xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineVerifier.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/CodeGenCommonISel.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeCalc.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/RegisterBank.h"
52 #include "llvm/CodeGen/RegisterBankInfo.h"
53 #include "llvm/CodeGen/SlotIndexes.h"
54 #include "llvm/CodeGen/StackMaps.h"
55 #include "llvm/CodeGen/TargetInstrInfo.h"
56 #include "llvm/CodeGen/TargetOpcodes.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/InlineAsm.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/MC/LaneBitmask.h"
66 #include "llvm/MC/MCAsmInfo.h"
67 #include "llvm/MC/MCDwarf.h"
68 #include "llvm/MC/MCInstrDesc.h"
69 #include "llvm/MC/MCRegisterInfo.h"
70 #include "llvm/MC/MCTargetOptions.h"
71 #include "llvm/Pass.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/LowLevelTypeImpl.h"
75 #include "llvm/Support/MathExtras.h"
76 #include "llvm/Support/ModRef.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Target/TargetMachine.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <cstddef>
82 #include <cstdint>
83 #include <iterator>
84 #include <string>
85 #include <utility>
86 
87 using namespace llvm;
88 
89 namespace {
90 
91   struct MachineVerifier {
92     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
93 
94     unsigned verify(const MachineFunction &MF);
95 
96     Pass *const PASS;
97     const char *Banner;
98     const MachineFunction *MF;
99     const TargetMachine *TM;
100     const TargetInstrInfo *TII;
101     const TargetRegisterInfo *TRI;
102     const MachineRegisterInfo *MRI;
103     const RegisterBankInfo *RBI;
104 
105     unsigned foundErrors;
106 
107     // Avoid querying the MachineFunctionProperties for each operand.
108     bool isFunctionRegBankSelected;
109     bool isFunctionSelected;
110     bool isFunctionTracksDebugUserValues;
111 
112     using RegVector = SmallVector<Register, 16>;
113     using RegMaskVector = SmallVector<const uint32_t *, 4>;
114     using RegSet = DenseSet<Register>;
115     using RegMap = DenseMap<Register, const MachineInstr *>;
116     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
117 
118     const MachineInstr *FirstNonPHI;
119     const MachineInstr *FirstTerminator;
120     BlockSet FunctionBlocks;
121 
122     BitVector regsReserved;
123     RegSet regsLive;
124     RegVector regsDefined, regsDead, regsKilled;
125     RegMaskVector regMasks;
126 
127     SlotIndex lastIndex;
128 
129     // Add Reg and any sub-registers to RV
130     void addRegWithSubRegs(RegVector &RV, Register Reg) {
131       RV.push_back(Reg);
132       if (Reg.isPhysical())
133         append_range(RV, TRI->subregs(Reg.asMCReg()));
134     }
135 
136     struct BBInfo {
137       // Is this MBB reachable from the MF entry point?
138       bool reachable = false;
139 
140       // Vregs that must be live in because they are used without being
141       // defined. Map value is the user. vregsLiveIn doesn't include regs
142       // that only are used by PHI nodes.
143       RegMap vregsLiveIn;
144 
145       // Regs killed in MBB. They may be defined again, and will then be in both
146       // regsKilled and regsLiveOut.
147       RegSet regsKilled;
148 
149       // Regs defined in MBB and live out. Note that vregs passing through may
150       // be live out without being mentioned here.
151       RegSet regsLiveOut;
152 
153       // Vregs that pass through MBB untouched. This set is disjoint from
154       // regsKilled and regsLiveOut.
155       RegSet vregsPassed;
156 
157       // Vregs that must pass through MBB because they are needed by a successor
158       // block. This set is disjoint from regsLiveOut.
159       RegSet vregsRequired;
160 
161       // Set versions of block's predecessor and successor lists.
162       BlockSet Preds, Succs;
163 
164       BBInfo() = default;
165 
166       // Add register to vregsRequired if it belongs there. Return true if
167       // anything changed.
168       bool addRequired(Register Reg) {
169         if (!Reg.isVirtual())
170           return false;
171         if (regsLiveOut.count(Reg))
172           return false;
173         return vregsRequired.insert(Reg).second;
174       }
175 
176       // Same for a full set.
177       bool addRequired(const RegSet &RS) {
178         bool Changed = false;
179         for (Register Reg : RS)
180           Changed |= addRequired(Reg);
181         return Changed;
182       }
183 
184       // Same for a full map.
185       bool addRequired(const RegMap &RM) {
186         bool Changed = false;
187         for (const auto &I : RM)
188           Changed |= addRequired(I.first);
189         return Changed;
190       }
191 
192       // Live-out registers are either in regsLiveOut or vregsPassed.
193       bool isLiveOut(Register Reg) const {
194         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
195       }
196     };
197 
198     // Extra register info per MBB.
199     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
200 
201     bool isReserved(Register Reg) {
202       return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
203     }
204 
205     bool isAllocatable(Register Reg) const {
206       return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
207              !regsReserved.test(Reg.id());
208     }
209 
210     // Analysis information if available
211     LiveVariables *LiveVars;
212     LiveIntervals *LiveInts;
213     LiveStacks *LiveStks;
214     SlotIndexes *Indexes;
215 
216     void visitMachineFunctionBefore();
217     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
218     void visitMachineBundleBefore(const MachineInstr *MI);
219 
220     /// Verify that all of \p MI's virtual register operands are scalars.
221     /// \returns True if all virtual register operands are scalar. False
222     /// otherwise.
223     bool verifyAllRegOpsScalar(const MachineInstr &MI,
224                                const MachineRegisterInfo &MRI);
225     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
226     void verifyPreISelGenericInstruction(const MachineInstr *MI);
227     void visitMachineInstrBefore(const MachineInstr *MI);
228     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
229     void visitMachineBundleAfter(const MachineInstr *MI);
230     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
231     void visitMachineFunctionAfter();
232 
233     void report(const char *msg, const MachineFunction *MF);
234     void report(const char *msg, const MachineBasicBlock *MBB);
235     void report(const char *msg, const MachineInstr *MI);
236     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
237                 LLT MOVRegType = LLT{});
238     void report(const Twine &Msg, const MachineInstr *MI);
239 
240     void report_context(const LiveInterval &LI) const;
241     void report_context(const LiveRange &LR, Register VRegUnit,
242                         LaneBitmask LaneMask) const;
243     void report_context(const LiveRange::Segment &S) const;
244     void report_context(const VNInfo &VNI) const;
245     void report_context(SlotIndex Pos) const;
246     void report_context(MCPhysReg PhysReg) const;
247     void report_context_liverange(const LiveRange &LR) const;
248     void report_context_lanemask(LaneBitmask LaneMask) const;
249     void report_context_vreg(Register VReg) const;
250     void report_context_vreg_regunit(Register VRegOrUnit) const;
251 
252     void verifyInlineAsm(const MachineInstr *MI);
253 
254     void checkLiveness(const MachineOperand *MO, unsigned MONum);
255     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
256                             SlotIndex UseIdx, const LiveRange &LR,
257                             Register VRegOrUnit,
258                             LaneBitmask LaneMask = LaneBitmask::getNone());
259     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
260                             SlotIndex DefIdx, const LiveRange &LR,
261                             Register VRegOrUnit, bool SubRangeCheck = false,
262                             LaneBitmask LaneMask = LaneBitmask::getNone());
263 
264     void markReachable(const MachineBasicBlock *MBB);
265     void calcRegsPassed();
266     void checkPHIOps(const MachineBasicBlock &MBB);
267 
268     void calcRegsRequired();
269     void verifyLiveVariables();
270     void verifyLiveIntervals();
271     void verifyLiveInterval(const LiveInterval&);
272     void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
273                               LaneBitmask);
274     void verifyLiveRangeSegment(const LiveRange &,
275                                 const LiveRange::const_iterator I, Register,
276                                 LaneBitmask);
277     void verifyLiveRange(const LiveRange &, Register,
278                          LaneBitmask LaneMask = LaneBitmask::getNone());
279 
280     void verifyStackFrame();
281 
282     void verifySlotIndexes() const;
283     void verifyProperties(const MachineFunction &MF);
284   };
285 
286   struct MachineVerifierPass : public MachineFunctionPass {
287     static char ID; // Pass ID, replacement for typeid
288 
289     const std::string Banner;
290 
291     MachineVerifierPass(std::string banner = std::string())
292       : MachineFunctionPass(ID), Banner(std::move(banner)) {
293         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
294       }
295 
296     void getAnalysisUsage(AnalysisUsage &AU) const override {
297       AU.addUsedIfAvailable<LiveStacks>();
298       AU.addUsedIfAvailable<LiveVariables>();
299       AU.setPreservesAll();
300       MachineFunctionPass::getAnalysisUsage(AU);
301     }
302 
303     bool runOnMachineFunction(MachineFunction &MF) override {
304       // Skip functions that have known verification problems.
305       // FIXME: Remove this mechanism when all problematic passes have been
306       // fixed.
307       if (MF.getProperties().hasProperty(
308               MachineFunctionProperties::Property::FailsVerification))
309         return false;
310 
311       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
312       if (FoundErrors)
313         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
314       return false;
315     }
316   };
317 
318 } // end anonymous namespace
319 
320 char MachineVerifierPass::ID = 0;
321 
322 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
323                 "Verify generated machine code", false, false)
324 
325 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
326   return new MachineVerifierPass(Banner);
327 }
328 
329 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
330                                  const std::string &Banner,
331                                  const MachineFunction &MF) {
332   // TODO: Use MFAM after porting below analyses.
333   // LiveVariables *LiveVars;
334   // LiveIntervals *LiveInts;
335   // LiveStacks *LiveStks;
336   // SlotIndexes *Indexes;
337   unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
338   if (FoundErrors)
339     report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
340 }
341 
342 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
343     const {
344   MachineFunction &MF = const_cast<MachineFunction&>(*this);
345   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
346   if (AbortOnErrors && FoundErrors)
347     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
348   return FoundErrors == 0;
349 }
350 
351 void MachineVerifier::verifySlotIndexes() const {
352   if (Indexes == nullptr)
353     return;
354 
355   // Ensure the IdxMBB list is sorted by slot indexes.
356   SlotIndex Last;
357   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
358        E = Indexes->MBBIndexEnd(); I != E; ++I) {
359     assert(!Last.isValid() || I->first > Last);
360     Last = I->first;
361   }
362 }
363 
364 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
365   // If a pass has introduced virtual registers without clearing the
366   // NoVRegs property (or set it without allocating the vregs)
367   // then report an error.
368   if (MF.getProperties().hasProperty(
369           MachineFunctionProperties::Property::NoVRegs) &&
370       MRI->getNumVirtRegs())
371     report("Function has NoVRegs property but there are VReg operands", &MF);
372 }
373 
374 unsigned MachineVerifier::verify(const MachineFunction &MF) {
375   foundErrors = 0;
376 
377   this->MF = &MF;
378   TM = &MF.getTarget();
379   TII = MF.getSubtarget().getInstrInfo();
380   TRI = MF.getSubtarget().getRegisterInfo();
381   RBI = MF.getSubtarget().getRegBankInfo();
382   MRI = &MF.getRegInfo();
383 
384   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
385       MachineFunctionProperties::Property::FailedISel);
386 
387   // If we're mid-GlobalISel and we already triggered the fallback path then
388   // it's expected that the MIR is somewhat broken but that's ok since we'll
389   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
390   if (isFunctionFailedISel)
391     return foundErrors;
392 
393   isFunctionRegBankSelected = MF.getProperties().hasProperty(
394       MachineFunctionProperties::Property::RegBankSelected);
395   isFunctionSelected = MF.getProperties().hasProperty(
396       MachineFunctionProperties::Property::Selected);
397   isFunctionTracksDebugUserValues = MF.getProperties().hasProperty(
398       MachineFunctionProperties::Property::TracksDebugUserValues);
399 
400   LiveVars = nullptr;
401   LiveInts = nullptr;
402   LiveStks = nullptr;
403   Indexes = nullptr;
404   if (PASS) {
405     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
406     // We don't want to verify LiveVariables if LiveIntervals is available.
407     if (!LiveInts)
408       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
409     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
410     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
411   }
412 
413   verifySlotIndexes();
414 
415   verifyProperties(MF);
416 
417   visitMachineFunctionBefore();
418   for (const MachineBasicBlock &MBB : MF) {
419     visitMachineBasicBlockBefore(&MBB);
420     // Keep track of the current bundle header.
421     const MachineInstr *CurBundle = nullptr;
422     // Do we expect the next instruction to be part of the same bundle?
423     bool InBundle = false;
424 
425     for (const MachineInstr &MI : MBB.instrs()) {
426       if (MI.getParent() != &MBB) {
427         report("Bad instruction parent pointer", &MBB);
428         errs() << "Instruction: " << MI;
429         continue;
430       }
431 
432       // Check for consistent bundle flags.
433       if (InBundle && !MI.isBundledWithPred())
434         report("Missing BundledPred flag, "
435                "BundledSucc was set on predecessor",
436                &MI);
437       if (!InBundle && MI.isBundledWithPred())
438         report("BundledPred flag is set, "
439                "but BundledSucc not set on predecessor",
440                &MI);
441 
442       // Is this a bundle header?
443       if (!MI.isInsideBundle()) {
444         if (CurBundle)
445           visitMachineBundleAfter(CurBundle);
446         CurBundle = &MI;
447         visitMachineBundleBefore(CurBundle);
448       } else if (!CurBundle)
449         report("No bundle header", &MI);
450       visitMachineInstrBefore(&MI);
451       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
452         const MachineOperand &Op = MI.getOperand(I);
453         if (Op.getParent() != &MI) {
454           // Make sure to use correct addOperand / removeOperand / ChangeTo
455           // functions when replacing operands of a MachineInstr.
456           report("Instruction has operand with wrong parent set", &MI);
457         }
458 
459         visitMachineOperand(&Op, I);
460       }
461 
462       // Was this the last bundled instruction?
463       InBundle = MI.isBundledWithSucc();
464     }
465     if (CurBundle)
466       visitMachineBundleAfter(CurBundle);
467     if (InBundle)
468       report("BundledSucc flag set on last instruction in block", &MBB.back());
469     visitMachineBasicBlockAfter(&MBB);
470   }
471   visitMachineFunctionAfter();
472 
473   // Clean up.
474   regsLive.clear();
475   regsDefined.clear();
476   regsDead.clear();
477   regsKilled.clear();
478   regMasks.clear();
479   MBBInfoMap.clear();
480 
481   return foundErrors;
482 }
483 
484 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
485   assert(MF);
486   errs() << '\n';
487   if (!foundErrors++) {
488     if (Banner)
489       errs() << "# " << Banner << '\n';
490     if (LiveInts != nullptr)
491       LiveInts->print(errs());
492     else
493       MF->print(errs(), Indexes);
494   }
495   errs() << "*** Bad machine code: " << msg << " ***\n"
496       << "- function:    " << MF->getName() << "\n";
497 }
498 
499 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
500   assert(MBB);
501   report(msg, MBB->getParent());
502   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
503          << MBB->getName() << " (" << (const void *)MBB << ')';
504   if (Indexes)
505     errs() << " [" << Indexes->getMBBStartIdx(MBB)
506         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
507   errs() << '\n';
508 }
509 
510 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
511   assert(MI);
512   report(msg, MI->getParent());
513   errs() << "- instruction: ";
514   if (Indexes && Indexes->hasIndex(*MI))
515     errs() << Indexes->getInstructionIndex(*MI) << '\t';
516   MI->print(errs(), /*IsStandalone=*/true);
517 }
518 
519 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
520                              unsigned MONum, LLT MOVRegType) {
521   assert(MO);
522   report(msg, MO->getParent());
523   errs() << "- operand " << MONum << ":   ";
524   MO->print(errs(), MOVRegType, TRI);
525   errs() << "\n";
526 }
527 
528 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) {
529   report(Msg.str().c_str(), MI);
530 }
531 
532 void MachineVerifier::report_context(SlotIndex Pos) const {
533   errs() << "- at:          " << Pos << '\n';
534 }
535 
536 void MachineVerifier::report_context(const LiveInterval &LI) const {
537   errs() << "- interval:    " << LI << '\n';
538 }
539 
540 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
541                                      LaneBitmask LaneMask) const {
542   report_context_liverange(LR);
543   report_context_vreg_regunit(VRegUnit);
544   if (LaneMask.any())
545     report_context_lanemask(LaneMask);
546 }
547 
548 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
549   errs() << "- segment:     " << S << '\n';
550 }
551 
552 void MachineVerifier::report_context(const VNInfo &VNI) const {
553   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
554 }
555 
556 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
557   errs() << "- liverange:   " << LR << '\n';
558 }
559 
560 void MachineVerifier::report_context(MCPhysReg PReg) const {
561   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
562 }
563 
564 void MachineVerifier::report_context_vreg(Register VReg) const {
565   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
566 }
567 
568 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
569   if (VRegOrUnit.isVirtual()) {
570     report_context_vreg(VRegOrUnit);
571   } else {
572     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
573   }
574 }
575 
576 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
577   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
578 }
579 
580 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
581   BBInfo &MInfo = MBBInfoMap[MBB];
582   if (!MInfo.reachable) {
583     MInfo.reachable = true;
584     for (const MachineBasicBlock *Succ : MBB->successors())
585       markReachable(Succ);
586   }
587 }
588 
589 void MachineVerifier::visitMachineFunctionBefore() {
590   lastIndex = SlotIndex();
591   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
592                                            : TRI->getReservedRegs(*MF);
593 
594   if (!MF->empty())
595     markReachable(&MF->front());
596 
597   // Build a set of the basic blocks in the function.
598   FunctionBlocks.clear();
599   for (const auto &MBB : *MF) {
600     FunctionBlocks.insert(&MBB);
601     BBInfo &MInfo = MBBInfoMap[&MBB];
602 
603     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
604     if (MInfo.Preds.size() != MBB.pred_size())
605       report("MBB has duplicate entries in its predecessor list.", &MBB);
606 
607     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
608     if (MInfo.Succs.size() != MBB.succ_size())
609       report("MBB has duplicate entries in its successor list.", &MBB);
610   }
611 
612   // Check that the register use lists are sane.
613   MRI->verifyUseLists();
614 
615   if (!MF->empty())
616     verifyStackFrame();
617 }
618 
619 void
620 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
621   FirstTerminator = nullptr;
622   FirstNonPHI = nullptr;
623 
624   if (!MF->getProperties().hasProperty(
625       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
626     // If this block has allocatable physical registers live-in, check that
627     // it is an entry block or landing pad.
628     for (const auto &LI : MBB->liveins()) {
629       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
630           MBB->getIterator() != MBB->getParent()->begin()) {
631         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
632         report_context(LI.PhysReg);
633       }
634     }
635   }
636 
637   if (MBB->isIRBlockAddressTaken()) {
638     if (!MBB->getAddressTakenIRBlock()->hasAddressTaken())
639       report("ir-block-address-taken is associated with basic block not used by "
640              "a blockaddress.",
641              MBB);
642   }
643 
644   // Count the number of landing pad successors.
645   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
646   for (const auto *succ : MBB->successors()) {
647     if (succ->isEHPad())
648       LandingPadSuccs.insert(succ);
649     if (!FunctionBlocks.count(succ))
650       report("MBB has successor that isn't part of the function.", MBB);
651     if (!MBBInfoMap[succ].Preds.count(MBB)) {
652       report("Inconsistent CFG", MBB);
653       errs() << "MBB is not in the predecessor list of the successor "
654              << printMBBReference(*succ) << ".\n";
655     }
656   }
657 
658   // Check the predecessor list.
659   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
660     if (!FunctionBlocks.count(Pred))
661       report("MBB has predecessor that isn't part of the function.", MBB);
662     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
663       report("Inconsistent CFG", MBB);
664       errs() << "MBB is not in the successor list of the predecessor "
665              << printMBBReference(*Pred) << ".\n";
666     }
667   }
668 
669   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
670   const BasicBlock *BB = MBB->getBasicBlock();
671   const Function &F = MF->getFunction();
672   if (LandingPadSuccs.size() > 1 &&
673       !(AsmInfo &&
674         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
675         BB && isa<SwitchInst>(BB->getTerminator())) &&
676       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
677     report("MBB has more than one landing pad successor", MBB);
678 
679   // Call analyzeBranch. If it succeeds, there several more conditions to check.
680   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
681   SmallVector<MachineOperand, 4> Cond;
682   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
683                           Cond)) {
684     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
685     // check whether its answers match up with reality.
686     if (!TBB && !FBB) {
687       // Block falls through to its successor.
688       if (!MBB->empty() && MBB->back().isBarrier() &&
689           !TII->isPredicated(MBB->back())) {
690         report("MBB exits via unconditional fall-through but ends with a "
691                "barrier instruction!", MBB);
692       }
693       if (!Cond.empty()) {
694         report("MBB exits via unconditional fall-through but has a condition!",
695                MBB);
696       }
697     } else if (TBB && !FBB && Cond.empty()) {
698       // Block unconditionally branches somewhere.
699       if (MBB->empty()) {
700         report("MBB exits via unconditional branch but doesn't contain "
701                "any instructions!", MBB);
702       } else if (!MBB->back().isBarrier()) {
703         report("MBB exits via unconditional branch but doesn't end with a "
704                "barrier instruction!", MBB);
705       } else if (!MBB->back().isTerminator()) {
706         report("MBB exits via unconditional branch but the branch isn't a "
707                "terminator instruction!", MBB);
708       }
709     } else if (TBB && !FBB && !Cond.empty()) {
710       // Block conditionally branches somewhere, otherwise falls through.
711       if (MBB->empty()) {
712         report("MBB exits via conditional branch/fall-through but doesn't "
713                "contain any instructions!", MBB);
714       } else if (MBB->back().isBarrier()) {
715         report("MBB exits via conditional branch/fall-through but ends with a "
716                "barrier instruction!", MBB);
717       } else if (!MBB->back().isTerminator()) {
718         report("MBB exits via conditional branch/fall-through but the branch "
719                "isn't a terminator instruction!", MBB);
720       }
721     } else if (TBB && FBB) {
722       // Block conditionally branches somewhere, otherwise branches
723       // somewhere else.
724       if (MBB->empty()) {
725         report("MBB exits via conditional branch/branch but doesn't "
726                "contain any instructions!", MBB);
727       } else if (!MBB->back().isBarrier()) {
728         report("MBB exits via conditional branch/branch but doesn't end with a "
729                "barrier instruction!", MBB);
730       } else if (!MBB->back().isTerminator()) {
731         report("MBB exits via conditional branch/branch but the branch "
732                "isn't a terminator instruction!", MBB);
733       }
734       if (Cond.empty()) {
735         report("MBB exits via conditional branch/branch but there's no "
736                "condition!", MBB);
737       }
738     } else {
739       report("analyzeBranch returned invalid data!", MBB);
740     }
741 
742     // Now check that the successors match up with the answers reported by
743     // analyzeBranch.
744     if (TBB && !MBB->isSuccessor(TBB))
745       report("MBB exits via jump or conditional branch, but its target isn't a "
746              "CFG successor!",
747              MBB);
748     if (FBB && !MBB->isSuccessor(FBB))
749       report("MBB exits via conditional branch, but its target isn't a CFG "
750              "successor!",
751              MBB);
752 
753     // There might be a fallthrough to the next block if there's either no
754     // unconditional true branch, or if there's a condition, and one of the
755     // branches is missing.
756     bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
757 
758     // A conditional fallthrough must be an actual CFG successor, not
759     // unreachable. (Conversely, an unconditional fallthrough might not really
760     // be a successor, because the block might end in unreachable.)
761     if (!Cond.empty() && !FBB) {
762       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
763       if (MBBI == MF->end()) {
764         report("MBB conditionally falls through out of function!", MBB);
765       } else if (!MBB->isSuccessor(&*MBBI))
766         report("MBB exits via conditional branch/fall-through but the CFG "
767                "successors don't match the actual successors!",
768                MBB);
769     }
770 
771     // Verify that there aren't any extra un-accounted-for successors.
772     for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
773       // If this successor is one of the branch targets, it's okay.
774       if (SuccMBB == TBB || SuccMBB == FBB)
775         continue;
776       // If we might have a fallthrough, and the successor is the fallthrough
777       // block, that's also ok.
778       if (Fallthrough && SuccMBB == MBB->getNextNode())
779         continue;
780       // Also accept successors which are for exception-handling or might be
781       // inlineasm_br targets.
782       if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
783         continue;
784       report("MBB has unexpected successors which are not branch targets, "
785              "fallthrough, EHPads, or inlineasm_br targets.",
786              MBB);
787     }
788   }
789 
790   regsLive.clear();
791   if (MRI->tracksLiveness()) {
792     for (const auto &LI : MBB->liveins()) {
793       if (!Register::isPhysicalRegister(LI.PhysReg)) {
794         report("MBB live-in list contains non-physical register", MBB);
795         continue;
796       }
797       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
798         regsLive.insert(SubReg);
799     }
800   }
801 
802   const MachineFrameInfo &MFI = MF->getFrameInfo();
803   BitVector PR = MFI.getPristineRegs(*MF);
804   for (unsigned I : PR.set_bits()) {
805     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
806       regsLive.insert(SubReg);
807   }
808 
809   regsKilled.clear();
810   regsDefined.clear();
811 
812   if (Indexes)
813     lastIndex = Indexes->getMBBStartIdx(MBB);
814 }
815 
816 // This function gets called for all bundle headers, including normal
817 // stand-alone unbundled instructions.
818 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
819   if (Indexes && Indexes->hasIndex(*MI)) {
820     SlotIndex idx = Indexes->getInstructionIndex(*MI);
821     if (!(idx > lastIndex)) {
822       report("Instruction index out of order", MI);
823       errs() << "Last instruction was at " << lastIndex << '\n';
824     }
825     lastIndex = idx;
826   }
827 
828   // Ensure non-terminators don't follow terminators.
829   if (MI->isTerminator()) {
830     if (!FirstTerminator)
831       FirstTerminator = MI;
832   } else if (FirstTerminator) {
833     // For GlobalISel, G_INVOKE_REGION_START is a terminator that we allow to
834     // precede non-terminators.
835     if (FirstTerminator->getOpcode() != TargetOpcode::G_INVOKE_REGION_START) {
836       report("Non-terminator instruction after the first terminator", MI);
837       errs() << "First terminator was:\t" << *FirstTerminator;
838     }
839   }
840 }
841 
842 // The operands on an INLINEASM instruction must follow a template.
843 // Verify that the flag operands make sense.
844 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
845   // The first two operands on INLINEASM are the asm string and global flags.
846   if (MI->getNumOperands() < 2) {
847     report("Too few operands on inline asm", MI);
848     return;
849   }
850   if (!MI->getOperand(0).isSymbol())
851     report("Asm string must be an external symbol", MI);
852   if (!MI->getOperand(1).isImm())
853     report("Asm flags must be an immediate", MI);
854   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
855   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
856   // and Extra_IsConvergent = 32.
857   if (!isUInt<6>(MI->getOperand(1).getImm()))
858     report("Unknown asm flags", &MI->getOperand(1), 1);
859 
860   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
861 
862   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
863   unsigned NumOps;
864   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
865     const MachineOperand &MO = MI->getOperand(OpNo);
866     // There may be implicit ops after the fixed operands.
867     if (!MO.isImm())
868       break;
869     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
870   }
871 
872   if (OpNo > MI->getNumOperands())
873     report("Missing operands in last group", MI);
874 
875   // An optional MDNode follows the groups.
876   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
877     ++OpNo;
878 
879   // All trailing operands must be implicit registers.
880   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
881     const MachineOperand &MO = MI->getOperand(OpNo);
882     if (!MO.isReg() || !MO.isImplicit())
883       report("Expected implicit register after groups", &MO, OpNo);
884   }
885 
886   if (MI->getOpcode() == TargetOpcode::INLINEASM_BR) {
887     const MachineBasicBlock *MBB = MI->getParent();
888 
889     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
890          i != e; ++i) {
891       const MachineOperand &MO = MI->getOperand(i);
892 
893       if (!MO.isMBB())
894         continue;
895 
896       // Check the successor & predecessor lists look ok, assume they are
897       // not. Find the indirect target without going through the successors.
898       const MachineBasicBlock *IndirectTargetMBB = MO.getMBB();
899       if (!IndirectTargetMBB) {
900         report("INLINEASM_BR indirect target does not exist", &MO, i);
901         break;
902       }
903 
904       if (!MBB->isSuccessor(IndirectTargetMBB))
905         report("INLINEASM_BR indirect target missing from successor list", &MO,
906                i);
907 
908       if (!IndirectTargetMBB->isPredecessor(MBB))
909         report("INLINEASM_BR indirect target predecessor list missing parent",
910                &MO, i);
911     }
912   }
913 }
914 
915 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI,
916                                             const MachineRegisterInfo &MRI) {
917   if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) {
918         if (!Op.isReg())
919           return false;
920         const auto Reg = Op.getReg();
921         if (Reg.isPhysical())
922           return false;
923         return !MRI.getType(Reg).isScalar();
924       }))
925     return true;
926   report("All register operands must have scalar types", &MI);
927   return false;
928 }
929 
930 /// Check that types are consistent when two operands need to have the same
931 /// number of vector elements.
932 /// \return true if the types are valid.
933 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
934                                                const MachineInstr *MI) {
935   if (Ty0.isVector() != Ty1.isVector()) {
936     report("operand types must be all-vector or all-scalar", MI);
937     // Generally we try to report as many issues as possible at once, but in
938     // this case it's not clear what should we be comparing the size of the
939     // scalar with: the size of the whole vector or its lane. Instead of
940     // making an arbitrary choice and emitting not so helpful message, let's
941     // avoid the extra noise and stop here.
942     return false;
943   }
944 
945   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
946     report("operand types must preserve number of vector elements", MI);
947     return false;
948   }
949 
950   return true;
951 }
952 
953 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
954   if (isFunctionSelected)
955     report("Unexpected generic instruction in a Selected function", MI);
956 
957   const MCInstrDesc &MCID = MI->getDesc();
958   unsigned NumOps = MI->getNumOperands();
959 
960   // Branches must reference a basic block if they are not indirect
961   if (MI->isBranch() && !MI->isIndirectBranch()) {
962     bool HasMBB = false;
963     for (const MachineOperand &Op : MI->operands()) {
964       if (Op.isMBB()) {
965         HasMBB = true;
966         break;
967       }
968     }
969 
970     if (!HasMBB) {
971       report("Branch instruction is missing a basic block operand or "
972              "isIndirectBranch property",
973              MI);
974     }
975   }
976 
977   // Check types.
978   SmallVector<LLT, 4> Types;
979   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
980        I != E; ++I) {
981     if (!MCID.operands()[I].isGenericType())
982       continue;
983     // Generic instructions specify type equality constraints between some of
984     // their operands. Make sure these are consistent.
985     size_t TypeIdx = MCID.operands()[I].getGenericTypeIndex();
986     Types.resize(std::max(TypeIdx + 1, Types.size()));
987 
988     const MachineOperand *MO = &MI->getOperand(I);
989     if (!MO->isReg()) {
990       report("generic instruction must use register operands", MI);
991       continue;
992     }
993 
994     LLT OpTy = MRI->getType(MO->getReg());
995     // Don't report a type mismatch if there is no actual mismatch, only a
996     // type missing, to reduce noise:
997     if (OpTy.isValid()) {
998       // Only the first valid type for a type index will be printed: don't
999       // overwrite it later so it's always clear which type was expected:
1000       if (!Types[TypeIdx].isValid())
1001         Types[TypeIdx] = OpTy;
1002       else if (Types[TypeIdx] != OpTy)
1003         report("Type mismatch in generic instruction", MO, I, OpTy);
1004     } else {
1005       // Generic instructions must have types attached to their operands.
1006       report("Generic instruction is missing a virtual register type", MO, I);
1007     }
1008   }
1009 
1010   // Generic opcodes must not have physical register operands.
1011   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
1012     const MachineOperand *MO = &MI->getOperand(I);
1013     if (MO->isReg() && MO->getReg().isPhysical())
1014       report("Generic instruction cannot have physical register", MO, I);
1015   }
1016 
1017   // Avoid out of bounds in checks below. This was already reported earlier.
1018   if (MI->getNumOperands() < MCID.getNumOperands())
1019     return;
1020 
1021   StringRef ErrorInfo;
1022   if (!TII->verifyInstruction(*MI, ErrorInfo))
1023     report(ErrorInfo.data(), MI);
1024 
1025   // Verify properties of various specific instruction types
1026   unsigned Opc = MI->getOpcode();
1027   switch (Opc) {
1028   case TargetOpcode::G_ASSERT_SEXT:
1029   case TargetOpcode::G_ASSERT_ZEXT: {
1030     std::string OpcName =
1031         Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT";
1032     if (!MI->getOperand(2).isImm()) {
1033       report(Twine(OpcName, " expects an immediate operand #2"), MI);
1034       break;
1035     }
1036 
1037     Register Dst = MI->getOperand(0).getReg();
1038     Register Src = MI->getOperand(1).getReg();
1039     LLT SrcTy = MRI->getType(Src);
1040     int64_t Imm = MI->getOperand(2).getImm();
1041     if (Imm <= 0) {
1042       report(Twine(OpcName, " size must be >= 1"), MI);
1043       break;
1044     }
1045 
1046     if (Imm >= SrcTy.getScalarSizeInBits()) {
1047       report(Twine(OpcName, " size must be less than source bit width"), MI);
1048       break;
1049     }
1050 
1051     const RegisterBank *SrcRB = RBI->getRegBank(Src, *MRI, *TRI);
1052     const RegisterBank *DstRB = RBI->getRegBank(Dst, *MRI, *TRI);
1053 
1054     // Allow only the source bank to be set.
1055     if ((SrcRB && DstRB && SrcRB != DstRB) || (DstRB && !SrcRB)) {
1056       report(Twine(OpcName, " cannot change register bank"), MI);
1057       break;
1058     }
1059 
1060     // Don't allow a class change. Do allow member class->regbank.
1061     const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Dst);
1062     if (DstRC && DstRC != MRI->getRegClassOrNull(Src)) {
1063       report(
1064           Twine(OpcName, " source and destination register classes must match"),
1065           MI);
1066       break;
1067     }
1068 
1069     break;
1070   }
1071 
1072   case TargetOpcode::G_CONSTANT:
1073   case TargetOpcode::G_FCONSTANT: {
1074     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1075     if (DstTy.isVector())
1076       report("Instruction cannot use a vector result type", MI);
1077 
1078     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
1079       if (!MI->getOperand(1).isCImm()) {
1080         report("G_CONSTANT operand must be cimm", MI);
1081         break;
1082       }
1083 
1084       const ConstantInt *CI = MI->getOperand(1).getCImm();
1085       if (CI->getBitWidth() != DstTy.getSizeInBits())
1086         report("inconsistent constant size", MI);
1087     } else {
1088       if (!MI->getOperand(1).isFPImm()) {
1089         report("G_FCONSTANT operand must be fpimm", MI);
1090         break;
1091       }
1092       const ConstantFP *CF = MI->getOperand(1).getFPImm();
1093 
1094       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1095           DstTy.getSizeInBits()) {
1096         report("inconsistent constant size", MI);
1097       }
1098     }
1099 
1100     break;
1101   }
1102   case TargetOpcode::G_LOAD:
1103   case TargetOpcode::G_STORE:
1104   case TargetOpcode::G_ZEXTLOAD:
1105   case TargetOpcode::G_SEXTLOAD: {
1106     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1107     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1108     if (!PtrTy.isPointer())
1109       report("Generic memory instruction must access a pointer", MI);
1110 
1111     // Generic loads and stores must have a single MachineMemOperand
1112     // describing that access.
1113     if (!MI->hasOneMemOperand()) {
1114       report("Generic instruction accessing memory must have one mem operand",
1115              MI);
1116     } else {
1117       const MachineMemOperand &MMO = **MI->memoperands_begin();
1118       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1119           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1120         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1121           report("Generic extload must have a narrower memory type", MI);
1122       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1123         if (MMO.getSize() > ValTy.getSizeInBytes())
1124           report("load memory size cannot exceed result size", MI);
1125       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1126         if (ValTy.getSizeInBytes() < MMO.getSize())
1127           report("store memory size cannot exceed value size", MI);
1128       }
1129 
1130       const AtomicOrdering Order = MMO.getSuccessOrdering();
1131       if (Opc == TargetOpcode::G_STORE) {
1132         if (Order == AtomicOrdering::Acquire ||
1133             Order == AtomicOrdering::AcquireRelease)
1134           report("atomic store cannot use acquire ordering", MI);
1135 
1136       } else {
1137         if (Order == AtomicOrdering::Release ||
1138             Order == AtomicOrdering::AcquireRelease)
1139           report("atomic load cannot use release ordering", MI);
1140       }
1141     }
1142 
1143     break;
1144   }
1145   case TargetOpcode::G_PHI: {
1146     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1147     if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
1148                                     [this, &DstTy](const MachineOperand &MO) {
1149                                       if (!MO.isReg())
1150                                         return true;
1151                                       LLT Ty = MRI->getType(MO.getReg());
1152                                       if (!Ty.isValid() || (Ty != DstTy))
1153                                         return false;
1154                                       return true;
1155                                     }))
1156       report("Generic Instruction G_PHI has operands with incompatible/missing "
1157              "types",
1158              MI);
1159     break;
1160   }
1161   case TargetOpcode::G_BITCAST: {
1162     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1163     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1164     if (!DstTy.isValid() || !SrcTy.isValid())
1165       break;
1166 
1167     if (SrcTy.isPointer() != DstTy.isPointer())
1168       report("bitcast cannot convert between pointers and other types", MI);
1169 
1170     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1171       report("bitcast sizes must match", MI);
1172 
1173     if (SrcTy == DstTy)
1174       report("bitcast must change the type", MI);
1175 
1176     break;
1177   }
1178   case TargetOpcode::G_INTTOPTR:
1179   case TargetOpcode::G_PTRTOINT:
1180   case TargetOpcode::G_ADDRSPACE_CAST: {
1181     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1182     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1183     if (!DstTy.isValid() || !SrcTy.isValid())
1184       break;
1185 
1186     verifyVectorElementMatch(DstTy, SrcTy, MI);
1187 
1188     DstTy = DstTy.getScalarType();
1189     SrcTy = SrcTy.getScalarType();
1190 
1191     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1192       if (!DstTy.isPointer())
1193         report("inttoptr result type must be a pointer", MI);
1194       if (SrcTy.isPointer())
1195         report("inttoptr source type must not be a pointer", MI);
1196     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1197       if (!SrcTy.isPointer())
1198         report("ptrtoint source type must be a pointer", MI);
1199       if (DstTy.isPointer())
1200         report("ptrtoint result type must not be a pointer", MI);
1201     } else {
1202       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1203       if (!SrcTy.isPointer() || !DstTy.isPointer())
1204         report("addrspacecast types must be pointers", MI);
1205       else {
1206         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1207           report("addrspacecast must convert different address spaces", MI);
1208       }
1209     }
1210 
1211     break;
1212   }
1213   case TargetOpcode::G_PTR_ADD: {
1214     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1215     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1216     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1217     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1218       break;
1219 
1220     if (!PtrTy.getScalarType().isPointer())
1221       report("gep first operand must be a pointer", MI);
1222 
1223     if (OffsetTy.getScalarType().isPointer())
1224       report("gep offset operand must not be a pointer", MI);
1225 
1226     // TODO: Is the offset allowed to be a scalar with a vector?
1227     break;
1228   }
1229   case TargetOpcode::G_PTRMASK: {
1230     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1231     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1232     LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1233     if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1234       break;
1235 
1236     if (!DstTy.getScalarType().isPointer())
1237       report("ptrmask result type must be a pointer", MI);
1238 
1239     if (!MaskTy.getScalarType().isScalar())
1240       report("ptrmask mask type must be an integer", MI);
1241 
1242     verifyVectorElementMatch(DstTy, MaskTy, MI);
1243     break;
1244   }
1245   case TargetOpcode::G_SEXT:
1246   case TargetOpcode::G_ZEXT:
1247   case TargetOpcode::G_ANYEXT:
1248   case TargetOpcode::G_TRUNC:
1249   case TargetOpcode::G_FPEXT:
1250   case TargetOpcode::G_FPTRUNC: {
1251     // Number of operands and presense of types is already checked (and
1252     // reported in case of any issues), so no need to report them again. As
1253     // we're trying to report as many issues as possible at once, however, the
1254     // instructions aren't guaranteed to have the right number of operands or
1255     // types attached to them at this point
1256     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1257     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1258     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1259     if (!DstTy.isValid() || !SrcTy.isValid())
1260       break;
1261 
1262     LLT DstElTy = DstTy.getScalarType();
1263     LLT SrcElTy = SrcTy.getScalarType();
1264     if (DstElTy.isPointer() || SrcElTy.isPointer())
1265       report("Generic extend/truncate can not operate on pointers", MI);
1266 
1267     verifyVectorElementMatch(DstTy, SrcTy, MI);
1268 
1269     unsigned DstSize = DstElTy.getSizeInBits();
1270     unsigned SrcSize = SrcElTy.getSizeInBits();
1271     switch (MI->getOpcode()) {
1272     default:
1273       if (DstSize <= SrcSize)
1274         report("Generic extend has destination type no larger than source", MI);
1275       break;
1276     case TargetOpcode::G_TRUNC:
1277     case TargetOpcode::G_FPTRUNC:
1278       if (DstSize >= SrcSize)
1279         report("Generic truncate has destination type no smaller than source",
1280                MI);
1281       break;
1282     }
1283     break;
1284   }
1285   case TargetOpcode::G_SELECT: {
1286     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1287     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1288     if (!SelTy.isValid() || !CondTy.isValid())
1289       break;
1290 
1291     // Scalar condition select on a vector is valid.
1292     if (CondTy.isVector())
1293       verifyVectorElementMatch(SelTy, CondTy, MI);
1294     break;
1295   }
1296   case TargetOpcode::G_MERGE_VALUES: {
1297     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1298     // e.g. s2N = MERGE sN, sN
1299     // Merging multiple scalars into a vector is not allowed, should use
1300     // G_BUILD_VECTOR for that.
1301     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1302     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1303     if (DstTy.isVector() || SrcTy.isVector())
1304       report("G_MERGE_VALUES cannot operate on vectors", MI);
1305 
1306     const unsigned NumOps = MI->getNumOperands();
1307     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1308       report("G_MERGE_VALUES result size is inconsistent", MI);
1309 
1310     for (unsigned I = 2; I != NumOps; ++I) {
1311       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1312         report("G_MERGE_VALUES source types do not match", MI);
1313     }
1314 
1315     break;
1316   }
1317   case TargetOpcode::G_UNMERGE_VALUES: {
1318     unsigned NumDsts = MI->getNumOperands() - 1;
1319     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1320     for (unsigned i = 1; i < NumDsts; ++i) {
1321       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) {
1322         report("G_UNMERGE_VALUES destination types do not match", MI);
1323         break;
1324       }
1325     }
1326 
1327     LLT SrcTy = MRI->getType(MI->getOperand(NumDsts).getReg());
1328     if (DstTy.isVector()) {
1329       // This case is the converse of G_CONCAT_VECTORS.
1330       if (!SrcTy.isVector() || SrcTy.getScalarType() != DstTy.getScalarType() ||
1331           SrcTy.getNumElements() != NumDsts * DstTy.getNumElements())
1332         report("G_UNMERGE_VALUES source operand does not match vector "
1333                "destination operands",
1334                MI);
1335     } else if (SrcTy.isVector()) {
1336       // This case is the converse of G_BUILD_VECTOR, but relaxed to allow
1337       // mismatched types as long as the total size matches:
1338       //   %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<4 x s32>)
1339       if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits())
1340         report("G_UNMERGE_VALUES vector source operand does not match scalar "
1341                "destination operands",
1342                MI);
1343     } else {
1344       // This case is the converse of G_MERGE_VALUES.
1345       if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) {
1346         report("G_UNMERGE_VALUES scalar source operand does not match scalar "
1347                "destination operands",
1348                MI);
1349       }
1350     }
1351     break;
1352   }
1353   case TargetOpcode::G_BUILD_VECTOR: {
1354     // Source types must be scalars, dest type a vector. Total size of scalars
1355     // must match the dest vector size.
1356     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1357     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1358     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1359       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1360       break;
1361     }
1362 
1363     if (DstTy.getElementType() != SrcEltTy)
1364       report("G_BUILD_VECTOR result element type must match source type", MI);
1365 
1366     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1367       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1368 
1369     for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1370       if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1371         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1372 
1373     break;
1374   }
1375   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1376     // Source types must be scalars, dest type a vector. Scalar types must be
1377     // larger than the dest vector elt type, as this is a truncating operation.
1378     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1379     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1380     if (!DstTy.isVector() || SrcEltTy.isVector())
1381       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1382              MI);
1383     for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1384       if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1385         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1386                MI);
1387     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1388       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1389              "dest elt type",
1390              MI);
1391     break;
1392   }
1393   case TargetOpcode::G_CONCAT_VECTORS: {
1394     // Source types should be vectors, and total size should match the dest
1395     // vector size.
1396     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1397     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1398     if (!DstTy.isVector() || !SrcTy.isVector())
1399       report("G_CONCAT_VECTOR requires vector source and destination operands",
1400              MI);
1401 
1402     if (MI->getNumOperands() < 3)
1403       report("G_CONCAT_VECTOR requires at least 2 source operands", MI);
1404 
1405     for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1406       if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1407         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1408     if (DstTy.getNumElements() !=
1409         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1410       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1411     break;
1412   }
1413   case TargetOpcode::G_ICMP:
1414   case TargetOpcode::G_FCMP: {
1415     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1416     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1417 
1418     if ((DstTy.isVector() != SrcTy.isVector()) ||
1419         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1420       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1421 
1422     break;
1423   }
1424   case TargetOpcode::G_EXTRACT: {
1425     const MachineOperand &SrcOp = MI->getOperand(1);
1426     if (!SrcOp.isReg()) {
1427       report("extract source must be a register", MI);
1428       break;
1429     }
1430 
1431     const MachineOperand &OffsetOp = MI->getOperand(2);
1432     if (!OffsetOp.isImm()) {
1433       report("extract offset must be a constant", MI);
1434       break;
1435     }
1436 
1437     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1438     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1439     if (SrcSize == DstSize)
1440       report("extract source must be larger than result", MI);
1441 
1442     if (DstSize + OffsetOp.getImm() > SrcSize)
1443       report("extract reads past end of register", MI);
1444     break;
1445   }
1446   case TargetOpcode::G_INSERT: {
1447     const MachineOperand &SrcOp = MI->getOperand(2);
1448     if (!SrcOp.isReg()) {
1449       report("insert source must be a register", MI);
1450       break;
1451     }
1452 
1453     const MachineOperand &OffsetOp = MI->getOperand(3);
1454     if (!OffsetOp.isImm()) {
1455       report("insert offset must be a constant", MI);
1456       break;
1457     }
1458 
1459     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1460     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1461 
1462     if (DstSize <= SrcSize)
1463       report("inserted size must be smaller than total register", MI);
1464 
1465     if (SrcSize + OffsetOp.getImm() > DstSize)
1466       report("insert writes past end of register", MI);
1467 
1468     break;
1469   }
1470   case TargetOpcode::G_JUMP_TABLE: {
1471     if (!MI->getOperand(1).isJTI())
1472       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1473     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1474     if (!DstTy.isPointer())
1475       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1476     break;
1477   }
1478   case TargetOpcode::G_BRJT: {
1479     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1480       report("G_BRJT src operand 0 must be a pointer type", MI);
1481 
1482     if (!MI->getOperand(1).isJTI())
1483       report("G_BRJT src operand 1 must be a jump table index", MI);
1484 
1485     const auto &IdxOp = MI->getOperand(2);
1486     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1487       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1488     break;
1489   }
1490   case TargetOpcode::G_INTRINSIC:
1491   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1492     // TODO: Should verify number of def and use operands, but the current
1493     // interface requires passing in IR types for mangling.
1494     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1495     if (!IntrIDOp.isIntrinsicID()) {
1496       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1497       break;
1498     }
1499 
1500     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1501     unsigned IntrID = IntrIDOp.getIntrinsicID();
1502     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1503       AttributeList Attrs = Intrinsic::getAttributes(
1504           MF->getFunction().getContext(), static_cast<Intrinsic::ID>(IntrID));
1505       bool DeclHasSideEffects = !Attrs.getMemoryEffects().doesNotAccessMemory();
1506       if (NoSideEffects && DeclHasSideEffects) {
1507         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1508         break;
1509       }
1510       if (!NoSideEffects && !DeclHasSideEffects) {
1511         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1512         break;
1513       }
1514     }
1515 
1516     break;
1517   }
1518   case TargetOpcode::G_SEXT_INREG: {
1519     if (!MI->getOperand(2).isImm()) {
1520       report("G_SEXT_INREG expects an immediate operand #2", MI);
1521       break;
1522     }
1523 
1524     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1525     int64_t Imm = MI->getOperand(2).getImm();
1526     if (Imm <= 0)
1527       report("G_SEXT_INREG size must be >= 1", MI);
1528     if (Imm >= SrcTy.getScalarSizeInBits())
1529       report("G_SEXT_INREG size must be less than source bit width", MI);
1530     break;
1531   }
1532   case TargetOpcode::G_SHUFFLE_VECTOR: {
1533     const MachineOperand &MaskOp = MI->getOperand(3);
1534     if (!MaskOp.isShuffleMask()) {
1535       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1536       break;
1537     }
1538 
1539     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1540     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1541     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1542 
1543     if (Src0Ty != Src1Ty)
1544       report("Source operands must be the same type", MI);
1545 
1546     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1547       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1548 
1549     // Don't check that all operands are vector because scalars are used in
1550     // place of 1 element vectors.
1551     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1552     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1553 
1554     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1555 
1556     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1557       report("Wrong result type for shufflemask", MI);
1558 
1559     for (int Idx : MaskIdxes) {
1560       if (Idx < 0)
1561         continue;
1562 
1563       if (Idx >= 2 * SrcNumElts)
1564         report("Out of bounds shuffle index", MI);
1565     }
1566 
1567     break;
1568   }
1569   case TargetOpcode::G_DYN_STACKALLOC: {
1570     const MachineOperand &DstOp = MI->getOperand(0);
1571     const MachineOperand &AllocOp = MI->getOperand(1);
1572     const MachineOperand &AlignOp = MI->getOperand(2);
1573 
1574     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1575       report("dst operand 0 must be a pointer type", MI);
1576       break;
1577     }
1578 
1579     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1580       report("src operand 1 must be a scalar reg type", MI);
1581       break;
1582     }
1583 
1584     if (!AlignOp.isImm()) {
1585       report("src operand 2 must be an immediate type", MI);
1586       break;
1587     }
1588     break;
1589   }
1590   case TargetOpcode::G_MEMCPY_INLINE:
1591   case TargetOpcode::G_MEMCPY:
1592   case TargetOpcode::G_MEMMOVE: {
1593     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1594     if (MMOs.size() != 2) {
1595       report("memcpy/memmove must have 2 memory operands", MI);
1596       break;
1597     }
1598 
1599     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1600         (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1601       report("wrong memory operand types", MI);
1602       break;
1603     }
1604 
1605     if (MMOs[0]->getSize() != MMOs[1]->getSize())
1606       report("inconsistent memory operand sizes", MI);
1607 
1608     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1609     LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1610 
1611     if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1612       report("memory instruction operand must be a pointer", MI);
1613       break;
1614     }
1615 
1616     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1617       report("inconsistent store address space", MI);
1618     if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1619       report("inconsistent load address space", MI);
1620 
1621     if (Opc != TargetOpcode::G_MEMCPY_INLINE)
1622       if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL))
1623         report("'tail' flag (operand 3) must be an immediate 0 or 1", MI);
1624 
1625     break;
1626   }
1627   case TargetOpcode::G_BZERO:
1628   case TargetOpcode::G_MEMSET: {
1629     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1630     std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero";
1631     if (MMOs.size() != 1) {
1632       report(Twine(Name, " must have 1 memory operand"), MI);
1633       break;
1634     }
1635 
1636     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
1637       report(Twine(Name, " memory operand must be a store"), MI);
1638       break;
1639     }
1640 
1641     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1642     if (!DstPtrTy.isPointer()) {
1643       report(Twine(Name, " operand must be a pointer"), MI);
1644       break;
1645     }
1646 
1647     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1648       report("inconsistent " + Twine(Name, " address space"), MI);
1649 
1650     if (!MI->getOperand(MI->getNumOperands() - 1).isImm() ||
1651         (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL))
1652       report("'tail' flag (last operand) must be an immediate 0 or 1", MI);
1653 
1654     break;
1655   }
1656   case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1657   case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
1658     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1659     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1660     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1661     if (!DstTy.isScalar())
1662       report("Vector reduction requires a scalar destination type", MI);
1663     if (!Src1Ty.isScalar())
1664       report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
1665     if (!Src2Ty.isVector())
1666       report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
1667     break;
1668   }
1669   case TargetOpcode::G_VECREDUCE_FADD:
1670   case TargetOpcode::G_VECREDUCE_FMUL:
1671   case TargetOpcode::G_VECREDUCE_FMAX:
1672   case TargetOpcode::G_VECREDUCE_FMIN:
1673   case TargetOpcode::G_VECREDUCE_ADD:
1674   case TargetOpcode::G_VECREDUCE_MUL:
1675   case TargetOpcode::G_VECREDUCE_AND:
1676   case TargetOpcode::G_VECREDUCE_OR:
1677   case TargetOpcode::G_VECREDUCE_XOR:
1678   case TargetOpcode::G_VECREDUCE_SMAX:
1679   case TargetOpcode::G_VECREDUCE_SMIN:
1680   case TargetOpcode::G_VECREDUCE_UMAX:
1681   case TargetOpcode::G_VECREDUCE_UMIN: {
1682     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1683     if (!DstTy.isScalar())
1684       report("Vector reduction requires a scalar destination type", MI);
1685     break;
1686   }
1687 
1688   case TargetOpcode::G_SBFX:
1689   case TargetOpcode::G_UBFX: {
1690     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1691     if (DstTy.isVector()) {
1692       report("Bitfield extraction is not supported on vectors", MI);
1693       break;
1694     }
1695     break;
1696   }
1697   case TargetOpcode::G_SHL:
1698   case TargetOpcode::G_LSHR:
1699   case TargetOpcode::G_ASHR:
1700   case TargetOpcode::G_ROTR:
1701   case TargetOpcode::G_ROTL: {
1702     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1703     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1704     if (Src1Ty.isVector() != Src2Ty.isVector()) {
1705       report("Shifts and rotates require operands to be either all scalars or "
1706              "all vectors",
1707              MI);
1708       break;
1709     }
1710     break;
1711   }
1712   case TargetOpcode::G_LLROUND:
1713   case TargetOpcode::G_LROUND: {
1714     verifyAllRegOpsScalar(*MI, *MRI);
1715     break;
1716   }
1717   case TargetOpcode::G_IS_FPCLASS: {
1718     LLT DestTy = MRI->getType(MI->getOperand(0).getReg());
1719     LLT DestEltTy = DestTy.getScalarType();
1720     if (!DestEltTy.isScalar()) {
1721       report("Destination must be a scalar or vector of scalars", MI);
1722       break;
1723     }
1724     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1725     LLT SrcEltTy = SrcTy.getScalarType();
1726     if (!SrcEltTy.isScalar()) {
1727       report("Source must be a scalar or vector of scalars", MI);
1728       break;
1729     }
1730     if (!verifyVectorElementMatch(DestTy, SrcTy, MI))
1731       break;
1732     const MachineOperand &TestMO = MI->getOperand(2);
1733     if (!TestMO.isImm()) {
1734       report("floating-point class set (operand 2) must be an immediate", MI);
1735       break;
1736     }
1737     int64_t Test = TestMO.getImm();
1738     if (Test < 0 || Test > fcAllFlags) {
1739       report("Incorrect floating-point class set (operand 2)", MI);
1740       break;
1741     }
1742     break;
1743   }
1744   case TargetOpcode::G_ASSERT_ALIGN: {
1745     if (MI->getOperand(2).getImm() < 1)
1746       report("alignment immediate must be >= 1", MI);
1747     break;
1748   }
1749   default:
1750     break;
1751   }
1752 }
1753 
1754 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1755   const MCInstrDesc &MCID = MI->getDesc();
1756   if (MI->getNumOperands() < MCID.getNumOperands()) {
1757     report("Too few operands", MI);
1758     errs() << MCID.getNumOperands() << " operands expected, but "
1759            << MI->getNumOperands() << " given.\n";
1760   }
1761 
1762   if (MI->isPHI()) {
1763     if (MF->getProperties().hasProperty(
1764             MachineFunctionProperties::Property::NoPHIs))
1765       report("Found PHI instruction with NoPHIs property set", MI);
1766 
1767     if (FirstNonPHI)
1768       report("Found PHI instruction after non-PHI", MI);
1769   } else if (FirstNonPHI == nullptr)
1770     FirstNonPHI = MI;
1771 
1772   // Check the tied operands.
1773   if (MI->isInlineAsm())
1774     verifyInlineAsm(MI);
1775 
1776   // Check that unspillable terminators define a reg and have at most one use.
1777   if (TII->isUnspillableTerminator(MI)) {
1778     if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
1779       report("Unspillable Terminator does not define a reg", MI);
1780     Register Def = MI->getOperand(0).getReg();
1781     if (Def.isVirtual() &&
1782         !MF->getProperties().hasProperty(
1783             MachineFunctionProperties::Property::NoPHIs) &&
1784         std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
1785       report("Unspillable Terminator expected to have at most one use!", MI);
1786   }
1787 
1788   // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1789   // DBG_VALUEs: these are convenient to use in tests, but should never get
1790   // generated.
1791   if (MI->isDebugValue() && MI->getNumOperands() == 4)
1792     if (!MI->getDebugLoc())
1793       report("Missing DebugLoc for debug instruction", MI);
1794 
1795   // Meta instructions should never be the subject of debug value tracking,
1796   // they don't create a value in the output program at all.
1797   if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
1798     report("Metadata instruction should not have a value tracking number", MI);
1799 
1800   // Check the MachineMemOperands for basic consistency.
1801   for (MachineMemOperand *Op : MI->memoperands()) {
1802     if (Op->isLoad() && !MI->mayLoad())
1803       report("Missing mayLoad flag", MI);
1804     if (Op->isStore() && !MI->mayStore())
1805       report("Missing mayStore flag", MI);
1806   }
1807 
1808   // Debug values must not have a slot index.
1809   // Other instructions must have one, unless they are inside a bundle.
1810   if (LiveInts) {
1811     bool mapped = !LiveInts->isNotInMIMap(*MI);
1812     if (MI->isDebugOrPseudoInstr()) {
1813       if (mapped)
1814         report("Debug instruction has a slot index", MI);
1815     } else if (MI->isInsideBundle()) {
1816       if (mapped)
1817         report("Instruction inside bundle has a slot index", MI);
1818     } else {
1819       if (!mapped)
1820         report("Missing slot index", MI);
1821     }
1822   }
1823 
1824   unsigned Opc = MCID.getOpcode();
1825   if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) {
1826     verifyPreISelGenericInstruction(MI);
1827     return;
1828   }
1829 
1830   StringRef ErrorInfo;
1831   if (!TII->verifyInstruction(*MI, ErrorInfo))
1832     report(ErrorInfo.data(), MI);
1833 
1834   // Verify properties of various specific instruction types
1835   switch (MI->getOpcode()) {
1836   case TargetOpcode::COPY: {
1837     const MachineOperand &DstOp = MI->getOperand(0);
1838     const MachineOperand &SrcOp = MI->getOperand(1);
1839     const Register SrcReg = SrcOp.getReg();
1840     const Register DstReg = DstOp.getReg();
1841 
1842     LLT DstTy = MRI->getType(DstReg);
1843     LLT SrcTy = MRI->getType(SrcReg);
1844     if (SrcTy.isValid() && DstTy.isValid()) {
1845       // If both types are valid, check that the types are the same.
1846       if (SrcTy != DstTy) {
1847         report("Copy Instruction is illegal with mismatching types", MI);
1848         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1849       }
1850 
1851       break;
1852     }
1853 
1854     if (!SrcTy.isValid() && !DstTy.isValid())
1855       break;
1856 
1857     // If we have only one valid type, this is likely a copy between a virtual
1858     // and physical register.
1859     unsigned SrcSize = 0;
1860     unsigned DstSize = 0;
1861     if (SrcReg.isPhysical() && DstTy.isValid()) {
1862       const TargetRegisterClass *SrcRC =
1863           TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy);
1864       if (SrcRC)
1865         SrcSize = TRI->getRegSizeInBits(*SrcRC);
1866     }
1867 
1868     if (SrcSize == 0)
1869       SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
1870 
1871     if (DstReg.isPhysical() && SrcTy.isValid()) {
1872       const TargetRegisterClass *DstRC =
1873           TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy);
1874       if (DstRC)
1875         DstSize = TRI->getRegSizeInBits(*DstRC);
1876     }
1877 
1878     if (DstSize == 0)
1879       DstSize = TRI->getRegSizeInBits(DstReg, *MRI);
1880 
1881     if (SrcSize != 0 && DstSize != 0 && SrcSize != DstSize) {
1882       if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1883         report("Copy Instruction is illegal with mismatching sizes", MI);
1884         errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1885                << "\n";
1886       }
1887     }
1888     break;
1889   }
1890   case TargetOpcode::STATEPOINT: {
1891     StatepointOpers SO(MI);
1892     if (!MI->getOperand(SO.getIDPos()).isImm() ||
1893         !MI->getOperand(SO.getNBytesPos()).isImm() ||
1894         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1895       report("meta operands to STATEPOINT not constant!", MI);
1896       break;
1897     }
1898 
1899     auto VerifyStackMapConstant = [&](unsigned Offset) {
1900       if (Offset >= MI->getNumOperands()) {
1901         report("stack map constant to STATEPOINT is out of range!", MI);
1902         return;
1903       }
1904       if (!MI->getOperand(Offset - 1).isImm() ||
1905           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1906           !MI->getOperand(Offset).isImm())
1907         report("stack map constant to STATEPOINT not well formed!", MI);
1908     };
1909     VerifyStackMapConstant(SO.getCCIdx());
1910     VerifyStackMapConstant(SO.getFlagsIdx());
1911     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1912     VerifyStackMapConstant(SO.getNumGCPtrIdx());
1913     VerifyStackMapConstant(SO.getNumAllocaIdx());
1914     VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
1915 
1916     // Verify that all explicit statepoint defs are tied to gc operands as
1917     // they are expected to be a relocation of gc operands.
1918     unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
1919     unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
1920     for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
1921       unsigned UseOpIdx;
1922       if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
1923         report("STATEPOINT defs expected to be tied", MI);
1924         break;
1925       }
1926       if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
1927         report("STATEPOINT def tied to non-gc operand", MI);
1928         break;
1929       }
1930     }
1931 
1932     // TODO: verify we have properly encoded deopt arguments
1933   } break;
1934   case TargetOpcode::INSERT_SUBREG: {
1935     unsigned InsertedSize;
1936     if (unsigned SubIdx = MI->getOperand(2).getSubReg())
1937       InsertedSize = TRI->getSubRegIdxSize(SubIdx);
1938     else
1939       InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI);
1940     unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm());
1941     if (SubRegSize < InsertedSize) {
1942       report("INSERT_SUBREG expected inserted value to have equal or lesser "
1943              "size than the subreg it was inserted into", MI);
1944       break;
1945     }
1946   } break;
1947   case TargetOpcode::REG_SEQUENCE: {
1948     unsigned NumOps = MI->getNumOperands();
1949     if (!(NumOps & 1)) {
1950       report("Invalid number of operands for REG_SEQUENCE", MI);
1951       break;
1952     }
1953 
1954     for (unsigned I = 1; I != NumOps; I += 2) {
1955       const MachineOperand &RegOp = MI->getOperand(I);
1956       const MachineOperand &SubRegOp = MI->getOperand(I + 1);
1957 
1958       if (!RegOp.isReg())
1959         report("Invalid register operand for REG_SEQUENCE", &RegOp, I);
1960 
1961       if (!SubRegOp.isImm() || SubRegOp.getImm() == 0 ||
1962           SubRegOp.getImm() >= TRI->getNumSubRegIndices()) {
1963         report("Invalid subregister index operand for REG_SEQUENCE",
1964                &SubRegOp, I + 1);
1965       }
1966     }
1967 
1968     Register DstReg = MI->getOperand(0).getReg();
1969     if (DstReg.isPhysical())
1970       report("REG_SEQUENCE does not support physical register results", MI);
1971 
1972     if (MI->getOperand(0).getSubReg())
1973       report("Invalid subreg result for REG_SEQUENCE", MI);
1974 
1975     break;
1976   }
1977   }
1978 }
1979 
1980 void
1981 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1982   const MachineInstr *MI = MO->getParent();
1983   const MCInstrDesc &MCID = MI->getDesc();
1984   unsigned NumDefs = MCID.getNumDefs();
1985   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1986     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1987 
1988   // The first MCID.NumDefs operands must be explicit register defines
1989   if (MONum < NumDefs) {
1990     const MCOperandInfo &MCOI = MCID.operands()[MONum];
1991     if (!MO->isReg())
1992       report("Explicit definition must be a register", MO, MONum);
1993     else if (!MO->isDef() && !MCOI.isOptionalDef())
1994       report("Explicit definition marked as use", MO, MONum);
1995     else if (MO->isImplicit())
1996       report("Explicit definition marked as implicit", MO, MONum);
1997   } else if (MONum < MCID.getNumOperands()) {
1998     const MCOperandInfo &MCOI = MCID.operands()[MONum];
1999     // Don't check if it's the last operand in a variadic instruction. See,
2000     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
2001     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
2002     if (!IsOptional) {
2003       if (MO->isReg()) {
2004         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
2005           report("Explicit operand marked as def", MO, MONum);
2006         if (MO->isImplicit())
2007           report("Explicit operand marked as implicit", MO, MONum);
2008       }
2009 
2010       // Check that an instruction has register operands only as expected.
2011       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
2012           !MO->isReg() && !MO->isFI())
2013         report("Expected a register operand.", MO, MONum);
2014       if (MO->isReg()) {
2015         if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
2016             (MCOI.OperandType == MCOI::OPERAND_PCREL &&
2017              !TII->isPCRelRegisterOperandLegal(*MO)))
2018           report("Expected a non-register operand.", MO, MONum);
2019       }
2020     }
2021 
2022     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
2023     if (TiedTo != -1) {
2024       if (!MO->isReg())
2025         report("Tied use must be a register", MO, MONum);
2026       else if (!MO->isTied())
2027         report("Operand should be tied", MO, MONum);
2028       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
2029         report("Tied def doesn't match MCInstrDesc", MO, MONum);
2030       else if (MO->getReg().isPhysical()) {
2031         const MachineOperand &MOTied = MI->getOperand(TiedTo);
2032         if (!MOTied.isReg())
2033           report("Tied counterpart must be a register", &MOTied, TiedTo);
2034         else if (MOTied.getReg().isPhysical() &&
2035                  MO->getReg() != MOTied.getReg())
2036           report("Tied physical registers must match.", &MOTied, TiedTo);
2037       }
2038     } else if (MO->isReg() && MO->isTied())
2039       report("Explicit operand should not be tied", MO, MONum);
2040   } else {
2041     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
2042     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
2043       report("Extra explicit operand on non-variadic instruction", MO, MONum);
2044   }
2045 
2046   switch (MO->getType()) {
2047   case MachineOperand::MO_Register: {
2048     // Verify debug flag on debug instructions. Check this first because reg0
2049     // indicates an undefined debug value.
2050     if (MI->isDebugInstr() && MO->isUse()) {
2051       if (!MO->isDebug())
2052         report("Register operand must be marked debug", MO, MONum);
2053     } else if (MO->isDebug()) {
2054       report("Register operand must not be marked debug", MO, MONum);
2055     }
2056 
2057     const Register Reg = MO->getReg();
2058     if (!Reg)
2059       return;
2060     if (MRI->tracksLiveness() && !MI->isDebugInstr())
2061       checkLiveness(MO, MONum);
2062 
2063     if (MO->isDef() && MO->isUndef() && !MO->getSubReg() &&
2064         MO->getReg().isVirtual()) // TODO: Apply to physregs too
2065       report("Undef virtual register def operands require a subregister", MO, MONum);
2066 
2067     // Verify the consistency of tied operands.
2068     if (MO->isTied()) {
2069       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
2070       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
2071       if (!OtherMO.isReg())
2072         report("Must be tied to a register", MO, MONum);
2073       if (!OtherMO.isTied())
2074         report("Missing tie flags on tied operand", MO, MONum);
2075       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
2076         report("Inconsistent tie links", MO, MONum);
2077       if (MONum < MCID.getNumDefs()) {
2078         if (OtherIdx < MCID.getNumOperands()) {
2079           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
2080             report("Explicit def tied to explicit use without tie constraint",
2081                    MO, MONum);
2082         } else {
2083           if (!OtherMO.isImplicit())
2084             report("Explicit def should be tied to implicit use", MO, MONum);
2085         }
2086       }
2087     }
2088 
2089     // Verify two-address constraints after the twoaddressinstruction pass.
2090     // Both twoaddressinstruction pass and phi-node-elimination pass call
2091     // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
2092     // twoaddressinstruction pass not after phi-node-elimination pass. So we
2093     // shouldn't use the NoSSA as the condition, we should based on
2094     // TiedOpsRewritten property to verify two-address constraints, this
2095     // property will be set in twoaddressinstruction pass.
2096     unsigned DefIdx;
2097     if (MF->getProperties().hasProperty(
2098             MachineFunctionProperties::Property::TiedOpsRewritten) &&
2099         MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
2100         Reg != MI->getOperand(DefIdx).getReg())
2101       report("Two-address instruction operands must be identical", MO, MONum);
2102 
2103     // Check register classes.
2104     unsigned SubIdx = MO->getSubReg();
2105 
2106     if (Reg.isPhysical()) {
2107       if (SubIdx) {
2108         report("Illegal subregister index for physical register", MO, MONum);
2109         return;
2110       }
2111       if (MONum < MCID.getNumOperands()) {
2112         if (const TargetRegisterClass *DRC =
2113               TII->getRegClass(MCID, MONum, TRI, *MF)) {
2114           if (!DRC->contains(Reg)) {
2115             report("Illegal physical register for instruction", MO, MONum);
2116             errs() << printReg(Reg, TRI) << " is not a "
2117                    << TRI->getRegClassName(DRC) << " register.\n";
2118           }
2119         }
2120       }
2121       if (MO->isRenamable()) {
2122         if (MRI->isReserved(Reg)) {
2123           report("isRenamable set on reserved register", MO, MONum);
2124           return;
2125         }
2126       }
2127     } else {
2128       // Virtual register.
2129       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
2130       if (!RC) {
2131         // This is a generic virtual register.
2132 
2133         // Do not allow undef uses for generic virtual registers. This ensures
2134         // getVRegDef can never fail and return null on a generic register.
2135         //
2136         // FIXME: This restriction should probably be broadened to all SSA
2137         // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
2138         // run on the SSA function just before phi elimination.
2139         if (MO->isUndef())
2140           report("Generic virtual register use cannot be undef", MO, MONum);
2141 
2142         // Debug value instruction is permitted to use undefined vregs.
2143         // This is a performance measure to skip the overhead of immediately
2144         // pruning unused debug operands. The final undef substitution occurs
2145         // when debug values are allocated in LDVImpl::handleDebugValue, so
2146         // these verifications always apply after this pass.
2147         if (isFunctionTracksDebugUserValues || !MO->isUse() ||
2148             !MI->isDebugValue() || !MRI->def_empty(Reg)) {
2149           // If we're post-Select, we can't have gvregs anymore.
2150           if (isFunctionSelected) {
2151             report("Generic virtual register invalid in a Selected function",
2152                    MO, MONum);
2153             return;
2154           }
2155 
2156           // The gvreg must have a type and it must not have a SubIdx.
2157           LLT Ty = MRI->getType(Reg);
2158           if (!Ty.isValid()) {
2159             report("Generic virtual register must have a valid type", MO,
2160                    MONum);
2161             return;
2162           }
2163 
2164           const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
2165 
2166           // If we're post-RegBankSelect, the gvreg must have a bank.
2167           if (!RegBank && isFunctionRegBankSelected) {
2168             report("Generic virtual register must have a bank in a "
2169                    "RegBankSelected function",
2170                    MO, MONum);
2171             return;
2172           }
2173 
2174           // Make sure the register fits into its register bank if any.
2175           if (RegBank && Ty.isValid() &&
2176               RegBank->getSize() < Ty.getSizeInBits()) {
2177             report("Register bank is too small for virtual register", MO,
2178                    MONum);
2179             errs() << "Register bank " << RegBank->getName() << " too small("
2180                    << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
2181                    << "-bits\n";
2182             return;
2183           }
2184         }
2185 
2186         if (SubIdx)  {
2187           report("Generic virtual register does not allow subregister index", MO,
2188                  MONum);
2189           return;
2190         }
2191 
2192         // If this is a target specific instruction and this operand
2193         // has register class constraint, the virtual register must
2194         // comply to it.
2195         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
2196             MONum < MCID.getNumOperands() &&
2197             TII->getRegClass(MCID, MONum, TRI, *MF)) {
2198           report("Virtual register does not match instruction constraint", MO,
2199                  MONum);
2200           errs() << "Expect register class "
2201                  << TRI->getRegClassName(
2202                         TII->getRegClass(MCID, MONum, TRI, *MF))
2203                  << " but got nothing\n";
2204           return;
2205         }
2206 
2207         break;
2208       }
2209       if (SubIdx) {
2210         const TargetRegisterClass *SRC =
2211           TRI->getSubClassWithSubReg(RC, SubIdx);
2212         if (!SRC) {
2213           report("Invalid subregister index for virtual register", MO, MONum);
2214           errs() << "Register class " << TRI->getRegClassName(RC)
2215               << " does not support subreg index " << SubIdx << "\n";
2216           return;
2217         }
2218         if (RC != SRC) {
2219           report("Invalid register class for subregister index", MO, MONum);
2220           errs() << "Register class " << TRI->getRegClassName(RC)
2221               << " does not fully support subreg index " << SubIdx << "\n";
2222           return;
2223         }
2224       }
2225       if (MONum < MCID.getNumOperands()) {
2226         if (const TargetRegisterClass *DRC =
2227               TII->getRegClass(MCID, MONum, TRI, *MF)) {
2228           if (SubIdx) {
2229             const TargetRegisterClass *SuperRC =
2230                 TRI->getLargestLegalSuperClass(RC, *MF);
2231             if (!SuperRC) {
2232               report("No largest legal super class exists.", MO, MONum);
2233               return;
2234             }
2235             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
2236             if (!DRC) {
2237               report("No matching super-reg register class.", MO, MONum);
2238               return;
2239             }
2240           }
2241           if (!RC->hasSuperClassEq(DRC)) {
2242             report("Illegal virtual register for instruction", MO, MONum);
2243             errs() << "Expected a " << TRI->getRegClassName(DRC)
2244                 << " register, but got a " << TRI->getRegClassName(RC)
2245                 << " register\n";
2246           }
2247         }
2248       }
2249     }
2250     break;
2251   }
2252 
2253   case MachineOperand::MO_RegisterMask:
2254     regMasks.push_back(MO->getRegMask());
2255     break;
2256 
2257   case MachineOperand::MO_MachineBasicBlock:
2258     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
2259       report("PHI operand is not in the CFG", MO, MONum);
2260     break;
2261 
2262   case MachineOperand::MO_FrameIndex:
2263     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
2264         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2265       int FI = MO->getIndex();
2266       LiveInterval &LI = LiveStks->getInterval(FI);
2267       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
2268 
2269       bool stores = MI->mayStore();
2270       bool loads = MI->mayLoad();
2271       // For a memory-to-memory move, we need to check if the frame
2272       // index is used for storing or loading, by inspecting the
2273       // memory operands.
2274       if (stores && loads) {
2275         for (auto *MMO : MI->memoperands()) {
2276           const PseudoSourceValue *PSV = MMO->getPseudoValue();
2277           if (PSV == nullptr) continue;
2278           const FixedStackPseudoSourceValue *Value =
2279             dyn_cast<FixedStackPseudoSourceValue>(PSV);
2280           if (Value == nullptr) continue;
2281           if (Value->getFrameIndex() != FI) continue;
2282 
2283           if (MMO->isStore())
2284             loads = false;
2285           else
2286             stores = false;
2287           break;
2288         }
2289         if (loads == stores)
2290           report("Missing fixed stack memoperand.", MI);
2291       }
2292       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
2293         report("Instruction loads from dead spill slot", MO, MONum);
2294         errs() << "Live stack: " << LI << '\n';
2295       }
2296       if (stores && !LI.liveAt(Idx.getRegSlot())) {
2297         report("Instruction stores to dead spill slot", MO, MONum);
2298         errs() << "Live stack: " << LI << '\n';
2299       }
2300     }
2301     break;
2302 
2303   case MachineOperand::MO_CFIIndex:
2304     if (MO->getCFIIndex() >= MF->getFrameInstructions().size())
2305       report("CFI instruction has invalid index", MO, MONum);
2306     break;
2307 
2308   default:
2309     break;
2310   }
2311 }
2312 
2313 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
2314                                          unsigned MONum, SlotIndex UseIdx,
2315                                          const LiveRange &LR,
2316                                          Register VRegOrUnit,
2317                                          LaneBitmask LaneMask) {
2318   LiveQueryResult LRQ = LR.Query(UseIdx);
2319   // Check if we have a segment at the use, note however that we only need one
2320   // live subregister range, the others may be dead.
2321   if (!LRQ.valueIn() && LaneMask.none()) {
2322     report("No live segment at use", MO, MONum);
2323     report_context_liverange(LR);
2324     report_context_vreg_regunit(VRegOrUnit);
2325     report_context(UseIdx);
2326   }
2327   if (MO->isKill() && !LRQ.isKill()) {
2328     report("Live range continues after kill flag", MO, MONum);
2329     report_context_liverange(LR);
2330     report_context_vreg_regunit(VRegOrUnit);
2331     if (LaneMask.any())
2332       report_context_lanemask(LaneMask);
2333     report_context(UseIdx);
2334   }
2335 }
2336 
2337 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2338                                          unsigned MONum, SlotIndex DefIdx,
2339                                          const LiveRange &LR,
2340                                          Register VRegOrUnit,
2341                                          bool SubRangeCheck,
2342                                          LaneBitmask LaneMask) {
2343   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
2344     // The LR can correspond to the whole reg and its def slot is not obliged
2345     // to be the same as the MO' def slot. E.g. when we check here "normal"
2346     // subreg MO but there is other EC subreg MO in the same instruction so the
2347     // whole reg has EC def slot and differs from the currently checked MO' def
2348     // slot. For example:
2349     // %0 [16e,32r:0) 0@16e  L..3 [16e,32r:0) 0@16e  L..C [16r,32r:0) 0@16r
2350     // Check that there is an early-clobber def of the same superregister
2351     // somewhere is performed in visitMachineFunctionAfter()
2352     if (((SubRangeCheck || MO->getSubReg() == 0) && VNI->def != DefIdx) ||
2353         !SlotIndex::isSameInstr(VNI->def, DefIdx) ||
2354         (VNI->def != DefIdx &&
2355          (!VNI->def.isEarlyClobber() || !DefIdx.isRegister()))) {
2356       report("Inconsistent valno->def", MO, MONum);
2357       report_context_liverange(LR);
2358       report_context_vreg_regunit(VRegOrUnit);
2359       if (LaneMask.any())
2360         report_context_lanemask(LaneMask);
2361       report_context(*VNI);
2362       report_context(DefIdx);
2363     }
2364   } else {
2365     report("No live segment at def", MO, MONum);
2366     report_context_liverange(LR);
2367     report_context_vreg_regunit(VRegOrUnit);
2368     if (LaneMask.any())
2369       report_context_lanemask(LaneMask);
2370     report_context(DefIdx);
2371   }
2372   // Check that, if the dead def flag is present, LiveInts agree.
2373   if (MO->isDead()) {
2374     LiveQueryResult LRQ = LR.Query(DefIdx);
2375     if (!LRQ.isDeadDef()) {
2376       assert(VRegOrUnit.isVirtual() && "Expecting a virtual register.");
2377       // A dead subreg def only tells us that the specific subreg is dead. There
2378       // could be other non-dead defs of other subregs, or we could have other
2379       // parts of the register being live through the instruction. So unless we
2380       // are checking liveness for a subrange it is ok for the live range to
2381       // continue, given that we have a dead def of a subregister.
2382       if (SubRangeCheck || MO->getSubReg() == 0) {
2383         report("Live range continues after dead def flag", MO, MONum);
2384         report_context_liverange(LR);
2385         report_context_vreg_regunit(VRegOrUnit);
2386         if (LaneMask.any())
2387           report_context_lanemask(LaneMask);
2388       }
2389     }
2390   }
2391 }
2392 
2393 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2394   const MachineInstr *MI = MO->getParent();
2395   const Register Reg = MO->getReg();
2396   const unsigned SubRegIdx = MO->getSubReg();
2397 
2398   const LiveInterval *LI = nullptr;
2399   if (LiveInts && Reg.isVirtual()) {
2400     if (LiveInts->hasInterval(Reg)) {
2401       LI = &LiveInts->getInterval(Reg);
2402       if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() &&
2403           !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(Reg))
2404         report("Live interval for subreg operand has no subranges", MO, MONum);
2405     } else {
2406       report("Virtual register has no live interval", MO, MONum);
2407     }
2408   }
2409 
2410   // Both use and def operands can read a register.
2411   if (MO->readsReg()) {
2412     if (MO->isKill())
2413       addRegWithSubRegs(regsKilled, Reg);
2414 
2415     // Check that LiveVars knows this kill (unless we are inside a bundle, in
2416     // which case we have already checked that LiveVars knows any kills on the
2417     // bundle header instead).
2418     if (LiveVars && Reg.isVirtual() && MO->isKill() &&
2419         !MI->isBundledWithPred()) {
2420       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2421       if (!is_contained(VI.Kills, MI))
2422         report("Kill missing from LiveVariables", MO, MONum);
2423     }
2424 
2425     // Check LiveInts liveness and kill.
2426     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2427       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
2428       // Check the cached regunit intervals.
2429       if (Reg.isPhysical() && !isReserved(Reg)) {
2430         for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
2431              ++Units) {
2432           if (MRI->isReservedRegUnit(*Units))
2433             continue;
2434           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
2435             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
2436         }
2437       }
2438 
2439       if (Reg.isVirtual()) {
2440         // This is a virtual register interval.
2441         checkLivenessAtUse(MO, MONum, UseIdx, *LI, Reg);
2442 
2443         if (LI->hasSubRanges() && !MO->isDef()) {
2444           LaneBitmask MOMask = SubRegIdx != 0
2445                                    ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2446                                    : MRI->getMaxLaneMaskForVReg(Reg);
2447           LaneBitmask LiveInMask;
2448           for (const LiveInterval::SubRange &SR : LI->subranges()) {
2449             if ((MOMask & SR.LaneMask).none())
2450               continue;
2451             checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2452             LiveQueryResult LRQ = SR.Query(UseIdx);
2453             if (LRQ.valueIn())
2454               LiveInMask |= SR.LaneMask;
2455           }
2456           // At least parts of the register has to be live at the use.
2457           if ((LiveInMask & MOMask).none()) {
2458             report("No live subrange at use", MO, MONum);
2459             report_context(*LI);
2460             report_context(UseIdx);
2461           }
2462         }
2463       }
2464     }
2465 
2466     // Use of a dead register.
2467     if (!regsLive.count(Reg)) {
2468       if (Reg.isPhysical()) {
2469         // Reserved registers may be used even when 'dead'.
2470         bool Bad = !isReserved(Reg);
2471         // We are fine if just any subregister has a defined value.
2472         if (Bad) {
2473 
2474           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2475             if (regsLive.count(SubReg)) {
2476               Bad = false;
2477               break;
2478             }
2479           }
2480         }
2481         // If there is an additional implicit-use of a super register we stop
2482         // here. By definition we are fine if the super register is not
2483         // (completely) dead, if the complete super register is dead we will
2484         // get a report for its operand.
2485         if (Bad) {
2486           for (const MachineOperand &MOP : MI->uses()) {
2487             if (!MOP.isReg() || !MOP.isImplicit())
2488               continue;
2489 
2490             if (!MOP.getReg().isPhysical())
2491               continue;
2492 
2493             if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg))
2494               Bad = false;
2495           }
2496         }
2497         if (Bad)
2498           report("Using an undefined physical register", MO, MONum);
2499       } else if (MRI->def_empty(Reg)) {
2500         report("Reading virtual register without a def", MO, MONum);
2501       } else {
2502         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2503         // We don't know which virtual registers are live in, so only complain
2504         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2505         // must be live in. PHI instructions are handled separately.
2506         if (MInfo.regsKilled.count(Reg))
2507           report("Using a killed virtual register", MO, MONum);
2508         else if (!MI->isPHI())
2509           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2510       }
2511     }
2512   }
2513 
2514   if (MO->isDef()) {
2515     // Register defined.
2516     // TODO: verify that earlyclobber ops are not used.
2517     if (MO->isDead())
2518       addRegWithSubRegs(regsDead, Reg);
2519     else
2520       addRegWithSubRegs(regsDefined, Reg);
2521 
2522     // Verify SSA form.
2523     if (MRI->isSSA() && Reg.isVirtual() &&
2524         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2525       report("Multiple virtual register defs in SSA form", MO, MONum);
2526 
2527     // Check LiveInts for a live segment, but only for virtual registers.
2528     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2529       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2530       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2531 
2532       if (Reg.isVirtual()) {
2533         checkLivenessAtDef(MO, MONum, DefIdx, *LI, Reg);
2534 
2535         if (LI->hasSubRanges()) {
2536           LaneBitmask MOMask = SubRegIdx != 0
2537                                    ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2538                                    : MRI->getMaxLaneMaskForVReg(Reg);
2539           for (const LiveInterval::SubRange &SR : LI->subranges()) {
2540             if ((SR.LaneMask & MOMask).none())
2541               continue;
2542             checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2543           }
2544         }
2545       }
2546     }
2547   }
2548 }
2549 
2550 // This function gets called after visiting all instructions in a bundle. The
2551 // argument points to the bundle header.
2552 // Normal stand-alone instructions are also considered 'bundles', and this
2553 // function is called for all of them.
2554 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2555   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2556   set_union(MInfo.regsKilled, regsKilled);
2557   set_subtract(regsLive, regsKilled); regsKilled.clear();
2558   // Kill any masked registers.
2559   while (!regMasks.empty()) {
2560     const uint32_t *Mask = regMasks.pop_back_val();
2561     for (Register Reg : regsLive)
2562       if (Reg.isPhysical() &&
2563           MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
2564         regsDead.push_back(Reg);
2565   }
2566   set_subtract(regsLive, regsDead);   regsDead.clear();
2567   set_union(regsLive, regsDefined);   regsDefined.clear();
2568 }
2569 
2570 void
2571 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2572   MBBInfoMap[MBB].regsLiveOut = regsLive;
2573   regsLive.clear();
2574 
2575   if (Indexes) {
2576     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2577     if (!(stop > lastIndex)) {
2578       report("Block ends before last instruction index", MBB);
2579       errs() << "Block ends at " << stop
2580           << " last instruction was at " << lastIndex << '\n';
2581     }
2582     lastIndex = stop;
2583   }
2584 }
2585 
2586 namespace {
2587 // This implements a set of registers that serves as a filter: can filter other
2588 // sets by passing through elements not in the filter and blocking those that
2589 // are. Any filter implicitly includes the full set of physical registers upon
2590 // creation, thus filtering them all out. The filter itself as a set only grows,
2591 // and needs to be as efficient as possible.
2592 struct VRegFilter {
2593   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2594   // no duplicates. Both virtual and physical registers are fine.
2595   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2596     SmallVector<Register, 0> VRegsBuffer;
2597     filterAndAdd(FromRegSet, VRegsBuffer);
2598   }
2599   // Filter \p FromRegSet through the filter and append passed elements into \p
2600   // ToVRegs. All elements appended are then added to the filter itself.
2601   // \returns true if anything changed.
2602   template <typename RegSetT>
2603   bool filterAndAdd(const RegSetT &FromRegSet,
2604                     SmallVectorImpl<Register> &ToVRegs) {
2605     unsigned SparseUniverse = Sparse.size();
2606     unsigned NewSparseUniverse = SparseUniverse;
2607     unsigned NewDenseSize = Dense.size();
2608     size_t Begin = ToVRegs.size();
2609     for (Register Reg : FromRegSet) {
2610       if (!Reg.isVirtual())
2611         continue;
2612       unsigned Index = Register::virtReg2Index(Reg);
2613       if (Index < SparseUniverseMax) {
2614         if (Index < SparseUniverse && Sparse.test(Index))
2615           continue;
2616         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2617       } else {
2618         if (Dense.count(Reg))
2619           continue;
2620         ++NewDenseSize;
2621       }
2622       ToVRegs.push_back(Reg);
2623     }
2624     size_t End = ToVRegs.size();
2625     if (Begin == End)
2626       return false;
2627     // Reserving space in sets once performs better than doing so continuously
2628     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2629     // tuned all the way down) and double iteration (the second one is over a
2630     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2631     Sparse.resize(NewSparseUniverse);
2632     Dense.reserve(NewDenseSize);
2633     for (unsigned I = Begin; I < End; ++I) {
2634       Register Reg = ToVRegs[I];
2635       unsigned Index = Register::virtReg2Index(Reg);
2636       if (Index < SparseUniverseMax)
2637         Sparse.set(Index);
2638       else
2639         Dense.insert(Reg);
2640     }
2641     return true;
2642   }
2643 
2644 private:
2645   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2646   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2647   // are tracked by Dense. The only purpose of the threashold and the Dense set
2648   // is to have a reasonably growing memory usage in pathological cases (large
2649   // number of very sparse VRegFilter instances live at the same time). In
2650   // practice even in the worst-by-execution time cases having all elements
2651   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2652   // space efficient than if tracked by Dense. The threashold is set to keep the
2653   // worst-case memory usage within 2x of figures determined empirically for
2654   // "all Dense" scenario in such worst-by-execution-time cases.
2655   BitVector Sparse;
2656   DenseSet<unsigned> Dense;
2657 };
2658 
2659 // Implements both a transfer function and a (binary, in-place) join operator
2660 // for a dataflow over register sets with set union join and filtering transfer
2661 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2662 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2663 // time, where n is the size of the set (as opposed to O(U) where U is the
2664 // universe). filter_b implicitly contains all physical registers at all times.
2665 class FilteringVRegSet {
2666   VRegFilter Filter;
2667   SmallVector<Register, 0> VRegs;
2668 
2669 public:
2670   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2671   // Both virtual and physical registers are fine.
2672   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2673     Filter.add(RS);
2674   }
2675   // Passes \p RS through the filter_b (transfer function) and adds what's left
2676   // to itself (out_b).
2677   template <typename RegSetT> bool add(const RegSetT &RS) {
2678     // Double-duty the Filter: to maintain VRegs a set (and the join operation
2679     // a set union) just add everything being added here to the Filter as well.
2680     return Filter.filterAndAdd(RS, VRegs);
2681   }
2682   using const_iterator = decltype(VRegs)::const_iterator;
2683   const_iterator begin() const { return VRegs.begin(); }
2684   const_iterator end() const { return VRegs.end(); }
2685   size_t size() const { return VRegs.size(); }
2686 };
2687 } // namespace
2688 
2689 // Calculate the largest possible vregsPassed sets. These are the registers that
2690 // can pass through an MBB live, but may not be live every time. It is assumed
2691 // that all vregsPassed sets are empty before the call.
2692 void MachineVerifier::calcRegsPassed() {
2693   if (MF->empty())
2694     // ReversePostOrderTraversal doesn't handle empty functions.
2695     return;
2696 
2697   for (const MachineBasicBlock *MB :
2698        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2699     FilteringVRegSet VRegs;
2700     BBInfo &Info = MBBInfoMap[MB];
2701     assert(Info.reachable);
2702 
2703     VRegs.addToFilter(Info.regsKilled);
2704     VRegs.addToFilter(Info.regsLiveOut);
2705     for (const MachineBasicBlock *Pred : MB->predecessors()) {
2706       const BBInfo &PredInfo = MBBInfoMap[Pred];
2707       if (!PredInfo.reachable)
2708         continue;
2709 
2710       VRegs.add(PredInfo.regsLiveOut);
2711       VRegs.add(PredInfo.vregsPassed);
2712     }
2713     Info.vregsPassed.reserve(VRegs.size());
2714     Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
2715   }
2716 }
2717 
2718 // Calculate the set of virtual registers that must be passed through each basic
2719 // block in order to satisfy the requirements of successor blocks. This is very
2720 // similar to calcRegsPassed, only backwards.
2721 void MachineVerifier::calcRegsRequired() {
2722   // First push live-in regs to predecessors' vregsRequired.
2723   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2724   for (const auto &MBB : *MF) {
2725     BBInfo &MInfo = MBBInfoMap[&MBB];
2726     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2727       BBInfo &PInfo = MBBInfoMap[Pred];
2728       if (PInfo.addRequired(MInfo.vregsLiveIn))
2729         todo.insert(Pred);
2730     }
2731 
2732     // Handle the PHI node.
2733     for (const MachineInstr &MI : MBB.phis()) {
2734       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2735         // Skip those Operands which are undef regs or not regs.
2736         if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
2737           continue;
2738 
2739         // Get register and predecessor for one PHI edge.
2740         Register Reg = MI.getOperand(i).getReg();
2741         const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
2742 
2743         BBInfo &PInfo = MBBInfoMap[Pred];
2744         if (PInfo.addRequired(Reg))
2745           todo.insert(Pred);
2746       }
2747     }
2748   }
2749 
2750   // Iteratively push vregsRequired to predecessors. This will converge to the
2751   // same final state regardless of DenseSet iteration order.
2752   while (!todo.empty()) {
2753     const MachineBasicBlock *MBB = *todo.begin();
2754     todo.erase(MBB);
2755     BBInfo &MInfo = MBBInfoMap[MBB];
2756     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2757       if (Pred == MBB)
2758         continue;
2759       BBInfo &SInfo = MBBInfoMap[Pred];
2760       if (SInfo.addRequired(MInfo.vregsRequired))
2761         todo.insert(Pred);
2762     }
2763   }
2764 }
2765 
2766 // Check PHI instructions at the beginning of MBB. It is assumed that
2767 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2768 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2769   BBInfo &MInfo = MBBInfoMap[&MBB];
2770 
2771   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2772   for (const MachineInstr &Phi : MBB) {
2773     if (!Phi.isPHI())
2774       break;
2775     seen.clear();
2776 
2777     const MachineOperand &MODef = Phi.getOperand(0);
2778     if (!MODef.isReg() || !MODef.isDef()) {
2779       report("Expected first PHI operand to be a register def", &MODef, 0);
2780       continue;
2781     }
2782     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2783         MODef.isEarlyClobber() || MODef.isDebug())
2784       report("Unexpected flag on PHI operand", &MODef, 0);
2785     Register DefReg = MODef.getReg();
2786     if (!DefReg.isVirtual())
2787       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2788 
2789     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2790       const MachineOperand &MO0 = Phi.getOperand(I);
2791       if (!MO0.isReg()) {
2792         report("Expected PHI operand to be a register", &MO0, I);
2793         continue;
2794       }
2795       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2796           MO0.isDebug() || MO0.isTied())
2797         report("Unexpected flag on PHI operand", &MO0, I);
2798 
2799       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2800       if (!MO1.isMBB()) {
2801         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2802         continue;
2803       }
2804 
2805       const MachineBasicBlock &Pre = *MO1.getMBB();
2806       if (!Pre.isSuccessor(&MBB)) {
2807         report("PHI input is not a predecessor block", &MO1, I + 1);
2808         continue;
2809       }
2810 
2811       if (MInfo.reachable) {
2812         seen.insert(&Pre);
2813         BBInfo &PrInfo = MBBInfoMap[&Pre];
2814         if (!MO0.isUndef() && PrInfo.reachable &&
2815             !PrInfo.isLiveOut(MO0.getReg()))
2816           report("PHI operand is not live-out from predecessor", &MO0, I);
2817       }
2818     }
2819 
2820     // Did we see all predecessors?
2821     if (MInfo.reachable) {
2822       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2823         if (!seen.count(Pred)) {
2824           report("Missing PHI operand", &Phi);
2825           errs() << printMBBReference(*Pred)
2826                  << " is a predecessor according to the CFG.\n";
2827         }
2828       }
2829     }
2830   }
2831 }
2832 
2833 void MachineVerifier::visitMachineFunctionAfter() {
2834   calcRegsPassed();
2835 
2836   for (const MachineBasicBlock &MBB : *MF)
2837     checkPHIOps(MBB);
2838 
2839   // Now check liveness info if available
2840   calcRegsRequired();
2841 
2842   // Check for killed virtual registers that should be live out.
2843   for (const auto &MBB : *MF) {
2844     BBInfo &MInfo = MBBInfoMap[&MBB];
2845     for (Register VReg : MInfo.vregsRequired)
2846       if (MInfo.regsKilled.count(VReg)) {
2847         report("Virtual register killed in block, but needed live out.", &MBB);
2848         errs() << "Virtual register " << printReg(VReg)
2849                << " is used after the block.\n";
2850       }
2851   }
2852 
2853   if (!MF->empty()) {
2854     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2855     for (Register VReg : MInfo.vregsRequired) {
2856       report("Virtual register defs don't dominate all uses.", MF);
2857       report_context_vreg(VReg);
2858     }
2859   }
2860 
2861   if (LiveVars)
2862     verifyLiveVariables();
2863   if (LiveInts)
2864     verifyLiveIntervals();
2865 
2866   // Check live-in list of each MBB. If a register is live into MBB, check
2867   // that the register is in regsLiveOut of each predecessor block. Since
2868   // this must come from a definition in the predecesssor or its live-in
2869   // list, this will catch a live-through case where the predecessor does not
2870   // have the register in its live-in list.  This currently only checks
2871   // registers that have no aliases, are not allocatable and are not
2872   // reserved, which could mean a condition code register for instance.
2873   if (MRI->tracksLiveness())
2874     for (const auto &MBB : *MF)
2875       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2876         MCPhysReg LiveInReg = P.PhysReg;
2877         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2878         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2879           continue;
2880         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2881           BBInfo &PInfo = MBBInfoMap[Pred];
2882           if (!PInfo.regsLiveOut.count(LiveInReg)) {
2883             report("Live in register not found to be live out from predecessor.",
2884                    &MBB);
2885             errs() << TRI->getName(LiveInReg)
2886                    << " not found to be live out from "
2887                    << printMBBReference(*Pred) << "\n";
2888           }
2889         }
2890       }
2891 
2892   for (auto CSInfo : MF->getCallSitesInfo())
2893     if (!CSInfo.first->isCall())
2894       report("Call site info referencing instruction that is not call", MF);
2895 
2896   // If there's debug-info, check that we don't have any duplicate value
2897   // tracking numbers.
2898   if (MF->getFunction().getSubprogram()) {
2899     DenseSet<unsigned> SeenNumbers;
2900     for (const auto &MBB : *MF) {
2901       for (const auto &MI : MBB) {
2902         if (auto Num = MI.peekDebugInstrNum()) {
2903           auto Result = SeenNumbers.insert((unsigned)Num);
2904           if (!Result.second)
2905             report("Instruction has a duplicated value tracking number", &MI);
2906         }
2907       }
2908     }
2909   }
2910 }
2911 
2912 void MachineVerifier::verifyLiveVariables() {
2913   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2914   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2915     Register Reg = Register::index2VirtReg(I);
2916     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2917     for (const auto &MBB : *MF) {
2918       BBInfo &MInfo = MBBInfoMap[&MBB];
2919 
2920       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2921       if (MInfo.vregsRequired.count(Reg)) {
2922         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2923           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2924           errs() << "Virtual register " << printReg(Reg)
2925                  << " must be live through the block.\n";
2926         }
2927       } else {
2928         if (VI.AliveBlocks.test(MBB.getNumber())) {
2929           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2930           errs() << "Virtual register " << printReg(Reg)
2931                  << " is not needed live through the block.\n";
2932         }
2933       }
2934     }
2935   }
2936 }
2937 
2938 void MachineVerifier::verifyLiveIntervals() {
2939   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2940   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2941     Register Reg = Register::index2VirtReg(I);
2942 
2943     // Spilling and splitting may leave unused registers around. Skip them.
2944     if (MRI->reg_nodbg_empty(Reg))
2945       continue;
2946 
2947     if (!LiveInts->hasInterval(Reg)) {
2948       report("Missing live interval for virtual register", MF);
2949       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2950       continue;
2951     }
2952 
2953     const LiveInterval &LI = LiveInts->getInterval(Reg);
2954     assert(Reg == LI.reg() && "Invalid reg to interval mapping");
2955     verifyLiveInterval(LI);
2956   }
2957 
2958   // Verify all the cached regunit intervals.
2959   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2960     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2961       verifyLiveRange(*LR, i);
2962 }
2963 
2964 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2965                                            const VNInfo *VNI, Register Reg,
2966                                            LaneBitmask LaneMask) {
2967   if (VNI->isUnused())
2968     return;
2969 
2970   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2971 
2972   if (!DefVNI) {
2973     report("Value not live at VNInfo def and not marked unused", MF);
2974     report_context(LR, Reg, LaneMask);
2975     report_context(*VNI);
2976     return;
2977   }
2978 
2979   if (DefVNI != VNI) {
2980     report("Live segment at def has different VNInfo", MF);
2981     report_context(LR, Reg, LaneMask);
2982     report_context(*VNI);
2983     return;
2984   }
2985 
2986   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2987   if (!MBB) {
2988     report("Invalid VNInfo definition index", MF);
2989     report_context(LR, Reg, LaneMask);
2990     report_context(*VNI);
2991     return;
2992   }
2993 
2994   if (VNI->isPHIDef()) {
2995     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2996       report("PHIDef VNInfo is not defined at MBB start", MBB);
2997       report_context(LR, Reg, LaneMask);
2998       report_context(*VNI);
2999     }
3000     return;
3001   }
3002 
3003   // Non-PHI def.
3004   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
3005   if (!MI) {
3006     report("No instruction at VNInfo def index", MBB);
3007     report_context(LR, Reg, LaneMask);
3008     report_context(*VNI);
3009     return;
3010   }
3011 
3012   if (Reg != 0) {
3013     bool hasDef = false;
3014     bool isEarlyClobber = false;
3015     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
3016       if (!MOI->isReg() || !MOI->isDef())
3017         continue;
3018       if (Reg.isVirtual()) {
3019         if (MOI->getReg() != Reg)
3020           continue;
3021       } else {
3022         if (!MOI->getReg().isPhysical() || !TRI->hasRegUnit(MOI->getReg(), Reg))
3023           continue;
3024       }
3025       if (LaneMask.any() &&
3026           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
3027         continue;
3028       hasDef = true;
3029       if (MOI->isEarlyClobber())
3030         isEarlyClobber = true;
3031     }
3032 
3033     if (!hasDef) {
3034       report("Defining instruction does not modify register", MI);
3035       report_context(LR, Reg, LaneMask);
3036       report_context(*VNI);
3037     }
3038 
3039     // Early clobber defs begin at USE slots, but other defs must begin at
3040     // DEF slots.
3041     if (isEarlyClobber) {
3042       if (!VNI->def.isEarlyClobber()) {
3043         report("Early clobber def must be at an early-clobber slot", MBB);
3044         report_context(LR, Reg, LaneMask);
3045         report_context(*VNI);
3046       }
3047     } else if (!VNI->def.isRegister()) {
3048       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
3049       report_context(LR, Reg, LaneMask);
3050       report_context(*VNI);
3051     }
3052   }
3053 }
3054 
3055 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
3056                                              const LiveRange::const_iterator I,
3057                                              Register Reg,
3058                                              LaneBitmask LaneMask) {
3059   const LiveRange::Segment &S = *I;
3060   const VNInfo *VNI = S.valno;
3061   assert(VNI && "Live segment has no valno");
3062 
3063   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
3064     report("Foreign valno in live segment", MF);
3065     report_context(LR, Reg, LaneMask);
3066     report_context(S);
3067     report_context(*VNI);
3068   }
3069 
3070   if (VNI->isUnused()) {
3071     report("Live segment valno is marked unused", MF);
3072     report_context(LR, Reg, LaneMask);
3073     report_context(S);
3074   }
3075 
3076   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
3077   if (!MBB) {
3078     report("Bad start of live segment, no basic block", MF);
3079     report_context(LR, Reg, LaneMask);
3080     report_context(S);
3081     return;
3082   }
3083   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
3084   if (S.start != MBBStartIdx && S.start != VNI->def) {
3085     report("Live segment must begin at MBB entry or valno def", MBB);
3086     report_context(LR, Reg, LaneMask);
3087     report_context(S);
3088   }
3089 
3090   const MachineBasicBlock *EndMBB =
3091     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
3092   if (!EndMBB) {
3093     report("Bad end of live segment, no basic block", MF);
3094     report_context(LR, Reg, LaneMask);
3095     report_context(S);
3096     return;
3097   }
3098 
3099   // No more checks for live-out segments.
3100   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
3101     return;
3102 
3103   // RegUnit intervals are allowed dead phis.
3104   if (!Reg.isVirtual() && VNI->isPHIDef() && S.start == VNI->def &&
3105       S.end == VNI->def.getDeadSlot())
3106     return;
3107 
3108   // The live segment is ending inside EndMBB
3109   const MachineInstr *MI =
3110     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
3111   if (!MI) {
3112     report("Live segment doesn't end at a valid instruction", EndMBB);
3113     report_context(LR, Reg, LaneMask);
3114     report_context(S);
3115     return;
3116   }
3117 
3118   // The block slot must refer to a basic block boundary.
3119   if (S.end.isBlock()) {
3120     report("Live segment ends at B slot of an instruction", EndMBB);
3121     report_context(LR, Reg, LaneMask);
3122     report_context(S);
3123   }
3124 
3125   if (S.end.isDead()) {
3126     // Segment ends on the dead slot.
3127     // That means there must be a dead def.
3128     if (!SlotIndex::isSameInstr(S.start, S.end)) {
3129       report("Live segment ending at dead slot spans instructions", EndMBB);
3130       report_context(LR, Reg, LaneMask);
3131       report_context(S);
3132     }
3133   }
3134 
3135   // After tied operands are rewritten, a live segment can only end at an
3136   // early-clobber slot if it is being redefined by an early-clobber def.
3137   // TODO: Before tied operands are rewritten, a live segment can only end at an
3138   // early-clobber slot if the last use is tied to an early-clobber def.
3139   if (MF->getProperties().hasProperty(
3140           MachineFunctionProperties::Property::TiedOpsRewritten) &&
3141       S.end.isEarlyClobber()) {
3142     if (I+1 == LR.end() || (I+1)->start != S.end) {
3143       report("Live segment ending at early clobber slot must be "
3144              "redefined by an EC def in the same instruction", EndMBB);
3145       report_context(LR, Reg, LaneMask);
3146       report_context(S);
3147     }
3148   }
3149 
3150   // The following checks only apply to virtual registers. Physreg liveness
3151   // is too weird to check.
3152   if (Reg.isVirtual()) {
3153     // A live segment can end with either a redefinition, a kill flag on a
3154     // use, or a dead flag on a def.
3155     bool hasRead = false;
3156     bool hasSubRegDef = false;
3157     bool hasDeadDef = false;
3158     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
3159       if (!MOI->isReg() || MOI->getReg() != Reg)
3160         continue;
3161       unsigned Sub = MOI->getSubReg();
3162       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
3163                                  : LaneBitmask::getAll();
3164       if (MOI->isDef()) {
3165         if (Sub != 0) {
3166           hasSubRegDef = true;
3167           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
3168           // mask for subregister defs. Read-undef defs will be handled by
3169           // readsReg below.
3170           SLM = ~SLM;
3171         }
3172         if (MOI->isDead())
3173           hasDeadDef = true;
3174       }
3175       if (LaneMask.any() && (LaneMask & SLM).none())
3176         continue;
3177       if (MOI->readsReg())
3178         hasRead = true;
3179     }
3180     if (S.end.isDead()) {
3181       // Make sure that the corresponding machine operand for a "dead" live
3182       // range has the dead flag. We cannot perform this check for subregister
3183       // liveranges as partially dead values are allowed.
3184       if (LaneMask.none() && !hasDeadDef) {
3185         report("Instruction ending live segment on dead slot has no dead flag",
3186                MI);
3187         report_context(LR, Reg, LaneMask);
3188         report_context(S);
3189       }
3190     } else {
3191       if (!hasRead) {
3192         // When tracking subregister liveness, the main range must start new
3193         // values on partial register writes, even if there is no read.
3194         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
3195             !hasSubRegDef) {
3196           report("Instruction ending live segment doesn't read the register",
3197                  MI);
3198           report_context(LR, Reg, LaneMask);
3199           report_context(S);
3200         }
3201       }
3202     }
3203   }
3204 
3205   // Now check all the basic blocks in this live segment.
3206   MachineFunction::const_iterator MFI = MBB->getIterator();
3207   // Is this live segment the beginning of a non-PHIDef VN?
3208   if (S.start == VNI->def && !VNI->isPHIDef()) {
3209     // Not live-in to any blocks.
3210     if (MBB == EndMBB)
3211       return;
3212     // Skip this block.
3213     ++MFI;
3214   }
3215 
3216   SmallVector<SlotIndex, 4> Undefs;
3217   if (LaneMask.any()) {
3218     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
3219     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
3220   }
3221 
3222   while (true) {
3223     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
3224     // We don't know how to track physregs into a landing pad.
3225     if (!Reg.isVirtual() && MFI->isEHPad()) {
3226       if (&*MFI == EndMBB)
3227         break;
3228       ++MFI;
3229       continue;
3230     }
3231 
3232     // Is VNI a PHI-def in the current block?
3233     bool IsPHI = VNI->isPHIDef() &&
3234       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
3235 
3236     // Check that VNI is live-out of all predecessors.
3237     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
3238       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
3239       // Predecessor of landing pad live-out on last call.
3240       if (MFI->isEHPad()) {
3241         for (const MachineInstr &MI : llvm::reverse(*Pred)) {
3242           if (MI.isCall()) {
3243             PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex();
3244             break;
3245           }
3246         }
3247       }
3248       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
3249 
3250       // All predecessors must have a live-out value. However for a phi
3251       // instruction with subregister intervals
3252       // only one of the subregisters (not necessarily the current one) needs to
3253       // be defined.
3254       if (!PVNI && (LaneMask.none() || !IsPHI)) {
3255         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
3256           continue;
3257         report("Register not marked live out of predecessor", Pred);
3258         report_context(LR, Reg, LaneMask);
3259         report_context(*VNI);
3260         errs() << " live into " << printMBBReference(*MFI) << '@'
3261                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
3262                << PEnd << '\n';
3263         continue;
3264       }
3265 
3266       // Only PHI-defs can take different predecessor values.
3267       if (!IsPHI && PVNI != VNI) {
3268         report("Different value live out of predecessor", Pred);
3269         report_context(LR, Reg, LaneMask);
3270         errs() << "Valno #" << PVNI->id << " live out of "
3271                << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
3272                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
3273                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
3274       }
3275     }
3276     if (&*MFI == EndMBB)
3277       break;
3278     ++MFI;
3279   }
3280 }
3281 
3282 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
3283                                       LaneBitmask LaneMask) {
3284   for (const VNInfo *VNI : LR.valnos)
3285     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
3286 
3287   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
3288     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
3289 }
3290 
3291 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
3292   Register Reg = LI.reg();
3293   assert(Reg.isVirtual());
3294   verifyLiveRange(LI, Reg);
3295 
3296   LaneBitmask Mask;
3297   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3298   for (const LiveInterval::SubRange &SR : LI.subranges()) {
3299     if ((Mask & SR.LaneMask).any()) {
3300       report("Lane masks of sub ranges overlap in live interval", MF);
3301       report_context(LI);
3302     }
3303     if ((SR.LaneMask & ~MaxMask).any()) {
3304       report("Subrange lanemask is invalid", MF);
3305       report_context(LI);
3306     }
3307     if (SR.empty()) {
3308       report("Subrange must not be empty", MF);
3309       report_context(SR, LI.reg(), SR.LaneMask);
3310     }
3311     Mask |= SR.LaneMask;
3312     verifyLiveRange(SR, LI.reg(), SR.LaneMask);
3313     if (!LI.covers(SR)) {
3314       report("A Subrange is not covered by the main range", MF);
3315       report_context(LI);
3316     }
3317   }
3318 
3319   // Check the LI only has one connected component.
3320   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
3321   unsigned NumComp = ConEQ.Classify(LI);
3322   if (NumComp > 1) {
3323     report("Multiple connected components in live interval", MF);
3324     report_context(LI);
3325     for (unsigned comp = 0; comp != NumComp; ++comp) {
3326       errs() << comp << ": valnos";
3327       for (const VNInfo *I : LI.valnos)
3328         if (comp == ConEQ.getEqClass(I))
3329           errs() << ' ' << I->id;
3330       errs() << '\n';
3331     }
3332   }
3333 }
3334 
3335 namespace {
3336 
3337   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
3338   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
3339   // value is zero.
3340   // We use a bool plus an integer to capture the stack state.
3341   struct StackStateOfBB {
3342     StackStateOfBB() = default;
3343     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
3344       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
3345       ExitIsSetup(ExitSetup) {}
3346 
3347     // Can be negative, which means we are setting up a frame.
3348     int EntryValue = 0;
3349     int ExitValue = 0;
3350     bool EntryIsSetup = false;
3351     bool ExitIsSetup = false;
3352   };
3353 
3354 } // end anonymous namespace
3355 
3356 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3357 /// by a FrameDestroy <n>, stack adjustments are identical on all
3358 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
3359 void MachineVerifier::verifyStackFrame() {
3360   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
3361   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
3362   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
3363     return;
3364 
3365   SmallVector<StackStateOfBB, 8> SPState;
3366   SPState.resize(MF->getNumBlockIDs());
3367   df_iterator_default_set<const MachineBasicBlock*> Reachable;
3368 
3369   // Visit the MBBs in DFS order.
3370   for (df_ext_iterator<const MachineFunction *,
3371                        df_iterator_default_set<const MachineBasicBlock *>>
3372        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3373        DFI != DFE; ++DFI) {
3374     const MachineBasicBlock *MBB = *DFI;
3375 
3376     StackStateOfBB BBState;
3377     // Check the exit state of the DFS stack predecessor.
3378     if (DFI.getPathLength() >= 2) {
3379       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3380       assert(Reachable.count(StackPred) &&
3381              "DFS stack predecessor is already visited.\n");
3382       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3383       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3384       BBState.ExitValue = BBState.EntryValue;
3385       BBState.ExitIsSetup = BBState.EntryIsSetup;
3386     }
3387 
3388     // Update stack state by checking contents of MBB.
3389     for (const auto &I : *MBB) {
3390       if (I.getOpcode() == FrameSetupOpcode) {
3391         if (BBState.ExitIsSetup)
3392           report("FrameSetup is after another FrameSetup", &I);
3393         BBState.ExitValue -= TII->getFrameTotalSize(I);
3394         BBState.ExitIsSetup = true;
3395       }
3396 
3397       if (I.getOpcode() == FrameDestroyOpcode) {
3398         int Size = TII->getFrameTotalSize(I);
3399         if (!BBState.ExitIsSetup)
3400           report("FrameDestroy is not after a FrameSetup", &I);
3401         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3402                                                BBState.ExitValue;
3403         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3404           report("FrameDestroy <n> is after FrameSetup <m>", &I);
3405           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
3406               << AbsSPAdj << ">.\n";
3407         }
3408         BBState.ExitValue += Size;
3409         BBState.ExitIsSetup = false;
3410       }
3411     }
3412     SPState[MBB->getNumber()] = BBState;
3413 
3414     // Make sure the exit state of any predecessor is consistent with the entry
3415     // state.
3416     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3417       if (Reachable.count(Pred) &&
3418           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
3419            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
3420         report("The exit stack state of a predecessor is inconsistent.", MBB);
3421         errs() << "Predecessor " << printMBBReference(*Pred)
3422                << " has exit state (" << SPState[Pred->getNumber()].ExitValue
3423                << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
3424                << printMBBReference(*MBB) << " has entry state ("
3425                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
3426       }
3427     }
3428 
3429     // Make sure the entry state of any successor is consistent with the exit
3430     // state.
3431     for (const MachineBasicBlock *Succ : MBB->successors()) {
3432       if (Reachable.count(Succ) &&
3433           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3434            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3435         report("The entry stack state of a successor is inconsistent.", MBB);
3436         errs() << "Successor " << printMBBReference(*Succ)
3437                << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3438                << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3439                << printMBBReference(*MBB) << " has exit state ("
3440                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3441       }
3442     }
3443 
3444     // Make sure a basic block with return ends with zero stack adjustment.
3445     if (!MBB->empty() && MBB->back().isReturn()) {
3446       if (BBState.ExitIsSetup)
3447         report("A return block ends with a FrameSetup.", MBB);
3448       if (BBState.ExitValue)
3449         report("A return block ends with a nonzero stack adjustment.", MBB);
3450     }
3451   }
3452 }
3453