1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled with the command-line option 20 // -verify-machineinstrs. 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/Analysis/EHPersonalities.h" 35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervalCalc.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveStacks.h" 40 #include "llvm/CodeGen/LiveVariables.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineFrameInfo.h" 43 #include "llvm/CodeGen/MachineFunction.h" 44 #include "llvm/CodeGen/MachineFunctionPass.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBundle.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/PseudoSourceValue.h" 51 #include "llvm/CodeGen/SlotIndexes.h" 52 #include "llvm/CodeGen/StackMaps.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/IR/BasicBlock.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/InlineAsm.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/MC/LaneBitmask.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCInstrDesc.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/MC/MCTargetOptions.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<unsigned, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<unsigned>; 108 using RegMap = DenseMap<unsigned, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstNonPHI; 112 const MachineInstr *FirstTerminator; 113 BlockSet FunctionBlocks; 114 115 BitVector regsReserved; 116 RegSet regsLive; 117 RegVector regsDefined, regsDead, regsKilled; 118 RegMaskVector regMasks; 119 120 SlotIndex lastIndex; 121 122 // Add Reg and any sub-registers to RV 123 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 124 RV.push_back(Reg); 125 if (Register::isPhysicalRegister(Reg)) 126 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) 127 RV.push_back(SubReg); 128 } 129 130 struct BBInfo { 131 // Is this MBB reachable from the MF entry point? 132 bool reachable = false; 133 134 // Vregs that must be live in because they are used without being 135 // defined. Map value is the user. 136 RegMap vregsLiveIn; 137 138 // Regs killed in MBB. They may be defined again, and will then be in both 139 // regsKilled and regsLiveOut. 140 RegSet regsKilled; 141 142 // Regs defined in MBB and live out. Note that vregs passing through may 143 // be live out without being mentioned here. 144 RegSet regsLiveOut; 145 146 // Vregs that pass through MBB untouched. This set is disjoint from 147 // regsKilled and regsLiveOut. 148 RegSet vregsPassed; 149 150 // Vregs that must pass through MBB because they are needed by a successor 151 // block. This set is disjoint from regsLiveOut. 152 RegSet vregsRequired; 153 154 // Set versions of block's predecessor and successor lists. 155 BlockSet Preds, Succs; 156 157 BBInfo() = default; 158 159 // Add register to vregsRequired if it belongs there. Return true if 160 // anything changed. 161 bool addRequired(unsigned Reg) { 162 if (!Register::isVirtualRegister(Reg)) 163 return false; 164 if (regsLiveOut.count(Reg)) 165 return false; 166 return vregsRequired.insert(Reg).second; 167 } 168 169 // Same for a full set. 170 bool addRequired(const RegSet &RS) { 171 bool Changed = false; 172 for (unsigned Reg : RS) 173 Changed |= addRequired(Reg); 174 return Changed; 175 } 176 177 // Same for a full map. 178 bool addRequired(const RegMap &RM) { 179 bool Changed = false; 180 for (const auto &I : RM) 181 Changed |= addRequired(I.first); 182 return Changed; 183 } 184 185 // Live-out registers are either in regsLiveOut or vregsPassed. 186 bool isLiveOut(unsigned Reg) const { 187 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 188 } 189 }; 190 191 // Extra register info per MBB. 192 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 193 194 bool isReserved(unsigned Reg) { 195 return Reg < regsReserved.size() && regsReserved.test(Reg); 196 } 197 198 bool isAllocatable(unsigned Reg) const { 199 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 200 !regsReserved.test(Reg); 201 } 202 203 // Analysis information if available 204 LiveVariables *LiveVars; 205 LiveIntervals *LiveInts; 206 LiveStacks *LiveStks; 207 SlotIndexes *Indexes; 208 209 void visitMachineFunctionBefore(); 210 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 211 void visitMachineBundleBefore(const MachineInstr *MI); 212 213 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 214 void verifyPreISelGenericInstruction(const MachineInstr *MI); 215 void visitMachineInstrBefore(const MachineInstr *MI); 216 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 217 void visitMachineBundleAfter(const MachineInstr *MI); 218 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 219 void visitMachineFunctionAfter(); 220 221 void report(const char *msg, const MachineFunction *MF); 222 void report(const char *msg, const MachineBasicBlock *MBB); 223 void report(const char *msg, const MachineInstr *MI); 224 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 225 LLT MOVRegType = LLT{}); 226 227 void report_context(const LiveInterval &LI) const; 228 void report_context(const LiveRange &LR, unsigned VRegUnit, 229 LaneBitmask LaneMask) const; 230 void report_context(const LiveRange::Segment &S) const; 231 void report_context(const VNInfo &VNI) const; 232 void report_context(SlotIndex Pos) const; 233 void report_context(MCPhysReg PhysReg) const; 234 void report_context_liverange(const LiveRange &LR) const; 235 void report_context_lanemask(LaneBitmask LaneMask) const; 236 void report_context_vreg(unsigned VReg) const; 237 void report_context_vreg_regunit(unsigned VRegOrUnit) const; 238 239 void verifyInlineAsm(const MachineInstr *MI); 240 241 void checkLiveness(const MachineOperand *MO, unsigned MONum); 242 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 243 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 244 LaneBitmask LaneMask = LaneBitmask::getNone()); 245 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 246 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 247 bool SubRangeCheck = false, 248 LaneBitmask LaneMask = LaneBitmask::getNone()); 249 250 void markReachable(const MachineBasicBlock *MBB); 251 void calcRegsPassed(); 252 void checkPHIOps(const MachineBasicBlock &MBB); 253 254 void calcRegsRequired(); 255 void verifyLiveVariables(); 256 void verifyLiveIntervals(); 257 void verifyLiveInterval(const LiveInterval&); 258 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 259 LaneBitmask); 260 void verifyLiveRangeSegment(const LiveRange&, 261 const LiveRange::const_iterator I, unsigned, 262 LaneBitmask); 263 void verifyLiveRange(const LiveRange&, unsigned, 264 LaneBitmask LaneMask = LaneBitmask::getNone()); 265 266 void verifyStackFrame(); 267 268 void verifySlotIndexes() const; 269 void verifyProperties(const MachineFunction &MF); 270 }; 271 272 struct MachineVerifierPass : public MachineFunctionPass { 273 static char ID; // Pass ID, replacement for typeid 274 275 const std::string Banner; 276 277 MachineVerifierPass(std::string banner = std::string()) 278 : MachineFunctionPass(ID), Banner(std::move(banner)) { 279 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 280 } 281 282 void getAnalysisUsage(AnalysisUsage &AU) const override { 283 AU.setPreservesAll(); 284 MachineFunctionPass::getAnalysisUsage(AU); 285 } 286 287 bool runOnMachineFunction(MachineFunction &MF) override { 288 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 289 if (FoundErrors) 290 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 291 return false; 292 } 293 }; 294 295 } // end anonymous namespace 296 297 char MachineVerifierPass::ID = 0; 298 299 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 300 "Verify generated machine code", false, false) 301 302 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 303 return new MachineVerifierPass(Banner); 304 } 305 306 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 307 const { 308 MachineFunction &MF = const_cast<MachineFunction&>(*this); 309 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 310 if (AbortOnErrors && FoundErrors) 311 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 312 return FoundErrors == 0; 313 } 314 315 void MachineVerifier::verifySlotIndexes() const { 316 if (Indexes == nullptr) 317 return; 318 319 // Ensure the IdxMBB list is sorted by slot indexes. 320 SlotIndex Last; 321 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 322 E = Indexes->MBBIndexEnd(); I != E; ++I) { 323 assert(!Last.isValid() || I->first > Last); 324 Last = I->first; 325 } 326 } 327 328 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 329 // If a pass has introduced virtual registers without clearing the 330 // NoVRegs property (or set it without allocating the vregs) 331 // then report an error. 332 if (MF.getProperties().hasProperty( 333 MachineFunctionProperties::Property::NoVRegs) && 334 MRI->getNumVirtRegs()) 335 report("Function has NoVRegs property but there are VReg operands", &MF); 336 } 337 338 unsigned MachineVerifier::verify(MachineFunction &MF) { 339 foundErrors = 0; 340 341 this->MF = &MF; 342 TM = &MF.getTarget(); 343 TII = MF.getSubtarget().getInstrInfo(); 344 TRI = MF.getSubtarget().getRegisterInfo(); 345 MRI = &MF.getRegInfo(); 346 347 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 348 MachineFunctionProperties::Property::FailedISel); 349 350 // If we're mid-GlobalISel and we already triggered the fallback path then 351 // it's expected that the MIR is somewhat broken but that's ok since we'll 352 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 353 if (isFunctionFailedISel) 354 return foundErrors; 355 356 isFunctionRegBankSelected = MF.getProperties().hasProperty( 357 MachineFunctionProperties::Property::RegBankSelected); 358 isFunctionSelected = MF.getProperties().hasProperty( 359 MachineFunctionProperties::Property::Selected); 360 361 LiveVars = nullptr; 362 LiveInts = nullptr; 363 LiveStks = nullptr; 364 Indexes = nullptr; 365 if (PASS) { 366 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 367 // We don't want to verify LiveVariables if LiveIntervals is available. 368 if (!LiveInts) 369 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 370 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 371 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 372 } 373 374 verifySlotIndexes(); 375 376 verifyProperties(MF); 377 378 visitMachineFunctionBefore(); 379 for (const MachineBasicBlock &MBB : MF) { 380 visitMachineBasicBlockBefore(&MBB); 381 // Keep track of the current bundle header. 382 const MachineInstr *CurBundle = nullptr; 383 // Do we expect the next instruction to be part of the same bundle? 384 bool InBundle = false; 385 386 for (const MachineInstr &MI : MBB.instrs()) { 387 if (MI.getParent() != &MBB) { 388 report("Bad instruction parent pointer", &MBB); 389 errs() << "Instruction: " << MI; 390 continue; 391 } 392 393 // Check for consistent bundle flags. 394 if (InBundle && !MI.isBundledWithPred()) 395 report("Missing BundledPred flag, " 396 "BundledSucc was set on predecessor", 397 &MI); 398 if (!InBundle && MI.isBundledWithPred()) 399 report("BundledPred flag is set, " 400 "but BundledSucc not set on predecessor", 401 &MI); 402 403 // Is this a bundle header? 404 if (!MI.isInsideBundle()) { 405 if (CurBundle) 406 visitMachineBundleAfter(CurBundle); 407 CurBundle = &MI; 408 visitMachineBundleBefore(CurBundle); 409 } else if (!CurBundle) 410 report("No bundle header", &MI); 411 visitMachineInstrBefore(&MI); 412 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 413 const MachineOperand &Op = MI.getOperand(I); 414 if (Op.getParent() != &MI) { 415 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 416 // functions when replacing operands of a MachineInstr. 417 report("Instruction has operand with wrong parent set", &MI); 418 } 419 420 visitMachineOperand(&Op, I); 421 } 422 423 // Was this the last bundled instruction? 424 InBundle = MI.isBundledWithSucc(); 425 } 426 if (CurBundle) 427 visitMachineBundleAfter(CurBundle); 428 if (InBundle) 429 report("BundledSucc flag set on last instruction in block", &MBB.back()); 430 visitMachineBasicBlockAfter(&MBB); 431 } 432 visitMachineFunctionAfter(); 433 434 // Clean up. 435 regsLive.clear(); 436 regsDefined.clear(); 437 regsDead.clear(); 438 regsKilled.clear(); 439 regMasks.clear(); 440 MBBInfoMap.clear(); 441 442 return foundErrors; 443 } 444 445 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 446 assert(MF); 447 errs() << '\n'; 448 if (!foundErrors++) { 449 if (Banner) 450 errs() << "# " << Banner << '\n'; 451 if (LiveInts != nullptr) 452 LiveInts->print(errs()); 453 else 454 MF->print(errs(), Indexes); 455 } 456 errs() << "*** Bad machine code: " << msg << " ***\n" 457 << "- function: " << MF->getName() << "\n"; 458 } 459 460 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 461 assert(MBB); 462 report(msg, MBB->getParent()); 463 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 464 << MBB->getName() << " (" << (const void *)MBB << ')'; 465 if (Indexes) 466 errs() << " [" << Indexes->getMBBStartIdx(MBB) 467 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 468 errs() << '\n'; 469 } 470 471 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 472 assert(MI); 473 report(msg, MI->getParent()); 474 errs() << "- instruction: "; 475 if (Indexes && Indexes->hasIndex(*MI)) 476 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 477 MI->print(errs(), /*SkipOpers=*/true); 478 } 479 480 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 481 unsigned MONum, LLT MOVRegType) { 482 assert(MO); 483 report(msg, MO->getParent()); 484 errs() << "- operand " << MONum << ": "; 485 MO->print(errs(), MOVRegType, TRI); 486 errs() << "\n"; 487 } 488 489 void MachineVerifier::report_context(SlotIndex Pos) const { 490 errs() << "- at: " << Pos << '\n'; 491 } 492 493 void MachineVerifier::report_context(const LiveInterval &LI) const { 494 errs() << "- interval: " << LI << '\n'; 495 } 496 497 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 498 LaneBitmask LaneMask) const { 499 report_context_liverange(LR); 500 report_context_vreg_regunit(VRegUnit); 501 if (LaneMask.any()) 502 report_context_lanemask(LaneMask); 503 } 504 505 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 506 errs() << "- segment: " << S << '\n'; 507 } 508 509 void MachineVerifier::report_context(const VNInfo &VNI) const { 510 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 511 } 512 513 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 514 errs() << "- liverange: " << LR << '\n'; 515 } 516 517 void MachineVerifier::report_context(MCPhysReg PReg) const { 518 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 519 } 520 521 void MachineVerifier::report_context_vreg(unsigned VReg) const { 522 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 523 } 524 525 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 526 if (Register::isVirtualRegister(VRegOrUnit)) { 527 report_context_vreg(VRegOrUnit); 528 } else { 529 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 530 } 531 } 532 533 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 534 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 535 } 536 537 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 538 BBInfo &MInfo = MBBInfoMap[MBB]; 539 if (!MInfo.reachable) { 540 MInfo.reachable = true; 541 for (const MachineBasicBlock *Succ : MBB->successors()) 542 markReachable(Succ); 543 } 544 } 545 546 void MachineVerifier::visitMachineFunctionBefore() { 547 lastIndex = SlotIndex(); 548 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 549 : TRI->getReservedRegs(*MF); 550 551 if (!MF->empty()) 552 markReachable(&MF->front()); 553 554 // Build a set of the basic blocks in the function. 555 FunctionBlocks.clear(); 556 for (const auto &MBB : *MF) { 557 FunctionBlocks.insert(&MBB); 558 BBInfo &MInfo = MBBInfoMap[&MBB]; 559 560 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 561 if (MInfo.Preds.size() != MBB.pred_size()) 562 report("MBB has duplicate entries in its predecessor list.", &MBB); 563 564 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 565 if (MInfo.Succs.size() != MBB.succ_size()) 566 report("MBB has duplicate entries in its successor list.", &MBB); 567 } 568 569 // Check that the register use lists are sane. 570 MRI->verifyUseLists(); 571 572 if (!MF->empty()) 573 verifyStackFrame(); 574 } 575 576 void 577 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 578 FirstTerminator = nullptr; 579 FirstNonPHI = nullptr; 580 581 if (!MF->getProperties().hasProperty( 582 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 583 // If this block has allocatable physical registers live-in, check that 584 // it is an entry block or landing pad. 585 for (const auto &LI : MBB->liveins()) { 586 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 587 MBB->getIterator() != MBB->getParent()->begin()) { 588 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 589 report_context(LI.PhysReg); 590 } 591 } 592 } 593 594 // Count the number of landing pad successors. 595 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; 596 for (const auto *succ : MBB->successors()) { 597 if (succ->isEHPad()) 598 LandingPadSuccs.insert(succ); 599 if (!FunctionBlocks.count(succ)) 600 report("MBB has successor that isn't part of the function.", MBB); 601 if (!MBBInfoMap[succ].Preds.count(MBB)) { 602 report("Inconsistent CFG", MBB); 603 errs() << "MBB is not in the predecessor list of the successor " 604 << printMBBReference(*succ) << ".\n"; 605 } 606 } 607 608 // Check the predecessor list. 609 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 610 if (!FunctionBlocks.count(Pred)) 611 report("MBB has predecessor that isn't part of the function.", MBB); 612 if (!MBBInfoMap[Pred].Succs.count(MBB)) { 613 report("Inconsistent CFG", MBB); 614 errs() << "MBB is not in the successor list of the predecessor " 615 << printMBBReference(*Pred) << ".\n"; 616 } 617 } 618 619 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 620 const BasicBlock *BB = MBB->getBasicBlock(); 621 const Function &F = MF->getFunction(); 622 if (LandingPadSuccs.size() > 1 && 623 !(AsmInfo && 624 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 625 BB && isa<SwitchInst>(BB->getTerminator())) && 626 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 627 report("MBB has more than one landing pad successor", MBB); 628 629 // Call analyzeBranch. If it succeeds, there several more conditions to check. 630 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 631 SmallVector<MachineOperand, 4> Cond; 632 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 633 Cond)) { 634 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's 635 // check whether its answers match up with reality. 636 if (!TBB && !FBB) { 637 // Block falls through to its successor. 638 if (!MBB->empty() && MBB->back().isBarrier() && 639 !TII->isPredicated(MBB->back())) { 640 report("MBB exits via unconditional fall-through but ends with a " 641 "barrier instruction!", MBB); 642 } 643 if (!Cond.empty()) { 644 report("MBB exits via unconditional fall-through but has a condition!", 645 MBB); 646 } 647 } else if (TBB && !FBB && Cond.empty()) { 648 // Block unconditionally branches somewhere. 649 if (MBB->empty()) { 650 report("MBB exits via unconditional branch but doesn't contain " 651 "any instructions!", MBB); 652 } else if (!MBB->back().isBarrier()) { 653 report("MBB exits via unconditional branch but doesn't end with a " 654 "barrier instruction!", MBB); 655 } else if (!MBB->back().isTerminator()) { 656 report("MBB exits via unconditional branch but the branch isn't a " 657 "terminator instruction!", MBB); 658 } 659 } else if (TBB && !FBB && !Cond.empty()) { 660 // Block conditionally branches somewhere, otherwise falls through. 661 if (MBB->empty()) { 662 report("MBB exits via conditional branch/fall-through but doesn't " 663 "contain any instructions!", MBB); 664 } else if (MBB->back().isBarrier()) { 665 report("MBB exits via conditional branch/fall-through but ends with a " 666 "barrier instruction!", MBB); 667 } else if (!MBB->back().isTerminator()) { 668 report("MBB exits via conditional branch/fall-through but the branch " 669 "isn't a terminator instruction!", MBB); 670 } 671 } else if (TBB && FBB) { 672 // Block conditionally branches somewhere, otherwise branches 673 // somewhere else. 674 if (MBB->empty()) { 675 report("MBB exits via conditional branch/branch but doesn't " 676 "contain any instructions!", MBB); 677 } else if (!MBB->back().isBarrier()) { 678 report("MBB exits via conditional branch/branch but doesn't end with a " 679 "barrier instruction!", MBB); 680 } else if (!MBB->back().isTerminator()) { 681 report("MBB exits via conditional branch/branch but the branch " 682 "isn't a terminator instruction!", MBB); 683 } 684 if (Cond.empty()) { 685 report("MBB exits via conditional branch/branch but there's no " 686 "condition!", MBB); 687 } 688 } else { 689 report("analyzeBranch returned invalid data!", MBB); 690 } 691 692 // Now check that the successors match up with the answers reported by 693 // analyzeBranch. 694 if (TBB && !MBB->isSuccessor(TBB)) 695 report("MBB exits via jump or conditional branch, but its target isn't a " 696 "CFG successor!", 697 MBB); 698 if (FBB && !MBB->isSuccessor(FBB)) 699 report("MBB exits via conditional branch, but its target isn't a CFG " 700 "successor!", 701 MBB); 702 703 // There might be a fallthrough to the next block if there's either no 704 // unconditional true branch, or if there's a condition, and one of the 705 // branches is missing. 706 bool Fallthrough = !TBB || (!Cond.empty() && !FBB); 707 708 // A conditional fallthrough must be an actual CFG successor, not 709 // unreachable. (Conversely, an unconditional fallthrough might not really 710 // be a successor, because the block might end in unreachable.) 711 if (!Cond.empty() && !FBB) { 712 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); 713 if (MBBI == MF->end()) { 714 report("MBB conditionally falls through out of function!", MBB); 715 } else if (!MBB->isSuccessor(&*MBBI)) 716 report("MBB exits via conditional branch/fall-through but the CFG " 717 "successors don't match the actual successors!", 718 MBB); 719 } 720 721 // Verify that there aren't any extra un-accounted-for successors. 722 for (const MachineBasicBlock *SuccMBB : MBB->successors()) { 723 // If this successor is one of the branch targets, it's okay. 724 if (SuccMBB == TBB || SuccMBB == FBB) 725 continue; 726 // If we might have a fallthrough, and the successor is the fallthrough 727 // block, that's also ok. 728 if (Fallthrough && SuccMBB == MBB->getNextNode()) 729 continue; 730 // Also accept successors which are for exception-handling or might be 731 // inlineasm_br targets. 732 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget()) 733 continue; 734 report("MBB has unexpected successors which are not branch targets, " 735 "fallthrough, EHPads, or inlineasm_br targets.", 736 MBB); 737 } 738 } 739 740 regsLive.clear(); 741 if (MRI->tracksLiveness()) { 742 for (const auto &LI : MBB->liveins()) { 743 if (!Register::isPhysicalRegister(LI.PhysReg)) { 744 report("MBB live-in list contains non-physical register", MBB); 745 continue; 746 } 747 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) 748 regsLive.insert(SubReg); 749 } 750 } 751 752 const MachineFrameInfo &MFI = MF->getFrameInfo(); 753 BitVector PR = MFI.getPristineRegs(*MF); 754 for (unsigned I : PR.set_bits()) { 755 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) 756 regsLive.insert(SubReg); 757 } 758 759 regsKilled.clear(); 760 regsDefined.clear(); 761 762 if (Indexes) 763 lastIndex = Indexes->getMBBStartIdx(MBB); 764 } 765 766 // This function gets called for all bundle headers, including normal 767 // stand-alone unbundled instructions. 768 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 769 if (Indexes && Indexes->hasIndex(*MI)) { 770 SlotIndex idx = Indexes->getInstructionIndex(*MI); 771 if (!(idx > lastIndex)) { 772 report("Instruction index out of order", MI); 773 errs() << "Last instruction was at " << lastIndex << '\n'; 774 } 775 lastIndex = idx; 776 } 777 778 // Ensure non-terminators don't follow terminators. 779 // Ignore predicated terminators formed by if conversion. 780 // FIXME: If conversion shouldn't need to violate this rule. 781 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 782 if (!FirstTerminator) 783 FirstTerminator = MI; 784 } else if (FirstTerminator) { 785 report("Non-terminator instruction after the first terminator", MI); 786 errs() << "First terminator was:\t" << *FirstTerminator; 787 } 788 } 789 790 // The operands on an INLINEASM instruction must follow a template. 791 // Verify that the flag operands make sense. 792 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 793 // The first two operands on INLINEASM are the asm string and global flags. 794 if (MI->getNumOperands() < 2) { 795 report("Too few operands on inline asm", MI); 796 return; 797 } 798 if (!MI->getOperand(0).isSymbol()) 799 report("Asm string must be an external symbol", MI); 800 if (!MI->getOperand(1).isImm()) 801 report("Asm flags must be an immediate", MI); 802 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 803 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 804 // and Extra_IsConvergent = 32. 805 if (!isUInt<6>(MI->getOperand(1).getImm())) 806 report("Unknown asm flags", &MI->getOperand(1), 1); 807 808 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 809 810 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 811 unsigned NumOps; 812 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 813 const MachineOperand &MO = MI->getOperand(OpNo); 814 // There may be implicit ops after the fixed operands. 815 if (!MO.isImm()) 816 break; 817 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 818 } 819 820 if (OpNo > MI->getNumOperands()) 821 report("Missing operands in last group", MI); 822 823 // An optional MDNode follows the groups. 824 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 825 ++OpNo; 826 827 // All trailing operands must be implicit registers. 828 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 829 const MachineOperand &MO = MI->getOperand(OpNo); 830 if (!MO.isReg() || !MO.isImplicit()) 831 report("Expected implicit register after groups", &MO, OpNo); 832 } 833 } 834 835 /// Check that types are consistent when two operands need to have the same 836 /// number of vector elements. 837 /// \return true if the types are valid. 838 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 839 const MachineInstr *MI) { 840 if (Ty0.isVector() != Ty1.isVector()) { 841 report("operand types must be all-vector or all-scalar", MI); 842 // Generally we try to report as many issues as possible at once, but in 843 // this case it's not clear what should we be comparing the size of the 844 // scalar with: the size of the whole vector or its lane. Instead of 845 // making an arbitrary choice and emitting not so helpful message, let's 846 // avoid the extra noise and stop here. 847 return false; 848 } 849 850 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { 851 report("operand types must preserve number of vector elements", MI); 852 return false; 853 } 854 855 return true; 856 } 857 858 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 859 if (isFunctionSelected) 860 report("Unexpected generic instruction in a Selected function", MI); 861 862 const MCInstrDesc &MCID = MI->getDesc(); 863 unsigned NumOps = MI->getNumOperands(); 864 865 // Branches must reference a basic block if they are not indirect 866 if (MI->isBranch() && !MI->isIndirectBranch()) { 867 bool HasMBB = false; 868 for (const MachineOperand &Op : MI->operands()) { 869 if (Op.isMBB()) { 870 HasMBB = true; 871 break; 872 } 873 } 874 875 if (!HasMBB) { 876 report("Branch instruction is missing a basic block operand or " 877 "isIndirectBranch property", 878 MI); 879 } 880 } 881 882 // Check types. 883 SmallVector<LLT, 4> Types; 884 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 885 I != E; ++I) { 886 if (!MCID.OpInfo[I].isGenericType()) 887 continue; 888 // Generic instructions specify type equality constraints between some of 889 // their operands. Make sure these are consistent. 890 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 891 Types.resize(std::max(TypeIdx + 1, Types.size())); 892 893 const MachineOperand *MO = &MI->getOperand(I); 894 if (!MO->isReg()) { 895 report("generic instruction must use register operands", MI); 896 continue; 897 } 898 899 LLT OpTy = MRI->getType(MO->getReg()); 900 // Don't report a type mismatch if there is no actual mismatch, only a 901 // type missing, to reduce noise: 902 if (OpTy.isValid()) { 903 // Only the first valid type for a type index will be printed: don't 904 // overwrite it later so it's always clear which type was expected: 905 if (!Types[TypeIdx].isValid()) 906 Types[TypeIdx] = OpTy; 907 else if (Types[TypeIdx] != OpTy) 908 report("Type mismatch in generic instruction", MO, I, OpTy); 909 } else { 910 // Generic instructions must have types attached to their operands. 911 report("Generic instruction is missing a virtual register type", MO, I); 912 } 913 } 914 915 // Generic opcodes must not have physical register operands. 916 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 917 const MachineOperand *MO = &MI->getOperand(I); 918 if (MO->isReg() && Register::isPhysicalRegister(MO->getReg())) 919 report("Generic instruction cannot have physical register", MO, I); 920 } 921 922 // Avoid out of bounds in checks below. This was already reported earlier. 923 if (MI->getNumOperands() < MCID.getNumOperands()) 924 return; 925 926 StringRef ErrorInfo; 927 if (!TII->verifyInstruction(*MI, ErrorInfo)) 928 report(ErrorInfo.data(), MI); 929 930 // Verify properties of various specific instruction types 931 switch (MI->getOpcode()) { 932 case TargetOpcode::G_CONSTANT: 933 case TargetOpcode::G_FCONSTANT: { 934 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 935 if (DstTy.isVector()) 936 report("Instruction cannot use a vector result type", MI); 937 938 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 939 if (!MI->getOperand(1).isCImm()) { 940 report("G_CONSTANT operand must be cimm", MI); 941 break; 942 } 943 944 const ConstantInt *CI = MI->getOperand(1).getCImm(); 945 if (CI->getBitWidth() != DstTy.getSizeInBits()) 946 report("inconsistent constant size", MI); 947 } else { 948 if (!MI->getOperand(1).isFPImm()) { 949 report("G_FCONSTANT operand must be fpimm", MI); 950 break; 951 } 952 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 953 954 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 955 DstTy.getSizeInBits()) { 956 report("inconsistent constant size", MI); 957 } 958 } 959 960 break; 961 } 962 case TargetOpcode::G_LOAD: 963 case TargetOpcode::G_STORE: 964 case TargetOpcode::G_ZEXTLOAD: 965 case TargetOpcode::G_SEXTLOAD: { 966 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 967 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 968 if (!PtrTy.isPointer()) 969 report("Generic memory instruction must access a pointer", MI); 970 971 // Generic loads and stores must have a single MachineMemOperand 972 // describing that access. 973 if (!MI->hasOneMemOperand()) { 974 report("Generic instruction accessing memory must have one mem operand", 975 MI); 976 } else { 977 const MachineMemOperand &MMO = **MI->memoperands_begin(); 978 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 979 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 980 if (MMO.getSizeInBits() >= ValTy.getSizeInBits()) 981 report("Generic extload must have a narrower memory type", MI); 982 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 983 if (MMO.getSize() > ValTy.getSizeInBytes()) 984 report("load memory size cannot exceed result size", MI); 985 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 986 if (ValTy.getSizeInBytes() < MMO.getSize()) 987 report("store memory size cannot exceed value size", MI); 988 } 989 } 990 991 break; 992 } 993 case TargetOpcode::G_PHI: { 994 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 995 if (!DstTy.isValid() || 996 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 997 [this, &DstTy](const MachineOperand &MO) { 998 if (!MO.isReg()) 999 return true; 1000 LLT Ty = MRI->getType(MO.getReg()); 1001 if (!Ty.isValid() || (Ty != DstTy)) 1002 return false; 1003 return true; 1004 })) 1005 report("Generic Instruction G_PHI has operands with incompatible/missing " 1006 "types", 1007 MI); 1008 break; 1009 } 1010 case TargetOpcode::G_BITCAST: { 1011 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1012 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1013 if (!DstTy.isValid() || !SrcTy.isValid()) 1014 break; 1015 1016 if (SrcTy.isPointer() != DstTy.isPointer()) 1017 report("bitcast cannot convert between pointers and other types", MI); 1018 1019 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1020 report("bitcast sizes must match", MI); 1021 1022 if (SrcTy == DstTy) 1023 report("bitcast must change the type", MI); 1024 1025 break; 1026 } 1027 case TargetOpcode::G_INTTOPTR: 1028 case TargetOpcode::G_PTRTOINT: 1029 case TargetOpcode::G_ADDRSPACE_CAST: { 1030 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1031 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1032 if (!DstTy.isValid() || !SrcTy.isValid()) 1033 break; 1034 1035 verifyVectorElementMatch(DstTy, SrcTy, MI); 1036 1037 DstTy = DstTy.getScalarType(); 1038 SrcTy = SrcTy.getScalarType(); 1039 1040 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1041 if (!DstTy.isPointer()) 1042 report("inttoptr result type must be a pointer", MI); 1043 if (SrcTy.isPointer()) 1044 report("inttoptr source type must not be a pointer", MI); 1045 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1046 if (!SrcTy.isPointer()) 1047 report("ptrtoint source type must be a pointer", MI); 1048 if (DstTy.isPointer()) 1049 report("ptrtoint result type must not be a pointer", MI); 1050 } else { 1051 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1052 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1053 report("addrspacecast types must be pointers", MI); 1054 else { 1055 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1056 report("addrspacecast must convert different address spaces", MI); 1057 } 1058 } 1059 1060 break; 1061 } 1062 case TargetOpcode::G_PTR_ADD: { 1063 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1064 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1065 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1066 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1067 break; 1068 1069 if (!PtrTy.getScalarType().isPointer()) 1070 report("gep first operand must be a pointer", MI); 1071 1072 if (OffsetTy.getScalarType().isPointer()) 1073 report("gep offset operand must not be a pointer", MI); 1074 1075 // TODO: Is the offset allowed to be a scalar with a vector? 1076 break; 1077 } 1078 case TargetOpcode::G_PTRMASK: { 1079 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1080 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1081 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg()); 1082 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) 1083 break; 1084 1085 if (!DstTy.getScalarType().isPointer()) 1086 report("ptrmask result type must be a pointer", MI); 1087 1088 if (!MaskTy.getScalarType().isScalar()) 1089 report("ptrmask mask type must be an integer", MI); 1090 1091 verifyVectorElementMatch(DstTy, MaskTy, MI); 1092 break; 1093 } 1094 case TargetOpcode::G_SEXT: 1095 case TargetOpcode::G_ZEXT: 1096 case TargetOpcode::G_ANYEXT: 1097 case TargetOpcode::G_TRUNC: 1098 case TargetOpcode::G_FPEXT: 1099 case TargetOpcode::G_FPTRUNC: { 1100 // Number of operands and presense of types is already checked (and 1101 // reported in case of any issues), so no need to report them again. As 1102 // we're trying to report as many issues as possible at once, however, the 1103 // instructions aren't guaranteed to have the right number of operands or 1104 // types attached to them at this point 1105 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1106 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1107 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1108 if (!DstTy.isValid() || !SrcTy.isValid()) 1109 break; 1110 1111 LLT DstElTy = DstTy.getScalarType(); 1112 LLT SrcElTy = SrcTy.getScalarType(); 1113 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1114 report("Generic extend/truncate can not operate on pointers", MI); 1115 1116 verifyVectorElementMatch(DstTy, SrcTy, MI); 1117 1118 unsigned DstSize = DstElTy.getSizeInBits(); 1119 unsigned SrcSize = SrcElTy.getSizeInBits(); 1120 switch (MI->getOpcode()) { 1121 default: 1122 if (DstSize <= SrcSize) 1123 report("Generic extend has destination type no larger than source", MI); 1124 break; 1125 case TargetOpcode::G_TRUNC: 1126 case TargetOpcode::G_FPTRUNC: 1127 if (DstSize >= SrcSize) 1128 report("Generic truncate has destination type no smaller than source", 1129 MI); 1130 break; 1131 } 1132 break; 1133 } 1134 case TargetOpcode::G_SELECT: { 1135 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1136 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1137 if (!SelTy.isValid() || !CondTy.isValid()) 1138 break; 1139 1140 // Scalar condition select on a vector is valid. 1141 if (CondTy.isVector()) 1142 verifyVectorElementMatch(SelTy, CondTy, MI); 1143 break; 1144 } 1145 case TargetOpcode::G_MERGE_VALUES: { 1146 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1147 // e.g. s2N = MERGE sN, sN 1148 // Merging multiple scalars into a vector is not allowed, should use 1149 // G_BUILD_VECTOR for that. 1150 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1151 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1152 if (DstTy.isVector() || SrcTy.isVector()) 1153 report("G_MERGE_VALUES cannot operate on vectors", MI); 1154 1155 const unsigned NumOps = MI->getNumOperands(); 1156 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1157 report("G_MERGE_VALUES result size is inconsistent", MI); 1158 1159 for (unsigned I = 2; I != NumOps; ++I) { 1160 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1161 report("G_MERGE_VALUES source types do not match", MI); 1162 } 1163 1164 break; 1165 } 1166 case TargetOpcode::G_UNMERGE_VALUES: { 1167 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1168 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1169 // For now G_UNMERGE can split vectors. 1170 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1171 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1172 report("G_UNMERGE_VALUES destination types do not match", MI); 1173 } 1174 if (SrcTy.getSizeInBits() != 1175 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1176 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1177 MI); 1178 } 1179 break; 1180 } 1181 case TargetOpcode::G_BUILD_VECTOR: { 1182 // Source types must be scalars, dest type a vector. Total size of scalars 1183 // must match the dest vector size. 1184 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1185 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1186 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1187 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1188 break; 1189 } 1190 1191 if (DstTy.getElementType() != SrcEltTy) 1192 report("G_BUILD_VECTOR result element type must match source type", MI); 1193 1194 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1195 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1196 1197 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1198 if (MRI->getType(MI->getOperand(1).getReg()) != 1199 MRI->getType(MI->getOperand(i).getReg())) 1200 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1201 } 1202 1203 break; 1204 } 1205 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1206 // Source types must be scalars, dest type a vector. Scalar types must be 1207 // larger than the dest vector elt type, as this is a truncating operation. 1208 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1209 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1210 if (!DstTy.isVector() || SrcEltTy.isVector()) 1211 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1212 MI); 1213 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1214 if (MRI->getType(MI->getOperand(1).getReg()) != 1215 MRI->getType(MI->getOperand(i).getReg())) 1216 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1217 MI); 1218 } 1219 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1220 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1221 "dest elt type", 1222 MI); 1223 break; 1224 } 1225 case TargetOpcode::G_CONCAT_VECTORS: { 1226 // Source types should be vectors, and total size should match the dest 1227 // vector size. 1228 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1229 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1230 if (!DstTy.isVector() || !SrcTy.isVector()) 1231 report("G_CONCAT_VECTOR requires vector source and destination operands", 1232 MI); 1233 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1234 if (MRI->getType(MI->getOperand(1).getReg()) != 1235 MRI->getType(MI->getOperand(i).getReg())) 1236 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1237 } 1238 if (DstTy.getNumElements() != 1239 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1240 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1241 break; 1242 } 1243 case TargetOpcode::G_ICMP: 1244 case TargetOpcode::G_FCMP: { 1245 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1246 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1247 1248 if ((DstTy.isVector() != SrcTy.isVector()) || 1249 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1250 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1251 1252 break; 1253 } 1254 case TargetOpcode::G_EXTRACT: { 1255 const MachineOperand &SrcOp = MI->getOperand(1); 1256 if (!SrcOp.isReg()) { 1257 report("extract source must be a register", MI); 1258 break; 1259 } 1260 1261 const MachineOperand &OffsetOp = MI->getOperand(2); 1262 if (!OffsetOp.isImm()) { 1263 report("extract offset must be a constant", MI); 1264 break; 1265 } 1266 1267 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1268 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1269 if (SrcSize == DstSize) 1270 report("extract source must be larger than result", MI); 1271 1272 if (DstSize + OffsetOp.getImm() > SrcSize) 1273 report("extract reads past end of register", MI); 1274 break; 1275 } 1276 case TargetOpcode::G_INSERT: { 1277 const MachineOperand &SrcOp = MI->getOperand(2); 1278 if (!SrcOp.isReg()) { 1279 report("insert source must be a register", MI); 1280 break; 1281 } 1282 1283 const MachineOperand &OffsetOp = MI->getOperand(3); 1284 if (!OffsetOp.isImm()) { 1285 report("insert offset must be a constant", MI); 1286 break; 1287 } 1288 1289 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1290 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1291 1292 if (DstSize <= SrcSize) 1293 report("inserted size must be smaller than total register", MI); 1294 1295 if (SrcSize + OffsetOp.getImm() > DstSize) 1296 report("insert writes past end of register", MI); 1297 1298 break; 1299 } 1300 case TargetOpcode::G_JUMP_TABLE: { 1301 if (!MI->getOperand(1).isJTI()) 1302 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1303 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1304 if (!DstTy.isPointer()) 1305 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1306 break; 1307 } 1308 case TargetOpcode::G_BRJT: { 1309 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1310 report("G_BRJT src operand 0 must be a pointer type", MI); 1311 1312 if (!MI->getOperand(1).isJTI()) 1313 report("G_BRJT src operand 1 must be a jump table index", MI); 1314 1315 const auto &IdxOp = MI->getOperand(2); 1316 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1317 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1318 break; 1319 } 1320 case TargetOpcode::G_INTRINSIC: 1321 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: { 1322 // TODO: Should verify number of def and use operands, but the current 1323 // interface requires passing in IR types for mangling. 1324 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1325 if (!IntrIDOp.isIntrinsicID()) { 1326 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1327 break; 1328 } 1329 1330 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC; 1331 unsigned IntrID = IntrIDOp.getIntrinsicID(); 1332 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1333 AttributeList Attrs 1334 = Intrinsic::getAttributes(MF->getFunction().getContext(), 1335 static_cast<Intrinsic::ID>(IntrID)); 1336 bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone); 1337 if (NoSideEffects && DeclHasSideEffects) { 1338 report("G_INTRINSIC used with intrinsic that accesses memory", MI); 1339 break; 1340 } 1341 if (!NoSideEffects && !DeclHasSideEffects) { 1342 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI); 1343 break; 1344 } 1345 } 1346 switch (IntrID) { 1347 case Intrinsic::memcpy: 1348 if (MI->getNumOperands() != 5) 1349 report("Expected memcpy intrinsic to have 5 operands", MI); 1350 break; 1351 case Intrinsic::memmove: 1352 if (MI->getNumOperands() != 5) 1353 report("Expected memmove intrinsic to have 5 operands", MI); 1354 break; 1355 case Intrinsic::memset: 1356 if (MI->getNumOperands() != 5) 1357 report("Expected memset intrinsic to have 5 operands", MI); 1358 break; 1359 } 1360 break; 1361 } 1362 case TargetOpcode::G_SEXT_INREG: { 1363 if (!MI->getOperand(2).isImm()) { 1364 report("G_SEXT_INREG expects an immediate operand #2", MI); 1365 break; 1366 } 1367 1368 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1369 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1370 verifyVectorElementMatch(DstTy, SrcTy, MI); 1371 1372 int64_t Imm = MI->getOperand(2).getImm(); 1373 if (Imm <= 0) 1374 report("G_SEXT_INREG size must be >= 1", MI); 1375 if (Imm >= SrcTy.getScalarSizeInBits()) 1376 report("G_SEXT_INREG size must be less than source bit width", MI); 1377 break; 1378 } 1379 case TargetOpcode::G_SHUFFLE_VECTOR: { 1380 const MachineOperand &MaskOp = MI->getOperand(3); 1381 if (!MaskOp.isShuffleMask()) { 1382 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1383 break; 1384 } 1385 1386 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1387 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1388 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1389 1390 if (Src0Ty != Src1Ty) 1391 report("Source operands must be the same type", MI); 1392 1393 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1394 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1395 1396 // Don't check that all operands are vector because scalars are used in 1397 // place of 1 element vectors. 1398 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1399 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1400 1401 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); 1402 1403 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1404 report("Wrong result type for shufflemask", MI); 1405 1406 for (int Idx : MaskIdxes) { 1407 if (Idx < 0) 1408 continue; 1409 1410 if (Idx >= 2 * SrcNumElts) 1411 report("Out of bounds shuffle index", MI); 1412 } 1413 1414 break; 1415 } 1416 case TargetOpcode::G_DYN_STACKALLOC: { 1417 const MachineOperand &DstOp = MI->getOperand(0); 1418 const MachineOperand &AllocOp = MI->getOperand(1); 1419 const MachineOperand &AlignOp = MI->getOperand(2); 1420 1421 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { 1422 report("dst operand 0 must be a pointer type", MI); 1423 break; 1424 } 1425 1426 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { 1427 report("src operand 1 must be a scalar reg type", MI); 1428 break; 1429 } 1430 1431 if (!AlignOp.isImm()) { 1432 report("src operand 2 must be an immediate type", MI); 1433 break; 1434 } 1435 break; 1436 } 1437 default: 1438 break; 1439 } 1440 } 1441 1442 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 1443 const MCInstrDesc &MCID = MI->getDesc(); 1444 if (MI->getNumOperands() < MCID.getNumOperands()) { 1445 report("Too few operands", MI); 1446 errs() << MCID.getNumOperands() << " operands expected, but " 1447 << MI->getNumOperands() << " given.\n"; 1448 } 1449 1450 if (MI->isPHI()) { 1451 if (MF->getProperties().hasProperty( 1452 MachineFunctionProperties::Property::NoPHIs)) 1453 report("Found PHI instruction with NoPHIs property set", MI); 1454 1455 if (FirstNonPHI) 1456 report("Found PHI instruction after non-PHI", MI); 1457 } else if (FirstNonPHI == nullptr) 1458 FirstNonPHI = MI; 1459 1460 // Check the tied operands. 1461 if (MI->isInlineAsm()) 1462 verifyInlineAsm(MI); 1463 1464 // A fully-formed DBG_VALUE must have a location. Ignore partially formed 1465 // DBG_VALUEs: these are convenient to use in tests, but should never get 1466 // generated. 1467 if (MI->isDebugValue() && MI->getNumOperands() == 4) 1468 if (!MI->getDebugLoc()) 1469 report("Missing DebugLoc for debug instruction", MI); 1470 1471 // Check the MachineMemOperands for basic consistency. 1472 for (MachineMemOperand *Op : MI->memoperands()) { 1473 if (Op->isLoad() && !MI->mayLoad()) 1474 report("Missing mayLoad flag", MI); 1475 if (Op->isStore() && !MI->mayStore()) 1476 report("Missing mayStore flag", MI); 1477 } 1478 1479 // Debug values must not have a slot index. 1480 // Other instructions must have one, unless they are inside a bundle. 1481 if (LiveInts) { 1482 bool mapped = !LiveInts->isNotInMIMap(*MI); 1483 if (MI->isDebugInstr()) { 1484 if (mapped) 1485 report("Debug instruction has a slot index", MI); 1486 } else if (MI->isInsideBundle()) { 1487 if (mapped) 1488 report("Instruction inside bundle has a slot index", MI); 1489 } else { 1490 if (!mapped) 1491 report("Missing slot index", MI); 1492 } 1493 } 1494 1495 if (isPreISelGenericOpcode(MCID.getOpcode())) { 1496 verifyPreISelGenericInstruction(MI); 1497 return; 1498 } 1499 1500 StringRef ErrorInfo; 1501 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1502 report(ErrorInfo.data(), MI); 1503 1504 // Verify properties of various specific instruction types 1505 switch (MI->getOpcode()) { 1506 case TargetOpcode::COPY: { 1507 if (foundErrors) 1508 break; 1509 const MachineOperand &DstOp = MI->getOperand(0); 1510 const MachineOperand &SrcOp = MI->getOperand(1); 1511 LLT DstTy = MRI->getType(DstOp.getReg()); 1512 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1513 if (SrcTy.isValid() && DstTy.isValid()) { 1514 // If both types are valid, check that the types are the same. 1515 if (SrcTy != DstTy) { 1516 report("Copy Instruction is illegal with mismatching types", MI); 1517 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1518 } 1519 } 1520 if (SrcTy.isValid() || DstTy.isValid()) { 1521 // If one of them have valid types, let's just check they have the same 1522 // size. 1523 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1524 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1525 assert(SrcSize && "Expecting size here"); 1526 assert(DstSize && "Expecting size here"); 1527 if (SrcSize != DstSize) 1528 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1529 report("Copy Instruction is illegal with mismatching sizes", MI); 1530 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1531 << "\n"; 1532 } 1533 } 1534 break; 1535 } 1536 case TargetOpcode::STATEPOINT: { 1537 StatepointOpers SO(MI); 1538 if (!MI->getOperand(SO.getIDPos()).isImm() || 1539 !MI->getOperand(SO.getNBytesPos()).isImm() || 1540 !MI->getOperand(SO.getNCallArgsPos()).isImm()) { 1541 report("meta operands to STATEPOINT not constant!", MI); 1542 break; 1543 } 1544 1545 auto VerifyStackMapConstant = [&](unsigned Offset) { 1546 if (!MI->getOperand(Offset - 1).isImm() || 1547 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || 1548 !MI->getOperand(Offset).isImm()) 1549 report("stack map constant to STATEPOINT not well formed!", MI); 1550 }; 1551 VerifyStackMapConstant(SO.getCCIdx()); 1552 VerifyStackMapConstant(SO.getFlagsIdx()); 1553 VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); 1554 1555 // TODO: verify we have properly encoded deopt arguments 1556 } break; 1557 } 1558 } 1559 1560 void 1561 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1562 const MachineInstr *MI = MO->getParent(); 1563 const MCInstrDesc &MCID = MI->getDesc(); 1564 unsigned NumDefs = MCID.getNumDefs(); 1565 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1566 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1567 1568 // The first MCID.NumDefs operands must be explicit register defines 1569 if (MONum < NumDefs) { 1570 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1571 if (!MO->isReg()) 1572 report("Explicit definition must be a register", MO, MONum); 1573 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1574 report("Explicit definition marked as use", MO, MONum); 1575 else if (MO->isImplicit()) 1576 report("Explicit definition marked as implicit", MO, MONum); 1577 } else if (MONum < MCID.getNumOperands()) { 1578 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1579 // Don't check if it's the last operand in a variadic instruction. See, 1580 // e.g., LDM_RET in the arm back end. Check non-variadic operands only. 1581 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; 1582 if (!IsOptional) { 1583 if (MO->isReg()) { 1584 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) 1585 report("Explicit operand marked as def", MO, MONum); 1586 if (MO->isImplicit()) 1587 report("Explicit operand marked as implicit", MO, MONum); 1588 } 1589 1590 // Check that an instruction has register operands only as expected. 1591 if (MCOI.OperandType == MCOI::OPERAND_REGISTER && 1592 !MO->isReg() && !MO->isFI()) 1593 report("Expected a register operand.", MO, MONum); 1594 if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || 1595 MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg()) 1596 report("Expected a non-register operand.", MO, MONum); 1597 } 1598 1599 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1600 if (TiedTo != -1) { 1601 if (!MO->isReg()) 1602 report("Tied use must be a register", MO, MONum); 1603 else if (!MO->isTied()) 1604 report("Operand should be tied", MO, MONum); 1605 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1606 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1607 else if (Register::isPhysicalRegister(MO->getReg())) { 1608 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1609 if (!MOTied.isReg()) 1610 report("Tied counterpart must be a register", &MOTied, TiedTo); 1611 else if (Register::isPhysicalRegister(MOTied.getReg()) && 1612 MO->getReg() != MOTied.getReg()) 1613 report("Tied physical registers must match.", &MOTied, TiedTo); 1614 } 1615 } else if (MO->isReg() && MO->isTied()) 1616 report("Explicit operand should not be tied", MO, MONum); 1617 } else { 1618 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1619 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1620 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1621 } 1622 1623 switch (MO->getType()) { 1624 case MachineOperand::MO_Register: { 1625 const Register Reg = MO->getReg(); 1626 if (!Reg) 1627 return; 1628 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1629 checkLiveness(MO, MONum); 1630 1631 // Verify the consistency of tied operands. 1632 if (MO->isTied()) { 1633 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1634 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1635 if (!OtherMO.isReg()) 1636 report("Must be tied to a register", MO, MONum); 1637 if (!OtherMO.isTied()) 1638 report("Missing tie flags on tied operand", MO, MONum); 1639 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1640 report("Inconsistent tie links", MO, MONum); 1641 if (MONum < MCID.getNumDefs()) { 1642 if (OtherIdx < MCID.getNumOperands()) { 1643 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1644 report("Explicit def tied to explicit use without tie constraint", 1645 MO, MONum); 1646 } else { 1647 if (!OtherMO.isImplicit()) 1648 report("Explicit def should be tied to implicit use", MO, MONum); 1649 } 1650 } 1651 } 1652 1653 // Verify two-address constraints after the twoaddressinstruction pass. 1654 // Both twoaddressinstruction pass and phi-node-elimination pass call 1655 // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after 1656 // twoaddressinstruction pass not after phi-node-elimination pass. So we 1657 // shouldn't use the NoSSA as the condition, we should based on 1658 // TiedOpsRewritten property to verify two-address constraints, this 1659 // property will be set in twoaddressinstruction pass. 1660 unsigned DefIdx; 1661 if (MF->getProperties().hasProperty( 1662 MachineFunctionProperties::Property::TiedOpsRewritten) && 1663 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1664 Reg != MI->getOperand(DefIdx).getReg()) 1665 report("Two-address instruction operands must be identical", MO, MONum); 1666 1667 // Check register classes. 1668 unsigned SubIdx = MO->getSubReg(); 1669 1670 if (Register::isPhysicalRegister(Reg)) { 1671 if (SubIdx) { 1672 report("Illegal subregister index for physical register", MO, MONum); 1673 return; 1674 } 1675 if (MONum < MCID.getNumOperands()) { 1676 if (const TargetRegisterClass *DRC = 1677 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1678 if (!DRC->contains(Reg)) { 1679 report("Illegal physical register for instruction", MO, MONum); 1680 errs() << printReg(Reg, TRI) << " is not a " 1681 << TRI->getRegClassName(DRC) << " register.\n"; 1682 } 1683 } 1684 } 1685 if (MO->isRenamable()) { 1686 if (MRI->isReserved(Reg)) { 1687 report("isRenamable set on reserved register", MO, MONum); 1688 return; 1689 } 1690 } 1691 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1692 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1693 return; 1694 } 1695 } else { 1696 // Virtual register. 1697 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1698 if (!RC) { 1699 // This is a generic virtual register. 1700 1701 // Do not allow undef uses for generic virtual registers. This ensures 1702 // getVRegDef can never fail and return null on a generic register. 1703 // 1704 // FIXME: This restriction should probably be broadened to all SSA 1705 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still 1706 // run on the SSA function just before phi elimination. 1707 if (MO->isUndef()) 1708 report("Generic virtual register use cannot be undef", MO, MONum); 1709 1710 // If we're post-Select, we can't have gvregs anymore. 1711 if (isFunctionSelected) { 1712 report("Generic virtual register invalid in a Selected function", 1713 MO, MONum); 1714 return; 1715 } 1716 1717 // The gvreg must have a type and it must not have a SubIdx. 1718 LLT Ty = MRI->getType(Reg); 1719 if (!Ty.isValid()) { 1720 report("Generic virtual register must have a valid type", MO, 1721 MONum); 1722 return; 1723 } 1724 1725 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1726 1727 // If we're post-RegBankSelect, the gvreg must have a bank. 1728 if (!RegBank && isFunctionRegBankSelected) { 1729 report("Generic virtual register must have a bank in a " 1730 "RegBankSelected function", 1731 MO, MONum); 1732 return; 1733 } 1734 1735 // Make sure the register fits into its register bank if any. 1736 if (RegBank && Ty.isValid() && 1737 RegBank->getSize() < Ty.getSizeInBits()) { 1738 report("Register bank is too small for virtual register", MO, 1739 MONum); 1740 errs() << "Register bank " << RegBank->getName() << " too small(" 1741 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1742 << "-bits\n"; 1743 return; 1744 } 1745 if (SubIdx) { 1746 report("Generic virtual register does not allow subregister index", MO, 1747 MONum); 1748 return; 1749 } 1750 1751 // If this is a target specific instruction and this operand 1752 // has register class constraint, the virtual register must 1753 // comply to it. 1754 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1755 MONum < MCID.getNumOperands() && 1756 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1757 report("Virtual register does not match instruction constraint", MO, 1758 MONum); 1759 errs() << "Expect register class " 1760 << TRI->getRegClassName( 1761 TII->getRegClass(MCID, MONum, TRI, *MF)) 1762 << " but got nothing\n"; 1763 return; 1764 } 1765 1766 break; 1767 } 1768 if (SubIdx) { 1769 const TargetRegisterClass *SRC = 1770 TRI->getSubClassWithSubReg(RC, SubIdx); 1771 if (!SRC) { 1772 report("Invalid subregister index for virtual register", MO, MONum); 1773 errs() << "Register class " << TRI->getRegClassName(RC) 1774 << " does not support subreg index " << SubIdx << "\n"; 1775 return; 1776 } 1777 if (RC != SRC) { 1778 report("Invalid register class for subregister index", MO, MONum); 1779 errs() << "Register class " << TRI->getRegClassName(RC) 1780 << " does not fully support subreg index " << SubIdx << "\n"; 1781 return; 1782 } 1783 } 1784 if (MONum < MCID.getNumOperands()) { 1785 if (const TargetRegisterClass *DRC = 1786 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1787 if (SubIdx) { 1788 const TargetRegisterClass *SuperRC = 1789 TRI->getLargestLegalSuperClass(RC, *MF); 1790 if (!SuperRC) { 1791 report("No largest legal super class exists.", MO, MONum); 1792 return; 1793 } 1794 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1795 if (!DRC) { 1796 report("No matching super-reg register class.", MO, MONum); 1797 return; 1798 } 1799 } 1800 if (!RC->hasSuperClassEq(DRC)) { 1801 report("Illegal virtual register for instruction", MO, MONum); 1802 errs() << "Expected a " << TRI->getRegClassName(DRC) 1803 << " register, but got a " << TRI->getRegClassName(RC) 1804 << " register\n"; 1805 } 1806 } 1807 } 1808 } 1809 break; 1810 } 1811 1812 case MachineOperand::MO_RegisterMask: 1813 regMasks.push_back(MO->getRegMask()); 1814 break; 1815 1816 case MachineOperand::MO_MachineBasicBlock: 1817 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1818 report("PHI operand is not in the CFG", MO, MONum); 1819 break; 1820 1821 case MachineOperand::MO_FrameIndex: 1822 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1823 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1824 int FI = MO->getIndex(); 1825 LiveInterval &LI = LiveStks->getInterval(FI); 1826 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1827 1828 bool stores = MI->mayStore(); 1829 bool loads = MI->mayLoad(); 1830 // For a memory-to-memory move, we need to check if the frame 1831 // index is used for storing or loading, by inspecting the 1832 // memory operands. 1833 if (stores && loads) { 1834 for (auto *MMO : MI->memoperands()) { 1835 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1836 if (PSV == nullptr) continue; 1837 const FixedStackPseudoSourceValue *Value = 1838 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1839 if (Value == nullptr) continue; 1840 if (Value->getFrameIndex() != FI) continue; 1841 1842 if (MMO->isStore()) 1843 loads = false; 1844 else 1845 stores = false; 1846 break; 1847 } 1848 if (loads == stores) 1849 report("Missing fixed stack memoperand.", MI); 1850 } 1851 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1852 report("Instruction loads from dead spill slot", MO, MONum); 1853 errs() << "Live stack: " << LI << '\n'; 1854 } 1855 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1856 report("Instruction stores to dead spill slot", MO, MONum); 1857 errs() << "Live stack: " << LI << '\n'; 1858 } 1859 } 1860 break; 1861 1862 default: 1863 break; 1864 } 1865 } 1866 1867 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1868 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1869 LaneBitmask LaneMask) { 1870 LiveQueryResult LRQ = LR.Query(UseIdx); 1871 // Check if we have a segment at the use, note however that we only need one 1872 // live subregister range, the others may be dead. 1873 if (!LRQ.valueIn() && LaneMask.none()) { 1874 report("No live segment at use", MO, MONum); 1875 report_context_liverange(LR); 1876 report_context_vreg_regunit(VRegOrUnit); 1877 report_context(UseIdx); 1878 } 1879 if (MO->isKill() && !LRQ.isKill()) { 1880 report("Live range continues after kill flag", MO, MONum); 1881 report_context_liverange(LR); 1882 report_context_vreg_regunit(VRegOrUnit); 1883 if (LaneMask.any()) 1884 report_context_lanemask(LaneMask); 1885 report_context(UseIdx); 1886 } 1887 } 1888 1889 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1890 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1891 bool SubRangeCheck, LaneBitmask LaneMask) { 1892 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1893 assert(VNI && "NULL valno is not allowed"); 1894 if (VNI->def != DefIdx) { 1895 report("Inconsistent valno->def", MO, MONum); 1896 report_context_liverange(LR); 1897 report_context_vreg_regunit(VRegOrUnit); 1898 if (LaneMask.any()) 1899 report_context_lanemask(LaneMask); 1900 report_context(*VNI); 1901 report_context(DefIdx); 1902 } 1903 } else { 1904 report("No live segment at def", MO, MONum); 1905 report_context_liverange(LR); 1906 report_context_vreg_regunit(VRegOrUnit); 1907 if (LaneMask.any()) 1908 report_context_lanemask(LaneMask); 1909 report_context(DefIdx); 1910 } 1911 // Check that, if the dead def flag is present, LiveInts agree. 1912 if (MO->isDead()) { 1913 LiveQueryResult LRQ = LR.Query(DefIdx); 1914 if (!LRQ.isDeadDef()) { 1915 assert(Register::isVirtualRegister(VRegOrUnit) && 1916 "Expecting a virtual register."); 1917 // A dead subreg def only tells us that the specific subreg is dead. There 1918 // could be other non-dead defs of other subregs, or we could have other 1919 // parts of the register being live through the instruction. So unless we 1920 // are checking liveness for a subrange it is ok for the live range to 1921 // continue, given that we have a dead def of a subregister. 1922 if (SubRangeCheck || MO->getSubReg() == 0) { 1923 report("Live range continues after dead def flag", MO, MONum); 1924 report_context_liverange(LR); 1925 report_context_vreg_regunit(VRegOrUnit); 1926 if (LaneMask.any()) 1927 report_context_lanemask(LaneMask); 1928 } 1929 } 1930 } 1931 } 1932 1933 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1934 const MachineInstr *MI = MO->getParent(); 1935 const unsigned Reg = MO->getReg(); 1936 1937 // Both use and def operands can read a register. 1938 if (MO->readsReg()) { 1939 if (MO->isKill()) 1940 addRegWithSubRegs(regsKilled, Reg); 1941 1942 // Check that LiveVars knows this kill. 1943 if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) { 1944 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1945 if (!is_contained(VI.Kills, MI)) 1946 report("Kill missing from LiveVariables", MO, MONum); 1947 } 1948 1949 // Check LiveInts liveness and kill. 1950 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1951 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1952 // Check the cached regunit intervals. 1953 if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1954 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1955 if (MRI->isReservedRegUnit(*Units)) 1956 continue; 1957 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1958 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1959 } 1960 } 1961 1962 if (Register::isVirtualRegister(Reg)) { 1963 if (LiveInts->hasInterval(Reg)) { 1964 // This is a virtual register interval. 1965 const LiveInterval &LI = LiveInts->getInterval(Reg); 1966 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1967 1968 if (LI.hasSubRanges() && !MO->isDef()) { 1969 unsigned SubRegIdx = MO->getSubReg(); 1970 LaneBitmask MOMask = SubRegIdx != 0 1971 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1972 : MRI->getMaxLaneMaskForVReg(Reg); 1973 LaneBitmask LiveInMask; 1974 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1975 if ((MOMask & SR.LaneMask).none()) 1976 continue; 1977 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1978 LiveQueryResult LRQ = SR.Query(UseIdx); 1979 if (LRQ.valueIn()) 1980 LiveInMask |= SR.LaneMask; 1981 } 1982 // At least parts of the register has to be live at the use. 1983 if ((LiveInMask & MOMask).none()) { 1984 report("No live subrange at use", MO, MONum); 1985 report_context(LI); 1986 report_context(UseIdx); 1987 } 1988 } 1989 } else { 1990 report("Virtual register has no live interval", MO, MONum); 1991 } 1992 } 1993 } 1994 1995 // Use of a dead register. 1996 if (!regsLive.count(Reg)) { 1997 if (Register::isPhysicalRegister(Reg)) { 1998 // Reserved registers may be used even when 'dead'. 1999 bool Bad = !isReserved(Reg); 2000 // We are fine if just any subregister has a defined value. 2001 if (Bad) { 2002 2003 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { 2004 if (regsLive.count(SubReg)) { 2005 Bad = false; 2006 break; 2007 } 2008 } 2009 } 2010 // If there is an additional implicit-use of a super register we stop 2011 // here. By definition we are fine if the super register is not 2012 // (completely) dead, if the complete super register is dead we will 2013 // get a report for its operand. 2014 if (Bad) { 2015 for (const MachineOperand &MOP : MI->uses()) { 2016 if (!MOP.isReg() || !MOP.isImplicit()) 2017 continue; 2018 2019 if (!Register::isPhysicalRegister(MOP.getReg())) 2020 continue; 2021 2022 for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) { 2023 if (SubReg == Reg) { 2024 Bad = false; 2025 break; 2026 } 2027 } 2028 } 2029 } 2030 if (Bad) 2031 report("Using an undefined physical register", MO, MONum); 2032 } else if (MRI->def_empty(Reg)) { 2033 report("Reading virtual register without a def", MO, MONum); 2034 } else { 2035 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2036 // We don't know which virtual registers are live in, so only complain 2037 // if vreg was killed in this MBB. Otherwise keep track of vregs that 2038 // must be live in. PHI instructions are handled separately. 2039 if (MInfo.regsKilled.count(Reg)) 2040 report("Using a killed virtual register", MO, MONum); 2041 else if (!MI->isPHI()) 2042 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 2043 } 2044 } 2045 } 2046 2047 if (MO->isDef()) { 2048 // Register defined. 2049 // TODO: verify that earlyclobber ops are not used. 2050 if (MO->isDead()) 2051 addRegWithSubRegs(regsDead, Reg); 2052 else 2053 addRegWithSubRegs(regsDefined, Reg); 2054 2055 // Verify SSA form. 2056 if (MRI->isSSA() && Register::isVirtualRegister(Reg) && 2057 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 2058 report("Multiple virtual register defs in SSA form", MO, MONum); 2059 2060 // Check LiveInts for a live segment, but only for virtual registers. 2061 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2062 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 2063 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 2064 2065 if (Register::isVirtualRegister(Reg)) { 2066 if (LiveInts->hasInterval(Reg)) { 2067 const LiveInterval &LI = LiveInts->getInterval(Reg); 2068 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 2069 2070 if (LI.hasSubRanges()) { 2071 unsigned SubRegIdx = MO->getSubReg(); 2072 LaneBitmask MOMask = SubRegIdx != 0 2073 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2074 : MRI->getMaxLaneMaskForVReg(Reg); 2075 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2076 if ((SR.LaneMask & MOMask).none()) 2077 continue; 2078 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 2079 } 2080 } 2081 } else { 2082 report("Virtual register has no Live interval", MO, MONum); 2083 } 2084 } 2085 } 2086 } 2087 } 2088 2089 // This function gets called after visiting all instructions in a bundle. The 2090 // argument points to the bundle header. 2091 // Normal stand-alone instructions are also considered 'bundles', and this 2092 // function is called for all of them. 2093 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 2094 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2095 set_union(MInfo.regsKilled, regsKilled); 2096 set_subtract(regsLive, regsKilled); regsKilled.clear(); 2097 // Kill any masked registers. 2098 while (!regMasks.empty()) { 2099 const uint32_t *Mask = regMasks.pop_back_val(); 2100 for (unsigned Reg : regsLive) 2101 if (Register::isPhysicalRegister(Reg) && 2102 MachineOperand::clobbersPhysReg(Mask, Reg)) 2103 regsDead.push_back(Reg); 2104 } 2105 set_subtract(regsLive, regsDead); regsDead.clear(); 2106 set_union(regsLive, regsDefined); regsDefined.clear(); 2107 } 2108 2109 void 2110 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 2111 MBBInfoMap[MBB].regsLiveOut = regsLive; 2112 regsLive.clear(); 2113 2114 if (Indexes) { 2115 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 2116 if (!(stop > lastIndex)) { 2117 report("Block ends before last instruction index", MBB); 2118 errs() << "Block ends at " << stop 2119 << " last instruction was at " << lastIndex << '\n'; 2120 } 2121 lastIndex = stop; 2122 } 2123 } 2124 2125 namespace { 2126 // This implements a set of registers that serves as a filter: can filter other 2127 // sets by passing through elements not in the filter and blocking those that 2128 // are. Any filter implicitly includes the full set of physical registers upon 2129 // creation, thus filtering them all out. The filter itself as a set only grows, 2130 // and needs to be as efficient as possible. 2131 struct VRegFilter { 2132 // Add elements to the filter itself. \pre Input set \p FromRegSet must have 2133 // no duplicates. Both virtual and physical registers are fine. 2134 template <typename RegSetT> void add(const RegSetT &FromRegSet) { 2135 SmallVector<unsigned, 0> VRegsBuffer; 2136 filterAndAdd(FromRegSet, VRegsBuffer); 2137 } 2138 // Filter \p FromRegSet through the filter and append passed elements into \p 2139 // ToVRegs. All elements appended are then added to the filter itself. 2140 // \returns true if anything changed. 2141 template <typename RegSetT> 2142 bool filterAndAdd(const RegSetT &FromRegSet, 2143 SmallVectorImpl<unsigned> &ToVRegs) { 2144 unsigned SparseUniverse = Sparse.size(); 2145 unsigned NewSparseUniverse = SparseUniverse; 2146 unsigned NewDenseSize = Dense.size(); 2147 size_t Begin = ToVRegs.size(); 2148 for (unsigned Reg : FromRegSet) { 2149 if (!Register::isVirtualRegister(Reg)) 2150 continue; 2151 unsigned Index = Register::virtReg2Index(Reg); 2152 if (Index < SparseUniverseMax) { 2153 if (Index < SparseUniverse && Sparse.test(Index)) 2154 continue; 2155 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); 2156 } else { 2157 if (Dense.count(Reg)) 2158 continue; 2159 ++NewDenseSize; 2160 } 2161 ToVRegs.push_back(Reg); 2162 } 2163 size_t End = ToVRegs.size(); 2164 if (Begin == End) 2165 return false; 2166 // Reserving space in sets once performs better than doing so continuously 2167 // and pays easily for double look-ups (even in Dense with SparseUniverseMax 2168 // tuned all the way down) and double iteration (the second one is over a 2169 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). 2170 Sparse.resize(NewSparseUniverse); 2171 Dense.reserve(NewDenseSize); 2172 for (unsigned I = Begin; I < End; ++I) { 2173 unsigned Reg = ToVRegs[I]; 2174 unsigned Index = Register::virtReg2Index(Reg); 2175 if (Index < SparseUniverseMax) 2176 Sparse.set(Index); 2177 else 2178 Dense.insert(Reg); 2179 } 2180 return true; 2181 } 2182 2183 private: 2184 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; 2185 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound 2186 // are tracked by Dense. The only purpose of the threashold and the Dense set 2187 // is to have a reasonably growing memory usage in pathological cases (large 2188 // number of very sparse VRegFilter instances live at the same time). In 2189 // practice even in the worst-by-execution time cases having all elements 2190 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more 2191 // space efficient than if tracked by Dense. The threashold is set to keep the 2192 // worst-case memory usage within 2x of figures determined empirically for 2193 // "all Dense" scenario in such worst-by-execution-time cases. 2194 BitVector Sparse; 2195 DenseSet<unsigned> Dense; 2196 }; 2197 2198 // Implements both a transfer function and a (binary, in-place) join operator 2199 // for a dataflow over register sets with set union join and filtering transfer 2200 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. 2201 // Maintains out_b as its state, allowing for O(n) iteration over it at any 2202 // time, where n is the size of the set (as opposed to O(U) where U is the 2203 // universe). filter_b implicitly contains all physical registers at all times. 2204 class FilteringVRegSet { 2205 VRegFilter Filter; 2206 SmallVector<unsigned, 0> VRegs; 2207 2208 public: 2209 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. 2210 // Both virtual and physical registers are fine. 2211 template <typename RegSetT> void addToFilter(const RegSetT &RS) { 2212 Filter.add(RS); 2213 } 2214 // Passes \p RS through the filter_b (transfer function) and adds what's left 2215 // to itself (out_b). 2216 template <typename RegSetT> bool add(const RegSetT &RS) { 2217 // Double-duty the Filter: to maintain VRegs a set (and the join operation 2218 // a set union) just add everything being added here to the Filter as well. 2219 return Filter.filterAndAdd(RS, VRegs); 2220 } 2221 using const_iterator = decltype(VRegs)::const_iterator; 2222 const_iterator begin() const { return VRegs.begin(); } 2223 const_iterator end() const { return VRegs.end(); } 2224 size_t size() const { return VRegs.size(); } 2225 }; 2226 } // namespace 2227 2228 // Calculate the largest possible vregsPassed sets. These are the registers that 2229 // can pass through an MBB live, but may not be live every time. It is assumed 2230 // that all vregsPassed sets are empty before the call. 2231 void MachineVerifier::calcRegsPassed() { 2232 // This is a forward dataflow, doing it in RPO. A standard map serves as a 2233 // priority (sorting by RPO number) queue, deduplicating worklist, and an RPO 2234 // number to MBB mapping all at once. 2235 std::map<unsigned, const MachineBasicBlock *> RPOWorklist; 2236 DenseMap<const MachineBasicBlock *, unsigned> RPONumbers; 2237 if (MF->empty()) { 2238 // ReversePostOrderTraversal doesn't handle empty functions. 2239 return; 2240 } 2241 std::vector<FilteringVRegSet> VRegsPassedSets(MF->size()); 2242 for (const MachineBasicBlock *MBB : 2243 ReversePostOrderTraversal<const MachineFunction *>(MF)) { 2244 // Careful with the evaluation order, fetch next number before allocating. 2245 unsigned Number = RPONumbers.size(); 2246 RPONumbers[MBB] = Number; 2247 // Set-up the transfer functions for all blocks. 2248 const BBInfo &MInfo = MBBInfoMap[MBB]; 2249 VRegsPassedSets[Number].addToFilter(MInfo.regsKilled); 2250 VRegsPassedSets[Number].addToFilter(MInfo.regsLiveOut); 2251 } 2252 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 2253 // have any vregsPassed. 2254 for (const MachineBasicBlock &MBB : *MF) { 2255 const BBInfo &MInfo = MBBInfoMap[&MBB]; 2256 if (!MInfo.reachable) 2257 continue; 2258 for (const MachineBasicBlock *Succ : MBB.successors()) { 2259 unsigned SuccNumber = RPONumbers[Succ]; 2260 FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber]; 2261 if (SuccSet.add(MInfo.regsLiveOut)) 2262 RPOWorklist.emplace(SuccNumber, Succ); 2263 } 2264 } 2265 2266 // Iteratively push vregsPassed to successors. 2267 while (!RPOWorklist.empty()) { 2268 auto Next = RPOWorklist.begin(); 2269 const MachineBasicBlock *MBB = Next->second; 2270 RPOWorklist.erase(Next); 2271 FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[MBB]]; 2272 for (const MachineBasicBlock *Succ : MBB->successors()) { 2273 if (Succ == MBB) 2274 continue; 2275 unsigned SuccNumber = RPONumbers[Succ]; 2276 FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber]; 2277 if (SuccSet.add(MSet)) 2278 RPOWorklist.emplace(SuccNumber, Succ); 2279 } 2280 } 2281 // Copy the results back to BBInfos. 2282 for (const MachineBasicBlock &MBB : *MF) { 2283 BBInfo &MInfo = MBBInfoMap[&MBB]; 2284 if (!MInfo.reachable) 2285 continue; 2286 const FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[&MBB]]; 2287 MInfo.vregsPassed.reserve(MSet.size()); 2288 MInfo.vregsPassed.insert(MSet.begin(), MSet.end()); 2289 } 2290 } 2291 2292 // Calculate the set of virtual registers that must be passed through each basic 2293 // block in order to satisfy the requirements of successor blocks. This is very 2294 // similar to calcRegsPassed, only backwards. 2295 void MachineVerifier::calcRegsRequired() { 2296 // First push live-in regs to predecessors' vregsRequired. 2297 SmallPtrSet<const MachineBasicBlock*, 8> todo; 2298 for (const auto &MBB : *MF) { 2299 BBInfo &MInfo = MBBInfoMap[&MBB]; 2300 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2301 BBInfo &PInfo = MBBInfoMap[Pred]; 2302 if (PInfo.addRequired(MInfo.vregsLiveIn)) 2303 todo.insert(Pred); 2304 } 2305 } 2306 2307 // Iteratively push vregsRequired to predecessors. This will converge to the 2308 // same final state regardless of DenseSet iteration order. 2309 while (!todo.empty()) { 2310 const MachineBasicBlock *MBB = *todo.begin(); 2311 todo.erase(MBB); 2312 BBInfo &MInfo = MBBInfoMap[MBB]; 2313 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 2314 if (Pred == MBB) 2315 continue; 2316 BBInfo &SInfo = MBBInfoMap[Pred]; 2317 if (SInfo.addRequired(MInfo.vregsRequired)) 2318 todo.insert(Pred); 2319 } 2320 } 2321 } 2322 2323 // Check PHI instructions at the beginning of MBB. It is assumed that 2324 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 2325 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 2326 BBInfo &MInfo = MBBInfoMap[&MBB]; 2327 2328 SmallPtrSet<const MachineBasicBlock*, 8> seen; 2329 for (const MachineInstr &Phi : MBB) { 2330 if (!Phi.isPHI()) 2331 break; 2332 seen.clear(); 2333 2334 const MachineOperand &MODef = Phi.getOperand(0); 2335 if (!MODef.isReg() || !MODef.isDef()) { 2336 report("Expected first PHI operand to be a register def", &MODef, 0); 2337 continue; 2338 } 2339 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 2340 MODef.isEarlyClobber() || MODef.isDebug()) 2341 report("Unexpected flag on PHI operand", &MODef, 0); 2342 Register DefReg = MODef.getReg(); 2343 if (!Register::isVirtualRegister(DefReg)) 2344 report("Expected first PHI operand to be a virtual register", &MODef, 0); 2345 2346 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 2347 const MachineOperand &MO0 = Phi.getOperand(I); 2348 if (!MO0.isReg()) { 2349 report("Expected PHI operand to be a register", &MO0, I); 2350 continue; 2351 } 2352 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 2353 MO0.isDebug() || MO0.isTied()) 2354 report("Unexpected flag on PHI operand", &MO0, I); 2355 2356 const MachineOperand &MO1 = Phi.getOperand(I + 1); 2357 if (!MO1.isMBB()) { 2358 report("Expected PHI operand to be a basic block", &MO1, I + 1); 2359 continue; 2360 } 2361 2362 const MachineBasicBlock &Pre = *MO1.getMBB(); 2363 if (!Pre.isSuccessor(&MBB)) { 2364 report("PHI input is not a predecessor block", &MO1, I + 1); 2365 continue; 2366 } 2367 2368 if (MInfo.reachable) { 2369 seen.insert(&Pre); 2370 BBInfo &PrInfo = MBBInfoMap[&Pre]; 2371 if (!MO0.isUndef() && PrInfo.reachable && 2372 !PrInfo.isLiveOut(MO0.getReg())) 2373 report("PHI operand is not live-out from predecessor", &MO0, I); 2374 } 2375 } 2376 2377 // Did we see all predecessors? 2378 if (MInfo.reachable) { 2379 for (MachineBasicBlock *Pred : MBB.predecessors()) { 2380 if (!seen.count(Pred)) { 2381 report("Missing PHI operand", &Phi); 2382 errs() << printMBBReference(*Pred) 2383 << " is a predecessor according to the CFG.\n"; 2384 } 2385 } 2386 } 2387 } 2388 } 2389 2390 void MachineVerifier::visitMachineFunctionAfter() { 2391 calcRegsPassed(); 2392 2393 for (const MachineBasicBlock &MBB : *MF) 2394 checkPHIOps(MBB); 2395 2396 // Now check liveness info if available 2397 calcRegsRequired(); 2398 2399 // Check for killed virtual registers that should be live out. 2400 for (const auto &MBB : *MF) { 2401 BBInfo &MInfo = MBBInfoMap[&MBB]; 2402 for (unsigned VReg : MInfo.vregsRequired) 2403 if (MInfo.regsKilled.count(VReg)) { 2404 report("Virtual register killed in block, but needed live out.", &MBB); 2405 errs() << "Virtual register " << printReg(VReg) 2406 << " is used after the block.\n"; 2407 } 2408 } 2409 2410 if (!MF->empty()) { 2411 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2412 for (unsigned VReg : MInfo.vregsRequired) { 2413 report("Virtual register defs don't dominate all uses.", MF); 2414 report_context_vreg(VReg); 2415 } 2416 } 2417 2418 if (LiveVars) 2419 verifyLiveVariables(); 2420 if (LiveInts) 2421 verifyLiveIntervals(); 2422 2423 // Check live-in list of each MBB. If a register is live into MBB, check 2424 // that the register is in regsLiveOut of each predecessor block. Since 2425 // this must come from a definition in the predecesssor or its live-in 2426 // list, this will catch a live-through case where the predecessor does not 2427 // have the register in its live-in list. This currently only checks 2428 // registers that have no aliases, are not allocatable and are not 2429 // reserved, which could mean a condition code register for instance. 2430 if (MRI->tracksLiveness()) 2431 for (const auto &MBB : *MF) 2432 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 2433 MCPhysReg LiveInReg = P.PhysReg; 2434 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); 2435 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) 2436 continue; 2437 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2438 BBInfo &PInfo = MBBInfoMap[Pred]; 2439 if (!PInfo.regsLiveOut.count(LiveInReg)) { 2440 report("Live in register not found to be live out from predecessor.", 2441 &MBB); 2442 errs() << TRI->getName(LiveInReg) 2443 << " not found to be live out from " 2444 << printMBBReference(*Pred) << "\n"; 2445 } 2446 } 2447 } 2448 2449 for (auto CSInfo : MF->getCallSitesInfo()) 2450 if (!CSInfo.first->isCall()) 2451 report("Call site info referencing instruction that is not call", MF); 2452 } 2453 2454 void MachineVerifier::verifyLiveVariables() { 2455 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2456 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2457 unsigned Reg = Register::index2VirtReg(i); 2458 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2459 for (const auto &MBB : *MF) { 2460 BBInfo &MInfo = MBBInfoMap[&MBB]; 2461 2462 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2463 if (MInfo.vregsRequired.count(Reg)) { 2464 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2465 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2466 errs() << "Virtual register " << printReg(Reg) 2467 << " must be live through the block.\n"; 2468 } 2469 } else { 2470 if (VI.AliveBlocks.test(MBB.getNumber())) { 2471 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2472 errs() << "Virtual register " << printReg(Reg) 2473 << " is not needed live through the block.\n"; 2474 } 2475 } 2476 } 2477 } 2478 } 2479 2480 void MachineVerifier::verifyLiveIntervals() { 2481 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2482 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2483 unsigned Reg = Register::index2VirtReg(i); 2484 2485 // Spilling and splitting may leave unused registers around. Skip them. 2486 if (MRI->reg_nodbg_empty(Reg)) 2487 continue; 2488 2489 if (!LiveInts->hasInterval(Reg)) { 2490 report("Missing live interval for virtual register", MF); 2491 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2492 continue; 2493 } 2494 2495 const LiveInterval &LI = LiveInts->getInterval(Reg); 2496 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 2497 verifyLiveInterval(LI); 2498 } 2499 2500 // Verify all the cached regunit intervals. 2501 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2502 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2503 verifyLiveRange(*LR, i); 2504 } 2505 2506 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2507 const VNInfo *VNI, unsigned Reg, 2508 LaneBitmask LaneMask) { 2509 if (VNI->isUnused()) 2510 return; 2511 2512 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2513 2514 if (!DefVNI) { 2515 report("Value not live at VNInfo def and not marked unused", MF); 2516 report_context(LR, Reg, LaneMask); 2517 report_context(*VNI); 2518 return; 2519 } 2520 2521 if (DefVNI != VNI) { 2522 report("Live segment at def has different VNInfo", MF); 2523 report_context(LR, Reg, LaneMask); 2524 report_context(*VNI); 2525 return; 2526 } 2527 2528 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2529 if (!MBB) { 2530 report("Invalid VNInfo definition index", MF); 2531 report_context(LR, Reg, LaneMask); 2532 report_context(*VNI); 2533 return; 2534 } 2535 2536 if (VNI->isPHIDef()) { 2537 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2538 report("PHIDef VNInfo is not defined at MBB start", MBB); 2539 report_context(LR, Reg, LaneMask); 2540 report_context(*VNI); 2541 } 2542 return; 2543 } 2544 2545 // Non-PHI def. 2546 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2547 if (!MI) { 2548 report("No instruction at VNInfo def index", MBB); 2549 report_context(LR, Reg, LaneMask); 2550 report_context(*VNI); 2551 return; 2552 } 2553 2554 if (Reg != 0) { 2555 bool hasDef = false; 2556 bool isEarlyClobber = false; 2557 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2558 if (!MOI->isReg() || !MOI->isDef()) 2559 continue; 2560 if (Register::isVirtualRegister(Reg)) { 2561 if (MOI->getReg() != Reg) 2562 continue; 2563 } else { 2564 if (!Register::isPhysicalRegister(MOI->getReg()) || 2565 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2566 continue; 2567 } 2568 if (LaneMask.any() && 2569 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2570 continue; 2571 hasDef = true; 2572 if (MOI->isEarlyClobber()) 2573 isEarlyClobber = true; 2574 } 2575 2576 if (!hasDef) { 2577 report("Defining instruction does not modify register", MI); 2578 report_context(LR, Reg, LaneMask); 2579 report_context(*VNI); 2580 } 2581 2582 // Early clobber defs begin at USE slots, but other defs must begin at 2583 // DEF slots. 2584 if (isEarlyClobber) { 2585 if (!VNI->def.isEarlyClobber()) { 2586 report("Early clobber def must be at an early-clobber slot", MBB); 2587 report_context(LR, Reg, LaneMask); 2588 report_context(*VNI); 2589 } 2590 } else if (!VNI->def.isRegister()) { 2591 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2592 report_context(LR, Reg, LaneMask); 2593 report_context(*VNI); 2594 } 2595 } 2596 } 2597 2598 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2599 const LiveRange::const_iterator I, 2600 unsigned Reg, LaneBitmask LaneMask) 2601 { 2602 const LiveRange::Segment &S = *I; 2603 const VNInfo *VNI = S.valno; 2604 assert(VNI && "Live segment has no valno"); 2605 2606 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2607 report("Foreign valno in live segment", MF); 2608 report_context(LR, Reg, LaneMask); 2609 report_context(S); 2610 report_context(*VNI); 2611 } 2612 2613 if (VNI->isUnused()) { 2614 report("Live segment valno is marked unused", MF); 2615 report_context(LR, Reg, LaneMask); 2616 report_context(S); 2617 } 2618 2619 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2620 if (!MBB) { 2621 report("Bad start of live segment, no basic block", MF); 2622 report_context(LR, Reg, LaneMask); 2623 report_context(S); 2624 return; 2625 } 2626 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2627 if (S.start != MBBStartIdx && S.start != VNI->def) { 2628 report("Live segment must begin at MBB entry or valno def", MBB); 2629 report_context(LR, Reg, LaneMask); 2630 report_context(S); 2631 } 2632 2633 const MachineBasicBlock *EndMBB = 2634 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2635 if (!EndMBB) { 2636 report("Bad end of live segment, no basic block", MF); 2637 report_context(LR, Reg, LaneMask); 2638 report_context(S); 2639 return; 2640 } 2641 2642 // No more checks for live-out segments. 2643 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2644 return; 2645 2646 // RegUnit intervals are allowed dead phis. 2647 if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() && 2648 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2649 return; 2650 2651 // The live segment is ending inside EndMBB 2652 const MachineInstr *MI = 2653 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2654 if (!MI) { 2655 report("Live segment doesn't end at a valid instruction", EndMBB); 2656 report_context(LR, Reg, LaneMask); 2657 report_context(S); 2658 return; 2659 } 2660 2661 // The block slot must refer to a basic block boundary. 2662 if (S.end.isBlock()) { 2663 report("Live segment ends at B slot of an instruction", EndMBB); 2664 report_context(LR, Reg, LaneMask); 2665 report_context(S); 2666 } 2667 2668 if (S.end.isDead()) { 2669 // Segment ends on the dead slot. 2670 // That means there must be a dead def. 2671 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2672 report("Live segment ending at dead slot spans instructions", EndMBB); 2673 report_context(LR, Reg, LaneMask); 2674 report_context(S); 2675 } 2676 } 2677 2678 // A live segment can only end at an early-clobber slot if it is being 2679 // redefined by an early-clobber def. 2680 if (S.end.isEarlyClobber()) { 2681 if (I+1 == LR.end() || (I+1)->start != S.end) { 2682 report("Live segment ending at early clobber slot must be " 2683 "redefined by an EC def in the same instruction", EndMBB); 2684 report_context(LR, Reg, LaneMask); 2685 report_context(S); 2686 } 2687 } 2688 2689 // The following checks only apply to virtual registers. Physreg liveness 2690 // is too weird to check. 2691 if (Register::isVirtualRegister(Reg)) { 2692 // A live segment can end with either a redefinition, a kill flag on a 2693 // use, or a dead flag on a def. 2694 bool hasRead = false; 2695 bool hasSubRegDef = false; 2696 bool hasDeadDef = false; 2697 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2698 if (!MOI->isReg() || MOI->getReg() != Reg) 2699 continue; 2700 unsigned Sub = MOI->getSubReg(); 2701 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2702 : LaneBitmask::getAll(); 2703 if (MOI->isDef()) { 2704 if (Sub != 0) { 2705 hasSubRegDef = true; 2706 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2707 // mask for subregister defs. Read-undef defs will be handled by 2708 // readsReg below. 2709 SLM = ~SLM; 2710 } 2711 if (MOI->isDead()) 2712 hasDeadDef = true; 2713 } 2714 if (LaneMask.any() && (LaneMask & SLM).none()) 2715 continue; 2716 if (MOI->readsReg()) 2717 hasRead = true; 2718 } 2719 if (S.end.isDead()) { 2720 // Make sure that the corresponding machine operand for a "dead" live 2721 // range has the dead flag. We cannot perform this check for subregister 2722 // liveranges as partially dead values are allowed. 2723 if (LaneMask.none() && !hasDeadDef) { 2724 report("Instruction ending live segment on dead slot has no dead flag", 2725 MI); 2726 report_context(LR, Reg, LaneMask); 2727 report_context(S); 2728 } 2729 } else { 2730 if (!hasRead) { 2731 // When tracking subregister liveness, the main range must start new 2732 // values on partial register writes, even if there is no read. 2733 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2734 !hasSubRegDef) { 2735 report("Instruction ending live segment doesn't read the register", 2736 MI); 2737 report_context(LR, Reg, LaneMask); 2738 report_context(S); 2739 } 2740 } 2741 } 2742 } 2743 2744 // Now check all the basic blocks in this live segment. 2745 MachineFunction::const_iterator MFI = MBB->getIterator(); 2746 // Is this live segment the beginning of a non-PHIDef VN? 2747 if (S.start == VNI->def && !VNI->isPHIDef()) { 2748 // Not live-in to any blocks. 2749 if (MBB == EndMBB) 2750 return; 2751 // Skip this block. 2752 ++MFI; 2753 } 2754 2755 SmallVector<SlotIndex, 4> Undefs; 2756 if (LaneMask.any()) { 2757 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2758 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2759 } 2760 2761 while (true) { 2762 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2763 // We don't know how to track physregs into a landing pad. 2764 if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) { 2765 if (&*MFI == EndMBB) 2766 break; 2767 ++MFI; 2768 continue; 2769 } 2770 2771 // Is VNI a PHI-def in the current block? 2772 bool IsPHI = VNI->isPHIDef() && 2773 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2774 2775 // Check that VNI is live-out of all predecessors. 2776 for (const MachineBasicBlock *Pred : MFI->predecessors()) { 2777 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred); 2778 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2779 2780 // All predecessors must have a live-out value. However for a phi 2781 // instruction with subregister intervals 2782 // only one of the subregisters (not necessarily the current one) needs to 2783 // be defined. 2784 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2785 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes)) 2786 continue; 2787 report("Register not marked live out of predecessor", Pred); 2788 report_context(LR, Reg, LaneMask); 2789 report_context(*VNI); 2790 errs() << " live into " << printMBBReference(*MFI) << '@' 2791 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2792 << PEnd << '\n'; 2793 continue; 2794 } 2795 2796 // Only PHI-defs can take different predecessor values. 2797 if (!IsPHI && PVNI != VNI) { 2798 report("Different value live out of predecessor", Pred); 2799 report_context(LR, Reg, LaneMask); 2800 errs() << "Valno #" << PVNI->id << " live out of " 2801 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #" 2802 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2803 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2804 } 2805 } 2806 if (&*MFI == EndMBB) 2807 break; 2808 ++MFI; 2809 } 2810 } 2811 2812 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2813 LaneBitmask LaneMask) { 2814 for (const VNInfo *VNI : LR.valnos) 2815 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2816 2817 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2818 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2819 } 2820 2821 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2822 unsigned Reg = LI.reg; 2823 assert(Register::isVirtualRegister(Reg)); 2824 verifyLiveRange(LI, Reg); 2825 2826 LaneBitmask Mask; 2827 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2828 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2829 if ((Mask & SR.LaneMask).any()) { 2830 report("Lane masks of sub ranges overlap in live interval", MF); 2831 report_context(LI); 2832 } 2833 if ((SR.LaneMask & ~MaxMask).any()) { 2834 report("Subrange lanemask is invalid", MF); 2835 report_context(LI); 2836 } 2837 if (SR.empty()) { 2838 report("Subrange must not be empty", MF); 2839 report_context(SR, LI.reg, SR.LaneMask); 2840 } 2841 Mask |= SR.LaneMask; 2842 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2843 if (!LI.covers(SR)) { 2844 report("A Subrange is not covered by the main range", MF); 2845 report_context(LI); 2846 } 2847 } 2848 2849 // Check the LI only has one connected component. 2850 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2851 unsigned NumComp = ConEQ.Classify(LI); 2852 if (NumComp > 1) { 2853 report("Multiple connected components in live interval", MF); 2854 report_context(LI); 2855 for (unsigned comp = 0; comp != NumComp; ++comp) { 2856 errs() << comp << ": valnos"; 2857 for (const VNInfo *I : LI.valnos) 2858 if (comp == ConEQ.getEqClass(I)) 2859 errs() << ' ' << I->id; 2860 errs() << '\n'; 2861 } 2862 } 2863 } 2864 2865 namespace { 2866 2867 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2868 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2869 // value is zero. 2870 // We use a bool plus an integer to capture the stack state. 2871 struct StackStateOfBB { 2872 StackStateOfBB() = default; 2873 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2874 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2875 ExitIsSetup(ExitSetup) {} 2876 2877 // Can be negative, which means we are setting up a frame. 2878 int EntryValue = 0; 2879 int ExitValue = 0; 2880 bool EntryIsSetup = false; 2881 bool ExitIsSetup = false; 2882 }; 2883 2884 } // end anonymous namespace 2885 2886 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2887 /// by a FrameDestroy <n>, stack adjustments are identical on all 2888 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2889 void MachineVerifier::verifyStackFrame() { 2890 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2891 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2892 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2893 return; 2894 2895 SmallVector<StackStateOfBB, 8> SPState; 2896 SPState.resize(MF->getNumBlockIDs()); 2897 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2898 2899 // Visit the MBBs in DFS order. 2900 for (df_ext_iterator<const MachineFunction *, 2901 df_iterator_default_set<const MachineBasicBlock *>> 2902 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2903 DFI != DFE; ++DFI) { 2904 const MachineBasicBlock *MBB = *DFI; 2905 2906 StackStateOfBB BBState; 2907 // Check the exit state of the DFS stack predecessor. 2908 if (DFI.getPathLength() >= 2) { 2909 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2910 assert(Reachable.count(StackPred) && 2911 "DFS stack predecessor is already visited.\n"); 2912 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2913 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2914 BBState.ExitValue = BBState.EntryValue; 2915 BBState.ExitIsSetup = BBState.EntryIsSetup; 2916 } 2917 2918 // Update stack state by checking contents of MBB. 2919 for (const auto &I : *MBB) { 2920 if (I.getOpcode() == FrameSetupOpcode) { 2921 if (BBState.ExitIsSetup) 2922 report("FrameSetup is after another FrameSetup", &I); 2923 BBState.ExitValue -= TII->getFrameTotalSize(I); 2924 BBState.ExitIsSetup = true; 2925 } 2926 2927 if (I.getOpcode() == FrameDestroyOpcode) { 2928 int Size = TII->getFrameTotalSize(I); 2929 if (!BBState.ExitIsSetup) 2930 report("FrameDestroy is not after a FrameSetup", &I); 2931 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2932 BBState.ExitValue; 2933 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2934 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2935 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2936 << AbsSPAdj << ">.\n"; 2937 } 2938 BBState.ExitValue += Size; 2939 BBState.ExitIsSetup = false; 2940 } 2941 } 2942 SPState[MBB->getNumber()] = BBState; 2943 2944 // Make sure the exit state of any predecessor is consistent with the entry 2945 // state. 2946 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 2947 if (Reachable.count(Pred) && 2948 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || 2949 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2950 report("The exit stack state of a predecessor is inconsistent.", MBB); 2951 errs() << "Predecessor " << printMBBReference(*Pred) 2952 << " has exit state (" << SPState[Pred->getNumber()].ExitValue 2953 << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while " 2954 << printMBBReference(*MBB) << " has entry state (" 2955 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2956 } 2957 } 2958 2959 // Make sure the entry state of any successor is consistent with the exit 2960 // state. 2961 for (const MachineBasicBlock *Succ : MBB->successors()) { 2962 if (Reachable.count(Succ) && 2963 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || 2964 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2965 report("The entry stack state of a successor is inconsistent.", MBB); 2966 errs() << "Successor " << printMBBReference(*Succ) 2967 << " has entry state (" << SPState[Succ->getNumber()].EntryValue 2968 << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while " 2969 << printMBBReference(*MBB) << " has exit state (" 2970 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2971 } 2972 } 2973 2974 // Make sure a basic block with return ends with zero stack adjustment. 2975 if (!MBB->empty() && MBB->back().isReturn()) { 2976 if (BBState.ExitIsSetup) 2977 report("A return block ends with a FrameSetup.", MBB); 2978 if (BBState.ExitValue) 2979 report("A return block ends with a nonzero stack adjustment.", MBB); 2980 } 2981 } 2982 } 2983