ValueMapTy *VRMap) { 1012 for (MachineOperand &MO : NewMI->operands()) { 1013 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 1014 continue; 1015 Register reg = MO.getReg(); 1016 if (MO.isDef()) { 1017 // Create a new virtual register for the definition. 1018 const TargetRegisterClass *RC = MRI.getRegClass(reg); 1019 Register NewReg = MRI.createVirtualRegister(RC); 1020 MO.setReg(NewReg); 1021 VRMap[CurStageNum][reg] = NewReg; 1022 if (LastDef) 1023 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 1024 } else if (MO.isUse()) { 1025 MachineInstr *Def = MRI.getVRegDef(reg); 1026 // Compute the stage that contains the last definition for instruction. 1027 int DefStageNum = Schedule.getStage(Def); 1028 unsigned StageNum = CurStageNum; 1029 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 1030 // Compute the difference in stages between the defintion and the use. 1031 unsigned StageDiff = (InstrStageNum - DefStageNum); 1032 // Make an adjustment to get the last definition. 1033 StageNum -= StageDiff; 1034 } 1035 if (VRMap[StageNum].count(reg)) 1036 MO.setReg(VRMap[StageNum][reg]); 1037 } 1038 } 1039 } 1040 1041 /// Return the instruction in the loop that defines the register. 1042 /// If the definition is a Phi, then follow the Phi operand to 1043 /// the instruction in the loop. 1044 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) { 1045 SmallPtrSet<MachineInstr *, 8> Visited; 1046 MachineInstr *Def = MRI.getVRegDef(Reg); 1047 while (Def->isPHI()) { 1048 if (!Visited.insert(Def).second) 1049 break; 1050 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 1051 if (Def->getOperand(i + 1).getMBB() == BB) { 1052 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 1053 break; 1054 } 1055 } 1056 return Def; 1057 } 1058 1059 /// Return the new name for the value from the previous stage. 1060 unsigned ModuloScheduleExpander::getPrevMapVal( 1061 unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, 1062 ValueMapTy *VRMap, MachineBasicBlock *BB) { 1063 unsigned PrevVal = 0; 1064 if (StageNum > PhiStage) { 1065 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 1066 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 1067 // The name is defined in the previous stage. 1068 PrevVal = VRMap[StageNum - 1][LoopVal]; 1069 else if (VRMap[StageNum].count(LoopVal)) 1070 // The previous name is defined in the current stage when the instruction 1071 // order is swapped. 1072 PrevVal = VRMap[StageNum][LoopVal]; 1073 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 1074 // The loop value hasn't yet been scheduled. 1075 PrevVal = LoopVal; 1076 else if (StageNum == PhiStage + 1) 1077 // The loop value is another phi, which has not been scheduled. 1078 PrevVal = getInitPhiReg(*LoopInst, BB); 1079 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 1080 // The loop value is another phi, which has been scheduled. 1081 PrevVal = 1082 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 1083 LoopStage, VRMap, BB); 1084 } 1085 return PrevVal; 1086 } 1087 1088 /// Rewrite the Phi values in the specified block to use the mappings 1089 /// from the initial operand. Once the Phi is scheduled, we switch 1090 /// to using the loop value instead of the Phi value, so those names 1091 /// do not need to be rewritten. 1092 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, 1093 unsigned StageNum, 1094 ValueMapTy *VRMap, 1095 InstrMapTy &InstrMap) { 1096 for (auto &PHI : BB->phis()) { 1097 unsigned InitVal = 0; 1098 unsigned LoopVal = 0; 1099 getPhiRegs(PHI, BB, InitVal, LoopVal); 1100 Register PhiDef = PHI.getOperand(0).getReg(); 1101 1102 unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef)); 1103 unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal)); 1104 unsigned NumPhis = getStagesForPhi(PhiDef); 1105 if (NumPhis > StageNum) 1106 NumPhis = StageNum; 1107 for (unsigned np = 0; np <= NumPhis; ++np) { 1108 unsigned NewVal = 1109 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 1110 if (!NewVal) 1111 NewVal = InitVal; 1112 rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef, 1113 NewVal); 1114 } 1115 } 1116 } 1117 1118 /// Rewrite a previously scheduled instruction to use the register value 1119 /// from the new instruction. Make sure the instruction occurs in the 1120 /// basic block, and we don't change the uses in the new instruction. 1121 void ModuloScheduleExpander::rewriteScheduledInstr( 1122 MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, 1123 unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, 1124 unsigned PrevReg) { 1125 bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); 1126 int StagePhi = Schedule.getStage(Phi) + PhiNum; 1127 // Rewrite uses that have been scheduled already to use the new 1128 // Phi register. 1129 for (MachineOperand &UseOp : 1130 llvm::make_early_inc_range(MRI.use_operands(OldReg))) { 1131 MachineInstr *UseMI = UseOp.getParent(); 1132 if (UseMI->getParent() != BB) 1133 continue; 1134 if (UseMI->isPHI()) { 1135 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 1136 continue; 1137 if (getLoopPhiReg(*UseMI, BB) != OldReg) 1138 continue; 1139 } 1140 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 1141 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 1142 MachineInstr *OrigMI = OrigInstr->second; 1143 int StageSched = Schedule.getStage(OrigMI); 1144 int CycleSched = Schedule.getCycle(OrigMI); 1145 unsigned ReplaceReg = 0; 1146 // This is the stage for the scheduled instruction. 1147 if (StagePhi == StageSched && Phi->isPHI()) { 1148 int CyclePhi = Schedule.getCycle(Phi); 1149 if (PrevReg && InProlog) 1150 ReplaceReg = PrevReg; 1151 else if (PrevReg && !isLoopCarried(*Phi) && 1152 (CyclePhi <= CycleSched || OrigMI->isPHI())) 1153 ReplaceReg = PrevReg; 1154 else 1155 ReplaceReg = NewReg; 1156 } 1157 // The scheduled instruction occurs before the scheduled Phi, and the 1158 // Phi is not loop carried. 1159 if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi)) 1160 ReplaceReg = NewReg; 1161 if (StagePhi > StageSched && Phi->isPHI()) 1162 ReplaceReg = NewReg; 1163 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 1164 ReplaceReg = NewReg; 1165 if (ReplaceReg) { 1166 const TargetRegisterClass *NRC = 1167 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 1168 if (NRC) 1169 UseOp.setReg(ReplaceReg); 1170 else { 1171 Register SplitReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 1172 BuildMI(*BB, UseMI, UseMI->getDebugLoc(), TII->get(TargetOpcode::COPY), 1173 SplitReg) 1174 .addReg(ReplaceReg); 1175 UseOp.setReg(SplitReg); 1176 } 1177 } 1178 } 1179 } 1180 1181 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { 1182 if (!Phi.isPHI()) 1183 return false; 1184 int DefCycle = Schedule.getCycle(&Phi); 1185 int DefStage = Schedule.getStage(&Phi); 1186 1187 unsigned InitVal = 0; 1188 unsigned LoopVal = 0; 1189 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 1190 MachineInstr *Use = MRI.getVRegDef(LoopVal); 1191 if (!Use || Use->isPHI()) 1192 return true; 1193 int LoopCycle = Schedule.getCycle(Use); 1194 int LoopStage = Schedule.getStage(Use); 1195 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 1196 } 1197 1198 //===----------------------------------------------------------------------===// 1199 // PeelingModuloScheduleExpander implementation 1200 //===----------------------------------------------------------------------===// 1201 // This is a reimplementation of ModuloScheduleExpander that works by creating 1202 // a fully correct steady-state kernel and peeling off the prolog and epilogs. 1203 //===----------------------------------------------------------------------===// 1204 1205 namespace { 1206 // Remove any dead phis in MBB. Dead phis either have only one block as input 1207 // (in which case they are the identity) or have no uses. 1208 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI, 1209 LiveIntervals *LIS, bool KeepSingleSrcPhi = false) { 1210 bool Changed = true; 1211 while (Changed) { 1212 Changed = false; 1213 for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) { 1214 assert(MI.isPHI()); 1215 if (MRI.use_empty(MI.getOperand(0).getReg())) { 1216 if (LIS) 1217 LIS->RemoveMachineInstrFromMaps(MI); 1218 MI.eraseFromParent(); 1219 Changed = true; 1220 } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) { 1221 const TargetRegisterClass *ConstrainRegClass = 1222 MRI.constrainRegClass(MI.getOperand(1).getReg(), 1223 MRI.getRegClass(MI.getOperand(0).getReg())); 1224 assert(ConstrainRegClass && 1225 "Expected a valid constrained register class!"); 1226 (void)ConstrainRegClass; 1227 MRI.replaceRegWith(MI.getOperand(0).getReg(), 1228 MI.getOperand(1).getReg()); 1229 if (LIS) 1230 LIS->RemoveMachineInstrFromMaps(MI); 1231 MI.eraseFromParent(); 1232 Changed = true; 1233 } 1234 } 1235 } 1236 } 1237 1238 /// Rewrites the kernel block in-place to adhere to the given schedule. 1239 /// KernelRewriter holds all of the state required to perform the rewriting. 1240 class KernelRewriter { 1241 ModuloSchedule &S; 1242 MachineBasicBlock *BB; 1243 MachineBasicBlock *PreheaderBB, *ExitBB; 1244 MachineRegisterInfo &MRI; 1245 const TargetInstrInfo *TII; 1246 LiveIntervals *LIS; 1247 1248 // Map from register class to canonical undef register for that class. 1249 DenseMap<const TargetRegisterClass *, Register> Undefs; 1250 // Map from <LoopReg, InitReg> to phi register for all created phis. Note that 1251 // this map is only used when InitReg is non-undef. 1252 DenseMap<std::pair<unsigned, unsigned>, Register> Phis; 1253 // Map from LoopReg to phi register where the InitReg is undef. 1254 DenseMap<Register, Register> UndefPhis; 1255 1256 // Reg is used by MI. Return the new register MI should use to adhere to the 1257 // schedule. Insert phis as necessary. 1258 Register remapUse(Register Reg, MachineInstr &MI); 1259 // Insert a phi that carries LoopReg from the loop body and InitReg otherwise. 1260 // If InitReg is not given it is chosen arbitrarily. It will either be undef 1261 // or will be chosen so as to share another phi. 1262 Register phi(Register LoopReg, Optional<Register> InitReg = {}, 1263 const TargetRegisterClass *RC = nullptr); 1264 // Create an undef register of the given register class. 1265 Register undef(const TargetRegisterClass *RC); 1266 1267 public: 1268 KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB, 1269 LiveIntervals *LIS = nullptr); 1270 void rewrite(); 1271 }; 1272 } // namespace 1273 1274 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S, 1275 MachineBasicBlock *LoopBB, LiveIntervals *LIS) 1276 : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()), 1277 ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()), 1278 TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) { 1279 PreheaderBB = *BB->pred_begin(); 1280 if (PreheaderBB == BB) 1281 PreheaderBB = *std::next(BB->pred_begin()); 1282 } 1283 1284 void KernelRewriter::rewrite() { 1285 // Rearrange the loop to be in schedule order. Note that the schedule may 1286 // contain instructions that are not owned by the loop block (InstrChanges and 1287 // friends), so we gracefully handle unowned instructions and delete any 1288 // instructions that weren't in the schedule. 1289 auto InsertPt = BB->getFirstTerminator(); 1290 MachineInstr *FirstMI = nullptr; 1291 for (MachineInstr *MI : S.getInstructions()) { 1292 if (MI->isPHI()) 1293 continue; 1294 if (MI->getParent()) 1295 MI->removeFromParent(); 1296 BB->insert(InsertPt, MI); 1297 if (!FirstMI) 1298 FirstMI = MI; 1299 } 1300 assert(FirstMI && "Failed to find first MI in schedule"); 1301 1302 // At this point all of the scheduled instructions are between FirstMI 1303 // and the end of the block. Kill from the first non-phi to FirstMI. 1304 for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) { 1305 if (LIS) 1306 LIS->RemoveMachineInstrFromMaps(*I); 1307 (I++)->eraseFromParent(); 1308 } 1309 1310 // Now remap every instruction in the loop. 1311 for (MachineInstr &MI : *BB) { 1312 if (MI.isPHI() || MI.isTerminator()) 1313 continue; 1314 for (MachineOperand &MO : MI.uses()) { 1315 if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit()) 1316 continue; 1317 Register Reg = remapUse(MO.getReg(), MI); 1318 MO.setReg(Reg); 1319 } 1320 } 1321 EliminateDeadPhis(BB, MRI, LIS); 1322 1323 // Ensure a phi exists for all instructions that are either referenced by 1324 // an illegal phi or by an instruction outside the loop. This allows us to 1325 // treat remaps of these values the same as "normal" values that come from 1326 // loop-carried phis. 1327 for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) { 1328 if (MI->isPHI()) { 1329 Register R = MI->getOperand(0).getReg(); 1330 phi(R); 1331 continue; 1332 } 1333 1334 for (MachineOperand &Def : MI->defs()) { 1335 for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) { 1336 if (MI.getParent() != BB) { 1337 phi(Def.getReg()); 1338 break; 1339 } 1340 } 1341 } 1342 } 1343 } 1344 1345 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) { 1346 MachineInstr *Producer = MRI.getUniqueVRegDef(Reg); 1347 if (!Producer) 1348 return Reg; 1349 1350 int ConsumerStage = S.getStage(&MI); 1351 if (!Producer->isPHI()) { 1352 // Non-phi producers are simple to remap. Insert as many phis as the 1353 // difference between the consumer and producer stages. 1354 if (Producer->getParent() != BB) 1355 // Producer was not inside the loop. Use the register as-is. 1356 return Reg; 1357 int ProducerStage = S.getStage(Producer); 1358 assert(ConsumerStage != -1 && 1359 "In-loop consumer should always be scheduled!"); 1360 assert(ConsumerStage >= ProducerStage); 1361 unsigned StageDiff = ConsumerStage - ProducerStage; 1362 1363 for (unsigned I = 0; I < StageDiff; ++I) 1364 Reg = phi(Reg); 1365 return Reg; 1366 } 1367 1368 // First, dive through the phi chain to find the defaults for the generated 1369 // phis. 1370 SmallVector<Optional<Register>, 4> Defaults; 1371 Register LoopReg = Reg; 1372 auto LoopProducer = Producer; 1373 while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) { 1374 LoopReg = getLoopPhiReg(*LoopProducer, BB); 1375 Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB)); 1376 LoopProducer = MRI.getUniqueVRegDef(LoopReg); 1377 assert(LoopProducer); 1378 } 1379 int LoopProducerStage = S.getStage(LoopProducer); 1380 1381 Optional<Register> IllegalPhiDefault; 1382 1383 if (LoopProducerStage == -1) { 1384 // Do nothing. 1385 } else if (LoopProducerStage > ConsumerStage) { 1386 // This schedule is only representable if ProducerStage == ConsumerStage+1. 1387 // In addition, Consumer's cycle must be scheduled after Producer in the 1388 // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP 1389 // functions. 1390 #ifndef NDEBUG // Silence unused variables in non-asserts mode. 1391 int LoopProducerCycle = S.getCycle(LoopProducer); 1392 int ConsumerCycle = S.getCycle(&MI); 1393 #endif 1394 assert(LoopProducerCycle <= ConsumerCycle); 1395 assert(LoopProducerStage == ConsumerStage + 1); 1396 // Peel off the first phi from Defaults and insert a phi between producer 1397 // and consumer. This phi will not be at the front of the block so we 1398 // consider it illegal. It will only exist during the rewrite process; it 1399 // needs to exist while we peel off prologs because these could take the 1400 // default value. After that we can replace all uses with the loop producer 1401 // value. 1402 IllegalPhiDefault = Defaults.front(); 1403 Defaults.erase(Defaults.begin()); 1404 } else { 1405 assert(ConsumerStage >= LoopProducerStage); 1406 int StageDiff = ConsumerStage - LoopProducerStage; 1407 if (StageDiff > 0) { 1408 LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size() 1409 << " to " << (Defaults.size() + StageDiff) << "\n"); 1410 // If we need more phis than we have defaults for, pad out with undefs for 1411 // the earliest phis, which are at the end of the defaults chain (the 1412 // chain is in reverse order). 1413 Defaults.resize(Defaults.size() + StageDiff, Defaults.empty() 1414 ? Optional<Register>() 1415 : Defaults.back()); 1416 } 1417 } 1418 1419 // Now we know the number of stages to jump back, insert the phi chain. 1420 auto DefaultI = Defaults.rbegin(); 1421 while (DefaultI != Defaults.rend()) 1422 LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg)); 1423 1424 if (IllegalPhiDefault) { 1425 // The consumer optionally consumes LoopProducer in the same iteration 1426 // (because the producer is scheduled at an earlier cycle than the consumer) 1427 // or the initial value. To facilitate this we create an illegal block here 1428 // by embedding a phi in the middle of the block. We will fix this up 1429 // immediately prior to pruning. 1430 auto RC = MRI.getRegClass(Reg); 1431 Register R = MRI.createVirtualRegister(RC); 1432 MachineInstr *IllegalPhi = 1433 BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1434 .addReg(*IllegalPhiDefault) 1435 .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect. 1436 .addReg(LoopReg) 1437 .addMBB(BB); // Block choice is arbitrary and has no effect. 1438 // Illegal phi should belong to the producer stage so that it can be 1439 // filtered correctly during peeling. 1440 S.setStage(IllegalPhi, LoopProducerStage); 1441 return R; 1442 } 1443 1444 return LoopReg; 1445 } 1446 1447 Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg, 1448 const TargetRegisterClass *RC) { 1449 // If the init register is not undef, try and find an existing phi. 1450 if (InitReg) { 1451 auto I = Phis.find({LoopReg, InitReg.value()}); 1452 if (I != Phis.end()) 1453 return I->second; 1454 } else { 1455 for (auto &KV : Phis) { 1456 if (KV.first.first == LoopReg) 1457 return KV.second; 1458 } 1459 } 1460 1461 // InitReg is either undef or no existing phi takes InitReg as input. Try and 1462 // find a phi that takes undef as input. 1463 auto I = UndefPhis.find(LoopReg); 1464 if (I != UndefPhis.end()) { 1465 Register R = I->second; 1466 if (!InitReg) 1467 // Found a phi taking undef as input, and this input is undef so return 1468 // without any more changes. 1469 return R; 1470 // Found a phi taking undef as input, so rewrite it to take InitReg. 1471 MachineInstr *MI = MRI.getVRegDef(R); 1472 MI->getOperand(1).setReg(InitReg.value()); 1473 Phis.insert({{LoopReg, InitReg.value()}, R}); 1474 const TargetRegisterClass *ConstrainRegClass = 1475 MRI.constrainRegClass(R, MRI.getRegClass(InitReg.value())); 1476 assert(ConstrainRegClass && "Expected a valid constrained register class!"); 1477 (void)ConstrainRegClass; 1478 UndefPhis.erase(I); 1479 return R; 1480 } 1481 1482 // Failed to find any existing phi to reuse, so create a new one. 1483 if (!RC) 1484 RC = MRI.getRegClass(LoopReg); 1485 Register R = MRI.createVirtualRegister(RC); 1486 if (InitReg) { 1487 const TargetRegisterClass *ConstrainRegClass = 1488 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); 1489 assert(ConstrainRegClass && "Expected a valid constrained register class!"); 1490 (void)ConstrainRegClass; 1491 } 1492 BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R) 1493 .addReg(InitReg ? *InitReg : undef(RC)) 1494 .addMBB(PreheaderBB) 1495 .addReg(LoopReg) 1496 .addMBB(BB); 1497 if (!InitReg) 1498 UndefPhis[LoopReg] = R; 1499 else 1500 Phis[{LoopReg, *InitReg}] = R; 1501 return R; 1502 } 1503 1504 Register KernelRewriter::undef(const TargetRegisterClass *RC) { 1505 Register &R = Undefs[RC]; 1506 if (R == 0) { 1507 // Create an IMPLICIT_DEF that defines this register if we need it. 1508 // All uses of this should be removed by the time we have finished unrolling 1509 // prologs and epilogs. 1510 R = MRI.createVirtualRegister(RC); 1511 auto *InsertBB = &PreheaderBB->getParent()->front(); 1512 BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(), 1513 TII->get(TargetOpcode::IMPLICIT_DEF), R); 1514 } 1515 return R; 1516 } 1517 1518 namespace { 1519 /// Describes an operand in the kernel of a pipelined loop. Characteristics of 1520 /// the operand are discovered, such as how many in-loop PHIs it has to jump 1521 /// through and defaults for these phis. 1522 class KernelOperandInfo { 1523 MachineBasicBlock *BB; 1524 MachineRegisterInfo &MRI; 1525 SmallVector<Register, 4> PhiDefaults; 1526 MachineOperand *Source; 1527 MachineOperand *Target; 1528 1529 public: 1530 KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI, 1531 const SmallPtrSetImpl<MachineInstr *> &IllegalPhis) 1532 : MRI(MRI) { 1533 Source = MO; 1534 BB = MO->getParent()->getParent(); 1535 while (isRegInLoop(MO)) { 1536 MachineInstr *MI = MRI.getVRegDef(MO->getReg()); 1537 if (MI->isFullCopy()) { 1538 MO = &MI->getOperand(1); 1539 continue; 1540 } 1541 if (!MI->isPHI()) 1542 break; 1543 // If this is an illegal phi, don't count it in distance. 1544 if (IllegalPhis.count(MI)) { 1545 MO = &MI->getOperand(3); 1546 continue; 1547 } 1548 1549 Register Default = getInitPhiReg(*MI, BB); 1550 MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1) 1551 : &MI->getOperand(3); 1552 PhiDefaults.push_back(Default); 1553 } 1554 Target = MO; 1555 } 1556 1557 bool operator==(const KernelOperandInfo &Other) const { 1558 return PhiDefaults.size() == Other.PhiDefaults.size(); 1559 } 1560 1561 void print(raw_ostream &OS) const { 1562 OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in " 1563 << *Source->getParent(); 1564 } 1565 1566 private: 1567 bool isRegInLoop(MachineOperand *MO) { 1568 return MO->isReg() && MO->getReg().isVirtual() && 1569 MRI.getVRegDef(MO->getReg())->getParent() == BB; 1570 } 1571 }; 1572 } // namespace 1573 1574 MachineBasicBlock * 1575 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) { 1576 MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII); 1577 if (LPD == LPD_Front) 1578 PeeledFront.push_back(NewBB); 1579 else 1580 PeeledBack.push_front(NewBB); 1581 for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator(); 1582 ++I, ++NI) { 1583 CanonicalMIs[&*I] = &*I; 1584 CanonicalMIs[&*NI] = &*I; 1585 BlockMIs[{NewBB, &*I}] = &*NI; 1586 BlockMIs[{BB, &*I}] = &*I; 1587 } 1588 return NewBB; 1589 } 1590 1591 void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB, 1592 int MinStage) { 1593 for (auto I = MB->getFirstInstrTerminator()->getReverseIterator(); 1594 I != std::next(MB->getFirstNonPHI()->getReverseIterator());) { 1595 MachineInstr *MI = &*I++; 1596 int Stage = getStage(MI); 1597 if (Stage == -1 || Stage >= MinStage) 1598 continue; 1599 1600 for (MachineOperand &DefMO : MI->defs()) { 1601 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1602 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1603 // Only PHIs can use values from this block by construction. 1604 // Match with the equivalent PHI in B. 1605 assert(UseMI.isPHI()); 1606 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1607 MI->getParent()); 1608 Subs.emplace_back(&UseMI, Reg); 1609 } 1610 for (auto &Sub : Subs) 1611 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1612 *MRI.getTargetRegisterInfo()); 1613 } 1614 if (LIS) 1615 LIS->RemoveMachineInstrFromMaps(*MI); 1616 MI->eraseFromParent(); 1617 } 1618 } 1619 1620 void PeelingModuloScheduleExpander::moveStageBetweenBlocks( 1621 MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) { 1622 auto InsertPt = DestBB->getFirstNonPHI(); 1623 DenseMap<Register, Register> Remaps; 1624 for (MachineInstr &MI : llvm::make_early_inc_range( 1625 llvm::make_range(SourceBB->getFirstNonPHI(), SourceBB->end()))) { 1626 if (MI.isPHI()) { 1627 // This is an illegal PHI. If we move any instructions using an illegal 1628 // PHI, we need to create a legal Phi. 1629 if (getStage(&MI) != Stage) { 1630 // The legal Phi is not necessary if the illegal phi's stage 1631 // is being moved. 1632 Register PhiR = MI.getOperand(0).getReg(); 1633 auto RC = MRI.getRegClass(PhiR); 1634 Register NR = MRI.createVirtualRegister(RC); 1635 MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(), 1636 DebugLoc(), TII->get(TargetOpcode::PHI), NR) 1637 .addReg(PhiR) 1638 .addMBB(SourceBB); 1639 BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI; 1640 CanonicalMIs[NI] = CanonicalMIs[&MI]; 1641 Remaps[PhiR] = NR; 1642 } 1643 } 1644 if (getStage(&MI) != Stage) 1645 continue; 1646 MI.removeFromParent(); 1647 DestBB->insert(InsertPt, &MI); 1648 auto *KernelMI = CanonicalMIs[&MI]; 1649 BlockMIs[{DestBB, KernelMI}] = &MI; 1650 BlockMIs.erase({SourceBB, KernelMI}); 1651 } 1652 SmallVector<MachineInstr *, 4> PhiToDelete; 1653 for (MachineInstr &MI : DestBB->phis()) { 1654 assert(MI.getNumOperands() == 3); 1655 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg()); 1656 // If the instruction referenced by the phi is moved inside the block 1657 // we don't need the phi anymore. 1658 if (getStage(Def) == Stage) { 1659 Register PhiReg = MI.getOperand(0).getReg(); 1660 assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1); 1661 MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 1662 MI.getOperand(0).setReg(PhiReg); 1663 PhiToDelete.push_back(&MI); 1664 } 1665 } 1666 for (auto *P : PhiToDelete) 1667 P->eraseFromParent(); 1668 InsertPt = DestBB->getFirstNonPHI(); 1669 // Helper to clone Phi instructions into the destination block. We clone Phi 1670 // greedily to avoid combinatorial explosion of Phi instructions. 1671 auto clonePhi = [&](MachineInstr *Phi) { 1672 MachineInstr *NewMI = MF.CloneMachineInstr(Phi); 1673 DestBB->insert(InsertPt, NewMI); 1674 Register OrigR = Phi->getOperand(0).getReg(); 1675 Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR)); 1676 NewMI->getOperand(0).setReg(R); 1677 NewMI->getOperand(1).setReg(OrigR); 1678 NewMI->getOperand(2).setMBB(*DestBB->pred_begin()); 1679 Remaps[OrigR] = R; 1680 CanonicalMIs[NewMI] = CanonicalMIs[Phi]; 1681 BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI; 1682 PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi]; 1683 return R; 1684 }; 1685 for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) { 1686 for (MachineOperand &MO : I->uses()) { 1687 if (!MO.isReg()) 1688 continue; 1689 if (Remaps.count(MO.getReg())) 1690 MO.setReg(Remaps[MO.getReg()]); 1691 else { 1692 // If we are using a phi from the source block we need to add a new phi 1693 // pointing to the old one. 1694 MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg()); 1695 if (Use && Use->isPHI() && Use->getParent() == SourceBB) { 1696 Register R = clonePhi(Use); 1697 MO.setReg(R); 1698 } 1699 } 1700 } 1701 } 1702 } 1703 1704 Register 1705 PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi, 1706 MachineInstr *Phi) { 1707 unsigned distance = PhiNodeLoopIteration[Phi]; 1708 MachineInstr *CanonicalUse = CanonicalPhi; 1709 Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg(); 1710 for (unsigned I = 0; I < distance; ++I) { 1711 assert(CanonicalUse->isPHI()); 1712 assert(CanonicalUse->getNumOperands() == 5); 1713 unsigned LoopRegIdx = 3, InitRegIdx = 1; 1714 if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent()) 1715 std::swap(LoopRegIdx, InitRegIdx); 1716 CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg(); 1717 CanonicalUse = MRI.getVRegDef(CanonicalUseReg); 1718 } 1719 return CanonicalUseReg; 1720 } 1721 1722 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() { 1723 BitVector LS(Schedule.getNumStages(), true); 1724 BitVector AS(Schedule.getNumStages(), true); 1725 LiveStages[BB] = LS; 1726 AvailableStages[BB] = AS; 1727 1728 // Peel out the prologs. 1729 LS.reset(); 1730 for (int I = 0; I < Schedule.getNumStages() - 1; ++I) { 1731 LS[I] = true; 1732 Prologs.push_back(peelKernel(LPD_Front)); 1733 LiveStages[Prologs.back()] = LS; 1734 AvailableStages[Prologs.back()] = LS; 1735 } 1736 1737 // Create a block that will end up as the new loop exiting block (dominated by 1738 // all prologs and epilogs). It will only contain PHIs, in the same order as 1739 // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property 1740 // that the exiting block is a (sub) clone of BB. This in turn gives us the 1741 // property that any value deffed in BB but used outside of BB is used by a 1742 // PHI in the exiting block. 1743 MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock(); 1744 EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1745 // Push out the epilogs, again in reverse order. 1746 // We can't assume anything about the minumum loop trip count at this point, 1747 // so emit a fairly complex epilog. 1748 1749 // We first peel number of stages minus one epilogue. Then we remove dead 1750 // stages and reorder instructions based on their stage. If we have 3 stages 1751 // we generate first: 1752 // E0[3, 2, 1] 1753 // E1[3', 2'] 1754 // E2[3''] 1755 // And then we move instructions based on their stages to have: 1756 // E0[3] 1757 // E1[2, 3'] 1758 // E2[1, 2', 3''] 1759 // The transformation is legal because we only move instructions past 1760 // instructions of a previous loop iteration. 1761 for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) { 1762 Epilogs.push_back(peelKernel(LPD_Back)); 1763 MachineBasicBlock *B = Epilogs.back(); 1764 filterInstructions(B, Schedule.getNumStages() - I); 1765 // Keep track at which iteration each phi belongs to. We need it to know 1766 // what version of the variable to use during prologue/epilogue stitching. 1767 EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1768 for (MachineInstr &Phi : B->phis()) 1769 PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I; 1770 } 1771 for (size_t I = 0; I < Epilogs.size(); I++) { 1772 LS.reset(); 1773 for (size_t J = I; J < Epilogs.size(); J++) { 1774 int Iteration = J; 1775 unsigned Stage = Schedule.getNumStages() - 1 + I - J; 1776 // Move stage one block at a time so that Phi nodes are updated correctly. 1777 for (size_t K = Iteration; K > I; K--) 1778 moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage); 1779 LS[Stage] = true; 1780 } 1781 LiveStages[Epilogs[I]] = LS; 1782 AvailableStages[Epilogs[I]] = AS; 1783 } 1784 1785 // Now we've defined all the prolog and epilog blocks as a fallthrough 1786 // sequence, add the edges that will be followed if the loop trip count is 1787 // lower than the number of stages (connecting prologs directly with epilogs). 1788 auto PI = Prologs.begin(); 1789 auto EI = Epilogs.begin(); 1790 assert(Prologs.size() == Epilogs.size()); 1791 for (; PI != Prologs.end(); ++PI, ++EI) { 1792 MachineBasicBlock *Pred = *(*EI)->pred_begin(); 1793 (*PI)->addSuccessor(*EI); 1794 for (MachineInstr &MI : (*EI)->phis()) { 1795 Register Reg = MI.getOperand(1).getReg(); 1796 MachineInstr *Use = MRI.getUniqueVRegDef(Reg); 1797 if (Use && Use->getParent() == Pred) { 1798 MachineInstr *CanonicalUse = CanonicalMIs[Use]; 1799 if (CanonicalUse->isPHI()) { 1800 // If the use comes from a phi we need to skip as many phi as the 1801 // distance between the epilogue and the kernel. Trace through the phi 1802 // chain to find the right value. 1803 Reg = getPhiCanonicalReg(CanonicalUse, Use); 1804 } 1805 Reg = getEquivalentRegisterIn(Reg, *PI); 1806 } 1807 MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 1808 MI.addOperand(MachineOperand::CreateMBB(*PI)); 1809 } 1810 } 1811 1812 // Create a list of all blocks in order. 1813 SmallVector<MachineBasicBlock *, 8> Blocks; 1814 llvm::copy(PeeledFront, std::back_inserter(Blocks)); 1815 Blocks.push_back(BB); 1816 llvm::copy(PeeledBack, std::back_inserter(Blocks)); 1817 1818 // Iterate in reverse order over all instructions, remapping as we go. 1819 for (MachineBasicBlock *B : reverse(Blocks)) { 1820 for (auto I = B->instr_rbegin(); 1821 I != std::next(B->getFirstNonPHI()->getReverseIterator());) { 1822 MachineBasicBlock::reverse_instr_iterator MI = I++; 1823 rewriteUsesOf(&*MI); 1824 } 1825 } 1826 for (auto *MI : IllegalPhisToDelete) { 1827 if (LIS) 1828 LIS->RemoveMachineInstrFromMaps(*MI); 1829 MI->eraseFromParent(); 1830 } 1831 IllegalPhisToDelete.clear(); 1832 1833 // Now all remapping has been done, we're free to optimize the generated code. 1834 for (MachineBasicBlock *B : reverse(Blocks)) 1835 EliminateDeadPhis(B, MRI, LIS); 1836 EliminateDeadPhis(ExitingBB, MRI, LIS); 1837 } 1838 1839 MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() { 1840 MachineFunction &MF = *BB->getParent(); 1841 MachineBasicBlock *Exit = *BB->succ_begin(); 1842 if (Exit == BB) 1843 Exit = *std::next(BB->succ_begin()); 1844 1845 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 1846 MF.insert(std::next(BB->getIterator()), NewBB); 1847 1848 // Clone all phis in BB into NewBB and rewrite. 1849 for (MachineInstr &MI : BB->phis()) { 1850 auto RC = MRI.getRegClass(MI.getOperand(0).getReg()); 1851 Register OldR = MI.getOperand(3).getReg(); 1852 Register R = MRI.createVirtualRegister(RC); 1853 SmallVector<MachineInstr *, 4> Uses; 1854 for (MachineInstr &Use : MRI.use_instructions(OldR)) 1855 if (Use.getParent() != BB) 1856 Uses.push_back(&Use); 1857 for (MachineInstr *Use : Uses) 1858 Use->substituteRegister(OldR, R, /*SubIdx=*/0, 1859 *MRI.getTargetRegisterInfo()); 1860 MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R) 1861 .addReg(OldR) 1862 .addMBB(BB); 1863 BlockMIs[{NewBB, &MI}] = NI; 1864 CanonicalMIs[NI] = &MI; 1865 } 1866 BB->replaceSuccessor(Exit, NewBB); 1867 Exit->replacePhiUsesWith(BB, NewBB); 1868 NewBB->addSuccessor(Exit); 1869 1870 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1871 SmallVector<MachineOperand, 4> Cond; 1872 bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond); 1873 (void)CanAnalyzeBr; 1874 assert(CanAnalyzeBr && "Must be able to analyze the loop branch!"); 1875 TII->removeBranch(*BB); 1876 TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB, 1877 Cond, DebugLoc()); 1878 TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc()); 1879 return NewBB; 1880 } 1881 1882 Register 1883 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg, 1884 MachineBasicBlock *BB) { 1885 MachineInstr *MI = MRI.getUniqueVRegDef(Reg); 1886 unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg); 1887 return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg(); 1888 } 1889 1890 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) { 1891 if (MI->isPHI()) { 1892 // This is an illegal PHI. The loop-carried (desired) value is operand 3, 1893 // and it is produced by this block. 1894 Register PhiR = MI->getOperand(0).getReg(); 1895 Register R = MI->getOperand(3).getReg(); 1896 int RMIStage = getStage(MRI.getUniqueVRegDef(R)); 1897 if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage)) 1898 R = MI->getOperand(1).getReg(); 1899 MRI.setRegClass(R, MRI.getRegClass(PhiR)); 1900 MRI.replaceRegWith(PhiR, R); 1901 // Postpone deleting the Phi as it may be referenced by BlockMIs and used 1902 // later to figure out how to remap registers. 1903 MI->getOperand(0).setReg(PhiR); 1904 IllegalPhisToDelete.push_back(MI); 1905 return; 1906 } 1907 1908 int Stage = getStage(MI); 1909 if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 || 1910 LiveStages[MI->getParent()].test(Stage)) 1911 // Instruction is live, no rewriting to do. 1912 return; 1913 1914 for (MachineOperand &DefMO : MI->defs()) { 1915 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1916 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1917 // Only PHIs can use values from this block by construction. 1918 // Match with the equivalent PHI in B. 1919 assert(UseMI.isPHI()); 1920 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1921 MI->getParent()); 1922 Subs.emplace_back(&UseMI, Reg); 1923 } 1924 for (auto &Sub : Subs) 1925 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1926 *MRI.getTargetRegisterInfo()); 1927 } 1928 if (LIS) 1929 LIS->RemoveMachineInstrFromMaps(*MI); 1930 MI->eraseFromParent(); 1931 } 1932 1933 void PeelingModuloScheduleExpander::fixupBranches() { 1934 // Work outwards from the kernel. 1935 bool KernelDisposed = false; 1936 int TC = Schedule.getNumStages() - 1; 1937 for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend(); 1938 ++PI, ++EI, --TC) { 1939 MachineBasicBlock *Prolog = *PI; 1940 MachineBasicBlock *Fallthrough = *Prolog->succ_begin(); 1941 MachineBasicBlock *Epilog = *EI; 1942 SmallVector<MachineOperand, 4> Cond; 1943 TII->removeBranch(*Prolog); 1944 Optional<bool> StaticallyGreater = 1945 LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond); 1946 if (!StaticallyGreater) { 1947 LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n"); 1948 // Dynamically branch based on Cond. 1949 TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc()); 1950 } else if (*StaticallyGreater == false) { 1951 LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n"); 1952 // Prolog never falls through; branch to epilog and orphan interior 1953 // blocks. Leave it to unreachable-block-elim to clean up. 1954 Prolog->removeSuccessor(Fallthrough); 1955 for (MachineInstr &P : Fallthrough->phis()) { 1956 P.removeOperand(2); 1957 P.removeOperand(1); 1958 } 1959 TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc()); 1960 KernelDisposed = true; 1961 } else { 1962 LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n"); 1963 // Prolog always falls through; remove incoming values in epilog. 1964 Prolog->removeSuccessor(Epilog); 1965 for (MachineInstr &P : Epilog->phis()) { 1966 P.removeOperand(4); 1967 P.removeOperand(3); 1968 } 1969 } 1970 } 1971 1972 if (!KernelDisposed) { 1973 LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1)); 1974 LoopInfo->setPreheader(Prologs.back()); 1975 } else { 1976 LoopInfo->disposed(); 1977 } 1978 } 1979 1980 void PeelingModuloScheduleExpander::rewriteKernel() { 1981 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 1982 KR.rewrite(); 1983 } 1984 1985 void PeelingModuloScheduleExpander::expand() { 1986 BB = Schedule.getLoop()->getTopBlock(); 1987 Preheader = Schedule.getLoop()->getLoopPreheader(); 1988 LLVM_DEBUG(Schedule.dump()); 1989 LoopInfo = TII->analyzeLoopForPipelining(BB); 1990 assert(LoopInfo); 1991 1992 rewriteKernel(); 1993 peelPrologAndEpilogs(); 1994 fixupBranches(); 1995 } 1996 1997 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() { 1998 BB = Schedule.getLoop()->getTopBlock(); 1999 Preheader = Schedule.getLoop()->getLoopPreheader(); 2000 2001 // Dump the schedule before we invalidate and remap all its instructions. 2002 // Stash it in a string so we can print it if we found an error. 2003 std::string ScheduleDump; 2004 raw_string_ostream OS(ScheduleDump); 2005 Schedule.print(OS); 2006 OS.flush(); 2007 2008 // First, run the normal ModuleScheduleExpander. We don't support any 2009 // InstrChanges. 2010 assert(LIS && "Requires LiveIntervals!"); 2011 ModuloScheduleExpander MSE(MF, Schedule, *LIS, 2012 ModuloScheduleExpander::InstrChangesTy()); 2013 MSE.expand(); 2014 MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel(); 2015 if (!ExpandedKernel) { 2016 // The expander optimized away the kernel. We can't do any useful checking. 2017 MSE.cleanup(); 2018 return; 2019 } 2020 // Before running the KernelRewriter, re-add BB into the CFG. 2021 Preheader->addSuccessor(BB); 2022 2023 // Now run the new expansion algorithm. 2024 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 2025 KR.rewrite(); 2026 peelPrologAndEpilogs(); 2027 2028 // Collect all illegal phis that the new algorithm created. We'll give these 2029 // to KernelOperandInfo. 2030 SmallPtrSet<MachineInstr *, 4> IllegalPhis; 2031 for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) { 2032 if (NI->isPHI()) 2033 IllegalPhis.insert(&*NI); 2034 } 2035 2036 // Co-iterate across both kernels. We expect them to be identical apart from 2037 // phis and full COPYs (we look through both). 2038 SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs; 2039 auto OI = ExpandedKernel->begin(); 2040 auto NI = BB->begin(); 2041 for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) { 2042 while (OI->isPHI() || OI->isFullCopy()) 2043 ++OI; 2044 while (NI->isPHI() || NI->isFullCopy()) 2045 ++NI; 2046 assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!"); 2047 // Analyze every operand separately. 2048 for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin(); 2049 OOpI != OI->operands_end(); ++OOpI, ++NOpI) 2050 KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis), 2051 KernelOperandInfo(&*NOpI, MRI, IllegalPhis)); 2052 } 2053 2054 bool Failed = false; 2055 for (auto &OldAndNew : KOIs) { 2056 if (OldAndNew.first == OldAndNew.second) 2057 continue; 2058 Failed = true; 2059 errs() << "Modulo kernel validation error: [\n"; 2060 errs() << " [golden] "; 2061 OldAndNew.first.print(errs()); 2062 errs() << " "; 2063 OldAndNew.second.print(errs()); 2064 errs() << "]\n"; 2065 } 2066 2067 if (Failed) { 2068 errs() << "Golden reference kernel:\n"; 2069 ExpandedKernel->print(errs()); 2070 errs() << "New kernel:\n"; 2071 BB->print(errs()); 2072 errs() << ScheduleDump; 2073 report_fatal_error( 2074 "Modulo kernel validation (-pipeliner-experimental-cg) failed"); 2075 } 2076 2077 // Cleanup by removing BB from the CFG again as the original 2078 // ModuloScheduleExpander intended. 2079 Preheader->removeSuccessor(BB); 2080 MSE.cleanup(); 2081 } 2082 2083 //===----------------------------------------------------------------------===// 2084 // ModuloScheduleTestPass implementation 2085 //===----------------------------------------------------------------------===// 2086 // This pass constructs a ModuloSchedule from its module and runs 2087 // ModuloScheduleExpander. 2088 // 2089 // The module is expected to contain a single-block analyzable loop. 2090 // The total order of instructions is taken from the loop as-is. 2091 // Instructions are expected to be annotated with a PostInstrSymbol. 2092 // This PostInstrSymbol must have the following format: 2093 // "Stage=%d Cycle=%d". 2094 //===----------------------------------------------------------------------===// 2095 2096 namespace { 2097 class ModuloScheduleTest : public MachineFunctionPass { 2098 public: 2099 static char ID; 2100 2101 ModuloScheduleTest() : MachineFunctionPass(ID) { 2102 initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); 2103 } 2104 2105 bool runOnMachineFunction(MachineFunction &MF) override; 2106 void runOnLoop(MachineFunction &MF, MachineLoop &L); 2107 2108 void getAnalysisUsage(AnalysisUsage &AU) const override { 2109 AU.addRequired<MachineLoopInfo>(); 2110 AU.addRequired<LiveIntervals>(); 2111 MachineFunctionPass::getAnalysisUsage(AU); 2112 } 2113 }; 2114 } // namespace 2115 2116 char ModuloScheduleTest::ID = 0; 2117 2118 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test", 2119 "Modulo Schedule test pass", false, false) 2120 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 2121 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 2122 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test", 2123 "Modulo Schedule test pass", false, false) 2124 2125 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { 2126 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 2127 for (auto *L : MLI) { 2128 if (L->getTopBlock() != L->getBottomBlock()) 2129 continue; 2130 runOnLoop(MF, *L); 2131 return false; 2132 } 2133 return false; 2134 } 2135 2136 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { 2137 std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_"); 2138 std::pair<StringRef, StringRef> StageTokenAndValue = 2139 getToken(StageAndCycle.first, "-"); 2140 std::pair<StringRef, StringRef> CycleTokenAndValue = 2141 getToken(StageAndCycle.second, "-"); 2142 if (StageTokenAndValue.first != "Stage" || 2143 CycleTokenAndValue.first != "_Cycle") { 2144 llvm_unreachable( 2145 "Bad post-instr symbol syntax: see comment in ModuloScheduleTest"); 2146 return; 2147 } 2148 2149 StageTokenAndValue.second.drop_front().getAsInteger(10, Stage); 2150 CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle); 2151 2152 dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n"; 2153 } 2154 2155 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { 2156 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 2157 MachineBasicBlock *BB = L.getTopBlock(); 2158 dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n"; 2159 2160 DenseMap<MachineInstr *, int> Cycle, Stage; 2161 std::vector<MachineInstr *> Instrs; 2162 for (MachineInstr &MI : *BB) { 2163 if (MI.isTerminator()) 2164 continue; 2165 Instrs.push_back(&MI); 2166 if (MCSymbol *Sym = MI.getPostInstrSymbol()) { 2167 dbgs() << "Parsing post-instr symbol for " << MI; 2168 parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]); 2169 } 2170 } 2171 2172 ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), 2173 std::move(Stage)); 2174 ModuloScheduleExpander MSE( 2175 MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); 2176 MSE.expand(); 2177 MSE.cleanup(); 2178 } 2179 2180 //===----------------------------------------------------------------------===// 2181 // ModuloScheduleTestAnnotater implementation 2182 //===----------------------------------------------------------------------===// 2183 2184 void ModuloScheduleTestAnnotater::annotate() { 2185 for (MachineInstr *MI : S.getInstructions()) { 2186 SmallVector<char, 16> SV; 2187 raw_svector_ostream OS(SV); 2188 OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); 2189 MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str()); 2190 MI->setPostInstrSymbol(MF, Sym); 2191 } 2192 } 2193