xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/ModuloSchedule.cpp (revision 01f3f35447b0a43b37ecc71ebb9296aad123cd43)
1  //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  
9  #include "llvm/CodeGen/ModuloSchedule.h"
10  #include "llvm/ADT/StringExtras.h"
11  #include "llvm/Analysis/MemoryLocation.h"
12  #include "llvm/CodeGen/LiveIntervals.h"
13  #include "llvm/CodeGen/MachineInstrBuilder.h"
14  #include "llvm/CodeGen/MachineLoopUtils.h"
15  #include "llvm/CodeGen/MachineRegisterInfo.h"
16  #include "llvm/CodeGen/TargetInstrInfo.h"
17  #include "llvm/InitializePasses.h"
18  #include "llvm/MC/MCContext.h"
19  #include "llvm/Support/Debug.h"
20  #include "llvm/Support/ErrorHandling.h"
21  #include "llvm/Support/raw_ostream.h"
22  
23  #define DEBUG_TYPE "pipeliner"
24  using namespace llvm;
25  
26  void ModuloSchedule::print(raw_ostream &OS) {
27    for (MachineInstr *MI : ScheduledInstrs)
28      OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
29  }
30  
31  //===----------------------------------------------------------------------===//
32  // ModuloScheduleExpander implementation
33  //===----------------------------------------------------------------------===//
34  
35  /// Return the register values for  the operands of a Phi instruction.
36  /// This function assume the instruction is a Phi.
37  static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
38                         unsigned &InitVal, unsigned &LoopVal) {
39    assert(Phi.isPHI() && "Expecting a Phi.");
40  
41    InitVal = 0;
42    LoopVal = 0;
43    for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
44      if (Phi.getOperand(i + 1).getMBB() != Loop)
45        InitVal = Phi.getOperand(i).getReg();
46      else
47        LoopVal = Phi.getOperand(i).getReg();
48  
49    assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
50  }
51  
52  /// Return the Phi register value that comes from the incoming block.
53  static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
54    for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
55      if (Phi.getOperand(i + 1).getMBB() != LoopBB)
56        return Phi.getOperand(i).getReg();
57    return 0;
58  }
59  
60  /// Return the Phi register value that comes the loop block.
61  static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
62    for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
63      if (Phi.getOperand(i + 1).getMBB() == LoopBB)
64        return Phi.getOperand(i).getReg();
65    return 0;
66  }
67  
68  void ModuloScheduleExpander::expand() {
69    BB = Schedule.getLoop()->getTopBlock();
70    Preheader = *BB->pred_begin();
71    if (Preheader == BB)
72      Preheader = *std::next(BB->pred_begin());
73  
74    // Iterate over the definitions in each instruction, and compute the
75    // stage difference for each use.  Keep the maximum value.
76    for (MachineInstr *MI : Schedule.getInstructions()) {
77      int DefStage = Schedule.getStage(MI);
78      for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
79        MachineOperand &Op = MI->getOperand(i);
80        if (!Op.isReg() || !Op.isDef())
81          continue;
82  
83        Register Reg = Op.getReg();
84        unsigned MaxDiff = 0;
85        bool PhiIsSwapped = false;
86        for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
87                                               EI = MRI.use_end();
88             UI != EI; ++UI) {
89          MachineOperand &UseOp = *UI;
90          MachineInstr *UseMI = UseOp.getParent();
91          int UseStage = Schedule.getStage(UseMI);
92          unsigned Diff = 0;
93          if (UseStage != -1 && UseStage >= DefStage)
94            Diff = UseStage - DefStage;
95          if (MI->isPHI()) {
96            if (isLoopCarried(*MI))
97              ++Diff;
98            else
99              PhiIsSwapped = true;
100          }
101          MaxDiff = std::max(Diff, MaxDiff);
102        }
103        RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
104      }
105    }
106  
107    generatePipelinedLoop();
108  }
109  
110  void ModuloScheduleExpander::generatePipelinedLoop() {
111    LoopInfo = TII->analyzeLoopForPipelining(BB);
112    assert(LoopInfo && "Must be able to analyze loop!");
113  
114    // Create a new basic block for the kernel and add it to the CFG.
115    MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
116  
117    unsigned MaxStageCount = Schedule.getNumStages() - 1;
118  
119    // Remember the registers that are used in different stages. The index is
120    // the iteration, or stage, that the instruction is scheduled in.  This is
121    // a map between register names in the original block and the names created
122    // in each stage of the pipelined loop.
123    ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
124    InstrMapTy InstrMap;
125  
126    SmallVector<MachineBasicBlock *, 4> PrologBBs;
127  
128    // Generate the prolog instructions that set up the pipeline.
129    generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
130    MF.insert(BB->getIterator(), KernelBB);
131  
132    // Rearrange the instructions to generate the new, pipelined loop,
133    // and update register names as needed.
134    for (MachineInstr *CI : Schedule.getInstructions()) {
135      if (CI->isPHI())
136        continue;
137      unsigned StageNum = Schedule.getStage(CI);
138      MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
139      updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
140      KernelBB->push_back(NewMI);
141      InstrMap[NewMI] = CI;
142    }
143  
144    // Copy any terminator instructions to the new kernel, and update
145    // names as needed.
146    for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
147                                     E = BB->instr_end();
148         I != E; ++I) {
149      MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
150      updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
151      KernelBB->push_back(NewMI);
152      InstrMap[NewMI] = &*I;
153    }
154  
155    NewKernel = KernelBB;
156    KernelBB->transferSuccessors(BB);
157    KernelBB->replaceSuccessor(BB, KernelBB);
158  
159    generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
160                         InstrMap, MaxStageCount, MaxStageCount, false);
161    generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap,
162                 MaxStageCount, MaxStageCount, false);
163  
164    LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
165  
166    SmallVector<MachineBasicBlock *, 4> EpilogBBs;
167    // Generate the epilog instructions to complete the pipeline.
168    generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs);
169  
170    // We need this step because the register allocation doesn't handle some
171    // situations well, so we insert copies to help out.
172    splitLifetimes(KernelBB, EpilogBBs);
173  
174    // Remove dead instructions due to loop induction variables.
175    removeDeadInstructions(KernelBB, EpilogBBs);
176  
177    // Add branches between prolog and epilog blocks.
178    addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
179  
180    delete[] VRMap;
181  }
182  
183  void ModuloScheduleExpander::cleanup() {
184    // Remove the original loop since it's no longer referenced.
185    for (auto &I : *BB)
186      LIS.RemoveMachineInstrFromMaps(I);
187    BB->clear();
188    BB->eraseFromParent();
189  }
190  
191  /// Generate the pipeline prolog code.
192  void ModuloScheduleExpander::generateProlog(unsigned LastStage,
193                                              MachineBasicBlock *KernelBB,
194                                              ValueMapTy *VRMap,
195                                              MBBVectorTy &PrologBBs) {
196    MachineBasicBlock *PredBB = Preheader;
197    InstrMapTy InstrMap;
198  
199    // Generate a basic block for each stage, not including the last stage,
200    // which will be generated in the kernel. Each basic block may contain
201    // instructions from multiple stages/iterations.
202    for (unsigned i = 0; i < LastStage; ++i) {
203      // Create and insert the prolog basic block prior to the original loop
204      // basic block.  The original loop is removed later.
205      MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
206      PrologBBs.push_back(NewBB);
207      MF.insert(BB->getIterator(), NewBB);
208      NewBB->transferSuccessors(PredBB);
209      PredBB->addSuccessor(NewBB);
210      PredBB = NewBB;
211  
212      // Generate instructions for each appropriate stage. Process instructions
213      // in original program order.
214      for (int StageNum = i; StageNum >= 0; --StageNum) {
215        for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
216                                         BBE = BB->getFirstTerminator();
217             BBI != BBE; ++BBI) {
218          if (Schedule.getStage(&*BBI) == StageNum) {
219            if (BBI->isPHI())
220              continue;
221            MachineInstr *NewMI =
222                cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
223            updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
224            NewBB->push_back(NewMI);
225            InstrMap[NewMI] = &*BBI;
226          }
227        }
228      }
229      rewritePhiValues(NewBB, i, VRMap, InstrMap);
230      LLVM_DEBUG({
231        dbgs() << "prolog:\n";
232        NewBB->dump();
233      });
234    }
235  
236    PredBB->replaceSuccessor(BB, KernelBB);
237  
238    // Check if we need to remove the branch from the preheader to the original
239    // loop, and replace it with a branch to the new loop.
240    unsigned numBranches = TII->removeBranch(*Preheader);
241    if (numBranches) {
242      SmallVector<MachineOperand, 0> Cond;
243      TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
244    }
245  }
246  
247  /// Generate the pipeline epilog code. The epilog code finishes the iterations
248  /// that were started in either the prolog or the kernel.  We create a basic
249  /// block for each stage that needs to complete.
250  void ModuloScheduleExpander::generateEpilog(unsigned LastStage,
251                                              MachineBasicBlock *KernelBB,
252                                              ValueMapTy *VRMap,
253                                              MBBVectorTy &EpilogBBs,
254                                              MBBVectorTy &PrologBBs) {
255    // We need to change the branch from the kernel to the first epilog block, so
256    // this call to analyze branch uses the kernel rather than the original BB.
257    MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
258    SmallVector<MachineOperand, 4> Cond;
259    bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
260    assert(!checkBranch && "generateEpilog must be able to analyze the branch");
261    if (checkBranch)
262      return;
263  
264    MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
265    if (*LoopExitI == KernelBB)
266      ++LoopExitI;
267    assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
268    MachineBasicBlock *LoopExitBB = *LoopExitI;
269  
270    MachineBasicBlock *PredBB = KernelBB;
271    MachineBasicBlock *EpilogStart = LoopExitBB;
272    InstrMapTy InstrMap;
273  
274    // Generate a basic block for each stage, not including the last stage,
275    // which was generated for the kernel.  Each basic block may contain
276    // instructions from multiple stages/iterations.
277    int EpilogStage = LastStage + 1;
278    for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
279      MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
280      EpilogBBs.push_back(NewBB);
281      MF.insert(BB->getIterator(), NewBB);
282  
283      PredBB->replaceSuccessor(LoopExitBB, NewBB);
284      NewBB->addSuccessor(LoopExitBB);
285  
286      if (EpilogStart == LoopExitBB)
287        EpilogStart = NewBB;
288  
289      // Add instructions to the epilog depending on the current block.
290      // Process instructions in original program order.
291      for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
292        for (auto &BBI : *BB) {
293          if (BBI.isPHI())
294            continue;
295          MachineInstr *In = &BBI;
296          if ((unsigned)Schedule.getStage(In) == StageNum) {
297            // Instructions with memoperands in the epilog are updated with
298            // conservative values.
299            MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
300            updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
301            NewBB->push_back(NewMI);
302            InstrMap[NewMI] = In;
303          }
304        }
305      }
306      generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
307                           InstrMap, LastStage, EpilogStage, i == 1);
308      generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap,
309                   LastStage, EpilogStage, i == 1);
310      PredBB = NewBB;
311  
312      LLVM_DEBUG({
313        dbgs() << "epilog:\n";
314        NewBB->dump();
315      });
316    }
317  
318    // Fix any Phi nodes in the loop exit block.
319    LoopExitBB->replacePhiUsesWith(BB, PredBB);
320  
321    // Create a branch to the new epilog from the kernel.
322    // Remove the original branch and add a new branch to the epilog.
323    TII->removeBranch(*KernelBB);
324    TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
325    // Add a branch to the loop exit.
326    if (EpilogBBs.size() > 0) {
327      MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
328      SmallVector<MachineOperand, 4> Cond1;
329      TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
330    }
331  }
332  
333  /// Replace all uses of FromReg that appear outside the specified
334  /// basic block with ToReg.
335  static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
336                                      MachineBasicBlock *MBB,
337                                      MachineRegisterInfo &MRI,
338                                      LiveIntervals &LIS) {
339    for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
340                                           E = MRI.use_end();
341         I != E;) {
342      MachineOperand &O = *I;
343      ++I;
344      if (O.getParent()->getParent() != MBB)
345        O.setReg(ToReg);
346    }
347    if (!LIS.hasInterval(ToReg))
348      LIS.createEmptyInterval(ToReg);
349  }
350  
351  /// Return true if the register has a use that occurs outside the
352  /// specified loop.
353  static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
354                              MachineRegisterInfo &MRI) {
355    for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
356                                           E = MRI.use_end();
357         I != E; ++I)
358      if (I->getParent()->getParent() != BB)
359        return true;
360    return false;
361  }
362  
363  /// Generate Phis for the specific block in the generated pipelined code.
364  /// This function looks at the Phis from the original code to guide the
365  /// creation of new Phis.
366  void ModuloScheduleExpander::generateExistingPhis(
367      MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
368      MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
369      unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
370    // Compute the stage number for the initial value of the Phi, which
371    // comes from the prolog. The prolog to use depends on to which kernel/
372    // epilog that we're adding the Phi.
373    unsigned PrologStage = 0;
374    unsigned PrevStage = 0;
375    bool InKernel = (LastStageNum == CurStageNum);
376    if (InKernel) {
377      PrologStage = LastStageNum - 1;
378      PrevStage = CurStageNum;
379    } else {
380      PrologStage = LastStageNum - (CurStageNum - LastStageNum);
381      PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
382    }
383  
384    for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
385                                     BBE = BB->getFirstNonPHI();
386         BBI != BBE; ++BBI) {
387      Register Def = BBI->getOperand(0).getReg();
388  
389      unsigned InitVal = 0;
390      unsigned LoopVal = 0;
391      getPhiRegs(*BBI, BB, InitVal, LoopVal);
392  
393      unsigned PhiOp1 = 0;
394      // The Phi value from the loop body typically is defined in the loop, but
395      // not always. So, we need to check if the value is defined in the loop.
396      unsigned PhiOp2 = LoopVal;
397      if (VRMap[LastStageNum].count(LoopVal))
398        PhiOp2 = VRMap[LastStageNum][LoopVal];
399  
400      int StageScheduled = Schedule.getStage(&*BBI);
401      int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
402      unsigned NumStages = getStagesForReg(Def, CurStageNum);
403      if (NumStages == 0) {
404        // We don't need to generate a Phi anymore, but we need to rename any uses
405        // of the Phi value.
406        unsigned NewReg = VRMap[PrevStage][LoopVal];
407        rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
408                              InitVal, NewReg);
409        if (VRMap[CurStageNum].count(LoopVal))
410          VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
411      }
412      // Adjust the number of Phis needed depending on the number of prologs left,
413      // and the distance from where the Phi is first scheduled. The number of
414      // Phis cannot exceed the number of prolog stages. Each stage can
415      // potentially define two values.
416      unsigned MaxPhis = PrologStage + 2;
417      if (!InKernel && (int)PrologStage <= LoopValStage)
418        MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
419      unsigned NumPhis = std::min(NumStages, MaxPhis);
420  
421      unsigned NewReg = 0;
422      unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
423      // In the epilog, we may need to look back one stage to get the correct
424      // Phi name, because the epilog and prolog blocks execute the same stage.
425      // The correct name is from the previous block only when the Phi has
426      // been completely scheduled prior to the epilog, and Phi value is not
427      // needed in multiple stages.
428      int StageDiff = 0;
429      if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
430          NumPhis == 1)
431        StageDiff = 1;
432      // Adjust the computations below when the phi and the loop definition
433      // are scheduled in different stages.
434      if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
435        StageDiff = StageScheduled - LoopValStage;
436      for (unsigned np = 0; np < NumPhis; ++np) {
437        // If the Phi hasn't been scheduled, then use the initial Phi operand
438        // value. Otherwise, use the scheduled version of the instruction. This
439        // is a little complicated when a Phi references another Phi.
440        if (np > PrologStage || StageScheduled >= (int)LastStageNum)
441          PhiOp1 = InitVal;
442        // Check if the Phi has already been scheduled in a prolog stage.
443        else if (PrologStage >= AccessStage + StageDiff + np &&
444                 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
445          PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
446        // Check if the Phi has already been scheduled, but the loop instruction
447        // is either another Phi, or doesn't occur in the loop.
448        else if (PrologStage >= AccessStage + StageDiff + np) {
449          // If the Phi references another Phi, we need to examine the other
450          // Phi to get the correct value.
451          PhiOp1 = LoopVal;
452          MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
453          int Indirects = 1;
454          while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
455            int PhiStage = Schedule.getStage(InstOp1);
456            if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
457              PhiOp1 = getInitPhiReg(*InstOp1, BB);
458            else
459              PhiOp1 = getLoopPhiReg(*InstOp1, BB);
460            InstOp1 = MRI.getVRegDef(PhiOp1);
461            int PhiOpStage = Schedule.getStage(InstOp1);
462            int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
463            if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
464                VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
465              PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
466              break;
467            }
468            ++Indirects;
469          }
470        } else
471          PhiOp1 = InitVal;
472        // If this references a generated Phi in the kernel, get the Phi operand
473        // from the incoming block.
474        if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
475          if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
476            PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
477  
478        MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
479        bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
480        // In the epilog, a map lookup is needed to get the value from the kernel,
481        // or previous epilog block. How is does this depends on if the
482        // instruction is scheduled in the previous block.
483        if (!InKernel) {
484          int StageDiffAdj = 0;
485          if (LoopValStage != -1 && StageScheduled > LoopValStage)
486            StageDiffAdj = StageScheduled - LoopValStage;
487          // Use the loop value defined in the kernel, unless the kernel
488          // contains the last definition of the Phi.
489          if (np == 0 && PrevStage == LastStageNum &&
490              (StageScheduled != 0 || LoopValStage != 0) &&
491              VRMap[PrevStage - StageDiffAdj].count(LoopVal))
492            PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
493          // Use the value defined by the Phi. We add one because we switch
494          // from looking at the loop value to the Phi definition.
495          else if (np > 0 && PrevStage == LastStageNum &&
496                   VRMap[PrevStage - np + 1].count(Def))
497            PhiOp2 = VRMap[PrevStage - np + 1][Def];
498          // Use the loop value defined in the kernel.
499          else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
500                   VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
501            PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
502          // Use the value defined by the Phi, unless we're generating the first
503          // epilog and the Phi refers to a Phi in a different stage.
504          else if (VRMap[PrevStage - np].count(Def) &&
505                   (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
506                    (LoopValStage == StageScheduled)))
507            PhiOp2 = VRMap[PrevStage - np][Def];
508        }
509  
510        // Check if we can reuse an existing Phi. This occurs when a Phi
511        // references another Phi, and the other Phi is scheduled in an
512        // earlier stage. We can try to reuse an existing Phi up until the last
513        // stage of the current Phi.
514        if (LoopDefIsPhi) {
515          if (static_cast<int>(PrologStage - np) >= StageScheduled) {
516            int LVNumStages = getStagesForPhi(LoopVal);
517            int StageDiff = (StageScheduled - LoopValStage);
518            LVNumStages -= StageDiff;
519            // Make sure the loop value Phi has been processed already.
520            if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
521              NewReg = PhiOp2;
522              unsigned ReuseStage = CurStageNum;
523              if (isLoopCarried(*PhiInst))
524                ReuseStage -= LVNumStages;
525              // Check if the Phi to reuse has been generated yet. If not, then
526              // there is nothing to reuse.
527              if (VRMap[ReuseStage - np].count(LoopVal)) {
528                NewReg = VRMap[ReuseStage - np][LoopVal];
529  
530                rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
531                                      Def, NewReg);
532                // Update the map with the new Phi name.
533                VRMap[CurStageNum - np][Def] = NewReg;
534                PhiOp2 = NewReg;
535                if (VRMap[LastStageNum - np - 1].count(LoopVal))
536                  PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
537  
538                if (IsLast && np == NumPhis - 1)
539                  replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
540                continue;
541              }
542            }
543          }
544          if (InKernel && StageDiff > 0 &&
545              VRMap[CurStageNum - StageDiff - np].count(LoopVal))
546            PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
547        }
548  
549        const TargetRegisterClass *RC = MRI.getRegClass(Def);
550        NewReg = MRI.createVirtualRegister(RC);
551  
552        MachineInstrBuilder NewPhi =
553            BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
554                    TII->get(TargetOpcode::PHI), NewReg);
555        NewPhi.addReg(PhiOp1).addMBB(BB1);
556        NewPhi.addReg(PhiOp2).addMBB(BB2);
557        if (np == 0)
558          InstrMap[NewPhi] = &*BBI;
559  
560        // We define the Phis after creating the new pipelined code, so
561        // we need to rename the Phi values in scheduled instructions.
562  
563        unsigned PrevReg = 0;
564        if (InKernel && VRMap[PrevStage - np].count(LoopVal))
565          PrevReg = VRMap[PrevStage - np][LoopVal];
566        rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
567                              NewReg, PrevReg);
568        // If the Phi has been scheduled, use the new name for rewriting.
569        if (VRMap[CurStageNum - np].count(Def)) {
570          unsigned R = VRMap[CurStageNum - np][Def];
571          rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
572                                NewReg);
573        }
574  
575        // Check if we need to rename any uses that occurs after the loop. The
576        // register to replace depends on whether the Phi is scheduled in the
577        // epilog.
578        if (IsLast && np == NumPhis - 1)
579          replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
580  
581        // In the kernel, a dependent Phi uses the value from this Phi.
582        if (InKernel)
583          PhiOp2 = NewReg;
584  
585        // Update the map with the new Phi name.
586        VRMap[CurStageNum - np][Def] = NewReg;
587      }
588  
589      while (NumPhis++ < NumStages) {
590        rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
591                              NewReg, 0);
592      }
593  
594      // Check if we need to rename a Phi that has been eliminated due to
595      // scheduling.
596      if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
597        replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
598    }
599  }
600  
601  /// Generate Phis for the specified block in the generated pipelined code.
602  /// These are new Phis needed because the definition is scheduled after the
603  /// use in the pipelined sequence.
604  void ModuloScheduleExpander::generatePhis(
605      MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
606      MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
607      unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
608    // Compute the stage number that contains the initial Phi value, and
609    // the Phi from the previous stage.
610    unsigned PrologStage = 0;
611    unsigned PrevStage = 0;
612    unsigned StageDiff = CurStageNum - LastStageNum;
613    bool InKernel = (StageDiff == 0);
614    if (InKernel) {
615      PrologStage = LastStageNum - 1;
616      PrevStage = CurStageNum;
617    } else {
618      PrologStage = LastStageNum - StageDiff;
619      PrevStage = LastStageNum + StageDiff - 1;
620    }
621  
622    for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
623                                     BBE = BB->instr_end();
624         BBI != BBE; ++BBI) {
625      for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
626        MachineOperand &MO = BBI->getOperand(i);
627        if (!MO.isReg() || !MO.isDef() ||
628            !Register::isVirtualRegister(MO.getReg()))
629          continue;
630  
631        int StageScheduled = Schedule.getStage(&*BBI);
632        assert(StageScheduled != -1 && "Expecting scheduled instruction.");
633        Register Def = MO.getReg();
634        unsigned NumPhis = getStagesForReg(Def, CurStageNum);
635        // An instruction scheduled in stage 0 and is used after the loop
636        // requires a phi in the epilog for the last definition from either
637        // the kernel or prolog.
638        if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
639            hasUseAfterLoop(Def, BB, MRI))
640          NumPhis = 1;
641        if (!InKernel && (unsigned)StageScheduled > PrologStage)
642          continue;
643  
644        unsigned PhiOp2 = VRMap[PrevStage][Def];
645        if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
646          if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
647            PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
648        // The number of Phis can't exceed the number of prolog stages. The
649        // prolog stage number is zero based.
650        if (NumPhis > PrologStage + 1 - StageScheduled)
651          NumPhis = PrologStage + 1 - StageScheduled;
652        for (unsigned np = 0; np < NumPhis; ++np) {
653          unsigned PhiOp1 = VRMap[PrologStage][Def];
654          if (np <= PrologStage)
655            PhiOp1 = VRMap[PrologStage - np][Def];
656          if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
657            if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
658              PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
659            if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
660              PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
661          }
662          if (!InKernel)
663            PhiOp2 = VRMap[PrevStage - np][Def];
664  
665          const TargetRegisterClass *RC = MRI.getRegClass(Def);
666          Register NewReg = MRI.createVirtualRegister(RC);
667  
668          MachineInstrBuilder NewPhi =
669              BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
670                      TII->get(TargetOpcode::PHI), NewReg);
671          NewPhi.addReg(PhiOp1).addMBB(BB1);
672          NewPhi.addReg(PhiOp2).addMBB(BB2);
673          if (np == 0)
674            InstrMap[NewPhi] = &*BBI;
675  
676          // Rewrite uses and update the map. The actions depend upon whether
677          // we generating code for the kernel or epilog blocks.
678          if (InKernel) {
679            rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
680                                  NewReg);
681            rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
682                                  NewReg);
683  
684            PhiOp2 = NewReg;
685            VRMap[PrevStage - np - 1][Def] = NewReg;
686          } else {
687            VRMap[CurStageNum - np][Def] = NewReg;
688            if (np == NumPhis - 1)
689              rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
690                                    NewReg);
691          }
692          if (IsLast && np == NumPhis - 1)
693            replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
694        }
695      }
696    }
697  }
698  
699  /// Remove instructions that generate values with no uses.
700  /// Typically, these are induction variable operations that generate values
701  /// used in the loop itself.  A dead instruction has a definition with
702  /// no uses, or uses that occur in the original loop only.
703  void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
704                                                      MBBVectorTy &EpilogBBs) {
705    // For each epilog block, check that the value defined by each instruction
706    // is used.  If not, delete it.
707    for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
708                                       MBE = EpilogBBs.rend();
709         MBB != MBE; ++MBB)
710      for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
711                                                     ME = (*MBB)->instr_rend();
712           MI != ME;) {
713        // From DeadMachineInstructionElem. Don't delete inline assembly.
714        if (MI->isInlineAsm()) {
715          ++MI;
716          continue;
717        }
718        bool SawStore = false;
719        // Check if it's safe to remove the instruction due to side effects.
720        // We can, and want to, remove Phis here.
721        if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
722          ++MI;
723          continue;
724        }
725        bool used = true;
726        for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
727                                        MOE = MI->operands_end();
728             MOI != MOE; ++MOI) {
729          if (!MOI->isReg() || !MOI->isDef())
730            continue;
731          Register reg = MOI->getReg();
732          // Assume physical registers are used, unless they are marked dead.
733          if (Register::isPhysicalRegister(reg)) {
734            used = !MOI->isDead();
735            if (used)
736              break;
737            continue;
738          }
739          unsigned realUses = 0;
740          for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
741                                                 EI = MRI.use_end();
742               UI != EI; ++UI) {
743            // Check if there are any uses that occur only in the original
744            // loop.  If so, that's not a real use.
745            if (UI->getParent()->getParent() != BB) {
746              realUses++;
747              used = true;
748              break;
749            }
750          }
751          if (realUses > 0)
752            break;
753          used = false;
754        }
755        if (!used) {
756          LIS.RemoveMachineInstrFromMaps(*MI);
757          MI++->eraseFromParent();
758          continue;
759        }
760        ++MI;
761      }
762    // In the kernel block, check if we can remove a Phi that generates a value
763    // used in an instruction removed in the epilog block.
764    for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
765                                     BBE = KernelBB->getFirstNonPHI();
766         BBI != BBE;) {
767      MachineInstr *MI = &*BBI;
768      ++BBI;
769      Register reg = MI->getOperand(0).getReg();
770      if (MRI.use_begin(reg) == MRI.use_end()) {
771        LIS.RemoveMachineInstrFromMaps(*MI);
772        MI->eraseFromParent();
773      }
774    }
775  }
776  
777  /// For loop carried definitions, we split the lifetime of a virtual register
778  /// that has uses past the definition in the next iteration. A copy with a new
779  /// virtual register is inserted before the definition, which helps with
780  /// generating a better register assignment.
781  ///
782  ///   v1 = phi(a, v2)     v1 = phi(a, v2)
783  ///   v2 = phi(b, v3)     v2 = phi(b, v3)
784  ///   v3 = ..             v4 = copy v1
785  ///   .. = V1             v3 = ..
786  ///                       .. = v4
787  void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
788                                              MBBVectorTy &EpilogBBs) {
789    const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
790    for (auto &PHI : KernelBB->phis()) {
791      Register Def = PHI.getOperand(0).getReg();
792      // Check for any Phi definition that used as an operand of another Phi
793      // in the same block.
794      for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
795                                                   E = MRI.use_instr_end();
796           I != E; ++I) {
797        if (I->isPHI() && I->getParent() == KernelBB) {
798          // Get the loop carried definition.
799          unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
800          if (!LCDef)
801            continue;
802          MachineInstr *MI = MRI.getVRegDef(LCDef);
803          if (!MI || MI->getParent() != KernelBB || MI->isPHI())
804            continue;
805          // Search through the rest of the block looking for uses of the Phi
806          // definition. If one occurs, then split the lifetime.
807          unsigned SplitReg = 0;
808          for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
809                                      KernelBB->instr_end()))
810            if (BBJ.readsRegister(Def)) {
811              // We split the lifetime when we find the first use.
812              if (SplitReg == 0) {
813                SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
814                BuildMI(*KernelBB, MI, MI->getDebugLoc(),
815                        TII->get(TargetOpcode::COPY), SplitReg)
816                    .addReg(Def);
817              }
818              BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
819            }
820          if (!SplitReg)
821            continue;
822          // Search through each of the epilog blocks for any uses to be renamed.
823          for (auto &Epilog : EpilogBBs)
824            for (auto &I : *Epilog)
825              if (I.readsRegister(Def))
826                I.substituteRegister(Def, SplitReg, 0, *TRI);
827          break;
828        }
829      }
830    }
831  }
832  
833  /// Remove the incoming block from the Phis in a basic block.
834  static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
835    for (MachineInstr &MI : *BB) {
836      if (!MI.isPHI())
837        break;
838      for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
839        if (MI.getOperand(i + 1).getMBB() == Incoming) {
840          MI.RemoveOperand(i + 1);
841          MI.RemoveOperand(i);
842          break;
843        }
844    }
845  }
846  
847  /// Create branches from each prolog basic block to the appropriate epilog
848  /// block.  These edges are needed if the loop ends before reaching the
849  /// kernel.
850  void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
851                                           MBBVectorTy &PrologBBs,
852                                           MachineBasicBlock *KernelBB,
853                                           MBBVectorTy &EpilogBBs,
854                                           ValueMapTy *VRMap) {
855    assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
856    MachineBasicBlock *LastPro = KernelBB;
857    MachineBasicBlock *LastEpi = KernelBB;
858  
859    // Start from the blocks connected to the kernel and work "out"
860    // to the first prolog and the last epilog blocks.
861    SmallVector<MachineInstr *, 4> PrevInsts;
862    unsigned MaxIter = PrologBBs.size() - 1;
863    for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
864      // Add branches to the prolog that go to the corresponding
865      // epilog, and the fall-thru prolog/kernel block.
866      MachineBasicBlock *Prolog = PrologBBs[j];
867      MachineBasicBlock *Epilog = EpilogBBs[i];
868  
869      SmallVector<MachineOperand, 4> Cond;
870      Optional<bool> StaticallyGreater =
871          LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond);
872      unsigned numAdded = 0;
873      if (!StaticallyGreater.hasValue()) {
874        Prolog->addSuccessor(Epilog);
875        numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
876      } else if (*StaticallyGreater == false) {
877        Prolog->addSuccessor(Epilog);
878        Prolog->removeSuccessor(LastPro);
879        LastEpi->removeSuccessor(Epilog);
880        numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
881        removePhis(Epilog, LastEpi);
882        // Remove the blocks that are no longer referenced.
883        if (LastPro != LastEpi) {
884          LastEpi->clear();
885          LastEpi->eraseFromParent();
886        }
887        if (LastPro == KernelBB) {
888          LoopInfo->disposed();
889          NewKernel = nullptr;
890        }
891        LastPro->clear();
892        LastPro->eraseFromParent();
893      } else {
894        numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
895        removePhis(Epilog, Prolog);
896      }
897      LastPro = Prolog;
898      LastEpi = Epilog;
899      for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
900                                                     E = Prolog->instr_rend();
901           I != E && numAdded > 0; ++I, --numAdded)
902        updateInstruction(&*I, false, j, 0, VRMap);
903    }
904  
905    if (NewKernel) {
906      LoopInfo->setPreheader(PrologBBs[MaxIter]);
907      LoopInfo->adjustTripCount(-(MaxIter + 1));
908    }
909  }
910  
911  /// Return true if we can compute the amount the instruction changes
912  /// during each iteration. Set Delta to the amount of the change.
913  bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
914    const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
915    const MachineOperand *BaseOp;
916    int64_t Offset;
917    bool OffsetIsScalable;
918    if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
919      return false;
920  
921    // FIXME: This algorithm assumes instructions have fixed-size offsets.
922    if (OffsetIsScalable)
923      return false;
924  
925    if (!BaseOp->isReg())
926      return false;
927  
928    Register BaseReg = BaseOp->getReg();
929  
930    MachineRegisterInfo &MRI = MF.getRegInfo();
931    // Check if there is a Phi. If so, get the definition in the loop.
932    MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
933    if (BaseDef && BaseDef->isPHI()) {
934      BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
935      BaseDef = MRI.getVRegDef(BaseReg);
936    }
937    if (!BaseDef)
938      return false;
939  
940    int D = 0;
941    if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
942      return false;
943  
944    Delta = D;
945    return true;
946  }
947  
948  /// Update the memory operand with a new offset when the pipeliner
949  /// generates a new copy of the instruction that refers to a
950  /// different memory location.
951  void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
952                                                 MachineInstr &OldMI,
953                                                 unsigned Num) {
954    if (Num == 0)
955      return;
956    // If the instruction has memory operands, then adjust the offset
957    // when the instruction appears in different stages.
958    if (NewMI.memoperands_empty())
959      return;
960    SmallVector<MachineMemOperand *, 2> NewMMOs;
961    for (MachineMemOperand *MMO : NewMI.memoperands()) {
962      // TODO: Figure out whether isAtomic is really necessary (see D57601).
963      if (MMO->isVolatile() || MMO->isAtomic() ||
964          (MMO->isInvariant() && MMO->isDereferenceable()) ||
965          (!MMO->getValue())) {
966        NewMMOs.push_back(MMO);
967        continue;
968      }
969      unsigned Delta;
970      if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
971        int64_t AdjOffset = Delta * Num;
972        NewMMOs.push_back(
973            MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
974      } else {
975        NewMMOs.push_back(
976            MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
977      }
978    }
979    NewMI.setMemRefs(MF, NewMMOs);
980  }
981  
982  /// Clone the instruction for the new pipelined loop and update the
983  /// memory operands, if needed.
984  MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
985                                                   unsigned CurStageNum,
986                                                   unsigned InstStageNum) {
987    MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
988    // Check for tied operands in inline asm instructions. This should be handled
989    // elsewhere, but I'm not sure of the best solution.
990    if (OldMI->isInlineAsm())
991      for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
992        const auto &MO = OldMI->getOperand(i);
993        if (MO.isReg() && MO.isUse())
994          break;
995        unsigned UseIdx;
996        if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
997          NewMI->tieOperands(i, UseIdx);
998      }
999    updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1000    return NewMI;
1001  }
1002  
1003  /// Clone the instruction for the new pipelined loop. If needed, this
1004  /// function updates the instruction using the values saved in the
1005  /// InstrChanges structure.
1006  MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
1007      MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
1008    MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
1009    auto It = InstrChanges.find(OldMI);
1010    if (It != InstrChanges.end()) {
1011      std::pair<unsigned, int64_t> RegAndOffset = It->second;
1012      unsigned BasePos, OffsetPos;
1013      if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
1014        return nullptr;
1015      int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
1016      MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
1017      if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
1018        NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
1019      NewMI->getOperand(OffsetPos).setImm(NewOffset);
1020    }
1021    updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1022    return NewMI;
1023  }
1024  
1025  /// Update the machine instruction with new virtual registers.  This
1026  /// function may change the defintions and/or uses.
1027  void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
1028                                                 bool LastDef,
1029                                                 unsigned CurStageNum,
1030                                                 unsigned InstrStageNum,
1031                                                 ValueMapTy *VRMap) {
1032    for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
1033      MachineOperand &MO = NewMI->getOperand(i);
1034      if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
1035        continue;
1036      Register reg = MO.getReg();
1037      if (MO.isDef()) {
1038        // Create a new virtual register for the definition.
1039        const TargetRegisterClass *RC = MRI.getRegClass(reg);
1040        Register NewReg = MRI.createVirtualRegister(RC);
1041        MO.setReg(NewReg);
1042        VRMap[CurStageNum][reg] = NewReg;
1043        if (LastDef)
1044          replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
1045      } else if (MO.isUse()) {
1046        MachineInstr *Def = MRI.getVRegDef(reg);
1047        // Compute the stage that contains the last definition for instruction.
1048        int DefStageNum = Schedule.getStage(Def);
1049        unsigned StageNum = CurStageNum;
1050        if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
1051          // Compute the difference in stages between the defintion and the use.
1052          unsigned StageDiff = (InstrStageNum - DefStageNum);
1053          // Make an adjustment to get the last definition.
1054          StageNum -= StageDiff;
1055        }
1056        if (VRMap[StageNum].count(reg))
1057          MO.setReg(VRMap[StageNum][reg]);
1058      }
1059    }
1060  }
1061  
1062  /// Return the instruction in the loop that defines the register.
1063  /// If the definition is a Phi, then follow the Phi operand to
1064  /// the instruction in the loop.
1065  MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
1066    SmallPtrSet<MachineInstr *, 8> Visited;
1067    MachineInstr *Def = MRI.getVRegDef(Reg);
1068    while (Def->isPHI()) {
1069      if (!Visited.insert(Def).second)
1070        break;
1071      for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
1072        if (Def->getOperand(i + 1).getMBB() == BB) {
1073          Def = MRI.getVRegDef(Def->getOperand(i).getReg());
1074          break;
1075        }
1076    }
1077    return Def;
1078  }
1079  
1080  /// Return the new name for the value from the previous stage.
1081  unsigned ModuloScheduleExpander::getPrevMapVal(
1082      unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
1083      ValueMapTy *VRMap, MachineBasicBlock *BB) {
1084    unsigned PrevVal = 0;
1085    if (StageNum > PhiStage) {
1086      MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
1087      if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
1088        // The name is defined in the previous stage.
1089        PrevVal = VRMap[StageNum - 1][LoopVal];
1090      else if (VRMap[StageNum].count(LoopVal))
1091        // The previous name is defined in the current stage when the instruction
1092        // order is swapped.
1093        PrevVal = VRMap[StageNum][LoopVal];
1094      else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
1095        // The loop value hasn't yet been scheduled.
1096        PrevVal = LoopVal;
1097      else if (StageNum == PhiStage + 1)
1098        // The loop value is another phi, which has not been scheduled.
1099        PrevVal = getInitPhiReg(*LoopInst, BB);
1100      else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
1101        // The loop value is another phi, which has been scheduled.
1102        PrevVal =
1103            getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
1104                          LoopStage, VRMap, BB);
1105    }
1106    return PrevVal;
1107  }
1108  
1109  /// Rewrite the Phi values in the specified block to use the mappings
1110  /// from the initial operand. Once the Phi is scheduled, we switch
1111  /// to using the loop value instead of the Phi value, so those names
1112  /// do not need to be rewritten.
1113  void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
1114                                                unsigned StageNum,
1115                                                ValueMapTy *VRMap,
1116                                                InstrMapTy &InstrMap) {
1117    for (auto &PHI : BB->phis()) {
1118      unsigned InitVal = 0;
1119      unsigned LoopVal = 0;
1120      getPhiRegs(PHI, BB, InitVal, LoopVal);
1121      Register PhiDef = PHI.getOperand(0).getReg();
1122  
1123      unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
1124      unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
1125      unsigned NumPhis = getStagesForPhi(PhiDef);
1126      if (NumPhis > StageNum)
1127        NumPhis = StageNum;
1128      for (unsigned np = 0; np <= NumPhis; ++np) {
1129        unsigned NewVal =
1130            getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
1131        if (!NewVal)
1132          NewVal = InitVal;
1133        rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
1134                              NewVal);
1135      }
1136    }
1137  }
1138  
1139  /// Rewrite a previously scheduled instruction to use the register value
1140  /// from the new instruction. Make sure the instruction occurs in the
1141  /// basic block, and we don't change the uses in the new instruction.
1142  void ModuloScheduleExpander::rewriteScheduledInstr(
1143      MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
1144      unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
1145      unsigned PrevReg) {
1146    bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
1147    int StagePhi = Schedule.getStage(Phi) + PhiNum;
1148    // Rewrite uses that have been scheduled already to use the new
1149    // Phi register.
1150    for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
1151                                           EI = MRI.use_end();
1152         UI != EI;) {
1153      MachineOperand &UseOp = *UI;
1154      MachineInstr *UseMI = UseOp.getParent();
1155      ++UI;
1156      if (UseMI->getParent() != BB)
1157        continue;
1158      if (UseMI->isPHI()) {
1159        if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
1160          continue;
1161        if (getLoopPhiReg(*UseMI, BB) != OldReg)
1162          continue;
1163      }
1164      InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
1165      assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
1166      MachineInstr *OrigMI = OrigInstr->second;
1167      int StageSched = Schedule.getStage(OrigMI);
1168      int CycleSched = Schedule.getCycle(OrigMI);
1169      unsigned ReplaceReg = 0;
1170      // This is the stage for the scheduled instruction.
1171      if (StagePhi == StageSched && Phi->isPHI()) {
1172        int CyclePhi = Schedule.getCycle(Phi);
1173        if (PrevReg && InProlog)
1174          ReplaceReg = PrevReg;
1175        else if (PrevReg && !isLoopCarried(*Phi) &&
1176                 (CyclePhi <= CycleSched || OrigMI->isPHI()))
1177          ReplaceReg = PrevReg;
1178        else
1179          ReplaceReg = NewReg;
1180      }
1181      // The scheduled instruction occurs before the scheduled Phi, and the
1182      // Phi is not loop carried.
1183      if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
1184        ReplaceReg = NewReg;
1185      if (StagePhi > StageSched && Phi->isPHI())
1186        ReplaceReg = NewReg;
1187      if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
1188        ReplaceReg = NewReg;
1189      if (ReplaceReg) {
1190        MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
1191        UseOp.setReg(ReplaceReg);
1192      }
1193    }
1194  }
1195  
1196  bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
1197    if (!Phi.isPHI())
1198      return false;
1199    int DefCycle = Schedule.getCycle(&Phi);
1200    int DefStage = Schedule.getStage(&Phi);
1201  
1202    unsigned InitVal = 0;
1203    unsigned LoopVal = 0;
1204    getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
1205    MachineInstr *Use = MRI.getVRegDef(LoopVal);
1206    if (!Use || Use->isPHI())
1207      return true;
1208    int LoopCycle = Schedule.getCycle(Use);
1209    int LoopStage = Schedule.getStage(Use);
1210    return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
1211  }
1212  
1213  //===----------------------------------------------------------------------===//
1214  // PeelingModuloScheduleExpander implementation
1215  //===----------------------------------------------------------------------===//
1216  // This is a reimplementation of ModuloScheduleExpander that works by creating
1217  // a fully correct steady-state kernel and peeling off the prolog and epilogs.
1218  //===----------------------------------------------------------------------===//
1219  
1220  namespace {
1221  // Remove any dead phis in MBB. Dead phis either have only one block as input
1222  // (in which case they are the identity) or have no uses.
1223  void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
1224                         LiveIntervals *LIS, bool KeepSingleSrcPhi = false) {
1225    bool Changed = true;
1226    while (Changed) {
1227      Changed = false;
1228      for (auto I = MBB->begin(); I != MBB->getFirstNonPHI();) {
1229        MachineInstr &MI = *I++;
1230        assert(MI.isPHI());
1231        if (MRI.use_empty(MI.getOperand(0).getReg())) {
1232          if (LIS)
1233            LIS->RemoveMachineInstrFromMaps(MI);
1234          MI.eraseFromParent();
1235          Changed = true;
1236        } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) {
1237          MRI.constrainRegClass(MI.getOperand(1).getReg(),
1238                                MRI.getRegClass(MI.getOperand(0).getReg()));
1239          MRI.replaceRegWith(MI.getOperand(0).getReg(),
1240                             MI.getOperand(1).getReg());
1241          if (LIS)
1242            LIS->RemoveMachineInstrFromMaps(MI);
1243          MI.eraseFromParent();
1244          Changed = true;
1245        }
1246      }
1247    }
1248  }
1249  
1250  /// Rewrites the kernel block in-place to adhere to the given schedule.
1251  /// KernelRewriter holds all of the state required to perform the rewriting.
1252  class KernelRewriter {
1253    ModuloSchedule &S;
1254    MachineBasicBlock *BB;
1255    MachineBasicBlock *PreheaderBB, *ExitBB;
1256    MachineRegisterInfo &MRI;
1257    const TargetInstrInfo *TII;
1258    LiveIntervals *LIS;
1259  
1260    // Map from register class to canonical undef register for that class.
1261    DenseMap<const TargetRegisterClass *, Register> Undefs;
1262    // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
1263    // this map is only used when InitReg is non-undef.
1264    DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
1265    // Map from LoopReg to phi register where the InitReg is undef.
1266    DenseMap<Register, Register> UndefPhis;
1267  
1268    // Reg is used by MI. Return the new register MI should use to adhere to the
1269    // schedule. Insert phis as necessary.
1270    Register remapUse(Register Reg, MachineInstr &MI);
1271    // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
1272    // If InitReg is not given it is chosen arbitrarily. It will either be undef
1273    // or will be chosen so as to share another phi.
1274    Register phi(Register LoopReg, Optional<Register> InitReg = {},
1275                 const TargetRegisterClass *RC = nullptr);
1276    // Create an undef register of the given register class.
1277    Register undef(const TargetRegisterClass *RC);
1278  
1279  public:
1280    KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1281                   LiveIntervals *LIS = nullptr);
1282    void rewrite();
1283  };
1284  } // namespace
1285  
1286  KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1287                                 LiveIntervals *LIS)
1288      : S(S), BB(L.getTopBlock()), PreheaderBB(L.getLoopPreheader()),
1289        ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
1290        TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
1291    PreheaderBB = *BB->pred_begin();
1292    if (PreheaderBB == BB)
1293      PreheaderBB = *std::next(BB->pred_begin());
1294  }
1295  
1296  void KernelRewriter::rewrite() {
1297    // Rearrange the loop to be in schedule order. Note that the schedule may
1298    // contain instructions that are not owned by the loop block (InstrChanges and
1299    // friends), so we gracefully handle unowned instructions and delete any
1300    // instructions that weren't in the schedule.
1301    auto InsertPt = BB->getFirstTerminator();
1302    MachineInstr *FirstMI = nullptr;
1303    for (MachineInstr *MI : S.getInstructions()) {
1304      if (MI->isPHI())
1305        continue;
1306      if (MI->getParent())
1307        MI->removeFromParent();
1308      BB->insert(InsertPt, MI);
1309      if (!FirstMI)
1310        FirstMI = MI;
1311    }
1312    assert(FirstMI && "Failed to find first MI in schedule");
1313  
1314    // At this point all of the scheduled instructions are between FirstMI
1315    // and the end of the block. Kill from the first non-phi to FirstMI.
1316    for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
1317      if (LIS)
1318        LIS->RemoveMachineInstrFromMaps(*I);
1319      (I++)->eraseFromParent();
1320    }
1321  
1322    // Now remap every instruction in the loop.
1323    for (MachineInstr &MI : *BB) {
1324      if (MI.isPHI() || MI.isTerminator())
1325        continue;
1326      for (MachineOperand &MO : MI.uses()) {
1327        if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
1328          continue;
1329        Register Reg = remapUse(MO.getReg(), MI);
1330        MO.setReg(Reg);
1331      }
1332    }
1333    EliminateDeadPhis(BB, MRI, LIS);
1334  
1335    // Ensure a phi exists for all instructions that are either referenced by
1336    // an illegal phi or by an instruction outside the loop. This allows us to
1337    // treat remaps of these values the same as "normal" values that come from
1338    // loop-carried phis.
1339    for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
1340      if (MI->isPHI()) {
1341        Register R = MI->getOperand(0).getReg();
1342        phi(R);
1343        continue;
1344      }
1345  
1346      for (MachineOperand &Def : MI->defs()) {
1347        for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
1348          if (MI.getParent() != BB) {
1349            phi(Def.getReg());
1350            break;
1351          }
1352        }
1353      }
1354    }
1355  }
1356  
1357  Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
1358    MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
1359    if (!Producer)
1360      return Reg;
1361  
1362    int ConsumerStage = S.getStage(&MI);
1363    if (!Producer->isPHI()) {
1364      // Non-phi producers are simple to remap. Insert as many phis as the
1365      // difference between the consumer and producer stages.
1366      if (Producer->getParent() != BB)
1367        // Producer was not inside the loop. Use the register as-is.
1368        return Reg;
1369      int ProducerStage = S.getStage(Producer);
1370      assert(ConsumerStage != -1 &&
1371             "In-loop consumer should always be scheduled!");
1372      assert(ConsumerStage >= ProducerStage);
1373      unsigned StageDiff = ConsumerStage - ProducerStage;
1374  
1375      for (unsigned I = 0; I < StageDiff; ++I)
1376        Reg = phi(Reg);
1377      return Reg;
1378    }
1379  
1380    // First, dive through the phi chain to find the defaults for the generated
1381    // phis.
1382    SmallVector<Optional<Register>, 4> Defaults;
1383    Register LoopReg = Reg;
1384    auto LoopProducer = Producer;
1385    while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
1386      LoopReg = getLoopPhiReg(*LoopProducer, BB);
1387      Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
1388      LoopProducer = MRI.getUniqueVRegDef(LoopReg);
1389      assert(LoopProducer);
1390    }
1391    int LoopProducerStage = S.getStage(LoopProducer);
1392  
1393    Optional<Register> IllegalPhiDefault;
1394  
1395    if (LoopProducerStage == -1) {
1396      // Do nothing.
1397    } else if (LoopProducerStage > ConsumerStage) {
1398      // This schedule is only representable if ProducerStage == ConsumerStage+1.
1399      // In addition, Consumer's cycle must be scheduled after Producer in the
1400      // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
1401      // functions.
1402  #ifndef NDEBUG // Silence unused variables in non-asserts mode.
1403      int LoopProducerCycle = S.getCycle(LoopProducer);
1404      int ConsumerCycle = S.getCycle(&MI);
1405  #endif
1406      assert(LoopProducerCycle <= ConsumerCycle);
1407      assert(LoopProducerStage == ConsumerStage + 1);
1408      // Peel off the first phi from Defaults and insert a phi between producer
1409      // and consumer. This phi will not be at the front of the block so we
1410      // consider it illegal. It will only exist during the rewrite process; it
1411      // needs to exist while we peel off prologs because these could take the
1412      // default value. After that we can replace all uses with the loop producer
1413      // value.
1414      IllegalPhiDefault = Defaults.front();
1415      Defaults.erase(Defaults.begin());
1416    } else {
1417      assert(ConsumerStage >= LoopProducerStage);
1418      int StageDiff = ConsumerStage - LoopProducerStage;
1419      if (StageDiff > 0) {
1420        LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()
1421                          << " to " << (Defaults.size() + StageDiff) << "\n");
1422        // If we need more phis than we have defaults for, pad out with undefs for
1423        // the earliest phis, which are at the end of the defaults chain (the
1424        // chain is in reverse order).
1425        Defaults.resize(Defaults.size() + StageDiff, Defaults.empty()
1426                                                         ? Optional<Register>()
1427                                                         : Defaults.back());
1428      }
1429    }
1430  
1431    // Now we know the number of stages to jump back, insert the phi chain.
1432    auto DefaultI = Defaults.rbegin();
1433    while (DefaultI != Defaults.rend())
1434      LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));
1435  
1436    if (IllegalPhiDefault.hasValue()) {
1437      // The consumer optionally consumes LoopProducer in the same iteration
1438      // (because the producer is scheduled at an earlier cycle than the consumer)
1439      // or the initial value. To facilitate this we create an illegal block here
1440      // by embedding a phi in the middle of the block. We will fix this up
1441      // immediately prior to pruning.
1442      auto RC = MRI.getRegClass(Reg);
1443      Register R = MRI.createVirtualRegister(RC);
1444      MachineInstr *IllegalPhi =
1445          BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1446              .addReg(IllegalPhiDefault.getValue())
1447              .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
1448              .addReg(LoopReg)
1449              .addMBB(BB); // Block choice is arbitrary and has no effect.
1450      // Illegal phi should belong to the producer stage so that it can be
1451      // filtered correctly during peeling.
1452      S.setStage(IllegalPhi, LoopProducerStage);
1453      return R;
1454    }
1455  
1456    return LoopReg;
1457  }
1458  
1459  Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg,
1460                               const TargetRegisterClass *RC) {
1461    // If the init register is not undef, try and find an existing phi.
1462    if (InitReg.hasValue()) {
1463      auto I = Phis.find({LoopReg, InitReg.getValue()});
1464      if (I != Phis.end())
1465        return I->second;
1466    } else {
1467      for (auto &KV : Phis) {
1468        if (KV.first.first == LoopReg)
1469          return KV.second;
1470      }
1471    }
1472  
1473    // InitReg is either undef or no existing phi takes InitReg as input. Try and
1474    // find a phi that takes undef as input.
1475    auto I = UndefPhis.find(LoopReg);
1476    if (I != UndefPhis.end()) {
1477      Register R = I->second;
1478      if (!InitReg.hasValue())
1479        // Found a phi taking undef as input, and this input is undef so return
1480        // without any more changes.
1481        return R;
1482      // Found a phi taking undef as input, so rewrite it to take InitReg.
1483      MachineInstr *MI = MRI.getVRegDef(R);
1484      MI->getOperand(1).setReg(InitReg.getValue());
1485      Phis.insert({{LoopReg, InitReg.getValue()}, R});
1486      MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue()));
1487      UndefPhis.erase(I);
1488      return R;
1489    }
1490  
1491    // Failed to find any existing phi to reuse, so create a new one.
1492    if (!RC)
1493      RC = MRI.getRegClass(LoopReg);
1494    Register R = MRI.createVirtualRegister(RC);
1495    if (InitReg.hasValue())
1496      MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1497    BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
1498        .addReg(InitReg.hasValue() ? *InitReg : undef(RC))
1499        .addMBB(PreheaderBB)
1500        .addReg(LoopReg)
1501        .addMBB(BB);
1502    if (!InitReg.hasValue())
1503      UndefPhis[LoopReg] = R;
1504    else
1505      Phis[{LoopReg, *InitReg}] = R;
1506    return R;
1507  }
1508  
1509  Register KernelRewriter::undef(const TargetRegisterClass *RC) {
1510    Register &R = Undefs[RC];
1511    if (R == 0) {
1512      // Create an IMPLICIT_DEF that defines this register if we need it.
1513      // All uses of this should be removed by the time we have finished unrolling
1514      // prologs and epilogs.
1515      R = MRI.createVirtualRegister(RC);
1516      auto *InsertBB = &PreheaderBB->getParent()->front();
1517      BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
1518              TII->get(TargetOpcode::IMPLICIT_DEF), R);
1519    }
1520    return R;
1521  }
1522  
1523  namespace {
1524  /// Describes an operand in the kernel of a pipelined loop. Characteristics of
1525  /// the operand are discovered, such as how many in-loop PHIs it has to jump
1526  /// through and defaults for these phis.
1527  class KernelOperandInfo {
1528    MachineBasicBlock *BB;
1529    MachineRegisterInfo &MRI;
1530    SmallVector<Register, 4> PhiDefaults;
1531    MachineOperand *Source;
1532    MachineOperand *Target;
1533  
1534  public:
1535    KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
1536                      const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
1537        : MRI(MRI) {
1538      Source = MO;
1539      BB = MO->getParent()->getParent();
1540      while (isRegInLoop(MO)) {
1541        MachineInstr *MI = MRI.getVRegDef(MO->getReg());
1542        if (MI->isFullCopy()) {
1543          MO = &MI->getOperand(1);
1544          continue;
1545        }
1546        if (!MI->isPHI())
1547          break;
1548        // If this is an illegal phi, don't count it in distance.
1549        if (IllegalPhis.count(MI)) {
1550          MO = &MI->getOperand(3);
1551          continue;
1552        }
1553  
1554        Register Default = getInitPhiReg(*MI, BB);
1555        MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
1556                                              : &MI->getOperand(3);
1557        PhiDefaults.push_back(Default);
1558      }
1559      Target = MO;
1560    }
1561  
1562    bool operator==(const KernelOperandInfo &Other) const {
1563      return PhiDefaults.size() == Other.PhiDefaults.size();
1564    }
1565  
1566    void print(raw_ostream &OS) const {
1567      OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
1568         << *Source->getParent();
1569    }
1570  
1571  private:
1572    bool isRegInLoop(MachineOperand *MO) {
1573      return MO->isReg() && MO->getReg().isVirtual() &&
1574             MRI.getVRegDef(MO->getReg())->getParent() == BB;
1575    }
1576  };
1577  } // namespace
1578  
1579  MachineBasicBlock *
1580  PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) {
1581    MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII);
1582    if (LPD == LPD_Front)
1583      PeeledFront.push_back(NewBB);
1584    else
1585      PeeledBack.push_front(NewBB);
1586    for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator();
1587         ++I, ++NI) {
1588      CanonicalMIs[&*I] = &*I;
1589      CanonicalMIs[&*NI] = &*I;
1590      BlockMIs[{NewBB, &*I}] = &*NI;
1591      BlockMIs[{BB, &*I}] = &*I;
1592    }
1593    return NewBB;
1594  }
1595  
1596  void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB,
1597                                                         int MinStage) {
1598    for (auto I = MB->getFirstInstrTerminator()->getReverseIterator();
1599         I != std::next(MB->getFirstNonPHI()->getReverseIterator());) {
1600      MachineInstr *MI = &*I++;
1601      int Stage = getStage(MI);
1602      if (Stage == -1 || Stage >= MinStage)
1603        continue;
1604  
1605      for (MachineOperand &DefMO : MI->defs()) {
1606        SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1607        for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1608          // Only PHIs can use values from this block by construction.
1609          // Match with the equivalent PHI in B.
1610          assert(UseMI.isPHI());
1611          Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1612                                                 MI->getParent());
1613          Subs.emplace_back(&UseMI, Reg);
1614        }
1615        for (auto &Sub : Subs)
1616          Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1617                                        *MRI.getTargetRegisterInfo());
1618      }
1619      if (LIS)
1620        LIS->RemoveMachineInstrFromMaps(*MI);
1621      MI->eraseFromParent();
1622    }
1623  }
1624  
1625  void PeelingModuloScheduleExpander::moveStageBetweenBlocks(
1626      MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) {
1627    auto InsertPt = DestBB->getFirstNonPHI();
1628    DenseMap<Register, Register> Remaps;
1629    for (auto I = SourceBB->getFirstNonPHI(); I != SourceBB->end();) {
1630      MachineInstr *MI = &*I++;
1631      if (MI->isPHI()) {
1632        // This is an illegal PHI. If we move any instructions using an illegal
1633        // PHI, we need to create a legal Phi.
1634        if (getStage(MI) != Stage) {
1635          // The legal Phi is not necessary if the illegal phi's stage
1636          // is being moved.
1637          Register PhiR = MI->getOperand(0).getReg();
1638          auto RC = MRI.getRegClass(PhiR);
1639          Register NR = MRI.createVirtualRegister(RC);
1640          MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(),
1641                                     DebugLoc(), TII->get(TargetOpcode::PHI), NR)
1642                                 .addReg(PhiR)
1643                                 .addMBB(SourceBB);
1644          BlockMIs[{DestBB, CanonicalMIs[MI]}] = NI;
1645          CanonicalMIs[NI] = CanonicalMIs[MI];
1646          Remaps[PhiR] = NR;
1647        }
1648      }
1649      if (getStage(MI) != Stage)
1650        continue;
1651      MI->removeFromParent();
1652      DestBB->insert(InsertPt, MI);
1653      auto *KernelMI = CanonicalMIs[MI];
1654      BlockMIs[{DestBB, KernelMI}] = MI;
1655      BlockMIs.erase({SourceBB, KernelMI});
1656    }
1657    SmallVector<MachineInstr *, 4> PhiToDelete;
1658    for (MachineInstr &MI : DestBB->phis()) {
1659      assert(MI.getNumOperands() == 3);
1660      MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg());
1661      // If the instruction referenced by the phi is moved inside the block
1662      // we don't need the phi anymore.
1663      if (getStage(Def) == Stage) {
1664        Register PhiReg = MI.getOperand(0).getReg();
1665        assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1);
1666        MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
1667        MI.getOperand(0).setReg(PhiReg);
1668        PhiToDelete.push_back(&MI);
1669      }
1670    }
1671    for (auto *P : PhiToDelete)
1672      P->eraseFromParent();
1673    InsertPt = DestBB->getFirstNonPHI();
1674    // Helper to clone Phi instructions into the destination block. We clone Phi
1675    // greedily to avoid combinatorial explosion of Phi instructions.
1676    auto clonePhi = [&](MachineInstr *Phi) {
1677      MachineInstr *NewMI = MF.CloneMachineInstr(Phi);
1678      DestBB->insert(InsertPt, NewMI);
1679      Register OrigR = Phi->getOperand(0).getReg();
1680      Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR));
1681      NewMI->getOperand(0).setReg(R);
1682      NewMI->getOperand(1).setReg(OrigR);
1683      NewMI->getOperand(2).setMBB(*DestBB->pred_begin());
1684      Remaps[OrigR] = R;
1685      CanonicalMIs[NewMI] = CanonicalMIs[Phi];
1686      BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI;
1687      PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi];
1688      return R;
1689    };
1690    for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) {
1691      for (MachineOperand &MO : I->uses()) {
1692        if (!MO.isReg())
1693          continue;
1694        if (Remaps.count(MO.getReg()))
1695          MO.setReg(Remaps[MO.getReg()]);
1696        else {
1697          // If we are using a phi from the source block we need to add a new phi
1698          // pointing to the old one.
1699          MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg());
1700          if (Use && Use->isPHI() && Use->getParent() == SourceBB) {
1701            Register R = clonePhi(Use);
1702            MO.setReg(R);
1703          }
1704        }
1705      }
1706    }
1707  }
1708  
1709  Register
1710  PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi,
1711                                                    MachineInstr *Phi) {
1712    unsigned distance = PhiNodeLoopIteration[Phi];
1713    MachineInstr *CanonicalUse = CanonicalPhi;
1714    Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg();
1715    for (unsigned I = 0; I < distance; ++I) {
1716      assert(CanonicalUse->isPHI());
1717      assert(CanonicalUse->getNumOperands() == 5);
1718      unsigned LoopRegIdx = 3, InitRegIdx = 1;
1719      if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent())
1720        std::swap(LoopRegIdx, InitRegIdx);
1721      CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg();
1722      CanonicalUse = MRI.getVRegDef(CanonicalUseReg);
1723    }
1724    return CanonicalUseReg;
1725  }
1726  
1727  void PeelingModuloScheduleExpander::peelPrologAndEpilogs() {
1728    BitVector LS(Schedule.getNumStages(), true);
1729    BitVector AS(Schedule.getNumStages(), true);
1730    LiveStages[BB] = LS;
1731    AvailableStages[BB] = AS;
1732  
1733    // Peel out the prologs.
1734    LS.reset();
1735    for (int I = 0; I < Schedule.getNumStages() - 1; ++I) {
1736      LS[I] = 1;
1737      Prologs.push_back(peelKernel(LPD_Front));
1738      LiveStages[Prologs.back()] = LS;
1739      AvailableStages[Prologs.back()] = LS;
1740    }
1741  
1742    // Create a block that will end up as the new loop exiting block (dominated by
1743    // all prologs and epilogs). It will only contain PHIs, in the same order as
1744    // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property
1745    // that the exiting block is a (sub) clone of BB. This in turn gives us the
1746    // property that any value deffed in BB but used outside of BB is used by a
1747    // PHI in the exiting block.
1748    MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock();
1749    EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1750    // Push out the epilogs, again in reverse order.
1751    // We can't assume anything about the minumum loop trip count at this point,
1752    // so emit a fairly complex epilog.
1753  
1754    // We first peel number of stages minus one epilogue. Then we remove dead
1755    // stages and reorder instructions based on their stage. If we have 3 stages
1756    // we generate first:
1757    // E0[3, 2, 1]
1758    // E1[3', 2']
1759    // E2[3'']
1760    // And then we move instructions based on their stages to have:
1761    // E0[3]
1762    // E1[2, 3']
1763    // E2[1, 2', 3'']
1764    // The transformation is legal because we only move instructions past
1765    // instructions of a previous loop iteration.
1766    for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) {
1767      Epilogs.push_back(peelKernel(LPD_Back));
1768      MachineBasicBlock *B = Epilogs.back();
1769      filterInstructions(B, Schedule.getNumStages() - I);
1770      // Keep track at which iteration each phi belongs to. We need it to know
1771      // what version of the variable to use during prologue/epilogue stitching.
1772      EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1773      for (auto Phi = B->begin(), IE = B->getFirstNonPHI(); Phi != IE; ++Phi)
1774        PhiNodeLoopIteration[&*Phi] = Schedule.getNumStages() - I;
1775    }
1776    for (size_t I = 0; I < Epilogs.size(); I++) {
1777      LS.reset();
1778      for (size_t J = I; J < Epilogs.size(); J++) {
1779        int Iteration = J;
1780        unsigned Stage = Schedule.getNumStages() - 1 + I - J;
1781        // Move stage one block at a time so that Phi nodes are updated correctly.
1782        for (size_t K = Iteration; K > I; K--)
1783          moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage);
1784        LS[Stage] = 1;
1785      }
1786      LiveStages[Epilogs[I]] = LS;
1787      AvailableStages[Epilogs[I]] = AS;
1788    }
1789  
1790    // Now we've defined all the prolog and epilog blocks as a fallthrough
1791    // sequence, add the edges that will be followed if the loop trip count is
1792    // lower than the number of stages (connecting prologs directly with epilogs).
1793    auto PI = Prologs.begin();
1794    auto EI = Epilogs.begin();
1795    assert(Prologs.size() == Epilogs.size());
1796    for (; PI != Prologs.end(); ++PI, ++EI) {
1797      MachineBasicBlock *Pred = *(*EI)->pred_begin();
1798      (*PI)->addSuccessor(*EI);
1799      for (MachineInstr &MI : (*EI)->phis()) {
1800        Register Reg = MI.getOperand(1).getReg();
1801        MachineInstr *Use = MRI.getUniqueVRegDef(Reg);
1802        if (Use && Use->getParent() == Pred) {
1803          MachineInstr *CanonicalUse = CanonicalMIs[Use];
1804          if (CanonicalUse->isPHI()) {
1805            // If the use comes from a phi we need to skip as many phi as the
1806            // distance between the epilogue and the kernel. Trace through the phi
1807            // chain to find the right value.
1808            Reg = getPhiCanonicalReg(CanonicalUse, Use);
1809          }
1810          Reg = getEquivalentRegisterIn(Reg, *PI);
1811        }
1812        MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false));
1813        MI.addOperand(MachineOperand::CreateMBB(*PI));
1814      }
1815    }
1816  
1817    // Create a list of all blocks in order.
1818    SmallVector<MachineBasicBlock *, 8> Blocks;
1819    llvm::copy(PeeledFront, std::back_inserter(Blocks));
1820    Blocks.push_back(BB);
1821    llvm::copy(PeeledBack, std::back_inserter(Blocks));
1822  
1823    // Iterate in reverse order over all instructions, remapping as we go.
1824    for (MachineBasicBlock *B : reverse(Blocks)) {
1825      for (auto I = B->getFirstInstrTerminator()->getReverseIterator();
1826           I != std::next(B->getFirstNonPHI()->getReverseIterator());) {
1827        MachineInstr *MI = &*I++;
1828        rewriteUsesOf(MI);
1829      }
1830    }
1831    for (auto *MI : IllegalPhisToDelete) {
1832      if (LIS)
1833        LIS->RemoveMachineInstrFromMaps(*MI);
1834      MI->eraseFromParent();
1835    }
1836    IllegalPhisToDelete.clear();
1837  
1838    // Now all remapping has been done, we're free to optimize the generated code.
1839    for (MachineBasicBlock *B : reverse(Blocks))
1840      EliminateDeadPhis(B, MRI, LIS);
1841    EliminateDeadPhis(ExitingBB, MRI, LIS);
1842  }
1843  
1844  MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() {
1845    MachineFunction &MF = *BB->getParent();
1846    MachineBasicBlock *Exit = *BB->succ_begin();
1847    if (Exit == BB)
1848      Exit = *std::next(BB->succ_begin());
1849  
1850    MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
1851    MF.insert(std::next(BB->getIterator()), NewBB);
1852  
1853    // Clone all phis in BB into NewBB and rewrite.
1854    for (MachineInstr &MI : BB->phis()) {
1855      auto RC = MRI.getRegClass(MI.getOperand(0).getReg());
1856      Register OldR = MI.getOperand(3).getReg();
1857      Register R = MRI.createVirtualRegister(RC);
1858      SmallVector<MachineInstr *, 4> Uses;
1859      for (MachineInstr &Use : MRI.use_instructions(OldR))
1860        if (Use.getParent() != BB)
1861          Uses.push_back(&Use);
1862      for (MachineInstr *Use : Uses)
1863        Use->substituteRegister(OldR, R, /*SubIdx=*/0,
1864                                *MRI.getTargetRegisterInfo());
1865      MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1866          .addReg(OldR)
1867          .addMBB(BB);
1868      BlockMIs[{NewBB, &MI}] = NI;
1869      CanonicalMIs[NI] = &MI;
1870    }
1871    BB->replaceSuccessor(Exit, NewBB);
1872    Exit->replacePhiUsesWith(BB, NewBB);
1873    NewBB->addSuccessor(Exit);
1874  
1875    MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1876    SmallVector<MachineOperand, 4> Cond;
1877    bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond);
1878    (void)CanAnalyzeBr;
1879    assert(CanAnalyzeBr && "Must be able to analyze the loop branch!");
1880    TII->removeBranch(*BB);
1881    TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB,
1882                      Cond, DebugLoc());
1883    TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc());
1884    return NewBB;
1885  }
1886  
1887  Register
1888  PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg,
1889                                                         MachineBasicBlock *BB) {
1890    MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
1891    unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg);
1892    return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg();
1893  }
1894  
1895  void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) {
1896    if (MI->isPHI()) {
1897      // This is an illegal PHI. The loop-carried (desired) value is operand 3,
1898      // and it is produced by this block.
1899      Register PhiR = MI->getOperand(0).getReg();
1900      Register R = MI->getOperand(3).getReg();
1901      int RMIStage = getStage(MRI.getUniqueVRegDef(R));
1902      if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage))
1903        R = MI->getOperand(1).getReg();
1904      MRI.setRegClass(R, MRI.getRegClass(PhiR));
1905      MRI.replaceRegWith(PhiR, R);
1906      // Postpone deleting the Phi as it may be referenced by BlockMIs and used
1907      // later to figure out how to remap registers.
1908      MI->getOperand(0).setReg(PhiR);
1909      IllegalPhisToDelete.push_back(MI);
1910      return;
1911    }
1912  
1913    int Stage = getStage(MI);
1914    if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 ||
1915        LiveStages[MI->getParent()].test(Stage))
1916      // Instruction is live, no rewriting to do.
1917      return;
1918  
1919    for (MachineOperand &DefMO : MI->defs()) {
1920      SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1921      for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1922        // Only PHIs can use values from this block by construction.
1923        // Match with the equivalent PHI in B.
1924        assert(UseMI.isPHI());
1925        Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1926                                               MI->getParent());
1927        Subs.emplace_back(&UseMI, Reg);
1928      }
1929      for (auto &Sub : Subs)
1930        Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1931                                      *MRI.getTargetRegisterInfo());
1932    }
1933    if (LIS)
1934      LIS->RemoveMachineInstrFromMaps(*MI);
1935    MI->eraseFromParent();
1936  }
1937  
1938  void PeelingModuloScheduleExpander::fixupBranches() {
1939    // Work outwards from the kernel.
1940    bool KernelDisposed = false;
1941    int TC = Schedule.getNumStages() - 1;
1942    for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend();
1943         ++PI, ++EI, --TC) {
1944      MachineBasicBlock *Prolog = *PI;
1945      MachineBasicBlock *Fallthrough = *Prolog->succ_begin();
1946      MachineBasicBlock *Epilog = *EI;
1947      SmallVector<MachineOperand, 4> Cond;
1948      TII->removeBranch(*Prolog);
1949      Optional<bool> StaticallyGreater =
1950          LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond);
1951      if (!StaticallyGreater.hasValue()) {
1952        LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n");
1953        // Dynamically branch based on Cond.
1954        TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc());
1955      } else if (*StaticallyGreater == false) {
1956        LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n");
1957        // Prolog never falls through; branch to epilog and orphan interior
1958        // blocks. Leave it to unreachable-block-elim to clean up.
1959        Prolog->removeSuccessor(Fallthrough);
1960        for (MachineInstr &P : Fallthrough->phis()) {
1961          P.RemoveOperand(2);
1962          P.RemoveOperand(1);
1963        }
1964        TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc());
1965        KernelDisposed = true;
1966      } else {
1967        LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n");
1968        // Prolog always falls through; remove incoming values in epilog.
1969        Prolog->removeSuccessor(Epilog);
1970        for (MachineInstr &P : Epilog->phis()) {
1971          P.RemoveOperand(4);
1972          P.RemoveOperand(3);
1973        }
1974      }
1975    }
1976  
1977    if (!KernelDisposed) {
1978      LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1));
1979      LoopInfo->setPreheader(Prologs.back());
1980    } else {
1981      LoopInfo->disposed();
1982    }
1983  }
1984  
1985  void PeelingModuloScheduleExpander::rewriteKernel() {
1986    KernelRewriter KR(*Schedule.getLoop(), Schedule);
1987    KR.rewrite();
1988  }
1989  
1990  void PeelingModuloScheduleExpander::expand() {
1991    BB = Schedule.getLoop()->getTopBlock();
1992    Preheader = Schedule.getLoop()->getLoopPreheader();
1993    LLVM_DEBUG(Schedule.dump());
1994    LoopInfo = TII->analyzeLoopForPipelining(BB);
1995    assert(LoopInfo);
1996  
1997    rewriteKernel();
1998    peelPrologAndEpilogs();
1999    fixupBranches();
2000  }
2001  
2002  void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
2003    BB = Schedule.getLoop()->getTopBlock();
2004    Preheader = Schedule.getLoop()->getLoopPreheader();
2005  
2006    // Dump the schedule before we invalidate and remap all its instructions.
2007    // Stash it in a string so we can print it if we found an error.
2008    std::string ScheduleDump;
2009    raw_string_ostream OS(ScheduleDump);
2010    Schedule.print(OS);
2011    OS.flush();
2012  
2013    // First, run the normal ModuleScheduleExpander. We don't support any
2014    // InstrChanges.
2015    assert(LIS && "Requires LiveIntervals!");
2016    ModuloScheduleExpander MSE(MF, Schedule, *LIS,
2017                               ModuloScheduleExpander::InstrChangesTy());
2018    MSE.expand();
2019    MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
2020    if (!ExpandedKernel) {
2021      // The expander optimized away the kernel. We can't do any useful checking.
2022      MSE.cleanup();
2023      return;
2024    }
2025    // Before running the KernelRewriter, re-add BB into the CFG.
2026    Preheader->addSuccessor(BB);
2027  
2028    // Now run the new expansion algorithm.
2029    KernelRewriter KR(*Schedule.getLoop(), Schedule);
2030    KR.rewrite();
2031    peelPrologAndEpilogs();
2032  
2033    // Collect all illegal phis that the new algorithm created. We'll give these
2034    // to KernelOperandInfo.
2035    SmallPtrSet<MachineInstr *, 4> IllegalPhis;
2036    for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
2037      if (NI->isPHI())
2038        IllegalPhis.insert(&*NI);
2039    }
2040  
2041    // Co-iterate across both kernels. We expect them to be identical apart from
2042    // phis and full COPYs (we look through both).
2043    SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
2044    auto OI = ExpandedKernel->begin();
2045    auto NI = BB->begin();
2046    for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
2047      while (OI->isPHI() || OI->isFullCopy())
2048        ++OI;
2049      while (NI->isPHI() || NI->isFullCopy())
2050        ++NI;
2051      assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!");
2052      // Analyze every operand separately.
2053      for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
2054           OOpI != OI->operands_end(); ++OOpI, ++NOpI)
2055        KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
2056                          KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
2057    }
2058  
2059    bool Failed = false;
2060    for (auto &OldAndNew : KOIs) {
2061      if (OldAndNew.first == OldAndNew.second)
2062        continue;
2063      Failed = true;
2064      errs() << "Modulo kernel validation error: [\n";
2065      errs() << " [golden] ";
2066      OldAndNew.first.print(errs());
2067      errs() << "          ";
2068      OldAndNew.second.print(errs());
2069      errs() << "]\n";
2070    }
2071  
2072    if (Failed) {
2073      errs() << "Golden reference kernel:\n";
2074      ExpandedKernel->print(errs());
2075      errs() << "New kernel:\n";
2076      BB->print(errs());
2077      errs() << ScheduleDump;
2078      report_fatal_error(
2079          "Modulo kernel validation (-pipeliner-experimental-cg) failed");
2080    }
2081  
2082    // Cleanup by removing BB from the CFG again as the original
2083    // ModuloScheduleExpander intended.
2084    Preheader->removeSuccessor(BB);
2085    MSE.cleanup();
2086  }
2087  
2088  //===----------------------------------------------------------------------===//
2089  // ModuloScheduleTestPass implementation
2090  //===----------------------------------------------------------------------===//
2091  // This pass constructs a ModuloSchedule from its module and runs
2092  // ModuloScheduleExpander.
2093  //
2094  // The module is expected to contain a single-block analyzable loop.
2095  // The total order of instructions is taken from the loop as-is.
2096  // Instructions are expected to be annotated with a PostInstrSymbol.
2097  // This PostInstrSymbol must have the following format:
2098  //  "Stage=%d Cycle=%d".
2099  //===----------------------------------------------------------------------===//
2100  
2101  namespace {
2102  class ModuloScheduleTest : public MachineFunctionPass {
2103  public:
2104    static char ID;
2105  
2106    ModuloScheduleTest() : MachineFunctionPass(ID) {
2107      initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
2108    }
2109  
2110    bool runOnMachineFunction(MachineFunction &MF) override;
2111    void runOnLoop(MachineFunction &MF, MachineLoop &L);
2112  
2113    void getAnalysisUsage(AnalysisUsage &AU) const override {
2114      AU.addRequired<MachineLoopInfo>();
2115      AU.addRequired<LiveIntervals>();
2116      MachineFunctionPass::getAnalysisUsage(AU);
2117    }
2118  };
2119  } // namespace
2120  
2121  char ModuloScheduleTest::ID = 0;
2122  
2123  INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",
2124                        "Modulo Schedule test pass", false, false)
2125  INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
2126  INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
2127  INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",
2128                      "Modulo Schedule test pass", false, false)
2129  
2130  bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
2131    MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
2132    for (auto *L : MLI) {
2133      if (L->getTopBlock() != L->getBottomBlock())
2134        continue;
2135      runOnLoop(MF, *L);
2136      return false;
2137    }
2138    return false;
2139  }
2140  
2141  static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
2142    std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
2143    std::pair<StringRef, StringRef> StageTokenAndValue =
2144        getToken(StageAndCycle.first, "-");
2145    std::pair<StringRef, StringRef> CycleTokenAndValue =
2146        getToken(StageAndCycle.second, "-");
2147    if (StageTokenAndValue.first != "Stage" ||
2148        CycleTokenAndValue.first != "_Cycle") {
2149      llvm_unreachable(
2150          "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
2151      return;
2152    }
2153  
2154    StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
2155    CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);
2156  
2157    dbgs() << "  Stage=" << Stage << ", Cycle=" << Cycle << "\n";
2158  }
2159  
2160  void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
2161    LiveIntervals &LIS = getAnalysis<LiveIntervals>();
2162    MachineBasicBlock *BB = L.getTopBlock();
2163    dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";
2164  
2165    DenseMap<MachineInstr *, int> Cycle, Stage;
2166    std::vector<MachineInstr *> Instrs;
2167    for (MachineInstr &MI : *BB) {
2168      if (MI.isTerminator())
2169        continue;
2170      Instrs.push_back(&MI);
2171      if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
2172        dbgs() << "Parsing post-instr symbol for " << MI;
2173        parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
2174      }
2175    }
2176  
2177    ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
2178                      std::move(Stage));
2179    ModuloScheduleExpander MSE(
2180        MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
2181    MSE.expand();
2182    MSE.cleanup();
2183  }
2184  
2185  //===----------------------------------------------------------------------===//
2186  // ModuloScheduleTestAnnotater implementation
2187  //===----------------------------------------------------------------------===//
2188  
2189  void ModuloScheduleTestAnnotater::annotate() {
2190    for (MachineInstr *MI : S.getInstructions()) {
2191      SmallVector<char, 16> SV;
2192      raw_svector_ostream OS(SV);
2193      OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
2194      MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
2195      MI->setPostInstrSymbol(MF, Sym);
2196    }
2197  }
2198