xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineVerifier.cpp (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/CodeGenCommonISel.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeCalc.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/RegisterBank.h"
52 #include "llvm/CodeGen/RegisterBankInfo.h"
53 #include "llvm/CodeGen/SlotIndexes.h"
54 #include "llvm/CodeGen/StackMaps.h"
55 #include "llvm/CodeGen/TargetInstrInfo.h"
56 #include "llvm/CodeGen/TargetOpcodes.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/InlineAsm.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/MC/LaneBitmask.h"
66 #include "llvm/MC/MCAsmInfo.h"
67 #include "llvm/MC/MCDwarf.h"
68 #include "llvm/MC/MCInstrDesc.h"
69 #include "llvm/MC/MCRegisterInfo.h"
70 #include "llvm/MC/MCTargetOptions.h"
71 #include "llvm/Pass.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/LowLevelTypeImpl.h"
75 #include "llvm/Support/MathExtras.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Target/TargetMachine.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstddef>
81 #include <cstdint>
82 #include <iterator>
83 #include <string>
84 #include <utility>
85 
86 using namespace llvm;
87 
88 namespace {
89 
90   struct MachineVerifier {
91     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
92 
93     unsigned verify(const MachineFunction &MF);
94 
95     Pass *const PASS;
96     const char *Banner;
97     const MachineFunction *MF;
98     const TargetMachine *TM;
99     const TargetInstrInfo *TII;
100     const TargetRegisterInfo *TRI;
101     const MachineRegisterInfo *MRI;
102     const RegisterBankInfo *RBI;
103 
104     unsigned foundErrors;
105 
106     // Avoid querying the MachineFunctionProperties for each operand.
107     bool isFunctionRegBankSelected;
108     bool isFunctionSelected;
109     bool isFunctionTracksDebugUserValues;
110 
111     using RegVector = SmallVector<Register, 16>;
112     using RegMaskVector = SmallVector<const uint32_t *, 4>;
113     using RegSet = DenseSet<Register>;
114     using RegMap = DenseMap<Register, const MachineInstr *>;
115     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
116 
117     const MachineInstr *FirstNonPHI;
118     const MachineInstr *FirstTerminator;
119     BlockSet FunctionBlocks;
120 
121     BitVector regsReserved;
122     RegSet regsLive;
123     RegVector regsDefined, regsDead, regsKilled;
124     RegMaskVector regMasks;
125 
126     SlotIndex lastIndex;
127 
128     // Add Reg and any sub-registers to RV
129     void addRegWithSubRegs(RegVector &RV, Register Reg) {
130       RV.push_back(Reg);
131       if (Reg.isPhysical())
132         append_range(RV, TRI->subregs(Reg.asMCReg()));
133     }
134 
135     struct BBInfo {
136       // Is this MBB reachable from the MF entry point?
137       bool reachable = false;
138 
139       // Vregs that must be live in because they are used without being
140       // defined. Map value is the user. vregsLiveIn doesn't include regs
141       // that only are used by PHI nodes.
142       RegMap vregsLiveIn;
143 
144       // Regs killed in MBB. They may be defined again, and will then be in both
145       // regsKilled and regsLiveOut.
146       RegSet regsKilled;
147 
148       // Regs defined in MBB and live out. Note that vregs passing through may
149       // be live out without being mentioned here.
150       RegSet regsLiveOut;
151 
152       // Vregs that pass through MBB untouched. This set is disjoint from
153       // regsKilled and regsLiveOut.
154       RegSet vregsPassed;
155 
156       // Vregs that must pass through MBB because they are needed by a successor
157       // block. This set is disjoint from regsLiveOut.
158       RegSet vregsRequired;
159 
160       // Set versions of block's predecessor and successor lists.
161       BlockSet Preds, Succs;
162 
163       BBInfo() = default;
164 
165       // Add register to vregsRequired if it belongs there. Return true if
166       // anything changed.
167       bool addRequired(Register Reg) {
168         if (!Reg.isVirtual())
169           return false;
170         if (regsLiveOut.count(Reg))
171           return false;
172         return vregsRequired.insert(Reg).second;
173       }
174 
175       // Same for a full set.
176       bool addRequired(const RegSet &RS) {
177         bool Changed = false;
178         for (Register Reg : RS)
179           Changed |= addRequired(Reg);
180         return Changed;
181       }
182 
183       // Same for a full map.
184       bool addRequired(const RegMap &RM) {
185         bool Changed = false;
186         for (const auto &I : RM)
187           Changed |= addRequired(I.first);
188         return Changed;
189       }
190 
191       // Live-out registers are either in regsLiveOut or vregsPassed.
192       bool isLiveOut(Register Reg) const {
193         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
194       }
195     };
196 
197     // Extra register info per MBB.
198     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
199 
200     bool isReserved(Register Reg) {
201       return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
202     }
203 
204     bool isAllocatable(Register Reg) const {
205       return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
206              !regsReserved.test(Reg.id());
207     }
208 
209     // Analysis information if available
210     LiveVariables *LiveVars;
211     LiveIntervals *LiveInts;
212     LiveStacks *LiveStks;
213     SlotIndexes *Indexes;
214 
215     void visitMachineFunctionBefore();
216     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
217     void visitMachineBundleBefore(const MachineInstr *MI);
218 
219     /// Verify that all of \p MI's virtual register operands are scalars.
220     /// \returns True if all virtual register operands are scalar. False
221     /// otherwise.
222     bool verifyAllRegOpsScalar(const MachineInstr &MI,
223                                const MachineRegisterInfo &MRI);
224     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
225     void verifyPreISelGenericInstruction(const MachineInstr *MI);
226     void visitMachineInstrBefore(const MachineInstr *MI);
227     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
228     void visitMachineBundleAfter(const MachineInstr *MI);
229     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
230     void visitMachineFunctionAfter();
231 
232     void report(const char *msg, const MachineFunction *MF);
233     void report(const char *msg, const MachineBasicBlock *MBB);
234     void report(const char *msg, const MachineInstr *MI);
235     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
236                 LLT MOVRegType = LLT{});
237     void report(const Twine &Msg, const MachineInstr *MI);
238 
239     void report_context(const LiveInterval &LI) const;
240     void report_context(const LiveRange &LR, Register VRegUnit,
241                         LaneBitmask LaneMask) const;
242     void report_context(const LiveRange::Segment &S) const;
243     void report_context(const VNInfo &VNI) const;
244     void report_context(SlotIndex Pos) const;
245     void report_context(MCPhysReg PhysReg) const;
246     void report_context_liverange(const LiveRange &LR) const;
247     void report_context_lanemask(LaneBitmask LaneMask) const;
248     void report_context_vreg(Register VReg) const;
249     void report_context_vreg_regunit(Register VRegOrUnit) const;
250 
251     void verifyInlineAsm(const MachineInstr *MI);
252 
253     void checkLiveness(const MachineOperand *MO, unsigned MONum);
254     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
255                             SlotIndex UseIdx, const LiveRange &LR,
256                             Register VRegOrUnit,
257                             LaneBitmask LaneMask = LaneBitmask::getNone());
258     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
259                             SlotIndex DefIdx, const LiveRange &LR,
260                             Register VRegOrUnit, bool SubRangeCheck = false,
261                             LaneBitmask LaneMask = LaneBitmask::getNone());
262 
263     void markReachable(const MachineBasicBlock *MBB);
264     void calcRegsPassed();
265     void checkPHIOps(const MachineBasicBlock &MBB);
266 
267     void calcRegsRequired();
268     void verifyLiveVariables();
269     void verifyLiveIntervals();
270     void verifyLiveInterval(const LiveInterval&);
271     void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
272                               LaneBitmask);
273     void verifyLiveRangeSegment(const LiveRange &,
274                                 const LiveRange::const_iterator I, Register,
275                                 LaneBitmask);
276     void verifyLiveRange(const LiveRange &, Register,
277                          LaneBitmask LaneMask = LaneBitmask::getNone());
278 
279     void verifyStackFrame();
280 
281     void verifySlotIndexes() const;
282     void verifyProperties(const MachineFunction &MF);
283   };
284 
285   struct MachineVerifierPass : public MachineFunctionPass {
286     static char ID; // Pass ID, replacement for typeid
287 
288     const std::string Banner;
289 
290     MachineVerifierPass(std::string banner = std::string())
291       : MachineFunctionPass(ID), Banner(std::move(banner)) {
292         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
293       }
294 
295     void getAnalysisUsage(AnalysisUsage &AU) const override {
296       AU.addUsedIfAvailable<LiveStacks>();
297       AU.setPreservesAll();
298       MachineFunctionPass::getAnalysisUsage(AU);
299     }
300 
301     bool runOnMachineFunction(MachineFunction &MF) override {
302       // Skip functions that have known verification problems.
303       // FIXME: Remove this mechanism when all problematic passes have been
304       // fixed.
305       if (MF.getProperties().hasProperty(
306               MachineFunctionProperties::Property::FailsVerification))
307         return false;
308 
309       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
310       if (FoundErrors)
311         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
312       return false;
313     }
314   };
315 
316 } // end anonymous namespace
317 
318 char MachineVerifierPass::ID = 0;
319 
320 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
321                 "Verify generated machine code", false, false)
322 
323 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
324   return new MachineVerifierPass(Banner);
325 }
326 
327 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
328                                  const std::string &Banner,
329                                  const MachineFunction &MF) {
330   // TODO: Use MFAM after porting below analyses.
331   // LiveVariables *LiveVars;
332   // LiveIntervals *LiveInts;
333   // LiveStacks *LiveStks;
334   // SlotIndexes *Indexes;
335   unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
336   if (FoundErrors)
337     report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
338 }
339 
340 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
341     const {
342   MachineFunction &MF = const_cast<MachineFunction&>(*this);
343   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
344   if (AbortOnErrors && FoundErrors)
345     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
346   return FoundErrors == 0;
347 }
348 
349 void MachineVerifier::verifySlotIndexes() const {
350   if (Indexes == nullptr)
351     return;
352 
353   // Ensure the IdxMBB list is sorted by slot indexes.
354   SlotIndex Last;
355   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
356        E = Indexes->MBBIndexEnd(); I != E; ++I) {
357     assert(!Last.isValid() || I->first > Last);
358     Last = I->first;
359   }
360 }
361 
362 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
363   // If a pass has introduced virtual registers without clearing the
364   // NoVRegs property (or set it without allocating the vregs)
365   // then report an error.
366   if (MF.getProperties().hasProperty(
367           MachineFunctionProperties::Property::NoVRegs) &&
368       MRI->getNumVirtRegs())
369     report("Function has NoVRegs property but there are VReg operands", &MF);
370 }
371 
372 unsigned MachineVerifier::verify(const MachineFunction &MF) {
373   foundErrors = 0;
374 
375   this->MF = &MF;
376   TM = &MF.getTarget();
377   TII = MF.getSubtarget().getInstrInfo();
378   TRI = MF.getSubtarget().getRegisterInfo();
379   RBI = MF.getSubtarget().getRegBankInfo();
380   MRI = &MF.getRegInfo();
381 
382   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
383       MachineFunctionProperties::Property::FailedISel);
384 
385   // If we're mid-GlobalISel and we already triggered the fallback path then
386   // it's expected that the MIR is somewhat broken but that's ok since we'll
387   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
388   if (isFunctionFailedISel)
389     return foundErrors;
390 
391   isFunctionRegBankSelected = MF.getProperties().hasProperty(
392       MachineFunctionProperties::Property::RegBankSelected);
393   isFunctionSelected = MF.getProperties().hasProperty(
394       MachineFunctionProperties::Property::Selected);
395   isFunctionTracksDebugUserValues = MF.getProperties().hasProperty(
396       MachineFunctionProperties::Property::TracksDebugUserValues);
397 
398   LiveVars = nullptr;
399   LiveInts = nullptr;
400   LiveStks = nullptr;
401   Indexes = nullptr;
402   if (PASS) {
403     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
404     // We don't want to verify LiveVariables if LiveIntervals is available.
405     if (!LiveInts)
406       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
407     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
408     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
409   }
410 
411   verifySlotIndexes();
412 
413   verifyProperties(MF);
414 
415   visitMachineFunctionBefore();
416   for (const MachineBasicBlock &MBB : MF) {
417     visitMachineBasicBlockBefore(&MBB);
418     // Keep track of the current bundle header.
419     const MachineInstr *CurBundle = nullptr;
420     // Do we expect the next instruction to be part of the same bundle?
421     bool InBundle = false;
422 
423     for (const MachineInstr &MI : MBB.instrs()) {
424       if (MI.getParent() != &MBB) {
425         report("Bad instruction parent pointer", &MBB);
426         errs() << "Instruction: " << MI;
427         continue;
428       }
429 
430       // Check for consistent bundle flags.
431       if (InBundle && !MI.isBundledWithPred())
432         report("Missing BundledPred flag, "
433                "BundledSucc was set on predecessor",
434                &MI);
435       if (!InBundle && MI.isBundledWithPred())
436         report("BundledPred flag is set, "
437                "but BundledSucc not set on predecessor",
438                &MI);
439 
440       // Is this a bundle header?
441       if (!MI.isInsideBundle()) {
442         if (CurBundle)
443           visitMachineBundleAfter(CurBundle);
444         CurBundle = &MI;
445         visitMachineBundleBefore(CurBundle);
446       } else if (!CurBundle)
447         report("No bundle header", &MI);
448       visitMachineInstrBefore(&MI);
449       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
450         const MachineOperand &Op = MI.getOperand(I);
451         if (Op.getParent() != &MI) {
452           // Make sure to use correct addOperand / removeOperand / ChangeTo
453           // functions when replacing operands of a MachineInstr.
454           report("Instruction has operand with wrong parent set", &MI);
455         }
456 
457         visitMachineOperand(&Op, I);
458       }
459 
460       // Was this the last bundled instruction?
461       InBundle = MI.isBundledWithSucc();
462     }
463     if (CurBundle)
464       visitMachineBundleAfter(CurBundle);
465     if (InBundle)
466       report("BundledSucc flag set on last instruction in block", &MBB.back());
467     visitMachineBasicBlockAfter(&MBB);
468   }
469   visitMachineFunctionAfter();
470 
471   // Clean up.
472   regsLive.clear();
473   regsDefined.clear();
474   regsDead.clear();
475   regsKilled.clear();
476   regMasks.clear();
477   MBBInfoMap.clear();
478 
479   return foundErrors;
480 }
481 
482 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
483   assert(MF);
484   errs() << '\n';
485   if (!foundErrors++) {
486     if (Banner)
487       errs() << "# " << Banner << '\n';
488     if (LiveInts != nullptr)
489       LiveInts->print(errs());
490     else
491       MF->print(errs(), Indexes);
492   }
493   errs() << "*** Bad machine code: " << msg << " ***\n"
494       << "- function:    " << MF->getName() << "\n";
495 }
496 
497 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
498   assert(MBB);
499   report(msg, MBB->getParent());
500   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
501          << MBB->getName() << " (" << (const void *)MBB << ')';
502   if (Indexes)
503     errs() << " [" << Indexes->getMBBStartIdx(MBB)
504         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
505   errs() << '\n';
506 }
507 
508 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
509   assert(MI);
510   report(msg, MI->getParent());
511   errs() << "- instruction: ";
512   if (Indexes && Indexes->hasIndex(*MI))
513     errs() << Indexes->getInstructionIndex(*MI) << '\t';
514   MI->print(errs(), /*IsStandalone=*/true);
515 }
516 
517 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
518                              unsigned MONum, LLT MOVRegType) {
519   assert(MO);
520   report(msg, MO->getParent());
521   errs() << "- operand " << MONum << ":   ";
522   MO->print(errs(), MOVRegType, TRI);
523   errs() << "\n";
524 }
525 
526 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) {
527   report(Msg.str().c_str(), MI);
528 }
529 
530 void MachineVerifier::report_context(SlotIndex Pos) const {
531   errs() << "- at:          " << Pos << '\n';
532 }
533 
534 void MachineVerifier::report_context(const LiveInterval &LI) const {
535   errs() << "- interval:    " << LI << '\n';
536 }
537 
538 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
539                                      LaneBitmask LaneMask) const {
540   report_context_liverange(LR);
541   report_context_vreg_regunit(VRegUnit);
542   if (LaneMask.any())
543     report_context_lanemask(LaneMask);
544 }
545 
546 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
547   errs() << "- segment:     " << S << '\n';
548 }
549 
550 void MachineVerifier::report_context(const VNInfo &VNI) const {
551   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
552 }
553 
554 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
555   errs() << "- liverange:   " << LR << '\n';
556 }
557 
558 void MachineVerifier::report_context(MCPhysReg PReg) const {
559   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
560 }
561 
562 void MachineVerifier::report_context_vreg(Register VReg) const {
563   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
564 }
565 
566 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
567   if (Register::isVirtualRegister(VRegOrUnit)) {
568     report_context_vreg(VRegOrUnit);
569   } else {
570     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
571   }
572 }
573 
574 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
575   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
576 }
577 
578 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
579   BBInfo &MInfo = MBBInfoMap[MBB];
580   if (!MInfo.reachable) {
581     MInfo.reachable = true;
582     for (const MachineBasicBlock *Succ : MBB->successors())
583       markReachable(Succ);
584   }
585 }
586 
587 void MachineVerifier::visitMachineFunctionBefore() {
588   lastIndex = SlotIndex();
589   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
590                                            : TRI->getReservedRegs(*MF);
591 
592   if (!MF->empty())
593     markReachable(&MF->front());
594 
595   // Build a set of the basic blocks in the function.
596   FunctionBlocks.clear();
597   for (const auto &MBB : *MF) {
598     FunctionBlocks.insert(&MBB);
599     BBInfo &MInfo = MBBInfoMap[&MBB];
600 
601     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
602     if (MInfo.Preds.size() != MBB.pred_size())
603       report("MBB has duplicate entries in its predecessor list.", &MBB);
604 
605     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
606     if (MInfo.Succs.size() != MBB.succ_size())
607       report("MBB has duplicate entries in its successor list.", &MBB);
608   }
609 
610   // Check that the register use lists are sane.
611   MRI->verifyUseLists();
612 
613   if (!MF->empty())
614     verifyStackFrame();
615 }
616 
617 void
618 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
619   FirstTerminator = nullptr;
620   FirstNonPHI = nullptr;
621 
622   if (!MF->getProperties().hasProperty(
623       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
624     // If this block has allocatable physical registers live-in, check that
625     // it is an entry block or landing pad.
626     for (const auto &LI : MBB->liveins()) {
627       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
628           MBB->getIterator() != MBB->getParent()->begin()) {
629         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
630         report_context(LI.PhysReg);
631       }
632     }
633   }
634 
635   // Count the number of landing pad successors.
636   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
637   for (const auto *succ : MBB->successors()) {
638     if (succ->isEHPad())
639       LandingPadSuccs.insert(succ);
640     if (!FunctionBlocks.count(succ))
641       report("MBB has successor that isn't part of the function.", MBB);
642     if (!MBBInfoMap[succ].Preds.count(MBB)) {
643       report("Inconsistent CFG", MBB);
644       errs() << "MBB is not in the predecessor list of the successor "
645              << printMBBReference(*succ) << ".\n";
646     }
647   }
648 
649   // Check the predecessor list.
650   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
651     if (!FunctionBlocks.count(Pred))
652       report("MBB has predecessor that isn't part of the function.", MBB);
653     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
654       report("Inconsistent CFG", MBB);
655       errs() << "MBB is not in the successor list of the predecessor "
656              << printMBBReference(*Pred) << ".\n";
657     }
658   }
659 
660   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
661   const BasicBlock *BB = MBB->getBasicBlock();
662   const Function &F = MF->getFunction();
663   if (LandingPadSuccs.size() > 1 &&
664       !(AsmInfo &&
665         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
666         BB && isa<SwitchInst>(BB->getTerminator())) &&
667       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
668     report("MBB has more than one landing pad successor", MBB);
669 
670   // Call analyzeBranch. If it succeeds, there several more conditions to check.
671   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
672   SmallVector<MachineOperand, 4> Cond;
673   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
674                           Cond)) {
675     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
676     // check whether its answers match up with reality.
677     if (!TBB && !FBB) {
678       // Block falls through to its successor.
679       if (!MBB->empty() && MBB->back().isBarrier() &&
680           !TII->isPredicated(MBB->back())) {
681         report("MBB exits via unconditional fall-through but ends with a "
682                "barrier instruction!", MBB);
683       }
684       if (!Cond.empty()) {
685         report("MBB exits via unconditional fall-through but has a condition!",
686                MBB);
687       }
688     } else if (TBB && !FBB && Cond.empty()) {
689       // Block unconditionally branches somewhere.
690       if (MBB->empty()) {
691         report("MBB exits via unconditional branch but doesn't contain "
692                "any instructions!", MBB);
693       } else if (!MBB->back().isBarrier()) {
694         report("MBB exits via unconditional branch but doesn't end with a "
695                "barrier instruction!", MBB);
696       } else if (!MBB->back().isTerminator()) {
697         report("MBB exits via unconditional branch but the branch isn't a "
698                "terminator instruction!", MBB);
699       }
700     } else if (TBB && !FBB && !Cond.empty()) {
701       // Block conditionally branches somewhere, otherwise falls through.
702       if (MBB->empty()) {
703         report("MBB exits via conditional branch/fall-through but doesn't "
704                "contain any instructions!", MBB);
705       } else if (MBB->back().isBarrier()) {
706         report("MBB exits via conditional branch/fall-through but ends with a "
707                "barrier instruction!", MBB);
708       } else if (!MBB->back().isTerminator()) {
709         report("MBB exits via conditional branch/fall-through but the branch "
710                "isn't a terminator instruction!", MBB);
711       }
712     } else if (TBB && FBB) {
713       // Block conditionally branches somewhere, otherwise branches
714       // somewhere else.
715       if (MBB->empty()) {
716         report("MBB exits via conditional branch/branch but doesn't "
717                "contain any instructions!", MBB);
718       } else if (!MBB->back().isBarrier()) {
719         report("MBB exits via conditional branch/branch but doesn't end with a "
720                "barrier instruction!", MBB);
721       } else if (!MBB->back().isTerminator()) {
722         report("MBB exits via conditional branch/branch but the branch "
723                "isn't a terminator instruction!", MBB);
724       }
725       if (Cond.empty()) {
726         report("MBB exits via conditional branch/branch but there's no "
727                "condition!", MBB);
728       }
729     } else {
730       report("analyzeBranch returned invalid data!", MBB);
731     }
732 
733     // Now check that the successors match up with the answers reported by
734     // analyzeBranch.
735     if (TBB && !MBB->isSuccessor(TBB))
736       report("MBB exits via jump or conditional branch, but its target isn't a "
737              "CFG successor!",
738              MBB);
739     if (FBB && !MBB->isSuccessor(FBB))
740       report("MBB exits via conditional branch, but its target isn't a CFG "
741              "successor!",
742              MBB);
743 
744     // There might be a fallthrough to the next block if there's either no
745     // unconditional true branch, or if there's a condition, and one of the
746     // branches is missing.
747     bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
748 
749     // A conditional fallthrough must be an actual CFG successor, not
750     // unreachable. (Conversely, an unconditional fallthrough might not really
751     // be a successor, because the block might end in unreachable.)
752     if (!Cond.empty() && !FBB) {
753       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
754       if (MBBI == MF->end()) {
755         report("MBB conditionally falls through out of function!", MBB);
756       } else if (!MBB->isSuccessor(&*MBBI))
757         report("MBB exits via conditional branch/fall-through but the CFG "
758                "successors don't match the actual successors!",
759                MBB);
760     }
761 
762     // Verify that there aren't any extra un-accounted-for successors.
763     for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
764       // If this successor is one of the branch targets, it's okay.
765       if (SuccMBB == TBB || SuccMBB == FBB)
766         continue;
767       // If we might have a fallthrough, and the successor is the fallthrough
768       // block, that's also ok.
769       if (Fallthrough && SuccMBB == MBB->getNextNode())
770         continue;
771       // Also accept successors which are for exception-handling or might be
772       // inlineasm_br targets.
773       if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
774         continue;
775       report("MBB has unexpected successors which are not branch targets, "
776              "fallthrough, EHPads, or inlineasm_br targets.",
777              MBB);
778     }
779   }
780 
781   regsLive.clear();
782   if (MRI->tracksLiveness()) {
783     for (const auto &LI : MBB->liveins()) {
784       if (!Register::isPhysicalRegister(LI.PhysReg)) {
785         report("MBB live-in list contains non-physical register", MBB);
786         continue;
787       }
788       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
789         regsLive.insert(SubReg);
790     }
791   }
792 
793   const MachineFrameInfo &MFI = MF->getFrameInfo();
794   BitVector PR = MFI.getPristineRegs(*MF);
795   for (unsigned I : PR.set_bits()) {
796     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
797       regsLive.insert(SubReg);
798   }
799 
800   regsKilled.clear();
801   regsDefined.clear();
802 
803   if (Indexes)
804     lastIndex = Indexes->getMBBStartIdx(MBB);
805 }
806 
807 // This function gets called for all bundle headers, including normal
808 // stand-alone unbundled instructions.
809 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
810   if (Indexes && Indexes->hasIndex(*MI)) {
811     SlotIndex idx = Indexes->getInstructionIndex(*MI);
812     if (!(idx > lastIndex)) {
813       report("Instruction index out of order", MI);
814       errs() << "Last instruction was at " << lastIndex << '\n';
815     }
816     lastIndex = idx;
817   }
818 
819   // Ensure non-terminators don't follow terminators.
820   if (MI->isTerminator()) {
821     if (!FirstTerminator)
822       FirstTerminator = MI;
823   } else if (FirstTerminator) {
824     report("Non-terminator instruction after the first terminator", MI);
825     errs() << "First terminator was:\t" << *FirstTerminator;
826   }
827 }
828 
829 // The operands on an INLINEASM instruction must follow a template.
830 // Verify that the flag operands make sense.
831 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
832   // The first two operands on INLINEASM are the asm string and global flags.
833   if (MI->getNumOperands() < 2) {
834     report("Too few operands on inline asm", MI);
835     return;
836   }
837   if (!MI->getOperand(0).isSymbol())
838     report("Asm string must be an external symbol", MI);
839   if (!MI->getOperand(1).isImm())
840     report("Asm flags must be an immediate", MI);
841   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
842   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
843   // and Extra_IsConvergent = 32.
844   if (!isUInt<6>(MI->getOperand(1).getImm()))
845     report("Unknown asm flags", &MI->getOperand(1), 1);
846 
847   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
848 
849   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
850   unsigned NumOps;
851   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
852     const MachineOperand &MO = MI->getOperand(OpNo);
853     // There may be implicit ops after the fixed operands.
854     if (!MO.isImm())
855       break;
856     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
857   }
858 
859   if (OpNo > MI->getNumOperands())
860     report("Missing operands in last group", MI);
861 
862   // An optional MDNode follows the groups.
863   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
864     ++OpNo;
865 
866   // All trailing operands must be implicit registers.
867   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
868     const MachineOperand &MO = MI->getOperand(OpNo);
869     if (!MO.isReg() || !MO.isImplicit())
870       report("Expected implicit register after groups", &MO, OpNo);
871   }
872 }
873 
874 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI,
875                                             const MachineRegisterInfo &MRI) {
876   if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) {
877         if (!Op.isReg())
878           return false;
879         const auto Reg = Op.getReg();
880         if (Reg.isPhysical())
881           return false;
882         return !MRI.getType(Reg).isScalar();
883       }))
884     return true;
885   report("All register operands must have scalar types", &MI);
886   return false;
887 }
888 
889 /// Check that types are consistent when two operands need to have the same
890 /// number of vector elements.
891 /// \return true if the types are valid.
892 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
893                                                const MachineInstr *MI) {
894   if (Ty0.isVector() != Ty1.isVector()) {
895     report("operand types must be all-vector or all-scalar", MI);
896     // Generally we try to report as many issues as possible at once, but in
897     // this case it's not clear what should we be comparing the size of the
898     // scalar with: the size of the whole vector or its lane. Instead of
899     // making an arbitrary choice and emitting not so helpful message, let's
900     // avoid the extra noise and stop here.
901     return false;
902   }
903 
904   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
905     report("operand types must preserve number of vector elements", MI);
906     return false;
907   }
908 
909   return true;
910 }
911 
912 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
913   if (isFunctionSelected)
914     report("Unexpected generic instruction in a Selected function", MI);
915 
916   const MCInstrDesc &MCID = MI->getDesc();
917   unsigned NumOps = MI->getNumOperands();
918 
919   // Branches must reference a basic block if they are not indirect
920   if (MI->isBranch() && !MI->isIndirectBranch()) {
921     bool HasMBB = false;
922     for (const MachineOperand &Op : MI->operands()) {
923       if (Op.isMBB()) {
924         HasMBB = true;
925         break;
926       }
927     }
928 
929     if (!HasMBB) {
930       report("Branch instruction is missing a basic block operand or "
931              "isIndirectBranch property",
932              MI);
933     }
934   }
935 
936   // Check types.
937   SmallVector<LLT, 4> Types;
938   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
939        I != E; ++I) {
940     if (!MCID.OpInfo[I].isGenericType())
941       continue;
942     // Generic instructions specify type equality constraints between some of
943     // their operands. Make sure these are consistent.
944     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
945     Types.resize(std::max(TypeIdx + 1, Types.size()));
946 
947     const MachineOperand *MO = &MI->getOperand(I);
948     if (!MO->isReg()) {
949       report("generic instruction must use register operands", MI);
950       continue;
951     }
952 
953     LLT OpTy = MRI->getType(MO->getReg());
954     // Don't report a type mismatch if there is no actual mismatch, only a
955     // type missing, to reduce noise:
956     if (OpTy.isValid()) {
957       // Only the first valid type for a type index will be printed: don't
958       // overwrite it later so it's always clear which type was expected:
959       if (!Types[TypeIdx].isValid())
960         Types[TypeIdx] = OpTy;
961       else if (Types[TypeIdx] != OpTy)
962         report("Type mismatch in generic instruction", MO, I, OpTy);
963     } else {
964       // Generic instructions must have types attached to their operands.
965       report("Generic instruction is missing a virtual register type", MO, I);
966     }
967   }
968 
969   // Generic opcodes must not have physical register operands.
970   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
971     const MachineOperand *MO = &MI->getOperand(I);
972     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
973       report("Generic instruction cannot have physical register", MO, I);
974   }
975 
976   // Avoid out of bounds in checks below. This was already reported earlier.
977   if (MI->getNumOperands() < MCID.getNumOperands())
978     return;
979 
980   StringRef ErrorInfo;
981   if (!TII->verifyInstruction(*MI, ErrorInfo))
982     report(ErrorInfo.data(), MI);
983 
984   // Verify properties of various specific instruction types
985   unsigned Opc = MI->getOpcode();
986   switch (Opc) {
987   case TargetOpcode::G_ASSERT_SEXT:
988   case TargetOpcode::G_ASSERT_ZEXT: {
989     std::string OpcName =
990         Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT";
991     if (!MI->getOperand(2).isImm()) {
992       report(Twine(OpcName, " expects an immediate operand #2"), MI);
993       break;
994     }
995 
996     Register Dst = MI->getOperand(0).getReg();
997     Register Src = MI->getOperand(1).getReg();
998     LLT SrcTy = MRI->getType(Src);
999     int64_t Imm = MI->getOperand(2).getImm();
1000     if (Imm <= 0) {
1001       report(Twine(OpcName, " size must be >= 1"), MI);
1002       break;
1003     }
1004 
1005     if (Imm >= SrcTy.getScalarSizeInBits()) {
1006       report(Twine(OpcName, " size must be less than source bit width"), MI);
1007       break;
1008     }
1009 
1010     const RegisterBank *SrcRB = RBI->getRegBank(Src, *MRI, *TRI);
1011     const RegisterBank *DstRB = RBI->getRegBank(Dst, *MRI, *TRI);
1012 
1013     // Allow only the source bank to be set.
1014     if ((SrcRB && DstRB && SrcRB != DstRB) || (DstRB && !SrcRB)) {
1015       report(Twine(OpcName, " cannot change register bank"), MI);
1016       break;
1017     }
1018 
1019     // Don't allow a class change. Do allow member class->regbank.
1020     const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Dst);
1021     if (DstRC && DstRC != MRI->getRegClassOrNull(Src)) {
1022       report(
1023           Twine(OpcName, " source and destination register classes must match"),
1024           MI);
1025       break;
1026     }
1027 
1028     break;
1029   }
1030 
1031   case TargetOpcode::G_CONSTANT:
1032   case TargetOpcode::G_FCONSTANT: {
1033     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1034     if (DstTy.isVector())
1035       report("Instruction cannot use a vector result type", MI);
1036 
1037     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
1038       if (!MI->getOperand(1).isCImm()) {
1039         report("G_CONSTANT operand must be cimm", MI);
1040         break;
1041       }
1042 
1043       const ConstantInt *CI = MI->getOperand(1).getCImm();
1044       if (CI->getBitWidth() != DstTy.getSizeInBits())
1045         report("inconsistent constant size", MI);
1046     } else {
1047       if (!MI->getOperand(1).isFPImm()) {
1048         report("G_FCONSTANT operand must be fpimm", MI);
1049         break;
1050       }
1051       const ConstantFP *CF = MI->getOperand(1).getFPImm();
1052 
1053       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1054           DstTy.getSizeInBits()) {
1055         report("inconsistent constant size", MI);
1056       }
1057     }
1058 
1059     break;
1060   }
1061   case TargetOpcode::G_LOAD:
1062   case TargetOpcode::G_STORE:
1063   case TargetOpcode::G_ZEXTLOAD:
1064   case TargetOpcode::G_SEXTLOAD: {
1065     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1066     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1067     if (!PtrTy.isPointer())
1068       report("Generic memory instruction must access a pointer", MI);
1069 
1070     // Generic loads and stores must have a single MachineMemOperand
1071     // describing that access.
1072     if (!MI->hasOneMemOperand()) {
1073       report("Generic instruction accessing memory must have one mem operand",
1074              MI);
1075     } else {
1076       const MachineMemOperand &MMO = **MI->memoperands_begin();
1077       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1078           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1079         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1080           report("Generic extload must have a narrower memory type", MI);
1081       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1082         if (MMO.getSize() > ValTy.getSizeInBytes())
1083           report("load memory size cannot exceed result size", MI);
1084       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1085         if (ValTy.getSizeInBytes() < MMO.getSize())
1086           report("store memory size cannot exceed value size", MI);
1087       }
1088 
1089       const AtomicOrdering Order = MMO.getSuccessOrdering();
1090       if (Opc == TargetOpcode::G_STORE) {
1091         if (Order == AtomicOrdering::Acquire ||
1092             Order == AtomicOrdering::AcquireRelease)
1093           report("atomic store cannot use acquire ordering", MI);
1094 
1095       } else {
1096         if (Order == AtomicOrdering::Release ||
1097             Order == AtomicOrdering::AcquireRelease)
1098           report("atomic load cannot use release ordering", MI);
1099       }
1100     }
1101 
1102     break;
1103   }
1104   case TargetOpcode::G_PHI: {
1105     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1106     if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
1107                                     [this, &DstTy](const MachineOperand &MO) {
1108                                       if (!MO.isReg())
1109                                         return true;
1110                                       LLT Ty = MRI->getType(MO.getReg());
1111                                       if (!Ty.isValid() || (Ty != DstTy))
1112                                         return false;
1113                                       return true;
1114                                     }))
1115       report("Generic Instruction G_PHI has operands with incompatible/missing "
1116              "types",
1117              MI);
1118     break;
1119   }
1120   case TargetOpcode::G_BITCAST: {
1121     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1122     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1123     if (!DstTy.isValid() || !SrcTy.isValid())
1124       break;
1125 
1126     if (SrcTy.isPointer() != DstTy.isPointer())
1127       report("bitcast cannot convert between pointers and other types", MI);
1128 
1129     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1130       report("bitcast sizes must match", MI);
1131 
1132     if (SrcTy == DstTy)
1133       report("bitcast must change the type", MI);
1134 
1135     break;
1136   }
1137   case TargetOpcode::G_INTTOPTR:
1138   case TargetOpcode::G_PTRTOINT:
1139   case TargetOpcode::G_ADDRSPACE_CAST: {
1140     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1141     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1142     if (!DstTy.isValid() || !SrcTy.isValid())
1143       break;
1144 
1145     verifyVectorElementMatch(DstTy, SrcTy, MI);
1146 
1147     DstTy = DstTy.getScalarType();
1148     SrcTy = SrcTy.getScalarType();
1149 
1150     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1151       if (!DstTy.isPointer())
1152         report("inttoptr result type must be a pointer", MI);
1153       if (SrcTy.isPointer())
1154         report("inttoptr source type must not be a pointer", MI);
1155     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1156       if (!SrcTy.isPointer())
1157         report("ptrtoint source type must be a pointer", MI);
1158       if (DstTy.isPointer())
1159         report("ptrtoint result type must not be a pointer", MI);
1160     } else {
1161       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1162       if (!SrcTy.isPointer() || !DstTy.isPointer())
1163         report("addrspacecast types must be pointers", MI);
1164       else {
1165         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1166           report("addrspacecast must convert different address spaces", MI);
1167       }
1168     }
1169 
1170     break;
1171   }
1172   case TargetOpcode::G_PTR_ADD: {
1173     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1174     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1175     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1176     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1177       break;
1178 
1179     if (!PtrTy.getScalarType().isPointer())
1180       report("gep first operand must be a pointer", MI);
1181 
1182     if (OffsetTy.getScalarType().isPointer())
1183       report("gep offset operand must not be a pointer", MI);
1184 
1185     // TODO: Is the offset allowed to be a scalar with a vector?
1186     break;
1187   }
1188   case TargetOpcode::G_PTRMASK: {
1189     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1190     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1191     LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1192     if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1193       break;
1194 
1195     if (!DstTy.getScalarType().isPointer())
1196       report("ptrmask result type must be a pointer", MI);
1197 
1198     if (!MaskTy.getScalarType().isScalar())
1199       report("ptrmask mask type must be an integer", MI);
1200 
1201     verifyVectorElementMatch(DstTy, MaskTy, MI);
1202     break;
1203   }
1204   case TargetOpcode::G_SEXT:
1205   case TargetOpcode::G_ZEXT:
1206   case TargetOpcode::G_ANYEXT:
1207   case TargetOpcode::G_TRUNC:
1208   case TargetOpcode::G_FPEXT:
1209   case TargetOpcode::G_FPTRUNC: {
1210     // Number of operands and presense of types is already checked (and
1211     // reported in case of any issues), so no need to report them again. As
1212     // we're trying to report as many issues as possible at once, however, the
1213     // instructions aren't guaranteed to have the right number of operands or
1214     // types attached to them at this point
1215     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1216     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1217     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1218     if (!DstTy.isValid() || !SrcTy.isValid())
1219       break;
1220 
1221     LLT DstElTy = DstTy.getScalarType();
1222     LLT SrcElTy = SrcTy.getScalarType();
1223     if (DstElTy.isPointer() || SrcElTy.isPointer())
1224       report("Generic extend/truncate can not operate on pointers", MI);
1225 
1226     verifyVectorElementMatch(DstTy, SrcTy, MI);
1227 
1228     unsigned DstSize = DstElTy.getSizeInBits();
1229     unsigned SrcSize = SrcElTy.getSizeInBits();
1230     switch (MI->getOpcode()) {
1231     default:
1232       if (DstSize <= SrcSize)
1233         report("Generic extend has destination type no larger than source", MI);
1234       break;
1235     case TargetOpcode::G_TRUNC:
1236     case TargetOpcode::G_FPTRUNC:
1237       if (DstSize >= SrcSize)
1238         report("Generic truncate has destination type no smaller than source",
1239                MI);
1240       break;
1241     }
1242     break;
1243   }
1244   case TargetOpcode::G_SELECT: {
1245     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1246     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1247     if (!SelTy.isValid() || !CondTy.isValid())
1248       break;
1249 
1250     // Scalar condition select on a vector is valid.
1251     if (CondTy.isVector())
1252       verifyVectorElementMatch(SelTy, CondTy, MI);
1253     break;
1254   }
1255   case TargetOpcode::G_MERGE_VALUES: {
1256     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1257     // e.g. s2N = MERGE sN, sN
1258     // Merging multiple scalars into a vector is not allowed, should use
1259     // G_BUILD_VECTOR for that.
1260     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1261     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1262     if (DstTy.isVector() || SrcTy.isVector())
1263       report("G_MERGE_VALUES cannot operate on vectors", MI);
1264 
1265     const unsigned NumOps = MI->getNumOperands();
1266     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1267       report("G_MERGE_VALUES result size is inconsistent", MI);
1268 
1269     for (unsigned I = 2; I != NumOps; ++I) {
1270       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1271         report("G_MERGE_VALUES source types do not match", MI);
1272     }
1273 
1274     break;
1275   }
1276   case TargetOpcode::G_UNMERGE_VALUES: {
1277     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1278     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1279     // For now G_UNMERGE can split vectors.
1280     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1281       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1282         report("G_UNMERGE_VALUES destination types do not match", MI);
1283     }
1284     if (SrcTy.getSizeInBits() !=
1285         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1286       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1287              MI);
1288     }
1289     break;
1290   }
1291   case TargetOpcode::G_BUILD_VECTOR: {
1292     // Source types must be scalars, dest type a vector. Total size of scalars
1293     // must match the dest vector size.
1294     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1295     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1296     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1297       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1298       break;
1299     }
1300 
1301     if (DstTy.getElementType() != SrcEltTy)
1302       report("G_BUILD_VECTOR result element type must match source type", MI);
1303 
1304     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1305       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1306 
1307     for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1308       if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1309         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1310 
1311     break;
1312   }
1313   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1314     // Source types must be scalars, dest type a vector. Scalar types must be
1315     // larger than the dest vector elt type, as this is a truncating operation.
1316     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1317     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1318     if (!DstTy.isVector() || SrcEltTy.isVector())
1319       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1320              MI);
1321     for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1322       if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1323         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1324                MI);
1325     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1326       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1327              "dest elt type",
1328              MI);
1329     break;
1330   }
1331   case TargetOpcode::G_CONCAT_VECTORS: {
1332     // Source types should be vectors, and total size should match the dest
1333     // vector size.
1334     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1335     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1336     if (!DstTy.isVector() || !SrcTy.isVector())
1337       report("G_CONCAT_VECTOR requires vector source and destination operands",
1338              MI);
1339 
1340     if (MI->getNumOperands() < 3)
1341       report("G_CONCAT_VECTOR requires at least 2 source operands", MI);
1342 
1343     for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1344       if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1345         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1346     if (DstTy.getNumElements() !=
1347         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1348       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1349     break;
1350   }
1351   case TargetOpcode::G_ICMP:
1352   case TargetOpcode::G_FCMP: {
1353     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1354     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1355 
1356     if ((DstTy.isVector() != SrcTy.isVector()) ||
1357         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1358       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1359 
1360     break;
1361   }
1362   case TargetOpcode::G_EXTRACT: {
1363     const MachineOperand &SrcOp = MI->getOperand(1);
1364     if (!SrcOp.isReg()) {
1365       report("extract source must be a register", MI);
1366       break;
1367     }
1368 
1369     const MachineOperand &OffsetOp = MI->getOperand(2);
1370     if (!OffsetOp.isImm()) {
1371       report("extract offset must be a constant", MI);
1372       break;
1373     }
1374 
1375     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1376     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1377     if (SrcSize == DstSize)
1378       report("extract source must be larger than result", MI);
1379 
1380     if (DstSize + OffsetOp.getImm() > SrcSize)
1381       report("extract reads past end of register", MI);
1382     break;
1383   }
1384   case TargetOpcode::G_INSERT: {
1385     const MachineOperand &SrcOp = MI->getOperand(2);
1386     if (!SrcOp.isReg()) {
1387       report("insert source must be a register", MI);
1388       break;
1389     }
1390 
1391     const MachineOperand &OffsetOp = MI->getOperand(3);
1392     if (!OffsetOp.isImm()) {
1393       report("insert offset must be a constant", MI);
1394       break;
1395     }
1396 
1397     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1398     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1399 
1400     if (DstSize <= SrcSize)
1401       report("inserted size must be smaller than total register", MI);
1402 
1403     if (SrcSize + OffsetOp.getImm() > DstSize)
1404       report("insert writes past end of register", MI);
1405 
1406     break;
1407   }
1408   case TargetOpcode::G_JUMP_TABLE: {
1409     if (!MI->getOperand(1).isJTI())
1410       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1411     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1412     if (!DstTy.isPointer())
1413       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1414     break;
1415   }
1416   case TargetOpcode::G_BRJT: {
1417     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1418       report("G_BRJT src operand 0 must be a pointer type", MI);
1419 
1420     if (!MI->getOperand(1).isJTI())
1421       report("G_BRJT src operand 1 must be a jump table index", MI);
1422 
1423     const auto &IdxOp = MI->getOperand(2);
1424     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1425       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1426     break;
1427   }
1428   case TargetOpcode::G_INTRINSIC:
1429   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1430     // TODO: Should verify number of def and use operands, but the current
1431     // interface requires passing in IR types for mangling.
1432     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1433     if (!IntrIDOp.isIntrinsicID()) {
1434       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1435       break;
1436     }
1437 
1438     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1439     unsigned IntrID = IntrIDOp.getIntrinsicID();
1440     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1441       AttributeList Attrs
1442         = Intrinsic::getAttributes(MF->getFunction().getContext(),
1443                                    static_cast<Intrinsic::ID>(IntrID));
1444       bool DeclHasSideEffects = !Attrs.hasFnAttr(Attribute::ReadNone);
1445       if (NoSideEffects && DeclHasSideEffects) {
1446         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1447         break;
1448       }
1449       if (!NoSideEffects && !DeclHasSideEffects) {
1450         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1451         break;
1452       }
1453     }
1454 
1455     break;
1456   }
1457   case TargetOpcode::G_SEXT_INREG: {
1458     if (!MI->getOperand(2).isImm()) {
1459       report("G_SEXT_INREG expects an immediate operand #2", MI);
1460       break;
1461     }
1462 
1463     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1464     int64_t Imm = MI->getOperand(2).getImm();
1465     if (Imm <= 0)
1466       report("G_SEXT_INREG size must be >= 1", MI);
1467     if (Imm >= SrcTy.getScalarSizeInBits())
1468       report("G_SEXT_INREG size must be less than source bit width", MI);
1469     break;
1470   }
1471   case TargetOpcode::G_SHUFFLE_VECTOR: {
1472     const MachineOperand &MaskOp = MI->getOperand(3);
1473     if (!MaskOp.isShuffleMask()) {
1474       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1475       break;
1476     }
1477 
1478     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1479     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1480     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1481 
1482     if (Src0Ty != Src1Ty)
1483       report("Source operands must be the same type", MI);
1484 
1485     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1486       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1487 
1488     // Don't check that all operands are vector because scalars are used in
1489     // place of 1 element vectors.
1490     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1491     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1492 
1493     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1494 
1495     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1496       report("Wrong result type for shufflemask", MI);
1497 
1498     for (int Idx : MaskIdxes) {
1499       if (Idx < 0)
1500         continue;
1501 
1502       if (Idx >= 2 * SrcNumElts)
1503         report("Out of bounds shuffle index", MI);
1504     }
1505 
1506     break;
1507   }
1508   case TargetOpcode::G_DYN_STACKALLOC: {
1509     const MachineOperand &DstOp = MI->getOperand(0);
1510     const MachineOperand &AllocOp = MI->getOperand(1);
1511     const MachineOperand &AlignOp = MI->getOperand(2);
1512 
1513     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1514       report("dst operand 0 must be a pointer type", MI);
1515       break;
1516     }
1517 
1518     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1519       report("src operand 1 must be a scalar reg type", MI);
1520       break;
1521     }
1522 
1523     if (!AlignOp.isImm()) {
1524       report("src operand 2 must be an immediate type", MI);
1525       break;
1526     }
1527     break;
1528   }
1529   case TargetOpcode::G_MEMCPY_INLINE:
1530   case TargetOpcode::G_MEMCPY:
1531   case TargetOpcode::G_MEMMOVE: {
1532     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1533     if (MMOs.size() != 2) {
1534       report("memcpy/memmove must have 2 memory operands", MI);
1535       break;
1536     }
1537 
1538     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1539         (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1540       report("wrong memory operand types", MI);
1541       break;
1542     }
1543 
1544     if (MMOs[0]->getSize() != MMOs[1]->getSize())
1545       report("inconsistent memory operand sizes", MI);
1546 
1547     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1548     LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1549 
1550     if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1551       report("memory instruction operand must be a pointer", MI);
1552       break;
1553     }
1554 
1555     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1556       report("inconsistent store address space", MI);
1557     if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1558       report("inconsistent load address space", MI);
1559 
1560     if (Opc != TargetOpcode::G_MEMCPY_INLINE)
1561       if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL))
1562         report("'tail' flag (operand 3) must be an immediate 0 or 1", MI);
1563 
1564     break;
1565   }
1566   case TargetOpcode::G_BZERO:
1567   case TargetOpcode::G_MEMSET: {
1568     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1569     std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero";
1570     if (MMOs.size() != 1) {
1571       report(Twine(Name, " must have 1 memory operand"), MI);
1572       break;
1573     }
1574 
1575     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
1576       report(Twine(Name, " memory operand must be a store"), MI);
1577       break;
1578     }
1579 
1580     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1581     if (!DstPtrTy.isPointer()) {
1582       report(Twine(Name, " operand must be a pointer"), MI);
1583       break;
1584     }
1585 
1586     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1587       report("inconsistent " + Twine(Name, " address space"), MI);
1588 
1589     if (!MI->getOperand(MI->getNumOperands() - 1).isImm() ||
1590         (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL))
1591       report("'tail' flag (last operand) must be an immediate 0 or 1", MI);
1592 
1593     break;
1594   }
1595   case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1596   case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
1597     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1598     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1599     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1600     if (!DstTy.isScalar())
1601       report("Vector reduction requires a scalar destination type", MI);
1602     if (!Src1Ty.isScalar())
1603       report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
1604     if (!Src2Ty.isVector())
1605       report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
1606     break;
1607   }
1608   case TargetOpcode::G_VECREDUCE_FADD:
1609   case TargetOpcode::G_VECREDUCE_FMUL:
1610   case TargetOpcode::G_VECREDUCE_FMAX:
1611   case TargetOpcode::G_VECREDUCE_FMIN:
1612   case TargetOpcode::G_VECREDUCE_ADD:
1613   case TargetOpcode::G_VECREDUCE_MUL:
1614   case TargetOpcode::G_VECREDUCE_AND:
1615   case TargetOpcode::G_VECREDUCE_OR:
1616   case TargetOpcode::G_VECREDUCE_XOR:
1617   case TargetOpcode::G_VECREDUCE_SMAX:
1618   case TargetOpcode::G_VECREDUCE_SMIN:
1619   case TargetOpcode::G_VECREDUCE_UMAX:
1620   case TargetOpcode::G_VECREDUCE_UMIN: {
1621     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1622     if (!DstTy.isScalar())
1623       report("Vector reduction requires a scalar destination type", MI);
1624     break;
1625   }
1626 
1627   case TargetOpcode::G_SBFX:
1628   case TargetOpcode::G_UBFX: {
1629     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1630     if (DstTy.isVector()) {
1631       report("Bitfield extraction is not supported on vectors", MI);
1632       break;
1633     }
1634     break;
1635   }
1636   case TargetOpcode::G_SHL:
1637   case TargetOpcode::G_LSHR:
1638   case TargetOpcode::G_ASHR:
1639   case TargetOpcode::G_ROTR:
1640   case TargetOpcode::G_ROTL: {
1641     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1642     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1643     if (Src1Ty.isVector() != Src2Ty.isVector()) {
1644       report("Shifts and rotates require operands to be either all scalars or "
1645              "all vectors",
1646              MI);
1647       break;
1648     }
1649     break;
1650   }
1651   case TargetOpcode::G_LLROUND:
1652   case TargetOpcode::G_LROUND: {
1653     verifyAllRegOpsScalar(*MI, *MRI);
1654     break;
1655   }
1656   case TargetOpcode::G_IS_FPCLASS: {
1657     LLT DestTy = MRI->getType(MI->getOperand(0).getReg());
1658     LLT DestEltTy = DestTy.getScalarType();
1659     if (!DestEltTy.isScalar()) {
1660       report("Destination must be a scalar or vector of scalars", MI);
1661       break;
1662     }
1663     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1664     LLT SrcEltTy = SrcTy.getScalarType();
1665     if (!SrcEltTy.isScalar()) {
1666       report("Source must be a scalar or vector of scalars", MI);
1667       break;
1668     }
1669     if (!verifyVectorElementMatch(DestTy, SrcTy, MI))
1670       break;
1671     const MachineOperand &TestMO = MI->getOperand(2);
1672     if (!TestMO.isImm()) {
1673       report("floating-point class set (operand 2) must be an immediate", MI);
1674       break;
1675     }
1676     int64_t Test = TestMO.getImm();
1677     if (Test < 0 || Test > fcAllFlags) {
1678       report("Incorrect floating-point class set (operand 2)", MI);
1679       break;
1680     }
1681     const MachineOperand &SemanticsMO = MI->getOperand(3);
1682     if (!SemanticsMO.isImm()) {
1683       report("floating-point semantics (operand 3) must be an immediate", MI);
1684       break;
1685     }
1686     int64_t Semantics = SemanticsMO.getImm();
1687     if (Semantics < 0 || Semantics > APFloat::S_MaxSemantics) {
1688       report("Incorrect floating-point semantics (operand 3)", MI);
1689       break;
1690     }
1691     break;
1692   }
1693   default:
1694     break;
1695   }
1696 }
1697 
1698 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1699   const MCInstrDesc &MCID = MI->getDesc();
1700   if (MI->getNumOperands() < MCID.getNumOperands()) {
1701     report("Too few operands", MI);
1702     errs() << MCID.getNumOperands() << " operands expected, but "
1703            << MI->getNumOperands() << " given.\n";
1704   }
1705 
1706   if (MI->isPHI()) {
1707     if (MF->getProperties().hasProperty(
1708             MachineFunctionProperties::Property::NoPHIs))
1709       report("Found PHI instruction with NoPHIs property set", MI);
1710 
1711     if (FirstNonPHI)
1712       report("Found PHI instruction after non-PHI", MI);
1713   } else if (FirstNonPHI == nullptr)
1714     FirstNonPHI = MI;
1715 
1716   // Check the tied operands.
1717   if (MI->isInlineAsm())
1718     verifyInlineAsm(MI);
1719 
1720   // Check that unspillable terminators define a reg and have at most one use.
1721   if (TII->isUnspillableTerminator(MI)) {
1722     if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
1723       report("Unspillable Terminator does not define a reg", MI);
1724     Register Def = MI->getOperand(0).getReg();
1725     if (Def.isVirtual() &&
1726         !MF->getProperties().hasProperty(
1727             MachineFunctionProperties::Property::NoPHIs) &&
1728         std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
1729       report("Unspillable Terminator expected to have at most one use!", MI);
1730   }
1731 
1732   // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1733   // DBG_VALUEs: these are convenient to use in tests, but should never get
1734   // generated.
1735   if (MI->isDebugValue() && MI->getNumOperands() == 4)
1736     if (!MI->getDebugLoc())
1737       report("Missing DebugLoc for debug instruction", MI);
1738 
1739   // Meta instructions should never be the subject of debug value tracking,
1740   // they don't create a value in the output program at all.
1741   if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
1742     report("Metadata instruction should not have a value tracking number", MI);
1743 
1744   // Check the MachineMemOperands for basic consistency.
1745   for (MachineMemOperand *Op : MI->memoperands()) {
1746     if (Op->isLoad() && !MI->mayLoad())
1747       report("Missing mayLoad flag", MI);
1748     if (Op->isStore() && !MI->mayStore())
1749       report("Missing mayStore flag", MI);
1750   }
1751 
1752   // Debug values must not have a slot index.
1753   // Other instructions must have one, unless they are inside a bundle.
1754   if (LiveInts) {
1755     bool mapped = !LiveInts->isNotInMIMap(*MI);
1756     if (MI->isDebugOrPseudoInstr()) {
1757       if (mapped)
1758         report("Debug instruction has a slot index", MI);
1759     } else if (MI->isInsideBundle()) {
1760       if (mapped)
1761         report("Instruction inside bundle has a slot index", MI);
1762     } else {
1763       if (!mapped)
1764         report("Missing slot index", MI);
1765     }
1766   }
1767 
1768   unsigned Opc = MCID.getOpcode();
1769   if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) {
1770     verifyPreISelGenericInstruction(MI);
1771     return;
1772   }
1773 
1774   StringRef ErrorInfo;
1775   if (!TII->verifyInstruction(*MI, ErrorInfo))
1776     report(ErrorInfo.data(), MI);
1777 
1778   // Verify properties of various specific instruction types
1779   switch (MI->getOpcode()) {
1780   case TargetOpcode::COPY: {
1781     const MachineOperand &DstOp = MI->getOperand(0);
1782     const MachineOperand &SrcOp = MI->getOperand(1);
1783     const Register SrcReg = SrcOp.getReg();
1784     const Register DstReg = DstOp.getReg();
1785 
1786     LLT DstTy = MRI->getType(DstReg);
1787     LLT SrcTy = MRI->getType(SrcReg);
1788     if (SrcTy.isValid() && DstTy.isValid()) {
1789       // If both types are valid, check that the types are the same.
1790       if (SrcTy != DstTy) {
1791         report("Copy Instruction is illegal with mismatching types", MI);
1792         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1793       }
1794 
1795       break;
1796     }
1797 
1798     if (!SrcTy.isValid() && !DstTy.isValid())
1799       break;
1800 
1801     // If we have only one valid type, this is likely a copy between a virtual
1802     // and physical register.
1803     unsigned SrcSize = 0;
1804     unsigned DstSize = 0;
1805     if (SrcReg.isPhysical() && DstTy.isValid()) {
1806       const TargetRegisterClass *SrcRC =
1807           TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy);
1808       if (SrcRC)
1809         SrcSize = TRI->getRegSizeInBits(*SrcRC);
1810     }
1811 
1812     if (SrcSize == 0)
1813       SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
1814 
1815     if (DstReg.isPhysical() && SrcTy.isValid()) {
1816       const TargetRegisterClass *DstRC =
1817           TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy);
1818       if (DstRC)
1819         DstSize = TRI->getRegSizeInBits(*DstRC);
1820     }
1821 
1822     if (DstSize == 0)
1823       DstSize = TRI->getRegSizeInBits(DstReg, *MRI);
1824 
1825     if (SrcSize != 0 && DstSize != 0 && SrcSize != DstSize) {
1826       if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1827         report("Copy Instruction is illegal with mismatching sizes", MI);
1828         errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1829                << "\n";
1830       }
1831     }
1832     break;
1833   }
1834   case TargetOpcode::STATEPOINT: {
1835     StatepointOpers SO(MI);
1836     if (!MI->getOperand(SO.getIDPos()).isImm() ||
1837         !MI->getOperand(SO.getNBytesPos()).isImm() ||
1838         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1839       report("meta operands to STATEPOINT not constant!", MI);
1840       break;
1841     }
1842 
1843     auto VerifyStackMapConstant = [&](unsigned Offset) {
1844       if (Offset >= MI->getNumOperands()) {
1845         report("stack map constant to STATEPOINT is out of range!", MI);
1846         return;
1847       }
1848       if (!MI->getOperand(Offset - 1).isImm() ||
1849           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1850           !MI->getOperand(Offset).isImm())
1851         report("stack map constant to STATEPOINT not well formed!", MI);
1852     };
1853     VerifyStackMapConstant(SO.getCCIdx());
1854     VerifyStackMapConstant(SO.getFlagsIdx());
1855     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1856     VerifyStackMapConstant(SO.getNumGCPtrIdx());
1857     VerifyStackMapConstant(SO.getNumAllocaIdx());
1858     VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
1859 
1860     // Verify that all explicit statepoint defs are tied to gc operands as
1861     // they are expected to be a relocation of gc operands.
1862     unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
1863     unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
1864     for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
1865       unsigned UseOpIdx;
1866       if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
1867         report("STATEPOINT defs expected to be tied", MI);
1868         break;
1869       }
1870       if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
1871         report("STATEPOINT def tied to non-gc operand", MI);
1872         break;
1873       }
1874     }
1875 
1876     // TODO: verify we have properly encoded deopt arguments
1877   } break;
1878   case TargetOpcode::INSERT_SUBREG: {
1879     unsigned InsertedSize;
1880     if (unsigned SubIdx = MI->getOperand(2).getSubReg())
1881       InsertedSize = TRI->getSubRegIdxSize(SubIdx);
1882     else
1883       InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI);
1884     unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm());
1885     if (SubRegSize < InsertedSize) {
1886       report("INSERT_SUBREG expected inserted value to have equal or lesser "
1887              "size than the subreg it was inserted into", MI);
1888       break;
1889     }
1890   } break;
1891   }
1892 }
1893 
1894 void
1895 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1896   const MachineInstr *MI = MO->getParent();
1897   const MCInstrDesc &MCID = MI->getDesc();
1898   unsigned NumDefs = MCID.getNumDefs();
1899   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1900     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1901 
1902   // The first MCID.NumDefs operands must be explicit register defines
1903   if (MONum < NumDefs) {
1904     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1905     if (!MO->isReg())
1906       report("Explicit definition must be a register", MO, MONum);
1907     else if (!MO->isDef() && !MCOI.isOptionalDef())
1908       report("Explicit definition marked as use", MO, MONum);
1909     else if (MO->isImplicit())
1910       report("Explicit definition marked as implicit", MO, MONum);
1911   } else if (MONum < MCID.getNumOperands()) {
1912     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1913     // Don't check if it's the last operand in a variadic instruction. See,
1914     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1915     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1916     if (!IsOptional) {
1917       if (MO->isReg()) {
1918         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1919           report("Explicit operand marked as def", MO, MONum);
1920         if (MO->isImplicit())
1921           report("Explicit operand marked as implicit", MO, MONum);
1922       }
1923 
1924       // Check that an instruction has register operands only as expected.
1925       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1926           !MO->isReg() && !MO->isFI())
1927         report("Expected a register operand.", MO, MONum);
1928       if (MO->isReg()) {
1929         if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1930             (MCOI.OperandType == MCOI::OPERAND_PCREL &&
1931              !TII->isPCRelRegisterOperandLegal(*MO)))
1932           report("Expected a non-register operand.", MO, MONum);
1933       }
1934     }
1935 
1936     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1937     if (TiedTo != -1) {
1938       if (!MO->isReg())
1939         report("Tied use must be a register", MO, MONum);
1940       else if (!MO->isTied())
1941         report("Operand should be tied", MO, MONum);
1942       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1943         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1944       else if (Register::isPhysicalRegister(MO->getReg())) {
1945         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1946         if (!MOTied.isReg())
1947           report("Tied counterpart must be a register", &MOTied, TiedTo);
1948         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1949                  MO->getReg() != MOTied.getReg())
1950           report("Tied physical registers must match.", &MOTied, TiedTo);
1951       }
1952     } else if (MO->isReg() && MO->isTied())
1953       report("Explicit operand should not be tied", MO, MONum);
1954   } else {
1955     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1956     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1957       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1958   }
1959 
1960   switch (MO->getType()) {
1961   case MachineOperand::MO_Register: {
1962     // Verify debug flag on debug instructions. Check this first because reg0
1963     // indicates an undefined debug value.
1964     if (MI->isDebugInstr() && MO->isUse()) {
1965       if (!MO->isDebug())
1966         report("Register operand must be marked debug", MO, MONum);
1967     } else if (MO->isDebug()) {
1968       report("Register operand must not be marked debug", MO, MONum);
1969     }
1970 
1971     const Register Reg = MO->getReg();
1972     if (!Reg)
1973       return;
1974     if (MRI->tracksLiveness() && !MI->isDebugInstr())
1975       checkLiveness(MO, MONum);
1976 
1977     if (MO->isDef() && MO->isUndef() && !MO->getSubReg() &&
1978         MO->getReg().isVirtual()) // TODO: Apply to physregs too
1979       report("Undef virtual register def operands require a subregister", MO, MONum);
1980 
1981     // Verify the consistency of tied operands.
1982     if (MO->isTied()) {
1983       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1984       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1985       if (!OtherMO.isReg())
1986         report("Must be tied to a register", MO, MONum);
1987       if (!OtherMO.isTied())
1988         report("Missing tie flags on tied operand", MO, MONum);
1989       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1990         report("Inconsistent tie links", MO, MONum);
1991       if (MONum < MCID.getNumDefs()) {
1992         if (OtherIdx < MCID.getNumOperands()) {
1993           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1994             report("Explicit def tied to explicit use without tie constraint",
1995                    MO, MONum);
1996         } else {
1997           if (!OtherMO.isImplicit())
1998             report("Explicit def should be tied to implicit use", MO, MONum);
1999         }
2000       }
2001     }
2002 
2003     // Verify two-address constraints after the twoaddressinstruction pass.
2004     // Both twoaddressinstruction pass and phi-node-elimination pass call
2005     // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
2006     // twoaddressinstruction pass not after phi-node-elimination pass. So we
2007     // shouldn't use the NoSSA as the condition, we should based on
2008     // TiedOpsRewritten property to verify two-address constraints, this
2009     // property will be set in twoaddressinstruction pass.
2010     unsigned DefIdx;
2011     if (MF->getProperties().hasProperty(
2012             MachineFunctionProperties::Property::TiedOpsRewritten) &&
2013         MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
2014         Reg != MI->getOperand(DefIdx).getReg())
2015       report("Two-address instruction operands must be identical", MO, MONum);
2016 
2017     // Check register classes.
2018     unsigned SubIdx = MO->getSubReg();
2019 
2020     if (Register::isPhysicalRegister(Reg)) {
2021       if (SubIdx) {
2022         report("Illegal subregister index for physical register", MO, MONum);
2023         return;
2024       }
2025       if (MONum < MCID.getNumOperands()) {
2026         if (const TargetRegisterClass *DRC =
2027               TII->getRegClass(MCID, MONum, TRI, *MF)) {
2028           if (!DRC->contains(Reg)) {
2029             report("Illegal physical register for instruction", MO, MONum);
2030             errs() << printReg(Reg, TRI) << " is not a "
2031                    << TRI->getRegClassName(DRC) << " register.\n";
2032           }
2033         }
2034       }
2035       if (MO->isRenamable()) {
2036         if (MRI->isReserved(Reg)) {
2037           report("isRenamable set on reserved register", MO, MONum);
2038           return;
2039         }
2040       }
2041     } else {
2042       // Virtual register.
2043       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
2044       if (!RC) {
2045         // This is a generic virtual register.
2046 
2047         // Do not allow undef uses for generic virtual registers. This ensures
2048         // getVRegDef can never fail and return null on a generic register.
2049         //
2050         // FIXME: This restriction should probably be broadened to all SSA
2051         // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
2052         // run on the SSA function just before phi elimination.
2053         if (MO->isUndef())
2054           report("Generic virtual register use cannot be undef", MO, MONum);
2055 
2056         // Debug value instruction is permitted to use undefined vregs.
2057         // This is a performance measure to skip the overhead of immediately
2058         // pruning unused debug operands. The final undef substitution occurs
2059         // when debug values are allocated in LDVImpl::handleDebugValue, so
2060         // these verifications always apply after this pass.
2061         if (isFunctionTracksDebugUserValues || !MO->isUse() ||
2062             !MI->isDebugValue() || !MRI->def_empty(Reg)) {
2063           // If we're post-Select, we can't have gvregs anymore.
2064           if (isFunctionSelected) {
2065             report("Generic virtual register invalid in a Selected function",
2066                    MO, MONum);
2067             return;
2068           }
2069 
2070           // The gvreg must have a type and it must not have a SubIdx.
2071           LLT Ty = MRI->getType(Reg);
2072           if (!Ty.isValid()) {
2073             report("Generic virtual register must have a valid type", MO,
2074                    MONum);
2075             return;
2076           }
2077 
2078           const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
2079 
2080           // If we're post-RegBankSelect, the gvreg must have a bank.
2081           if (!RegBank && isFunctionRegBankSelected) {
2082             report("Generic virtual register must have a bank in a "
2083                    "RegBankSelected function",
2084                    MO, MONum);
2085             return;
2086           }
2087 
2088           // Make sure the register fits into its register bank if any.
2089           if (RegBank && Ty.isValid() &&
2090               RegBank->getSize() < Ty.getSizeInBits()) {
2091             report("Register bank is too small for virtual register", MO,
2092                    MONum);
2093             errs() << "Register bank " << RegBank->getName() << " too small("
2094                    << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
2095                    << "-bits\n";
2096             return;
2097           }
2098         }
2099 
2100         if (SubIdx)  {
2101           report("Generic virtual register does not allow subregister index", MO,
2102                  MONum);
2103           return;
2104         }
2105 
2106         // If this is a target specific instruction and this operand
2107         // has register class constraint, the virtual register must
2108         // comply to it.
2109         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
2110             MONum < MCID.getNumOperands() &&
2111             TII->getRegClass(MCID, MONum, TRI, *MF)) {
2112           report("Virtual register does not match instruction constraint", MO,
2113                  MONum);
2114           errs() << "Expect register class "
2115                  << TRI->getRegClassName(
2116                         TII->getRegClass(MCID, MONum, TRI, *MF))
2117                  << " but got nothing\n";
2118           return;
2119         }
2120 
2121         break;
2122       }
2123       if (SubIdx) {
2124         const TargetRegisterClass *SRC =
2125           TRI->getSubClassWithSubReg(RC, SubIdx);
2126         if (!SRC) {
2127           report("Invalid subregister index for virtual register", MO, MONum);
2128           errs() << "Register class " << TRI->getRegClassName(RC)
2129               << " does not support subreg index " << SubIdx << "\n";
2130           return;
2131         }
2132         if (RC != SRC) {
2133           report("Invalid register class for subregister index", MO, MONum);
2134           errs() << "Register class " << TRI->getRegClassName(RC)
2135               << " does not fully support subreg index " << SubIdx << "\n";
2136           return;
2137         }
2138       }
2139       if (MONum < MCID.getNumOperands()) {
2140         if (const TargetRegisterClass *DRC =
2141               TII->getRegClass(MCID, MONum, TRI, *MF)) {
2142           if (SubIdx) {
2143             const TargetRegisterClass *SuperRC =
2144                 TRI->getLargestLegalSuperClass(RC, *MF);
2145             if (!SuperRC) {
2146               report("No largest legal super class exists.", MO, MONum);
2147               return;
2148             }
2149             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
2150             if (!DRC) {
2151               report("No matching super-reg register class.", MO, MONum);
2152               return;
2153             }
2154           }
2155           if (!RC->hasSuperClassEq(DRC)) {
2156             report("Illegal virtual register for instruction", MO, MONum);
2157             errs() << "Expected a " << TRI->getRegClassName(DRC)
2158                 << " register, but got a " << TRI->getRegClassName(RC)
2159                 << " register\n";
2160           }
2161         }
2162       }
2163     }
2164     break;
2165   }
2166 
2167   case MachineOperand::MO_RegisterMask:
2168     regMasks.push_back(MO->getRegMask());
2169     break;
2170 
2171   case MachineOperand::MO_MachineBasicBlock:
2172     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
2173       report("PHI operand is not in the CFG", MO, MONum);
2174     break;
2175 
2176   case MachineOperand::MO_FrameIndex:
2177     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
2178         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2179       int FI = MO->getIndex();
2180       LiveInterval &LI = LiveStks->getInterval(FI);
2181       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
2182 
2183       bool stores = MI->mayStore();
2184       bool loads = MI->mayLoad();
2185       // For a memory-to-memory move, we need to check if the frame
2186       // index is used for storing or loading, by inspecting the
2187       // memory operands.
2188       if (stores && loads) {
2189         for (auto *MMO : MI->memoperands()) {
2190           const PseudoSourceValue *PSV = MMO->getPseudoValue();
2191           if (PSV == nullptr) continue;
2192           const FixedStackPseudoSourceValue *Value =
2193             dyn_cast<FixedStackPseudoSourceValue>(PSV);
2194           if (Value == nullptr) continue;
2195           if (Value->getFrameIndex() != FI) continue;
2196 
2197           if (MMO->isStore())
2198             loads = false;
2199           else
2200             stores = false;
2201           break;
2202         }
2203         if (loads == stores)
2204           report("Missing fixed stack memoperand.", MI);
2205       }
2206       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
2207         report("Instruction loads from dead spill slot", MO, MONum);
2208         errs() << "Live stack: " << LI << '\n';
2209       }
2210       if (stores && !LI.liveAt(Idx.getRegSlot())) {
2211         report("Instruction stores to dead spill slot", MO, MONum);
2212         errs() << "Live stack: " << LI << '\n';
2213       }
2214     }
2215     break;
2216 
2217   case MachineOperand::MO_CFIIndex:
2218     if (MO->getCFIIndex() >= MF->getFrameInstructions().size())
2219       report("CFI instruction has invalid index", MO, MONum);
2220     break;
2221 
2222   default:
2223     break;
2224   }
2225 }
2226 
2227 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
2228                                          unsigned MONum, SlotIndex UseIdx,
2229                                          const LiveRange &LR,
2230                                          Register VRegOrUnit,
2231                                          LaneBitmask LaneMask) {
2232   LiveQueryResult LRQ = LR.Query(UseIdx);
2233   // Check if we have a segment at the use, note however that we only need one
2234   // live subregister range, the others may be dead.
2235   if (!LRQ.valueIn() && LaneMask.none()) {
2236     report("No live segment at use", MO, MONum);
2237     report_context_liverange(LR);
2238     report_context_vreg_regunit(VRegOrUnit);
2239     report_context(UseIdx);
2240   }
2241   if (MO->isKill() && !LRQ.isKill()) {
2242     report("Live range continues after kill flag", MO, MONum);
2243     report_context_liverange(LR);
2244     report_context_vreg_regunit(VRegOrUnit);
2245     if (LaneMask.any())
2246       report_context_lanemask(LaneMask);
2247     report_context(UseIdx);
2248   }
2249 }
2250 
2251 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2252                                          unsigned MONum, SlotIndex DefIdx,
2253                                          const LiveRange &LR,
2254                                          Register VRegOrUnit,
2255                                          bool SubRangeCheck,
2256                                          LaneBitmask LaneMask) {
2257   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
2258     assert(VNI && "NULL valno is not allowed");
2259     if (VNI->def != DefIdx) {
2260       report("Inconsistent valno->def", MO, MONum);
2261       report_context_liverange(LR);
2262       report_context_vreg_regunit(VRegOrUnit);
2263       if (LaneMask.any())
2264         report_context_lanemask(LaneMask);
2265       report_context(*VNI);
2266       report_context(DefIdx);
2267     }
2268   } else {
2269     report("No live segment at def", MO, MONum);
2270     report_context_liverange(LR);
2271     report_context_vreg_regunit(VRegOrUnit);
2272     if (LaneMask.any())
2273       report_context_lanemask(LaneMask);
2274     report_context(DefIdx);
2275   }
2276   // Check that, if the dead def flag is present, LiveInts agree.
2277   if (MO->isDead()) {
2278     LiveQueryResult LRQ = LR.Query(DefIdx);
2279     if (!LRQ.isDeadDef()) {
2280       assert(Register::isVirtualRegister(VRegOrUnit) &&
2281              "Expecting a virtual register.");
2282       // A dead subreg def only tells us that the specific subreg is dead. There
2283       // could be other non-dead defs of other subregs, or we could have other
2284       // parts of the register being live through the instruction. So unless we
2285       // are checking liveness for a subrange it is ok for the live range to
2286       // continue, given that we have a dead def of a subregister.
2287       if (SubRangeCheck || MO->getSubReg() == 0) {
2288         report("Live range continues after dead def flag", MO, MONum);
2289         report_context_liverange(LR);
2290         report_context_vreg_regunit(VRegOrUnit);
2291         if (LaneMask.any())
2292           report_context_lanemask(LaneMask);
2293       }
2294     }
2295   }
2296 }
2297 
2298 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2299   const MachineInstr *MI = MO->getParent();
2300   const Register Reg = MO->getReg();
2301   const unsigned SubRegIdx = MO->getSubReg();
2302 
2303   const LiveInterval *LI = nullptr;
2304   if (LiveInts && Reg.isVirtual()) {
2305     if (LiveInts->hasInterval(Reg)) {
2306       LI = &LiveInts->getInterval(Reg);
2307       if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() &&
2308           !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(Reg))
2309         report("Live interval for subreg operand has no subranges", MO, MONum);
2310     } else {
2311       report("Virtual register has no live interval", MO, MONum);
2312     }
2313   }
2314 
2315   // Both use and def operands can read a register.
2316   if (MO->readsReg()) {
2317     if (MO->isKill())
2318       addRegWithSubRegs(regsKilled, Reg);
2319 
2320     // Check that LiveVars knows this kill (unless we are inside a bundle, in
2321     // which case we have already checked that LiveVars knows any kills on the
2322     // bundle header instead).
2323     if (LiveVars && Reg.isVirtual() && MO->isKill() &&
2324         !MI->isBundledWithPred()) {
2325       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2326       if (!is_contained(VI.Kills, MI))
2327         report("Kill missing from LiveVariables", MO, MONum);
2328     }
2329 
2330     // Check LiveInts liveness and kill.
2331     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2332       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
2333       // Check the cached regunit intervals.
2334       if (Reg.isPhysical() && !isReserved(Reg)) {
2335         for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
2336              ++Units) {
2337           if (MRI->isReservedRegUnit(*Units))
2338             continue;
2339           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
2340             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
2341         }
2342       }
2343 
2344       if (Reg.isVirtual()) {
2345         // This is a virtual register interval.
2346         checkLivenessAtUse(MO, MONum, UseIdx, *LI, Reg);
2347 
2348         if (LI->hasSubRanges() && !MO->isDef()) {
2349           LaneBitmask MOMask = SubRegIdx != 0
2350                                    ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2351                                    : MRI->getMaxLaneMaskForVReg(Reg);
2352           LaneBitmask LiveInMask;
2353           for (const LiveInterval::SubRange &SR : LI->subranges()) {
2354             if ((MOMask & SR.LaneMask).none())
2355               continue;
2356             checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2357             LiveQueryResult LRQ = SR.Query(UseIdx);
2358             if (LRQ.valueIn())
2359               LiveInMask |= SR.LaneMask;
2360           }
2361           // At least parts of the register has to be live at the use.
2362           if ((LiveInMask & MOMask).none()) {
2363             report("No live subrange at use", MO, MONum);
2364             report_context(*LI);
2365             report_context(UseIdx);
2366           }
2367         }
2368       }
2369     }
2370 
2371     // Use of a dead register.
2372     if (!regsLive.count(Reg)) {
2373       if (Reg.isPhysical()) {
2374         // Reserved registers may be used even when 'dead'.
2375         bool Bad = !isReserved(Reg);
2376         // We are fine if just any subregister has a defined value.
2377         if (Bad) {
2378 
2379           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2380             if (regsLive.count(SubReg)) {
2381               Bad = false;
2382               break;
2383             }
2384           }
2385         }
2386         // If there is an additional implicit-use of a super register we stop
2387         // here. By definition we are fine if the super register is not
2388         // (completely) dead, if the complete super register is dead we will
2389         // get a report for its operand.
2390         if (Bad) {
2391           for (const MachineOperand &MOP : MI->uses()) {
2392             if (!MOP.isReg() || !MOP.isImplicit())
2393               continue;
2394 
2395             if (!MOP.getReg().isPhysical())
2396               continue;
2397 
2398             if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg))
2399               Bad = false;
2400           }
2401         }
2402         if (Bad)
2403           report("Using an undefined physical register", MO, MONum);
2404       } else if (MRI->def_empty(Reg)) {
2405         report("Reading virtual register without a def", MO, MONum);
2406       } else {
2407         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2408         // We don't know which virtual registers are live in, so only complain
2409         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2410         // must be live in. PHI instructions are handled separately.
2411         if (MInfo.regsKilled.count(Reg))
2412           report("Using a killed virtual register", MO, MONum);
2413         else if (!MI->isPHI())
2414           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2415       }
2416     }
2417   }
2418 
2419   if (MO->isDef()) {
2420     // Register defined.
2421     // TODO: verify that earlyclobber ops are not used.
2422     if (MO->isDead())
2423       addRegWithSubRegs(regsDead, Reg);
2424     else
2425       addRegWithSubRegs(regsDefined, Reg);
2426 
2427     // Verify SSA form.
2428     if (MRI->isSSA() && Reg.isVirtual() &&
2429         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2430       report("Multiple virtual register defs in SSA form", MO, MONum);
2431 
2432     // Check LiveInts for a live segment, but only for virtual registers.
2433     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2434       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2435       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2436 
2437       if (Reg.isVirtual()) {
2438         checkLivenessAtDef(MO, MONum, DefIdx, *LI, Reg);
2439 
2440         if (LI->hasSubRanges()) {
2441           LaneBitmask MOMask = SubRegIdx != 0
2442                                    ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2443                                    : MRI->getMaxLaneMaskForVReg(Reg);
2444           for (const LiveInterval::SubRange &SR : LI->subranges()) {
2445             if ((SR.LaneMask & MOMask).none())
2446               continue;
2447             checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2448           }
2449         }
2450       }
2451     }
2452   }
2453 }
2454 
2455 // This function gets called after visiting all instructions in a bundle. The
2456 // argument points to the bundle header.
2457 // Normal stand-alone instructions are also considered 'bundles', and this
2458 // function is called for all of them.
2459 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2460   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2461   set_union(MInfo.regsKilled, regsKilled);
2462   set_subtract(regsLive, regsKilled); regsKilled.clear();
2463   // Kill any masked registers.
2464   while (!regMasks.empty()) {
2465     const uint32_t *Mask = regMasks.pop_back_val();
2466     for (Register Reg : regsLive)
2467       if (Reg.isPhysical() &&
2468           MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
2469         regsDead.push_back(Reg);
2470   }
2471   set_subtract(regsLive, regsDead);   regsDead.clear();
2472   set_union(regsLive, regsDefined);   regsDefined.clear();
2473 }
2474 
2475 void
2476 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2477   MBBInfoMap[MBB].regsLiveOut = regsLive;
2478   regsLive.clear();
2479 
2480   if (Indexes) {
2481     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2482     if (!(stop > lastIndex)) {
2483       report("Block ends before last instruction index", MBB);
2484       errs() << "Block ends at " << stop
2485           << " last instruction was at " << lastIndex << '\n';
2486     }
2487     lastIndex = stop;
2488   }
2489 }
2490 
2491 namespace {
2492 // This implements a set of registers that serves as a filter: can filter other
2493 // sets by passing through elements not in the filter and blocking those that
2494 // are. Any filter implicitly includes the full set of physical registers upon
2495 // creation, thus filtering them all out. The filter itself as a set only grows,
2496 // and needs to be as efficient as possible.
2497 struct VRegFilter {
2498   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2499   // no duplicates. Both virtual and physical registers are fine.
2500   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2501     SmallVector<Register, 0> VRegsBuffer;
2502     filterAndAdd(FromRegSet, VRegsBuffer);
2503   }
2504   // Filter \p FromRegSet through the filter and append passed elements into \p
2505   // ToVRegs. All elements appended are then added to the filter itself.
2506   // \returns true if anything changed.
2507   template <typename RegSetT>
2508   bool filterAndAdd(const RegSetT &FromRegSet,
2509                     SmallVectorImpl<Register> &ToVRegs) {
2510     unsigned SparseUniverse = Sparse.size();
2511     unsigned NewSparseUniverse = SparseUniverse;
2512     unsigned NewDenseSize = Dense.size();
2513     size_t Begin = ToVRegs.size();
2514     for (Register Reg : FromRegSet) {
2515       if (!Reg.isVirtual())
2516         continue;
2517       unsigned Index = Register::virtReg2Index(Reg);
2518       if (Index < SparseUniverseMax) {
2519         if (Index < SparseUniverse && Sparse.test(Index))
2520           continue;
2521         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2522       } else {
2523         if (Dense.count(Reg))
2524           continue;
2525         ++NewDenseSize;
2526       }
2527       ToVRegs.push_back(Reg);
2528     }
2529     size_t End = ToVRegs.size();
2530     if (Begin == End)
2531       return false;
2532     // Reserving space in sets once performs better than doing so continuously
2533     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2534     // tuned all the way down) and double iteration (the second one is over a
2535     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2536     Sparse.resize(NewSparseUniverse);
2537     Dense.reserve(NewDenseSize);
2538     for (unsigned I = Begin; I < End; ++I) {
2539       Register Reg = ToVRegs[I];
2540       unsigned Index = Register::virtReg2Index(Reg);
2541       if (Index < SparseUniverseMax)
2542         Sparse.set(Index);
2543       else
2544         Dense.insert(Reg);
2545     }
2546     return true;
2547   }
2548 
2549 private:
2550   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2551   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2552   // are tracked by Dense. The only purpose of the threashold and the Dense set
2553   // is to have a reasonably growing memory usage in pathological cases (large
2554   // number of very sparse VRegFilter instances live at the same time). In
2555   // practice even in the worst-by-execution time cases having all elements
2556   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2557   // space efficient than if tracked by Dense. The threashold is set to keep the
2558   // worst-case memory usage within 2x of figures determined empirically for
2559   // "all Dense" scenario in such worst-by-execution-time cases.
2560   BitVector Sparse;
2561   DenseSet<unsigned> Dense;
2562 };
2563 
2564 // Implements both a transfer function and a (binary, in-place) join operator
2565 // for a dataflow over register sets with set union join and filtering transfer
2566 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2567 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2568 // time, where n is the size of the set (as opposed to O(U) where U is the
2569 // universe). filter_b implicitly contains all physical registers at all times.
2570 class FilteringVRegSet {
2571   VRegFilter Filter;
2572   SmallVector<Register, 0> VRegs;
2573 
2574 public:
2575   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2576   // Both virtual and physical registers are fine.
2577   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2578     Filter.add(RS);
2579   }
2580   // Passes \p RS through the filter_b (transfer function) and adds what's left
2581   // to itself (out_b).
2582   template <typename RegSetT> bool add(const RegSetT &RS) {
2583     // Double-duty the Filter: to maintain VRegs a set (and the join operation
2584     // a set union) just add everything being added here to the Filter as well.
2585     return Filter.filterAndAdd(RS, VRegs);
2586   }
2587   using const_iterator = decltype(VRegs)::const_iterator;
2588   const_iterator begin() const { return VRegs.begin(); }
2589   const_iterator end() const { return VRegs.end(); }
2590   size_t size() const { return VRegs.size(); }
2591 };
2592 } // namespace
2593 
2594 // Calculate the largest possible vregsPassed sets. These are the registers that
2595 // can pass through an MBB live, but may not be live every time. It is assumed
2596 // that all vregsPassed sets are empty before the call.
2597 void MachineVerifier::calcRegsPassed() {
2598   if (MF->empty())
2599     // ReversePostOrderTraversal doesn't handle empty functions.
2600     return;
2601 
2602   for (const MachineBasicBlock *MB :
2603        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2604     FilteringVRegSet VRegs;
2605     BBInfo &Info = MBBInfoMap[MB];
2606     assert(Info.reachable);
2607 
2608     VRegs.addToFilter(Info.regsKilled);
2609     VRegs.addToFilter(Info.regsLiveOut);
2610     for (const MachineBasicBlock *Pred : MB->predecessors()) {
2611       const BBInfo &PredInfo = MBBInfoMap[Pred];
2612       if (!PredInfo.reachable)
2613         continue;
2614 
2615       VRegs.add(PredInfo.regsLiveOut);
2616       VRegs.add(PredInfo.vregsPassed);
2617     }
2618     Info.vregsPassed.reserve(VRegs.size());
2619     Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
2620   }
2621 }
2622 
2623 // Calculate the set of virtual registers that must be passed through each basic
2624 // block in order to satisfy the requirements of successor blocks. This is very
2625 // similar to calcRegsPassed, only backwards.
2626 void MachineVerifier::calcRegsRequired() {
2627   // First push live-in regs to predecessors' vregsRequired.
2628   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2629   for (const auto &MBB : *MF) {
2630     BBInfo &MInfo = MBBInfoMap[&MBB];
2631     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2632       BBInfo &PInfo = MBBInfoMap[Pred];
2633       if (PInfo.addRequired(MInfo.vregsLiveIn))
2634         todo.insert(Pred);
2635     }
2636 
2637     // Handle the PHI node.
2638     for (const MachineInstr &MI : MBB.phis()) {
2639       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2640         // Skip those Operands which are undef regs or not regs.
2641         if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
2642           continue;
2643 
2644         // Get register and predecessor for one PHI edge.
2645         Register Reg = MI.getOperand(i).getReg();
2646         const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
2647 
2648         BBInfo &PInfo = MBBInfoMap[Pred];
2649         if (PInfo.addRequired(Reg))
2650           todo.insert(Pred);
2651       }
2652     }
2653   }
2654 
2655   // Iteratively push vregsRequired to predecessors. This will converge to the
2656   // same final state regardless of DenseSet iteration order.
2657   while (!todo.empty()) {
2658     const MachineBasicBlock *MBB = *todo.begin();
2659     todo.erase(MBB);
2660     BBInfo &MInfo = MBBInfoMap[MBB];
2661     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2662       if (Pred == MBB)
2663         continue;
2664       BBInfo &SInfo = MBBInfoMap[Pred];
2665       if (SInfo.addRequired(MInfo.vregsRequired))
2666         todo.insert(Pred);
2667     }
2668   }
2669 }
2670 
2671 // Check PHI instructions at the beginning of MBB. It is assumed that
2672 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2673 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2674   BBInfo &MInfo = MBBInfoMap[&MBB];
2675 
2676   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2677   for (const MachineInstr &Phi : MBB) {
2678     if (!Phi.isPHI())
2679       break;
2680     seen.clear();
2681 
2682     const MachineOperand &MODef = Phi.getOperand(0);
2683     if (!MODef.isReg() || !MODef.isDef()) {
2684       report("Expected first PHI operand to be a register def", &MODef, 0);
2685       continue;
2686     }
2687     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2688         MODef.isEarlyClobber() || MODef.isDebug())
2689       report("Unexpected flag on PHI operand", &MODef, 0);
2690     Register DefReg = MODef.getReg();
2691     if (!Register::isVirtualRegister(DefReg))
2692       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2693 
2694     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2695       const MachineOperand &MO0 = Phi.getOperand(I);
2696       if (!MO0.isReg()) {
2697         report("Expected PHI operand to be a register", &MO0, I);
2698         continue;
2699       }
2700       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2701           MO0.isDebug() || MO0.isTied())
2702         report("Unexpected flag on PHI operand", &MO0, I);
2703 
2704       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2705       if (!MO1.isMBB()) {
2706         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2707         continue;
2708       }
2709 
2710       const MachineBasicBlock &Pre = *MO1.getMBB();
2711       if (!Pre.isSuccessor(&MBB)) {
2712         report("PHI input is not a predecessor block", &MO1, I + 1);
2713         continue;
2714       }
2715 
2716       if (MInfo.reachable) {
2717         seen.insert(&Pre);
2718         BBInfo &PrInfo = MBBInfoMap[&Pre];
2719         if (!MO0.isUndef() && PrInfo.reachable &&
2720             !PrInfo.isLiveOut(MO0.getReg()))
2721           report("PHI operand is not live-out from predecessor", &MO0, I);
2722       }
2723     }
2724 
2725     // Did we see all predecessors?
2726     if (MInfo.reachable) {
2727       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2728         if (!seen.count(Pred)) {
2729           report("Missing PHI operand", &Phi);
2730           errs() << printMBBReference(*Pred)
2731                  << " is a predecessor according to the CFG.\n";
2732         }
2733       }
2734     }
2735   }
2736 }
2737 
2738 void MachineVerifier::visitMachineFunctionAfter() {
2739   calcRegsPassed();
2740 
2741   for (const MachineBasicBlock &MBB : *MF)
2742     checkPHIOps(MBB);
2743 
2744   // Now check liveness info if available
2745   calcRegsRequired();
2746 
2747   // Check for killed virtual registers that should be live out.
2748   for (const auto &MBB : *MF) {
2749     BBInfo &MInfo = MBBInfoMap[&MBB];
2750     for (Register VReg : MInfo.vregsRequired)
2751       if (MInfo.regsKilled.count(VReg)) {
2752         report("Virtual register killed in block, but needed live out.", &MBB);
2753         errs() << "Virtual register " << printReg(VReg)
2754                << " is used after the block.\n";
2755       }
2756   }
2757 
2758   if (!MF->empty()) {
2759     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2760     for (Register VReg : MInfo.vregsRequired) {
2761       report("Virtual register defs don't dominate all uses.", MF);
2762       report_context_vreg(VReg);
2763     }
2764   }
2765 
2766   if (LiveVars)
2767     verifyLiveVariables();
2768   if (LiveInts)
2769     verifyLiveIntervals();
2770 
2771   // Check live-in list of each MBB. If a register is live into MBB, check
2772   // that the register is in regsLiveOut of each predecessor block. Since
2773   // this must come from a definition in the predecesssor or its live-in
2774   // list, this will catch a live-through case where the predecessor does not
2775   // have the register in its live-in list.  This currently only checks
2776   // registers that have no aliases, are not allocatable and are not
2777   // reserved, which could mean a condition code register for instance.
2778   if (MRI->tracksLiveness())
2779     for (const auto &MBB : *MF)
2780       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2781         MCPhysReg LiveInReg = P.PhysReg;
2782         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2783         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2784           continue;
2785         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2786           BBInfo &PInfo = MBBInfoMap[Pred];
2787           if (!PInfo.regsLiveOut.count(LiveInReg)) {
2788             report("Live in register not found to be live out from predecessor.",
2789                    &MBB);
2790             errs() << TRI->getName(LiveInReg)
2791                    << " not found to be live out from "
2792                    << printMBBReference(*Pred) << "\n";
2793           }
2794         }
2795       }
2796 
2797   for (auto CSInfo : MF->getCallSitesInfo())
2798     if (!CSInfo.first->isCall())
2799       report("Call site info referencing instruction that is not call", MF);
2800 
2801   // If there's debug-info, check that we don't have any duplicate value
2802   // tracking numbers.
2803   if (MF->getFunction().getSubprogram()) {
2804     DenseSet<unsigned> SeenNumbers;
2805     for (const auto &MBB : *MF) {
2806       for (const auto &MI : MBB) {
2807         if (auto Num = MI.peekDebugInstrNum()) {
2808           auto Result = SeenNumbers.insert((unsigned)Num);
2809           if (!Result.second)
2810             report("Instruction has a duplicated value tracking number", &MI);
2811         }
2812       }
2813     }
2814   }
2815 }
2816 
2817 void MachineVerifier::verifyLiveVariables() {
2818   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2819   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2820     Register Reg = Register::index2VirtReg(I);
2821     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2822     for (const auto &MBB : *MF) {
2823       BBInfo &MInfo = MBBInfoMap[&MBB];
2824 
2825       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2826       if (MInfo.vregsRequired.count(Reg)) {
2827         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2828           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2829           errs() << "Virtual register " << printReg(Reg)
2830                  << " must be live through the block.\n";
2831         }
2832       } else {
2833         if (VI.AliveBlocks.test(MBB.getNumber())) {
2834           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2835           errs() << "Virtual register " << printReg(Reg)
2836                  << " is not needed live through the block.\n";
2837         }
2838       }
2839     }
2840   }
2841 }
2842 
2843 void MachineVerifier::verifyLiveIntervals() {
2844   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2845   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2846     Register Reg = Register::index2VirtReg(I);
2847 
2848     // Spilling and splitting may leave unused registers around. Skip them.
2849     if (MRI->reg_nodbg_empty(Reg))
2850       continue;
2851 
2852     if (!LiveInts->hasInterval(Reg)) {
2853       report("Missing live interval for virtual register", MF);
2854       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2855       continue;
2856     }
2857 
2858     const LiveInterval &LI = LiveInts->getInterval(Reg);
2859     assert(Reg == LI.reg() && "Invalid reg to interval mapping");
2860     verifyLiveInterval(LI);
2861   }
2862 
2863   // Verify all the cached regunit intervals.
2864   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2865     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2866       verifyLiveRange(*LR, i);
2867 }
2868 
2869 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2870                                            const VNInfo *VNI, Register Reg,
2871                                            LaneBitmask LaneMask) {
2872   if (VNI->isUnused())
2873     return;
2874 
2875   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2876 
2877   if (!DefVNI) {
2878     report("Value not live at VNInfo def and not marked unused", MF);
2879     report_context(LR, Reg, LaneMask);
2880     report_context(*VNI);
2881     return;
2882   }
2883 
2884   if (DefVNI != VNI) {
2885     report("Live segment at def has different VNInfo", MF);
2886     report_context(LR, Reg, LaneMask);
2887     report_context(*VNI);
2888     return;
2889   }
2890 
2891   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2892   if (!MBB) {
2893     report("Invalid VNInfo definition index", MF);
2894     report_context(LR, Reg, LaneMask);
2895     report_context(*VNI);
2896     return;
2897   }
2898 
2899   if (VNI->isPHIDef()) {
2900     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2901       report("PHIDef VNInfo is not defined at MBB start", MBB);
2902       report_context(LR, Reg, LaneMask);
2903       report_context(*VNI);
2904     }
2905     return;
2906   }
2907 
2908   // Non-PHI def.
2909   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2910   if (!MI) {
2911     report("No instruction at VNInfo def index", MBB);
2912     report_context(LR, Reg, LaneMask);
2913     report_context(*VNI);
2914     return;
2915   }
2916 
2917   if (Reg != 0) {
2918     bool hasDef = false;
2919     bool isEarlyClobber = false;
2920     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2921       if (!MOI->isReg() || !MOI->isDef())
2922         continue;
2923       if (Register::isVirtualRegister(Reg)) {
2924         if (MOI->getReg() != Reg)
2925           continue;
2926       } else {
2927         if (!Register::isPhysicalRegister(MOI->getReg()) ||
2928             !TRI->hasRegUnit(MOI->getReg(), Reg))
2929           continue;
2930       }
2931       if (LaneMask.any() &&
2932           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2933         continue;
2934       hasDef = true;
2935       if (MOI->isEarlyClobber())
2936         isEarlyClobber = true;
2937     }
2938 
2939     if (!hasDef) {
2940       report("Defining instruction does not modify register", MI);
2941       report_context(LR, Reg, LaneMask);
2942       report_context(*VNI);
2943     }
2944 
2945     // Early clobber defs begin at USE slots, but other defs must begin at
2946     // DEF slots.
2947     if (isEarlyClobber) {
2948       if (!VNI->def.isEarlyClobber()) {
2949         report("Early clobber def must be at an early-clobber slot", MBB);
2950         report_context(LR, Reg, LaneMask);
2951         report_context(*VNI);
2952       }
2953     } else if (!VNI->def.isRegister()) {
2954       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2955       report_context(LR, Reg, LaneMask);
2956       report_context(*VNI);
2957     }
2958   }
2959 }
2960 
2961 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2962                                              const LiveRange::const_iterator I,
2963                                              Register Reg,
2964                                              LaneBitmask LaneMask) {
2965   const LiveRange::Segment &S = *I;
2966   const VNInfo *VNI = S.valno;
2967   assert(VNI && "Live segment has no valno");
2968 
2969   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2970     report("Foreign valno in live segment", MF);
2971     report_context(LR, Reg, LaneMask);
2972     report_context(S);
2973     report_context(*VNI);
2974   }
2975 
2976   if (VNI->isUnused()) {
2977     report("Live segment valno is marked unused", MF);
2978     report_context(LR, Reg, LaneMask);
2979     report_context(S);
2980   }
2981 
2982   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2983   if (!MBB) {
2984     report("Bad start of live segment, no basic block", MF);
2985     report_context(LR, Reg, LaneMask);
2986     report_context(S);
2987     return;
2988   }
2989   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2990   if (S.start != MBBStartIdx && S.start != VNI->def) {
2991     report("Live segment must begin at MBB entry or valno def", MBB);
2992     report_context(LR, Reg, LaneMask);
2993     report_context(S);
2994   }
2995 
2996   const MachineBasicBlock *EndMBB =
2997     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2998   if (!EndMBB) {
2999     report("Bad end of live segment, no basic block", MF);
3000     report_context(LR, Reg, LaneMask);
3001     report_context(S);
3002     return;
3003   }
3004 
3005   // No more checks for live-out segments.
3006   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
3007     return;
3008 
3009   // RegUnit intervals are allowed dead phis.
3010   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
3011       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
3012     return;
3013 
3014   // The live segment is ending inside EndMBB
3015   const MachineInstr *MI =
3016     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
3017   if (!MI) {
3018     report("Live segment doesn't end at a valid instruction", EndMBB);
3019     report_context(LR, Reg, LaneMask);
3020     report_context(S);
3021     return;
3022   }
3023 
3024   // The block slot must refer to a basic block boundary.
3025   if (S.end.isBlock()) {
3026     report("Live segment ends at B slot of an instruction", EndMBB);
3027     report_context(LR, Reg, LaneMask);
3028     report_context(S);
3029   }
3030 
3031   if (S.end.isDead()) {
3032     // Segment ends on the dead slot.
3033     // That means there must be a dead def.
3034     if (!SlotIndex::isSameInstr(S.start, S.end)) {
3035       report("Live segment ending at dead slot spans instructions", EndMBB);
3036       report_context(LR, Reg, LaneMask);
3037       report_context(S);
3038     }
3039   }
3040 
3041   // After tied operands are rewritten, a live segment can only end at an
3042   // early-clobber slot if it is being redefined by an early-clobber def.
3043   // TODO: Before tied operands are rewritten, a live segment can only end at an
3044   // early-clobber slot if the last use is tied to an early-clobber def.
3045   if (MF->getProperties().hasProperty(
3046           MachineFunctionProperties::Property::TiedOpsRewritten) &&
3047       S.end.isEarlyClobber()) {
3048     if (I+1 == LR.end() || (I+1)->start != S.end) {
3049       report("Live segment ending at early clobber slot must be "
3050              "redefined by an EC def in the same instruction", EndMBB);
3051       report_context(LR, Reg, LaneMask);
3052       report_context(S);
3053     }
3054   }
3055 
3056   // The following checks only apply to virtual registers. Physreg liveness
3057   // is too weird to check.
3058   if (Register::isVirtualRegister(Reg)) {
3059     // A live segment can end with either a redefinition, a kill flag on a
3060     // use, or a dead flag on a def.
3061     bool hasRead = false;
3062     bool hasSubRegDef = false;
3063     bool hasDeadDef = false;
3064     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
3065       if (!MOI->isReg() || MOI->getReg() != Reg)
3066         continue;
3067       unsigned Sub = MOI->getSubReg();
3068       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
3069                                  : LaneBitmask::getAll();
3070       if (MOI->isDef()) {
3071         if (Sub != 0) {
3072           hasSubRegDef = true;
3073           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
3074           // mask for subregister defs. Read-undef defs will be handled by
3075           // readsReg below.
3076           SLM = ~SLM;
3077         }
3078         if (MOI->isDead())
3079           hasDeadDef = true;
3080       }
3081       if (LaneMask.any() && (LaneMask & SLM).none())
3082         continue;
3083       if (MOI->readsReg())
3084         hasRead = true;
3085     }
3086     if (S.end.isDead()) {
3087       // Make sure that the corresponding machine operand for a "dead" live
3088       // range has the dead flag. We cannot perform this check for subregister
3089       // liveranges as partially dead values are allowed.
3090       if (LaneMask.none() && !hasDeadDef) {
3091         report("Instruction ending live segment on dead slot has no dead flag",
3092                MI);
3093         report_context(LR, Reg, LaneMask);
3094         report_context(S);
3095       }
3096     } else {
3097       if (!hasRead) {
3098         // When tracking subregister liveness, the main range must start new
3099         // values on partial register writes, even if there is no read.
3100         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
3101             !hasSubRegDef) {
3102           report("Instruction ending live segment doesn't read the register",
3103                  MI);
3104           report_context(LR, Reg, LaneMask);
3105           report_context(S);
3106         }
3107       }
3108     }
3109   }
3110 
3111   // Now check all the basic blocks in this live segment.
3112   MachineFunction::const_iterator MFI = MBB->getIterator();
3113   // Is this live segment the beginning of a non-PHIDef VN?
3114   if (S.start == VNI->def && !VNI->isPHIDef()) {
3115     // Not live-in to any blocks.
3116     if (MBB == EndMBB)
3117       return;
3118     // Skip this block.
3119     ++MFI;
3120   }
3121 
3122   SmallVector<SlotIndex, 4> Undefs;
3123   if (LaneMask.any()) {
3124     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
3125     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
3126   }
3127 
3128   while (true) {
3129     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
3130     // We don't know how to track physregs into a landing pad.
3131     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
3132       if (&*MFI == EndMBB)
3133         break;
3134       ++MFI;
3135       continue;
3136     }
3137 
3138     // Is VNI a PHI-def in the current block?
3139     bool IsPHI = VNI->isPHIDef() &&
3140       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
3141 
3142     // Check that VNI is live-out of all predecessors.
3143     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
3144       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
3145       // Predecessor of landing pad live-out on last call.
3146       if (MFI->isEHPad()) {
3147         for (const MachineInstr &MI : llvm::reverse(*Pred)) {
3148           if (MI.isCall()) {
3149             PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex();
3150             break;
3151           }
3152         }
3153       }
3154       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
3155 
3156       // All predecessors must have a live-out value. However for a phi
3157       // instruction with subregister intervals
3158       // only one of the subregisters (not necessarily the current one) needs to
3159       // be defined.
3160       if (!PVNI && (LaneMask.none() || !IsPHI)) {
3161         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
3162           continue;
3163         report("Register not marked live out of predecessor", Pred);
3164         report_context(LR, Reg, LaneMask);
3165         report_context(*VNI);
3166         errs() << " live into " << printMBBReference(*MFI) << '@'
3167                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
3168                << PEnd << '\n';
3169         continue;
3170       }
3171 
3172       // Only PHI-defs can take different predecessor values.
3173       if (!IsPHI && PVNI != VNI) {
3174         report("Different value live out of predecessor", Pred);
3175         report_context(LR, Reg, LaneMask);
3176         errs() << "Valno #" << PVNI->id << " live out of "
3177                << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
3178                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
3179                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
3180       }
3181     }
3182     if (&*MFI == EndMBB)
3183       break;
3184     ++MFI;
3185   }
3186 }
3187 
3188 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
3189                                       LaneBitmask LaneMask) {
3190   for (const VNInfo *VNI : LR.valnos)
3191     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
3192 
3193   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
3194     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
3195 }
3196 
3197 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
3198   Register Reg = LI.reg();
3199   assert(Register::isVirtualRegister(Reg));
3200   verifyLiveRange(LI, Reg);
3201 
3202   LaneBitmask Mask;
3203   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3204   for (const LiveInterval::SubRange &SR : LI.subranges()) {
3205     if ((Mask & SR.LaneMask).any()) {
3206       report("Lane masks of sub ranges overlap in live interval", MF);
3207       report_context(LI);
3208     }
3209     if ((SR.LaneMask & ~MaxMask).any()) {
3210       report("Subrange lanemask is invalid", MF);
3211       report_context(LI);
3212     }
3213     if (SR.empty()) {
3214       report("Subrange must not be empty", MF);
3215       report_context(SR, LI.reg(), SR.LaneMask);
3216     }
3217     Mask |= SR.LaneMask;
3218     verifyLiveRange(SR, LI.reg(), SR.LaneMask);
3219     if (!LI.covers(SR)) {
3220       report("A Subrange is not covered by the main range", MF);
3221       report_context(LI);
3222     }
3223   }
3224 
3225   // Check the LI only has one connected component.
3226   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
3227   unsigned NumComp = ConEQ.Classify(LI);
3228   if (NumComp > 1) {
3229     report("Multiple connected components in live interval", MF);
3230     report_context(LI);
3231     for (unsigned comp = 0; comp != NumComp; ++comp) {
3232       errs() << comp << ": valnos";
3233       for (const VNInfo *I : LI.valnos)
3234         if (comp == ConEQ.getEqClass(I))
3235           errs() << ' ' << I->id;
3236       errs() << '\n';
3237     }
3238   }
3239 }
3240 
3241 namespace {
3242 
3243   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
3244   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
3245   // value is zero.
3246   // We use a bool plus an integer to capture the stack state.
3247   struct StackStateOfBB {
3248     StackStateOfBB() = default;
3249     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
3250       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
3251       ExitIsSetup(ExitSetup) {}
3252 
3253     // Can be negative, which means we are setting up a frame.
3254     int EntryValue = 0;
3255     int ExitValue = 0;
3256     bool EntryIsSetup = false;
3257     bool ExitIsSetup = false;
3258   };
3259 
3260 } // end anonymous namespace
3261 
3262 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3263 /// by a FrameDestroy <n>, stack adjustments are identical on all
3264 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
3265 void MachineVerifier::verifyStackFrame() {
3266   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
3267   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
3268   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
3269     return;
3270 
3271   SmallVector<StackStateOfBB, 8> SPState;
3272   SPState.resize(MF->getNumBlockIDs());
3273   df_iterator_default_set<const MachineBasicBlock*> Reachable;
3274 
3275   // Visit the MBBs in DFS order.
3276   for (df_ext_iterator<const MachineFunction *,
3277                        df_iterator_default_set<const MachineBasicBlock *>>
3278        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3279        DFI != DFE; ++DFI) {
3280     const MachineBasicBlock *MBB = *DFI;
3281 
3282     StackStateOfBB BBState;
3283     // Check the exit state of the DFS stack predecessor.
3284     if (DFI.getPathLength() >= 2) {
3285       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3286       assert(Reachable.count(StackPred) &&
3287              "DFS stack predecessor is already visited.\n");
3288       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3289       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3290       BBState.ExitValue = BBState.EntryValue;
3291       BBState.ExitIsSetup = BBState.EntryIsSetup;
3292     }
3293 
3294     // Update stack state by checking contents of MBB.
3295     for (const auto &I : *MBB) {
3296       if (I.getOpcode() == FrameSetupOpcode) {
3297         if (BBState.ExitIsSetup)
3298           report("FrameSetup is after another FrameSetup", &I);
3299         BBState.ExitValue -= TII->getFrameTotalSize(I);
3300         BBState.ExitIsSetup = true;
3301       }
3302 
3303       if (I.getOpcode() == FrameDestroyOpcode) {
3304         int Size = TII->getFrameTotalSize(I);
3305         if (!BBState.ExitIsSetup)
3306           report("FrameDestroy is not after a FrameSetup", &I);
3307         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3308                                                BBState.ExitValue;
3309         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3310           report("FrameDestroy <n> is after FrameSetup <m>", &I);
3311           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
3312               << AbsSPAdj << ">.\n";
3313         }
3314         BBState.ExitValue += Size;
3315         BBState.ExitIsSetup = false;
3316       }
3317     }
3318     SPState[MBB->getNumber()] = BBState;
3319 
3320     // Make sure the exit state of any predecessor is consistent with the entry
3321     // state.
3322     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3323       if (Reachable.count(Pred) &&
3324           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
3325            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
3326         report("The exit stack state of a predecessor is inconsistent.", MBB);
3327         errs() << "Predecessor " << printMBBReference(*Pred)
3328                << " has exit state (" << SPState[Pred->getNumber()].ExitValue
3329                << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
3330                << printMBBReference(*MBB) << " has entry state ("
3331                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
3332       }
3333     }
3334 
3335     // Make sure the entry state of any successor is consistent with the exit
3336     // state.
3337     for (const MachineBasicBlock *Succ : MBB->successors()) {
3338       if (Reachable.count(Succ) &&
3339           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3340            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3341         report("The entry stack state of a successor is inconsistent.", MBB);
3342         errs() << "Successor " << printMBBReference(*Succ)
3343                << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3344                << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3345                << printMBBReference(*MBB) << " has exit state ("
3346                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3347       }
3348     }
3349 
3350     // Make sure a basic block with return ends with zero stack adjustment.
3351     if (!MBB->empty() && MBB->back().isReturn()) {
3352       if (BBState.ExitIsSetup)
3353         report("A return block ends with a FrameSetup.", MBB);
3354       if (BBState.ExitValue)
3355         report("A return block ends with a nonzero stack adjustment.", MBB);
3356     }
3357   }
3358 }
3359