18bcb0991SDimitry Andric //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
28bcb0991SDimitry Andric //
38bcb0991SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
48bcb0991SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
58bcb0991SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
68bcb0991SDimitry Andric //
78bcb0991SDimitry Andric //===----------------------------------------------------------------------===//
88bcb0991SDimitry Andric
98bcb0991SDimitry Andric #include "llvm/CodeGen/ModuloSchedule.h"
108bcb0991SDimitry Andric #include "llvm/ADT/StringExtras.h"
115ffd83dbSDimitry Andric #include "llvm/Analysis/MemoryLocation.h"
128bcb0991SDimitry Andric #include "llvm/CodeGen/LiveIntervals.h"
138bcb0991SDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h"
1481ad6265SDimitry Andric #include "llvm/CodeGen/MachineLoopInfo.h"
158bcb0991SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h"
16480093f4SDimitry Andric #include "llvm/InitializePasses.h"
178bcb0991SDimitry Andric #include "llvm/MC/MCContext.h"
188bcb0991SDimitry Andric #include "llvm/Support/Debug.h"
198bcb0991SDimitry Andric #include "llvm/Support/ErrorHandling.h"
208bcb0991SDimitry Andric #include "llvm/Support/raw_ostream.h"
218bcb0991SDimitry Andric
228bcb0991SDimitry Andric #define DEBUG_TYPE "pipeliner"
238bcb0991SDimitry Andric using namespace llvm;
248bcb0991SDimitry Andric
250fca6ea1SDimitry Andric static cl::opt<bool> SwapBranchTargetsMVE(
260fca6ea1SDimitry Andric "pipeliner-swap-branch-targets-mve", cl::Hidden, cl::init(false),
270fca6ea1SDimitry Andric cl::desc("Swap target blocks of a conditional branch for MVE expander"));
280fca6ea1SDimitry Andric
print(raw_ostream & OS)298bcb0991SDimitry Andric void ModuloSchedule::print(raw_ostream &OS) {
308bcb0991SDimitry Andric for (MachineInstr *MI : ScheduledInstrs)
318bcb0991SDimitry Andric OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
328bcb0991SDimitry Andric }
338bcb0991SDimitry Andric
348bcb0991SDimitry Andric //===----------------------------------------------------------------------===//
358bcb0991SDimitry Andric // ModuloScheduleExpander implementation
368bcb0991SDimitry Andric //===----------------------------------------------------------------------===//
378bcb0991SDimitry Andric
388bcb0991SDimitry Andric /// Return the register values for the operands of a Phi instruction.
398bcb0991SDimitry Andric /// This function assume the instruction is a Phi.
getPhiRegs(MachineInstr & Phi,MachineBasicBlock * Loop,unsigned & InitVal,unsigned & LoopVal)408bcb0991SDimitry Andric static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
418bcb0991SDimitry Andric unsigned &InitVal, unsigned &LoopVal) {
428bcb0991SDimitry Andric assert(Phi.isPHI() && "Expecting a Phi.");
438bcb0991SDimitry Andric
448bcb0991SDimitry Andric InitVal = 0;
458bcb0991SDimitry Andric LoopVal = 0;
468bcb0991SDimitry Andric for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
478bcb0991SDimitry Andric if (Phi.getOperand(i + 1).getMBB() != Loop)
488bcb0991SDimitry Andric InitVal = Phi.getOperand(i).getReg();
498bcb0991SDimitry Andric else
508bcb0991SDimitry Andric LoopVal = Phi.getOperand(i).getReg();
518bcb0991SDimitry Andric
528bcb0991SDimitry Andric assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
538bcb0991SDimitry Andric }
548bcb0991SDimitry Andric
558bcb0991SDimitry Andric /// Return the Phi register value that comes from the incoming block.
getInitPhiReg(MachineInstr & Phi,MachineBasicBlock * LoopBB)568bcb0991SDimitry Andric static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
578bcb0991SDimitry Andric for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
588bcb0991SDimitry Andric if (Phi.getOperand(i + 1).getMBB() != LoopBB)
598bcb0991SDimitry Andric return Phi.getOperand(i).getReg();
608bcb0991SDimitry Andric return 0;
618bcb0991SDimitry Andric }
628bcb0991SDimitry Andric
638bcb0991SDimitry Andric /// Return the Phi register value that comes the loop block.
getLoopPhiReg(MachineInstr & Phi,MachineBasicBlock * LoopBB)648bcb0991SDimitry Andric static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
658bcb0991SDimitry Andric for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
668bcb0991SDimitry Andric if (Phi.getOperand(i + 1).getMBB() == LoopBB)
678bcb0991SDimitry Andric return Phi.getOperand(i).getReg();
688bcb0991SDimitry Andric return 0;
698bcb0991SDimitry Andric }
708bcb0991SDimitry Andric
expand()718bcb0991SDimitry Andric void ModuloScheduleExpander::expand() {
728bcb0991SDimitry Andric BB = Schedule.getLoop()->getTopBlock();
738bcb0991SDimitry Andric Preheader = *BB->pred_begin();
748bcb0991SDimitry Andric if (Preheader == BB)
758bcb0991SDimitry Andric Preheader = *std::next(BB->pred_begin());
768bcb0991SDimitry Andric
778bcb0991SDimitry Andric // Iterate over the definitions in each instruction, and compute the
788bcb0991SDimitry Andric // stage difference for each use. Keep the maximum value.
798bcb0991SDimitry Andric for (MachineInstr *MI : Schedule.getInstructions()) {
808bcb0991SDimitry Andric int DefStage = Schedule.getStage(MI);
8106c3fb27SDimitry Andric for (const MachineOperand &Op : MI->all_defs()) {
828bcb0991SDimitry Andric Register Reg = Op.getReg();
838bcb0991SDimitry Andric unsigned MaxDiff = 0;
848bcb0991SDimitry Andric bool PhiIsSwapped = false;
85349cc55cSDimitry Andric for (MachineOperand &UseOp : MRI.use_operands(Reg)) {
868bcb0991SDimitry Andric MachineInstr *UseMI = UseOp.getParent();
878bcb0991SDimitry Andric int UseStage = Schedule.getStage(UseMI);
888bcb0991SDimitry Andric unsigned Diff = 0;
898bcb0991SDimitry Andric if (UseStage != -1 && UseStage >= DefStage)
908bcb0991SDimitry Andric Diff = UseStage - DefStage;
918bcb0991SDimitry Andric if (MI->isPHI()) {
928bcb0991SDimitry Andric if (isLoopCarried(*MI))
938bcb0991SDimitry Andric ++Diff;
948bcb0991SDimitry Andric else
958bcb0991SDimitry Andric PhiIsSwapped = true;
968bcb0991SDimitry Andric }
978bcb0991SDimitry Andric MaxDiff = std::max(Diff, MaxDiff);
988bcb0991SDimitry Andric }
998bcb0991SDimitry Andric RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
1008bcb0991SDimitry Andric }
1018bcb0991SDimitry Andric }
1028bcb0991SDimitry Andric
1038bcb0991SDimitry Andric generatePipelinedLoop();
1048bcb0991SDimitry Andric }
1058bcb0991SDimitry Andric
generatePipelinedLoop()1068bcb0991SDimitry Andric void ModuloScheduleExpander::generatePipelinedLoop() {
1078bcb0991SDimitry Andric LoopInfo = TII->analyzeLoopForPipelining(BB);
1088bcb0991SDimitry Andric assert(LoopInfo && "Must be able to analyze loop!");
1098bcb0991SDimitry Andric
1108bcb0991SDimitry Andric // Create a new basic block for the kernel and add it to the CFG.
1118bcb0991SDimitry Andric MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
1128bcb0991SDimitry Andric
1138bcb0991SDimitry Andric unsigned MaxStageCount = Schedule.getNumStages() - 1;
1148bcb0991SDimitry Andric
1158bcb0991SDimitry Andric // Remember the registers that are used in different stages. The index is
1168bcb0991SDimitry Andric // the iteration, or stage, that the instruction is scheduled in. This is
1178bcb0991SDimitry Andric // a map between register names in the original block and the names created
1188bcb0991SDimitry Andric // in each stage of the pipelined loop.
1198bcb0991SDimitry Andric ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
120bdd1243dSDimitry Andric
121bdd1243dSDimitry Andric // The renaming destination by Phis for the registers across stages.
122bdd1243dSDimitry Andric // This map is updated during Phis generation to point to the most recent
123bdd1243dSDimitry Andric // renaming destination.
124bdd1243dSDimitry Andric ValueMapTy *VRMapPhi = new ValueMapTy[(MaxStageCount + 1) * 2];
125bdd1243dSDimitry Andric
1268bcb0991SDimitry Andric InstrMapTy InstrMap;
1278bcb0991SDimitry Andric
1288bcb0991SDimitry Andric SmallVector<MachineBasicBlock *, 4> PrologBBs;
1298bcb0991SDimitry Andric
1308bcb0991SDimitry Andric // Generate the prolog instructions that set up the pipeline.
1318bcb0991SDimitry Andric generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
1328bcb0991SDimitry Andric MF.insert(BB->getIterator(), KernelBB);
133*c80e69b0SDimitry Andric LIS.insertMBBInMaps(KernelBB);
1348bcb0991SDimitry Andric
1358bcb0991SDimitry Andric // Rearrange the instructions to generate the new, pipelined loop,
1368bcb0991SDimitry Andric // and update register names as needed.
1378bcb0991SDimitry Andric for (MachineInstr *CI : Schedule.getInstructions()) {
1388bcb0991SDimitry Andric if (CI->isPHI())
1398bcb0991SDimitry Andric continue;
1408bcb0991SDimitry Andric unsigned StageNum = Schedule.getStage(CI);
1418bcb0991SDimitry Andric MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
1428bcb0991SDimitry Andric updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
1438bcb0991SDimitry Andric KernelBB->push_back(NewMI);
1448bcb0991SDimitry Andric InstrMap[NewMI] = CI;
1458bcb0991SDimitry Andric }
1468bcb0991SDimitry Andric
1478bcb0991SDimitry Andric // Copy any terminator instructions to the new kernel, and update
1488bcb0991SDimitry Andric // names as needed.
149349cc55cSDimitry Andric for (MachineInstr &MI : BB->terminators()) {
150349cc55cSDimitry Andric MachineInstr *NewMI = MF.CloneMachineInstr(&MI);
1518bcb0991SDimitry Andric updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
1528bcb0991SDimitry Andric KernelBB->push_back(NewMI);
153349cc55cSDimitry Andric InstrMap[NewMI] = &MI;
1548bcb0991SDimitry Andric }
1558bcb0991SDimitry Andric
1568bcb0991SDimitry Andric NewKernel = KernelBB;
1578bcb0991SDimitry Andric KernelBB->transferSuccessors(BB);
1588bcb0991SDimitry Andric KernelBB->replaceSuccessor(BB, KernelBB);
1598bcb0991SDimitry Andric
1608bcb0991SDimitry Andric generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
1618bcb0991SDimitry Andric InstrMap, MaxStageCount, MaxStageCount, false);
162bdd1243dSDimitry Andric generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, VRMapPhi,
163bdd1243dSDimitry Andric InstrMap, MaxStageCount, MaxStageCount, false);
1648bcb0991SDimitry Andric
1658bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
1668bcb0991SDimitry Andric
1678bcb0991SDimitry Andric SmallVector<MachineBasicBlock *, 4> EpilogBBs;
1688bcb0991SDimitry Andric // Generate the epilog instructions to complete the pipeline.
169bdd1243dSDimitry Andric generateEpilog(MaxStageCount, KernelBB, BB, VRMap, VRMapPhi, EpilogBBs,
170bdd1243dSDimitry Andric PrologBBs);
1718bcb0991SDimitry Andric
1728bcb0991SDimitry Andric // We need this step because the register allocation doesn't handle some
1738bcb0991SDimitry Andric // situations well, so we insert copies to help out.
1748bcb0991SDimitry Andric splitLifetimes(KernelBB, EpilogBBs);
1758bcb0991SDimitry Andric
1768bcb0991SDimitry Andric // Remove dead instructions due to loop induction variables.
1778bcb0991SDimitry Andric removeDeadInstructions(KernelBB, EpilogBBs);
1788bcb0991SDimitry Andric
1798bcb0991SDimitry Andric // Add branches between prolog and epilog blocks.
1808bcb0991SDimitry Andric addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
1818bcb0991SDimitry Andric
1828bcb0991SDimitry Andric delete[] VRMap;
183bdd1243dSDimitry Andric delete[] VRMapPhi;
1848bcb0991SDimitry Andric }
1858bcb0991SDimitry Andric
cleanup()1868bcb0991SDimitry Andric void ModuloScheduleExpander::cleanup() {
1878bcb0991SDimitry Andric // Remove the original loop since it's no longer referenced.
1888bcb0991SDimitry Andric for (auto &I : *BB)
1898bcb0991SDimitry Andric LIS.RemoveMachineInstrFromMaps(I);
1908bcb0991SDimitry Andric BB->clear();
1918bcb0991SDimitry Andric BB->eraseFromParent();
1928bcb0991SDimitry Andric }
1938bcb0991SDimitry Andric
1948bcb0991SDimitry Andric /// Generate the pipeline prolog code.
generateProlog(unsigned LastStage,MachineBasicBlock * KernelBB,ValueMapTy * VRMap,MBBVectorTy & PrologBBs)1958bcb0991SDimitry Andric void ModuloScheduleExpander::generateProlog(unsigned LastStage,
1968bcb0991SDimitry Andric MachineBasicBlock *KernelBB,
1978bcb0991SDimitry Andric ValueMapTy *VRMap,
1988bcb0991SDimitry Andric MBBVectorTy &PrologBBs) {
1998bcb0991SDimitry Andric MachineBasicBlock *PredBB = Preheader;
2008bcb0991SDimitry Andric InstrMapTy InstrMap;
2018bcb0991SDimitry Andric
2028bcb0991SDimitry Andric // Generate a basic block for each stage, not including the last stage,
2038bcb0991SDimitry Andric // which will be generated in the kernel. Each basic block may contain
2048bcb0991SDimitry Andric // instructions from multiple stages/iterations.
2058bcb0991SDimitry Andric for (unsigned i = 0; i < LastStage; ++i) {
2068bcb0991SDimitry Andric // Create and insert the prolog basic block prior to the original loop
2078bcb0991SDimitry Andric // basic block. The original loop is removed later.
2088bcb0991SDimitry Andric MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2098bcb0991SDimitry Andric PrologBBs.push_back(NewBB);
2108bcb0991SDimitry Andric MF.insert(BB->getIterator(), NewBB);
2118bcb0991SDimitry Andric NewBB->transferSuccessors(PredBB);
2128bcb0991SDimitry Andric PredBB->addSuccessor(NewBB);
2138bcb0991SDimitry Andric PredBB = NewBB;
214*c80e69b0SDimitry Andric LIS.insertMBBInMaps(NewBB);
2158bcb0991SDimitry Andric
2168bcb0991SDimitry Andric // Generate instructions for each appropriate stage. Process instructions
2178bcb0991SDimitry Andric // in original program order.
2188bcb0991SDimitry Andric for (int StageNum = i; StageNum >= 0; --StageNum) {
2198bcb0991SDimitry Andric for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2208bcb0991SDimitry Andric BBE = BB->getFirstTerminator();
2218bcb0991SDimitry Andric BBI != BBE; ++BBI) {
2228bcb0991SDimitry Andric if (Schedule.getStage(&*BBI) == StageNum) {
2238bcb0991SDimitry Andric if (BBI->isPHI())
2248bcb0991SDimitry Andric continue;
2258bcb0991SDimitry Andric MachineInstr *NewMI =
2268bcb0991SDimitry Andric cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
2278bcb0991SDimitry Andric updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
2288bcb0991SDimitry Andric NewBB->push_back(NewMI);
2298bcb0991SDimitry Andric InstrMap[NewMI] = &*BBI;
2308bcb0991SDimitry Andric }
2318bcb0991SDimitry Andric }
2328bcb0991SDimitry Andric }
2338bcb0991SDimitry Andric rewritePhiValues(NewBB, i, VRMap, InstrMap);
2348bcb0991SDimitry Andric LLVM_DEBUG({
2358bcb0991SDimitry Andric dbgs() << "prolog:\n";
2368bcb0991SDimitry Andric NewBB->dump();
2378bcb0991SDimitry Andric });
2388bcb0991SDimitry Andric }
2398bcb0991SDimitry Andric
2408bcb0991SDimitry Andric PredBB->replaceSuccessor(BB, KernelBB);
2418bcb0991SDimitry Andric
2428bcb0991SDimitry Andric // Check if we need to remove the branch from the preheader to the original
2438bcb0991SDimitry Andric // loop, and replace it with a branch to the new loop.
2448bcb0991SDimitry Andric unsigned numBranches = TII->removeBranch(*Preheader);
2458bcb0991SDimitry Andric if (numBranches) {
2468bcb0991SDimitry Andric SmallVector<MachineOperand, 0> Cond;
2478bcb0991SDimitry Andric TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
2488bcb0991SDimitry Andric }
2498bcb0991SDimitry Andric }
2508bcb0991SDimitry Andric
2518bcb0991SDimitry Andric /// Generate the pipeline epilog code. The epilog code finishes the iterations
2528bcb0991SDimitry Andric /// that were started in either the prolog or the kernel. We create a basic
2538bcb0991SDimitry Andric /// block for each stage that needs to complete.
generateEpilog(unsigned LastStage,MachineBasicBlock * KernelBB,MachineBasicBlock * OrigBB,ValueMapTy * VRMap,ValueMapTy * VRMapPhi,MBBVectorTy & EpilogBBs,MBBVectorTy & PrologBBs)25481ad6265SDimitry Andric void ModuloScheduleExpander::generateEpilog(
25581ad6265SDimitry Andric unsigned LastStage, MachineBasicBlock *KernelBB, MachineBasicBlock *OrigBB,
256bdd1243dSDimitry Andric ValueMapTy *VRMap, ValueMapTy *VRMapPhi, MBBVectorTy &EpilogBBs,
257bdd1243dSDimitry Andric MBBVectorTy &PrologBBs) {
2588bcb0991SDimitry Andric // We need to change the branch from the kernel to the first epilog block, so
2598bcb0991SDimitry Andric // this call to analyze branch uses the kernel rather than the original BB.
2608bcb0991SDimitry Andric MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2618bcb0991SDimitry Andric SmallVector<MachineOperand, 4> Cond;
2628bcb0991SDimitry Andric bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
2638bcb0991SDimitry Andric assert(!checkBranch && "generateEpilog must be able to analyze the branch");
2648bcb0991SDimitry Andric if (checkBranch)
2658bcb0991SDimitry Andric return;
2668bcb0991SDimitry Andric
2678bcb0991SDimitry Andric MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
2688bcb0991SDimitry Andric if (*LoopExitI == KernelBB)
2698bcb0991SDimitry Andric ++LoopExitI;
2708bcb0991SDimitry Andric assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
2718bcb0991SDimitry Andric MachineBasicBlock *LoopExitBB = *LoopExitI;
2728bcb0991SDimitry Andric
2738bcb0991SDimitry Andric MachineBasicBlock *PredBB = KernelBB;
2748bcb0991SDimitry Andric MachineBasicBlock *EpilogStart = LoopExitBB;
2758bcb0991SDimitry Andric InstrMapTy InstrMap;
2768bcb0991SDimitry Andric
2778bcb0991SDimitry Andric // Generate a basic block for each stage, not including the last stage,
2788bcb0991SDimitry Andric // which was generated for the kernel. Each basic block may contain
2798bcb0991SDimitry Andric // instructions from multiple stages/iterations.
2808bcb0991SDimitry Andric int EpilogStage = LastStage + 1;
2818bcb0991SDimitry Andric for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
2828bcb0991SDimitry Andric MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
2838bcb0991SDimitry Andric EpilogBBs.push_back(NewBB);
2848bcb0991SDimitry Andric MF.insert(BB->getIterator(), NewBB);
2858bcb0991SDimitry Andric
2868bcb0991SDimitry Andric PredBB->replaceSuccessor(LoopExitBB, NewBB);
2878bcb0991SDimitry Andric NewBB->addSuccessor(LoopExitBB);
288*c80e69b0SDimitry Andric LIS.insertMBBInMaps(NewBB);
2898bcb0991SDimitry Andric
2908bcb0991SDimitry Andric if (EpilogStart == LoopExitBB)
2918bcb0991SDimitry Andric EpilogStart = NewBB;
2928bcb0991SDimitry Andric
2938bcb0991SDimitry Andric // Add instructions to the epilog depending on the current block.
2948bcb0991SDimitry Andric // Process instructions in original program order.
2958bcb0991SDimitry Andric for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
2968bcb0991SDimitry Andric for (auto &BBI : *BB) {
2978bcb0991SDimitry Andric if (BBI.isPHI())
2988bcb0991SDimitry Andric continue;
2998bcb0991SDimitry Andric MachineInstr *In = &BBI;
3008bcb0991SDimitry Andric if ((unsigned)Schedule.getStage(In) == StageNum) {
3018bcb0991SDimitry Andric // Instructions with memoperands in the epilog are updated with
3028bcb0991SDimitry Andric // conservative values.
3038bcb0991SDimitry Andric MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
3048bcb0991SDimitry Andric updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
3058bcb0991SDimitry Andric NewBB->push_back(NewMI);
3068bcb0991SDimitry Andric InstrMap[NewMI] = In;
3078bcb0991SDimitry Andric }
3088bcb0991SDimitry Andric }
3098bcb0991SDimitry Andric }
3108bcb0991SDimitry Andric generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
3118bcb0991SDimitry Andric InstrMap, LastStage, EpilogStage, i == 1);
312bdd1243dSDimitry Andric generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, VRMapPhi,
313bdd1243dSDimitry Andric InstrMap, LastStage, EpilogStage, i == 1);
3148bcb0991SDimitry Andric PredBB = NewBB;
3158bcb0991SDimitry Andric
3168bcb0991SDimitry Andric LLVM_DEBUG({
3178bcb0991SDimitry Andric dbgs() << "epilog:\n";
3188bcb0991SDimitry Andric NewBB->dump();
3198bcb0991SDimitry Andric });
3208bcb0991SDimitry Andric }
3218bcb0991SDimitry Andric
3228bcb0991SDimitry Andric // Fix any Phi nodes in the loop exit block.
3238bcb0991SDimitry Andric LoopExitBB->replacePhiUsesWith(BB, PredBB);
3248bcb0991SDimitry Andric
3258bcb0991SDimitry Andric // Create a branch to the new epilog from the kernel.
3268bcb0991SDimitry Andric // Remove the original branch and add a new branch to the epilog.
3278bcb0991SDimitry Andric TII->removeBranch(*KernelBB);
32881ad6265SDimitry Andric assert((OrigBB == TBB || OrigBB == FBB) &&
32981ad6265SDimitry Andric "Unable to determine looping branch direction");
33081ad6265SDimitry Andric if (OrigBB != TBB)
33181ad6265SDimitry Andric TII->insertBranch(*KernelBB, EpilogStart, KernelBB, Cond, DebugLoc());
33281ad6265SDimitry Andric else
3338bcb0991SDimitry Andric TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
3348bcb0991SDimitry Andric // Add a branch to the loop exit.
3358bcb0991SDimitry Andric if (EpilogBBs.size() > 0) {
3368bcb0991SDimitry Andric MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
3378bcb0991SDimitry Andric SmallVector<MachineOperand, 4> Cond1;
3388bcb0991SDimitry Andric TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
3398bcb0991SDimitry Andric }
3408bcb0991SDimitry Andric }
3418bcb0991SDimitry Andric
3428bcb0991SDimitry Andric /// Replace all uses of FromReg that appear outside the specified
3438bcb0991SDimitry Andric /// basic block with ToReg.
replaceRegUsesAfterLoop(unsigned FromReg,unsigned ToReg,MachineBasicBlock * MBB,MachineRegisterInfo & MRI,LiveIntervals & LIS)3448bcb0991SDimitry Andric static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
3458bcb0991SDimitry Andric MachineBasicBlock *MBB,
3468bcb0991SDimitry Andric MachineRegisterInfo &MRI,
3478bcb0991SDimitry Andric LiveIntervals &LIS) {
348349cc55cSDimitry Andric for (MachineOperand &O :
349349cc55cSDimitry Andric llvm::make_early_inc_range(MRI.use_operands(FromReg)))
3508bcb0991SDimitry Andric if (O.getParent()->getParent() != MBB)
3518bcb0991SDimitry Andric O.setReg(ToReg);
3528bcb0991SDimitry Andric if (!LIS.hasInterval(ToReg))
3538bcb0991SDimitry Andric LIS.createEmptyInterval(ToReg);
3548bcb0991SDimitry Andric }
3558bcb0991SDimitry Andric
3568bcb0991SDimitry Andric /// Return true if the register has a use that occurs outside the
3578bcb0991SDimitry Andric /// specified loop.
hasUseAfterLoop(unsigned Reg,MachineBasicBlock * BB,MachineRegisterInfo & MRI)3588bcb0991SDimitry Andric static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
3598bcb0991SDimitry Andric MachineRegisterInfo &MRI) {
360349cc55cSDimitry Andric for (const MachineOperand &MO : MRI.use_operands(Reg))
361349cc55cSDimitry Andric if (MO.getParent()->getParent() != BB)
3628bcb0991SDimitry Andric return true;
3638bcb0991SDimitry Andric return false;
3648bcb0991SDimitry Andric }
3658bcb0991SDimitry Andric
3668bcb0991SDimitry Andric /// Generate Phis for the specific block in the generated pipelined code.
3678bcb0991SDimitry Andric /// This function looks at the Phis from the original code to guide the
3688bcb0991SDimitry Andric /// creation of new Phis.
generateExistingPhis(MachineBasicBlock * NewBB,MachineBasicBlock * BB1,MachineBasicBlock * BB2,MachineBasicBlock * KernelBB,ValueMapTy * VRMap,InstrMapTy & InstrMap,unsigned LastStageNum,unsigned CurStageNum,bool IsLast)3698bcb0991SDimitry Andric void ModuloScheduleExpander::generateExistingPhis(
3708bcb0991SDimitry Andric MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
3718bcb0991SDimitry Andric MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
3728bcb0991SDimitry Andric unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
3738bcb0991SDimitry Andric // Compute the stage number for the initial value of the Phi, which
3748bcb0991SDimitry Andric // comes from the prolog. The prolog to use depends on to which kernel/
3758bcb0991SDimitry Andric // epilog that we're adding the Phi.
3768bcb0991SDimitry Andric unsigned PrologStage = 0;
3778bcb0991SDimitry Andric unsigned PrevStage = 0;
3788bcb0991SDimitry Andric bool InKernel = (LastStageNum == CurStageNum);
3798bcb0991SDimitry Andric if (InKernel) {
3808bcb0991SDimitry Andric PrologStage = LastStageNum - 1;
3818bcb0991SDimitry Andric PrevStage = CurStageNum;
3828bcb0991SDimitry Andric } else {
3838bcb0991SDimitry Andric PrologStage = LastStageNum - (CurStageNum - LastStageNum);
3848bcb0991SDimitry Andric PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
3858bcb0991SDimitry Andric }
3868bcb0991SDimitry Andric
3878bcb0991SDimitry Andric for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
3888bcb0991SDimitry Andric BBE = BB->getFirstNonPHI();
3898bcb0991SDimitry Andric BBI != BBE; ++BBI) {
3908bcb0991SDimitry Andric Register Def = BBI->getOperand(0).getReg();
3918bcb0991SDimitry Andric
3928bcb0991SDimitry Andric unsigned InitVal = 0;
3938bcb0991SDimitry Andric unsigned LoopVal = 0;
3948bcb0991SDimitry Andric getPhiRegs(*BBI, BB, InitVal, LoopVal);
3958bcb0991SDimitry Andric
3968bcb0991SDimitry Andric unsigned PhiOp1 = 0;
3978bcb0991SDimitry Andric // The Phi value from the loop body typically is defined in the loop, but
3988bcb0991SDimitry Andric // not always. So, we need to check if the value is defined in the loop.
3998bcb0991SDimitry Andric unsigned PhiOp2 = LoopVal;
4008bcb0991SDimitry Andric if (VRMap[LastStageNum].count(LoopVal))
4018bcb0991SDimitry Andric PhiOp2 = VRMap[LastStageNum][LoopVal];
4028bcb0991SDimitry Andric
4038bcb0991SDimitry Andric int StageScheduled = Schedule.getStage(&*BBI);
4048bcb0991SDimitry Andric int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
4058bcb0991SDimitry Andric unsigned NumStages = getStagesForReg(Def, CurStageNum);
4068bcb0991SDimitry Andric if (NumStages == 0) {
4078bcb0991SDimitry Andric // We don't need to generate a Phi anymore, but we need to rename any uses
4088bcb0991SDimitry Andric // of the Phi value.
4098bcb0991SDimitry Andric unsigned NewReg = VRMap[PrevStage][LoopVal];
4108bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
4118bcb0991SDimitry Andric InitVal, NewReg);
4128bcb0991SDimitry Andric if (VRMap[CurStageNum].count(LoopVal))
4138bcb0991SDimitry Andric VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
4148bcb0991SDimitry Andric }
4158bcb0991SDimitry Andric // Adjust the number of Phis needed depending on the number of prologs left,
4168bcb0991SDimitry Andric // and the distance from where the Phi is first scheduled. The number of
4178bcb0991SDimitry Andric // Phis cannot exceed the number of prolog stages. Each stage can
4188bcb0991SDimitry Andric // potentially define two values.
4198bcb0991SDimitry Andric unsigned MaxPhis = PrologStage + 2;
4208bcb0991SDimitry Andric if (!InKernel && (int)PrologStage <= LoopValStage)
4218bcb0991SDimitry Andric MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
4228bcb0991SDimitry Andric unsigned NumPhis = std::min(NumStages, MaxPhis);
4238bcb0991SDimitry Andric
4248bcb0991SDimitry Andric unsigned NewReg = 0;
4258bcb0991SDimitry Andric unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
4268bcb0991SDimitry Andric // In the epilog, we may need to look back one stage to get the correct
4275ffd83dbSDimitry Andric // Phi name, because the epilog and prolog blocks execute the same stage.
4288bcb0991SDimitry Andric // The correct name is from the previous block only when the Phi has
4298bcb0991SDimitry Andric // been completely scheduled prior to the epilog, and Phi value is not
4308bcb0991SDimitry Andric // needed in multiple stages.
4318bcb0991SDimitry Andric int StageDiff = 0;
4328bcb0991SDimitry Andric if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
4338bcb0991SDimitry Andric NumPhis == 1)
4348bcb0991SDimitry Andric StageDiff = 1;
4358bcb0991SDimitry Andric // Adjust the computations below when the phi and the loop definition
4368bcb0991SDimitry Andric // are scheduled in different stages.
4378bcb0991SDimitry Andric if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
4388bcb0991SDimitry Andric StageDiff = StageScheduled - LoopValStage;
4398bcb0991SDimitry Andric for (unsigned np = 0; np < NumPhis; ++np) {
4408bcb0991SDimitry Andric // If the Phi hasn't been scheduled, then use the initial Phi operand
4418bcb0991SDimitry Andric // value. Otherwise, use the scheduled version of the instruction. This
4428bcb0991SDimitry Andric // is a little complicated when a Phi references another Phi.
4438bcb0991SDimitry Andric if (np > PrologStage || StageScheduled >= (int)LastStageNum)
4448bcb0991SDimitry Andric PhiOp1 = InitVal;
4458bcb0991SDimitry Andric // Check if the Phi has already been scheduled in a prolog stage.
4468bcb0991SDimitry Andric else if (PrologStage >= AccessStage + StageDiff + np &&
4478bcb0991SDimitry Andric VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
4488bcb0991SDimitry Andric PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
4498bcb0991SDimitry Andric // Check if the Phi has already been scheduled, but the loop instruction
4508bcb0991SDimitry Andric // is either another Phi, or doesn't occur in the loop.
4518bcb0991SDimitry Andric else if (PrologStage >= AccessStage + StageDiff + np) {
4528bcb0991SDimitry Andric // If the Phi references another Phi, we need to examine the other
4538bcb0991SDimitry Andric // Phi to get the correct value.
4548bcb0991SDimitry Andric PhiOp1 = LoopVal;
4558bcb0991SDimitry Andric MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
4568bcb0991SDimitry Andric int Indirects = 1;
4578bcb0991SDimitry Andric while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
4588bcb0991SDimitry Andric int PhiStage = Schedule.getStage(InstOp1);
4598bcb0991SDimitry Andric if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
4608bcb0991SDimitry Andric PhiOp1 = getInitPhiReg(*InstOp1, BB);
4618bcb0991SDimitry Andric else
4628bcb0991SDimitry Andric PhiOp1 = getLoopPhiReg(*InstOp1, BB);
4638bcb0991SDimitry Andric InstOp1 = MRI.getVRegDef(PhiOp1);
4648bcb0991SDimitry Andric int PhiOpStage = Schedule.getStage(InstOp1);
4658bcb0991SDimitry Andric int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
4668bcb0991SDimitry Andric if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
4678bcb0991SDimitry Andric VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
4688bcb0991SDimitry Andric PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
4698bcb0991SDimitry Andric break;
4708bcb0991SDimitry Andric }
4718bcb0991SDimitry Andric ++Indirects;
4728bcb0991SDimitry Andric }
4738bcb0991SDimitry Andric } else
4748bcb0991SDimitry Andric PhiOp1 = InitVal;
4758bcb0991SDimitry Andric // If this references a generated Phi in the kernel, get the Phi operand
4768bcb0991SDimitry Andric // from the incoming block.
4778bcb0991SDimitry Andric if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
4788bcb0991SDimitry Andric if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
4798bcb0991SDimitry Andric PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
4808bcb0991SDimitry Andric
4818bcb0991SDimitry Andric MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
4828bcb0991SDimitry Andric bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
4838bcb0991SDimitry Andric // In the epilog, a map lookup is needed to get the value from the kernel,
4848bcb0991SDimitry Andric // or previous epilog block. How is does this depends on if the
4858bcb0991SDimitry Andric // instruction is scheduled in the previous block.
4868bcb0991SDimitry Andric if (!InKernel) {
4878bcb0991SDimitry Andric int StageDiffAdj = 0;
4888bcb0991SDimitry Andric if (LoopValStage != -1 && StageScheduled > LoopValStage)
4898bcb0991SDimitry Andric StageDiffAdj = StageScheduled - LoopValStage;
4908bcb0991SDimitry Andric // Use the loop value defined in the kernel, unless the kernel
4918bcb0991SDimitry Andric // contains the last definition of the Phi.
4928bcb0991SDimitry Andric if (np == 0 && PrevStage == LastStageNum &&
4938bcb0991SDimitry Andric (StageScheduled != 0 || LoopValStage != 0) &&
4948bcb0991SDimitry Andric VRMap[PrevStage - StageDiffAdj].count(LoopVal))
4958bcb0991SDimitry Andric PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
4968bcb0991SDimitry Andric // Use the value defined by the Phi. We add one because we switch
4978bcb0991SDimitry Andric // from looking at the loop value to the Phi definition.
4988bcb0991SDimitry Andric else if (np > 0 && PrevStage == LastStageNum &&
4998bcb0991SDimitry Andric VRMap[PrevStage - np + 1].count(Def))
5008bcb0991SDimitry Andric PhiOp2 = VRMap[PrevStage - np + 1][Def];
5018bcb0991SDimitry Andric // Use the loop value defined in the kernel.
5028bcb0991SDimitry Andric else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
5038bcb0991SDimitry Andric VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
5048bcb0991SDimitry Andric PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
5058bcb0991SDimitry Andric // Use the value defined by the Phi, unless we're generating the first
5068bcb0991SDimitry Andric // epilog and the Phi refers to a Phi in a different stage.
5078bcb0991SDimitry Andric else if (VRMap[PrevStage - np].count(Def) &&
5088bcb0991SDimitry Andric (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
5098bcb0991SDimitry Andric (LoopValStage == StageScheduled)))
5108bcb0991SDimitry Andric PhiOp2 = VRMap[PrevStage - np][Def];
5118bcb0991SDimitry Andric }
5128bcb0991SDimitry Andric
5138bcb0991SDimitry Andric // Check if we can reuse an existing Phi. This occurs when a Phi
5148bcb0991SDimitry Andric // references another Phi, and the other Phi is scheduled in an
5158bcb0991SDimitry Andric // earlier stage. We can try to reuse an existing Phi up until the last
5168bcb0991SDimitry Andric // stage of the current Phi.
5178bcb0991SDimitry Andric if (LoopDefIsPhi) {
5188bcb0991SDimitry Andric if (static_cast<int>(PrologStage - np) >= StageScheduled) {
5198bcb0991SDimitry Andric int LVNumStages = getStagesForPhi(LoopVal);
5208bcb0991SDimitry Andric int StageDiff = (StageScheduled - LoopValStage);
5218bcb0991SDimitry Andric LVNumStages -= StageDiff;
5228bcb0991SDimitry Andric // Make sure the loop value Phi has been processed already.
5238bcb0991SDimitry Andric if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
5248bcb0991SDimitry Andric NewReg = PhiOp2;
5258bcb0991SDimitry Andric unsigned ReuseStage = CurStageNum;
5268bcb0991SDimitry Andric if (isLoopCarried(*PhiInst))
5278bcb0991SDimitry Andric ReuseStage -= LVNumStages;
5288bcb0991SDimitry Andric // Check if the Phi to reuse has been generated yet. If not, then
5298bcb0991SDimitry Andric // there is nothing to reuse.
5308bcb0991SDimitry Andric if (VRMap[ReuseStage - np].count(LoopVal)) {
5318bcb0991SDimitry Andric NewReg = VRMap[ReuseStage - np][LoopVal];
5328bcb0991SDimitry Andric
5338bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
5348bcb0991SDimitry Andric Def, NewReg);
5358bcb0991SDimitry Andric // Update the map with the new Phi name.
5368bcb0991SDimitry Andric VRMap[CurStageNum - np][Def] = NewReg;
5378bcb0991SDimitry Andric PhiOp2 = NewReg;
5388bcb0991SDimitry Andric if (VRMap[LastStageNum - np - 1].count(LoopVal))
5398bcb0991SDimitry Andric PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
5408bcb0991SDimitry Andric
5418bcb0991SDimitry Andric if (IsLast && np == NumPhis - 1)
5428bcb0991SDimitry Andric replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
5438bcb0991SDimitry Andric continue;
5448bcb0991SDimitry Andric }
5458bcb0991SDimitry Andric }
5468bcb0991SDimitry Andric }
5478bcb0991SDimitry Andric if (InKernel && StageDiff > 0 &&
5488bcb0991SDimitry Andric VRMap[CurStageNum - StageDiff - np].count(LoopVal))
5498bcb0991SDimitry Andric PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
5508bcb0991SDimitry Andric }
5518bcb0991SDimitry Andric
5528bcb0991SDimitry Andric const TargetRegisterClass *RC = MRI.getRegClass(Def);
5538bcb0991SDimitry Andric NewReg = MRI.createVirtualRegister(RC);
5548bcb0991SDimitry Andric
5558bcb0991SDimitry Andric MachineInstrBuilder NewPhi =
5568bcb0991SDimitry Andric BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
5578bcb0991SDimitry Andric TII->get(TargetOpcode::PHI), NewReg);
5588bcb0991SDimitry Andric NewPhi.addReg(PhiOp1).addMBB(BB1);
5598bcb0991SDimitry Andric NewPhi.addReg(PhiOp2).addMBB(BB2);
5608bcb0991SDimitry Andric if (np == 0)
5618bcb0991SDimitry Andric InstrMap[NewPhi] = &*BBI;
5628bcb0991SDimitry Andric
5638bcb0991SDimitry Andric // We define the Phis after creating the new pipelined code, so
5648bcb0991SDimitry Andric // we need to rename the Phi values in scheduled instructions.
5658bcb0991SDimitry Andric
5668bcb0991SDimitry Andric unsigned PrevReg = 0;
5678bcb0991SDimitry Andric if (InKernel && VRMap[PrevStage - np].count(LoopVal))
5688bcb0991SDimitry Andric PrevReg = VRMap[PrevStage - np][LoopVal];
5698bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
5708bcb0991SDimitry Andric NewReg, PrevReg);
5718bcb0991SDimitry Andric // If the Phi has been scheduled, use the new name for rewriting.
5728bcb0991SDimitry Andric if (VRMap[CurStageNum - np].count(Def)) {
5738bcb0991SDimitry Andric unsigned R = VRMap[CurStageNum - np][Def];
5748bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
5758bcb0991SDimitry Andric NewReg);
5768bcb0991SDimitry Andric }
5778bcb0991SDimitry Andric
5788bcb0991SDimitry Andric // Check if we need to rename any uses that occurs after the loop. The
5798bcb0991SDimitry Andric // register to replace depends on whether the Phi is scheduled in the
5808bcb0991SDimitry Andric // epilog.
5818bcb0991SDimitry Andric if (IsLast && np == NumPhis - 1)
5828bcb0991SDimitry Andric replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
5838bcb0991SDimitry Andric
5848bcb0991SDimitry Andric // In the kernel, a dependent Phi uses the value from this Phi.
5858bcb0991SDimitry Andric if (InKernel)
5868bcb0991SDimitry Andric PhiOp2 = NewReg;
5878bcb0991SDimitry Andric
5888bcb0991SDimitry Andric // Update the map with the new Phi name.
5898bcb0991SDimitry Andric VRMap[CurStageNum - np][Def] = NewReg;
5908bcb0991SDimitry Andric }
5918bcb0991SDimitry Andric
5928bcb0991SDimitry Andric while (NumPhis++ < NumStages) {
5938bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
5948bcb0991SDimitry Andric NewReg, 0);
5958bcb0991SDimitry Andric }
5968bcb0991SDimitry Andric
5978bcb0991SDimitry Andric // Check if we need to rename a Phi that has been eliminated due to
5988bcb0991SDimitry Andric // scheduling.
5998bcb0991SDimitry Andric if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
6008bcb0991SDimitry Andric replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
6018bcb0991SDimitry Andric }
6028bcb0991SDimitry Andric }
6038bcb0991SDimitry Andric
6048bcb0991SDimitry Andric /// Generate Phis for the specified block in the generated pipelined code.
6058bcb0991SDimitry Andric /// These are new Phis needed because the definition is scheduled after the
6068bcb0991SDimitry Andric /// use in the pipelined sequence.
generatePhis(MachineBasicBlock * NewBB,MachineBasicBlock * BB1,MachineBasicBlock * BB2,MachineBasicBlock * KernelBB,ValueMapTy * VRMap,ValueMapTy * VRMapPhi,InstrMapTy & InstrMap,unsigned LastStageNum,unsigned CurStageNum,bool IsLast)6078bcb0991SDimitry Andric void ModuloScheduleExpander::generatePhis(
6088bcb0991SDimitry Andric MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
609bdd1243dSDimitry Andric MachineBasicBlock *KernelBB, ValueMapTy *VRMap, ValueMapTy *VRMapPhi,
610bdd1243dSDimitry Andric InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
611bdd1243dSDimitry Andric bool IsLast) {
6128bcb0991SDimitry Andric // Compute the stage number that contains the initial Phi value, and
6138bcb0991SDimitry Andric // the Phi from the previous stage.
6148bcb0991SDimitry Andric unsigned PrologStage = 0;
6158bcb0991SDimitry Andric unsigned PrevStage = 0;
6168bcb0991SDimitry Andric unsigned StageDiff = CurStageNum - LastStageNum;
6178bcb0991SDimitry Andric bool InKernel = (StageDiff == 0);
6188bcb0991SDimitry Andric if (InKernel) {
6198bcb0991SDimitry Andric PrologStage = LastStageNum - 1;
6208bcb0991SDimitry Andric PrevStage = CurStageNum;
6218bcb0991SDimitry Andric } else {
6228bcb0991SDimitry Andric PrologStage = LastStageNum - StageDiff;
6238bcb0991SDimitry Andric PrevStage = LastStageNum + StageDiff - 1;
6248bcb0991SDimitry Andric }
6258bcb0991SDimitry Andric
6268bcb0991SDimitry Andric for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
6278bcb0991SDimitry Andric BBE = BB->instr_end();
6288bcb0991SDimitry Andric BBI != BBE; ++BBI) {
6298bcb0991SDimitry Andric for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
6308bcb0991SDimitry Andric MachineOperand &MO = BBI->getOperand(i);
631bdd1243dSDimitry Andric if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
6328bcb0991SDimitry Andric continue;
6338bcb0991SDimitry Andric
6348bcb0991SDimitry Andric int StageScheduled = Schedule.getStage(&*BBI);
6358bcb0991SDimitry Andric assert(StageScheduled != -1 && "Expecting scheduled instruction.");
6368bcb0991SDimitry Andric Register Def = MO.getReg();
6378bcb0991SDimitry Andric unsigned NumPhis = getStagesForReg(Def, CurStageNum);
6388bcb0991SDimitry Andric // An instruction scheduled in stage 0 and is used after the loop
6398bcb0991SDimitry Andric // requires a phi in the epilog for the last definition from either
6408bcb0991SDimitry Andric // the kernel or prolog.
6418bcb0991SDimitry Andric if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
6428bcb0991SDimitry Andric hasUseAfterLoop(Def, BB, MRI))
6438bcb0991SDimitry Andric NumPhis = 1;
6448bcb0991SDimitry Andric if (!InKernel && (unsigned)StageScheduled > PrologStage)
6458bcb0991SDimitry Andric continue;
6468bcb0991SDimitry Andric
647bdd1243dSDimitry Andric unsigned PhiOp2;
648bdd1243dSDimitry Andric if (InKernel) {
649bdd1243dSDimitry Andric PhiOp2 = VRMap[PrevStage][Def];
6508bcb0991SDimitry Andric if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
6518bcb0991SDimitry Andric if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
6528bcb0991SDimitry Andric PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
653bdd1243dSDimitry Andric }
6548bcb0991SDimitry Andric // The number of Phis can't exceed the number of prolog stages. The
6558bcb0991SDimitry Andric // prolog stage number is zero based.
6568bcb0991SDimitry Andric if (NumPhis > PrologStage + 1 - StageScheduled)
6578bcb0991SDimitry Andric NumPhis = PrologStage + 1 - StageScheduled;
6588bcb0991SDimitry Andric for (unsigned np = 0; np < NumPhis; ++np) {
659bdd1243dSDimitry Andric // Example for
660bdd1243dSDimitry Andric // Org:
661bdd1243dSDimitry Andric // %Org = ... (Scheduled at Stage#0, NumPhi = 2)
662bdd1243dSDimitry Andric //
663bdd1243dSDimitry Andric // Prolog0 (Stage0):
664bdd1243dSDimitry Andric // %Clone0 = ...
665bdd1243dSDimitry Andric // Prolog1 (Stage1):
666bdd1243dSDimitry Andric // %Clone1 = ...
667bdd1243dSDimitry Andric // Kernel (Stage2):
668bdd1243dSDimitry Andric // %Phi0 = Phi %Clone1, Prolog1, %Clone2, Kernel
669bdd1243dSDimitry Andric // %Phi1 = Phi %Clone0, Prolog1, %Phi0, Kernel
670bdd1243dSDimitry Andric // %Clone2 = ...
671bdd1243dSDimitry Andric // Epilog0 (Stage3):
672bdd1243dSDimitry Andric // %Phi2 = Phi %Clone1, Prolog1, %Clone2, Kernel
673bdd1243dSDimitry Andric // %Phi3 = Phi %Clone0, Prolog1, %Phi0, Kernel
674bdd1243dSDimitry Andric // Epilog1 (Stage4):
675bdd1243dSDimitry Andric // %Phi4 = Phi %Clone0, Prolog0, %Phi2, Epilog0
676bdd1243dSDimitry Andric //
677bdd1243dSDimitry Andric // VRMap = {0: %Clone0, 1: %Clone1, 2: %Clone2}
678bdd1243dSDimitry Andric // VRMapPhi (after Kernel) = {0: %Phi1, 1: %Phi0}
679bdd1243dSDimitry Andric // VRMapPhi (after Epilog0) = {0: %Phi3, 1: %Phi2}
680bdd1243dSDimitry Andric
6818bcb0991SDimitry Andric unsigned PhiOp1 = VRMap[PrologStage][Def];
6828bcb0991SDimitry Andric if (np <= PrologStage)
6838bcb0991SDimitry Andric PhiOp1 = VRMap[PrologStage - np][Def];
684bdd1243dSDimitry Andric if (!InKernel) {
685bdd1243dSDimitry Andric if (PrevStage == LastStageNum && np == 0)
686bdd1243dSDimitry Andric PhiOp2 = VRMap[LastStageNum][Def];
687bdd1243dSDimitry Andric else
688bdd1243dSDimitry Andric PhiOp2 = VRMapPhi[PrevStage - np][Def];
6898bcb0991SDimitry Andric }
6908bcb0991SDimitry Andric
6918bcb0991SDimitry Andric const TargetRegisterClass *RC = MRI.getRegClass(Def);
6928bcb0991SDimitry Andric Register NewReg = MRI.createVirtualRegister(RC);
6938bcb0991SDimitry Andric
6948bcb0991SDimitry Andric MachineInstrBuilder NewPhi =
6958bcb0991SDimitry Andric BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
6968bcb0991SDimitry Andric TII->get(TargetOpcode::PHI), NewReg);
6978bcb0991SDimitry Andric NewPhi.addReg(PhiOp1).addMBB(BB1);
6988bcb0991SDimitry Andric NewPhi.addReg(PhiOp2).addMBB(BB2);
6998bcb0991SDimitry Andric if (np == 0)
7008bcb0991SDimitry Andric InstrMap[NewPhi] = &*BBI;
7018bcb0991SDimitry Andric
7028bcb0991SDimitry Andric // Rewrite uses and update the map. The actions depend upon whether
7038bcb0991SDimitry Andric // we generating code for the kernel or epilog blocks.
7048bcb0991SDimitry Andric if (InKernel) {
7058bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
7068bcb0991SDimitry Andric NewReg);
7078bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
7088bcb0991SDimitry Andric NewReg);
7098bcb0991SDimitry Andric
7108bcb0991SDimitry Andric PhiOp2 = NewReg;
711bdd1243dSDimitry Andric VRMapPhi[PrevStage - np - 1][Def] = NewReg;
7128bcb0991SDimitry Andric } else {
713bdd1243dSDimitry Andric VRMapPhi[CurStageNum - np][Def] = NewReg;
7148bcb0991SDimitry Andric if (np == NumPhis - 1)
7158bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
7168bcb0991SDimitry Andric NewReg);
7178bcb0991SDimitry Andric }
7188bcb0991SDimitry Andric if (IsLast && np == NumPhis - 1)
7198bcb0991SDimitry Andric replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
7208bcb0991SDimitry Andric }
7218bcb0991SDimitry Andric }
7228bcb0991SDimitry Andric }
7238bcb0991SDimitry Andric }
7248bcb0991SDimitry Andric
7258bcb0991SDimitry Andric /// Remove instructions that generate values with no uses.
7268bcb0991SDimitry Andric /// Typically, these are induction variable operations that generate values
7278bcb0991SDimitry Andric /// used in the loop itself. A dead instruction has a definition with
7288bcb0991SDimitry Andric /// no uses, or uses that occur in the original loop only.
removeDeadInstructions(MachineBasicBlock * KernelBB,MBBVectorTy & EpilogBBs)7298bcb0991SDimitry Andric void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
7308bcb0991SDimitry Andric MBBVectorTy &EpilogBBs) {
7318bcb0991SDimitry Andric // For each epilog block, check that the value defined by each instruction
7328bcb0991SDimitry Andric // is used. If not, delete it.
733349cc55cSDimitry Andric for (MachineBasicBlock *MBB : llvm::reverse(EpilogBBs))
734349cc55cSDimitry Andric for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(),
735349cc55cSDimitry Andric ME = MBB->instr_rend();
7368bcb0991SDimitry Andric MI != ME;) {
7378bcb0991SDimitry Andric // From DeadMachineInstructionElem. Don't delete inline assembly.
7388bcb0991SDimitry Andric if (MI->isInlineAsm()) {
7398bcb0991SDimitry Andric ++MI;
7408bcb0991SDimitry Andric continue;
7418bcb0991SDimitry Andric }
7428bcb0991SDimitry Andric bool SawStore = false;
7438bcb0991SDimitry Andric // Check if it's safe to remove the instruction due to side effects.
7448bcb0991SDimitry Andric // We can, and want to, remove Phis here.
7458bcb0991SDimitry Andric if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
7468bcb0991SDimitry Andric ++MI;
7478bcb0991SDimitry Andric continue;
7488bcb0991SDimitry Andric }
7498bcb0991SDimitry Andric bool used = true;
75006c3fb27SDimitry Andric for (const MachineOperand &MO : MI->all_defs()) {
751349cc55cSDimitry Andric Register reg = MO.getReg();
7528bcb0991SDimitry Andric // Assume physical registers are used, unless they are marked dead.
753bdd1243dSDimitry Andric if (reg.isPhysical()) {
754349cc55cSDimitry Andric used = !MO.isDead();
7558bcb0991SDimitry Andric if (used)
7568bcb0991SDimitry Andric break;
7578bcb0991SDimitry Andric continue;
7588bcb0991SDimitry Andric }
7598bcb0991SDimitry Andric unsigned realUses = 0;
760349cc55cSDimitry Andric for (const MachineOperand &U : MRI.use_operands(reg)) {
7618bcb0991SDimitry Andric // Check if there are any uses that occur only in the original
7628bcb0991SDimitry Andric // loop. If so, that's not a real use.
763349cc55cSDimitry Andric if (U.getParent()->getParent() != BB) {
7648bcb0991SDimitry Andric realUses++;
7658bcb0991SDimitry Andric used = true;
7668bcb0991SDimitry Andric break;
7678bcb0991SDimitry Andric }
7688bcb0991SDimitry Andric }
7698bcb0991SDimitry Andric if (realUses > 0)
7708bcb0991SDimitry Andric break;
7718bcb0991SDimitry Andric used = false;
7728bcb0991SDimitry Andric }
7738bcb0991SDimitry Andric if (!used) {
7748bcb0991SDimitry Andric LIS.RemoveMachineInstrFromMaps(*MI);
7758bcb0991SDimitry Andric MI++->eraseFromParent();
7768bcb0991SDimitry Andric continue;
7778bcb0991SDimitry Andric }
7788bcb0991SDimitry Andric ++MI;
7798bcb0991SDimitry Andric }
7808bcb0991SDimitry Andric // In the kernel block, check if we can remove a Phi that generates a value
7818bcb0991SDimitry Andric // used in an instruction removed in the epilog block.
782349cc55cSDimitry Andric for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) {
783349cc55cSDimitry Andric Register reg = MI.getOperand(0).getReg();
7848bcb0991SDimitry Andric if (MRI.use_begin(reg) == MRI.use_end()) {
785349cc55cSDimitry Andric LIS.RemoveMachineInstrFromMaps(MI);
786349cc55cSDimitry Andric MI.eraseFromParent();
7878bcb0991SDimitry Andric }
7888bcb0991SDimitry Andric }
7898bcb0991SDimitry Andric }
7908bcb0991SDimitry Andric
7918bcb0991SDimitry Andric /// For loop carried definitions, we split the lifetime of a virtual register
7928bcb0991SDimitry Andric /// that has uses past the definition in the next iteration. A copy with a new
7938bcb0991SDimitry Andric /// virtual register is inserted before the definition, which helps with
7948bcb0991SDimitry Andric /// generating a better register assignment.
7958bcb0991SDimitry Andric ///
7968bcb0991SDimitry Andric /// v1 = phi(a, v2) v1 = phi(a, v2)
7978bcb0991SDimitry Andric /// v2 = phi(b, v3) v2 = phi(b, v3)
7988bcb0991SDimitry Andric /// v3 = .. v4 = copy v1
7998bcb0991SDimitry Andric /// .. = V1 v3 = ..
8008bcb0991SDimitry Andric /// .. = v4
splitLifetimes(MachineBasicBlock * KernelBB,MBBVectorTy & EpilogBBs)8018bcb0991SDimitry Andric void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
8028bcb0991SDimitry Andric MBBVectorTy &EpilogBBs) {
8038bcb0991SDimitry Andric const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
8048bcb0991SDimitry Andric for (auto &PHI : KernelBB->phis()) {
8058bcb0991SDimitry Andric Register Def = PHI.getOperand(0).getReg();
8068bcb0991SDimitry Andric // Check for any Phi definition that used as an operand of another Phi
8078bcb0991SDimitry Andric // in the same block.
8088bcb0991SDimitry Andric for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
8098bcb0991SDimitry Andric E = MRI.use_instr_end();
8108bcb0991SDimitry Andric I != E; ++I) {
8118bcb0991SDimitry Andric if (I->isPHI() && I->getParent() == KernelBB) {
8128bcb0991SDimitry Andric // Get the loop carried definition.
8138bcb0991SDimitry Andric unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
8148bcb0991SDimitry Andric if (!LCDef)
8158bcb0991SDimitry Andric continue;
8168bcb0991SDimitry Andric MachineInstr *MI = MRI.getVRegDef(LCDef);
8178bcb0991SDimitry Andric if (!MI || MI->getParent() != KernelBB || MI->isPHI())
8188bcb0991SDimitry Andric continue;
8198bcb0991SDimitry Andric // Search through the rest of the block looking for uses of the Phi
8208bcb0991SDimitry Andric // definition. If one occurs, then split the lifetime.
8218bcb0991SDimitry Andric unsigned SplitReg = 0;
8228bcb0991SDimitry Andric for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
8238bcb0991SDimitry Andric KernelBB->instr_end()))
8240fca6ea1SDimitry Andric if (BBJ.readsRegister(Def, /*TRI=*/nullptr)) {
8258bcb0991SDimitry Andric // We split the lifetime when we find the first use.
8268bcb0991SDimitry Andric if (SplitReg == 0) {
8278bcb0991SDimitry Andric SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
8288bcb0991SDimitry Andric BuildMI(*KernelBB, MI, MI->getDebugLoc(),
8298bcb0991SDimitry Andric TII->get(TargetOpcode::COPY), SplitReg)
8308bcb0991SDimitry Andric .addReg(Def);
8318bcb0991SDimitry Andric }
8328bcb0991SDimitry Andric BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
8338bcb0991SDimitry Andric }
8348bcb0991SDimitry Andric if (!SplitReg)
8358bcb0991SDimitry Andric continue;
8368bcb0991SDimitry Andric // Search through each of the epilog blocks for any uses to be renamed.
8378bcb0991SDimitry Andric for (auto &Epilog : EpilogBBs)
8388bcb0991SDimitry Andric for (auto &I : *Epilog)
8390fca6ea1SDimitry Andric if (I.readsRegister(Def, /*TRI=*/nullptr))
8408bcb0991SDimitry Andric I.substituteRegister(Def, SplitReg, 0, *TRI);
8418bcb0991SDimitry Andric break;
8428bcb0991SDimitry Andric }
8438bcb0991SDimitry Andric }
8448bcb0991SDimitry Andric }
8458bcb0991SDimitry Andric }
8468bcb0991SDimitry Andric
8478bcb0991SDimitry Andric /// Remove the incoming block from the Phis in a basic block.
removePhis(MachineBasicBlock * BB,MachineBasicBlock * Incoming)8488bcb0991SDimitry Andric static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
8498bcb0991SDimitry Andric for (MachineInstr &MI : *BB) {
8508bcb0991SDimitry Andric if (!MI.isPHI())
8518bcb0991SDimitry Andric break;
8528bcb0991SDimitry Andric for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
8538bcb0991SDimitry Andric if (MI.getOperand(i + 1).getMBB() == Incoming) {
85481ad6265SDimitry Andric MI.removeOperand(i + 1);
85581ad6265SDimitry Andric MI.removeOperand(i);
8568bcb0991SDimitry Andric break;
8578bcb0991SDimitry Andric }
8588bcb0991SDimitry Andric }
8598bcb0991SDimitry Andric }
8608bcb0991SDimitry Andric
8618bcb0991SDimitry Andric /// Create branches from each prolog basic block to the appropriate epilog
8628bcb0991SDimitry Andric /// block. These edges are needed if the loop ends before reaching the
8638bcb0991SDimitry Andric /// kernel.
addBranches(MachineBasicBlock & PreheaderBB,MBBVectorTy & PrologBBs,MachineBasicBlock * KernelBB,MBBVectorTy & EpilogBBs,ValueMapTy * VRMap)8648bcb0991SDimitry Andric void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
8658bcb0991SDimitry Andric MBBVectorTy &PrologBBs,
8668bcb0991SDimitry Andric MachineBasicBlock *KernelBB,
8678bcb0991SDimitry Andric MBBVectorTy &EpilogBBs,
8688bcb0991SDimitry Andric ValueMapTy *VRMap) {
8698bcb0991SDimitry Andric assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
8708bcb0991SDimitry Andric MachineBasicBlock *LastPro = KernelBB;
8718bcb0991SDimitry Andric MachineBasicBlock *LastEpi = KernelBB;
8728bcb0991SDimitry Andric
8738bcb0991SDimitry Andric // Start from the blocks connected to the kernel and work "out"
8748bcb0991SDimitry Andric // to the first prolog and the last epilog blocks.
8758bcb0991SDimitry Andric SmallVector<MachineInstr *, 4> PrevInsts;
8768bcb0991SDimitry Andric unsigned MaxIter = PrologBBs.size() - 1;
8778bcb0991SDimitry Andric for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
8788bcb0991SDimitry Andric // Add branches to the prolog that go to the corresponding
8798bcb0991SDimitry Andric // epilog, and the fall-thru prolog/kernel block.
8808bcb0991SDimitry Andric MachineBasicBlock *Prolog = PrologBBs[j];
8818bcb0991SDimitry Andric MachineBasicBlock *Epilog = EpilogBBs[i];
8828bcb0991SDimitry Andric
8838bcb0991SDimitry Andric SmallVector<MachineOperand, 4> Cond;
884bdd1243dSDimitry Andric std::optional<bool> StaticallyGreater =
8858bcb0991SDimitry Andric LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond);
8868bcb0991SDimitry Andric unsigned numAdded = 0;
88781ad6265SDimitry Andric if (!StaticallyGreater) {
8888bcb0991SDimitry Andric Prolog->addSuccessor(Epilog);
8898bcb0991SDimitry Andric numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
8908bcb0991SDimitry Andric } else if (*StaticallyGreater == false) {
8918bcb0991SDimitry Andric Prolog->addSuccessor(Epilog);
8928bcb0991SDimitry Andric Prolog->removeSuccessor(LastPro);
8938bcb0991SDimitry Andric LastEpi->removeSuccessor(Epilog);
8948bcb0991SDimitry Andric numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
8958bcb0991SDimitry Andric removePhis(Epilog, LastEpi);
8968bcb0991SDimitry Andric // Remove the blocks that are no longer referenced.
8978bcb0991SDimitry Andric if (LastPro != LastEpi) {
8988bcb0991SDimitry Andric LastEpi->clear();
8998bcb0991SDimitry Andric LastEpi->eraseFromParent();
9008bcb0991SDimitry Andric }
9018bcb0991SDimitry Andric if (LastPro == KernelBB) {
9028bcb0991SDimitry Andric LoopInfo->disposed();
9038bcb0991SDimitry Andric NewKernel = nullptr;
9048bcb0991SDimitry Andric }
9058bcb0991SDimitry Andric LastPro->clear();
9068bcb0991SDimitry Andric LastPro->eraseFromParent();
9078bcb0991SDimitry Andric } else {
9088bcb0991SDimitry Andric numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
9098bcb0991SDimitry Andric removePhis(Epilog, Prolog);
9108bcb0991SDimitry Andric }
9118bcb0991SDimitry Andric LastPro = Prolog;
9128bcb0991SDimitry Andric LastEpi = Epilog;
9138bcb0991SDimitry Andric for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
9148bcb0991SDimitry Andric E = Prolog->instr_rend();
9158bcb0991SDimitry Andric I != E && numAdded > 0; ++I, --numAdded)
9168bcb0991SDimitry Andric updateInstruction(&*I, false, j, 0, VRMap);
9178bcb0991SDimitry Andric }
9188bcb0991SDimitry Andric
9198bcb0991SDimitry Andric if (NewKernel) {
9208bcb0991SDimitry Andric LoopInfo->setPreheader(PrologBBs[MaxIter]);
9218bcb0991SDimitry Andric LoopInfo->adjustTripCount(-(MaxIter + 1));
9228bcb0991SDimitry Andric }
9238bcb0991SDimitry Andric }
9248bcb0991SDimitry Andric
9258bcb0991SDimitry Andric /// Return true if we can compute the amount the instruction changes
9268bcb0991SDimitry Andric /// during each iteration. Set Delta to the amount of the change.
computeDelta(MachineInstr & MI,unsigned & Delta)9278bcb0991SDimitry Andric bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
9288bcb0991SDimitry Andric const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
9298bcb0991SDimitry Andric const MachineOperand *BaseOp;
9308bcb0991SDimitry Andric int64_t Offset;
9315ffd83dbSDimitry Andric bool OffsetIsScalable;
9325ffd83dbSDimitry Andric if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
9335ffd83dbSDimitry Andric return false;
9345ffd83dbSDimitry Andric
9355ffd83dbSDimitry Andric // FIXME: This algorithm assumes instructions have fixed-size offsets.
9365ffd83dbSDimitry Andric if (OffsetIsScalable)
9378bcb0991SDimitry Andric return false;
9388bcb0991SDimitry Andric
9398bcb0991SDimitry Andric if (!BaseOp->isReg())
9408bcb0991SDimitry Andric return false;
9418bcb0991SDimitry Andric
9428bcb0991SDimitry Andric Register BaseReg = BaseOp->getReg();
9438bcb0991SDimitry Andric
9448bcb0991SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo();
9458bcb0991SDimitry Andric // Check if there is a Phi. If so, get the definition in the loop.
9468bcb0991SDimitry Andric MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
9478bcb0991SDimitry Andric if (BaseDef && BaseDef->isPHI()) {
9488bcb0991SDimitry Andric BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
9498bcb0991SDimitry Andric BaseDef = MRI.getVRegDef(BaseReg);
9508bcb0991SDimitry Andric }
9518bcb0991SDimitry Andric if (!BaseDef)
9528bcb0991SDimitry Andric return false;
9538bcb0991SDimitry Andric
9548bcb0991SDimitry Andric int D = 0;
9558bcb0991SDimitry Andric if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
9568bcb0991SDimitry Andric return false;
9578bcb0991SDimitry Andric
9588bcb0991SDimitry Andric Delta = D;
9598bcb0991SDimitry Andric return true;
9608bcb0991SDimitry Andric }
9618bcb0991SDimitry Andric
9628bcb0991SDimitry Andric /// Update the memory operand with a new offset when the pipeliner
9638bcb0991SDimitry Andric /// generates a new copy of the instruction that refers to a
9648bcb0991SDimitry Andric /// different memory location.
updateMemOperands(MachineInstr & NewMI,MachineInstr & OldMI,unsigned Num)9658bcb0991SDimitry Andric void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
9668bcb0991SDimitry Andric MachineInstr &OldMI,
9678bcb0991SDimitry Andric unsigned Num) {
9688bcb0991SDimitry Andric if (Num == 0)
9698bcb0991SDimitry Andric return;
9708bcb0991SDimitry Andric // If the instruction has memory operands, then adjust the offset
9718bcb0991SDimitry Andric // when the instruction appears in different stages.
9728bcb0991SDimitry Andric if (NewMI.memoperands_empty())
9738bcb0991SDimitry Andric return;
9748bcb0991SDimitry Andric SmallVector<MachineMemOperand *, 2> NewMMOs;
9758bcb0991SDimitry Andric for (MachineMemOperand *MMO : NewMI.memoperands()) {
9768bcb0991SDimitry Andric // TODO: Figure out whether isAtomic is really necessary (see D57601).
9778bcb0991SDimitry Andric if (MMO->isVolatile() || MMO->isAtomic() ||
9788bcb0991SDimitry Andric (MMO->isInvariant() && MMO->isDereferenceable()) ||
9798bcb0991SDimitry Andric (!MMO->getValue())) {
9808bcb0991SDimitry Andric NewMMOs.push_back(MMO);
9818bcb0991SDimitry Andric continue;
9828bcb0991SDimitry Andric }
9838bcb0991SDimitry Andric unsigned Delta;
9848bcb0991SDimitry Andric if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
9858bcb0991SDimitry Andric int64_t AdjOffset = Delta * Num;
9868bcb0991SDimitry Andric NewMMOs.push_back(
9878bcb0991SDimitry Andric MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
9888bcb0991SDimitry Andric } else {
9890fca6ea1SDimitry Andric NewMMOs.push_back(MF.getMachineMemOperand(
9900fca6ea1SDimitry Andric MMO, 0, LocationSize::beforeOrAfterPointer()));
9918bcb0991SDimitry Andric }
9928bcb0991SDimitry Andric }
9938bcb0991SDimitry Andric NewMI.setMemRefs(MF, NewMMOs);
9948bcb0991SDimitry Andric }
9958bcb0991SDimitry Andric
9968bcb0991SDimitry Andric /// Clone the instruction for the new pipelined loop and update the
9978bcb0991SDimitry Andric /// memory operands, if needed.
cloneInstr(MachineInstr * OldMI,unsigned CurStageNum,unsigned InstStageNum)9988bcb0991SDimitry Andric MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
9998bcb0991SDimitry Andric unsigned CurStageNum,
10008bcb0991SDimitry Andric unsigned InstStageNum) {
10018bcb0991SDimitry Andric MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
10028bcb0991SDimitry Andric updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
10038bcb0991SDimitry Andric return NewMI;
10048bcb0991SDimitry Andric }
10058bcb0991SDimitry Andric
10068bcb0991SDimitry Andric /// Clone the instruction for the new pipelined loop. If needed, this
10078bcb0991SDimitry Andric /// function updates the instruction using the values saved in the
10088bcb0991SDimitry Andric /// InstrChanges structure.
cloneAndChangeInstr(MachineInstr * OldMI,unsigned CurStageNum,unsigned InstStageNum)10098bcb0991SDimitry Andric MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
10108bcb0991SDimitry Andric MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
10118bcb0991SDimitry Andric MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
10128bcb0991SDimitry Andric auto It = InstrChanges.find(OldMI);
10138bcb0991SDimitry Andric if (It != InstrChanges.end()) {
10148bcb0991SDimitry Andric std::pair<unsigned, int64_t> RegAndOffset = It->second;
10158bcb0991SDimitry Andric unsigned BasePos, OffsetPos;
10168bcb0991SDimitry Andric if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
10178bcb0991SDimitry Andric return nullptr;
10188bcb0991SDimitry Andric int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
10198bcb0991SDimitry Andric MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
10208bcb0991SDimitry Andric if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
10218bcb0991SDimitry Andric NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
10228bcb0991SDimitry Andric NewMI->getOperand(OffsetPos).setImm(NewOffset);
10238bcb0991SDimitry Andric }
10248bcb0991SDimitry Andric updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
10258bcb0991SDimitry Andric return NewMI;
10268bcb0991SDimitry Andric }
10278bcb0991SDimitry Andric
10288bcb0991SDimitry Andric /// Update the machine instruction with new virtual registers. This
102981ad6265SDimitry Andric /// function may change the definitions and/or uses.
updateInstruction(MachineInstr * NewMI,bool LastDef,unsigned CurStageNum,unsigned InstrStageNum,ValueMapTy * VRMap)10308bcb0991SDimitry Andric void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
10318bcb0991SDimitry Andric bool LastDef,
10328bcb0991SDimitry Andric unsigned CurStageNum,
10338bcb0991SDimitry Andric unsigned InstrStageNum,
10348bcb0991SDimitry Andric ValueMapTy *VRMap) {
10354824e7fdSDimitry Andric for (MachineOperand &MO : NewMI->operands()) {
1036bdd1243dSDimitry Andric if (!MO.isReg() || !MO.getReg().isVirtual())
10378bcb0991SDimitry Andric continue;
10388bcb0991SDimitry Andric Register reg = MO.getReg();
10398bcb0991SDimitry Andric if (MO.isDef()) {
10408bcb0991SDimitry Andric // Create a new virtual register for the definition.
10418bcb0991SDimitry Andric const TargetRegisterClass *RC = MRI.getRegClass(reg);
10428bcb0991SDimitry Andric Register NewReg = MRI.createVirtualRegister(RC);
10438bcb0991SDimitry Andric MO.setReg(NewReg);
10448bcb0991SDimitry Andric VRMap[CurStageNum][reg] = NewReg;
10458bcb0991SDimitry Andric if (LastDef)
10468bcb0991SDimitry Andric replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
10478bcb0991SDimitry Andric } else if (MO.isUse()) {
10488bcb0991SDimitry Andric MachineInstr *Def = MRI.getVRegDef(reg);
10498bcb0991SDimitry Andric // Compute the stage that contains the last definition for instruction.
10508bcb0991SDimitry Andric int DefStageNum = Schedule.getStage(Def);
10518bcb0991SDimitry Andric unsigned StageNum = CurStageNum;
10528bcb0991SDimitry Andric if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
10538bcb0991SDimitry Andric // Compute the difference in stages between the defintion and the use.
10548bcb0991SDimitry Andric unsigned StageDiff = (InstrStageNum - DefStageNum);
10558bcb0991SDimitry Andric // Make an adjustment to get the last definition.
10568bcb0991SDimitry Andric StageNum -= StageDiff;
10578bcb0991SDimitry Andric }
10588bcb0991SDimitry Andric if (VRMap[StageNum].count(reg))
10598bcb0991SDimitry Andric MO.setReg(VRMap[StageNum][reg]);
10608bcb0991SDimitry Andric }
10618bcb0991SDimitry Andric }
10628bcb0991SDimitry Andric }
10638bcb0991SDimitry Andric
10648bcb0991SDimitry Andric /// Return the instruction in the loop that defines the register.
10658bcb0991SDimitry Andric /// If the definition is a Phi, then follow the Phi operand to
10668bcb0991SDimitry Andric /// the instruction in the loop.
findDefInLoop(unsigned Reg)10678bcb0991SDimitry Andric MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
10688bcb0991SDimitry Andric SmallPtrSet<MachineInstr *, 8> Visited;
10698bcb0991SDimitry Andric MachineInstr *Def = MRI.getVRegDef(Reg);
10708bcb0991SDimitry Andric while (Def->isPHI()) {
10718bcb0991SDimitry Andric if (!Visited.insert(Def).second)
10728bcb0991SDimitry Andric break;
10738bcb0991SDimitry Andric for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
10748bcb0991SDimitry Andric if (Def->getOperand(i + 1).getMBB() == BB) {
10758bcb0991SDimitry Andric Def = MRI.getVRegDef(Def->getOperand(i).getReg());
10768bcb0991SDimitry Andric break;
10778bcb0991SDimitry Andric }
10788bcb0991SDimitry Andric }
10798bcb0991SDimitry Andric return Def;
10808bcb0991SDimitry Andric }
10818bcb0991SDimitry Andric
10828bcb0991SDimitry Andric /// Return the new name for the value from the previous stage.
getPrevMapVal(unsigned StageNum,unsigned PhiStage,unsigned LoopVal,unsigned LoopStage,ValueMapTy * VRMap,MachineBasicBlock * BB)10838bcb0991SDimitry Andric unsigned ModuloScheduleExpander::getPrevMapVal(
10848bcb0991SDimitry Andric unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
10858bcb0991SDimitry Andric ValueMapTy *VRMap, MachineBasicBlock *BB) {
10868bcb0991SDimitry Andric unsigned PrevVal = 0;
10878bcb0991SDimitry Andric if (StageNum > PhiStage) {
10888bcb0991SDimitry Andric MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
10898bcb0991SDimitry Andric if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
10908bcb0991SDimitry Andric // The name is defined in the previous stage.
10918bcb0991SDimitry Andric PrevVal = VRMap[StageNum - 1][LoopVal];
10928bcb0991SDimitry Andric else if (VRMap[StageNum].count(LoopVal))
10938bcb0991SDimitry Andric // The previous name is defined in the current stage when the instruction
10948bcb0991SDimitry Andric // order is swapped.
10958bcb0991SDimitry Andric PrevVal = VRMap[StageNum][LoopVal];
10968bcb0991SDimitry Andric else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
10978bcb0991SDimitry Andric // The loop value hasn't yet been scheduled.
10988bcb0991SDimitry Andric PrevVal = LoopVal;
10998bcb0991SDimitry Andric else if (StageNum == PhiStage + 1)
11008bcb0991SDimitry Andric // The loop value is another phi, which has not been scheduled.
11018bcb0991SDimitry Andric PrevVal = getInitPhiReg(*LoopInst, BB);
11028bcb0991SDimitry Andric else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
11038bcb0991SDimitry Andric // The loop value is another phi, which has been scheduled.
11048bcb0991SDimitry Andric PrevVal =
11058bcb0991SDimitry Andric getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
11068bcb0991SDimitry Andric LoopStage, VRMap, BB);
11078bcb0991SDimitry Andric }
11088bcb0991SDimitry Andric return PrevVal;
11098bcb0991SDimitry Andric }
11108bcb0991SDimitry Andric
11118bcb0991SDimitry Andric /// Rewrite the Phi values in the specified block to use the mappings
11128bcb0991SDimitry Andric /// from the initial operand. Once the Phi is scheduled, we switch
11138bcb0991SDimitry Andric /// to using the loop value instead of the Phi value, so those names
11148bcb0991SDimitry Andric /// do not need to be rewritten.
rewritePhiValues(MachineBasicBlock * NewBB,unsigned StageNum,ValueMapTy * VRMap,InstrMapTy & InstrMap)11158bcb0991SDimitry Andric void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
11168bcb0991SDimitry Andric unsigned StageNum,
11178bcb0991SDimitry Andric ValueMapTy *VRMap,
11188bcb0991SDimitry Andric InstrMapTy &InstrMap) {
11198bcb0991SDimitry Andric for (auto &PHI : BB->phis()) {
11208bcb0991SDimitry Andric unsigned InitVal = 0;
11218bcb0991SDimitry Andric unsigned LoopVal = 0;
11228bcb0991SDimitry Andric getPhiRegs(PHI, BB, InitVal, LoopVal);
11238bcb0991SDimitry Andric Register PhiDef = PHI.getOperand(0).getReg();
11248bcb0991SDimitry Andric
11258bcb0991SDimitry Andric unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
11268bcb0991SDimitry Andric unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
11278bcb0991SDimitry Andric unsigned NumPhis = getStagesForPhi(PhiDef);
11288bcb0991SDimitry Andric if (NumPhis > StageNum)
11298bcb0991SDimitry Andric NumPhis = StageNum;
11308bcb0991SDimitry Andric for (unsigned np = 0; np <= NumPhis; ++np) {
11318bcb0991SDimitry Andric unsigned NewVal =
11328bcb0991SDimitry Andric getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
11338bcb0991SDimitry Andric if (!NewVal)
11348bcb0991SDimitry Andric NewVal = InitVal;
11358bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
11368bcb0991SDimitry Andric NewVal);
11378bcb0991SDimitry Andric }
11388bcb0991SDimitry Andric }
11398bcb0991SDimitry Andric }
11408bcb0991SDimitry Andric
11418bcb0991SDimitry Andric /// Rewrite a previously scheduled instruction to use the register value
11428bcb0991SDimitry Andric /// from the new instruction. Make sure the instruction occurs in the
11438bcb0991SDimitry Andric /// basic block, and we don't change the uses in the new instruction.
rewriteScheduledInstr(MachineBasicBlock * BB,InstrMapTy & InstrMap,unsigned CurStageNum,unsigned PhiNum,MachineInstr * Phi,unsigned OldReg,unsigned NewReg,unsigned PrevReg)11448bcb0991SDimitry Andric void ModuloScheduleExpander::rewriteScheduledInstr(
11458bcb0991SDimitry Andric MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
11468bcb0991SDimitry Andric unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
11478bcb0991SDimitry Andric unsigned PrevReg) {
11488bcb0991SDimitry Andric bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
11498bcb0991SDimitry Andric int StagePhi = Schedule.getStage(Phi) + PhiNum;
11508bcb0991SDimitry Andric // Rewrite uses that have been scheduled already to use the new
11518bcb0991SDimitry Andric // Phi register.
1152349cc55cSDimitry Andric for (MachineOperand &UseOp :
1153349cc55cSDimitry Andric llvm::make_early_inc_range(MRI.use_operands(OldReg))) {
11548bcb0991SDimitry Andric MachineInstr *UseMI = UseOp.getParent();
11558bcb0991SDimitry Andric if (UseMI->getParent() != BB)
11568bcb0991SDimitry Andric continue;
11578bcb0991SDimitry Andric if (UseMI->isPHI()) {
11588bcb0991SDimitry Andric if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
11598bcb0991SDimitry Andric continue;
11608bcb0991SDimitry Andric if (getLoopPhiReg(*UseMI, BB) != OldReg)
11618bcb0991SDimitry Andric continue;
11628bcb0991SDimitry Andric }
11638bcb0991SDimitry Andric InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
11648bcb0991SDimitry Andric assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
11658bcb0991SDimitry Andric MachineInstr *OrigMI = OrigInstr->second;
11668bcb0991SDimitry Andric int StageSched = Schedule.getStage(OrigMI);
11678bcb0991SDimitry Andric int CycleSched = Schedule.getCycle(OrigMI);
11688bcb0991SDimitry Andric unsigned ReplaceReg = 0;
11698bcb0991SDimitry Andric // This is the stage for the scheduled instruction.
11708bcb0991SDimitry Andric if (StagePhi == StageSched && Phi->isPHI()) {
11718bcb0991SDimitry Andric int CyclePhi = Schedule.getCycle(Phi);
11728bcb0991SDimitry Andric if (PrevReg && InProlog)
11738bcb0991SDimitry Andric ReplaceReg = PrevReg;
11748bcb0991SDimitry Andric else if (PrevReg && !isLoopCarried(*Phi) &&
11758bcb0991SDimitry Andric (CyclePhi <= CycleSched || OrigMI->isPHI()))
11768bcb0991SDimitry Andric ReplaceReg = PrevReg;
11778bcb0991SDimitry Andric else
11788bcb0991SDimitry Andric ReplaceReg = NewReg;
11798bcb0991SDimitry Andric }
11808bcb0991SDimitry Andric // The scheduled instruction occurs before the scheduled Phi, and the
11818bcb0991SDimitry Andric // Phi is not loop carried.
11828bcb0991SDimitry Andric if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
11838bcb0991SDimitry Andric ReplaceReg = NewReg;
11848bcb0991SDimitry Andric if (StagePhi > StageSched && Phi->isPHI())
11858bcb0991SDimitry Andric ReplaceReg = NewReg;
11868bcb0991SDimitry Andric if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
11878bcb0991SDimitry Andric ReplaceReg = NewReg;
11888bcb0991SDimitry Andric if (ReplaceReg) {
118981ad6265SDimitry Andric const TargetRegisterClass *NRC =
11908bcb0991SDimitry Andric MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
119181ad6265SDimitry Andric if (NRC)
11928bcb0991SDimitry Andric UseOp.setReg(ReplaceReg);
119381ad6265SDimitry Andric else {
119481ad6265SDimitry Andric Register SplitReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
119581ad6265SDimitry Andric BuildMI(*BB, UseMI, UseMI->getDebugLoc(), TII->get(TargetOpcode::COPY),
119681ad6265SDimitry Andric SplitReg)
119781ad6265SDimitry Andric .addReg(ReplaceReg);
119881ad6265SDimitry Andric UseOp.setReg(SplitReg);
119981ad6265SDimitry Andric }
12008bcb0991SDimitry Andric }
12018bcb0991SDimitry Andric }
12028bcb0991SDimitry Andric }
12038bcb0991SDimitry Andric
isLoopCarried(MachineInstr & Phi)12048bcb0991SDimitry Andric bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
12058bcb0991SDimitry Andric if (!Phi.isPHI())
12068bcb0991SDimitry Andric return false;
1207480093f4SDimitry Andric int DefCycle = Schedule.getCycle(&Phi);
12088bcb0991SDimitry Andric int DefStage = Schedule.getStage(&Phi);
12098bcb0991SDimitry Andric
12108bcb0991SDimitry Andric unsigned InitVal = 0;
12118bcb0991SDimitry Andric unsigned LoopVal = 0;
12128bcb0991SDimitry Andric getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
12138bcb0991SDimitry Andric MachineInstr *Use = MRI.getVRegDef(LoopVal);
12148bcb0991SDimitry Andric if (!Use || Use->isPHI())
12158bcb0991SDimitry Andric return true;
1216480093f4SDimitry Andric int LoopCycle = Schedule.getCycle(Use);
12178bcb0991SDimitry Andric int LoopStage = Schedule.getStage(Use);
12188bcb0991SDimitry Andric return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
12198bcb0991SDimitry Andric }
12208bcb0991SDimitry Andric
12218bcb0991SDimitry Andric //===----------------------------------------------------------------------===//
12228bcb0991SDimitry Andric // PeelingModuloScheduleExpander implementation
12238bcb0991SDimitry Andric //===----------------------------------------------------------------------===//
12248bcb0991SDimitry Andric // This is a reimplementation of ModuloScheduleExpander that works by creating
12258bcb0991SDimitry Andric // a fully correct steady-state kernel and peeling off the prolog and epilogs.
12268bcb0991SDimitry Andric //===----------------------------------------------------------------------===//
12278bcb0991SDimitry Andric
12288bcb0991SDimitry Andric namespace {
12298bcb0991SDimitry Andric // Remove any dead phis in MBB. Dead phis either have only one block as input
12308bcb0991SDimitry Andric // (in which case they are the identity) or have no uses.
EliminateDeadPhis(MachineBasicBlock * MBB,MachineRegisterInfo & MRI,LiveIntervals * LIS,bool KeepSingleSrcPhi=false)12318bcb0991SDimitry Andric void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
1232480093f4SDimitry Andric LiveIntervals *LIS, bool KeepSingleSrcPhi = false) {
12338bcb0991SDimitry Andric bool Changed = true;
12348bcb0991SDimitry Andric while (Changed) {
12358bcb0991SDimitry Andric Changed = false;
1236349cc55cSDimitry Andric for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) {
12378bcb0991SDimitry Andric assert(MI.isPHI());
12388bcb0991SDimitry Andric if (MRI.use_empty(MI.getOperand(0).getReg())) {
12398bcb0991SDimitry Andric if (LIS)
12408bcb0991SDimitry Andric LIS->RemoveMachineInstrFromMaps(MI);
12418bcb0991SDimitry Andric MI.eraseFromParent();
12428bcb0991SDimitry Andric Changed = true;
1243480093f4SDimitry Andric } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) {
124481ad6265SDimitry Andric const TargetRegisterClass *ConstrainRegClass =
12458bcb0991SDimitry Andric MRI.constrainRegClass(MI.getOperand(1).getReg(),
12468bcb0991SDimitry Andric MRI.getRegClass(MI.getOperand(0).getReg()));
124781ad6265SDimitry Andric assert(ConstrainRegClass &&
124881ad6265SDimitry Andric "Expected a valid constrained register class!");
124981ad6265SDimitry Andric (void)ConstrainRegClass;
12508bcb0991SDimitry Andric MRI.replaceRegWith(MI.getOperand(0).getReg(),
12518bcb0991SDimitry Andric MI.getOperand(1).getReg());
12528bcb0991SDimitry Andric if (LIS)
12538bcb0991SDimitry Andric LIS->RemoveMachineInstrFromMaps(MI);
12548bcb0991SDimitry Andric MI.eraseFromParent();
12558bcb0991SDimitry Andric Changed = true;
12568bcb0991SDimitry Andric }
12578bcb0991SDimitry Andric }
12588bcb0991SDimitry Andric }
12598bcb0991SDimitry Andric }
12608bcb0991SDimitry Andric
12618bcb0991SDimitry Andric /// Rewrites the kernel block in-place to adhere to the given schedule.
12628bcb0991SDimitry Andric /// KernelRewriter holds all of the state required to perform the rewriting.
12638bcb0991SDimitry Andric class KernelRewriter {
12648bcb0991SDimitry Andric ModuloSchedule &S;
12658bcb0991SDimitry Andric MachineBasicBlock *BB;
12668bcb0991SDimitry Andric MachineBasicBlock *PreheaderBB, *ExitBB;
12678bcb0991SDimitry Andric MachineRegisterInfo &MRI;
12688bcb0991SDimitry Andric const TargetInstrInfo *TII;
12698bcb0991SDimitry Andric LiveIntervals *LIS;
12708bcb0991SDimitry Andric
12718bcb0991SDimitry Andric // Map from register class to canonical undef register for that class.
12728bcb0991SDimitry Andric DenseMap<const TargetRegisterClass *, Register> Undefs;
12738bcb0991SDimitry Andric // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
12748bcb0991SDimitry Andric // this map is only used when InitReg is non-undef.
12758bcb0991SDimitry Andric DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
12768bcb0991SDimitry Andric // Map from LoopReg to phi register where the InitReg is undef.
12778bcb0991SDimitry Andric DenseMap<Register, Register> UndefPhis;
12788bcb0991SDimitry Andric
12798bcb0991SDimitry Andric // Reg is used by MI. Return the new register MI should use to adhere to the
12808bcb0991SDimitry Andric // schedule. Insert phis as necessary.
12818bcb0991SDimitry Andric Register remapUse(Register Reg, MachineInstr &MI);
12828bcb0991SDimitry Andric // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
12838bcb0991SDimitry Andric // If InitReg is not given it is chosen arbitrarily. It will either be undef
12848bcb0991SDimitry Andric // or will be chosen so as to share another phi.
1285bdd1243dSDimitry Andric Register phi(Register LoopReg, std::optional<Register> InitReg = {},
12868bcb0991SDimitry Andric const TargetRegisterClass *RC = nullptr);
12878bcb0991SDimitry Andric // Create an undef register of the given register class.
12888bcb0991SDimitry Andric Register undef(const TargetRegisterClass *RC);
12898bcb0991SDimitry Andric
12908bcb0991SDimitry Andric public:
1291fe6060f1SDimitry Andric KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB,
12928bcb0991SDimitry Andric LiveIntervals *LIS = nullptr);
12938bcb0991SDimitry Andric void rewrite();
12948bcb0991SDimitry Andric };
12958bcb0991SDimitry Andric } // namespace
12968bcb0991SDimitry Andric
KernelRewriter(MachineLoop & L,ModuloSchedule & S,MachineBasicBlock * LoopBB,LiveIntervals * LIS)12978bcb0991SDimitry Andric KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1298fe6060f1SDimitry Andric MachineBasicBlock *LoopBB, LiveIntervals *LIS)
1299fe6060f1SDimitry Andric : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()),
13008bcb0991SDimitry Andric ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
13018bcb0991SDimitry Andric TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
13028bcb0991SDimitry Andric PreheaderBB = *BB->pred_begin();
13038bcb0991SDimitry Andric if (PreheaderBB == BB)
13048bcb0991SDimitry Andric PreheaderBB = *std::next(BB->pred_begin());
13058bcb0991SDimitry Andric }
13068bcb0991SDimitry Andric
rewrite()13078bcb0991SDimitry Andric void KernelRewriter::rewrite() {
13088bcb0991SDimitry Andric // Rearrange the loop to be in schedule order. Note that the schedule may
13098bcb0991SDimitry Andric // contain instructions that are not owned by the loop block (InstrChanges and
13108bcb0991SDimitry Andric // friends), so we gracefully handle unowned instructions and delete any
13118bcb0991SDimitry Andric // instructions that weren't in the schedule.
13128bcb0991SDimitry Andric auto InsertPt = BB->getFirstTerminator();
13138bcb0991SDimitry Andric MachineInstr *FirstMI = nullptr;
13148bcb0991SDimitry Andric for (MachineInstr *MI : S.getInstructions()) {
13158bcb0991SDimitry Andric if (MI->isPHI())
13168bcb0991SDimitry Andric continue;
13178bcb0991SDimitry Andric if (MI->getParent())
13188bcb0991SDimitry Andric MI->removeFromParent();
13198bcb0991SDimitry Andric BB->insert(InsertPt, MI);
13208bcb0991SDimitry Andric if (!FirstMI)
13218bcb0991SDimitry Andric FirstMI = MI;
13228bcb0991SDimitry Andric }
13238bcb0991SDimitry Andric assert(FirstMI && "Failed to find first MI in schedule");
13248bcb0991SDimitry Andric
13258bcb0991SDimitry Andric // At this point all of the scheduled instructions are between FirstMI
13268bcb0991SDimitry Andric // and the end of the block. Kill from the first non-phi to FirstMI.
13278bcb0991SDimitry Andric for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
13288bcb0991SDimitry Andric if (LIS)
13298bcb0991SDimitry Andric LIS->RemoveMachineInstrFromMaps(*I);
13308bcb0991SDimitry Andric (I++)->eraseFromParent();
13318bcb0991SDimitry Andric }
13328bcb0991SDimitry Andric
13338bcb0991SDimitry Andric // Now remap every instruction in the loop.
13348bcb0991SDimitry Andric for (MachineInstr &MI : *BB) {
13358bcb0991SDimitry Andric if (MI.isPHI() || MI.isTerminator())
13368bcb0991SDimitry Andric continue;
13378bcb0991SDimitry Andric for (MachineOperand &MO : MI.uses()) {
13388bcb0991SDimitry Andric if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
13398bcb0991SDimitry Andric continue;
13408bcb0991SDimitry Andric Register Reg = remapUse(MO.getReg(), MI);
13418bcb0991SDimitry Andric MO.setReg(Reg);
13428bcb0991SDimitry Andric }
13438bcb0991SDimitry Andric }
13448bcb0991SDimitry Andric EliminateDeadPhis(BB, MRI, LIS);
13458bcb0991SDimitry Andric
13468bcb0991SDimitry Andric // Ensure a phi exists for all instructions that are either referenced by
13478bcb0991SDimitry Andric // an illegal phi or by an instruction outside the loop. This allows us to
13488bcb0991SDimitry Andric // treat remaps of these values the same as "normal" values that come from
13498bcb0991SDimitry Andric // loop-carried phis.
13508bcb0991SDimitry Andric for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
13518bcb0991SDimitry Andric if (MI->isPHI()) {
13528bcb0991SDimitry Andric Register R = MI->getOperand(0).getReg();
13538bcb0991SDimitry Andric phi(R);
13548bcb0991SDimitry Andric continue;
13558bcb0991SDimitry Andric }
13568bcb0991SDimitry Andric
13578bcb0991SDimitry Andric for (MachineOperand &Def : MI->defs()) {
13588bcb0991SDimitry Andric for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
13598bcb0991SDimitry Andric if (MI.getParent() != BB) {
13608bcb0991SDimitry Andric phi(Def.getReg());
13618bcb0991SDimitry Andric break;
13628bcb0991SDimitry Andric }
13638bcb0991SDimitry Andric }
13648bcb0991SDimitry Andric }
13658bcb0991SDimitry Andric }
13668bcb0991SDimitry Andric }
13678bcb0991SDimitry Andric
remapUse(Register Reg,MachineInstr & MI)13688bcb0991SDimitry Andric Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
13698bcb0991SDimitry Andric MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
13708bcb0991SDimitry Andric if (!Producer)
13718bcb0991SDimitry Andric return Reg;
13728bcb0991SDimitry Andric
13738bcb0991SDimitry Andric int ConsumerStage = S.getStage(&MI);
13748bcb0991SDimitry Andric if (!Producer->isPHI()) {
13758bcb0991SDimitry Andric // Non-phi producers are simple to remap. Insert as many phis as the
13768bcb0991SDimitry Andric // difference between the consumer and producer stages.
13778bcb0991SDimitry Andric if (Producer->getParent() != BB)
13788bcb0991SDimitry Andric // Producer was not inside the loop. Use the register as-is.
13798bcb0991SDimitry Andric return Reg;
13808bcb0991SDimitry Andric int ProducerStage = S.getStage(Producer);
13818bcb0991SDimitry Andric assert(ConsumerStage != -1 &&
13828bcb0991SDimitry Andric "In-loop consumer should always be scheduled!");
13838bcb0991SDimitry Andric assert(ConsumerStage >= ProducerStage);
13848bcb0991SDimitry Andric unsigned StageDiff = ConsumerStage - ProducerStage;
13858bcb0991SDimitry Andric
13868bcb0991SDimitry Andric for (unsigned I = 0; I < StageDiff; ++I)
13878bcb0991SDimitry Andric Reg = phi(Reg);
13888bcb0991SDimitry Andric return Reg;
13898bcb0991SDimitry Andric }
13908bcb0991SDimitry Andric
13918bcb0991SDimitry Andric // First, dive through the phi chain to find the defaults for the generated
13928bcb0991SDimitry Andric // phis.
1393bdd1243dSDimitry Andric SmallVector<std::optional<Register>, 4> Defaults;
13948bcb0991SDimitry Andric Register LoopReg = Reg;
13958bcb0991SDimitry Andric auto LoopProducer = Producer;
13968bcb0991SDimitry Andric while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
13978bcb0991SDimitry Andric LoopReg = getLoopPhiReg(*LoopProducer, BB);
13988bcb0991SDimitry Andric Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
13998bcb0991SDimitry Andric LoopProducer = MRI.getUniqueVRegDef(LoopReg);
14008bcb0991SDimitry Andric assert(LoopProducer);
14018bcb0991SDimitry Andric }
14028bcb0991SDimitry Andric int LoopProducerStage = S.getStage(LoopProducer);
14038bcb0991SDimitry Andric
1404bdd1243dSDimitry Andric std::optional<Register> IllegalPhiDefault;
14058bcb0991SDimitry Andric
14068bcb0991SDimitry Andric if (LoopProducerStage == -1) {
14078bcb0991SDimitry Andric // Do nothing.
14088bcb0991SDimitry Andric } else if (LoopProducerStage > ConsumerStage) {
14098bcb0991SDimitry Andric // This schedule is only representable if ProducerStage == ConsumerStage+1.
14108bcb0991SDimitry Andric // In addition, Consumer's cycle must be scheduled after Producer in the
14118bcb0991SDimitry Andric // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
14128bcb0991SDimitry Andric // functions.
14138bcb0991SDimitry Andric #ifndef NDEBUG // Silence unused variables in non-asserts mode.
14148bcb0991SDimitry Andric int LoopProducerCycle = S.getCycle(LoopProducer);
14158bcb0991SDimitry Andric int ConsumerCycle = S.getCycle(&MI);
14168bcb0991SDimitry Andric #endif
14178bcb0991SDimitry Andric assert(LoopProducerCycle <= ConsumerCycle);
14188bcb0991SDimitry Andric assert(LoopProducerStage == ConsumerStage + 1);
14198bcb0991SDimitry Andric // Peel off the first phi from Defaults and insert a phi between producer
14208bcb0991SDimitry Andric // and consumer. This phi will not be at the front of the block so we
14218bcb0991SDimitry Andric // consider it illegal. It will only exist during the rewrite process; it
14228bcb0991SDimitry Andric // needs to exist while we peel off prologs because these could take the
14238bcb0991SDimitry Andric // default value. After that we can replace all uses with the loop producer
14248bcb0991SDimitry Andric // value.
14258bcb0991SDimitry Andric IllegalPhiDefault = Defaults.front();
14268bcb0991SDimitry Andric Defaults.erase(Defaults.begin());
14278bcb0991SDimitry Andric } else {
14288bcb0991SDimitry Andric assert(ConsumerStage >= LoopProducerStage);
14298bcb0991SDimitry Andric int StageDiff = ConsumerStage - LoopProducerStage;
14308bcb0991SDimitry Andric if (StageDiff > 0) {
14318bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()
14328bcb0991SDimitry Andric << " to " << (Defaults.size() + StageDiff) << "\n");
14338bcb0991SDimitry Andric // If we need more phis than we have defaults for, pad out with undefs for
14348bcb0991SDimitry Andric // the earliest phis, which are at the end of the defaults chain (the
14358bcb0991SDimitry Andric // chain is in reverse order).
1436bdd1243dSDimitry Andric Defaults.resize(Defaults.size() + StageDiff,
1437bdd1243dSDimitry Andric Defaults.empty() ? std::optional<Register>()
14388bcb0991SDimitry Andric : Defaults.back());
14398bcb0991SDimitry Andric }
14408bcb0991SDimitry Andric }
14418bcb0991SDimitry Andric
14428bcb0991SDimitry Andric // Now we know the number of stages to jump back, insert the phi chain.
14438bcb0991SDimitry Andric auto DefaultI = Defaults.rbegin();
14448bcb0991SDimitry Andric while (DefaultI != Defaults.rend())
14458bcb0991SDimitry Andric LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));
14468bcb0991SDimitry Andric
144781ad6265SDimitry Andric if (IllegalPhiDefault) {
14488bcb0991SDimitry Andric // The consumer optionally consumes LoopProducer in the same iteration
14498bcb0991SDimitry Andric // (because the producer is scheduled at an earlier cycle than the consumer)
14508bcb0991SDimitry Andric // or the initial value. To facilitate this we create an illegal block here
14518bcb0991SDimitry Andric // by embedding a phi in the middle of the block. We will fix this up
14528bcb0991SDimitry Andric // immediately prior to pruning.
14538bcb0991SDimitry Andric auto RC = MRI.getRegClass(Reg);
14548bcb0991SDimitry Andric Register R = MRI.createVirtualRegister(RC);
14555ffd83dbSDimitry Andric MachineInstr *IllegalPhi =
14568bcb0991SDimitry Andric BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
145781ad6265SDimitry Andric .addReg(*IllegalPhiDefault)
14588bcb0991SDimitry Andric .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
14598bcb0991SDimitry Andric .addReg(LoopReg)
14608bcb0991SDimitry Andric .addMBB(BB); // Block choice is arbitrary and has no effect.
14615ffd83dbSDimitry Andric // Illegal phi should belong to the producer stage so that it can be
14625ffd83dbSDimitry Andric // filtered correctly during peeling.
14635ffd83dbSDimitry Andric S.setStage(IllegalPhi, LoopProducerStage);
14648bcb0991SDimitry Andric return R;
14658bcb0991SDimitry Andric }
14668bcb0991SDimitry Andric
14678bcb0991SDimitry Andric return LoopReg;
14688bcb0991SDimitry Andric }
14698bcb0991SDimitry Andric
phi(Register LoopReg,std::optional<Register> InitReg,const TargetRegisterClass * RC)1470bdd1243dSDimitry Andric Register KernelRewriter::phi(Register LoopReg, std::optional<Register> InitReg,
14718bcb0991SDimitry Andric const TargetRegisterClass *RC) {
14728bcb0991SDimitry Andric // If the init register is not undef, try and find an existing phi.
147381ad6265SDimitry Andric if (InitReg) {
1474bdd1243dSDimitry Andric auto I = Phis.find({LoopReg, *InitReg});
14758bcb0991SDimitry Andric if (I != Phis.end())
14768bcb0991SDimitry Andric return I->second;
14778bcb0991SDimitry Andric } else {
14788bcb0991SDimitry Andric for (auto &KV : Phis) {
14798bcb0991SDimitry Andric if (KV.first.first == LoopReg)
14808bcb0991SDimitry Andric return KV.second;
14818bcb0991SDimitry Andric }
14828bcb0991SDimitry Andric }
14838bcb0991SDimitry Andric
14848bcb0991SDimitry Andric // InitReg is either undef or no existing phi takes InitReg as input. Try and
14858bcb0991SDimitry Andric // find a phi that takes undef as input.
14868bcb0991SDimitry Andric auto I = UndefPhis.find(LoopReg);
14878bcb0991SDimitry Andric if (I != UndefPhis.end()) {
14888bcb0991SDimitry Andric Register R = I->second;
148981ad6265SDimitry Andric if (!InitReg)
14908bcb0991SDimitry Andric // Found a phi taking undef as input, and this input is undef so return
14918bcb0991SDimitry Andric // without any more changes.
14928bcb0991SDimitry Andric return R;
14938bcb0991SDimitry Andric // Found a phi taking undef as input, so rewrite it to take InitReg.
14948bcb0991SDimitry Andric MachineInstr *MI = MRI.getVRegDef(R);
1495bdd1243dSDimitry Andric MI->getOperand(1).setReg(*InitReg);
1496bdd1243dSDimitry Andric Phis.insert({{LoopReg, *InitReg}, R});
149781ad6265SDimitry Andric const TargetRegisterClass *ConstrainRegClass =
1498bdd1243dSDimitry Andric MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
149981ad6265SDimitry Andric assert(ConstrainRegClass && "Expected a valid constrained register class!");
150081ad6265SDimitry Andric (void)ConstrainRegClass;
15018bcb0991SDimitry Andric UndefPhis.erase(I);
15028bcb0991SDimitry Andric return R;
15038bcb0991SDimitry Andric }
15048bcb0991SDimitry Andric
15058bcb0991SDimitry Andric // Failed to find any existing phi to reuse, so create a new one.
15068bcb0991SDimitry Andric if (!RC)
15078bcb0991SDimitry Andric RC = MRI.getRegClass(LoopReg);
15088bcb0991SDimitry Andric Register R = MRI.createVirtualRegister(RC);
150981ad6265SDimitry Andric if (InitReg) {
151081ad6265SDimitry Andric const TargetRegisterClass *ConstrainRegClass =
15118bcb0991SDimitry Andric MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
151281ad6265SDimitry Andric assert(ConstrainRegClass && "Expected a valid constrained register class!");
151381ad6265SDimitry Andric (void)ConstrainRegClass;
151481ad6265SDimitry Andric }
15158bcb0991SDimitry Andric BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
151681ad6265SDimitry Andric .addReg(InitReg ? *InitReg : undef(RC))
15178bcb0991SDimitry Andric .addMBB(PreheaderBB)
15188bcb0991SDimitry Andric .addReg(LoopReg)
15198bcb0991SDimitry Andric .addMBB(BB);
152081ad6265SDimitry Andric if (!InitReg)
15218bcb0991SDimitry Andric UndefPhis[LoopReg] = R;
15228bcb0991SDimitry Andric else
15238bcb0991SDimitry Andric Phis[{LoopReg, *InitReg}] = R;
15248bcb0991SDimitry Andric return R;
15258bcb0991SDimitry Andric }
15268bcb0991SDimitry Andric
undef(const TargetRegisterClass * RC)15278bcb0991SDimitry Andric Register KernelRewriter::undef(const TargetRegisterClass *RC) {
15288bcb0991SDimitry Andric Register &R = Undefs[RC];
15298bcb0991SDimitry Andric if (R == 0) {
15308bcb0991SDimitry Andric // Create an IMPLICIT_DEF that defines this register if we need it.
15318bcb0991SDimitry Andric // All uses of this should be removed by the time we have finished unrolling
15328bcb0991SDimitry Andric // prologs and epilogs.
15338bcb0991SDimitry Andric R = MRI.createVirtualRegister(RC);
15348bcb0991SDimitry Andric auto *InsertBB = &PreheaderBB->getParent()->front();
15358bcb0991SDimitry Andric BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
15368bcb0991SDimitry Andric TII->get(TargetOpcode::IMPLICIT_DEF), R);
15378bcb0991SDimitry Andric }
15388bcb0991SDimitry Andric return R;
15398bcb0991SDimitry Andric }
15408bcb0991SDimitry Andric
15418bcb0991SDimitry Andric namespace {
15428bcb0991SDimitry Andric /// Describes an operand in the kernel of a pipelined loop. Characteristics of
15438bcb0991SDimitry Andric /// the operand are discovered, such as how many in-loop PHIs it has to jump
15448bcb0991SDimitry Andric /// through and defaults for these phis.
15458bcb0991SDimitry Andric class KernelOperandInfo {
15468bcb0991SDimitry Andric MachineBasicBlock *BB;
15478bcb0991SDimitry Andric MachineRegisterInfo &MRI;
15488bcb0991SDimitry Andric SmallVector<Register, 4> PhiDefaults;
15498bcb0991SDimitry Andric MachineOperand *Source;
15508bcb0991SDimitry Andric MachineOperand *Target;
15518bcb0991SDimitry Andric
15528bcb0991SDimitry Andric public:
KernelOperandInfo(MachineOperand * MO,MachineRegisterInfo & MRI,const SmallPtrSetImpl<MachineInstr * > & IllegalPhis)15538bcb0991SDimitry Andric KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
15548bcb0991SDimitry Andric const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
15558bcb0991SDimitry Andric : MRI(MRI) {
15568bcb0991SDimitry Andric Source = MO;
15578bcb0991SDimitry Andric BB = MO->getParent()->getParent();
15588bcb0991SDimitry Andric while (isRegInLoop(MO)) {
15598bcb0991SDimitry Andric MachineInstr *MI = MRI.getVRegDef(MO->getReg());
15608bcb0991SDimitry Andric if (MI->isFullCopy()) {
15618bcb0991SDimitry Andric MO = &MI->getOperand(1);
15628bcb0991SDimitry Andric continue;
15638bcb0991SDimitry Andric }
15648bcb0991SDimitry Andric if (!MI->isPHI())
15658bcb0991SDimitry Andric break;
15668bcb0991SDimitry Andric // If this is an illegal phi, don't count it in distance.
15678bcb0991SDimitry Andric if (IllegalPhis.count(MI)) {
15688bcb0991SDimitry Andric MO = &MI->getOperand(3);
15698bcb0991SDimitry Andric continue;
15708bcb0991SDimitry Andric }
15718bcb0991SDimitry Andric
15728bcb0991SDimitry Andric Register Default = getInitPhiReg(*MI, BB);
15738bcb0991SDimitry Andric MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
15748bcb0991SDimitry Andric : &MI->getOperand(3);
15758bcb0991SDimitry Andric PhiDefaults.push_back(Default);
15768bcb0991SDimitry Andric }
15778bcb0991SDimitry Andric Target = MO;
15788bcb0991SDimitry Andric }
15798bcb0991SDimitry Andric
operator ==(const KernelOperandInfo & Other) const15808bcb0991SDimitry Andric bool operator==(const KernelOperandInfo &Other) const {
15818bcb0991SDimitry Andric return PhiDefaults.size() == Other.PhiDefaults.size();
15828bcb0991SDimitry Andric }
15838bcb0991SDimitry Andric
print(raw_ostream & OS) const15848bcb0991SDimitry Andric void print(raw_ostream &OS) const {
15858bcb0991SDimitry Andric OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
15868bcb0991SDimitry Andric << *Source->getParent();
15878bcb0991SDimitry Andric }
15888bcb0991SDimitry Andric
15898bcb0991SDimitry Andric private:
isRegInLoop(MachineOperand * MO)15908bcb0991SDimitry Andric bool isRegInLoop(MachineOperand *MO) {
15918bcb0991SDimitry Andric return MO->isReg() && MO->getReg().isVirtual() &&
15928bcb0991SDimitry Andric MRI.getVRegDef(MO->getReg())->getParent() == BB;
15938bcb0991SDimitry Andric }
15948bcb0991SDimitry Andric };
15958bcb0991SDimitry Andric } // namespace
15968bcb0991SDimitry Andric
15978bcb0991SDimitry Andric MachineBasicBlock *
peelKernel(LoopPeelDirection LPD)15988bcb0991SDimitry Andric PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) {
15998bcb0991SDimitry Andric MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII);
16008bcb0991SDimitry Andric if (LPD == LPD_Front)
16018bcb0991SDimitry Andric PeeledFront.push_back(NewBB);
16028bcb0991SDimitry Andric else
16038bcb0991SDimitry Andric PeeledBack.push_front(NewBB);
16048bcb0991SDimitry Andric for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator();
16058bcb0991SDimitry Andric ++I, ++NI) {
16068bcb0991SDimitry Andric CanonicalMIs[&*I] = &*I;
16078bcb0991SDimitry Andric CanonicalMIs[&*NI] = &*I;
16088bcb0991SDimitry Andric BlockMIs[{NewBB, &*I}] = &*NI;
16098bcb0991SDimitry Andric BlockMIs[{BB, &*I}] = &*I;
16108bcb0991SDimitry Andric }
16118bcb0991SDimitry Andric return NewBB;
16128bcb0991SDimitry Andric }
16138bcb0991SDimitry Andric
filterInstructions(MachineBasicBlock * MB,int MinStage)1614480093f4SDimitry Andric void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB,
1615480093f4SDimitry Andric int MinStage) {
1616480093f4SDimitry Andric for (auto I = MB->getFirstInstrTerminator()->getReverseIterator();
1617480093f4SDimitry Andric I != std::next(MB->getFirstNonPHI()->getReverseIterator());) {
1618480093f4SDimitry Andric MachineInstr *MI = &*I++;
1619480093f4SDimitry Andric int Stage = getStage(MI);
1620480093f4SDimitry Andric if (Stage == -1 || Stage >= MinStage)
1621480093f4SDimitry Andric continue;
1622480093f4SDimitry Andric
1623480093f4SDimitry Andric for (MachineOperand &DefMO : MI->defs()) {
1624480093f4SDimitry Andric SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1625480093f4SDimitry Andric for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1626480093f4SDimitry Andric // Only PHIs can use values from this block by construction.
1627480093f4SDimitry Andric // Match with the equivalent PHI in B.
1628480093f4SDimitry Andric assert(UseMI.isPHI());
1629480093f4SDimitry Andric Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1630480093f4SDimitry Andric MI->getParent());
1631480093f4SDimitry Andric Subs.emplace_back(&UseMI, Reg);
1632480093f4SDimitry Andric }
1633480093f4SDimitry Andric for (auto &Sub : Subs)
1634480093f4SDimitry Andric Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1635480093f4SDimitry Andric *MRI.getTargetRegisterInfo());
1636480093f4SDimitry Andric }
1637480093f4SDimitry Andric if (LIS)
1638480093f4SDimitry Andric LIS->RemoveMachineInstrFromMaps(*MI);
1639480093f4SDimitry Andric MI->eraseFromParent();
1640480093f4SDimitry Andric }
1641480093f4SDimitry Andric }
1642480093f4SDimitry Andric
moveStageBetweenBlocks(MachineBasicBlock * DestBB,MachineBasicBlock * SourceBB,unsigned Stage)1643480093f4SDimitry Andric void PeelingModuloScheduleExpander::moveStageBetweenBlocks(
1644480093f4SDimitry Andric MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) {
1645480093f4SDimitry Andric auto InsertPt = DestBB->getFirstNonPHI();
1646480093f4SDimitry Andric DenseMap<Register, Register> Remaps;
1647349cc55cSDimitry Andric for (MachineInstr &MI : llvm::make_early_inc_range(
1648349cc55cSDimitry Andric llvm::make_range(SourceBB->getFirstNonPHI(), SourceBB->end()))) {
1649349cc55cSDimitry Andric if (MI.isPHI()) {
1650480093f4SDimitry Andric // This is an illegal PHI. If we move any instructions using an illegal
16515ffd83dbSDimitry Andric // PHI, we need to create a legal Phi.
1652349cc55cSDimitry Andric if (getStage(&MI) != Stage) {
16535ffd83dbSDimitry Andric // The legal Phi is not necessary if the illegal phi's stage
16545ffd83dbSDimitry Andric // is being moved.
1655349cc55cSDimitry Andric Register PhiR = MI.getOperand(0).getReg();
1656480093f4SDimitry Andric auto RC = MRI.getRegClass(PhiR);
1657480093f4SDimitry Andric Register NR = MRI.createVirtualRegister(RC);
16585ffd83dbSDimitry Andric MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(),
16595ffd83dbSDimitry Andric DebugLoc(), TII->get(TargetOpcode::PHI), NR)
1660480093f4SDimitry Andric .addReg(PhiR)
1661480093f4SDimitry Andric .addMBB(SourceBB);
1662349cc55cSDimitry Andric BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI;
1663349cc55cSDimitry Andric CanonicalMIs[NI] = CanonicalMIs[&MI];
1664480093f4SDimitry Andric Remaps[PhiR] = NR;
16655ffd83dbSDimitry Andric }
1666480093f4SDimitry Andric }
1667349cc55cSDimitry Andric if (getStage(&MI) != Stage)
1668480093f4SDimitry Andric continue;
1669349cc55cSDimitry Andric MI.removeFromParent();
1670349cc55cSDimitry Andric DestBB->insert(InsertPt, &MI);
1671349cc55cSDimitry Andric auto *KernelMI = CanonicalMIs[&MI];
1672349cc55cSDimitry Andric BlockMIs[{DestBB, KernelMI}] = &MI;
1673480093f4SDimitry Andric BlockMIs.erase({SourceBB, KernelMI});
1674480093f4SDimitry Andric }
1675480093f4SDimitry Andric SmallVector<MachineInstr *, 4> PhiToDelete;
1676480093f4SDimitry Andric for (MachineInstr &MI : DestBB->phis()) {
1677480093f4SDimitry Andric assert(MI.getNumOperands() == 3);
1678480093f4SDimitry Andric MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg());
1679480093f4SDimitry Andric // If the instruction referenced by the phi is moved inside the block
1680480093f4SDimitry Andric // we don't need the phi anymore.
1681480093f4SDimitry Andric if (getStage(Def) == Stage) {
1682480093f4SDimitry Andric Register PhiReg = MI.getOperand(0).getReg();
16830fca6ea1SDimitry Andric assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg(),
16840fca6ea1SDimitry Andric /*TRI=*/nullptr) != -1);
16855ffd83dbSDimitry Andric MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
1686480093f4SDimitry Andric MI.getOperand(0).setReg(PhiReg);
1687480093f4SDimitry Andric PhiToDelete.push_back(&MI);
1688480093f4SDimitry Andric }
1689480093f4SDimitry Andric }
1690480093f4SDimitry Andric for (auto *P : PhiToDelete)
1691480093f4SDimitry Andric P->eraseFromParent();
1692480093f4SDimitry Andric InsertPt = DestBB->getFirstNonPHI();
1693480093f4SDimitry Andric // Helper to clone Phi instructions into the destination block. We clone Phi
1694480093f4SDimitry Andric // greedily to avoid combinatorial explosion of Phi instructions.
1695480093f4SDimitry Andric auto clonePhi = [&](MachineInstr *Phi) {
1696480093f4SDimitry Andric MachineInstr *NewMI = MF.CloneMachineInstr(Phi);
1697480093f4SDimitry Andric DestBB->insert(InsertPt, NewMI);
1698480093f4SDimitry Andric Register OrigR = Phi->getOperand(0).getReg();
1699480093f4SDimitry Andric Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR));
1700480093f4SDimitry Andric NewMI->getOperand(0).setReg(R);
1701480093f4SDimitry Andric NewMI->getOperand(1).setReg(OrigR);
1702480093f4SDimitry Andric NewMI->getOperand(2).setMBB(*DestBB->pred_begin());
1703480093f4SDimitry Andric Remaps[OrigR] = R;
1704480093f4SDimitry Andric CanonicalMIs[NewMI] = CanonicalMIs[Phi];
1705480093f4SDimitry Andric BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI;
1706480093f4SDimitry Andric PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi];
1707480093f4SDimitry Andric return R;
1708480093f4SDimitry Andric };
1709480093f4SDimitry Andric for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) {
1710480093f4SDimitry Andric for (MachineOperand &MO : I->uses()) {
1711480093f4SDimitry Andric if (!MO.isReg())
1712480093f4SDimitry Andric continue;
1713480093f4SDimitry Andric if (Remaps.count(MO.getReg()))
1714480093f4SDimitry Andric MO.setReg(Remaps[MO.getReg()]);
1715480093f4SDimitry Andric else {
1716480093f4SDimitry Andric // If we are using a phi from the source block we need to add a new phi
1717480093f4SDimitry Andric // pointing to the old one.
1718480093f4SDimitry Andric MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg());
1719480093f4SDimitry Andric if (Use && Use->isPHI() && Use->getParent() == SourceBB) {
1720480093f4SDimitry Andric Register R = clonePhi(Use);
1721480093f4SDimitry Andric MO.setReg(R);
1722480093f4SDimitry Andric }
1723480093f4SDimitry Andric }
1724480093f4SDimitry Andric }
1725480093f4SDimitry Andric }
1726480093f4SDimitry Andric }
1727480093f4SDimitry Andric
1728480093f4SDimitry Andric Register
getPhiCanonicalReg(MachineInstr * CanonicalPhi,MachineInstr * Phi)1729480093f4SDimitry Andric PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi,
1730480093f4SDimitry Andric MachineInstr *Phi) {
1731480093f4SDimitry Andric unsigned distance = PhiNodeLoopIteration[Phi];
1732480093f4SDimitry Andric MachineInstr *CanonicalUse = CanonicalPhi;
17335ffd83dbSDimitry Andric Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg();
1734480093f4SDimitry Andric for (unsigned I = 0; I < distance; ++I) {
1735480093f4SDimitry Andric assert(CanonicalUse->isPHI());
1736480093f4SDimitry Andric assert(CanonicalUse->getNumOperands() == 5);
1737480093f4SDimitry Andric unsigned LoopRegIdx = 3, InitRegIdx = 1;
1738480093f4SDimitry Andric if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent())
1739480093f4SDimitry Andric std::swap(LoopRegIdx, InitRegIdx);
17405ffd83dbSDimitry Andric CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg();
17415ffd83dbSDimitry Andric CanonicalUse = MRI.getVRegDef(CanonicalUseReg);
1742480093f4SDimitry Andric }
17435ffd83dbSDimitry Andric return CanonicalUseReg;
1744480093f4SDimitry Andric }
1745480093f4SDimitry Andric
peelPrologAndEpilogs()17468bcb0991SDimitry Andric void PeelingModuloScheduleExpander::peelPrologAndEpilogs() {
17478bcb0991SDimitry Andric BitVector LS(Schedule.getNumStages(), true);
17488bcb0991SDimitry Andric BitVector AS(Schedule.getNumStages(), true);
17498bcb0991SDimitry Andric LiveStages[BB] = LS;
17508bcb0991SDimitry Andric AvailableStages[BB] = AS;
17518bcb0991SDimitry Andric
17528bcb0991SDimitry Andric // Peel out the prologs.
17538bcb0991SDimitry Andric LS.reset();
17548bcb0991SDimitry Andric for (int I = 0; I < Schedule.getNumStages() - 1; ++I) {
175504eeddc0SDimitry Andric LS[I] = true;
17568bcb0991SDimitry Andric Prologs.push_back(peelKernel(LPD_Front));
17578bcb0991SDimitry Andric LiveStages[Prologs.back()] = LS;
17588bcb0991SDimitry Andric AvailableStages[Prologs.back()] = LS;
17598bcb0991SDimitry Andric }
17608bcb0991SDimitry Andric
17618bcb0991SDimitry Andric // Create a block that will end up as the new loop exiting block (dominated by
17628bcb0991SDimitry Andric // all prologs and epilogs). It will only contain PHIs, in the same order as
17638bcb0991SDimitry Andric // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property
17648bcb0991SDimitry Andric // that the exiting block is a (sub) clone of BB. This in turn gives us the
17658bcb0991SDimitry Andric // property that any value deffed in BB but used outside of BB is used by a
17668bcb0991SDimitry Andric // PHI in the exiting block.
17678bcb0991SDimitry Andric MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock();
1768480093f4SDimitry Andric EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true);
17698bcb0991SDimitry Andric // Push out the epilogs, again in reverse order.
17708bcb0991SDimitry Andric // We can't assume anything about the minumum loop trip count at this point,
1771480093f4SDimitry Andric // so emit a fairly complex epilog.
1772480093f4SDimitry Andric
1773480093f4SDimitry Andric // We first peel number of stages minus one epilogue. Then we remove dead
1774480093f4SDimitry Andric // stages and reorder instructions based on their stage. If we have 3 stages
1775480093f4SDimitry Andric // we generate first:
1776480093f4SDimitry Andric // E0[3, 2, 1]
1777480093f4SDimitry Andric // E1[3', 2']
1778480093f4SDimitry Andric // E2[3'']
1779480093f4SDimitry Andric // And then we move instructions based on their stages to have:
1780480093f4SDimitry Andric // E0[3]
1781480093f4SDimitry Andric // E1[2, 3']
1782480093f4SDimitry Andric // E2[1, 2', 3'']
1783480093f4SDimitry Andric // The transformation is legal because we only move instructions past
1784480093f4SDimitry Andric // instructions of a previous loop iteration.
17858bcb0991SDimitry Andric for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) {
1786480093f4SDimitry Andric Epilogs.push_back(peelKernel(LPD_Back));
1787480093f4SDimitry Andric MachineBasicBlock *B = Epilogs.back();
1788480093f4SDimitry Andric filterInstructions(B, Schedule.getNumStages() - I);
1789480093f4SDimitry Andric // Keep track at which iteration each phi belongs to. We need it to know
1790480093f4SDimitry Andric // what version of the variable to use during prologue/epilogue stitching.
1791480093f4SDimitry Andric EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1792349cc55cSDimitry Andric for (MachineInstr &Phi : B->phis())
1793349cc55cSDimitry Andric PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I;
17948bcb0991SDimitry Andric }
1795480093f4SDimitry Andric for (size_t I = 0; I < Epilogs.size(); I++) {
1796480093f4SDimitry Andric LS.reset();
1797480093f4SDimitry Andric for (size_t J = I; J < Epilogs.size(); J++) {
1798480093f4SDimitry Andric int Iteration = J;
1799480093f4SDimitry Andric unsigned Stage = Schedule.getNumStages() - 1 + I - J;
1800480093f4SDimitry Andric // Move stage one block at a time so that Phi nodes are updated correctly.
1801480093f4SDimitry Andric for (size_t K = Iteration; K > I; K--)
1802480093f4SDimitry Andric moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage);
180304eeddc0SDimitry Andric LS[Stage] = true;
1804480093f4SDimitry Andric }
1805480093f4SDimitry Andric LiveStages[Epilogs[I]] = LS;
1806480093f4SDimitry Andric AvailableStages[Epilogs[I]] = AS;
18078bcb0991SDimitry Andric }
18088bcb0991SDimitry Andric
18098bcb0991SDimitry Andric // Now we've defined all the prolog and epilog blocks as a fallthrough
18108bcb0991SDimitry Andric // sequence, add the edges that will be followed if the loop trip count is
18118bcb0991SDimitry Andric // lower than the number of stages (connecting prologs directly with epilogs).
18128bcb0991SDimitry Andric auto PI = Prologs.begin();
18138bcb0991SDimitry Andric auto EI = Epilogs.begin();
18148bcb0991SDimitry Andric assert(Prologs.size() == Epilogs.size());
18158bcb0991SDimitry Andric for (; PI != Prologs.end(); ++PI, ++EI) {
18168bcb0991SDimitry Andric MachineBasicBlock *Pred = *(*EI)->pred_begin();
18178bcb0991SDimitry Andric (*PI)->addSuccessor(*EI);
18188bcb0991SDimitry Andric for (MachineInstr &MI : (*EI)->phis()) {
18198bcb0991SDimitry Andric Register Reg = MI.getOperand(1).getReg();
18208bcb0991SDimitry Andric MachineInstr *Use = MRI.getUniqueVRegDef(Reg);
1821480093f4SDimitry Andric if (Use && Use->getParent() == Pred) {
1822480093f4SDimitry Andric MachineInstr *CanonicalUse = CanonicalMIs[Use];
1823480093f4SDimitry Andric if (CanonicalUse->isPHI()) {
1824480093f4SDimitry Andric // If the use comes from a phi we need to skip as many phi as the
1825480093f4SDimitry Andric // distance between the epilogue and the kernel. Trace through the phi
1826480093f4SDimitry Andric // chain to find the right value.
1827480093f4SDimitry Andric Reg = getPhiCanonicalReg(CanonicalUse, Use);
1828480093f4SDimitry Andric }
18298bcb0991SDimitry Andric Reg = getEquivalentRegisterIn(Reg, *PI);
1830480093f4SDimitry Andric }
18318bcb0991SDimitry Andric MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false));
18328bcb0991SDimitry Andric MI.addOperand(MachineOperand::CreateMBB(*PI));
18338bcb0991SDimitry Andric }
18348bcb0991SDimitry Andric }
18358bcb0991SDimitry Andric
18368bcb0991SDimitry Andric // Create a list of all blocks in order.
18378bcb0991SDimitry Andric SmallVector<MachineBasicBlock *, 8> Blocks;
18388bcb0991SDimitry Andric llvm::copy(PeeledFront, std::back_inserter(Blocks));
18398bcb0991SDimitry Andric Blocks.push_back(BB);
18408bcb0991SDimitry Andric llvm::copy(PeeledBack, std::back_inserter(Blocks));
18418bcb0991SDimitry Andric
18428bcb0991SDimitry Andric // Iterate in reverse order over all instructions, remapping as we go.
18438bcb0991SDimitry Andric for (MachineBasicBlock *B : reverse(Blocks)) {
184481ad6265SDimitry Andric for (auto I = B->instr_rbegin();
18458bcb0991SDimitry Andric I != std::next(B->getFirstNonPHI()->getReverseIterator());) {
184681ad6265SDimitry Andric MachineBasicBlock::reverse_instr_iterator MI = I++;
184781ad6265SDimitry Andric rewriteUsesOf(&*MI);
18488bcb0991SDimitry Andric }
18498bcb0991SDimitry Andric }
1850480093f4SDimitry Andric for (auto *MI : IllegalPhisToDelete) {
1851480093f4SDimitry Andric if (LIS)
1852480093f4SDimitry Andric LIS->RemoveMachineInstrFromMaps(*MI);
1853480093f4SDimitry Andric MI->eraseFromParent();
1854480093f4SDimitry Andric }
1855480093f4SDimitry Andric IllegalPhisToDelete.clear();
1856480093f4SDimitry Andric
18578bcb0991SDimitry Andric // Now all remapping has been done, we're free to optimize the generated code.
18588bcb0991SDimitry Andric for (MachineBasicBlock *B : reverse(Blocks))
18598bcb0991SDimitry Andric EliminateDeadPhis(B, MRI, LIS);
18608bcb0991SDimitry Andric EliminateDeadPhis(ExitingBB, MRI, LIS);
18618bcb0991SDimitry Andric }
18628bcb0991SDimitry Andric
CreateLCSSAExitingBlock()18638bcb0991SDimitry Andric MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() {
18648bcb0991SDimitry Andric MachineFunction &MF = *BB->getParent();
18658bcb0991SDimitry Andric MachineBasicBlock *Exit = *BB->succ_begin();
18668bcb0991SDimitry Andric if (Exit == BB)
18678bcb0991SDimitry Andric Exit = *std::next(BB->succ_begin());
18688bcb0991SDimitry Andric
18698bcb0991SDimitry Andric MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
18708bcb0991SDimitry Andric MF.insert(std::next(BB->getIterator()), NewBB);
18718bcb0991SDimitry Andric
18728bcb0991SDimitry Andric // Clone all phis in BB into NewBB and rewrite.
18738bcb0991SDimitry Andric for (MachineInstr &MI : BB->phis()) {
18748bcb0991SDimitry Andric auto RC = MRI.getRegClass(MI.getOperand(0).getReg());
18758bcb0991SDimitry Andric Register OldR = MI.getOperand(3).getReg();
18768bcb0991SDimitry Andric Register R = MRI.createVirtualRegister(RC);
18778bcb0991SDimitry Andric SmallVector<MachineInstr *, 4> Uses;
18788bcb0991SDimitry Andric for (MachineInstr &Use : MRI.use_instructions(OldR))
18798bcb0991SDimitry Andric if (Use.getParent() != BB)
18808bcb0991SDimitry Andric Uses.push_back(&Use);
18818bcb0991SDimitry Andric for (MachineInstr *Use : Uses)
18828bcb0991SDimitry Andric Use->substituteRegister(OldR, R, /*SubIdx=*/0,
18838bcb0991SDimitry Andric *MRI.getTargetRegisterInfo());
18848bcb0991SDimitry Andric MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R)
18858bcb0991SDimitry Andric .addReg(OldR)
18868bcb0991SDimitry Andric .addMBB(BB);
18878bcb0991SDimitry Andric BlockMIs[{NewBB, &MI}] = NI;
18888bcb0991SDimitry Andric CanonicalMIs[NI] = &MI;
18898bcb0991SDimitry Andric }
18908bcb0991SDimitry Andric BB->replaceSuccessor(Exit, NewBB);
18918bcb0991SDimitry Andric Exit->replacePhiUsesWith(BB, NewBB);
18928bcb0991SDimitry Andric NewBB->addSuccessor(Exit);
18938bcb0991SDimitry Andric
18948bcb0991SDimitry Andric MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
18958bcb0991SDimitry Andric SmallVector<MachineOperand, 4> Cond;
18968bcb0991SDimitry Andric bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond);
18978bcb0991SDimitry Andric (void)CanAnalyzeBr;
18988bcb0991SDimitry Andric assert(CanAnalyzeBr && "Must be able to analyze the loop branch!");
18998bcb0991SDimitry Andric TII->removeBranch(*BB);
19008bcb0991SDimitry Andric TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB,
19018bcb0991SDimitry Andric Cond, DebugLoc());
19028bcb0991SDimitry Andric TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc());
19038bcb0991SDimitry Andric return NewBB;
19048bcb0991SDimitry Andric }
19058bcb0991SDimitry Andric
19068bcb0991SDimitry Andric Register
getEquivalentRegisterIn(Register Reg,MachineBasicBlock * BB)19078bcb0991SDimitry Andric PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg,
19088bcb0991SDimitry Andric MachineBasicBlock *BB) {
19098bcb0991SDimitry Andric MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
19100fca6ea1SDimitry Andric unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg, /*TRI=*/nullptr);
19118bcb0991SDimitry Andric return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg();
19128bcb0991SDimitry Andric }
19138bcb0991SDimitry Andric
rewriteUsesOf(MachineInstr * MI)19148bcb0991SDimitry Andric void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) {
19158bcb0991SDimitry Andric if (MI->isPHI()) {
19168bcb0991SDimitry Andric // This is an illegal PHI. The loop-carried (desired) value is operand 3,
19178bcb0991SDimitry Andric // and it is produced by this block.
19188bcb0991SDimitry Andric Register PhiR = MI->getOperand(0).getReg();
19198bcb0991SDimitry Andric Register R = MI->getOperand(3).getReg();
19208bcb0991SDimitry Andric int RMIStage = getStage(MRI.getUniqueVRegDef(R));
19218bcb0991SDimitry Andric if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage))
19228bcb0991SDimitry Andric R = MI->getOperand(1).getReg();
19238bcb0991SDimitry Andric MRI.setRegClass(R, MRI.getRegClass(PhiR));
19248bcb0991SDimitry Andric MRI.replaceRegWith(PhiR, R);
1925480093f4SDimitry Andric // Postpone deleting the Phi as it may be referenced by BlockMIs and used
1926480093f4SDimitry Andric // later to figure out how to remap registers.
1927480093f4SDimitry Andric MI->getOperand(0).setReg(PhiR);
1928480093f4SDimitry Andric IllegalPhisToDelete.push_back(MI);
19298bcb0991SDimitry Andric return;
19308bcb0991SDimitry Andric }
19318bcb0991SDimitry Andric
19328bcb0991SDimitry Andric int Stage = getStage(MI);
19338bcb0991SDimitry Andric if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 ||
19348bcb0991SDimitry Andric LiveStages[MI->getParent()].test(Stage))
19358bcb0991SDimitry Andric // Instruction is live, no rewriting to do.
19368bcb0991SDimitry Andric return;
19378bcb0991SDimitry Andric
19388bcb0991SDimitry Andric for (MachineOperand &DefMO : MI->defs()) {
19398bcb0991SDimitry Andric SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
19408bcb0991SDimitry Andric for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
19418bcb0991SDimitry Andric // Only PHIs can use values from this block by construction.
19428bcb0991SDimitry Andric // Match with the equivalent PHI in B.
19438bcb0991SDimitry Andric assert(UseMI.isPHI());
19448bcb0991SDimitry Andric Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
19458bcb0991SDimitry Andric MI->getParent());
19468bcb0991SDimitry Andric Subs.emplace_back(&UseMI, Reg);
19478bcb0991SDimitry Andric }
19488bcb0991SDimitry Andric for (auto &Sub : Subs)
19498bcb0991SDimitry Andric Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
19508bcb0991SDimitry Andric *MRI.getTargetRegisterInfo());
19518bcb0991SDimitry Andric }
19528bcb0991SDimitry Andric if (LIS)
19538bcb0991SDimitry Andric LIS->RemoveMachineInstrFromMaps(*MI);
19548bcb0991SDimitry Andric MI->eraseFromParent();
19558bcb0991SDimitry Andric }
19568bcb0991SDimitry Andric
fixupBranches()19578bcb0991SDimitry Andric void PeelingModuloScheduleExpander::fixupBranches() {
19588bcb0991SDimitry Andric // Work outwards from the kernel.
19598bcb0991SDimitry Andric bool KernelDisposed = false;
19608bcb0991SDimitry Andric int TC = Schedule.getNumStages() - 1;
19618bcb0991SDimitry Andric for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend();
19628bcb0991SDimitry Andric ++PI, ++EI, --TC) {
19638bcb0991SDimitry Andric MachineBasicBlock *Prolog = *PI;
19648bcb0991SDimitry Andric MachineBasicBlock *Fallthrough = *Prolog->succ_begin();
19658bcb0991SDimitry Andric MachineBasicBlock *Epilog = *EI;
19668bcb0991SDimitry Andric SmallVector<MachineOperand, 4> Cond;
19678bcb0991SDimitry Andric TII->removeBranch(*Prolog);
1968bdd1243dSDimitry Andric std::optional<bool> StaticallyGreater =
19695ffd83dbSDimitry Andric LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond);
197081ad6265SDimitry Andric if (!StaticallyGreater) {
19718bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n");
19728bcb0991SDimitry Andric // Dynamically branch based on Cond.
19738bcb0991SDimitry Andric TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc());
19748bcb0991SDimitry Andric } else if (*StaticallyGreater == false) {
19758bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n");
19768bcb0991SDimitry Andric // Prolog never falls through; branch to epilog and orphan interior
19778bcb0991SDimitry Andric // blocks. Leave it to unreachable-block-elim to clean up.
19788bcb0991SDimitry Andric Prolog->removeSuccessor(Fallthrough);
19798bcb0991SDimitry Andric for (MachineInstr &P : Fallthrough->phis()) {
198081ad6265SDimitry Andric P.removeOperand(2);
198181ad6265SDimitry Andric P.removeOperand(1);
19828bcb0991SDimitry Andric }
19838bcb0991SDimitry Andric TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc());
19848bcb0991SDimitry Andric KernelDisposed = true;
19858bcb0991SDimitry Andric } else {
19868bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n");
19878bcb0991SDimitry Andric // Prolog always falls through; remove incoming values in epilog.
19888bcb0991SDimitry Andric Prolog->removeSuccessor(Epilog);
19898bcb0991SDimitry Andric for (MachineInstr &P : Epilog->phis()) {
199081ad6265SDimitry Andric P.removeOperand(4);
199181ad6265SDimitry Andric P.removeOperand(3);
19928bcb0991SDimitry Andric }
19938bcb0991SDimitry Andric }
19948bcb0991SDimitry Andric }
19958bcb0991SDimitry Andric
19968bcb0991SDimitry Andric if (!KernelDisposed) {
19975ffd83dbSDimitry Andric LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1));
19985ffd83dbSDimitry Andric LoopInfo->setPreheader(Prologs.back());
19998bcb0991SDimitry Andric } else {
20005ffd83dbSDimitry Andric LoopInfo->disposed();
20018bcb0991SDimitry Andric }
20028bcb0991SDimitry Andric }
20038bcb0991SDimitry Andric
rewriteKernel()20048bcb0991SDimitry Andric void PeelingModuloScheduleExpander::rewriteKernel() {
2005fe6060f1SDimitry Andric KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
20068bcb0991SDimitry Andric KR.rewrite();
20078bcb0991SDimitry Andric }
20088bcb0991SDimitry Andric
expand()20098bcb0991SDimitry Andric void PeelingModuloScheduleExpander::expand() {
20108bcb0991SDimitry Andric BB = Schedule.getLoop()->getTopBlock();
20118bcb0991SDimitry Andric Preheader = Schedule.getLoop()->getLoopPreheader();
20128bcb0991SDimitry Andric LLVM_DEBUG(Schedule.dump());
20135ffd83dbSDimitry Andric LoopInfo = TII->analyzeLoopForPipelining(BB);
20145ffd83dbSDimitry Andric assert(LoopInfo);
20158bcb0991SDimitry Andric
20168bcb0991SDimitry Andric rewriteKernel();
20178bcb0991SDimitry Andric peelPrologAndEpilogs();
20188bcb0991SDimitry Andric fixupBranches();
20198bcb0991SDimitry Andric }
20208bcb0991SDimitry Andric
validateAgainstModuloScheduleExpander()20218bcb0991SDimitry Andric void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
20228bcb0991SDimitry Andric BB = Schedule.getLoop()->getTopBlock();
20238bcb0991SDimitry Andric Preheader = Schedule.getLoop()->getLoopPreheader();
20248bcb0991SDimitry Andric
20258bcb0991SDimitry Andric // Dump the schedule before we invalidate and remap all its instructions.
20268bcb0991SDimitry Andric // Stash it in a string so we can print it if we found an error.
20278bcb0991SDimitry Andric std::string ScheduleDump;
20288bcb0991SDimitry Andric raw_string_ostream OS(ScheduleDump);
20298bcb0991SDimitry Andric Schedule.print(OS);
20308bcb0991SDimitry Andric OS.flush();
20318bcb0991SDimitry Andric
20328bcb0991SDimitry Andric // First, run the normal ModuleScheduleExpander. We don't support any
20338bcb0991SDimitry Andric // InstrChanges.
20348bcb0991SDimitry Andric assert(LIS && "Requires LiveIntervals!");
20358bcb0991SDimitry Andric ModuloScheduleExpander MSE(MF, Schedule, *LIS,
20368bcb0991SDimitry Andric ModuloScheduleExpander::InstrChangesTy());
20378bcb0991SDimitry Andric MSE.expand();
20388bcb0991SDimitry Andric MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
20398bcb0991SDimitry Andric if (!ExpandedKernel) {
20408bcb0991SDimitry Andric // The expander optimized away the kernel. We can't do any useful checking.
20418bcb0991SDimitry Andric MSE.cleanup();
20428bcb0991SDimitry Andric return;
20438bcb0991SDimitry Andric }
20448bcb0991SDimitry Andric // Before running the KernelRewriter, re-add BB into the CFG.
20458bcb0991SDimitry Andric Preheader->addSuccessor(BB);
20468bcb0991SDimitry Andric
20478bcb0991SDimitry Andric // Now run the new expansion algorithm.
2048fe6060f1SDimitry Andric KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
20498bcb0991SDimitry Andric KR.rewrite();
20508bcb0991SDimitry Andric peelPrologAndEpilogs();
20518bcb0991SDimitry Andric
20528bcb0991SDimitry Andric // Collect all illegal phis that the new algorithm created. We'll give these
20538bcb0991SDimitry Andric // to KernelOperandInfo.
20548bcb0991SDimitry Andric SmallPtrSet<MachineInstr *, 4> IllegalPhis;
20558bcb0991SDimitry Andric for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
20568bcb0991SDimitry Andric if (NI->isPHI())
20578bcb0991SDimitry Andric IllegalPhis.insert(&*NI);
20588bcb0991SDimitry Andric }
20598bcb0991SDimitry Andric
20608bcb0991SDimitry Andric // Co-iterate across both kernels. We expect them to be identical apart from
20618bcb0991SDimitry Andric // phis and full COPYs (we look through both).
20628bcb0991SDimitry Andric SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
20638bcb0991SDimitry Andric auto OI = ExpandedKernel->begin();
20648bcb0991SDimitry Andric auto NI = BB->begin();
20658bcb0991SDimitry Andric for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
20668bcb0991SDimitry Andric while (OI->isPHI() || OI->isFullCopy())
20678bcb0991SDimitry Andric ++OI;
20688bcb0991SDimitry Andric while (NI->isPHI() || NI->isFullCopy())
20698bcb0991SDimitry Andric ++NI;
20708bcb0991SDimitry Andric assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!");
20718bcb0991SDimitry Andric // Analyze every operand separately.
20728bcb0991SDimitry Andric for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
20738bcb0991SDimitry Andric OOpI != OI->operands_end(); ++OOpI, ++NOpI)
20748bcb0991SDimitry Andric KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
20758bcb0991SDimitry Andric KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
20768bcb0991SDimitry Andric }
20778bcb0991SDimitry Andric
20788bcb0991SDimitry Andric bool Failed = false;
20798bcb0991SDimitry Andric for (auto &OldAndNew : KOIs) {
20808bcb0991SDimitry Andric if (OldAndNew.first == OldAndNew.second)
20818bcb0991SDimitry Andric continue;
20828bcb0991SDimitry Andric Failed = true;
20838bcb0991SDimitry Andric errs() << "Modulo kernel validation error: [\n";
20848bcb0991SDimitry Andric errs() << " [golden] ";
20858bcb0991SDimitry Andric OldAndNew.first.print(errs());
20868bcb0991SDimitry Andric errs() << " ";
20878bcb0991SDimitry Andric OldAndNew.second.print(errs());
20888bcb0991SDimitry Andric errs() << "]\n";
20898bcb0991SDimitry Andric }
20908bcb0991SDimitry Andric
20918bcb0991SDimitry Andric if (Failed) {
20928bcb0991SDimitry Andric errs() << "Golden reference kernel:\n";
20938bcb0991SDimitry Andric ExpandedKernel->print(errs());
20948bcb0991SDimitry Andric errs() << "New kernel:\n";
20958bcb0991SDimitry Andric BB->print(errs());
20968bcb0991SDimitry Andric errs() << ScheduleDump;
20978bcb0991SDimitry Andric report_fatal_error(
20988bcb0991SDimitry Andric "Modulo kernel validation (-pipeliner-experimental-cg) failed");
20998bcb0991SDimitry Andric }
21008bcb0991SDimitry Andric
21018bcb0991SDimitry Andric // Cleanup by removing BB from the CFG again as the original
21028bcb0991SDimitry Andric // ModuloScheduleExpander intended.
21038bcb0991SDimitry Andric Preheader->removeSuccessor(BB);
21048bcb0991SDimitry Andric MSE.cleanup();
21058bcb0991SDimitry Andric }
21068bcb0991SDimitry Andric
cloneInstr(MachineInstr * OldMI)21070fca6ea1SDimitry Andric MachineInstr *ModuloScheduleExpanderMVE::cloneInstr(MachineInstr *OldMI) {
21080fca6ea1SDimitry Andric MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
21090fca6ea1SDimitry Andric
21100fca6ea1SDimitry Andric // TODO: Offset information needs to be corrected.
21110fca6ea1SDimitry Andric NewMI->dropMemRefs(MF);
21120fca6ea1SDimitry Andric
21130fca6ea1SDimitry Andric return NewMI;
21140fca6ea1SDimitry Andric }
21150fca6ea1SDimitry Andric
21160fca6ea1SDimitry Andric /// Create a dedicated exit for Loop. Exit is the original exit for Loop.
21170fca6ea1SDimitry Andric /// If it is already dedicated exit, return it. Otherwise, insert a new
21180fca6ea1SDimitry Andric /// block between them and return the new block.
createDedicatedExit(MachineBasicBlock * Loop,MachineBasicBlock * Exit)21190fca6ea1SDimitry Andric static MachineBasicBlock *createDedicatedExit(MachineBasicBlock *Loop,
21200fca6ea1SDimitry Andric MachineBasicBlock *Exit) {
21210fca6ea1SDimitry Andric if (Exit->pred_size() == 1)
21220fca6ea1SDimitry Andric return Exit;
21230fca6ea1SDimitry Andric
21240fca6ea1SDimitry Andric MachineFunction *MF = Loop->getParent();
21250fca6ea1SDimitry Andric const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
21260fca6ea1SDimitry Andric
21270fca6ea1SDimitry Andric MachineBasicBlock *NewExit =
21280fca6ea1SDimitry Andric MF->CreateMachineBasicBlock(Loop->getBasicBlock());
21290fca6ea1SDimitry Andric MF->insert(Loop->getIterator(), NewExit);
21300fca6ea1SDimitry Andric
21310fca6ea1SDimitry Andric MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
21320fca6ea1SDimitry Andric SmallVector<MachineOperand, 4> Cond;
21330fca6ea1SDimitry Andric TII->analyzeBranch(*Loop, TBB, FBB, Cond);
21340fca6ea1SDimitry Andric if (TBB == Loop)
21350fca6ea1SDimitry Andric FBB = NewExit;
21360fca6ea1SDimitry Andric else if (FBB == Loop)
21370fca6ea1SDimitry Andric TBB = NewExit;
21380fca6ea1SDimitry Andric else
21390fca6ea1SDimitry Andric llvm_unreachable("unexpected loop structure");
21400fca6ea1SDimitry Andric TII->removeBranch(*Loop);
21410fca6ea1SDimitry Andric TII->insertBranch(*Loop, TBB, FBB, Cond, DebugLoc());
21420fca6ea1SDimitry Andric Loop->replaceSuccessor(Exit, NewExit);
21430fca6ea1SDimitry Andric TII->insertUnconditionalBranch(*NewExit, Exit, DebugLoc());
21440fca6ea1SDimitry Andric NewExit->addSuccessor(Exit);
21450fca6ea1SDimitry Andric
21460fca6ea1SDimitry Andric Exit->replacePhiUsesWith(Loop, NewExit);
21470fca6ea1SDimitry Andric
21480fca6ea1SDimitry Andric return NewExit;
21490fca6ea1SDimitry Andric }
21500fca6ea1SDimitry Andric
21510fca6ea1SDimitry Andric /// Insert branch code into the end of MBB. It branches to GreaterThan if the
21520fca6ea1SDimitry Andric /// remaining trip count for instructions in LastStage0Insts is greater than
21530fca6ea1SDimitry Andric /// RequiredTC, and to Otherwise otherwise.
insertCondBranch(MachineBasicBlock & MBB,int RequiredTC,InstrMapTy & LastStage0Insts,MachineBasicBlock & GreaterThan,MachineBasicBlock & Otherwise)21540fca6ea1SDimitry Andric void ModuloScheduleExpanderMVE::insertCondBranch(MachineBasicBlock &MBB,
21550fca6ea1SDimitry Andric int RequiredTC,
21560fca6ea1SDimitry Andric InstrMapTy &LastStage0Insts,
21570fca6ea1SDimitry Andric MachineBasicBlock &GreaterThan,
21580fca6ea1SDimitry Andric MachineBasicBlock &Otherwise) {
21590fca6ea1SDimitry Andric SmallVector<MachineOperand, 4> Cond;
21600fca6ea1SDimitry Andric LoopInfo->createRemainingIterationsGreaterCondition(RequiredTC, MBB, Cond,
21610fca6ea1SDimitry Andric LastStage0Insts);
21620fca6ea1SDimitry Andric
21630fca6ea1SDimitry Andric if (SwapBranchTargetsMVE) {
21640fca6ea1SDimitry Andric // Set SwapBranchTargetsMVE to true if a target prefers to replace TBB and
21650fca6ea1SDimitry Andric // FBB for optimal performance.
21660fca6ea1SDimitry Andric if (TII->reverseBranchCondition(Cond))
21670fca6ea1SDimitry Andric llvm_unreachable("can not reverse branch condition");
21680fca6ea1SDimitry Andric TII->insertBranch(MBB, &Otherwise, &GreaterThan, Cond, DebugLoc());
21690fca6ea1SDimitry Andric } else {
21700fca6ea1SDimitry Andric TII->insertBranch(MBB, &GreaterThan, &Otherwise, Cond, DebugLoc());
21710fca6ea1SDimitry Andric }
21720fca6ea1SDimitry Andric }
21730fca6ea1SDimitry Andric
21740fca6ea1SDimitry Andric /// Generate a pipelined loop that is unrolled by using MVE algorithm and any
21750fca6ea1SDimitry Andric /// other necessary blocks. The control flow is modified to execute the
21760fca6ea1SDimitry Andric /// pipelined loop if the trip count satisfies the condition, otherwise the
21770fca6ea1SDimitry Andric /// original loop. The original loop is also used to execute the remainder
21780fca6ea1SDimitry Andric /// iterations which occur due to unrolling.
generatePipelinedLoop()21790fca6ea1SDimitry Andric void ModuloScheduleExpanderMVE::generatePipelinedLoop() {
21800fca6ea1SDimitry Andric // The control flow for pipelining with MVE:
21810fca6ea1SDimitry Andric //
21820fca6ea1SDimitry Andric // OrigPreheader:
21830fca6ea1SDimitry Andric // // The block that is originally the loop preheader
21840fca6ea1SDimitry Andric // goto Check
21850fca6ea1SDimitry Andric //
21860fca6ea1SDimitry Andric // Check:
21870fca6ea1SDimitry Andric // // Check whether the trip count satisfies the requirements to pipeline.
21880fca6ea1SDimitry Andric // if (LoopCounter > NumStages + NumUnroll - 2)
21890fca6ea1SDimitry Andric // // The minimum number of iterations to pipeline =
21900fca6ea1SDimitry Andric // // iterations executed in prolog/epilog (NumStages-1) +
21910fca6ea1SDimitry Andric // // iterations executed in one kernel run (NumUnroll)
21920fca6ea1SDimitry Andric // goto Prolog
21930fca6ea1SDimitry Andric // // fallback to the original loop
21940fca6ea1SDimitry Andric // goto NewPreheader
21950fca6ea1SDimitry Andric //
21960fca6ea1SDimitry Andric // Prolog:
21970fca6ea1SDimitry Andric // // All prolog stages. There are no direct branches to the epilogue.
21980fca6ea1SDimitry Andric // goto NewKernel
21990fca6ea1SDimitry Andric //
22000fca6ea1SDimitry Andric // NewKernel:
22010fca6ea1SDimitry Andric // // NumUnroll copies of the kernel
22020fca6ea1SDimitry Andric // if (LoopCounter > MVE-1)
22030fca6ea1SDimitry Andric // goto NewKernel
22040fca6ea1SDimitry Andric // goto Epilog
22050fca6ea1SDimitry Andric //
22060fca6ea1SDimitry Andric // Epilog:
22070fca6ea1SDimitry Andric // // All epilog stages.
22080fca6ea1SDimitry Andric // if (LoopCounter > 0)
22090fca6ea1SDimitry Andric // // The remainder is executed in the original loop
22100fca6ea1SDimitry Andric // goto NewPreheader
22110fca6ea1SDimitry Andric // goto NewExit
22120fca6ea1SDimitry Andric //
22130fca6ea1SDimitry Andric // NewPreheader:
22140fca6ea1SDimitry Andric // // Newly created preheader for the original loop.
22150fca6ea1SDimitry Andric // // The initial values of the phis in the loop are merged from two paths.
22160fca6ea1SDimitry Andric // NewInitVal = Phi OrigInitVal, Check, PipelineLastVal, Epilog
22170fca6ea1SDimitry Andric // goto OrigKernel
22180fca6ea1SDimitry Andric //
22190fca6ea1SDimitry Andric // OrigKernel:
22200fca6ea1SDimitry Andric // // The original loop block.
22210fca6ea1SDimitry Andric // if (LoopCounter != 0)
22220fca6ea1SDimitry Andric // goto OrigKernel
22230fca6ea1SDimitry Andric // goto NewExit
22240fca6ea1SDimitry Andric //
22250fca6ea1SDimitry Andric // NewExit:
22260fca6ea1SDimitry Andric // // Newly created dedicated exit for the original loop.
22270fca6ea1SDimitry Andric // // Merge values which are referenced after the loop
22280fca6ea1SDimitry Andric // Merged = Phi OrigVal, OrigKernel, PipelineVal, Epilog
22290fca6ea1SDimitry Andric // goto OrigExit
22300fca6ea1SDimitry Andric //
22310fca6ea1SDimitry Andric // OrigExit:
22320fca6ea1SDimitry Andric // // The block that is originally the loop exit.
22330fca6ea1SDimitry Andric // // If it is already deicated exit, NewExit is not created.
22340fca6ea1SDimitry Andric
22350fca6ea1SDimitry Andric // An example of where each stage is executed:
22360fca6ea1SDimitry Andric // Assume #Stages 3, #MVE 4, #Iterations 12
22370fca6ea1SDimitry Andric // Iter 0 1 2 3 4 5 6 7 8 9 10-11
22380fca6ea1SDimitry Andric // -------------------------------------------------
22390fca6ea1SDimitry Andric // Stage 0 Prolog#0
22400fca6ea1SDimitry Andric // Stage 1 0 Prolog#1
22410fca6ea1SDimitry Andric // Stage 2 1 0 Kernel Unroll#0 Iter#0
22420fca6ea1SDimitry Andric // Stage 2 1 0 Kernel Unroll#1 Iter#0
22430fca6ea1SDimitry Andric // Stage 2 1 0 Kernel Unroll#2 Iter#0
22440fca6ea1SDimitry Andric // Stage 2 1 0 Kernel Unroll#3 Iter#0
22450fca6ea1SDimitry Andric // Stage 2 1 0 Kernel Unroll#0 Iter#1
22460fca6ea1SDimitry Andric // Stage 2 1 0 Kernel Unroll#1 Iter#1
22470fca6ea1SDimitry Andric // Stage 2 1 0 Kernel Unroll#2 Iter#1
22480fca6ea1SDimitry Andric // Stage 2 1 0 Kernel Unroll#3 Iter#1
22490fca6ea1SDimitry Andric // Stage 2 1 Epilog#0
22500fca6ea1SDimitry Andric // Stage 2 Epilog#1
22510fca6ea1SDimitry Andric // Stage 0-2 OrigKernel
22520fca6ea1SDimitry Andric
22530fca6ea1SDimitry Andric LoopInfo = TII->analyzeLoopForPipelining(OrigKernel);
22540fca6ea1SDimitry Andric assert(LoopInfo && "Must be able to analyze loop!");
22550fca6ea1SDimitry Andric
22560fca6ea1SDimitry Andric calcNumUnroll();
22570fca6ea1SDimitry Andric
22580fca6ea1SDimitry Andric Check = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock());
22590fca6ea1SDimitry Andric Prolog = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock());
22600fca6ea1SDimitry Andric NewKernel = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock());
22610fca6ea1SDimitry Andric Epilog = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock());
22620fca6ea1SDimitry Andric NewPreheader = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock());
22630fca6ea1SDimitry Andric
22640fca6ea1SDimitry Andric MF.insert(OrigKernel->getIterator(), Check);
22650fca6ea1SDimitry Andric MF.insert(OrigKernel->getIterator(), Prolog);
22660fca6ea1SDimitry Andric MF.insert(OrigKernel->getIterator(), NewKernel);
22670fca6ea1SDimitry Andric MF.insert(OrigKernel->getIterator(), Epilog);
22680fca6ea1SDimitry Andric MF.insert(OrigKernel->getIterator(), NewPreheader);
22690fca6ea1SDimitry Andric
22700fca6ea1SDimitry Andric NewExit = createDedicatedExit(OrigKernel, OrigExit);
22710fca6ea1SDimitry Andric
22720fca6ea1SDimitry Andric NewPreheader->transferSuccessorsAndUpdatePHIs(OrigPreheader);
22730fca6ea1SDimitry Andric TII->insertUnconditionalBranch(*NewPreheader, OrigKernel, DebugLoc());
22740fca6ea1SDimitry Andric
22750fca6ea1SDimitry Andric OrigPreheader->addSuccessor(Check);
22760fca6ea1SDimitry Andric TII->removeBranch(*OrigPreheader);
22770fca6ea1SDimitry Andric TII->insertUnconditionalBranch(*OrigPreheader, Check, DebugLoc());
22780fca6ea1SDimitry Andric
22790fca6ea1SDimitry Andric Check->addSuccessor(Prolog);
22800fca6ea1SDimitry Andric Check->addSuccessor(NewPreheader);
22810fca6ea1SDimitry Andric
22820fca6ea1SDimitry Andric Prolog->addSuccessor(NewKernel);
22830fca6ea1SDimitry Andric
22840fca6ea1SDimitry Andric NewKernel->addSuccessor(NewKernel);
22850fca6ea1SDimitry Andric NewKernel->addSuccessor(Epilog);
22860fca6ea1SDimitry Andric
22870fca6ea1SDimitry Andric Epilog->addSuccessor(NewPreheader);
22880fca6ea1SDimitry Andric Epilog->addSuccessor(NewExit);
22890fca6ea1SDimitry Andric
22900fca6ea1SDimitry Andric InstrMapTy LastStage0Insts;
22910fca6ea1SDimitry Andric insertCondBranch(*Check, Schedule.getNumStages() + NumUnroll - 2,
22920fca6ea1SDimitry Andric LastStage0Insts, *Prolog, *NewPreheader);
22930fca6ea1SDimitry Andric
22940fca6ea1SDimitry Andric // VRMaps map (prolog/kernel/epilog phase#, original register#) to new
22950fca6ea1SDimitry Andric // register#
22960fca6ea1SDimitry Andric SmallVector<ValueMapTy> PrologVRMap, KernelVRMap, EpilogVRMap;
22970fca6ea1SDimitry Andric generateProlog(PrologVRMap);
22980fca6ea1SDimitry Andric generateKernel(PrologVRMap, KernelVRMap, LastStage0Insts);
22990fca6ea1SDimitry Andric generateEpilog(KernelVRMap, EpilogVRMap, LastStage0Insts);
23000fca6ea1SDimitry Andric }
23010fca6ea1SDimitry Andric
23020fca6ea1SDimitry Andric /// Replace MI's use operands according to the maps.
updateInstrUse(MachineInstr * MI,int StageNum,int PhaseNum,SmallVectorImpl<ValueMapTy> & CurVRMap,SmallVectorImpl<ValueMapTy> * PrevVRMap)23030fca6ea1SDimitry Andric void ModuloScheduleExpanderMVE::updateInstrUse(
23040fca6ea1SDimitry Andric MachineInstr *MI, int StageNum, int PhaseNum,
23050fca6ea1SDimitry Andric SmallVectorImpl<ValueMapTy> &CurVRMap,
23060fca6ea1SDimitry Andric SmallVectorImpl<ValueMapTy> *PrevVRMap) {
23070fca6ea1SDimitry Andric // If MI is in the prolog/kernel/epilog block, CurVRMap is
23080fca6ea1SDimitry Andric // PrologVRMap/KernelVRMap/EpilogVRMap respectively.
23090fca6ea1SDimitry Andric // PrevVRMap is nullptr/PhiVRMap/KernelVRMap respectively.
23100fca6ea1SDimitry Andric // Refer to the appropriate map according to the stage difference between
23110fca6ea1SDimitry Andric // MI and the definition of an operand.
23120fca6ea1SDimitry Andric
23130fca6ea1SDimitry Andric for (MachineOperand &UseMO : MI->uses()) {
23140fca6ea1SDimitry Andric if (!UseMO.isReg() || !UseMO.getReg().isVirtual())
23150fca6ea1SDimitry Andric continue;
23160fca6ea1SDimitry Andric int DiffStage = 0;
23170fca6ea1SDimitry Andric Register OrigReg = UseMO.getReg();
23180fca6ea1SDimitry Andric MachineInstr *DefInst = MRI.getVRegDef(OrigReg);
23190fca6ea1SDimitry Andric if (!DefInst || DefInst->getParent() != OrigKernel)
23200fca6ea1SDimitry Andric continue;
23210fca6ea1SDimitry Andric unsigned InitReg = 0;
23220fca6ea1SDimitry Andric unsigned DefReg = OrigReg;
23230fca6ea1SDimitry Andric if (DefInst->isPHI()) {
23240fca6ea1SDimitry Andric ++DiffStage;
23250fca6ea1SDimitry Andric unsigned LoopReg;
23260fca6ea1SDimitry Andric getPhiRegs(*DefInst, OrigKernel, InitReg, LoopReg);
23270fca6ea1SDimitry Andric // LoopReg is guaranteed to be defined within the loop by canApply()
23280fca6ea1SDimitry Andric DefReg = LoopReg;
23290fca6ea1SDimitry Andric DefInst = MRI.getVRegDef(LoopReg);
23300fca6ea1SDimitry Andric }
23310fca6ea1SDimitry Andric unsigned DefStageNum = Schedule.getStage(DefInst);
23320fca6ea1SDimitry Andric DiffStage += StageNum - DefStageNum;
23330fca6ea1SDimitry Andric Register NewReg;
23340fca6ea1SDimitry Andric if (PhaseNum >= DiffStage && CurVRMap[PhaseNum - DiffStage].count(DefReg))
23350fca6ea1SDimitry Andric // NewReg is defined in a previous phase of the same block
23360fca6ea1SDimitry Andric NewReg = CurVRMap[PhaseNum - DiffStage][DefReg];
23370fca6ea1SDimitry Andric else if (!PrevVRMap)
23380fca6ea1SDimitry Andric // Since this is the first iteration, refer the initial register of the
23390fca6ea1SDimitry Andric // loop
23400fca6ea1SDimitry Andric NewReg = InitReg;
23410fca6ea1SDimitry Andric else
23420fca6ea1SDimitry Andric // Cases where DiffStage is larger than PhaseNum.
23430fca6ea1SDimitry Andric // If MI is in the kernel block, the value is defined by the previous
23440fca6ea1SDimitry Andric // iteration and PhiVRMap is referenced. If MI is in the epilog block, the
23450fca6ea1SDimitry Andric // value is defined in the kernel block and KernelVRMap is referenced.
23460fca6ea1SDimitry Andric NewReg = (*PrevVRMap)[PrevVRMap->size() - (DiffStage - PhaseNum)][DefReg];
23470fca6ea1SDimitry Andric
23480fca6ea1SDimitry Andric const TargetRegisterClass *NRC =
23490fca6ea1SDimitry Andric MRI.constrainRegClass(NewReg, MRI.getRegClass(OrigReg));
23500fca6ea1SDimitry Andric if (NRC)
23510fca6ea1SDimitry Andric UseMO.setReg(NewReg);
23520fca6ea1SDimitry Andric else {
23530fca6ea1SDimitry Andric Register SplitReg = MRI.createVirtualRegister(MRI.getRegClass(OrigReg));
23540fca6ea1SDimitry Andric BuildMI(*OrigKernel, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY),
23550fca6ea1SDimitry Andric SplitReg)
23560fca6ea1SDimitry Andric .addReg(NewReg);
23570fca6ea1SDimitry Andric UseMO.setReg(SplitReg);
23580fca6ea1SDimitry Andric }
23590fca6ea1SDimitry Andric }
23600fca6ea1SDimitry Andric }
23610fca6ea1SDimitry Andric
23620fca6ea1SDimitry Andric /// Return a phi if Reg is referenced by the phi.
23630fca6ea1SDimitry Andric /// canApply() guarantees that at most only one such phi exists.
getLoopPhiUser(Register Reg,MachineBasicBlock * Loop)23640fca6ea1SDimitry Andric static MachineInstr *getLoopPhiUser(Register Reg, MachineBasicBlock *Loop) {
23650fca6ea1SDimitry Andric for (MachineInstr &Phi : Loop->phis()) {
23660fca6ea1SDimitry Andric unsigned InitVal, LoopVal;
23670fca6ea1SDimitry Andric getPhiRegs(Phi, Loop, InitVal, LoopVal);
23680fca6ea1SDimitry Andric if (LoopVal == Reg)
23690fca6ea1SDimitry Andric return Φ
23700fca6ea1SDimitry Andric }
23710fca6ea1SDimitry Andric return nullptr;
23720fca6ea1SDimitry Andric }
23730fca6ea1SDimitry Andric
23740fca6ea1SDimitry Andric /// Generate phis for registers defined by OrigMI.
generatePhi(MachineInstr * OrigMI,int UnrollNum,SmallVectorImpl<ValueMapTy> & PrologVRMap,SmallVectorImpl<ValueMapTy> & KernelVRMap,SmallVectorImpl<ValueMapTy> & PhiVRMap)23750fca6ea1SDimitry Andric void ModuloScheduleExpanderMVE::generatePhi(
23760fca6ea1SDimitry Andric MachineInstr *OrigMI, int UnrollNum,
23770fca6ea1SDimitry Andric SmallVectorImpl<ValueMapTy> &PrologVRMap,
23780fca6ea1SDimitry Andric SmallVectorImpl<ValueMapTy> &KernelVRMap,
23790fca6ea1SDimitry Andric SmallVectorImpl<ValueMapTy> &PhiVRMap) {
23800fca6ea1SDimitry Andric int StageNum = Schedule.getStage(OrigMI);
23810fca6ea1SDimitry Andric bool UsePrologReg;
23820fca6ea1SDimitry Andric if (Schedule.getNumStages() - NumUnroll + UnrollNum - 1 >= StageNum)
23830fca6ea1SDimitry Andric UsePrologReg = true;
23840fca6ea1SDimitry Andric else if (Schedule.getNumStages() - NumUnroll + UnrollNum == StageNum)
23850fca6ea1SDimitry Andric UsePrologReg = false;
23860fca6ea1SDimitry Andric else
23870fca6ea1SDimitry Andric return;
23880fca6ea1SDimitry Andric
23890fca6ea1SDimitry Andric // Examples that show which stages are merged by phi.
23900fca6ea1SDimitry Andric // Meaning of the symbol following the stage number:
23910fca6ea1SDimitry Andric // a/b: Stages with the same letter are merged (UsePrologReg == true)
23920fca6ea1SDimitry Andric // +: Merged with the initial value (UsePrologReg == false)
23930fca6ea1SDimitry Andric // *: No phis required
23940fca6ea1SDimitry Andric //
23950fca6ea1SDimitry Andric // #Stages 3, #MVE 4
23960fca6ea1SDimitry Andric // Iter 0 1 2 3 4 5 6 7 8
23970fca6ea1SDimitry Andric // -----------------------------------------
23980fca6ea1SDimitry Andric // Stage 0a Prolog#0
23990fca6ea1SDimitry Andric // Stage 1a 0b Prolog#1
24000fca6ea1SDimitry Andric // Stage 2* 1* 0* Kernel Unroll#0
24010fca6ea1SDimitry Andric // Stage 2* 1* 0+ Kernel Unroll#1
24020fca6ea1SDimitry Andric // Stage 2* 1+ 0a Kernel Unroll#2
24030fca6ea1SDimitry Andric // Stage 2+ 1a 0b Kernel Unroll#3
24040fca6ea1SDimitry Andric //
24050fca6ea1SDimitry Andric // #Stages 3, #MVE 2
24060fca6ea1SDimitry Andric // Iter 0 1 2 3 4 5 6 7 8
24070fca6ea1SDimitry Andric // -----------------------------------------
24080fca6ea1SDimitry Andric // Stage 0a Prolog#0
24090fca6ea1SDimitry Andric // Stage 1a 0b Prolog#1
24100fca6ea1SDimitry Andric // Stage 2* 1+ 0a Kernel Unroll#0
24110fca6ea1SDimitry Andric // Stage 2+ 1a 0b Kernel Unroll#1
24120fca6ea1SDimitry Andric //
24130fca6ea1SDimitry Andric // #Stages 3, #MVE 1
24140fca6ea1SDimitry Andric // Iter 0 1 2 3 4 5 6 7 8
24150fca6ea1SDimitry Andric // -----------------------------------------
24160fca6ea1SDimitry Andric // Stage 0* Prolog#0
24170fca6ea1SDimitry Andric // Stage 1a 0b Prolog#1
24180fca6ea1SDimitry Andric // Stage 2+ 1a 0b Kernel Unroll#0
24190fca6ea1SDimitry Andric
24200fca6ea1SDimitry Andric for (MachineOperand &DefMO : OrigMI->defs()) {
24210fca6ea1SDimitry Andric if (!DefMO.isReg() || DefMO.isDead())
24220fca6ea1SDimitry Andric continue;
24230fca6ea1SDimitry Andric Register OrigReg = DefMO.getReg();
24240fca6ea1SDimitry Andric auto NewReg = KernelVRMap[UnrollNum].find(OrigReg);
24250fca6ea1SDimitry Andric if (NewReg == KernelVRMap[UnrollNum].end())
24260fca6ea1SDimitry Andric continue;
24270fca6ea1SDimitry Andric Register CorrespondReg;
24280fca6ea1SDimitry Andric if (UsePrologReg) {
24290fca6ea1SDimitry Andric int PrologNum = Schedule.getNumStages() - NumUnroll + UnrollNum - 1;
24300fca6ea1SDimitry Andric CorrespondReg = PrologVRMap[PrologNum][OrigReg];
24310fca6ea1SDimitry Andric } else {
24320fca6ea1SDimitry Andric MachineInstr *Phi = getLoopPhiUser(OrigReg, OrigKernel);
24330fca6ea1SDimitry Andric if (!Phi)
24340fca6ea1SDimitry Andric continue;
24350fca6ea1SDimitry Andric CorrespondReg = getInitPhiReg(*Phi, OrigKernel);
24360fca6ea1SDimitry Andric }
24370fca6ea1SDimitry Andric
24380fca6ea1SDimitry Andric assert(CorrespondReg.isValid());
24390fca6ea1SDimitry Andric Register PhiReg = MRI.createVirtualRegister(MRI.getRegClass(OrigReg));
24400fca6ea1SDimitry Andric BuildMI(*NewKernel, NewKernel->getFirstNonPHI(), DebugLoc(),
24410fca6ea1SDimitry Andric TII->get(TargetOpcode::PHI), PhiReg)
24420fca6ea1SDimitry Andric .addReg(NewReg->second)
24430fca6ea1SDimitry Andric .addMBB(NewKernel)
24440fca6ea1SDimitry Andric .addReg(CorrespondReg)
24450fca6ea1SDimitry Andric .addMBB(Prolog);
24460fca6ea1SDimitry Andric PhiVRMap[UnrollNum][OrigReg] = PhiReg;
24470fca6ea1SDimitry Andric }
24480fca6ea1SDimitry Andric }
24490fca6ea1SDimitry Andric
replacePhiSrc(MachineInstr & Phi,Register OrigReg,Register NewReg,MachineBasicBlock * NewMBB)24500fca6ea1SDimitry Andric static void replacePhiSrc(MachineInstr &Phi, Register OrigReg, Register NewReg,
24510fca6ea1SDimitry Andric MachineBasicBlock *NewMBB) {
24520fca6ea1SDimitry Andric for (unsigned Idx = 1; Idx < Phi.getNumOperands(); Idx += 2) {
24530fca6ea1SDimitry Andric if (Phi.getOperand(Idx).getReg() == OrigReg) {
24540fca6ea1SDimitry Andric Phi.getOperand(Idx).setReg(NewReg);
24550fca6ea1SDimitry Andric Phi.getOperand(Idx + 1).setMBB(NewMBB);
24560fca6ea1SDimitry Andric return;
24570fca6ea1SDimitry Andric }
24580fca6ea1SDimitry Andric }
24590fca6ea1SDimitry Andric }
24600fca6ea1SDimitry Andric
24610fca6ea1SDimitry Andric /// Generate phis that merge values from multiple routes
mergeRegUsesAfterPipeline(Register OrigReg,Register NewReg)24620fca6ea1SDimitry Andric void ModuloScheduleExpanderMVE::mergeRegUsesAfterPipeline(Register OrigReg,
24630fca6ea1SDimitry Andric Register NewReg) {
24640fca6ea1SDimitry Andric SmallVector<MachineOperand *> UsesAfterLoop;
24650fca6ea1SDimitry Andric SmallVector<MachineInstr *> LoopPhis;
24660fca6ea1SDimitry Andric for (MachineRegisterInfo::use_iterator I = MRI.use_begin(OrigReg),
24670fca6ea1SDimitry Andric E = MRI.use_end();
24680fca6ea1SDimitry Andric I != E; ++I) {
24690fca6ea1SDimitry Andric MachineOperand &O = *I;
24700fca6ea1SDimitry Andric if (O.getParent()->getParent() != OrigKernel &&
24710fca6ea1SDimitry Andric O.getParent()->getParent() != Prolog &&
24720fca6ea1SDimitry Andric O.getParent()->getParent() != NewKernel &&
24730fca6ea1SDimitry Andric O.getParent()->getParent() != Epilog)
24740fca6ea1SDimitry Andric UsesAfterLoop.push_back(&O);
24750fca6ea1SDimitry Andric if (O.getParent()->getParent() == OrigKernel && O.getParent()->isPHI())
24760fca6ea1SDimitry Andric LoopPhis.push_back(O.getParent());
24770fca6ea1SDimitry Andric }
24780fca6ea1SDimitry Andric
24790fca6ea1SDimitry Andric // Merge the route that only execute the pipelined loop (when there are no
24800fca6ea1SDimitry Andric // remaining iterations) with the route that execute the original loop.
24810fca6ea1SDimitry Andric if (!UsesAfterLoop.empty()) {
24820fca6ea1SDimitry Andric Register PhiReg = MRI.createVirtualRegister(MRI.getRegClass(OrigReg));
24830fca6ea1SDimitry Andric BuildMI(*NewExit, NewExit->getFirstNonPHI(), DebugLoc(),
24840fca6ea1SDimitry Andric TII->get(TargetOpcode::PHI), PhiReg)
24850fca6ea1SDimitry Andric .addReg(OrigReg)
24860fca6ea1SDimitry Andric .addMBB(OrigKernel)
24870fca6ea1SDimitry Andric .addReg(NewReg)
24880fca6ea1SDimitry Andric .addMBB(Epilog);
24890fca6ea1SDimitry Andric
24900fca6ea1SDimitry Andric for (MachineOperand *MO : UsesAfterLoop)
24910fca6ea1SDimitry Andric MO->setReg(PhiReg);
24920fca6ea1SDimitry Andric
24930fca6ea1SDimitry Andric if (!LIS.hasInterval(PhiReg))
24940fca6ea1SDimitry Andric LIS.createEmptyInterval(PhiReg);
24950fca6ea1SDimitry Andric }
24960fca6ea1SDimitry Andric
24970fca6ea1SDimitry Andric // Merge routes from the pipelined loop and the bypassed route before the
24980fca6ea1SDimitry Andric // original loop
24990fca6ea1SDimitry Andric if (!LoopPhis.empty()) {
25000fca6ea1SDimitry Andric for (MachineInstr *Phi : LoopPhis) {
25010fca6ea1SDimitry Andric unsigned InitReg, LoopReg;
25020fca6ea1SDimitry Andric getPhiRegs(*Phi, OrigKernel, InitReg, LoopReg);
25030fca6ea1SDimitry Andric Register NewInit = MRI.createVirtualRegister(MRI.getRegClass(InitReg));
25040fca6ea1SDimitry Andric BuildMI(*NewPreheader, NewPreheader->getFirstNonPHI(), Phi->getDebugLoc(),
25050fca6ea1SDimitry Andric TII->get(TargetOpcode::PHI), NewInit)
25060fca6ea1SDimitry Andric .addReg(InitReg)
25070fca6ea1SDimitry Andric .addMBB(Check)
25080fca6ea1SDimitry Andric .addReg(NewReg)
25090fca6ea1SDimitry Andric .addMBB(Epilog);
25100fca6ea1SDimitry Andric replacePhiSrc(*Phi, InitReg, NewInit, NewPreheader);
25110fca6ea1SDimitry Andric }
25120fca6ea1SDimitry Andric }
25130fca6ea1SDimitry Andric }
25140fca6ea1SDimitry Andric
generateProlog(SmallVectorImpl<ValueMapTy> & PrologVRMap)25150fca6ea1SDimitry Andric void ModuloScheduleExpanderMVE::generateProlog(
25160fca6ea1SDimitry Andric SmallVectorImpl<ValueMapTy> &PrologVRMap) {
25170fca6ea1SDimitry Andric PrologVRMap.clear();
25180fca6ea1SDimitry Andric PrologVRMap.resize(Schedule.getNumStages() - 1);
25190fca6ea1SDimitry Andric DenseMap<MachineInstr *, std::pair<int, int>> NewMIMap;
25200fca6ea1SDimitry Andric for (int PrologNum = 0; PrologNum < Schedule.getNumStages() - 1;
25210fca6ea1SDimitry Andric ++PrologNum) {
25220fca6ea1SDimitry Andric for (MachineInstr *MI : Schedule.getInstructions()) {
25230fca6ea1SDimitry Andric if (MI->isPHI())
25240fca6ea1SDimitry Andric continue;
25250fca6ea1SDimitry Andric int StageNum = Schedule.getStage(MI);
25260fca6ea1SDimitry Andric if (StageNum > PrologNum)
25270fca6ea1SDimitry Andric continue;
25280fca6ea1SDimitry Andric MachineInstr *NewMI = cloneInstr(MI);
25290fca6ea1SDimitry Andric updateInstrDef(NewMI, PrologVRMap[PrologNum], false);
25300fca6ea1SDimitry Andric NewMIMap[NewMI] = {PrologNum, StageNum};
25310fca6ea1SDimitry Andric Prolog->push_back(NewMI);
25320fca6ea1SDimitry Andric }
25330fca6ea1SDimitry Andric }
25340fca6ea1SDimitry Andric
25350fca6ea1SDimitry Andric for (auto I : NewMIMap) {
25360fca6ea1SDimitry Andric MachineInstr *MI = I.first;
25370fca6ea1SDimitry Andric int PrologNum = I.second.first;
25380fca6ea1SDimitry Andric int StageNum = I.second.second;
25390fca6ea1SDimitry Andric updateInstrUse(MI, StageNum, PrologNum, PrologVRMap, nullptr);
25400fca6ea1SDimitry Andric }
25410fca6ea1SDimitry Andric
25420fca6ea1SDimitry Andric LLVM_DEBUG({
25430fca6ea1SDimitry Andric dbgs() << "prolog:\n";
25440fca6ea1SDimitry Andric Prolog->dump();
25450fca6ea1SDimitry Andric });
25460fca6ea1SDimitry Andric }
25470fca6ea1SDimitry Andric
generateKernel(SmallVectorImpl<ValueMapTy> & PrologVRMap,SmallVectorImpl<ValueMapTy> & KernelVRMap,InstrMapTy & LastStage0Insts)25480fca6ea1SDimitry Andric void ModuloScheduleExpanderMVE::generateKernel(
25490fca6ea1SDimitry Andric SmallVectorImpl<ValueMapTy> &PrologVRMap,
25500fca6ea1SDimitry Andric SmallVectorImpl<ValueMapTy> &KernelVRMap, InstrMapTy &LastStage0Insts) {
25510fca6ea1SDimitry Andric KernelVRMap.clear();
25520fca6ea1SDimitry Andric KernelVRMap.resize(NumUnroll);
25530fca6ea1SDimitry Andric SmallVector<ValueMapTy> PhiVRMap;
25540fca6ea1SDimitry Andric PhiVRMap.resize(NumUnroll);
25550fca6ea1SDimitry Andric DenseMap<MachineInstr *, std::pair<int, int>> NewMIMap;
25560fca6ea1SDimitry Andric DenseMap<MachineInstr *, MachineInstr *> MIMapLastStage0;
25570fca6ea1SDimitry Andric for (int UnrollNum = 0; UnrollNum < NumUnroll; ++UnrollNum) {
25580fca6ea1SDimitry Andric for (MachineInstr *MI : Schedule.getInstructions()) {
25590fca6ea1SDimitry Andric if (MI->isPHI())
25600fca6ea1SDimitry Andric continue;
25610fca6ea1SDimitry Andric int StageNum = Schedule.getStage(MI);
25620fca6ea1SDimitry Andric MachineInstr *NewMI = cloneInstr(MI);
25630fca6ea1SDimitry Andric if (UnrollNum == NumUnroll - 1)
25640fca6ea1SDimitry Andric LastStage0Insts[MI] = NewMI;
25650fca6ea1SDimitry Andric updateInstrDef(NewMI, KernelVRMap[UnrollNum],
25660fca6ea1SDimitry Andric (UnrollNum == NumUnroll - 1 && StageNum == 0));
25670fca6ea1SDimitry Andric generatePhi(MI, UnrollNum, PrologVRMap, KernelVRMap, PhiVRMap);
25680fca6ea1SDimitry Andric NewMIMap[NewMI] = {UnrollNum, StageNum};
25690fca6ea1SDimitry Andric NewKernel->push_back(NewMI);
25700fca6ea1SDimitry Andric }
25710fca6ea1SDimitry Andric }
25720fca6ea1SDimitry Andric
25730fca6ea1SDimitry Andric for (auto I : NewMIMap) {
25740fca6ea1SDimitry Andric MachineInstr *MI = I.first;
25750fca6ea1SDimitry Andric int UnrollNum = I.second.first;
25760fca6ea1SDimitry Andric int StageNum = I.second.second;
25770fca6ea1SDimitry Andric updateInstrUse(MI, StageNum, UnrollNum, KernelVRMap, &PhiVRMap);
25780fca6ea1SDimitry Andric }
25790fca6ea1SDimitry Andric
25800fca6ea1SDimitry Andric // If remaining trip count is greater than NumUnroll-1, loop continues
25810fca6ea1SDimitry Andric insertCondBranch(*NewKernel, NumUnroll - 1, LastStage0Insts, *NewKernel,
25820fca6ea1SDimitry Andric *Epilog);
25830fca6ea1SDimitry Andric
25840fca6ea1SDimitry Andric LLVM_DEBUG({
25850fca6ea1SDimitry Andric dbgs() << "kernel:\n";
25860fca6ea1SDimitry Andric NewKernel->dump();
25870fca6ea1SDimitry Andric });
25880fca6ea1SDimitry Andric }
25890fca6ea1SDimitry Andric
generateEpilog(SmallVectorImpl<ValueMapTy> & KernelVRMap,SmallVectorImpl<ValueMapTy> & EpilogVRMap,InstrMapTy & LastStage0Insts)25900fca6ea1SDimitry Andric void ModuloScheduleExpanderMVE::generateEpilog(
25910fca6ea1SDimitry Andric SmallVectorImpl<ValueMapTy> &KernelVRMap,
25920fca6ea1SDimitry Andric SmallVectorImpl<ValueMapTy> &EpilogVRMap, InstrMapTy &LastStage0Insts) {
25930fca6ea1SDimitry Andric EpilogVRMap.clear();
25940fca6ea1SDimitry Andric EpilogVRMap.resize(Schedule.getNumStages() - 1);
25950fca6ea1SDimitry Andric DenseMap<MachineInstr *, std::pair<int, int>> NewMIMap;
25960fca6ea1SDimitry Andric for (int EpilogNum = 0; EpilogNum < Schedule.getNumStages() - 1;
25970fca6ea1SDimitry Andric ++EpilogNum) {
25980fca6ea1SDimitry Andric for (MachineInstr *MI : Schedule.getInstructions()) {
25990fca6ea1SDimitry Andric if (MI->isPHI())
26000fca6ea1SDimitry Andric continue;
26010fca6ea1SDimitry Andric int StageNum = Schedule.getStage(MI);
26020fca6ea1SDimitry Andric if (StageNum <= EpilogNum)
26030fca6ea1SDimitry Andric continue;
26040fca6ea1SDimitry Andric MachineInstr *NewMI = cloneInstr(MI);
26050fca6ea1SDimitry Andric updateInstrDef(NewMI, EpilogVRMap[EpilogNum], StageNum - 1 == EpilogNum);
26060fca6ea1SDimitry Andric NewMIMap[NewMI] = {EpilogNum, StageNum};
26070fca6ea1SDimitry Andric Epilog->push_back(NewMI);
26080fca6ea1SDimitry Andric }
26090fca6ea1SDimitry Andric }
26100fca6ea1SDimitry Andric
26110fca6ea1SDimitry Andric for (auto I : NewMIMap) {
26120fca6ea1SDimitry Andric MachineInstr *MI = I.first;
26130fca6ea1SDimitry Andric int EpilogNum = I.second.first;
26140fca6ea1SDimitry Andric int StageNum = I.second.second;
26150fca6ea1SDimitry Andric updateInstrUse(MI, StageNum, EpilogNum, EpilogVRMap, &KernelVRMap);
26160fca6ea1SDimitry Andric }
26170fca6ea1SDimitry Andric
26180fca6ea1SDimitry Andric // If there are remaining iterations, they are executed in the original loop.
26190fca6ea1SDimitry Andric // Instructions related to loop control, such as loop counter comparison,
26200fca6ea1SDimitry Andric // are indicated by shouldIgnoreForPipelining() and are assumed to be placed
26210fca6ea1SDimitry Andric // in stage 0. Thus, the map is for the last one in the kernel.
26220fca6ea1SDimitry Andric insertCondBranch(*Epilog, 0, LastStage0Insts, *NewPreheader, *NewExit);
26230fca6ea1SDimitry Andric
26240fca6ea1SDimitry Andric LLVM_DEBUG({
26250fca6ea1SDimitry Andric dbgs() << "epilog:\n";
26260fca6ea1SDimitry Andric Epilog->dump();
26270fca6ea1SDimitry Andric });
26280fca6ea1SDimitry Andric }
26290fca6ea1SDimitry Andric
26300fca6ea1SDimitry Andric /// Calculate the number of unroll required and set it to NumUnroll
calcNumUnroll()26310fca6ea1SDimitry Andric void ModuloScheduleExpanderMVE::calcNumUnroll() {
26320fca6ea1SDimitry Andric DenseMap<MachineInstr *, unsigned> Inst2Idx;
26330fca6ea1SDimitry Andric NumUnroll = 1;
26340fca6ea1SDimitry Andric for (unsigned I = 0; I < Schedule.getInstructions().size(); ++I)
26350fca6ea1SDimitry Andric Inst2Idx[Schedule.getInstructions()[I]] = I;
26360fca6ea1SDimitry Andric
26370fca6ea1SDimitry Andric for (MachineInstr *MI : Schedule.getInstructions()) {
26380fca6ea1SDimitry Andric if (MI->isPHI())
26390fca6ea1SDimitry Andric continue;
26400fca6ea1SDimitry Andric int StageNum = Schedule.getStage(MI);
26410fca6ea1SDimitry Andric for (const MachineOperand &MO : MI->uses()) {
26420fca6ea1SDimitry Andric if (!MO.isReg() || !MO.getReg().isVirtual())
26430fca6ea1SDimitry Andric continue;
26440fca6ea1SDimitry Andric MachineInstr *DefMI = MRI.getVRegDef(MO.getReg());
26450fca6ea1SDimitry Andric if (DefMI->getParent() != OrigKernel)
26460fca6ea1SDimitry Andric continue;
26470fca6ea1SDimitry Andric
26480fca6ea1SDimitry Andric int NumUnrollLocal = 1;
26490fca6ea1SDimitry Andric if (DefMI->isPHI()) {
26500fca6ea1SDimitry Andric ++NumUnrollLocal;
26510fca6ea1SDimitry Andric // canApply() guarantees that DefMI is not phi and is an instruction in
26520fca6ea1SDimitry Andric // the loop
26530fca6ea1SDimitry Andric DefMI = MRI.getVRegDef(getLoopPhiReg(*DefMI, OrigKernel));
26540fca6ea1SDimitry Andric }
26550fca6ea1SDimitry Andric NumUnrollLocal += StageNum - Schedule.getStage(DefMI);
26560fca6ea1SDimitry Andric if (Inst2Idx[MI] <= Inst2Idx[DefMI])
26570fca6ea1SDimitry Andric --NumUnrollLocal;
26580fca6ea1SDimitry Andric NumUnroll = std::max(NumUnroll, NumUnrollLocal);
26590fca6ea1SDimitry Andric }
26600fca6ea1SDimitry Andric }
26610fca6ea1SDimitry Andric LLVM_DEBUG(dbgs() << "NumUnroll: " << NumUnroll << "\n");
26620fca6ea1SDimitry Andric }
26630fca6ea1SDimitry Andric
26640fca6ea1SDimitry Andric /// Create new virtual registers for definitions of NewMI and update NewMI.
26650fca6ea1SDimitry Andric /// If the definitions are referenced after the pipelined loop, phis are
26660fca6ea1SDimitry Andric /// created to merge with other routes.
updateInstrDef(MachineInstr * NewMI,ValueMapTy & VRMap,bool LastDef)26670fca6ea1SDimitry Andric void ModuloScheduleExpanderMVE::updateInstrDef(MachineInstr *NewMI,
26680fca6ea1SDimitry Andric ValueMapTy &VRMap,
26690fca6ea1SDimitry Andric bool LastDef) {
26700fca6ea1SDimitry Andric for (MachineOperand &MO : NewMI->operands()) {
26710fca6ea1SDimitry Andric if (!MO.isReg() || !MO.getReg().isVirtual() || !MO.isDef())
26720fca6ea1SDimitry Andric continue;
26730fca6ea1SDimitry Andric Register Reg = MO.getReg();
26740fca6ea1SDimitry Andric const TargetRegisterClass *RC = MRI.getRegClass(Reg);
26750fca6ea1SDimitry Andric Register NewReg = MRI.createVirtualRegister(RC);
26760fca6ea1SDimitry Andric MO.setReg(NewReg);
26770fca6ea1SDimitry Andric VRMap[Reg] = NewReg;
26780fca6ea1SDimitry Andric if (LastDef)
26790fca6ea1SDimitry Andric mergeRegUsesAfterPipeline(Reg, NewReg);
26800fca6ea1SDimitry Andric }
26810fca6ea1SDimitry Andric }
26820fca6ea1SDimitry Andric
expand()26830fca6ea1SDimitry Andric void ModuloScheduleExpanderMVE::expand() {
26840fca6ea1SDimitry Andric OrigKernel = Schedule.getLoop()->getTopBlock();
26850fca6ea1SDimitry Andric OrigPreheader = Schedule.getLoop()->getLoopPreheader();
26860fca6ea1SDimitry Andric OrigExit = Schedule.getLoop()->getExitBlock();
26870fca6ea1SDimitry Andric
26880fca6ea1SDimitry Andric LLVM_DEBUG(Schedule.dump());
26890fca6ea1SDimitry Andric
26900fca6ea1SDimitry Andric generatePipelinedLoop();
26910fca6ea1SDimitry Andric }
26920fca6ea1SDimitry Andric
26930fca6ea1SDimitry Andric /// Check if ModuloScheduleExpanderMVE can be applied to L
canApply(MachineLoop & L)26940fca6ea1SDimitry Andric bool ModuloScheduleExpanderMVE::canApply(MachineLoop &L) {
26950fca6ea1SDimitry Andric if (!L.getExitBlock()) {
26960fca6ea1SDimitry Andric LLVM_DEBUG(
26970fca6ea1SDimitry Andric dbgs() << "Can not apply MVE expander: No single exit block.\n";);
26980fca6ea1SDimitry Andric return false;
26990fca6ea1SDimitry Andric }
27000fca6ea1SDimitry Andric
27010fca6ea1SDimitry Andric MachineBasicBlock *BB = L.getTopBlock();
27020fca6ea1SDimitry Andric MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
27030fca6ea1SDimitry Andric
27040fca6ea1SDimitry Andric // Put some constraints on the operands of the phis to simplify the
27050fca6ea1SDimitry Andric // transformation
27060fca6ea1SDimitry Andric DenseSet<unsigned> UsedByPhi;
27070fca6ea1SDimitry Andric for (MachineInstr &MI : BB->phis()) {
27080fca6ea1SDimitry Andric // Registers defined by phis must be used only inside the loop and be never
27090fca6ea1SDimitry Andric // used by phis.
27100fca6ea1SDimitry Andric for (MachineOperand &MO : MI.defs())
27110fca6ea1SDimitry Andric if (MO.isReg())
27120fca6ea1SDimitry Andric for (MachineInstr &Ref : MRI.use_instructions(MO.getReg()))
27130fca6ea1SDimitry Andric if (Ref.getParent() != BB || Ref.isPHI()) {
27140fca6ea1SDimitry Andric LLVM_DEBUG(dbgs()
27150fca6ea1SDimitry Andric << "Can not apply MVE expander: A phi result is "
27160fca6ea1SDimitry Andric "referenced outside of the loop or by phi.\n";);
27170fca6ea1SDimitry Andric return false;
27180fca6ea1SDimitry Andric }
27190fca6ea1SDimitry Andric
27200fca6ea1SDimitry Andric // A source register from the loop block must be defined inside the loop.
27210fca6ea1SDimitry Andric // A register defined inside the loop must be referenced by only one phi at
27220fca6ea1SDimitry Andric // most.
27230fca6ea1SDimitry Andric unsigned InitVal, LoopVal;
27240fca6ea1SDimitry Andric getPhiRegs(MI, MI.getParent(), InitVal, LoopVal);
27250fca6ea1SDimitry Andric if (!Register(LoopVal).isVirtual() ||
27260fca6ea1SDimitry Andric MRI.getVRegDef(LoopVal)->getParent() != BB) {
27270fca6ea1SDimitry Andric LLVM_DEBUG(
27280fca6ea1SDimitry Andric dbgs() << "Can not apply MVE expander: A phi source value coming "
27290fca6ea1SDimitry Andric "from the loop is not defined in the loop.\n";);
27300fca6ea1SDimitry Andric return false;
27310fca6ea1SDimitry Andric }
27320fca6ea1SDimitry Andric if (UsedByPhi.count(LoopVal)) {
27330fca6ea1SDimitry Andric LLVM_DEBUG(dbgs() << "Can not apply MVE expander: A value defined in the "
27340fca6ea1SDimitry Andric "loop is referenced by two or more phis.\n";);
27350fca6ea1SDimitry Andric return false;
27360fca6ea1SDimitry Andric }
27370fca6ea1SDimitry Andric UsedByPhi.insert(LoopVal);
27380fca6ea1SDimitry Andric }
27390fca6ea1SDimitry Andric
27400fca6ea1SDimitry Andric return true;
27410fca6ea1SDimitry Andric }
27420fca6ea1SDimitry Andric
27438bcb0991SDimitry Andric //===----------------------------------------------------------------------===//
27448bcb0991SDimitry Andric // ModuloScheduleTestPass implementation
27458bcb0991SDimitry Andric //===----------------------------------------------------------------------===//
27468bcb0991SDimitry Andric // This pass constructs a ModuloSchedule from its module and runs
27478bcb0991SDimitry Andric // ModuloScheduleExpander.
27488bcb0991SDimitry Andric //
27498bcb0991SDimitry Andric // The module is expected to contain a single-block analyzable loop.
27508bcb0991SDimitry Andric // The total order of instructions is taken from the loop as-is.
27518bcb0991SDimitry Andric // Instructions are expected to be annotated with a PostInstrSymbol.
27528bcb0991SDimitry Andric // This PostInstrSymbol must have the following format:
27538bcb0991SDimitry Andric // "Stage=%d Cycle=%d".
27548bcb0991SDimitry Andric //===----------------------------------------------------------------------===//
27558bcb0991SDimitry Andric
27568bcb0991SDimitry Andric namespace {
27578bcb0991SDimitry Andric class ModuloScheduleTest : public MachineFunctionPass {
27588bcb0991SDimitry Andric public:
27598bcb0991SDimitry Andric static char ID;
27608bcb0991SDimitry Andric
ModuloScheduleTest()27618bcb0991SDimitry Andric ModuloScheduleTest() : MachineFunctionPass(ID) {
27628bcb0991SDimitry Andric initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
27638bcb0991SDimitry Andric }
27648bcb0991SDimitry Andric
27658bcb0991SDimitry Andric bool runOnMachineFunction(MachineFunction &MF) override;
27668bcb0991SDimitry Andric void runOnLoop(MachineFunction &MF, MachineLoop &L);
27678bcb0991SDimitry Andric
getAnalysisUsage(AnalysisUsage & AU) const27688bcb0991SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override {
27690fca6ea1SDimitry Andric AU.addRequired<MachineLoopInfoWrapperPass>();
27700fca6ea1SDimitry Andric AU.addRequired<LiveIntervalsWrapperPass>();
27718bcb0991SDimitry Andric MachineFunctionPass::getAnalysisUsage(AU);
27728bcb0991SDimitry Andric }
27738bcb0991SDimitry Andric };
27748bcb0991SDimitry Andric } // namespace
27758bcb0991SDimitry Andric
27768bcb0991SDimitry Andric char ModuloScheduleTest::ID = 0;
27778bcb0991SDimitry Andric
27788bcb0991SDimitry Andric INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",
27798bcb0991SDimitry Andric "Modulo Schedule test pass", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)27800fca6ea1SDimitry Andric INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
27810fca6ea1SDimitry Andric INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass)
27828bcb0991SDimitry Andric INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",
27838bcb0991SDimitry Andric "Modulo Schedule test pass", false, false)
27848bcb0991SDimitry Andric
27858bcb0991SDimitry Andric bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
27860fca6ea1SDimitry Andric MachineLoopInfo &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI();
27878bcb0991SDimitry Andric for (auto *L : MLI) {
27888bcb0991SDimitry Andric if (L->getTopBlock() != L->getBottomBlock())
27898bcb0991SDimitry Andric continue;
27908bcb0991SDimitry Andric runOnLoop(MF, *L);
27918bcb0991SDimitry Andric return false;
27928bcb0991SDimitry Andric }
27938bcb0991SDimitry Andric return false;
27948bcb0991SDimitry Andric }
27958bcb0991SDimitry Andric
parseSymbolString(StringRef S,int & Cycle,int & Stage)27968bcb0991SDimitry Andric static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
27978bcb0991SDimitry Andric std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
27988bcb0991SDimitry Andric std::pair<StringRef, StringRef> StageTokenAndValue =
27998bcb0991SDimitry Andric getToken(StageAndCycle.first, "-");
28008bcb0991SDimitry Andric std::pair<StringRef, StringRef> CycleTokenAndValue =
28018bcb0991SDimitry Andric getToken(StageAndCycle.second, "-");
28028bcb0991SDimitry Andric if (StageTokenAndValue.first != "Stage" ||
28038bcb0991SDimitry Andric CycleTokenAndValue.first != "_Cycle") {
28048bcb0991SDimitry Andric llvm_unreachable(
28058bcb0991SDimitry Andric "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
28068bcb0991SDimitry Andric return;
28078bcb0991SDimitry Andric }
28088bcb0991SDimitry Andric
28098bcb0991SDimitry Andric StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
28108bcb0991SDimitry Andric CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);
28118bcb0991SDimitry Andric
28128bcb0991SDimitry Andric dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n";
28138bcb0991SDimitry Andric }
28148bcb0991SDimitry Andric
runOnLoop(MachineFunction & MF,MachineLoop & L)28158bcb0991SDimitry Andric void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
28160fca6ea1SDimitry Andric LiveIntervals &LIS = getAnalysis<LiveIntervalsWrapperPass>().getLIS();
28178bcb0991SDimitry Andric MachineBasicBlock *BB = L.getTopBlock();
28188bcb0991SDimitry Andric dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";
28198bcb0991SDimitry Andric
28208bcb0991SDimitry Andric DenseMap<MachineInstr *, int> Cycle, Stage;
28218bcb0991SDimitry Andric std::vector<MachineInstr *> Instrs;
28228bcb0991SDimitry Andric for (MachineInstr &MI : *BB) {
28238bcb0991SDimitry Andric if (MI.isTerminator())
28248bcb0991SDimitry Andric continue;
28258bcb0991SDimitry Andric Instrs.push_back(&MI);
28268bcb0991SDimitry Andric if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
28278bcb0991SDimitry Andric dbgs() << "Parsing post-instr symbol for " << MI;
28288bcb0991SDimitry Andric parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
28298bcb0991SDimitry Andric }
28308bcb0991SDimitry Andric }
28318bcb0991SDimitry Andric
28328bcb0991SDimitry Andric ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
28338bcb0991SDimitry Andric std::move(Stage));
28348bcb0991SDimitry Andric ModuloScheduleExpander MSE(
28358bcb0991SDimitry Andric MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
28368bcb0991SDimitry Andric MSE.expand();
28378bcb0991SDimitry Andric MSE.cleanup();
28388bcb0991SDimitry Andric }
28398bcb0991SDimitry Andric
28408bcb0991SDimitry Andric //===----------------------------------------------------------------------===//
28418bcb0991SDimitry Andric // ModuloScheduleTestAnnotater implementation
28428bcb0991SDimitry Andric //===----------------------------------------------------------------------===//
28438bcb0991SDimitry Andric
annotate()28448bcb0991SDimitry Andric void ModuloScheduleTestAnnotater::annotate() {
28458bcb0991SDimitry Andric for (MachineInstr *MI : S.getInstructions()) {
28468bcb0991SDimitry Andric SmallVector<char, 16> SV;
28478bcb0991SDimitry Andric raw_svector_ostream OS(SV);
28488bcb0991SDimitry Andric OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
28498bcb0991SDimitry Andric MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
28508bcb0991SDimitry Andric MI->setPostInstrSymbol(MF, Sym);
28518bcb0991SDimitry Andric }
28528bcb0991SDimitry Andric }
2853