1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled with the command-line option 20 // -verify-machineinstrs. 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/Analysis/EHPersonalities.h" 35 #include "llvm/CodeGen/CodeGenCommonISel.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveRangeCalc.h" 39 #include "llvm/CodeGen/LiveStacks.h" 40 #include "llvm/CodeGen/LiveVariables.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineFrameInfo.h" 43 #include "llvm/CodeGen/MachineFunction.h" 44 #include "llvm/CodeGen/MachineFunctionPass.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBundle.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/PseudoSourceValue.h" 51 #include "llvm/CodeGen/RegisterBank.h" 52 #include "llvm/CodeGen/RegisterBankInfo.h" 53 #include "llvm/CodeGen/SlotIndexes.h" 54 #include "llvm/CodeGen/StackMaps.h" 55 #include "llvm/CodeGen/TargetInstrInfo.h" 56 #include "llvm/CodeGen/TargetOpcodes.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/InlineAsm.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/InitializePasses.h" 65 #include "llvm/MC/LaneBitmask.h" 66 #include "llvm/MC/MCAsmInfo.h" 67 #include "llvm/MC/MCDwarf.h" 68 #include "llvm/MC/MCInstrDesc.h" 69 #include "llvm/MC/MCRegisterInfo.h" 70 #include "llvm/MC/MCTargetOptions.h" 71 #include "llvm/Pass.h" 72 #include "llvm/Support/Casting.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/LowLevelTypeImpl.h" 75 #include "llvm/Support/MathExtras.h" 76 #include "llvm/Support/ModRef.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Target/TargetMachine.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <cstddef> 82 #include <cstdint> 83 #include <iterator> 84 #include <string> 85 #include <utility> 86 87 using namespace llvm; 88 89 namespace { 90 91 struct MachineVerifier { 92 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 93 94 unsigned verify(const MachineFunction &MF); 95 96 Pass *const PASS; 97 const char *Banner; 98 const MachineFunction *MF; 99 const TargetMachine *TM; 100 const TargetInstrInfo *TII; 101 const TargetRegisterInfo *TRI; 102 const MachineRegisterInfo *MRI; 103 const RegisterBankInfo *RBI; 104 105 unsigned foundErrors; 106 107 // Avoid querying the MachineFunctionProperties for each operand. 108 bool isFunctionRegBankSelected; 109 bool isFunctionSelected; 110 bool isFunctionTracksDebugUserValues; 111 112 using RegVector = SmallVector<Register, 16>; 113 using RegMaskVector = SmallVector<const uint32_t *, 4>; 114 using RegSet = DenseSet<Register>; 115 using RegMap = DenseMap<Register, const MachineInstr *>; 116 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 117 118 const MachineInstr *FirstNonPHI; 119 const MachineInstr *FirstTerminator; 120 BlockSet FunctionBlocks; 121 122 BitVector regsReserved; 123 RegSet regsLive; 124 RegVector regsDefined, regsDead, regsKilled; 125 RegMaskVector regMasks; 126 127 SlotIndex lastIndex; 128 129 // Add Reg and any sub-registers to RV 130 void addRegWithSubRegs(RegVector &RV, Register Reg) { 131 RV.push_back(Reg); 132 if (Reg.isPhysical()) 133 append_range(RV, TRI->subregs(Reg.asMCReg())); 134 } 135 136 struct BBInfo { 137 // Is this MBB reachable from the MF entry point? 138 bool reachable = false; 139 140 // Vregs that must be live in because they are used without being 141 // defined. Map value is the user. vregsLiveIn doesn't include regs 142 // that only are used by PHI nodes. 143 RegMap vregsLiveIn; 144 145 // Regs killed in MBB. They may be defined again, and will then be in both 146 // regsKilled and regsLiveOut. 147 RegSet regsKilled; 148 149 // Regs defined in MBB and live out. Note that vregs passing through may 150 // be live out without being mentioned here. 151 RegSet regsLiveOut; 152 153 // Vregs that pass through MBB untouched. This set is disjoint from 154 // regsKilled and regsLiveOut. 155 RegSet vregsPassed; 156 157 // Vregs that must pass through MBB because they are needed by a successor 158 // block. This set is disjoint from regsLiveOut. 159 RegSet vregsRequired; 160 161 // Set versions of block's predecessor and successor lists. 162 BlockSet Preds, Succs; 163 164 BBInfo() = default; 165 166 // Add register to vregsRequired if it belongs there. Return true if 167 // anything changed. 168 bool addRequired(Register Reg) { 169 if (!Reg.isVirtual()) 170 return false; 171 if (regsLiveOut.count(Reg)) 172 return false; 173 return vregsRequired.insert(Reg).second; 174 } 175 176 // Same for a full set. 177 bool addRequired(const RegSet &RS) { 178 bool Changed = false; 179 for (Register Reg : RS) 180 Changed |= addRequired(Reg); 181 return Changed; 182 } 183 184 // Same for a full map. 185 bool addRequired(const RegMap &RM) { 186 bool Changed = false; 187 for (const auto &I : RM) 188 Changed |= addRequired(I.first); 189 return Changed; 190 } 191 192 // Live-out registers are either in regsLiveOut or vregsPassed. 193 bool isLiveOut(Register Reg) const { 194 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 195 } 196 }; 197 198 // Extra register info per MBB. 199 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 200 201 bool isReserved(Register Reg) { 202 return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id()); 203 } 204 205 bool isAllocatable(Register Reg) const { 206 return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 207 !regsReserved.test(Reg.id()); 208 } 209 210 // Analysis information if available 211 LiveVariables *LiveVars; 212 LiveIntervals *LiveInts; 213 LiveStacks *LiveStks; 214 SlotIndexes *Indexes; 215 216 void visitMachineFunctionBefore(); 217 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 218 void visitMachineBundleBefore(const MachineInstr *MI); 219 220 /// Verify that all of \p MI's virtual register operands are scalars. 221 /// \returns True if all virtual register operands are scalar. False 222 /// otherwise. 223 bool verifyAllRegOpsScalar(const MachineInstr &MI, 224 const MachineRegisterInfo &MRI); 225 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 226 void verifyPreISelGenericInstruction(const MachineInstr *MI); 227 void visitMachineInstrBefore(const MachineInstr *MI); 228 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 229 void visitMachineBundleAfter(const MachineInstr *MI); 230 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 231 void visitMachineFunctionAfter(); 232 233 void report(const char *msg, const MachineFunction *MF); 234 void report(const char *msg, const MachineBasicBlock *MBB); 235 void report(const char *msg, const MachineInstr *MI); 236 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 237 LLT MOVRegType = LLT{}); 238 void report(const Twine &Msg, const MachineInstr *MI); 239 240 void report_context(const LiveInterval &LI) const; 241 void report_context(const LiveRange &LR, Register VRegUnit, 242 LaneBitmask LaneMask) const; 243 void report_context(const LiveRange::Segment &S) const; 244 void report_context(const VNInfo &VNI) const; 245 void report_context(SlotIndex Pos) const; 246 void report_context(MCPhysReg PhysReg) const; 247 void report_context_liverange(const LiveRange &LR) const; 248 void report_context_lanemask(LaneBitmask LaneMask) const; 249 void report_context_vreg(Register VReg) const; 250 void report_context_vreg_regunit(Register VRegOrUnit) const; 251 252 void verifyInlineAsm(const MachineInstr *MI); 253 254 void checkLiveness(const MachineOperand *MO, unsigned MONum); 255 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 256 SlotIndex UseIdx, const LiveRange &LR, 257 Register VRegOrUnit, 258 LaneBitmask LaneMask = LaneBitmask::getNone()); 259 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 260 SlotIndex DefIdx, const LiveRange &LR, 261 Register VRegOrUnit, bool SubRangeCheck = false, 262 LaneBitmask LaneMask = LaneBitmask::getNone()); 263 264 void markReachable(const MachineBasicBlock *MBB); 265 void calcRegsPassed(); 266 void checkPHIOps(const MachineBasicBlock &MBB); 267 268 void calcRegsRequired(); 269 void verifyLiveVariables(); 270 void verifyLiveIntervals(); 271 void verifyLiveInterval(const LiveInterval&); 272 void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register, 273 LaneBitmask); 274 void verifyLiveRangeSegment(const LiveRange &, 275 const LiveRange::const_iterator I, Register, 276 LaneBitmask); 277 void verifyLiveRange(const LiveRange &, Register, 278 LaneBitmask LaneMask = LaneBitmask::getNone()); 279 280 void verifyStackFrame(); 281 282 void verifySlotIndexes() const; 283 void verifyProperties(const MachineFunction &MF); 284 }; 285 286 struct MachineVerifierPass : public MachineFunctionPass { 287 static char ID; // Pass ID, replacement for typeid 288 289 const std::string Banner; 290 291 MachineVerifierPass(std::string banner = std::string()) 292 : MachineFunctionPass(ID), Banner(std::move(banner)) { 293 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 294 } 295 296 void getAnalysisUsage(AnalysisUsage &AU) const override { 297 AU.addUsedIfAvailable<LiveStacks>(); 298 AU.addUsedIfAvailable<LiveVariables>(); 299 AU.setPreservesAll(); 300 MachineFunctionPass::getAnalysisUsage(AU); 301 } 302 303 bool runOnMachineFunction(MachineFunction &MF) override { 304 // Skip functions that have known verification problems. 305 // FIXME: Remove this mechanism when all problematic passes have been 306 // fixed. 307 if (MF.getProperties().hasProperty( 308 MachineFunctionProperties::Property::FailsVerification)) 309 return false; 310 311 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 312 if (FoundErrors) 313 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 314 return false; 315 } 316 }; 317 318 } // end anonymous namespace 319 320 char MachineVerifierPass::ID = 0; 321 322 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 323 "Verify generated machine code", false, false) 324 325 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 326 return new MachineVerifierPass(Banner); 327 } 328 329 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *, 330 const std::string &Banner, 331 const MachineFunction &MF) { 332 // TODO: Use MFAM after porting below analyses. 333 // LiveVariables *LiveVars; 334 // LiveIntervals *LiveInts; 335 // LiveStacks *LiveStks; 336 // SlotIndexes *Indexes; 337 unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF); 338 if (FoundErrors) 339 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors."); 340 } 341 342 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 343 const { 344 MachineFunction &MF = const_cast<MachineFunction&>(*this); 345 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 346 if (AbortOnErrors && FoundErrors) 347 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 348 return FoundErrors == 0; 349 } 350 351 void MachineVerifier::verifySlotIndexes() const { 352 if (Indexes == nullptr) 353 return; 354 355 // Ensure the IdxMBB list is sorted by slot indexes. 356 SlotIndex Last; 357 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 358 E = Indexes->MBBIndexEnd(); I != E; ++I) { 359 assert(!Last.isValid() || I->first > Last); 360 Last = I->first; 361 } 362 } 363 364 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 365 // If a pass has introduced virtual registers without clearing the 366 // NoVRegs property (or set it without allocating the vregs) 367 // then report an error. 368 if (MF.getProperties().hasProperty( 369 MachineFunctionProperties::Property::NoVRegs) && 370 MRI->getNumVirtRegs()) 371 report("Function has NoVRegs property but there are VReg operands", &MF); 372 } 373 374 unsigned MachineVerifier::verify(const MachineFunction &MF) { 375 foundErrors = 0; 376 377 this->MF = &MF; 378 TM = &MF.getTarget(); 379 TII = MF.getSubtarget().getInstrInfo(); 380 TRI = MF.getSubtarget().getRegisterInfo(); 381 RBI = MF.getSubtarget().getRegBankInfo(); 382 MRI = &MF.getRegInfo(); 383 384 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 385 MachineFunctionProperties::Property::FailedISel); 386 387 // If we're mid-GlobalISel and we already triggered the fallback path then 388 // it's expected that the MIR is somewhat broken but that's ok since we'll 389 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 390 if (isFunctionFailedISel) 391 return foundErrors; 392 393 isFunctionRegBankSelected = MF.getProperties().hasProperty( 394 MachineFunctionProperties::Property::RegBankSelected); 395 isFunctionSelected = MF.getProperties().hasProperty( 396 MachineFunctionProperties::Property::Selected); 397 isFunctionTracksDebugUserValues = MF.getProperties().hasProperty( 398 MachineFunctionProperties::Property::TracksDebugUserValues); 399 400 LiveVars = nullptr; 401 LiveInts = nullptr; 402 LiveStks = nullptr; 403 Indexes = nullptr; 404 if (PASS) { 405 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 406 // We don't want to verify LiveVariables if LiveIntervals is available. 407 if (!LiveInts) 408 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 409 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 410 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 411 } 412 413 verifySlotIndexes(); 414 415 verifyProperties(MF); 416 417 visitMachineFunctionBefore(); 418 for (const MachineBasicBlock &MBB : MF) { 419 visitMachineBasicBlockBefore(&MBB); 420 // Keep track of the current bundle header. 421 const MachineInstr *CurBundle = nullptr; 422 // Do we expect the next instruction to be part of the same bundle? 423 bool InBundle = false; 424 425 for (const MachineInstr &MI : MBB.instrs()) { 426 if (MI.getParent() != &MBB) { 427 report("Bad instruction parent pointer", &MBB); 428 errs() << "Instruction: " << MI; 429 continue; 430 } 431 432 // Check for consistent bundle flags. 433 if (InBundle && !MI.isBundledWithPred()) 434 report("Missing BundledPred flag, " 435 "BundledSucc was set on predecessor", 436 &MI); 437 if (!InBundle && MI.isBundledWithPred()) 438 report("BundledPred flag is set, " 439 "but BundledSucc not set on predecessor", 440 &MI); 441 442 // Is this a bundle header? 443 if (!MI.isInsideBundle()) { 444 if (CurBundle) 445 visitMachineBundleAfter(CurBundle); 446 CurBundle = &MI; 447 visitMachineBundleBefore(CurBundle); 448 } else if (!CurBundle) 449 report("No bundle header", &MI); 450 visitMachineInstrBefore(&MI); 451 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 452 const MachineOperand &Op = MI.getOperand(I); 453 if (Op.getParent() != &MI) { 454 // Make sure to use correct addOperand / removeOperand / ChangeTo 455 // functions when replacing operands of a MachineInstr. 456 report("Instruction has operand with wrong parent set", &MI); 457 } 458 459 visitMachineOperand(&Op, I); 460 } 461 462 // Was this the last bundled instruction? 463 InBundle = MI.isBundledWithSucc(); 464 } 465 if (CurBundle) 466 visitMachineBundleAfter(CurBundle); 467 if (InBundle) 468 report("BundledSucc flag set on last instruction in block", &MBB.back()); 469 visitMachineBasicBlockAfter(&MBB); 470 } 471 visitMachineFunctionAfter(); 472 473 // Clean up. 474 regsLive.clear(); 475 regsDefined.clear(); 476 regsDead.clear(); 477 regsKilled.clear(); 478 regMasks.clear(); 479 MBBInfoMap.clear(); 480 481 return foundErrors; 482 } 483 484 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 485 assert(MF); 486 errs() << '\n'; 487 if (!foundErrors++) { 488 if (Banner) 489 errs() << "# " << Banner << '\n'; 490 if (LiveInts != nullptr) 491 LiveInts->print(errs()); 492 else 493 MF->print(errs(), Indexes); 494 } 495 errs() << "*** Bad machine code: " << msg << " ***\n" 496 << "- function: " << MF->getName() << "\n"; 497 } 498 499 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 500 assert(MBB); 501 report(msg, MBB->getParent()); 502 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 503 << MBB->getName() << " (" << (const void *)MBB << ')'; 504 if (Indexes) 505 errs() << " [" << Indexes->getMBBStartIdx(MBB) 506 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 507 errs() << '\n'; 508 } 509 510 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 511 assert(MI); 512 report(msg, MI->getParent()); 513 errs() << "- instruction: "; 514 if (Indexes && Indexes->hasIndex(*MI)) 515 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 516 MI->print(errs(), /*IsStandalone=*/true); 517 } 518 519 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 520 unsigned MONum, LLT MOVRegType) { 521 assert(MO); 522 report(msg, MO->getParent()); 523 errs() << "- operand " << MONum << ": "; 524 MO->print(errs(), MOVRegType, TRI); 525 errs() << "\n"; 526 } 527 528 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) { 529 report(Msg.str().c_str(), MI); 530 } 531 532 void MachineVerifier::report_context(SlotIndex Pos) const { 533 errs() << "- at: " << Pos << '\n'; 534 } 535 536 void MachineVerifier::report_context(const LiveInterval &LI) const { 537 errs() << "- interval: " << LI << '\n'; 538 } 539 540 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit, 541 LaneBitmask LaneMask) const { 542 report_context_liverange(LR); 543 report_context_vreg_regunit(VRegUnit); 544 if (LaneMask.any()) 545 report_context_lanemask(LaneMask); 546 } 547 548 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 549 errs() << "- segment: " << S << '\n'; 550 } 551 552 void MachineVerifier::report_context(const VNInfo &VNI) const { 553 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 554 } 555 556 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 557 errs() << "- liverange: " << LR << '\n'; 558 } 559 560 void MachineVerifier::report_context(MCPhysReg PReg) const { 561 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 562 } 563 564 void MachineVerifier::report_context_vreg(Register VReg) const { 565 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 566 } 567 568 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const { 569 if (VRegOrUnit.isVirtual()) { 570 report_context_vreg(VRegOrUnit); 571 } else { 572 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 573 } 574 } 575 576 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 577 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 578 } 579 580 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 581 BBInfo &MInfo = MBBInfoMap[MBB]; 582 if (!MInfo.reachable) { 583 MInfo.reachable = true; 584 for (const MachineBasicBlock *Succ : MBB->successors()) 585 markReachable(Succ); 586 } 587 } 588 589 void MachineVerifier::visitMachineFunctionBefore() { 590 lastIndex = SlotIndex(); 591 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 592 : TRI->getReservedRegs(*MF); 593 594 if (!MF->empty()) 595 markReachable(&MF->front()); 596 597 // Build a set of the basic blocks in the function. 598 FunctionBlocks.clear(); 599 for (const auto &MBB : *MF) { 600 FunctionBlocks.insert(&MBB); 601 BBInfo &MInfo = MBBInfoMap[&MBB]; 602 603 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 604 if (MInfo.Preds.size() != MBB.pred_size()) 605 report("MBB has duplicate entries in its predecessor list.", &MBB); 606 607 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 608 if (MInfo.Succs.size() != MBB.succ_size()) 609 report("MBB has duplicate entries in its successor list.", &MBB); 610 } 611 612 // Check that the register use lists are sane. 613 MRI->verifyUseLists(); 614 615 if (!MF->empty()) 616 verifyStackFrame(); 617 } 618 619 void 620 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 621 FirstTerminator = nullptr; 622 FirstNonPHI = nullptr; 623 624 if (!MF->getProperties().hasProperty( 625 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 626 // If this block has allocatable physical registers live-in, check that 627 // it is an entry block or landing pad. 628 for (const auto &LI : MBB->liveins()) { 629 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 630 MBB->getIterator() != MBB->getParent()->begin()) { 631 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 632 report_context(LI.PhysReg); 633 } 634 } 635 } 636 637 if (MBB->isIRBlockAddressTaken()) { 638 if (!MBB->getAddressTakenIRBlock()->hasAddressTaken()) 639 report("ir-block-address-taken is associated with basic block not used by " 640 "a blockaddress.", 641 MBB); 642 } 643 644 // Count the number of landing pad successors. 645 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; 646 for (const auto *succ : MBB->successors()) { 647 if (succ->isEHPad()) 648 LandingPadSuccs.insert(succ); 649 if (!FunctionBlocks.count(succ)) 650 report("MBB has successor that isn't part of the function.", MBB); 651 if (!MBBInfoMap[succ].Preds.count(MBB)) { 652 report("Inconsistent CFG", MBB); 653 errs() << "MBB is not in the predecessor list of the successor " 654 << printMBBReference(*succ) << ".\n"; 655 } 656 } 657 658 // Check the predecessor list. 659 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 660 if (!FunctionBlocks.count(Pred)) 661 report("MBB has predecessor that isn't part of the function.", MBB); 662 if (!MBBInfoMap[Pred].Succs.count(MBB)) { 663 report("Inconsistent CFG", MBB); 664 errs() << "MBB is not in the successor list of the predecessor " 665 << printMBBReference(*Pred) << ".\n"; 666 } 667 } 668 669 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 670 const BasicBlock *BB = MBB->getBasicBlock(); 671 const Function &F = MF->getFunction(); 672 if (LandingPadSuccs.size() > 1 && 673 !(AsmInfo && 674 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 675 BB && isa<SwitchInst>(BB->getTerminator())) && 676 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 677 report("MBB has more than one landing pad successor", MBB); 678 679 // Call analyzeBranch. If it succeeds, there several more conditions to check. 680 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 681 SmallVector<MachineOperand, 4> Cond; 682 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 683 Cond)) { 684 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's 685 // check whether its answers match up with reality. 686 if (!TBB && !FBB) { 687 // Block falls through to its successor. 688 if (!MBB->empty() && MBB->back().isBarrier() && 689 !TII->isPredicated(MBB->back())) { 690 report("MBB exits via unconditional fall-through but ends with a " 691 "barrier instruction!", MBB); 692 } 693 if (!Cond.empty()) { 694 report("MBB exits via unconditional fall-through but has a condition!", 695 MBB); 696 } 697 } else if (TBB && !FBB && Cond.empty()) { 698 // Block unconditionally branches somewhere. 699 if (MBB->empty()) { 700 report("MBB exits via unconditional branch but doesn't contain " 701 "any instructions!", MBB); 702 } else if (!MBB->back().isBarrier()) { 703 report("MBB exits via unconditional branch but doesn't end with a " 704 "barrier instruction!", MBB); 705 } else if (!MBB->back().isTerminator()) { 706 report("MBB exits via unconditional branch but the branch isn't a " 707 "terminator instruction!", MBB); 708 } 709 } else if (TBB && !FBB && !Cond.empty()) { 710 // Block conditionally branches somewhere, otherwise falls through. 711 if (MBB->empty()) { 712 report("MBB exits via conditional branch/fall-through but doesn't " 713 "contain any instructions!", MBB); 714 } else if (MBB->back().isBarrier()) { 715 report("MBB exits via conditional branch/fall-through but ends with a " 716 "barrier instruction!", MBB); 717 } else if (!MBB->back().isTerminator()) { 718 report("MBB exits via conditional branch/fall-through but the branch " 719 "isn't a terminator instruction!", MBB); 720 } 721 } else if (TBB && FBB) { 722 // Block conditionally branches somewhere, otherwise branches 723 // somewhere else. 724 if (MBB->empty()) { 725 report("MBB exits via conditional branch/branch but doesn't " 726 "contain any instructions!", MBB); 727 } else if (!MBB->back().isBarrier()) { 728 report("MBB exits via conditional branch/branch but doesn't end with a " 729 "barrier instruction!", MBB); 730 } else if (!MBB->back().isTerminator()) { 731 report("MBB exits via conditional branch/branch but the branch " 732 "isn't a terminator instruction!", MBB); 733 } 734 if (Cond.empty()) { 735 report("MBB exits via conditional branch/branch but there's no " 736 "condition!", MBB); 737 } 738 } else { 739 report("analyzeBranch returned invalid data!", MBB); 740 } 741 742 // Now check that the successors match up with the answers reported by 743 // analyzeBranch. 744 if (TBB && !MBB->isSuccessor(TBB)) 745 report("MBB exits via jump or conditional branch, but its target isn't a " 746 "CFG successor!", 747 MBB); 748 if (FBB && !MBB->isSuccessor(FBB)) 749 report("MBB exits via conditional branch, but its target isn't a CFG " 750 "successor!", 751 MBB); 752 753 // There might be a fallthrough to the next block if there's either no 754 // unconditional true branch, or if there's a condition, and one of the 755 // branches is missing. 756 bool Fallthrough = !TBB || (!Cond.empty() && !FBB); 757 758 // A conditional fallthrough must be an actual CFG successor, not 759 // unreachable. (Conversely, an unconditional fallthrough might not really 760 // be a successor, because the block might end in unreachable.) 761 if (!Cond.empty() && !FBB) { 762 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); 763 if (MBBI == MF->end()) { 764 report("MBB conditionally falls through out of function!", MBB); 765 } else if (!MBB->isSuccessor(&*MBBI)) 766 report("MBB exits via conditional branch/fall-through but the CFG " 767 "successors don't match the actual successors!", 768 MBB); 769 } 770 771 // Verify that there aren't any extra un-accounted-for successors. 772 for (const MachineBasicBlock *SuccMBB : MBB->successors()) { 773 // If this successor is one of the branch targets, it's okay. 774 if (SuccMBB == TBB || SuccMBB == FBB) 775 continue; 776 // If we might have a fallthrough, and the successor is the fallthrough 777 // block, that's also ok. 778 if (Fallthrough && SuccMBB == MBB->getNextNode()) 779 continue; 780 // Also accept successors which are for exception-handling or might be 781 // inlineasm_br targets. 782 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget()) 783 continue; 784 report("MBB has unexpected successors which are not branch targets, " 785 "fallthrough, EHPads, or inlineasm_br targets.", 786 MBB); 787 } 788 } 789 790 regsLive.clear(); 791 if (MRI->tracksLiveness()) { 792 for (const auto &LI : MBB->liveins()) { 793 if (!Register::isPhysicalRegister(LI.PhysReg)) { 794 report("MBB live-in list contains non-physical register", MBB); 795 continue; 796 } 797 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) 798 regsLive.insert(SubReg); 799 } 800 } 801 802 const MachineFrameInfo &MFI = MF->getFrameInfo(); 803 BitVector PR = MFI.getPristineRegs(*MF); 804 for (unsigned I : PR.set_bits()) { 805 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) 806 regsLive.insert(SubReg); 807 } 808 809 regsKilled.clear(); 810 regsDefined.clear(); 811 812 if (Indexes) 813 lastIndex = Indexes->getMBBStartIdx(MBB); 814 } 815 816 // This function gets called for all bundle headers, including normal 817 // stand-alone unbundled instructions. 818 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 819 if (Indexes && Indexes->hasIndex(*MI)) { 820 SlotIndex idx = Indexes->getInstructionIndex(*MI); 821 if (!(idx > lastIndex)) { 822 report("Instruction index out of order", MI); 823 errs() << "Last instruction was at " << lastIndex << '\n'; 824 } 825 lastIndex = idx; 826 } 827 828 // Ensure non-terminators don't follow terminators. 829 if (MI->isTerminator()) { 830 if (!FirstTerminator) 831 FirstTerminator = MI; 832 } else if (FirstTerminator) { 833 // For GlobalISel, G_INVOKE_REGION_START is a terminator that we allow to 834 // precede non-terminators. 835 if (FirstTerminator->getOpcode() != TargetOpcode::G_INVOKE_REGION_START) { 836 report("Non-terminator instruction after the first terminator", MI); 837 errs() << "First terminator was:\t" << *FirstTerminator; 838 } 839 } 840 } 841 842 // The operands on an INLINEASM instruction must follow a template. 843 // Verify that the flag operands make sense. 844 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 845 // The first two operands on INLINEASM are the asm string and global flags. 846 if (MI->getNumOperands() < 2) { 847 report("Too few operands on inline asm", MI); 848 return; 849 } 850 if (!MI->getOperand(0).isSymbol()) 851 report("Asm string must be an external symbol", MI); 852 if (!MI->getOperand(1).isImm()) 853 report("Asm flags must be an immediate", MI); 854 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 855 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 856 // and Extra_IsConvergent = 32. 857 if (!isUInt<6>(MI->getOperand(1).getImm())) 858 report("Unknown asm flags", &MI->getOperand(1), 1); 859 860 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 861 862 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 863 unsigned NumOps; 864 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 865 const MachineOperand &MO = MI->getOperand(OpNo); 866 // There may be implicit ops after the fixed operands. 867 if (!MO.isImm()) 868 break; 869 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 870 } 871 872 if (OpNo > MI->getNumOperands()) 873 report("Missing operands in last group", MI); 874 875 // An optional MDNode follows the groups. 876 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 877 ++OpNo; 878 879 // All trailing operands must be implicit registers. 880 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 881 const MachineOperand &MO = MI->getOperand(OpNo); 882 if (!MO.isReg() || !MO.isImplicit()) 883 report("Expected implicit register after groups", &MO, OpNo); 884 } 885 886 if (MI->getOpcode() == TargetOpcode::INLINEASM_BR) { 887 const MachineBasicBlock *MBB = MI->getParent(); 888 889 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands(); 890 i != e; ++i) { 891 const MachineOperand &MO = MI->getOperand(i); 892 893 if (!MO.isMBB()) 894 continue; 895 896 // Check the successor & predecessor lists look ok, assume they are 897 // not. Find the indirect target without going through the successors. 898 const MachineBasicBlock *IndirectTargetMBB = MO.getMBB(); 899 if (!IndirectTargetMBB) { 900 report("INLINEASM_BR indirect target does not exist", &MO, i); 901 break; 902 } 903 904 if (!MBB->isSuccessor(IndirectTargetMBB)) 905 report("INLINEASM_BR indirect target missing from successor list", &MO, 906 i); 907 908 if (!IndirectTargetMBB->isPredecessor(MBB)) 909 report("INLINEASM_BR indirect target predecessor list missing parent", 910 &MO, i); 911 } 912 } 913 } 914 915 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI, 916 const MachineRegisterInfo &MRI) { 917 if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) { 918 if (!Op.isReg()) 919 return false; 920 const auto Reg = Op.getReg(); 921 if (Reg.isPhysical()) 922 return false; 923 return !MRI.getType(Reg).isScalar(); 924 })) 925 return true; 926 report("All register operands must have scalar types", &MI); 927 return false; 928 } 929 930 /// Check that types are consistent when two operands need to have the same 931 /// number of vector elements. 932 /// \return true if the types are valid. 933 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 934 const MachineInstr *MI) { 935 if (Ty0.isVector() != Ty1.isVector()) { 936 report("operand types must be all-vector or all-scalar", MI); 937 // Generally we try to report as many issues as possible at once, but in 938 // this case it's not clear what should we be comparing the size of the 939 // scalar with: the size of the whole vector or its lane. Instead of 940 // making an arbitrary choice and emitting not so helpful message, let's 941 // avoid the extra noise and stop here. 942 return false; 943 } 944 945 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { 946 report("operand types must preserve number of vector elements", MI); 947 return false; 948 } 949 950 return true; 951 } 952 953 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 954 if (isFunctionSelected) 955 report("Unexpected generic instruction in a Selected function", MI); 956 957 const MCInstrDesc &MCID = MI->getDesc(); 958 unsigned NumOps = MI->getNumOperands(); 959 960 // Branches must reference a basic block if they are not indirect 961 if (MI->isBranch() && !MI->isIndirectBranch()) { 962 bool HasMBB = false; 963 for (const MachineOperand &Op : MI->operands()) { 964 if (Op.isMBB()) { 965 HasMBB = true; 966 break; 967 } 968 } 969 970 if (!HasMBB) { 971 report("Branch instruction is missing a basic block operand or " 972 "isIndirectBranch property", 973 MI); 974 } 975 } 976 977 // Check types. 978 SmallVector<LLT, 4> Types; 979 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 980 I != E; ++I) { 981 if (!MCID.operands()[I].isGenericType()) 982 continue; 983 // Generic instructions specify type equality constraints between some of 984 // their operands. Make sure these are consistent. 985 size_t TypeIdx = MCID.operands()[I].getGenericTypeIndex(); 986 Types.resize(std::max(TypeIdx + 1, Types.size())); 987 988 const MachineOperand *MO = &MI->getOperand(I); 989 if (!MO->isReg()) { 990 report("generic instruction must use register operands", MI); 991 continue; 992 } 993 994 LLT OpTy = MRI->getType(MO->getReg()); 995 // Don't report a type mismatch if there is no actual mismatch, only a 996 // type missing, to reduce noise: 997 if (OpTy.isValid()) { 998 // Only the first valid type for a type index will be printed: don't 999 // overwrite it later so it's always clear which type was expected: 1000 if (!Types[TypeIdx].isValid()) 1001 Types[TypeIdx] = OpTy; 1002 else if (Types[TypeIdx] != OpTy) 1003 report("Type mismatch in generic instruction", MO, I, OpTy); 1004 } else { 1005 // Generic instructions must have types attached to their operands. 1006 report("Generic instruction is missing a virtual register type", MO, I); 1007 } 1008 } 1009 1010 // Generic opcodes must not have physical register operands. 1011 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 1012 const MachineOperand *MO = &MI->getOperand(I); 1013 if (MO->isReg() && MO->getReg().isPhysical()) 1014 report("Generic instruction cannot have physical register", MO, I); 1015 } 1016 1017 // Avoid out of bounds in checks below. This was already reported earlier. 1018 if (MI->getNumOperands() < MCID.getNumOperands()) 1019 return; 1020 1021 StringRef ErrorInfo; 1022 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1023 report(ErrorInfo.data(), MI); 1024 1025 // Verify properties of various specific instruction types 1026 unsigned Opc = MI->getOpcode(); 1027 switch (Opc) { 1028 case TargetOpcode::G_ASSERT_SEXT: 1029 case TargetOpcode::G_ASSERT_ZEXT: { 1030 std::string OpcName = 1031 Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT"; 1032 if (!MI->getOperand(2).isImm()) { 1033 report(Twine(OpcName, " expects an immediate operand #2"), MI); 1034 break; 1035 } 1036 1037 Register Dst = MI->getOperand(0).getReg(); 1038 Register Src = MI->getOperand(1).getReg(); 1039 LLT SrcTy = MRI->getType(Src); 1040 int64_t Imm = MI->getOperand(2).getImm(); 1041 if (Imm <= 0) { 1042 report(Twine(OpcName, " size must be >= 1"), MI); 1043 break; 1044 } 1045 1046 if (Imm >= SrcTy.getScalarSizeInBits()) { 1047 report(Twine(OpcName, " size must be less than source bit width"), MI); 1048 break; 1049 } 1050 1051 const RegisterBank *SrcRB = RBI->getRegBank(Src, *MRI, *TRI); 1052 const RegisterBank *DstRB = RBI->getRegBank(Dst, *MRI, *TRI); 1053 1054 // Allow only the source bank to be set. 1055 if ((SrcRB && DstRB && SrcRB != DstRB) || (DstRB && !SrcRB)) { 1056 report(Twine(OpcName, " cannot change register bank"), MI); 1057 break; 1058 } 1059 1060 // Don't allow a class change. Do allow member class->regbank. 1061 const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Dst); 1062 if (DstRC && DstRC != MRI->getRegClassOrNull(Src)) { 1063 report( 1064 Twine(OpcName, " source and destination register classes must match"), 1065 MI); 1066 break; 1067 } 1068 1069 break; 1070 } 1071 1072 case TargetOpcode::G_CONSTANT: 1073 case TargetOpcode::G_FCONSTANT: { 1074 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1075 if (DstTy.isVector()) 1076 report("Instruction cannot use a vector result type", MI); 1077 1078 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 1079 if (!MI->getOperand(1).isCImm()) { 1080 report("G_CONSTANT operand must be cimm", MI); 1081 break; 1082 } 1083 1084 const ConstantInt *CI = MI->getOperand(1).getCImm(); 1085 if (CI->getBitWidth() != DstTy.getSizeInBits()) 1086 report("inconsistent constant size", MI); 1087 } else { 1088 if (!MI->getOperand(1).isFPImm()) { 1089 report("G_FCONSTANT operand must be fpimm", MI); 1090 break; 1091 } 1092 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 1093 1094 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 1095 DstTy.getSizeInBits()) { 1096 report("inconsistent constant size", MI); 1097 } 1098 } 1099 1100 break; 1101 } 1102 case TargetOpcode::G_LOAD: 1103 case TargetOpcode::G_STORE: 1104 case TargetOpcode::G_ZEXTLOAD: 1105 case TargetOpcode::G_SEXTLOAD: { 1106 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 1107 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1108 if (!PtrTy.isPointer()) 1109 report("Generic memory instruction must access a pointer", MI); 1110 1111 // Generic loads and stores must have a single MachineMemOperand 1112 // describing that access. 1113 if (!MI->hasOneMemOperand()) { 1114 report("Generic instruction accessing memory must have one mem operand", 1115 MI); 1116 } else { 1117 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1118 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 1119 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 1120 if (MMO.getSizeInBits() >= ValTy.getSizeInBits()) 1121 report("Generic extload must have a narrower memory type", MI); 1122 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 1123 if (MMO.getSize() > ValTy.getSizeInBytes()) 1124 report("load memory size cannot exceed result size", MI); 1125 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 1126 if (ValTy.getSizeInBytes() < MMO.getSize()) 1127 report("store memory size cannot exceed value size", MI); 1128 } 1129 1130 const AtomicOrdering Order = MMO.getSuccessOrdering(); 1131 if (Opc == TargetOpcode::G_STORE) { 1132 if (Order == AtomicOrdering::Acquire || 1133 Order == AtomicOrdering::AcquireRelease) 1134 report("atomic store cannot use acquire ordering", MI); 1135 1136 } else { 1137 if (Order == AtomicOrdering::Release || 1138 Order == AtomicOrdering::AcquireRelease) 1139 report("atomic load cannot use release ordering", MI); 1140 } 1141 } 1142 1143 break; 1144 } 1145 case TargetOpcode::G_PHI: { 1146 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1147 if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()), 1148 [this, &DstTy](const MachineOperand &MO) { 1149 if (!MO.isReg()) 1150 return true; 1151 LLT Ty = MRI->getType(MO.getReg()); 1152 if (!Ty.isValid() || (Ty != DstTy)) 1153 return false; 1154 return true; 1155 })) 1156 report("Generic Instruction G_PHI has operands with incompatible/missing " 1157 "types", 1158 MI); 1159 break; 1160 } 1161 case TargetOpcode::G_BITCAST: { 1162 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1163 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1164 if (!DstTy.isValid() || !SrcTy.isValid()) 1165 break; 1166 1167 if (SrcTy.isPointer() != DstTy.isPointer()) 1168 report("bitcast cannot convert between pointers and other types", MI); 1169 1170 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1171 report("bitcast sizes must match", MI); 1172 1173 if (SrcTy == DstTy) 1174 report("bitcast must change the type", MI); 1175 1176 break; 1177 } 1178 case TargetOpcode::G_INTTOPTR: 1179 case TargetOpcode::G_PTRTOINT: 1180 case TargetOpcode::G_ADDRSPACE_CAST: { 1181 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1182 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1183 if (!DstTy.isValid() || !SrcTy.isValid()) 1184 break; 1185 1186 verifyVectorElementMatch(DstTy, SrcTy, MI); 1187 1188 DstTy = DstTy.getScalarType(); 1189 SrcTy = SrcTy.getScalarType(); 1190 1191 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1192 if (!DstTy.isPointer()) 1193 report("inttoptr result type must be a pointer", MI); 1194 if (SrcTy.isPointer()) 1195 report("inttoptr source type must not be a pointer", MI); 1196 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1197 if (!SrcTy.isPointer()) 1198 report("ptrtoint source type must be a pointer", MI); 1199 if (DstTy.isPointer()) 1200 report("ptrtoint result type must not be a pointer", MI); 1201 } else { 1202 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1203 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1204 report("addrspacecast types must be pointers", MI); 1205 else { 1206 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1207 report("addrspacecast must convert different address spaces", MI); 1208 } 1209 } 1210 1211 break; 1212 } 1213 case TargetOpcode::G_PTR_ADD: { 1214 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1215 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1216 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1217 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1218 break; 1219 1220 if (!PtrTy.getScalarType().isPointer()) 1221 report("gep first operand must be a pointer", MI); 1222 1223 if (OffsetTy.getScalarType().isPointer()) 1224 report("gep offset operand must not be a pointer", MI); 1225 1226 // TODO: Is the offset allowed to be a scalar with a vector? 1227 break; 1228 } 1229 case TargetOpcode::G_PTRMASK: { 1230 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1231 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1232 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg()); 1233 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) 1234 break; 1235 1236 if (!DstTy.getScalarType().isPointer()) 1237 report("ptrmask result type must be a pointer", MI); 1238 1239 if (!MaskTy.getScalarType().isScalar()) 1240 report("ptrmask mask type must be an integer", MI); 1241 1242 verifyVectorElementMatch(DstTy, MaskTy, MI); 1243 break; 1244 } 1245 case TargetOpcode::G_SEXT: 1246 case TargetOpcode::G_ZEXT: 1247 case TargetOpcode::G_ANYEXT: 1248 case TargetOpcode::G_TRUNC: 1249 case TargetOpcode::G_FPEXT: 1250 case TargetOpcode::G_FPTRUNC: { 1251 // Number of operands and presense of types is already checked (and 1252 // reported in case of any issues), so no need to report them again. As 1253 // we're trying to report as many issues as possible at once, however, the 1254 // instructions aren't guaranteed to have the right number of operands or 1255 // types attached to them at this point 1256 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1257 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1258 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1259 if (!DstTy.isValid() || !SrcTy.isValid()) 1260 break; 1261 1262 LLT DstElTy = DstTy.getScalarType(); 1263 LLT SrcElTy = SrcTy.getScalarType(); 1264 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1265 report("Generic extend/truncate can not operate on pointers", MI); 1266 1267 verifyVectorElementMatch(DstTy, SrcTy, MI); 1268 1269 unsigned DstSize = DstElTy.getSizeInBits(); 1270 unsigned SrcSize = SrcElTy.getSizeInBits(); 1271 switch (MI->getOpcode()) { 1272 default: 1273 if (DstSize <= SrcSize) 1274 report("Generic extend has destination type no larger than source", MI); 1275 break; 1276 case TargetOpcode::G_TRUNC: 1277 case TargetOpcode::G_FPTRUNC: 1278 if (DstSize >= SrcSize) 1279 report("Generic truncate has destination type no smaller than source", 1280 MI); 1281 break; 1282 } 1283 break; 1284 } 1285 case TargetOpcode::G_SELECT: { 1286 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1287 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1288 if (!SelTy.isValid() || !CondTy.isValid()) 1289 break; 1290 1291 // Scalar condition select on a vector is valid. 1292 if (CondTy.isVector()) 1293 verifyVectorElementMatch(SelTy, CondTy, MI); 1294 break; 1295 } 1296 case TargetOpcode::G_MERGE_VALUES: { 1297 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1298 // e.g. s2N = MERGE sN, sN 1299 // Merging multiple scalars into a vector is not allowed, should use 1300 // G_BUILD_VECTOR for that. 1301 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1302 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1303 if (DstTy.isVector() || SrcTy.isVector()) 1304 report("G_MERGE_VALUES cannot operate on vectors", MI); 1305 1306 const unsigned NumOps = MI->getNumOperands(); 1307 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1308 report("G_MERGE_VALUES result size is inconsistent", MI); 1309 1310 for (unsigned I = 2; I != NumOps; ++I) { 1311 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1312 report("G_MERGE_VALUES source types do not match", MI); 1313 } 1314 1315 break; 1316 } 1317 case TargetOpcode::G_UNMERGE_VALUES: { 1318 unsigned NumDsts = MI->getNumOperands() - 1; 1319 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1320 for (unsigned i = 1; i < NumDsts; ++i) { 1321 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) { 1322 report("G_UNMERGE_VALUES destination types do not match", MI); 1323 break; 1324 } 1325 } 1326 1327 LLT SrcTy = MRI->getType(MI->getOperand(NumDsts).getReg()); 1328 if (DstTy.isVector()) { 1329 // This case is the converse of G_CONCAT_VECTORS. 1330 if (!SrcTy.isVector() || SrcTy.getScalarType() != DstTy.getScalarType() || 1331 SrcTy.getNumElements() != NumDsts * DstTy.getNumElements()) 1332 report("G_UNMERGE_VALUES source operand does not match vector " 1333 "destination operands", 1334 MI); 1335 } else if (SrcTy.isVector()) { 1336 // This case is the converse of G_BUILD_VECTOR, but relaxed to allow 1337 // mismatched types as long as the total size matches: 1338 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<4 x s32>) 1339 if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) 1340 report("G_UNMERGE_VALUES vector source operand does not match scalar " 1341 "destination operands", 1342 MI); 1343 } else { 1344 // This case is the converse of G_MERGE_VALUES. 1345 if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) { 1346 report("G_UNMERGE_VALUES scalar source operand does not match scalar " 1347 "destination operands", 1348 MI); 1349 } 1350 } 1351 break; 1352 } 1353 case TargetOpcode::G_BUILD_VECTOR: { 1354 // Source types must be scalars, dest type a vector. Total size of scalars 1355 // must match the dest vector size. 1356 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1357 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1358 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1359 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1360 break; 1361 } 1362 1363 if (DstTy.getElementType() != SrcEltTy) 1364 report("G_BUILD_VECTOR result element type must match source type", MI); 1365 1366 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1367 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1368 1369 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1370 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1371 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1372 1373 break; 1374 } 1375 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1376 // Source types must be scalars, dest type a vector. Scalar types must be 1377 // larger than the dest vector elt type, as this is a truncating operation. 1378 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1379 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1380 if (!DstTy.isVector() || SrcEltTy.isVector()) 1381 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1382 MI); 1383 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1384 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1385 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1386 MI); 1387 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1388 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1389 "dest elt type", 1390 MI); 1391 break; 1392 } 1393 case TargetOpcode::G_CONCAT_VECTORS: { 1394 // Source types should be vectors, and total size should match the dest 1395 // vector size. 1396 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1397 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1398 if (!DstTy.isVector() || !SrcTy.isVector()) 1399 report("G_CONCAT_VECTOR requires vector source and destination operands", 1400 MI); 1401 1402 if (MI->getNumOperands() < 3) 1403 report("G_CONCAT_VECTOR requires at least 2 source operands", MI); 1404 1405 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1406 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1407 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1408 if (DstTy.getNumElements() != 1409 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1410 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1411 break; 1412 } 1413 case TargetOpcode::G_ICMP: 1414 case TargetOpcode::G_FCMP: { 1415 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1416 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1417 1418 if ((DstTy.isVector() != SrcTy.isVector()) || 1419 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1420 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1421 1422 break; 1423 } 1424 case TargetOpcode::G_EXTRACT: { 1425 const MachineOperand &SrcOp = MI->getOperand(1); 1426 if (!SrcOp.isReg()) { 1427 report("extract source must be a register", MI); 1428 break; 1429 } 1430 1431 const MachineOperand &OffsetOp = MI->getOperand(2); 1432 if (!OffsetOp.isImm()) { 1433 report("extract offset must be a constant", MI); 1434 break; 1435 } 1436 1437 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1438 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1439 if (SrcSize == DstSize) 1440 report("extract source must be larger than result", MI); 1441 1442 if (DstSize + OffsetOp.getImm() > SrcSize) 1443 report("extract reads past end of register", MI); 1444 break; 1445 } 1446 case TargetOpcode::G_INSERT: { 1447 const MachineOperand &SrcOp = MI->getOperand(2); 1448 if (!SrcOp.isReg()) { 1449 report("insert source must be a register", MI); 1450 break; 1451 } 1452 1453 const MachineOperand &OffsetOp = MI->getOperand(3); 1454 if (!OffsetOp.isImm()) { 1455 report("insert offset must be a constant", MI); 1456 break; 1457 } 1458 1459 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1460 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1461 1462 if (DstSize <= SrcSize) 1463 report("inserted size must be smaller than total register", MI); 1464 1465 if (SrcSize + OffsetOp.getImm() > DstSize) 1466 report("insert writes past end of register", MI); 1467 1468 break; 1469 } 1470 case TargetOpcode::G_JUMP_TABLE: { 1471 if (!MI->getOperand(1).isJTI()) 1472 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1473 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1474 if (!DstTy.isPointer()) 1475 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1476 break; 1477 } 1478 case TargetOpcode::G_BRJT: { 1479 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1480 report("G_BRJT src operand 0 must be a pointer type", MI); 1481 1482 if (!MI->getOperand(1).isJTI()) 1483 report("G_BRJT src operand 1 must be a jump table index", MI); 1484 1485 const auto &IdxOp = MI->getOperand(2); 1486 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1487 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1488 break; 1489 } 1490 case TargetOpcode::G_INTRINSIC: 1491 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: { 1492 // TODO: Should verify number of def and use operands, but the current 1493 // interface requires passing in IR types for mangling. 1494 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1495 if (!IntrIDOp.isIntrinsicID()) { 1496 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1497 break; 1498 } 1499 1500 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC; 1501 unsigned IntrID = IntrIDOp.getIntrinsicID(); 1502 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1503 AttributeList Attrs = Intrinsic::getAttributes( 1504 MF->getFunction().getContext(), static_cast<Intrinsic::ID>(IntrID)); 1505 bool DeclHasSideEffects = !Attrs.getMemoryEffects().doesNotAccessMemory(); 1506 if (NoSideEffects && DeclHasSideEffects) { 1507 report("G_INTRINSIC used with intrinsic that accesses memory", MI); 1508 break; 1509 } 1510 if (!NoSideEffects && !DeclHasSideEffects) { 1511 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI); 1512 break; 1513 } 1514 } 1515 1516 break; 1517 } 1518 case TargetOpcode::G_SEXT_INREG: { 1519 if (!MI->getOperand(2).isImm()) { 1520 report("G_SEXT_INREG expects an immediate operand #2", MI); 1521 break; 1522 } 1523 1524 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1525 int64_t Imm = MI->getOperand(2).getImm(); 1526 if (Imm <= 0) 1527 report("G_SEXT_INREG size must be >= 1", MI); 1528 if (Imm >= SrcTy.getScalarSizeInBits()) 1529 report("G_SEXT_INREG size must be less than source bit width", MI); 1530 break; 1531 } 1532 case TargetOpcode::G_SHUFFLE_VECTOR: { 1533 const MachineOperand &MaskOp = MI->getOperand(3); 1534 if (!MaskOp.isShuffleMask()) { 1535 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1536 break; 1537 } 1538 1539 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1540 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1541 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1542 1543 if (Src0Ty != Src1Ty) 1544 report("Source operands must be the same type", MI); 1545 1546 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1547 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1548 1549 // Don't check that all operands are vector because scalars are used in 1550 // place of 1 element vectors. 1551 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1552 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1553 1554 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); 1555 1556 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1557 report("Wrong result type for shufflemask", MI); 1558 1559 for (int Idx : MaskIdxes) { 1560 if (Idx < 0) 1561 continue; 1562 1563 if (Idx >= 2 * SrcNumElts) 1564 report("Out of bounds shuffle index", MI); 1565 } 1566 1567 break; 1568 } 1569 case TargetOpcode::G_DYN_STACKALLOC: { 1570 const MachineOperand &DstOp = MI->getOperand(0); 1571 const MachineOperand &AllocOp = MI->getOperand(1); 1572 const MachineOperand &AlignOp = MI->getOperand(2); 1573 1574 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { 1575 report("dst operand 0 must be a pointer type", MI); 1576 break; 1577 } 1578 1579 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { 1580 report("src operand 1 must be a scalar reg type", MI); 1581 break; 1582 } 1583 1584 if (!AlignOp.isImm()) { 1585 report("src operand 2 must be an immediate type", MI); 1586 break; 1587 } 1588 break; 1589 } 1590 case TargetOpcode::G_MEMCPY_INLINE: 1591 case TargetOpcode::G_MEMCPY: 1592 case TargetOpcode::G_MEMMOVE: { 1593 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1594 if (MMOs.size() != 2) { 1595 report("memcpy/memmove must have 2 memory operands", MI); 1596 break; 1597 } 1598 1599 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) || 1600 (MMOs[1]->isStore() || !MMOs[1]->isLoad())) { 1601 report("wrong memory operand types", MI); 1602 break; 1603 } 1604 1605 if (MMOs[0]->getSize() != MMOs[1]->getSize()) 1606 report("inconsistent memory operand sizes", MI); 1607 1608 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 1609 LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg()); 1610 1611 if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) { 1612 report("memory instruction operand must be a pointer", MI); 1613 break; 1614 } 1615 1616 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 1617 report("inconsistent store address space", MI); 1618 if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace()) 1619 report("inconsistent load address space", MI); 1620 1621 if (Opc != TargetOpcode::G_MEMCPY_INLINE) 1622 if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL)) 1623 report("'tail' flag (operand 3) must be an immediate 0 or 1", MI); 1624 1625 break; 1626 } 1627 case TargetOpcode::G_BZERO: 1628 case TargetOpcode::G_MEMSET: { 1629 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1630 std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero"; 1631 if (MMOs.size() != 1) { 1632 report(Twine(Name, " must have 1 memory operand"), MI); 1633 break; 1634 } 1635 1636 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) { 1637 report(Twine(Name, " memory operand must be a store"), MI); 1638 break; 1639 } 1640 1641 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 1642 if (!DstPtrTy.isPointer()) { 1643 report(Twine(Name, " operand must be a pointer"), MI); 1644 break; 1645 } 1646 1647 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 1648 report("inconsistent " + Twine(Name, " address space"), MI); 1649 1650 if (!MI->getOperand(MI->getNumOperands() - 1).isImm() || 1651 (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL)) 1652 report("'tail' flag (last operand) must be an immediate 0 or 1", MI); 1653 1654 break; 1655 } 1656 case TargetOpcode::G_VECREDUCE_SEQ_FADD: 1657 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: { 1658 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1659 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 1660 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 1661 if (!DstTy.isScalar()) 1662 report("Vector reduction requires a scalar destination type", MI); 1663 if (!Src1Ty.isScalar()) 1664 report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI); 1665 if (!Src2Ty.isVector()) 1666 report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI); 1667 break; 1668 } 1669 case TargetOpcode::G_VECREDUCE_FADD: 1670 case TargetOpcode::G_VECREDUCE_FMUL: 1671 case TargetOpcode::G_VECREDUCE_FMAX: 1672 case TargetOpcode::G_VECREDUCE_FMIN: 1673 case TargetOpcode::G_VECREDUCE_ADD: 1674 case TargetOpcode::G_VECREDUCE_MUL: 1675 case TargetOpcode::G_VECREDUCE_AND: 1676 case TargetOpcode::G_VECREDUCE_OR: 1677 case TargetOpcode::G_VECREDUCE_XOR: 1678 case TargetOpcode::G_VECREDUCE_SMAX: 1679 case TargetOpcode::G_VECREDUCE_SMIN: 1680 case TargetOpcode::G_VECREDUCE_UMAX: 1681 case TargetOpcode::G_VECREDUCE_UMIN: { 1682 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1683 if (!DstTy.isScalar()) 1684 report("Vector reduction requires a scalar destination type", MI); 1685 break; 1686 } 1687 1688 case TargetOpcode::G_SBFX: 1689 case TargetOpcode::G_UBFX: { 1690 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1691 if (DstTy.isVector()) { 1692 report("Bitfield extraction is not supported on vectors", MI); 1693 break; 1694 } 1695 break; 1696 } 1697 case TargetOpcode::G_SHL: 1698 case TargetOpcode::G_LSHR: 1699 case TargetOpcode::G_ASHR: 1700 case TargetOpcode::G_ROTR: 1701 case TargetOpcode::G_ROTL: { 1702 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 1703 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 1704 if (Src1Ty.isVector() != Src2Ty.isVector()) { 1705 report("Shifts and rotates require operands to be either all scalars or " 1706 "all vectors", 1707 MI); 1708 break; 1709 } 1710 break; 1711 } 1712 case TargetOpcode::G_LLROUND: 1713 case TargetOpcode::G_LROUND: { 1714 verifyAllRegOpsScalar(*MI, *MRI); 1715 break; 1716 } 1717 case TargetOpcode::G_IS_FPCLASS: { 1718 LLT DestTy = MRI->getType(MI->getOperand(0).getReg()); 1719 LLT DestEltTy = DestTy.getScalarType(); 1720 if (!DestEltTy.isScalar()) { 1721 report("Destination must be a scalar or vector of scalars", MI); 1722 break; 1723 } 1724 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1725 LLT SrcEltTy = SrcTy.getScalarType(); 1726 if (!SrcEltTy.isScalar()) { 1727 report("Source must be a scalar or vector of scalars", MI); 1728 break; 1729 } 1730 if (!verifyVectorElementMatch(DestTy, SrcTy, MI)) 1731 break; 1732 const MachineOperand &TestMO = MI->getOperand(2); 1733 if (!TestMO.isImm()) { 1734 report("floating-point class set (operand 2) must be an immediate", MI); 1735 break; 1736 } 1737 int64_t Test = TestMO.getImm(); 1738 if (Test < 0 || Test > fcAllFlags) { 1739 report("Incorrect floating-point class set (operand 2)", MI); 1740 break; 1741 } 1742 break; 1743 } 1744 case TargetOpcode::G_ASSERT_ALIGN: { 1745 if (MI->getOperand(2).getImm() < 1) 1746 report("alignment immediate must be >= 1", MI); 1747 break; 1748 } 1749 default: 1750 break; 1751 } 1752 } 1753 1754 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 1755 const MCInstrDesc &MCID = MI->getDesc(); 1756 if (MI->getNumOperands() < MCID.getNumOperands()) { 1757 report("Too few operands", MI); 1758 errs() << MCID.getNumOperands() << " operands expected, but " 1759 << MI->getNumOperands() << " given.\n"; 1760 } 1761 1762 if (MI->isPHI()) { 1763 if (MF->getProperties().hasProperty( 1764 MachineFunctionProperties::Property::NoPHIs)) 1765 report("Found PHI instruction with NoPHIs property set", MI); 1766 1767 if (FirstNonPHI) 1768 report("Found PHI instruction after non-PHI", MI); 1769 } else if (FirstNonPHI == nullptr) 1770 FirstNonPHI = MI; 1771 1772 // Check the tied operands. 1773 if (MI->isInlineAsm()) 1774 verifyInlineAsm(MI); 1775 1776 // Check that unspillable terminators define a reg and have at most one use. 1777 if (TII->isUnspillableTerminator(MI)) { 1778 if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef()) 1779 report("Unspillable Terminator does not define a reg", MI); 1780 Register Def = MI->getOperand(0).getReg(); 1781 if (Def.isVirtual() && 1782 !MF->getProperties().hasProperty( 1783 MachineFunctionProperties::Property::NoPHIs) && 1784 std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1) 1785 report("Unspillable Terminator expected to have at most one use!", MI); 1786 } 1787 1788 // A fully-formed DBG_VALUE must have a location. Ignore partially formed 1789 // DBG_VALUEs: these are convenient to use in tests, but should never get 1790 // generated. 1791 if (MI->isDebugValue() && MI->getNumOperands() == 4) 1792 if (!MI->getDebugLoc()) 1793 report("Missing DebugLoc for debug instruction", MI); 1794 1795 // Meta instructions should never be the subject of debug value tracking, 1796 // they don't create a value in the output program at all. 1797 if (MI->isMetaInstruction() && MI->peekDebugInstrNum()) 1798 report("Metadata instruction should not have a value tracking number", MI); 1799 1800 // Check the MachineMemOperands for basic consistency. 1801 for (MachineMemOperand *Op : MI->memoperands()) { 1802 if (Op->isLoad() && !MI->mayLoad()) 1803 report("Missing mayLoad flag", MI); 1804 if (Op->isStore() && !MI->mayStore()) 1805 report("Missing mayStore flag", MI); 1806 } 1807 1808 // Debug values must not have a slot index. 1809 // Other instructions must have one, unless they are inside a bundle. 1810 if (LiveInts) { 1811 bool mapped = !LiveInts->isNotInMIMap(*MI); 1812 if (MI->isDebugOrPseudoInstr()) { 1813 if (mapped) 1814 report("Debug instruction has a slot index", MI); 1815 } else if (MI->isInsideBundle()) { 1816 if (mapped) 1817 report("Instruction inside bundle has a slot index", MI); 1818 } else { 1819 if (!mapped) 1820 report("Missing slot index", MI); 1821 } 1822 } 1823 1824 unsigned Opc = MCID.getOpcode(); 1825 if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) { 1826 verifyPreISelGenericInstruction(MI); 1827 return; 1828 } 1829 1830 StringRef ErrorInfo; 1831 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1832 report(ErrorInfo.data(), MI); 1833 1834 // Verify properties of various specific instruction types 1835 switch (MI->getOpcode()) { 1836 case TargetOpcode::COPY: { 1837 const MachineOperand &DstOp = MI->getOperand(0); 1838 const MachineOperand &SrcOp = MI->getOperand(1); 1839 const Register SrcReg = SrcOp.getReg(); 1840 const Register DstReg = DstOp.getReg(); 1841 1842 LLT DstTy = MRI->getType(DstReg); 1843 LLT SrcTy = MRI->getType(SrcReg); 1844 if (SrcTy.isValid() && DstTy.isValid()) { 1845 // If both types are valid, check that the types are the same. 1846 if (SrcTy != DstTy) { 1847 report("Copy Instruction is illegal with mismatching types", MI); 1848 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1849 } 1850 1851 break; 1852 } 1853 1854 if (!SrcTy.isValid() && !DstTy.isValid()) 1855 break; 1856 1857 // If we have only one valid type, this is likely a copy between a virtual 1858 // and physical register. 1859 unsigned SrcSize = 0; 1860 unsigned DstSize = 0; 1861 if (SrcReg.isPhysical() && DstTy.isValid()) { 1862 const TargetRegisterClass *SrcRC = 1863 TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy); 1864 if (SrcRC) 1865 SrcSize = TRI->getRegSizeInBits(*SrcRC); 1866 } 1867 1868 if (SrcSize == 0) 1869 SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI); 1870 1871 if (DstReg.isPhysical() && SrcTy.isValid()) { 1872 const TargetRegisterClass *DstRC = 1873 TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy); 1874 if (DstRC) 1875 DstSize = TRI->getRegSizeInBits(*DstRC); 1876 } 1877 1878 if (DstSize == 0) 1879 DstSize = TRI->getRegSizeInBits(DstReg, *MRI); 1880 1881 if (SrcSize != 0 && DstSize != 0 && SrcSize != DstSize) { 1882 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1883 report("Copy Instruction is illegal with mismatching sizes", MI); 1884 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1885 << "\n"; 1886 } 1887 } 1888 break; 1889 } 1890 case TargetOpcode::STATEPOINT: { 1891 StatepointOpers SO(MI); 1892 if (!MI->getOperand(SO.getIDPos()).isImm() || 1893 !MI->getOperand(SO.getNBytesPos()).isImm() || 1894 !MI->getOperand(SO.getNCallArgsPos()).isImm()) { 1895 report("meta operands to STATEPOINT not constant!", MI); 1896 break; 1897 } 1898 1899 auto VerifyStackMapConstant = [&](unsigned Offset) { 1900 if (Offset >= MI->getNumOperands()) { 1901 report("stack map constant to STATEPOINT is out of range!", MI); 1902 return; 1903 } 1904 if (!MI->getOperand(Offset - 1).isImm() || 1905 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || 1906 !MI->getOperand(Offset).isImm()) 1907 report("stack map constant to STATEPOINT not well formed!", MI); 1908 }; 1909 VerifyStackMapConstant(SO.getCCIdx()); 1910 VerifyStackMapConstant(SO.getFlagsIdx()); 1911 VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); 1912 VerifyStackMapConstant(SO.getNumGCPtrIdx()); 1913 VerifyStackMapConstant(SO.getNumAllocaIdx()); 1914 VerifyStackMapConstant(SO.getNumGcMapEntriesIdx()); 1915 1916 // Verify that all explicit statepoint defs are tied to gc operands as 1917 // they are expected to be a relocation of gc operands. 1918 unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx(); 1919 unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2; 1920 for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) { 1921 unsigned UseOpIdx; 1922 if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) { 1923 report("STATEPOINT defs expected to be tied", MI); 1924 break; 1925 } 1926 if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) { 1927 report("STATEPOINT def tied to non-gc operand", MI); 1928 break; 1929 } 1930 } 1931 1932 // TODO: verify we have properly encoded deopt arguments 1933 } break; 1934 case TargetOpcode::INSERT_SUBREG: { 1935 unsigned InsertedSize; 1936 if (unsigned SubIdx = MI->getOperand(2).getSubReg()) 1937 InsertedSize = TRI->getSubRegIdxSize(SubIdx); 1938 else 1939 InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI); 1940 unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm()); 1941 if (SubRegSize < InsertedSize) { 1942 report("INSERT_SUBREG expected inserted value to have equal or lesser " 1943 "size than the subreg it was inserted into", MI); 1944 break; 1945 } 1946 } break; 1947 case TargetOpcode::REG_SEQUENCE: { 1948 unsigned NumOps = MI->getNumOperands(); 1949 if (!(NumOps & 1)) { 1950 report("Invalid number of operands for REG_SEQUENCE", MI); 1951 break; 1952 } 1953 1954 for (unsigned I = 1; I != NumOps; I += 2) { 1955 const MachineOperand &RegOp = MI->getOperand(I); 1956 const MachineOperand &SubRegOp = MI->getOperand(I + 1); 1957 1958 if (!RegOp.isReg()) 1959 report("Invalid register operand for REG_SEQUENCE", &RegOp, I); 1960 1961 if (!SubRegOp.isImm() || SubRegOp.getImm() == 0 || 1962 SubRegOp.getImm() >= TRI->getNumSubRegIndices()) { 1963 report("Invalid subregister index operand for REG_SEQUENCE", 1964 &SubRegOp, I + 1); 1965 } 1966 } 1967 1968 Register DstReg = MI->getOperand(0).getReg(); 1969 if (DstReg.isPhysical()) 1970 report("REG_SEQUENCE does not support physical register results", MI); 1971 1972 if (MI->getOperand(0).getSubReg()) 1973 report("Invalid subreg result for REG_SEQUENCE", MI); 1974 1975 break; 1976 } 1977 } 1978 } 1979 1980 void 1981 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1982 const MachineInstr *MI = MO->getParent(); 1983 const MCInstrDesc &MCID = MI->getDesc(); 1984 unsigned NumDefs = MCID.getNumDefs(); 1985 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1986 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1987 1988 // The first MCID.NumDefs operands must be explicit register defines 1989 if (MONum < NumDefs) { 1990 const MCOperandInfo &MCOI = MCID.operands()[MONum]; 1991 if (!MO->isReg()) 1992 report("Explicit definition must be a register", MO, MONum); 1993 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1994 report("Explicit definition marked as use", MO, MONum); 1995 else if (MO->isImplicit()) 1996 report("Explicit definition marked as implicit", MO, MONum); 1997 } else if (MONum < MCID.getNumOperands()) { 1998 const MCOperandInfo &MCOI = MCID.operands()[MONum]; 1999 // Don't check if it's the last operand in a variadic instruction. See, 2000 // e.g., LDM_RET in the arm back end. Check non-variadic operands only. 2001 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; 2002 if (!IsOptional) { 2003 if (MO->isReg()) { 2004 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) 2005 report("Explicit operand marked as def", MO, MONum); 2006 if (MO->isImplicit()) 2007 report("Explicit operand marked as implicit", MO, MONum); 2008 } 2009 2010 // Check that an instruction has register operands only as expected. 2011 if (MCOI.OperandType == MCOI::OPERAND_REGISTER && 2012 !MO->isReg() && !MO->isFI()) 2013 report("Expected a register operand.", MO, MONum); 2014 if (MO->isReg()) { 2015 if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || 2016 (MCOI.OperandType == MCOI::OPERAND_PCREL && 2017 !TII->isPCRelRegisterOperandLegal(*MO))) 2018 report("Expected a non-register operand.", MO, MONum); 2019 } 2020 } 2021 2022 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 2023 if (TiedTo != -1) { 2024 if (!MO->isReg()) 2025 report("Tied use must be a register", MO, MONum); 2026 else if (!MO->isTied()) 2027 report("Operand should be tied", MO, MONum); 2028 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 2029 report("Tied def doesn't match MCInstrDesc", MO, MONum); 2030 else if (MO->getReg().isPhysical()) { 2031 const MachineOperand &MOTied = MI->getOperand(TiedTo); 2032 if (!MOTied.isReg()) 2033 report("Tied counterpart must be a register", &MOTied, TiedTo); 2034 else if (MOTied.getReg().isPhysical() && 2035 MO->getReg() != MOTied.getReg()) 2036 report("Tied physical registers must match.", &MOTied, TiedTo); 2037 } 2038 } else if (MO->isReg() && MO->isTied()) 2039 report("Explicit operand should not be tied", MO, MONum); 2040 } else { 2041 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 2042 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 2043 report("Extra explicit operand on non-variadic instruction", MO, MONum); 2044 } 2045 2046 switch (MO->getType()) { 2047 case MachineOperand::MO_Register: { 2048 // Verify debug flag on debug instructions. Check this first because reg0 2049 // indicates an undefined debug value. 2050 if (MI->isDebugInstr() && MO->isUse()) { 2051 if (!MO->isDebug()) 2052 report("Register operand must be marked debug", MO, MONum); 2053 } else if (MO->isDebug()) { 2054 report("Register operand must not be marked debug", MO, MONum); 2055 } 2056 2057 const Register Reg = MO->getReg(); 2058 if (!Reg) 2059 return; 2060 if (MRI->tracksLiveness() && !MI->isDebugInstr()) 2061 checkLiveness(MO, MONum); 2062 2063 if (MO->isDef() && MO->isUndef() && !MO->getSubReg() && 2064 MO->getReg().isVirtual()) // TODO: Apply to physregs too 2065 report("Undef virtual register def operands require a subregister", MO, MONum); 2066 2067 // Verify the consistency of tied operands. 2068 if (MO->isTied()) { 2069 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 2070 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 2071 if (!OtherMO.isReg()) 2072 report("Must be tied to a register", MO, MONum); 2073 if (!OtherMO.isTied()) 2074 report("Missing tie flags on tied operand", MO, MONum); 2075 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 2076 report("Inconsistent tie links", MO, MONum); 2077 if (MONum < MCID.getNumDefs()) { 2078 if (OtherIdx < MCID.getNumOperands()) { 2079 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 2080 report("Explicit def tied to explicit use without tie constraint", 2081 MO, MONum); 2082 } else { 2083 if (!OtherMO.isImplicit()) 2084 report("Explicit def should be tied to implicit use", MO, MONum); 2085 } 2086 } 2087 } 2088 2089 // Verify two-address constraints after the twoaddressinstruction pass. 2090 // Both twoaddressinstruction pass and phi-node-elimination pass call 2091 // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after 2092 // twoaddressinstruction pass not after phi-node-elimination pass. So we 2093 // shouldn't use the NoSSA as the condition, we should based on 2094 // TiedOpsRewritten property to verify two-address constraints, this 2095 // property will be set in twoaddressinstruction pass. 2096 unsigned DefIdx; 2097 if (MF->getProperties().hasProperty( 2098 MachineFunctionProperties::Property::TiedOpsRewritten) && 2099 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) && 2100 Reg != MI->getOperand(DefIdx).getReg()) 2101 report("Two-address instruction operands must be identical", MO, MONum); 2102 2103 // Check register classes. 2104 unsigned SubIdx = MO->getSubReg(); 2105 2106 if (Reg.isPhysical()) { 2107 if (SubIdx) { 2108 report("Illegal subregister index for physical register", MO, MONum); 2109 return; 2110 } 2111 if (MONum < MCID.getNumOperands()) { 2112 if (const TargetRegisterClass *DRC = 2113 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2114 if (!DRC->contains(Reg)) { 2115 report("Illegal physical register for instruction", MO, MONum); 2116 errs() << printReg(Reg, TRI) << " is not a " 2117 << TRI->getRegClassName(DRC) << " register.\n"; 2118 } 2119 } 2120 } 2121 if (MO->isRenamable()) { 2122 if (MRI->isReserved(Reg)) { 2123 report("isRenamable set on reserved register", MO, MONum); 2124 return; 2125 } 2126 } 2127 } else { 2128 // Virtual register. 2129 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 2130 if (!RC) { 2131 // This is a generic virtual register. 2132 2133 // Do not allow undef uses for generic virtual registers. This ensures 2134 // getVRegDef can never fail and return null on a generic register. 2135 // 2136 // FIXME: This restriction should probably be broadened to all SSA 2137 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still 2138 // run on the SSA function just before phi elimination. 2139 if (MO->isUndef()) 2140 report("Generic virtual register use cannot be undef", MO, MONum); 2141 2142 // Debug value instruction is permitted to use undefined vregs. 2143 // This is a performance measure to skip the overhead of immediately 2144 // pruning unused debug operands. The final undef substitution occurs 2145 // when debug values are allocated in LDVImpl::handleDebugValue, so 2146 // these verifications always apply after this pass. 2147 if (isFunctionTracksDebugUserValues || !MO->isUse() || 2148 !MI->isDebugValue() || !MRI->def_empty(Reg)) { 2149 // If we're post-Select, we can't have gvregs anymore. 2150 if (isFunctionSelected) { 2151 report("Generic virtual register invalid in a Selected function", 2152 MO, MONum); 2153 return; 2154 } 2155 2156 // The gvreg must have a type and it must not have a SubIdx. 2157 LLT Ty = MRI->getType(Reg); 2158 if (!Ty.isValid()) { 2159 report("Generic virtual register must have a valid type", MO, 2160 MONum); 2161 return; 2162 } 2163 2164 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 2165 2166 // If we're post-RegBankSelect, the gvreg must have a bank. 2167 if (!RegBank && isFunctionRegBankSelected) { 2168 report("Generic virtual register must have a bank in a " 2169 "RegBankSelected function", 2170 MO, MONum); 2171 return; 2172 } 2173 2174 // Make sure the register fits into its register bank if any. 2175 if (RegBank && Ty.isValid() && 2176 RegBank->getSize() < Ty.getSizeInBits()) { 2177 report("Register bank is too small for virtual register", MO, 2178 MONum); 2179 errs() << "Register bank " << RegBank->getName() << " too small(" 2180 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 2181 << "-bits\n"; 2182 return; 2183 } 2184 } 2185 2186 if (SubIdx) { 2187 report("Generic virtual register does not allow subregister index", MO, 2188 MONum); 2189 return; 2190 } 2191 2192 // If this is a target specific instruction and this operand 2193 // has register class constraint, the virtual register must 2194 // comply to it. 2195 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 2196 MONum < MCID.getNumOperands() && 2197 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2198 report("Virtual register does not match instruction constraint", MO, 2199 MONum); 2200 errs() << "Expect register class " 2201 << TRI->getRegClassName( 2202 TII->getRegClass(MCID, MONum, TRI, *MF)) 2203 << " but got nothing\n"; 2204 return; 2205 } 2206 2207 break; 2208 } 2209 if (SubIdx) { 2210 const TargetRegisterClass *SRC = 2211 TRI->getSubClassWithSubReg(RC, SubIdx); 2212 if (!SRC) { 2213 report("Invalid subregister index for virtual register", MO, MONum); 2214 errs() << "Register class " << TRI->getRegClassName(RC) 2215 << " does not support subreg index " << SubIdx << "\n"; 2216 return; 2217 } 2218 if (RC != SRC) { 2219 report("Invalid register class for subregister index", MO, MONum); 2220 errs() << "Register class " << TRI->getRegClassName(RC) 2221 << " does not fully support subreg index " << SubIdx << "\n"; 2222 return; 2223 } 2224 } 2225 if (MONum < MCID.getNumOperands()) { 2226 if (const TargetRegisterClass *DRC = 2227 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2228 if (SubIdx) { 2229 const TargetRegisterClass *SuperRC = 2230 TRI->getLargestLegalSuperClass(RC, *MF); 2231 if (!SuperRC) { 2232 report("No largest legal super class exists.", MO, MONum); 2233 return; 2234 } 2235 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 2236 if (!DRC) { 2237 report("No matching super-reg register class.", MO, MONum); 2238 return; 2239 } 2240 } 2241 if (!RC->hasSuperClassEq(DRC)) { 2242 report("Illegal virtual register for instruction", MO, MONum); 2243 errs() << "Expected a " << TRI->getRegClassName(DRC) 2244 << " register, but got a " << TRI->getRegClassName(RC) 2245 << " register\n"; 2246 } 2247 } 2248 } 2249 } 2250 break; 2251 } 2252 2253 case MachineOperand::MO_RegisterMask: 2254 regMasks.push_back(MO->getRegMask()); 2255 break; 2256 2257 case MachineOperand::MO_MachineBasicBlock: 2258 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 2259 report("PHI operand is not in the CFG", MO, MONum); 2260 break; 2261 2262 case MachineOperand::MO_FrameIndex: 2263 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 2264 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2265 int FI = MO->getIndex(); 2266 LiveInterval &LI = LiveStks->getInterval(FI); 2267 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 2268 2269 bool stores = MI->mayStore(); 2270 bool loads = MI->mayLoad(); 2271 // For a memory-to-memory move, we need to check if the frame 2272 // index is used for storing or loading, by inspecting the 2273 // memory operands. 2274 if (stores && loads) { 2275 for (auto *MMO : MI->memoperands()) { 2276 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 2277 if (PSV == nullptr) continue; 2278 const FixedStackPseudoSourceValue *Value = 2279 dyn_cast<FixedStackPseudoSourceValue>(PSV); 2280 if (Value == nullptr) continue; 2281 if (Value->getFrameIndex() != FI) continue; 2282 2283 if (MMO->isStore()) 2284 loads = false; 2285 else 2286 stores = false; 2287 break; 2288 } 2289 if (loads == stores) 2290 report("Missing fixed stack memoperand.", MI); 2291 } 2292 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 2293 report("Instruction loads from dead spill slot", MO, MONum); 2294 errs() << "Live stack: " << LI << '\n'; 2295 } 2296 if (stores && !LI.liveAt(Idx.getRegSlot())) { 2297 report("Instruction stores to dead spill slot", MO, MONum); 2298 errs() << "Live stack: " << LI << '\n'; 2299 } 2300 } 2301 break; 2302 2303 case MachineOperand::MO_CFIIndex: 2304 if (MO->getCFIIndex() >= MF->getFrameInstructions().size()) 2305 report("CFI instruction has invalid index", MO, MONum); 2306 break; 2307 2308 default: 2309 break; 2310 } 2311 } 2312 2313 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 2314 unsigned MONum, SlotIndex UseIdx, 2315 const LiveRange &LR, 2316 Register VRegOrUnit, 2317 LaneBitmask LaneMask) { 2318 LiveQueryResult LRQ = LR.Query(UseIdx); 2319 // Check if we have a segment at the use, note however that we only need one 2320 // live subregister range, the others may be dead. 2321 if (!LRQ.valueIn() && LaneMask.none()) { 2322 report("No live segment at use", MO, MONum); 2323 report_context_liverange(LR); 2324 report_context_vreg_regunit(VRegOrUnit); 2325 report_context(UseIdx); 2326 } 2327 if (MO->isKill() && !LRQ.isKill()) { 2328 report("Live range continues after kill flag", MO, MONum); 2329 report_context_liverange(LR); 2330 report_context_vreg_regunit(VRegOrUnit); 2331 if (LaneMask.any()) 2332 report_context_lanemask(LaneMask); 2333 report_context(UseIdx); 2334 } 2335 } 2336 2337 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 2338 unsigned MONum, SlotIndex DefIdx, 2339 const LiveRange &LR, 2340 Register VRegOrUnit, 2341 bool SubRangeCheck, 2342 LaneBitmask LaneMask) { 2343 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 2344 // The LR can correspond to the whole reg and its def slot is not obliged 2345 // to be the same as the MO' def slot. E.g. when we check here "normal" 2346 // subreg MO but there is other EC subreg MO in the same instruction so the 2347 // whole reg has EC def slot and differs from the currently checked MO' def 2348 // slot. For example: 2349 // %0 [16e,32r:0) 0@16e L..3 [16e,32r:0) 0@16e L..C [16r,32r:0) 0@16r 2350 // Check that there is an early-clobber def of the same superregister 2351 // somewhere is performed in visitMachineFunctionAfter() 2352 if (((SubRangeCheck || MO->getSubReg() == 0) && VNI->def != DefIdx) || 2353 !SlotIndex::isSameInstr(VNI->def, DefIdx) || 2354 (VNI->def != DefIdx && 2355 (!VNI->def.isEarlyClobber() || !DefIdx.isRegister()))) { 2356 report("Inconsistent valno->def", MO, MONum); 2357 report_context_liverange(LR); 2358 report_context_vreg_regunit(VRegOrUnit); 2359 if (LaneMask.any()) 2360 report_context_lanemask(LaneMask); 2361 report_context(*VNI); 2362 report_context(DefIdx); 2363 } 2364 } else { 2365 report("No live segment at def", MO, MONum); 2366 report_context_liverange(LR); 2367 report_context_vreg_regunit(VRegOrUnit); 2368 if (LaneMask.any()) 2369 report_context_lanemask(LaneMask); 2370 report_context(DefIdx); 2371 } 2372 // Check that, if the dead def flag is present, LiveInts agree. 2373 if (MO->isDead()) { 2374 LiveQueryResult LRQ = LR.Query(DefIdx); 2375 if (!LRQ.isDeadDef()) { 2376 assert(VRegOrUnit.isVirtual() && "Expecting a virtual register."); 2377 // A dead subreg def only tells us that the specific subreg is dead. There 2378 // could be other non-dead defs of other subregs, or we could have other 2379 // parts of the register being live through the instruction. So unless we 2380 // are checking liveness for a subrange it is ok for the live range to 2381 // continue, given that we have a dead def of a subregister. 2382 if (SubRangeCheck || MO->getSubReg() == 0) { 2383 report("Live range continues after dead def flag", MO, MONum); 2384 report_context_liverange(LR); 2385 report_context_vreg_regunit(VRegOrUnit); 2386 if (LaneMask.any()) 2387 report_context_lanemask(LaneMask); 2388 } 2389 } 2390 } 2391 } 2392 2393 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 2394 const MachineInstr *MI = MO->getParent(); 2395 const Register Reg = MO->getReg(); 2396 const unsigned SubRegIdx = MO->getSubReg(); 2397 2398 const LiveInterval *LI = nullptr; 2399 if (LiveInts && Reg.isVirtual()) { 2400 if (LiveInts->hasInterval(Reg)) { 2401 LI = &LiveInts->getInterval(Reg); 2402 if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() && 2403 !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(Reg)) 2404 report("Live interval for subreg operand has no subranges", MO, MONum); 2405 } else { 2406 report("Virtual register has no live interval", MO, MONum); 2407 } 2408 } 2409 2410 // Both use and def operands can read a register. 2411 if (MO->readsReg()) { 2412 if (MO->isKill()) 2413 addRegWithSubRegs(regsKilled, Reg); 2414 2415 // Check that LiveVars knows this kill (unless we are inside a bundle, in 2416 // which case we have already checked that LiveVars knows any kills on the 2417 // bundle header instead). 2418 if (LiveVars && Reg.isVirtual() && MO->isKill() && 2419 !MI->isBundledWithPred()) { 2420 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2421 if (!is_contained(VI.Kills, MI)) 2422 report("Kill missing from LiveVariables", MO, MONum); 2423 } 2424 2425 // Check LiveInts liveness and kill. 2426 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2427 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 2428 // Check the cached regunit intervals. 2429 if (Reg.isPhysical() && !isReserved(Reg)) { 2430 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 2431 ++Units) { 2432 if (MRI->isReservedRegUnit(*Units)) 2433 continue; 2434 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 2435 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 2436 } 2437 } 2438 2439 if (Reg.isVirtual()) { 2440 // This is a virtual register interval. 2441 checkLivenessAtUse(MO, MONum, UseIdx, *LI, Reg); 2442 2443 if (LI->hasSubRanges() && !MO->isDef()) { 2444 LaneBitmask MOMask = SubRegIdx != 0 2445 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2446 : MRI->getMaxLaneMaskForVReg(Reg); 2447 LaneBitmask LiveInMask; 2448 for (const LiveInterval::SubRange &SR : LI->subranges()) { 2449 if ((MOMask & SR.LaneMask).none()) 2450 continue; 2451 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 2452 LiveQueryResult LRQ = SR.Query(UseIdx); 2453 if (LRQ.valueIn()) 2454 LiveInMask |= SR.LaneMask; 2455 } 2456 // At least parts of the register has to be live at the use. 2457 if ((LiveInMask & MOMask).none()) { 2458 report("No live subrange at use", MO, MONum); 2459 report_context(*LI); 2460 report_context(UseIdx); 2461 } 2462 } 2463 } 2464 } 2465 2466 // Use of a dead register. 2467 if (!regsLive.count(Reg)) { 2468 if (Reg.isPhysical()) { 2469 // Reserved registers may be used even when 'dead'. 2470 bool Bad = !isReserved(Reg); 2471 // We are fine if just any subregister has a defined value. 2472 if (Bad) { 2473 2474 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { 2475 if (regsLive.count(SubReg)) { 2476 Bad = false; 2477 break; 2478 } 2479 } 2480 } 2481 // If there is an additional implicit-use of a super register we stop 2482 // here. By definition we are fine if the super register is not 2483 // (completely) dead, if the complete super register is dead we will 2484 // get a report for its operand. 2485 if (Bad) { 2486 for (const MachineOperand &MOP : MI->uses()) { 2487 if (!MOP.isReg() || !MOP.isImplicit()) 2488 continue; 2489 2490 if (!MOP.getReg().isPhysical()) 2491 continue; 2492 2493 if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg)) 2494 Bad = false; 2495 } 2496 } 2497 if (Bad) 2498 report("Using an undefined physical register", MO, MONum); 2499 } else if (MRI->def_empty(Reg)) { 2500 report("Reading virtual register without a def", MO, MONum); 2501 } else { 2502 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2503 // We don't know which virtual registers are live in, so only complain 2504 // if vreg was killed in this MBB. Otherwise keep track of vregs that 2505 // must be live in. PHI instructions are handled separately. 2506 if (MInfo.regsKilled.count(Reg)) 2507 report("Using a killed virtual register", MO, MONum); 2508 else if (!MI->isPHI()) 2509 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 2510 } 2511 } 2512 } 2513 2514 if (MO->isDef()) { 2515 // Register defined. 2516 // TODO: verify that earlyclobber ops are not used. 2517 if (MO->isDead()) 2518 addRegWithSubRegs(regsDead, Reg); 2519 else 2520 addRegWithSubRegs(regsDefined, Reg); 2521 2522 // Verify SSA form. 2523 if (MRI->isSSA() && Reg.isVirtual() && 2524 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 2525 report("Multiple virtual register defs in SSA form", MO, MONum); 2526 2527 // Check LiveInts for a live segment, but only for virtual registers. 2528 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2529 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 2530 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 2531 2532 if (Reg.isVirtual()) { 2533 checkLivenessAtDef(MO, MONum, DefIdx, *LI, Reg); 2534 2535 if (LI->hasSubRanges()) { 2536 LaneBitmask MOMask = SubRegIdx != 0 2537 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2538 : MRI->getMaxLaneMaskForVReg(Reg); 2539 for (const LiveInterval::SubRange &SR : LI->subranges()) { 2540 if ((SR.LaneMask & MOMask).none()) 2541 continue; 2542 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 2543 } 2544 } 2545 } 2546 } 2547 } 2548 } 2549 2550 // This function gets called after visiting all instructions in a bundle. The 2551 // argument points to the bundle header. 2552 // Normal stand-alone instructions are also considered 'bundles', and this 2553 // function is called for all of them. 2554 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 2555 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2556 set_union(MInfo.regsKilled, regsKilled); 2557 set_subtract(regsLive, regsKilled); regsKilled.clear(); 2558 // Kill any masked registers. 2559 while (!regMasks.empty()) { 2560 const uint32_t *Mask = regMasks.pop_back_val(); 2561 for (Register Reg : regsLive) 2562 if (Reg.isPhysical() && 2563 MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg())) 2564 regsDead.push_back(Reg); 2565 } 2566 set_subtract(regsLive, regsDead); regsDead.clear(); 2567 set_union(regsLive, regsDefined); regsDefined.clear(); 2568 } 2569 2570 void 2571 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 2572 MBBInfoMap[MBB].regsLiveOut = regsLive; 2573 regsLive.clear(); 2574 2575 if (Indexes) { 2576 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 2577 if (!(stop > lastIndex)) { 2578 report("Block ends before last instruction index", MBB); 2579 errs() << "Block ends at " << stop 2580 << " last instruction was at " << lastIndex << '\n'; 2581 } 2582 lastIndex = stop; 2583 } 2584 } 2585 2586 namespace { 2587 // This implements a set of registers that serves as a filter: can filter other 2588 // sets by passing through elements not in the filter and blocking those that 2589 // are. Any filter implicitly includes the full set of physical registers upon 2590 // creation, thus filtering them all out. The filter itself as a set only grows, 2591 // and needs to be as efficient as possible. 2592 struct VRegFilter { 2593 // Add elements to the filter itself. \pre Input set \p FromRegSet must have 2594 // no duplicates. Both virtual and physical registers are fine. 2595 template <typename RegSetT> void add(const RegSetT &FromRegSet) { 2596 SmallVector<Register, 0> VRegsBuffer; 2597 filterAndAdd(FromRegSet, VRegsBuffer); 2598 } 2599 // Filter \p FromRegSet through the filter and append passed elements into \p 2600 // ToVRegs. All elements appended are then added to the filter itself. 2601 // \returns true if anything changed. 2602 template <typename RegSetT> 2603 bool filterAndAdd(const RegSetT &FromRegSet, 2604 SmallVectorImpl<Register> &ToVRegs) { 2605 unsigned SparseUniverse = Sparse.size(); 2606 unsigned NewSparseUniverse = SparseUniverse; 2607 unsigned NewDenseSize = Dense.size(); 2608 size_t Begin = ToVRegs.size(); 2609 for (Register Reg : FromRegSet) { 2610 if (!Reg.isVirtual()) 2611 continue; 2612 unsigned Index = Register::virtReg2Index(Reg); 2613 if (Index < SparseUniverseMax) { 2614 if (Index < SparseUniverse && Sparse.test(Index)) 2615 continue; 2616 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); 2617 } else { 2618 if (Dense.count(Reg)) 2619 continue; 2620 ++NewDenseSize; 2621 } 2622 ToVRegs.push_back(Reg); 2623 } 2624 size_t End = ToVRegs.size(); 2625 if (Begin == End) 2626 return false; 2627 // Reserving space in sets once performs better than doing so continuously 2628 // and pays easily for double look-ups (even in Dense with SparseUniverseMax 2629 // tuned all the way down) and double iteration (the second one is over a 2630 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). 2631 Sparse.resize(NewSparseUniverse); 2632 Dense.reserve(NewDenseSize); 2633 for (unsigned I = Begin; I < End; ++I) { 2634 Register Reg = ToVRegs[I]; 2635 unsigned Index = Register::virtReg2Index(Reg); 2636 if (Index < SparseUniverseMax) 2637 Sparse.set(Index); 2638 else 2639 Dense.insert(Reg); 2640 } 2641 return true; 2642 } 2643 2644 private: 2645 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; 2646 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound 2647 // are tracked by Dense. The only purpose of the threashold and the Dense set 2648 // is to have a reasonably growing memory usage in pathological cases (large 2649 // number of very sparse VRegFilter instances live at the same time). In 2650 // practice even in the worst-by-execution time cases having all elements 2651 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more 2652 // space efficient than if tracked by Dense. The threashold is set to keep the 2653 // worst-case memory usage within 2x of figures determined empirically for 2654 // "all Dense" scenario in such worst-by-execution-time cases. 2655 BitVector Sparse; 2656 DenseSet<unsigned> Dense; 2657 }; 2658 2659 // Implements both a transfer function and a (binary, in-place) join operator 2660 // for a dataflow over register sets with set union join and filtering transfer 2661 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. 2662 // Maintains out_b as its state, allowing for O(n) iteration over it at any 2663 // time, where n is the size of the set (as opposed to O(U) where U is the 2664 // universe). filter_b implicitly contains all physical registers at all times. 2665 class FilteringVRegSet { 2666 VRegFilter Filter; 2667 SmallVector<Register, 0> VRegs; 2668 2669 public: 2670 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. 2671 // Both virtual and physical registers are fine. 2672 template <typename RegSetT> void addToFilter(const RegSetT &RS) { 2673 Filter.add(RS); 2674 } 2675 // Passes \p RS through the filter_b (transfer function) and adds what's left 2676 // to itself (out_b). 2677 template <typename RegSetT> bool add(const RegSetT &RS) { 2678 // Double-duty the Filter: to maintain VRegs a set (and the join operation 2679 // a set union) just add everything being added here to the Filter as well. 2680 return Filter.filterAndAdd(RS, VRegs); 2681 } 2682 using const_iterator = decltype(VRegs)::const_iterator; 2683 const_iterator begin() const { return VRegs.begin(); } 2684 const_iterator end() const { return VRegs.end(); } 2685 size_t size() const { return VRegs.size(); } 2686 }; 2687 } // namespace 2688 2689 // Calculate the largest possible vregsPassed sets. These are the registers that 2690 // can pass through an MBB live, but may not be live every time. It is assumed 2691 // that all vregsPassed sets are empty before the call. 2692 void MachineVerifier::calcRegsPassed() { 2693 if (MF->empty()) 2694 // ReversePostOrderTraversal doesn't handle empty functions. 2695 return; 2696 2697 for (const MachineBasicBlock *MB : 2698 ReversePostOrderTraversal<const MachineFunction *>(MF)) { 2699 FilteringVRegSet VRegs; 2700 BBInfo &Info = MBBInfoMap[MB]; 2701 assert(Info.reachable); 2702 2703 VRegs.addToFilter(Info.regsKilled); 2704 VRegs.addToFilter(Info.regsLiveOut); 2705 for (const MachineBasicBlock *Pred : MB->predecessors()) { 2706 const BBInfo &PredInfo = MBBInfoMap[Pred]; 2707 if (!PredInfo.reachable) 2708 continue; 2709 2710 VRegs.add(PredInfo.regsLiveOut); 2711 VRegs.add(PredInfo.vregsPassed); 2712 } 2713 Info.vregsPassed.reserve(VRegs.size()); 2714 Info.vregsPassed.insert(VRegs.begin(), VRegs.end()); 2715 } 2716 } 2717 2718 // Calculate the set of virtual registers that must be passed through each basic 2719 // block in order to satisfy the requirements of successor blocks. This is very 2720 // similar to calcRegsPassed, only backwards. 2721 void MachineVerifier::calcRegsRequired() { 2722 // First push live-in regs to predecessors' vregsRequired. 2723 SmallPtrSet<const MachineBasicBlock*, 8> todo; 2724 for (const auto &MBB : *MF) { 2725 BBInfo &MInfo = MBBInfoMap[&MBB]; 2726 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2727 BBInfo &PInfo = MBBInfoMap[Pred]; 2728 if (PInfo.addRequired(MInfo.vregsLiveIn)) 2729 todo.insert(Pred); 2730 } 2731 2732 // Handle the PHI node. 2733 for (const MachineInstr &MI : MBB.phis()) { 2734 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 2735 // Skip those Operands which are undef regs or not regs. 2736 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg()) 2737 continue; 2738 2739 // Get register and predecessor for one PHI edge. 2740 Register Reg = MI.getOperand(i).getReg(); 2741 const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB(); 2742 2743 BBInfo &PInfo = MBBInfoMap[Pred]; 2744 if (PInfo.addRequired(Reg)) 2745 todo.insert(Pred); 2746 } 2747 } 2748 } 2749 2750 // Iteratively push vregsRequired to predecessors. This will converge to the 2751 // same final state regardless of DenseSet iteration order. 2752 while (!todo.empty()) { 2753 const MachineBasicBlock *MBB = *todo.begin(); 2754 todo.erase(MBB); 2755 BBInfo &MInfo = MBBInfoMap[MBB]; 2756 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 2757 if (Pred == MBB) 2758 continue; 2759 BBInfo &SInfo = MBBInfoMap[Pred]; 2760 if (SInfo.addRequired(MInfo.vregsRequired)) 2761 todo.insert(Pred); 2762 } 2763 } 2764 } 2765 2766 // Check PHI instructions at the beginning of MBB. It is assumed that 2767 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 2768 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 2769 BBInfo &MInfo = MBBInfoMap[&MBB]; 2770 2771 SmallPtrSet<const MachineBasicBlock*, 8> seen; 2772 for (const MachineInstr &Phi : MBB) { 2773 if (!Phi.isPHI()) 2774 break; 2775 seen.clear(); 2776 2777 const MachineOperand &MODef = Phi.getOperand(0); 2778 if (!MODef.isReg() || !MODef.isDef()) { 2779 report("Expected first PHI operand to be a register def", &MODef, 0); 2780 continue; 2781 } 2782 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 2783 MODef.isEarlyClobber() || MODef.isDebug()) 2784 report("Unexpected flag on PHI operand", &MODef, 0); 2785 Register DefReg = MODef.getReg(); 2786 if (!DefReg.isVirtual()) 2787 report("Expected first PHI operand to be a virtual register", &MODef, 0); 2788 2789 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 2790 const MachineOperand &MO0 = Phi.getOperand(I); 2791 if (!MO0.isReg()) { 2792 report("Expected PHI operand to be a register", &MO0, I); 2793 continue; 2794 } 2795 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 2796 MO0.isDebug() || MO0.isTied()) 2797 report("Unexpected flag on PHI operand", &MO0, I); 2798 2799 const MachineOperand &MO1 = Phi.getOperand(I + 1); 2800 if (!MO1.isMBB()) { 2801 report("Expected PHI operand to be a basic block", &MO1, I + 1); 2802 continue; 2803 } 2804 2805 const MachineBasicBlock &Pre = *MO1.getMBB(); 2806 if (!Pre.isSuccessor(&MBB)) { 2807 report("PHI input is not a predecessor block", &MO1, I + 1); 2808 continue; 2809 } 2810 2811 if (MInfo.reachable) { 2812 seen.insert(&Pre); 2813 BBInfo &PrInfo = MBBInfoMap[&Pre]; 2814 if (!MO0.isUndef() && PrInfo.reachable && 2815 !PrInfo.isLiveOut(MO0.getReg())) 2816 report("PHI operand is not live-out from predecessor", &MO0, I); 2817 } 2818 } 2819 2820 // Did we see all predecessors? 2821 if (MInfo.reachable) { 2822 for (MachineBasicBlock *Pred : MBB.predecessors()) { 2823 if (!seen.count(Pred)) { 2824 report("Missing PHI operand", &Phi); 2825 errs() << printMBBReference(*Pred) 2826 << " is a predecessor according to the CFG.\n"; 2827 } 2828 } 2829 } 2830 } 2831 } 2832 2833 void MachineVerifier::visitMachineFunctionAfter() { 2834 calcRegsPassed(); 2835 2836 for (const MachineBasicBlock &MBB : *MF) 2837 checkPHIOps(MBB); 2838 2839 // Now check liveness info if available 2840 calcRegsRequired(); 2841 2842 // Check for killed virtual registers that should be live out. 2843 for (const auto &MBB : *MF) { 2844 BBInfo &MInfo = MBBInfoMap[&MBB]; 2845 for (Register VReg : MInfo.vregsRequired) 2846 if (MInfo.regsKilled.count(VReg)) { 2847 report("Virtual register killed in block, but needed live out.", &MBB); 2848 errs() << "Virtual register " << printReg(VReg) 2849 << " is used after the block.\n"; 2850 } 2851 } 2852 2853 if (!MF->empty()) { 2854 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2855 for (Register VReg : MInfo.vregsRequired) { 2856 report("Virtual register defs don't dominate all uses.", MF); 2857 report_context_vreg(VReg); 2858 } 2859 } 2860 2861 if (LiveVars) 2862 verifyLiveVariables(); 2863 if (LiveInts) 2864 verifyLiveIntervals(); 2865 2866 // Check live-in list of each MBB. If a register is live into MBB, check 2867 // that the register is in regsLiveOut of each predecessor block. Since 2868 // this must come from a definition in the predecesssor or its live-in 2869 // list, this will catch a live-through case where the predecessor does not 2870 // have the register in its live-in list. This currently only checks 2871 // registers that have no aliases, are not allocatable and are not 2872 // reserved, which could mean a condition code register for instance. 2873 if (MRI->tracksLiveness()) 2874 for (const auto &MBB : *MF) 2875 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 2876 MCPhysReg LiveInReg = P.PhysReg; 2877 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); 2878 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) 2879 continue; 2880 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2881 BBInfo &PInfo = MBBInfoMap[Pred]; 2882 if (!PInfo.regsLiveOut.count(LiveInReg)) { 2883 report("Live in register not found to be live out from predecessor.", 2884 &MBB); 2885 errs() << TRI->getName(LiveInReg) 2886 << " not found to be live out from " 2887 << printMBBReference(*Pred) << "\n"; 2888 } 2889 } 2890 } 2891 2892 for (auto CSInfo : MF->getCallSitesInfo()) 2893 if (!CSInfo.first->isCall()) 2894 report("Call site info referencing instruction that is not call", MF); 2895 2896 // If there's debug-info, check that we don't have any duplicate value 2897 // tracking numbers. 2898 if (MF->getFunction().getSubprogram()) { 2899 DenseSet<unsigned> SeenNumbers; 2900 for (const auto &MBB : *MF) { 2901 for (const auto &MI : MBB) { 2902 if (auto Num = MI.peekDebugInstrNum()) { 2903 auto Result = SeenNumbers.insert((unsigned)Num); 2904 if (!Result.second) 2905 report("Instruction has a duplicated value tracking number", &MI); 2906 } 2907 } 2908 } 2909 } 2910 } 2911 2912 void MachineVerifier::verifyLiveVariables() { 2913 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2914 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2915 Register Reg = Register::index2VirtReg(I); 2916 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2917 for (const auto &MBB : *MF) { 2918 BBInfo &MInfo = MBBInfoMap[&MBB]; 2919 2920 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2921 if (MInfo.vregsRequired.count(Reg)) { 2922 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2923 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2924 errs() << "Virtual register " << printReg(Reg) 2925 << " must be live through the block.\n"; 2926 } 2927 } else { 2928 if (VI.AliveBlocks.test(MBB.getNumber())) { 2929 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2930 errs() << "Virtual register " << printReg(Reg) 2931 << " is not needed live through the block.\n"; 2932 } 2933 } 2934 } 2935 } 2936 } 2937 2938 void MachineVerifier::verifyLiveIntervals() { 2939 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2940 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2941 Register Reg = Register::index2VirtReg(I); 2942 2943 // Spilling and splitting may leave unused registers around. Skip them. 2944 if (MRI->reg_nodbg_empty(Reg)) 2945 continue; 2946 2947 if (!LiveInts->hasInterval(Reg)) { 2948 report("Missing live interval for virtual register", MF); 2949 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2950 continue; 2951 } 2952 2953 const LiveInterval &LI = LiveInts->getInterval(Reg); 2954 assert(Reg == LI.reg() && "Invalid reg to interval mapping"); 2955 verifyLiveInterval(LI); 2956 } 2957 2958 // Verify all the cached regunit intervals. 2959 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2960 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2961 verifyLiveRange(*LR, i); 2962 } 2963 2964 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2965 const VNInfo *VNI, Register Reg, 2966 LaneBitmask LaneMask) { 2967 if (VNI->isUnused()) 2968 return; 2969 2970 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2971 2972 if (!DefVNI) { 2973 report("Value not live at VNInfo def and not marked unused", MF); 2974 report_context(LR, Reg, LaneMask); 2975 report_context(*VNI); 2976 return; 2977 } 2978 2979 if (DefVNI != VNI) { 2980 report("Live segment at def has different VNInfo", MF); 2981 report_context(LR, Reg, LaneMask); 2982 report_context(*VNI); 2983 return; 2984 } 2985 2986 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2987 if (!MBB) { 2988 report("Invalid VNInfo definition index", MF); 2989 report_context(LR, Reg, LaneMask); 2990 report_context(*VNI); 2991 return; 2992 } 2993 2994 if (VNI->isPHIDef()) { 2995 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2996 report("PHIDef VNInfo is not defined at MBB start", MBB); 2997 report_context(LR, Reg, LaneMask); 2998 report_context(*VNI); 2999 } 3000 return; 3001 } 3002 3003 // Non-PHI def. 3004 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 3005 if (!MI) { 3006 report("No instruction at VNInfo def index", MBB); 3007 report_context(LR, Reg, LaneMask); 3008 report_context(*VNI); 3009 return; 3010 } 3011 3012 if (Reg != 0) { 3013 bool hasDef = false; 3014 bool isEarlyClobber = false; 3015 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 3016 if (!MOI->isReg() || !MOI->isDef()) 3017 continue; 3018 if (Reg.isVirtual()) { 3019 if (MOI->getReg() != Reg) 3020 continue; 3021 } else { 3022 if (!MOI->getReg().isPhysical() || !TRI->hasRegUnit(MOI->getReg(), Reg)) 3023 continue; 3024 } 3025 if (LaneMask.any() && 3026 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 3027 continue; 3028 hasDef = true; 3029 if (MOI->isEarlyClobber()) 3030 isEarlyClobber = true; 3031 } 3032 3033 if (!hasDef) { 3034 report("Defining instruction does not modify register", MI); 3035 report_context(LR, Reg, LaneMask); 3036 report_context(*VNI); 3037 } 3038 3039 // Early clobber defs begin at USE slots, but other defs must begin at 3040 // DEF slots. 3041 if (isEarlyClobber) { 3042 if (!VNI->def.isEarlyClobber()) { 3043 report("Early clobber def must be at an early-clobber slot", MBB); 3044 report_context(LR, Reg, LaneMask); 3045 report_context(*VNI); 3046 } 3047 } else if (!VNI->def.isRegister()) { 3048 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 3049 report_context(LR, Reg, LaneMask); 3050 report_context(*VNI); 3051 } 3052 } 3053 } 3054 3055 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 3056 const LiveRange::const_iterator I, 3057 Register Reg, 3058 LaneBitmask LaneMask) { 3059 const LiveRange::Segment &S = *I; 3060 const VNInfo *VNI = S.valno; 3061 assert(VNI && "Live segment has no valno"); 3062 3063 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 3064 report("Foreign valno in live segment", MF); 3065 report_context(LR, Reg, LaneMask); 3066 report_context(S); 3067 report_context(*VNI); 3068 } 3069 3070 if (VNI->isUnused()) { 3071 report("Live segment valno is marked unused", MF); 3072 report_context(LR, Reg, LaneMask); 3073 report_context(S); 3074 } 3075 3076 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 3077 if (!MBB) { 3078 report("Bad start of live segment, no basic block", MF); 3079 report_context(LR, Reg, LaneMask); 3080 report_context(S); 3081 return; 3082 } 3083 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 3084 if (S.start != MBBStartIdx && S.start != VNI->def) { 3085 report("Live segment must begin at MBB entry or valno def", MBB); 3086 report_context(LR, Reg, LaneMask); 3087 report_context(S); 3088 } 3089 3090 const MachineBasicBlock *EndMBB = 3091 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 3092 if (!EndMBB) { 3093 report("Bad end of live segment, no basic block", MF); 3094 report_context(LR, Reg, LaneMask); 3095 report_context(S); 3096 return; 3097 } 3098 3099 // No more checks for live-out segments. 3100 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 3101 return; 3102 3103 // RegUnit intervals are allowed dead phis. 3104 if (!Reg.isVirtual() && VNI->isPHIDef() && S.start == VNI->def && 3105 S.end == VNI->def.getDeadSlot()) 3106 return; 3107 3108 // The live segment is ending inside EndMBB 3109 const MachineInstr *MI = 3110 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 3111 if (!MI) { 3112 report("Live segment doesn't end at a valid instruction", EndMBB); 3113 report_context(LR, Reg, LaneMask); 3114 report_context(S); 3115 return; 3116 } 3117 3118 // The block slot must refer to a basic block boundary. 3119 if (S.end.isBlock()) { 3120 report("Live segment ends at B slot of an instruction", EndMBB); 3121 report_context(LR, Reg, LaneMask); 3122 report_context(S); 3123 } 3124 3125 if (S.end.isDead()) { 3126 // Segment ends on the dead slot. 3127 // That means there must be a dead def. 3128 if (!SlotIndex::isSameInstr(S.start, S.end)) { 3129 report("Live segment ending at dead slot spans instructions", EndMBB); 3130 report_context(LR, Reg, LaneMask); 3131 report_context(S); 3132 } 3133 } 3134 3135 // After tied operands are rewritten, a live segment can only end at an 3136 // early-clobber slot if it is being redefined by an early-clobber def. 3137 // TODO: Before tied operands are rewritten, a live segment can only end at an 3138 // early-clobber slot if the last use is tied to an early-clobber def. 3139 if (MF->getProperties().hasProperty( 3140 MachineFunctionProperties::Property::TiedOpsRewritten) && 3141 S.end.isEarlyClobber()) { 3142 if (I+1 == LR.end() || (I+1)->start != S.end) { 3143 report("Live segment ending at early clobber slot must be " 3144 "redefined by an EC def in the same instruction", EndMBB); 3145 report_context(LR, Reg, LaneMask); 3146 report_context(S); 3147 } 3148 } 3149 3150 // The following checks only apply to virtual registers. Physreg liveness 3151 // is too weird to check. 3152 if (Reg.isVirtual()) { 3153 // A live segment can end with either a redefinition, a kill flag on a 3154 // use, or a dead flag on a def. 3155 bool hasRead = false; 3156 bool hasSubRegDef = false; 3157 bool hasDeadDef = false; 3158 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 3159 if (!MOI->isReg() || MOI->getReg() != Reg) 3160 continue; 3161 unsigned Sub = MOI->getSubReg(); 3162 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 3163 : LaneBitmask::getAll(); 3164 if (MOI->isDef()) { 3165 if (Sub != 0) { 3166 hasSubRegDef = true; 3167 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 3168 // mask for subregister defs. Read-undef defs will be handled by 3169 // readsReg below. 3170 SLM = ~SLM; 3171 } 3172 if (MOI->isDead()) 3173 hasDeadDef = true; 3174 } 3175 if (LaneMask.any() && (LaneMask & SLM).none()) 3176 continue; 3177 if (MOI->readsReg()) 3178 hasRead = true; 3179 } 3180 if (S.end.isDead()) { 3181 // Make sure that the corresponding machine operand for a "dead" live 3182 // range has the dead flag. We cannot perform this check for subregister 3183 // liveranges as partially dead values are allowed. 3184 if (LaneMask.none() && !hasDeadDef) { 3185 report("Instruction ending live segment on dead slot has no dead flag", 3186 MI); 3187 report_context(LR, Reg, LaneMask); 3188 report_context(S); 3189 } 3190 } else { 3191 if (!hasRead) { 3192 // When tracking subregister liveness, the main range must start new 3193 // values on partial register writes, even if there is no read. 3194 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 3195 !hasSubRegDef) { 3196 report("Instruction ending live segment doesn't read the register", 3197 MI); 3198 report_context(LR, Reg, LaneMask); 3199 report_context(S); 3200 } 3201 } 3202 } 3203 } 3204 3205 // Now check all the basic blocks in this live segment. 3206 MachineFunction::const_iterator MFI = MBB->getIterator(); 3207 // Is this live segment the beginning of a non-PHIDef VN? 3208 if (S.start == VNI->def && !VNI->isPHIDef()) { 3209 // Not live-in to any blocks. 3210 if (MBB == EndMBB) 3211 return; 3212 // Skip this block. 3213 ++MFI; 3214 } 3215 3216 SmallVector<SlotIndex, 4> Undefs; 3217 if (LaneMask.any()) { 3218 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 3219 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 3220 } 3221 3222 while (true) { 3223 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 3224 // We don't know how to track physregs into a landing pad. 3225 if (!Reg.isVirtual() && MFI->isEHPad()) { 3226 if (&*MFI == EndMBB) 3227 break; 3228 ++MFI; 3229 continue; 3230 } 3231 3232 // Is VNI a PHI-def in the current block? 3233 bool IsPHI = VNI->isPHIDef() && 3234 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 3235 3236 // Check that VNI is live-out of all predecessors. 3237 for (const MachineBasicBlock *Pred : MFI->predecessors()) { 3238 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred); 3239 // Predecessor of landing pad live-out on last call. 3240 if (MFI->isEHPad()) { 3241 for (const MachineInstr &MI : llvm::reverse(*Pred)) { 3242 if (MI.isCall()) { 3243 PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex(); 3244 break; 3245 } 3246 } 3247 } 3248 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 3249 3250 // All predecessors must have a live-out value. However for a phi 3251 // instruction with subregister intervals 3252 // only one of the subregisters (not necessarily the current one) needs to 3253 // be defined. 3254 if (!PVNI && (LaneMask.none() || !IsPHI)) { 3255 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes)) 3256 continue; 3257 report("Register not marked live out of predecessor", Pred); 3258 report_context(LR, Reg, LaneMask); 3259 report_context(*VNI); 3260 errs() << " live into " << printMBBReference(*MFI) << '@' 3261 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 3262 << PEnd << '\n'; 3263 continue; 3264 } 3265 3266 // Only PHI-defs can take different predecessor values. 3267 if (!IsPHI && PVNI != VNI) { 3268 report("Different value live out of predecessor", Pred); 3269 report_context(LR, Reg, LaneMask); 3270 errs() << "Valno #" << PVNI->id << " live out of " 3271 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #" 3272 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 3273 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 3274 } 3275 } 3276 if (&*MFI == EndMBB) 3277 break; 3278 ++MFI; 3279 } 3280 } 3281 3282 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg, 3283 LaneBitmask LaneMask) { 3284 for (const VNInfo *VNI : LR.valnos) 3285 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 3286 3287 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 3288 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 3289 } 3290 3291 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 3292 Register Reg = LI.reg(); 3293 assert(Reg.isVirtual()); 3294 verifyLiveRange(LI, Reg); 3295 3296 LaneBitmask Mask; 3297 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3298 for (const LiveInterval::SubRange &SR : LI.subranges()) { 3299 if ((Mask & SR.LaneMask).any()) { 3300 report("Lane masks of sub ranges overlap in live interval", MF); 3301 report_context(LI); 3302 } 3303 if ((SR.LaneMask & ~MaxMask).any()) { 3304 report("Subrange lanemask is invalid", MF); 3305 report_context(LI); 3306 } 3307 if (SR.empty()) { 3308 report("Subrange must not be empty", MF); 3309 report_context(SR, LI.reg(), SR.LaneMask); 3310 } 3311 Mask |= SR.LaneMask; 3312 verifyLiveRange(SR, LI.reg(), SR.LaneMask); 3313 if (!LI.covers(SR)) { 3314 report("A Subrange is not covered by the main range", MF); 3315 report_context(LI); 3316 } 3317 } 3318 3319 // Check the LI only has one connected component. 3320 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 3321 unsigned NumComp = ConEQ.Classify(LI); 3322 if (NumComp > 1) { 3323 report("Multiple connected components in live interval", MF); 3324 report_context(LI); 3325 for (unsigned comp = 0; comp != NumComp; ++comp) { 3326 errs() << comp << ": valnos"; 3327 for (const VNInfo *I : LI.valnos) 3328 if (comp == ConEQ.getEqClass(I)) 3329 errs() << ' ' << I->id; 3330 errs() << '\n'; 3331 } 3332 } 3333 } 3334 3335 namespace { 3336 3337 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 3338 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 3339 // value is zero. 3340 // We use a bool plus an integer to capture the stack state. 3341 struct StackStateOfBB { 3342 StackStateOfBB() = default; 3343 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 3344 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 3345 ExitIsSetup(ExitSetup) {} 3346 3347 // Can be negative, which means we are setting up a frame. 3348 int EntryValue = 0; 3349 int ExitValue = 0; 3350 bool EntryIsSetup = false; 3351 bool ExitIsSetup = false; 3352 }; 3353 3354 } // end anonymous namespace 3355 3356 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 3357 /// by a FrameDestroy <n>, stack adjustments are identical on all 3358 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 3359 void MachineVerifier::verifyStackFrame() { 3360 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 3361 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 3362 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 3363 return; 3364 3365 SmallVector<StackStateOfBB, 8> SPState; 3366 SPState.resize(MF->getNumBlockIDs()); 3367 df_iterator_default_set<const MachineBasicBlock*> Reachable; 3368 3369 // Visit the MBBs in DFS order. 3370 for (df_ext_iterator<const MachineFunction *, 3371 df_iterator_default_set<const MachineBasicBlock *>> 3372 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 3373 DFI != DFE; ++DFI) { 3374 const MachineBasicBlock *MBB = *DFI; 3375 3376 StackStateOfBB BBState; 3377 // Check the exit state of the DFS stack predecessor. 3378 if (DFI.getPathLength() >= 2) { 3379 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 3380 assert(Reachable.count(StackPred) && 3381 "DFS stack predecessor is already visited.\n"); 3382 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 3383 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 3384 BBState.ExitValue = BBState.EntryValue; 3385 BBState.ExitIsSetup = BBState.EntryIsSetup; 3386 } 3387 3388 // Update stack state by checking contents of MBB. 3389 for (const auto &I : *MBB) { 3390 if (I.getOpcode() == FrameSetupOpcode) { 3391 if (BBState.ExitIsSetup) 3392 report("FrameSetup is after another FrameSetup", &I); 3393 BBState.ExitValue -= TII->getFrameTotalSize(I); 3394 BBState.ExitIsSetup = true; 3395 } 3396 3397 if (I.getOpcode() == FrameDestroyOpcode) { 3398 int Size = TII->getFrameTotalSize(I); 3399 if (!BBState.ExitIsSetup) 3400 report("FrameDestroy is not after a FrameSetup", &I); 3401 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 3402 BBState.ExitValue; 3403 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 3404 report("FrameDestroy <n> is after FrameSetup <m>", &I); 3405 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 3406 << AbsSPAdj << ">.\n"; 3407 } 3408 BBState.ExitValue += Size; 3409 BBState.ExitIsSetup = false; 3410 } 3411 } 3412 SPState[MBB->getNumber()] = BBState; 3413 3414 // Make sure the exit state of any predecessor is consistent with the entry 3415 // state. 3416 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 3417 if (Reachable.count(Pred) && 3418 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || 3419 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 3420 report("The exit stack state of a predecessor is inconsistent.", MBB); 3421 errs() << "Predecessor " << printMBBReference(*Pred) 3422 << " has exit state (" << SPState[Pred->getNumber()].ExitValue 3423 << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while " 3424 << printMBBReference(*MBB) << " has entry state (" 3425 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 3426 } 3427 } 3428 3429 // Make sure the entry state of any successor is consistent with the exit 3430 // state. 3431 for (const MachineBasicBlock *Succ : MBB->successors()) { 3432 if (Reachable.count(Succ) && 3433 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || 3434 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 3435 report("The entry stack state of a successor is inconsistent.", MBB); 3436 errs() << "Successor " << printMBBReference(*Succ) 3437 << " has entry state (" << SPState[Succ->getNumber()].EntryValue 3438 << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while " 3439 << printMBBReference(*MBB) << " has exit state (" 3440 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 3441 } 3442 } 3443 3444 // Make sure a basic block with return ends with zero stack adjustment. 3445 if (!MBB->empty() && MBB->back().isReturn()) { 3446 if (BBState.ExitIsSetup) 3447 report("A return block ends with a FrameSetup.", MBB); 3448 if (BBState.ExitValue) 3449 report("A return block ends with a nonzero stack adjustment.", MBB); 3450 } 3451 } 3452 } 3453