xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineVerifier.cpp (revision 7ec1ec4fdb98d87602c8501dae9b9cbd24b7d22b)
1  //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // Pass to verify generated machine code. The following is checked:
10  //
11  // Operand counts: All explicit operands must be present.
12  //
13  // Register classes: All physical and virtual register operands must be
14  // compatible with the register class required by the instruction descriptor.
15  //
16  // Register live intervals: Registers must be defined only once, and must be
17  // defined before use.
18  //
19  // The machine code verifier is enabled with the command-line option
20  // -verify-machineinstrs.
21  //===----------------------------------------------------------------------===//
22  
23  #include "llvm/ADT/BitVector.h"
24  #include "llvm/ADT/DenseMap.h"
25  #include "llvm/ADT/DenseSet.h"
26  #include "llvm/ADT/DepthFirstIterator.h"
27  #include "llvm/ADT/PostOrderIterator.h"
28  #include "llvm/ADT/STLExtras.h"
29  #include "llvm/ADT/SetOperations.h"
30  #include "llvm/ADT/SmallPtrSet.h"
31  #include "llvm/ADT/SmallVector.h"
32  #include "llvm/ADT/StringRef.h"
33  #include "llvm/ADT/Twine.h"
34  #include "llvm/Analysis/EHPersonalities.h"
35  #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36  #include "llvm/CodeGen/LiveInterval.h"
37  #include "llvm/CodeGen/LiveIntervalCalc.h"
38  #include "llvm/CodeGen/LiveIntervals.h"
39  #include "llvm/CodeGen/LiveStacks.h"
40  #include "llvm/CodeGen/LiveVariables.h"
41  #include "llvm/CodeGen/MachineBasicBlock.h"
42  #include "llvm/CodeGen/MachineFrameInfo.h"
43  #include "llvm/CodeGen/MachineFunction.h"
44  #include "llvm/CodeGen/MachineFunctionPass.h"
45  #include "llvm/CodeGen/MachineInstr.h"
46  #include "llvm/CodeGen/MachineInstrBundle.h"
47  #include "llvm/CodeGen/MachineMemOperand.h"
48  #include "llvm/CodeGen/MachineOperand.h"
49  #include "llvm/CodeGen/MachineRegisterInfo.h"
50  #include "llvm/CodeGen/PseudoSourceValue.h"
51  #include "llvm/CodeGen/SlotIndexes.h"
52  #include "llvm/CodeGen/StackMaps.h"
53  #include "llvm/CodeGen/TargetInstrInfo.h"
54  #include "llvm/CodeGen/TargetOpcodes.h"
55  #include "llvm/CodeGen/TargetRegisterInfo.h"
56  #include "llvm/CodeGen/TargetSubtargetInfo.h"
57  #include "llvm/IR/BasicBlock.h"
58  #include "llvm/IR/Function.h"
59  #include "llvm/IR/InlineAsm.h"
60  #include "llvm/IR/Instructions.h"
61  #include "llvm/InitializePasses.h"
62  #include "llvm/MC/LaneBitmask.h"
63  #include "llvm/MC/MCAsmInfo.h"
64  #include "llvm/MC/MCInstrDesc.h"
65  #include "llvm/MC/MCRegisterInfo.h"
66  #include "llvm/MC/MCTargetOptions.h"
67  #include "llvm/Pass.h"
68  #include "llvm/Support/Casting.h"
69  #include "llvm/Support/ErrorHandling.h"
70  #include "llvm/Support/LowLevelTypeImpl.h"
71  #include "llvm/Support/MathExtras.h"
72  #include "llvm/Support/raw_ostream.h"
73  #include "llvm/Target/TargetMachine.h"
74  #include <algorithm>
75  #include <cassert>
76  #include <cstddef>
77  #include <cstdint>
78  #include <iterator>
79  #include <string>
80  #include <utility>
81  
82  using namespace llvm;
83  
84  namespace {
85  
86    struct MachineVerifier {
87      MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88  
89      unsigned verify(MachineFunction &MF);
90  
91      Pass *const PASS;
92      const char *Banner;
93      const MachineFunction *MF;
94      const TargetMachine *TM;
95      const TargetInstrInfo *TII;
96      const TargetRegisterInfo *TRI;
97      const MachineRegisterInfo *MRI;
98  
99      unsigned foundErrors;
100  
101      // Avoid querying the MachineFunctionProperties for each operand.
102      bool isFunctionRegBankSelected;
103      bool isFunctionSelected;
104  
105      using RegVector = SmallVector<unsigned, 16>;
106      using RegMaskVector = SmallVector<const uint32_t *, 4>;
107      using RegSet = DenseSet<unsigned>;
108      using RegMap = DenseMap<unsigned, const MachineInstr *>;
109      using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110  
111      const MachineInstr *FirstNonPHI;
112      const MachineInstr *FirstTerminator;
113      BlockSet FunctionBlocks;
114  
115      BitVector regsReserved;
116      RegSet regsLive;
117      RegVector regsDefined, regsDead, regsKilled;
118      RegMaskVector regMasks;
119  
120      SlotIndex lastIndex;
121  
122      // Add Reg and any sub-registers to RV
123      void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
124        RV.push_back(Reg);
125        if (Register::isPhysicalRegister(Reg))
126          for (const MCPhysReg &SubReg : TRI->subregs(Reg))
127            RV.push_back(SubReg);
128      }
129  
130      struct BBInfo {
131        // Is this MBB reachable from the MF entry point?
132        bool reachable = false;
133  
134        // Vregs that must be live in because they are used without being
135        // defined. Map value is the user.
136        RegMap vregsLiveIn;
137  
138        // Regs killed in MBB. They may be defined again, and will then be in both
139        // regsKilled and regsLiveOut.
140        RegSet regsKilled;
141  
142        // Regs defined in MBB and live out. Note that vregs passing through may
143        // be live out without being mentioned here.
144        RegSet regsLiveOut;
145  
146        // Vregs that pass through MBB untouched. This set is disjoint from
147        // regsKilled and regsLiveOut.
148        RegSet vregsPassed;
149  
150        // Vregs that must pass through MBB because they are needed by a successor
151        // block. This set is disjoint from regsLiveOut.
152        RegSet vregsRequired;
153  
154        // Set versions of block's predecessor and successor lists.
155        BlockSet Preds, Succs;
156  
157        BBInfo() = default;
158  
159        // Add register to vregsRequired if it belongs there. Return true if
160        // anything changed.
161        bool addRequired(unsigned Reg) {
162          if (!Register::isVirtualRegister(Reg))
163            return false;
164          if (regsLiveOut.count(Reg))
165            return false;
166          return vregsRequired.insert(Reg).second;
167        }
168  
169        // Same for a full set.
170        bool addRequired(const RegSet &RS) {
171          bool Changed = false;
172          for (unsigned Reg : RS)
173            Changed |= addRequired(Reg);
174          return Changed;
175        }
176  
177        // Same for a full map.
178        bool addRequired(const RegMap &RM) {
179          bool Changed = false;
180          for (const auto &I : RM)
181            Changed |= addRequired(I.first);
182          return Changed;
183        }
184  
185        // Live-out registers are either in regsLiveOut or vregsPassed.
186        bool isLiveOut(unsigned Reg) const {
187          return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
188        }
189      };
190  
191      // Extra register info per MBB.
192      DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
193  
194      bool isReserved(unsigned Reg) {
195        return Reg < regsReserved.size() && regsReserved.test(Reg);
196      }
197  
198      bool isAllocatable(unsigned Reg) const {
199        return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
200               !regsReserved.test(Reg);
201      }
202  
203      // Analysis information if available
204      LiveVariables *LiveVars;
205      LiveIntervals *LiveInts;
206      LiveStacks *LiveStks;
207      SlotIndexes *Indexes;
208  
209      void visitMachineFunctionBefore();
210      void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
211      void visitMachineBundleBefore(const MachineInstr *MI);
212  
213      bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
214      void verifyPreISelGenericInstruction(const MachineInstr *MI);
215      void visitMachineInstrBefore(const MachineInstr *MI);
216      void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
217      void visitMachineBundleAfter(const MachineInstr *MI);
218      void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
219      void visitMachineFunctionAfter();
220  
221      void report(const char *msg, const MachineFunction *MF);
222      void report(const char *msg, const MachineBasicBlock *MBB);
223      void report(const char *msg, const MachineInstr *MI);
224      void report(const char *msg, const MachineOperand *MO, unsigned MONum,
225                  LLT MOVRegType = LLT{});
226  
227      void report_context(const LiveInterval &LI) const;
228      void report_context(const LiveRange &LR, unsigned VRegUnit,
229                          LaneBitmask LaneMask) const;
230      void report_context(const LiveRange::Segment &S) const;
231      void report_context(const VNInfo &VNI) const;
232      void report_context(SlotIndex Pos) const;
233      void report_context(MCPhysReg PhysReg) const;
234      void report_context_liverange(const LiveRange &LR) const;
235      void report_context_lanemask(LaneBitmask LaneMask) const;
236      void report_context_vreg(unsigned VReg) const;
237      void report_context_vreg_regunit(unsigned VRegOrUnit) const;
238  
239      void verifyInlineAsm(const MachineInstr *MI);
240  
241      void checkLiveness(const MachineOperand *MO, unsigned MONum);
242      void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
243                              SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
244                              LaneBitmask LaneMask = LaneBitmask::getNone());
245      void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
246                              SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
247                              bool SubRangeCheck = false,
248                              LaneBitmask LaneMask = LaneBitmask::getNone());
249  
250      void markReachable(const MachineBasicBlock *MBB);
251      void calcRegsPassed();
252      void checkPHIOps(const MachineBasicBlock &MBB);
253  
254      void calcRegsRequired();
255      void verifyLiveVariables();
256      void verifyLiveIntervals();
257      void verifyLiveInterval(const LiveInterval&);
258      void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
259                                LaneBitmask);
260      void verifyLiveRangeSegment(const LiveRange&,
261                                  const LiveRange::const_iterator I, unsigned,
262                                  LaneBitmask);
263      void verifyLiveRange(const LiveRange&, unsigned,
264                           LaneBitmask LaneMask = LaneBitmask::getNone());
265  
266      void verifyStackFrame();
267  
268      void verifySlotIndexes() const;
269      void verifyProperties(const MachineFunction &MF);
270    };
271  
272    struct MachineVerifierPass : public MachineFunctionPass {
273      static char ID; // Pass ID, replacement for typeid
274  
275      const std::string Banner;
276  
277      MachineVerifierPass(std::string banner = std::string())
278        : MachineFunctionPass(ID), Banner(std::move(banner)) {
279          initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
280        }
281  
282      void getAnalysisUsage(AnalysisUsage &AU) const override {
283        AU.setPreservesAll();
284        MachineFunctionPass::getAnalysisUsage(AU);
285      }
286  
287      bool runOnMachineFunction(MachineFunction &MF) override {
288        unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
289        if (FoundErrors)
290          report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
291        return false;
292      }
293    };
294  
295  } // end anonymous namespace
296  
297  char MachineVerifierPass::ID = 0;
298  
299  INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
300                  "Verify generated machine code", false, false)
301  
302  FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
303    return new MachineVerifierPass(Banner);
304  }
305  
306  bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
307      const {
308    MachineFunction &MF = const_cast<MachineFunction&>(*this);
309    unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
310    if (AbortOnErrors && FoundErrors)
311      report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
312    return FoundErrors == 0;
313  }
314  
315  void MachineVerifier::verifySlotIndexes() const {
316    if (Indexes == nullptr)
317      return;
318  
319    // Ensure the IdxMBB list is sorted by slot indexes.
320    SlotIndex Last;
321    for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
322         E = Indexes->MBBIndexEnd(); I != E; ++I) {
323      assert(!Last.isValid() || I->first > Last);
324      Last = I->first;
325    }
326  }
327  
328  void MachineVerifier::verifyProperties(const MachineFunction &MF) {
329    // If a pass has introduced virtual registers without clearing the
330    // NoVRegs property (or set it without allocating the vregs)
331    // then report an error.
332    if (MF.getProperties().hasProperty(
333            MachineFunctionProperties::Property::NoVRegs) &&
334        MRI->getNumVirtRegs())
335      report("Function has NoVRegs property but there are VReg operands", &MF);
336  }
337  
338  unsigned MachineVerifier::verify(MachineFunction &MF) {
339    foundErrors = 0;
340  
341    this->MF = &MF;
342    TM = &MF.getTarget();
343    TII = MF.getSubtarget().getInstrInfo();
344    TRI = MF.getSubtarget().getRegisterInfo();
345    MRI = &MF.getRegInfo();
346  
347    const bool isFunctionFailedISel = MF.getProperties().hasProperty(
348        MachineFunctionProperties::Property::FailedISel);
349  
350    // If we're mid-GlobalISel and we already triggered the fallback path then
351    // it's expected that the MIR is somewhat broken but that's ok since we'll
352    // reset it and clear the FailedISel attribute in ResetMachineFunctions.
353    if (isFunctionFailedISel)
354      return foundErrors;
355  
356    isFunctionRegBankSelected = MF.getProperties().hasProperty(
357        MachineFunctionProperties::Property::RegBankSelected);
358    isFunctionSelected = MF.getProperties().hasProperty(
359        MachineFunctionProperties::Property::Selected);
360  
361    LiveVars = nullptr;
362    LiveInts = nullptr;
363    LiveStks = nullptr;
364    Indexes = nullptr;
365    if (PASS) {
366      LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
367      // We don't want to verify LiveVariables if LiveIntervals is available.
368      if (!LiveInts)
369        LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
370      LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
371      Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
372    }
373  
374    verifySlotIndexes();
375  
376    verifyProperties(MF);
377  
378    visitMachineFunctionBefore();
379    for (const MachineBasicBlock &MBB : MF) {
380      visitMachineBasicBlockBefore(&MBB);
381      // Keep track of the current bundle header.
382      const MachineInstr *CurBundle = nullptr;
383      // Do we expect the next instruction to be part of the same bundle?
384      bool InBundle = false;
385  
386      for (const MachineInstr &MI : MBB.instrs()) {
387        if (MI.getParent() != &MBB) {
388          report("Bad instruction parent pointer", &MBB);
389          errs() << "Instruction: " << MI;
390          continue;
391        }
392  
393        // Check for consistent bundle flags.
394        if (InBundle && !MI.isBundledWithPred())
395          report("Missing BundledPred flag, "
396                 "BundledSucc was set on predecessor",
397                 &MI);
398        if (!InBundle && MI.isBundledWithPred())
399          report("BundledPred flag is set, "
400                 "but BundledSucc not set on predecessor",
401                 &MI);
402  
403        // Is this a bundle header?
404        if (!MI.isInsideBundle()) {
405          if (CurBundle)
406            visitMachineBundleAfter(CurBundle);
407          CurBundle = &MI;
408          visitMachineBundleBefore(CurBundle);
409        } else if (!CurBundle)
410          report("No bundle header", &MI);
411        visitMachineInstrBefore(&MI);
412        for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
413          const MachineOperand &Op = MI.getOperand(I);
414          if (Op.getParent() != &MI) {
415            // Make sure to use correct addOperand / RemoveOperand / ChangeTo
416            // functions when replacing operands of a MachineInstr.
417            report("Instruction has operand with wrong parent set", &MI);
418          }
419  
420          visitMachineOperand(&Op, I);
421        }
422  
423        // Was this the last bundled instruction?
424        InBundle = MI.isBundledWithSucc();
425      }
426      if (CurBundle)
427        visitMachineBundleAfter(CurBundle);
428      if (InBundle)
429        report("BundledSucc flag set on last instruction in block", &MBB.back());
430      visitMachineBasicBlockAfter(&MBB);
431    }
432    visitMachineFunctionAfter();
433  
434    // Clean up.
435    regsLive.clear();
436    regsDefined.clear();
437    regsDead.clear();
438    regsKilled.clear();
439    regMasks.clear();
440    MBBInfoMap.clear();
441  
442    return foundErrors;
443  }
444  
445  void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
446    assert(MF);
447    errs() << '\n';
448    if (!foundErrors++) {
449      if (Banner)
450        errs() << "# " << Banner << '\n';
451      if (LiveInts != nullptr)
452        LiveInts->print(errs());
453      else
454        MF->print(errs(), Indexes);
455    }
456    errs() << "*** Bad machine code: " << msg << " ***\n"
457        << "- function:    " << MF->getName() << "\n";
458  }
459  
460  void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
461    assert(MBB);
462    report(msg, MBB->getParent());
463    errs() << "- basic block: " << printMBBReference(*MBB) << ' '
464           << MBB->getName() << " (" << (const void *)MBB << ')';
465    if (Indexes)
466      errs() << " [" << Indexes->getMBBStartIdx(MBB)
467          << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
468    errs() << '\n';
469  }
470  
471  void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
472    assert(MI);
473    report(msg, MI->getParent());
474    errs() << "- instruction: ";
475    if (Indexes && Indexes->hasIndex(*MI))
476      errs() << Indexes->getInstructionIndex(*MI) << '\t';
477    MI->print(errs(), /*SkipOpers=*/true);
478  }
479  
480  void MachineVerifier::report(const char *msg, const MachineOperand *MO,
481                               unsigned MONum, LLT MOVRegType) {
482    assert(MO);
483    report(msg, MO->getParent());
484    errs() << "- operand " << MONum << ":   ";
485    MO->print(errs(), MOVRegType, TRI);
486    errs() << "\n";
487  }
488  
489  void MachineVerifier::report_context(SlotIndex Pos) const {
490    errs() << "- at:          " << Pos << '\n';
491  }
492  
493  void MachineVerifier::report_context(const LiveInterval &LI) const {
494    errs() << "- interval:    " << LI << '\n';
495  }
496  
497  void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
498                                       LaneBitmask LaneMask) const {
499    report_context_liverange(LR);
500    report_context_vreg_regunit(VRegUnit);
501    if (LaneMask.any())
502      report_context_lanemask(LaneMask);
503  }
504  
505  void MachineVerifier::report_context(const LiveRange::Segment &S) const {
506    errs() << "- segment:     " << S << '\n';
507  }
508  
509  void MachineVerifier::report_context(const VNInfo &VNI) const {
510    errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
511  }
512  
513  void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
514    errs() << "- liverange:   " << LR << '\n';
515  }
516  
517  void MachineVerifier::report_context(MCPhysReg PReg) const {
518    errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
519  }
520  
521  void MachineVerifier::report_context_vreg(unsigned VReg) const {
522    errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
523  }
524  
525  void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
526    if (Register::isVirtualRegister(VRegOrUnit)) {
527      report_context_vreg(VRegOrUnit);
528    } else {
529      errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
530    }
531  }
532  
533  void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
534    errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
535  }
536  
537  void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
538    BBInfo &MInfo = MBBInfoMap[MBB];
539    if (!MInfo.reachable) {
540      MInfo.reachable = true;
541      for (const MachineBasicBlock *Succ : MBB->successors())
542        markReachable(Succ);
543    }
544  }
545  
546  void MachineVerifier::visitMachineFunctionBefore() {
547    lastIndex = SlotIndex();
548    regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
549                                             : TRI->getReservedRegs(*MF);
550  
551    if (!MF->empty())
552      markReachable(&MF->front());
553  
554    // Build a set of the basic blocks in the function.
555    FunctionBlocks.clear();
556    for (const auto &MBB : *MF) {
557      FunctionBlocks.insert(&MBB);
558      BBInfo &MInfo = MBBInfoMap[&MBB];
559  
560      MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
561      if (MInfo.Preds.size() != MBB.pred_size())
562        report("MBB has duplicate entries in its predecessor list.", &MBB);
563  
564      MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
565      if (MInfo.Succs.size() != MBB.succ_size())
566        report("MBB has duplicate entries in its successor list.", &MBB);
567    }
568  
569    // Check that the register use lists are sane.
570    MRI->verifyUseLists();
571  
572    if (!MF->empty())
573      verifyStackFrame();
574  }
575  
576  void
577  MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
578    FirstTerminator = nullptr;
579    FirstNonPHI = nullptr;
580  
581    if (!MF->getProperties().hasProperty(
582        MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
583      // If this block has allocatable physical registers live-in, check that
584      // it is an entry block or landing pad.
585      for (const auto &LI : MBB->liveins()) {
586        if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
587            MBB->getIterator() != MBB->getParent()->begin()) {
588          report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
589          report_context(LI.PhysReg);
590        }
591      }
592    }
593  
594    // Count the number of landing pad successors.
595    SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
596    for (const auto *succ : MBB->successors()) {
597      if (succ->isEHPad())
598        LandingPadSuccs.insert(succ);
599      if (!FunctionBlocks.count(succ))
600        report("MBB has successor that isn't part of the function.", MBB);
601      if (!MBBInfoMap[succ].Preds.count(MBB)) {
602        report("Inconsistent CFG", MBB);
603        errs() << "MBB is not in the predecessor list of the successor "
604               << printMBBReference(*succ) << ".\n";
605      }
606    }
607  
608    // Check the predecessor list.
609    for (const MachineBasicBlock *Pred : MBB->predecessors()) {
610      if (!FunctionBlocks.count(Pred))
611        report("MBB has predecessor that isn't part of the function.", MBB);
612      if (!MBBInfoMap[Pred].Succs.count(MBB)) {
613        report("Inconsistent CFG", MBB);
614        errs() << "MBB is not in the successor list of the predecessor "
615               << printMBBReference(*Pred) << ".\n";
616      }
617    }
618  
619    const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
620    const BasicBlock *BB = MBB->getBasicBlock();
621    const Function &F = MF->getFunction();
622    if (LandingPadSuccs.size() > 1 &&
623        !(AsmInfo &&
624          AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
625          BB && isa<SwitchInst>(BB->getTerminator())) &&
626        !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
627      report("MBB has more than one landing pad successor", MBB);
628  
629    // Call analyzeBranch. If it succeeds, there several more conditions to check.
630    MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
631    SmallVector<MachineOperand, 4> Cond;
632    if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
633                            Cond)) {
634      // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
635      // check whether its answers match up with reality.
636      if (!TBB && !FBB) {
637        // Block falls through to its successor.
638        if (!MBB->empty() && MBB->back().isBarrier() &&
639            !TII->isPredicated(MBB->back())) {
640          report("MBB exits via unconditional fall-through but ends with a "
641                 "barrier instruction!", MBB);
642        }
643        if (!Cond.empty()) {
644          report("MBB exits via unconditional fall-through but has a condition!",
645                 MBB);
646        }
647      } else if (TBB && !FBB && Cond.empty()) {
648        // Block unconditionally branches somewhere.
649        if (MBB->empty()) {
650          report("MBB exits via unconditional branch but doesn't contain "
651                 "any instructions!", MBB);
652        } else if (!MBB->back().isBarrier()) {
653          report("MBB exits via unconditional branch but doesn't end with a "
654                 "barrier instruction!", MBB);
655        } else if (!MBB->back().isTerminator()) {
656          report("MBB exits via unconditional branch but the branch isn't a "
657                 "terminator instruction!", MBB);
658        }
659      } else if (TBB && !FBB && !Cond.empty()) {
660        // Block conditionally branches somewhere, otherwise falls through.
661        if (MBB->empty()) {
662          report("MBB exits via conditional branch/fall-through but doesn't "
663                 "contain any instructions!", MBB);
664        } else if (MBB->back().isBarrier()) {
665          report("MBB exits via conditional branch/fall-through but ends with a "
666                 "barrier instruction!", MBB);
667        } else if (!MBB->back().isTerminator()) {
668          report("MBB exits via conditional branch/fall-through but the branch "
669                 "isn't a terminator instruction!", MBB);
670        }
671      } else if (TBB && FBB) {
672        // Block conditionally branches somewhere, otherwise branches
673        // somewhere else.
674        if (MBB->empty()) {
675          report("MBB exits via conditional branch/branch but doesn't "
676                 "contain any instructions!", MBB);
677        } else if (!MBB->back().isBarrier()) {
678          report("MBB exits via conditional branch/branch but doesn't end with a "
679                 "barrier instruction!", MBB);
680        } else if (!MBB->back().isTerminator()) {
681          report("MBB exits via conditional branch/branch but the branch "
682                 "isn't a terminator instruction!", MBB);
683        }
684        if (Cond.empty()) {
685          report("MBB exits via conditional branch/branch but there's no "
686                 "condition!", MBB);
687        }
688      } else {
689        report("analyzeBranch returned invalid data!", MBB);
690      }
691  
692      // Now check that the successors match up with the answers reported by
693      // analyzeBranch.
694      if (TBB && !MBB->isSuccessor(TBB))
695        report("MBB exits via jump or conditional branch, but its target isn't a "
696               "CFG successor!",
697               MBB);
698      if (FBB && !MBB->isSuccessor(FBB))
699        report("MBB exits via conditional branch, but its target isn't a CFG "
700               "successor!",
701               MBB);
702  
703      // There might be a fallthrough to the next block if there's either no
704      // unconditional true branch, or if there's a condition, and one of the
705      // branches is missing.
706      bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
707  
708      // A conditional fallthrough must be an actual CFG successor, not
709      // unreachable. (Conversely, an unconditional fallthrough might not really
710      // be a successor, because the block might end in unreachable.)
711      if (!Cond.empty() && !FBB) {
712        MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
713        if (MBBI == MF->end()) {
714          report("MBB conditionally falls through out of function!", MBB);
715        } else if (!MBB->isSuccessor(&*MBBI))
716          report("MBB exits via conditional branch/fall-through but the CFG "
717                 "successors don't match the actual successors!",
718                 MBB);
719      }
720  
721      // Verify that there aren't any extra un-accounted-for successors.
722      for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
723        // If this successor is one of the branch targets, it's okay.
724        if (SuccMBB == TBB || SuccMBB == FBB)
725          continue;
726        // If we might have a fallthrough, and the successor is the fallthrough
727        // block, that's also ok.
728        if (Fallthrough && SuccMBB == MBB->getNextNode())
729          continue;
730        // Also accept successors which are for exception-handling or might be
731        // inlineasm_br targets.
732        if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
733          continue;
734        report("MBB has unexpected successors which are not branch targets, "
735               "fallthrough, EHPads, or inlineasm_br targets.",
736               MBB);
737      }
738    }
739  
740    regsLive.clear();
741    if (MRI->tracksLiveness()) {
742      for (const auto &LI : MBB->liveins()) {
743        if (!Register::isPhysicalRegister(LI.PhysReg)) {
744          report("MBB live-in list contains non-physical register", MBB);
745          continue;
746        }
747        for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
748          regsLive.insert(SubReg);
749      }
750    }
751  
752    const MachineFrameInfo &MFI = MF->getFrameInfo();
753    BitVector PR = MFI.getPristineRegs(*MF);
754    for (unsigned I : PR.set_bits()) {
755      for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
756        regsLive.insert(SubReg);
757    }
758  
759    regsKilled.clear();
760    regsDefined.clear();
761  
762    if (Indexes)
763      lastIndex = Indexes->getMBBStartIdx(MBB);
764  }
765  
766  // This function gets called for all bundle headers, including normal
767  // stand-alone unbundled instructions.
768  void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
769    if (Indexes && Indexes->hasIndex(*MI)) {
770      SlotIndex idx = Indexes->getInstructionIndex(*MI);
771      if (!(idx > lastIndex)) {
772        report("Instruction index out of order", MI);
773        errs() << "Last instruction was at " << lastIndex << '\n';
774      }
775      lastIndex = idx;
776    }
777  
778    // Ensure non-terminators don't follow terminators.
779    // Ignore predicated terminators formed by if conversion.
780    // FIXME: If conversion shouldn't need to violate this rule.
781    if (MI->isTerminator() && !TII->isPredicated(*MI)) {
782      if (!FirstTerminator)
783        FirstTerminator = MI;
784    } else if (FirstTerminator) {
785      report("Non-terminator instruction after the first terminator", MI);
786      errs() << "First terminator was:\t" << *FirstTerminator;
787    }
788  }
789  
790  // The operands on an INLINEASM instruction must follow a template.
791  // Verify that the flag operands make sense.
792  void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
793    // The first two operands on INLINEASM are the asm string and global flags.
794    if (MI->getNumOperands() < 2) {
795      report("Too few operands on inline asm", MI);
796      return;
797    }
798    if (!MI->getOperand(0).isSymbol())
799      report("Asm string must be an external symbol", MI);
800    if (!MI->getOperand(1).isImm())
801      report("Asm flags must be an immediate", MI);
802    // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
803    // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
804    // and Extra_IsConvergent = 32.
805    if (!isUInt<6>(MI->getOperand(1).getImm()))
806      report("Unknown asm flags", &MI->getOperand(1), 1);
807  
808    static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
809  
810    unsigned OpNo = InlineAsm::MIOp_FirstOperand;
811    unsigned NumOps;
812    for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
813      const MachineOperand &MO = MI->getOperand(OpNo);
814      // There may be implicit ops after the fixed operands.
815      if (!MO.isImm())
816        break;
817      NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
818    }
819  
820    if (OpNo > MI->getNumOperands())
821      report("Missing operands in last group", MI);
822  
823    // An optional MDNode follows the groups.
824    if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
825      ++OpNo;
826  
827    // All trailing operands must be implicit registers.
828    for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
829      const MachineOperand &MO = MI->getOperand(OpNo);
830      if (!MO.isReg() || !MO.isImplicit())
831        report("Expected implicit register after groups", &MO, OpNo);
832    }
833  }
834  
835  /// Check that types are consistent when two operands need to have the same
836  /// number of vector elements.
837  /// \return true if the types are valid.
838  bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
839                                                 const MachineInstr *MI) {
840    if (Ty0.isVector() != Ty1.isVector()) {
841      report("operand types must be all-vector or all-scalar", MI);
842      // Generally we try to report as many issues as possible at once, but in
843      // this case it's not clear what should we be comparing the size of the
844      // scalar with: the size of the whole vector or its lane. Instead of
845      // making an arbitrary choice and emitting not so helpful message, let's
846      // avoid the extra noise and stop here.
847      return false;
848    }
849  
850    if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
851      report("operand types must preserve number of vector elements", MI);
852      return false;
853    }
854  
855    return true;
856  }
857  
858  void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
859    if (isFunctionSelected)
860      report("Unexpected generic instruction in a Selected function", MI);
861  
862    const MCInstrDesc &MCID = MI->getDesc();
863    unsigned NumOps = MI->getNumOperands();
864  
865    // Branches must reference a basic block if they are not indirect
866    if (MI->isBranch() && !MI->isIndirectBranch()) {
867      bool HasMBB = false;
868      for (const MachineOperand &Op : MI->operands()) {
869        if (Op.isMBB()) {
870          HasMBB = true;
871          break;
872        }
873      }
874  
875      if (!HasMBB) {
876        report("Branch instruction is missing a basic block operand or "
877               "isIndirectBranch property",
878               MI);
879      }
880    }
881  
882    // Check types.
883    SmallVector<LLT, 4> Types;
884    for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
885         I != E; ++I) {
886      if (!MCID.OpInfo[I].isGenericType())
887        continue;
888      // Generic instructions specify type equality constraints between some of
889      // their operands. Make sure these are consistent.
890      size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
891      Types.resize(std::max(TypeIdx + 1, Types.size()));
892  
893      const MachineOperand *MO = &MI->getOperand(I);
894      if (!MO->isReg()) {
895        report("generic instruction must use register operands", MI);
896        continue;
897      }
898  
899      LLT OpTy = MRI->getType(MO->getReg());
900      // Don't report a type mismatch if there is no actual mismatch, only a
901      // type missing, to reduce noise:
902      if (OpTy.isValid()) {
903        // Only the first valid type for a type index will be printed: don't
904        // overwrite it later so it's always clear which type was expected:
905        if (!Types[TypeIdx].isValid())
906          Types[TypeIdx] = OpTy;
907        else if (Types[TypeIdx] != OpTy)
908          report("Type mismatch in generic instruction", MO, I, OpTy);
909      } else {
910        // Generic instructions must have types attached to their operands.
911        report("Generic instruction is missing a virtual register type", MO, I);
912      }
913    }
914  
915    // Generic opcodes must not have physical register operands.
916    for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
917      const MachineOperand *MO = &MI->getOperand(I);
918      if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
919        report("Generic instruction cannot have physical register", MO, I);
920    }
921  
922    // Avoid out of bounds in checks below. This was already reported earlier.
923    if (MI->getNumOperands() < MCID.getNumOperands())
924      return;
925  
926    StringRef ErrorInfo;
927    if (!TII->verifyInstruction(*MI, ErrorInfo))
928      report(ErrorInfo.data(), MI);
929  
930    // Verify properties of various specific instruction types
931    switch (MI->getOpcode()) {
932    case TargetOpcode::G_CONSTANT:
933    case TargetOpcode::G_FCONSTANT: {
934      LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
935      if (DstTy.isVector())
936        report("Instruction cannot use a vector result type", MI);
937  
938      if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
939        if (!MI->getOperand(1).isCImm()) {
940          report("G_CONSTANT operand must be cimm", MI);
941          break;
942        }
943  
944        const ConstantInt *CI = MI->getOperand(1).getCImm();
945        if (CI->getBitWidth() != DstTy.getSizeInBits())
946          report("inconsistent constant size", MI);
947      } else {
948        if (!MI->getOperand(1).isFPImm()) {
949          report("G_FCONSTANT operand must be fpimm", MI);
950          break;
951        }
952        const ConstantFP *CF = MI->getOperand(1).getFPImm();
953  
954        if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
955            DstTy.getSizeInBits()) {
956          report("inconsistent constant size", MI);
957        }
958      }
959  
960      break;
961    }
962    case TargetOpcode::G_LOAD:
963    case TargetOpcode::G_STORE:
964    case TargetOpcode::G_ZEXTLOAD:
965    case TargetOpcode::G_SEXTLOAD: {
966      LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
967      LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
968      if (!PtrTy.isPointer())
969        report("Generic memory instruction must access a pointer", MI);
970  
971      // Generic loads and stores must have a single MachineMemOperand
972      // describing that access.
973      if (!MI->hasOneMemOperand()) {
974        report("Generic instruction accessing memory must have one mem operand",
975               MI);
976      } else {
977        const MachineMemOperand &MMO = **MI->memoperands_begin();
978        if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
979            MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
980          if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
981            report("Generic extload must have a narrower memory type", MI);
982        } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
983          if (MMO.getSize() > ValTy.getSizeInBytes())
984            report("load memory size cannot exceed result size", MI);
985        } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
986          if (ValTy.getSizeInBytes() < MMO.getSize())
987            report("store memory size cannot exceed value size", MI);
988        }
989      }
990  
991      break;
992    }
993    case TargetOpcode::G_PHI: {
994      LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
995      if (!DstTy.isValid() ||
996          !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
997                       [this, &DstTy](const MachineOperand &MO) {
998                         if (!MO.isReg())
999                           return true;
1000                         LLT Ty = MRI->getType(MO.getReg());
1001                         if (!Ty.isValid() || (Ty != DstTy))
1002                           return false;
1003                         return true;
1004                       }))
1005        report("Generic Instruction G_PHI has operands with incompatible/missing "
1006               "types",
1007               MI);
1008      break;
1009    }
1010    case TargetOpcode::G_BITCAST: {
1011      LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1012      LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1013      if (!DstTy.isValid() || !SrcTy.isValid())
1014        break;
1015  
1016      if (SrcTy.isPointer() != DstTy.isPointer())
1017        report("bitcast cannot convert between pointers and other types", MI);
1018  
1019      if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1020        report("bitcast sizes must match", MI);
1021  
1022      if (SrcTy == DstTy)
1023        report("bitcast must change the type", MI);
1024  
1025      break;
1026    }
1027    case TargetOpcode::G_INTTOPTR:
1028    case TargetOpcode::G_PTRTOINT:
1029    case TargetOpcode::G_ADDRSPACE_CAST: {
1030      LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1031      LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1032      if (!DstTy.isValid() || !SrcTy.isValid())
1033        break;
1034  
1035      verifyVectorElementMatch(DstTy, SrcTy, MI);
1036  
1037      DstTy = DstTy.getScalarType();
1038      SrcTy = SrcTy.getScalarType();
1039  
1040      if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1041        if (!DstTy.isPointer())
1042          report("inttoptr result type must be a pointer", MI);
1043        if (SrcTy.isPointer())
1044          report("inttoptr source type must not be a pointer", MI);
1045      } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1046        if (!SrcTy.isPointer())
1047          report("ptrtoint source type must be a pointer", MI);
1048        if (DstTy.isPointer())
1049          report("ptrtoint result type must not be a pointer", MI);
1050      } else {
1051        assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1052        if (!SrcTy.isPointer() || !DstTy.isPointer())
1053          report("addrspacecast types must be pointers", MI);
1054        else {
1055          if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1056            report("addrspacecast must convert different address spaces", MI);
1057        }
1058      }
1059  
1060      break;
1061    }
1062    case TargetOpcode::G_PTR_ADD: {
1063      LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1064      LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1065      LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1066      if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1067        break;
1068  
1069      if (!PtrTy.getScalarType().isPointer())
1070        report("gep first operand must be a pointer", MI);
1071  
1072      if (OffsetTy.getScalarType().isPointer())
1073        report("gep offset operand must not be a pointer", MI);
1074  
1075      // TODO: Is the offset allowed to be a scalar with a vector?
1076      break;
1077    }
1078    case TargetOpcode::G_PTRMASK: {
1079      LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1080      LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1081      LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1082      if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1083        break;
1084  
1085      if (!DstTy.getScalarType().isPointer())
1086        report("ptrmask result type must be a pointer", MI);
1087  
1088      if (!MaskTy.getScalarType().isScalar())
1089        report("ptrmask mask type must be an integer", MI);
1090  
1091      verifyVectorElementMatch(DstTy, MaskTy, MI);
1092      break;
1093    }
1094    case TargetOpcode::G_SEXT:
1095    case TargetOpcode::G_ZEXT:
1096    case TargetOpcode::G_ANYEXT:
1097    case TargetOpcode::G_TRUNC:
1098    case TargetOpcode::G_FPEXT:
1099    case TargetOpcode::G_FPTRUNC: {
1100      // Number of operands and presense of types is already checked (and
1101      // reported in case of any issues), so no need to report them again. As
1102      // we're trying to report as many issues as possible at once, however, the
1103      // instructions aren't guaranteed to have the right number of operands or
1104      // types attached to them at this point
1105      assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1106      LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1107      LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1108      if (!DstTy.isValid() || !SrcTy.isValid())
1109        break;
1110  
1111      LLT DstElTy = DstTy.getScalarType();
1112      LLT SrcElTy = SrcTy.getScalarType();
1113      if (DstElTy.isPointer() || SrcElTy.isPointer())
1114        report("Generic extend/truncate can not operate on pointers", MI);
1115  
1116      verifyVectorElementMatch(DstTy, SrcTy, MI);
1117  
1118      unsigned DstSize = DstElTy.getSizeInBits();
1119      unsigned SrcSize = SrcElTy.getSizeInBits();
1120      switch (MI->getOpcode()) {
1121      default:
1122        if (DstSize <= SrcSize)
1123          report("Generic extend has destination type no larger than source", MI);
1124        break;
1125      case TargetOpcode::G_TRUNC:
1126      case TargetOpcode::G_FPTRUNC:
1127        if (DstSize >= SrcSize)
1128          report("Generic truncate has destination type no smaller than source",
1129                 MI);
1130        break;
1131      }
1132      break;
1133    }
1134    case TargetOpcode::G_SELECT: {
1135      LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1136      LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1137      if (!SelTy.isValid() || !CondTy.isValid())
1138        break;
1139  
1140      // Scalar condition select on a vector is valid.
1141      if (CondTy.isVector())
1142        verifyVectorElementMatch(SelTy, CondTy, MI);
1143      break;
1144    }
1145    case TargetOpcode::G_MERGE_VALUES: {
1146      // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1147      // e.g. s2N = MERGE sN, sN
1148      // Merging multiple scalars into a vector is not allowed, should use
1149      // G_BUILD_VECTOR for that.
1150      LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1151      LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1152      if (DstTy.isVector() || SrcTy.isVector())
1153        report("G_MERGE_VALUES cannot operate on vectors", MI);
1154  
1155      const unsigned NumOps = MI->getNumOperands();
1156      if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1157        report("G_MERGE_VALUES result size is inconsistent", MI);
1158  
1159      for (unsigned I = 2; I != NumOps; ++I) {
1160        if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1161          report("G_MERGE_VALUES source types do not match", MI);
1162      }
1163  
1164      break;
1165    }
1166    case TargetOpcode::G_UNMERGE_VALUES: {
1167      LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1168      LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1169      // For now G_UNMERGE can split vectors.
1170      for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1171        if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1172          report("G_UNMERGE_VALUES destination types do not match", MI);
1173      }
1174      if (SrcTy.getSizeInBits() !=
1175          (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1176        report("G_UNMERGE_VALUES source operand does not cover dest operands",
1177               MI);
1178      }
1179      break;
1180    }
1181    case TargetOpcode::G_BUILD_VECTOR: {
1182      // Source types must be scalars, dest type a vector. Total size of scalars
1183      // must match the dest vector size.
1184      LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1185      LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1186      if (!DstTy.isVector() || SrcEltTy.isVector()) {
1187        report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1188        break;
1189      }
1190  
1191      if (DstTy.getElementType() != SrcEltTy)
1192        report("G_BUILD_VECTOR result element type must match source type", MI);
1193  
1194      if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1195        report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1196  
1197      for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1198        if (MRI->getType(MI->getOperand(1).getReg()) !=
1199            MRI->getType(MI->getOperand(i).getReg()))
1200          report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1201      }
1202  
1203      break;
1204    }
1205    case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1206      // Source types must be scalars, dest type a vector. Scalar types must be
1207      // larger than the dest vector elt type, as this is a truncating operation.
1208      LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1209      LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1210      if (!DstTy.isVector() || SrcEltTy.isVector())
1211        report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1212               MI);
1213      for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1214        if (MRI->getType(MI->getOperand(1).getReg()) !=
1215            MRI->getType(MI->getOperand(i).getReg()))
1216          report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1217                 MI);
1218      }
1219      if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1220        report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1221               "dest elt type",
1222               MI);
1223      break;
1224    }
1225    case TargetOpcode::G_CONCAT_VECTORS: {
1226      // Source types should be vectors, and total size should match the dest
1227      // vector size.
1228      LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1229      LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1230      if (!DstTy.isVector() || !SrcTy.isVector())
1231        report("G_CONCAT_VECTOR requires vector source and destination operands",
1232               MI);
1233      for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1234        if (MRI->getType(MI->getOperand(1).getReg()) !=
1235            MRI->getType(MI->getOperand(i).getReg()))
1236          report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1237      }
1238      if (DstTy.getNumElements() !=
1239          SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1240        report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1241      break;
1242    }
1243    case TargetOpcode::G_ICMP:
1244    case TargetOpcode::G_FCMP: {
1245      LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1246      LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1247  
1248      if ((DstTy.isVector() != SrcTy.isVector()) ||
1249          (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1250        report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1251  
1252      break;
1253    }
1254    case TargetOpcode::G_EXTRACT: {
1255      const MachineOperand &SrcOp = MI->getOperand(1);
1256      if (!SrcOp.isReg()) {
1257        report("extract source must be a register", MI);
1258        break;
1259      }
1260  
1261      const MachineOperand &OffsetOp = MI->getOperand(2);
1262      if (!OffsetOp.isImm()) {
1263        report("extract offset must be a constant", MI);
1264        break;
1265      }
1266  
1267      unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1268      unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1269      if (SrcSize == DstSize)
1270        report("extract source must be larger than result", MI);
1271  
1272      if (DstSize + OffsetOp.getImm() > SrcSize)
1273        report("extract reads past end of register", MI);
1274      break;
1275    }
1276    case TargetOpcode::G_INSERT: {
1277      const MachineOperand &SrcOp = MI->getOperand(2);
1278      if (!SrcOp.isReg()) {
1279        report("insert source must be a register", MI);
1280        break;
1281      }
1282  
1283      const MachineOperand &OffsetOp = MI->getOperand(3);
1284      if (!OffsetOp.isImm()) {
1285        report("insert offset must be a constant", MI);
1286        break;
1287      }
1288  
1289      unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1290      unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1291  
1292      if (DstSize <= SrcSize)
1293        report("inserted size must be smaller than total register", MI);
1294  
1295      if (SrcSize + OffsetOp.getImm() > DstSize)
1296        report("insert writes past end of register", MI);
1297  
1298      break;
1299    }
1300    case TargetOpcode::G_JUMP_TABLE: {
1301      if (!MI->getOperand(1).isJTI())
1302        report("G_JUMP_TABLE source operand must be a jump table index", MI);
1303      LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1304      if (!DstTy.isPointer())
1305        report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1306      break;
1307    }
1308    case TargetOpcode::G_BRJT: {
1309      if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1310        report("G_BRJT src operand 0 must be a pointer type", MI);
1311  
1312      if (!MI->getOperand(1).isJTI())
1313        report("G_BRJT src operand 1 must be a jump table index", MI);
1314  
1315      const auto &IdxOp = MI->getOperand(2);
1316      if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1317        report("G_BRJT src operand 2 must be a scalar reg type", MI);
1318      break;
1319    }
1320    case TargetOpcode::G_INTRINSIC:
1321    case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1322      // TODO: Should verify number of def and use operands, but the current
1323      // interface requires passing in IR types for mangling.
1324      const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1325      if (!IntrIDOp.isIntrinsicID()) {
1326        report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1327        break;
1328      }
1329  
1330      bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1331      unsigned IntrID = IntrIDOp.getIntrinsicID();
1332      if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1333        AttributeList Attrs
1334          = Intrinsic::getAttributes(MF->getFunction().getContext(),
1335                                     static_cast<Intrinsic::ID>(IntrID));
1336        bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
1337        if (NoSideEffects && DeclHasSideEffects) {
1338          report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1339          break;
1340        }
1341        if (!NoSideEffects && !DeclHasSideEffects) {
1342          report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1343          break;
1344        }
1345      }
1346      switch (IntrID) {
1347      case Intrinsic::memcpy:
1348        if (MI->getNumOperands() != 5)
1349          report("Expected memcpy intrinsic to have 5 operands", MI);
1350        break;
1351      case Intrinsic::memmove:
1352        if (MI->getNumOperands() != 5)
1353          report("Expected memmove intrinsic to have 5 operands", MI);
1354        break;
1355      case Intrinsic::memset:
1356        if (MI->getNumOperands() != 5)
1357          report("Expected memset intrinsic to have 5 operands", MI);
1358        break;
1359      }
1360      break;
1361    }
1362    case TargetOpcode::G_SEXT_INREG: {
1363      if (!MI->getOperand(2).isImm()) {
1364        report("G_SEXT_INREG expects an immediate operand #2", MI);
1365        break;
1366      }
1367  
1368      LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1369      LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1370      verifyVectorElementMatch(DstTy, SrcTy, MI);
1371  
1372      int64_t Imm = MI->getOperand(2).getImm();
1373      if (Imm <= 0)
1374        report("G_SEXT_INREG size must be >= 1", MI);
1375      if (Imm >= SrcTy.getScalarSizeInBits())
1376        report("G_SEXT_INREG size must be less than source bit width", MI);
1377      break;
1378    }
1379    case TargetOpcode::G_SHUFFLE_VECTOR: {
1380      const MachineOperand &MaskOp = MI->getOperand(3);
1381      if (!MaskOp.isShuffleMask()) {
1382        report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1383        break;
1384      }
1385  
1386      LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1387      LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1388      LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1389  
1390      if (Src0Ty != Src1Ty)
1391        report("Source operands must be the same type", MI);
1392  
1393      if (Src0Ty.getScalarType() != DstTy.getScalarType())
1394        report("G_SHUFFLE_VECTOR cannot change element type", MI);
1395  
1396      // Don't check that all operands are vector because scalars are used in
1397      // place of 1 element vectors.
1398      int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1399      int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1400  
1401      ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1402  
1403      if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1404        report("Wrong result type for shufflemask", MI);
1405  
1406      for (int Idx : MaskIdxes) {
1407        if (Idx < 0)
1408          continue;
1409  
1410        if (Idx >= 2 * SrcNumElts)
1411          report("Out of bounds shuffle index", MI);
1412      }
1413  
1414      break;
1415    }
1416    case TargetOpcode::G_DYN_STACKALLOC: {
1417      const MachineOperand &DstOp = MI->getOperand(0);
1418      const MachineOperand &AllocOp = MI->getOperand(1);
1419      const MachineOperand &AlignOp = MI->getOperand(2);
1420  
1421      if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1422        report("dst operand 0 must be a pointer type", MI);
1423        break;
1424      }
1425  
1426      if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1427        report("src operand 1 must be a scalar reg type", MI);
1428        break;
1429      }
1430  
1431      if (!AlignOp.isImm()) {
1432        report("src operand 2 must be an immediate type", MI);
1433        break;
1434      }
1435      break;
1436    }
1437    default:
1438      break;
1439    }
1440  }
1441  
1442  void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1443    const MCInstrDesc &MCID = MI->getDesc();
1444    if (MI->getNumOperands() < MCID.getNumOperands()) {
1445      report("Too few operands", MI);
1446      errs() << MCID.getNumOperands() << " operands expected, but "
1447             << MI->getNumOperands() << " given.\n";
1448    }
1449  
1450    if (MI->isPHI()) {
1451      if (MF->getProperties().hasProperty(
1452              MachineFunctionProperties::Property::NoPHIs))
1453        report("Found PHI instruction with NoPHIs property set", MI);
1454  
1455      if (FirstNonPHI)
1456        report("Found PHI instruction after non-PHI", MI);
1457    } else if (FirstNonPHI == nullptr)
1458      FirstNonPHI = MI;
1459  
1460    // Check the tied operands.
1461    if (MI->isInlineAsm())
1462      verifyInlineAsm(MI);
1463  
1464    // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1465    // DBG_VALUEs: these are convenient to use in tests, but should never get
1466    // generated.
1467    if (MI->isDebugValue() && MI->getNumOperands() == 4)
1468      if (!MI->getDebugLoc())
1469        report("Missing DebugLoc for debug instruction", MI);
1470  
1471    // Check the MachineMemOperands for basic consistency.
1472    for (MachineMemOperand *Op : MI->memoperands()) {
1473      if (Op->isLoad() && !MI->mayLoad())
1474        report("Missing mayLoad flag", MI);
1475      if (Op->isStore() && !MI->mayStore())
1476        report("Missing mayStore flag", MI);
1477    }
1478  
1479    // Debug values must not have a slot index.
1480    // Other instructions must have one, unless they are inside a bundle.
1481    if (LiveInts) {
1482      bool mapped = !LiveInts->isNotInMIMap(*MI);
1483      if (MI->isDebugInstr()) {
1484        if (mapped)
1485          report("Debug instruction has a slot index", MI);
1486      } else if (MI->isInsideBundle()) {
1487        if (mapped)
1488          report("Instruction inside bundle has a slot index", MI);
1489      } else {
1490        if (!mapped)
1491          report("Missing slot index", MI);
1492      }
1493    }
1494  
1495    if (isPreISelGenericOpcode(MCID.getOpcode())) {
1496      verifyPreISelGenericInstruction(MI);
1497      return;
1498    }
1499  
1500    StringRef ErrorInfo;
1501    if (!TII->verifyInstruction(*MI, ErrorInfo))
1502      report(ErrorInfo.data(), MI);
1503  
1504    // Verify properties of various specific instruction types
1505    switch (MI->getOpcode()) {
1506    case TargetOpcode::COPY: {
1507      if (foundErrors)
1508        break;
1509      const MachineOperand &DstOp = MI->getOperand(0);
1510      const MachineOperand &SrcOp = MI->getOperand(1);
1511      LLT DstTy = MRI->getType(DstOp.getReg());
1512      LLT SrcTy = MRI->getType(SrcOp.getReg());
1513      if (SrcTy.isValid() && DstTy.isValid()) {
1514        // If both types are valid, check that the types are the same.
1515        if (SrcTy != DstTy) {
1516          report("Copy Instruction is illegal with mismatching types", MI);
1517          errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1518        }
1519      }
1520      if (SrcTy.isValid() || DstTy.isValid()) {
1521        // If one of them have valid types, let's just check they have the same
1522        // size.
1523        unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1524        unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1525        assert(SrcSize && "Expecting size here");
1526        assert(DstSize && "Expecting size here");
1527        if (SrcSize != DstSize)
1528          if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1529            report("Copy Instruction is illegal with mismatching sizes", MI);
1530            errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1531                   << "\n";
1532          }
1533      }
1534      break;
1535    }
1536    case TargetOpcode::STATEPOINT: {
1537      StatepointOpers SO(MI);
1538      if (!MI->getOperand(SO.getIDPos()).isImm() ||
1539          !MI->getOperand(SO.getNBytesPos()).isImm() ||
1540          !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1541        report("meta operands to STATEPOINT not constant!", MI);
1542        break;
1543      }
1544  
1545      auto VerifyStackMapConstant = [&](unsigned Offset) {
1546        if (!MI->getOperand(Offset - 1).isImm() ||
1547            MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1548            !MI->getOperand(Offset).isImm())
1549          report("stack map constant to STATEPOINT not well formed!", MI);
1550      };
1551      VerifyStackMapConstant(SO.getCCIdx());
1552      VerifyStackMapConstant(SO.getFlagsIdx());
1553      VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1554  
1555      // TODO: verify we have properly encoded deopt arguments
1556    } break;
1557    }
1558  }
1559  
1560  void
1561  MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1562    const MachineInstr *MI = MO->getParent();
1563    const MCInstrDesc &MCID = MI->getDesc();
1564    unsigned NumDefs = MCID.getNumDefs();
1565    if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1566      NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1567  
1568    // The first MCID.NumDefs operands must be explicit register defines
1569    if (MONum < NumDefs) {
1570      const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1571      if (!MO->isReg())
1572        report("Explicit definition must be a register", MO, MONum);
1573      else if (!MO->isDef() && !MCOI.isOptionalDef())
1574        report("Explicit definition marked as use", MO, MONum);
1575      else if (MO->isImplicit())
1576        report("Explicit definition marked as implicit", MO, MONum);
1577    } else if (MONum < MCID.getNumOperands()) {
1578      const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1579      // Don't check if it's the last operand in a variadic instruction. See,
1580      // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1581      bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1582      if (!IsOptional) {
1583        if (MO->isReg()) {
1584          if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1585            report("Explicit operand marked as def", MO, MONum);
1586          if (MO->isImplicit())
1587            report("Explicit operand marked as implicit", MO, MONum);
1588        }
1589  
1590        // Check that an instruction has register operands only as expected.
1591        if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1592            !MO->isReg() && !MO->isFI())
1593          report("Expected a register operand.", MO, MONum);
1594        if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1595             MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg())
1596          report("Expected a non-register operand.", MO, MONum);
1597      }
1598  
1599      int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1600      if (TiedTo != -1) {
1601        if (!MO->isReg())
1602          report("Tied use must be a register", MO, MONum);
1603        else if (!MO->isTied())
1604          report("Operand should be tied", MO, MONum);
1605        else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1606          report("Tied def doesn't match MCInstrDesc", MO, MONum);
1607        else if (Register::isPhysicalRegister(MO->getReg())) {
1608          const MachineOperand &MOTied = MI->getOperand(TiedTo);
1609          if (!MOTied.isReg())
1610            report("Tied counterpart must be a register", &MOTied, TiedTo);
1611          else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1612                   MO->getReg() != MOTied.getReg())
1613            report("Tied physical registers must match.", &MOTied, TiedTo);
1614        }
1615      } else if (MO->isReg() && MO->isTied())
1616        report("Explicit operand should not be tied", MO, MONum);
1617    } else {
1618      // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1619      if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1620        report("Extra explicit operand on non-variadic instruction", MO, MONum);
1621    }
1622  
1623    switch (MO->getType()) {
1624    case MachineOperand::MO_Register: {
1625      const Register Reg = MO->getReg();
1626      if (!Reg)
1627        return;
1628      if (MRI->tracksLiveness() && !MI->isDebugValue())
1629        checkLiveness(MO, MONum);
1630  
1631      // Verify the consistency of tied operands.
1632      if (MO->isTied()) {
1633        unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1634        const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1635        if (!OtherMO.isReg())
1636          report("Must be tied to a register", MO, MONum);
1637        if (!OtherMO.isTied())
1638          report("Missing tie flags on tied operand", MO, MONum);
1639        if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1640          report("Inconsistent tie links", MO, MONum);
1641        if (MONum < MCID.getNumDefs()) {
1642          if (OtherIdx < MCID.getNumOperands()) {
1643            if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1644              report("Explicit def tied to explicit use without tie constraint",
1645                     MO, MONum);
1646          } else {
1647            if (!OtherMO.isImplicit())
1648              report("Explicit def should be tied to implicit use", MO, MONum);
1649          }
1650        }
1651      }
1652  
1653      // Verify two-address constraints after the twoaddressinstruction pass.
1654      // Both twoaddressinstruction pass and phi-node-elimination pass call
1655      // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
1656      // twoaddressinstruction pass not after phi-node-elimination pass. So we
1657      // shouldn't use the NoSSA as the condition, we should based on
1658      // TiedOpsRewritten property to verify two-address constraints, this
1659      // property will be set in twoaddressinstruction pass.
1660      unsigned DefIdx;
1661      if (MF->getProperties().hasProperty(
1662              MachineFunctionProperties::Property::TiedOpsRewritten) &&
1663          MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1664          Reg != MI->getOperand(DefIdx).getReg())
1665        report("Two-address instruction operands must be identical", MO, MONum);
1666  
1667      // Check register classes.
1668      unsigned SubIdx = MO->getSubReg();
1669  
1670      if (Register::isPhysicalRegister(Reg)) {
1671        if (SubIdx) {
1672          report("Illegal subregister index for physical register", MO, MONum);
1673          return;
1674        }
1675        if (MONum < MCID.getNumOperands()) {
1676          if (const TargetRegisterClass *DRC =
1677                TII->getRegClass(MCID, MONum, TRI, *MF)) {
1678            if (!DRC->contains(Reg)) {
1679              report("Illegal physical register for instruction", MO, MONum);
1680              errs() << printReg(Reg, TRI) << " is not a "
1681                     << TRI->getRegClassName(DRC) << " register.\n";
1682            }
1683          }
1684        }
1685        if (MO->isRenamable()) {
1686          if (MRI->isReserved(Reg)) {
1687            report("isRenamable set on reserved register", MO, MONum);
1688            return;
1689          }
1690        }
1691        if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1692          report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1693          return;
1694        }
1695      } else {
1696        // Virtual register.
1697        const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1698        if (!RC) {
1699          // This is a generic virtual register.
1700  
1701          // Do not allow undef uses for generic virtual registers. This ensures
1702          // getVRegDef can never fail and return null on a generic register.
1703          //
1704          // FIXME: This restriction should probably be broadened to all SSA
1705          // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
1706          // run on the SSA function just before phi elimination.
1707          if (MO->isUndef())
1708            report("Generic virtual register use cannot be undef", MO, MONum);
1709  
1710          // If we're post-Select, we can't have gvregs anymore.
1711          if (isFunctionSelected) {
1712            report("Generic virtual register invalid in a Selected function",
1713                   MO, MONum);
1714            return;
1715          }
1716  
1717          // The gvreg must have a type and it must not have a SubIdx.
1718          LLT Ty = MRI->getType(Reg);
1719          if (!Ty.isValid()) {
1720            report("Generic virtual register must have a valid type", MO,
1721                   MONum);
1722            return;
1723          }
1724  
1725          const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1726  
1727          // If we're post-RegBankSelect, the gvreg must have a bank.
1728          if (!RegBank && isFunctionRegBankSelected) {
1729            report("Generic virtual register must have a bank in a "
1730                   "RegBankSelected function",
1731                   MO, MONum);
1732            return;
1733          }
1734  
1735          // Make sure the register fits into its register bank if any.
1736          if (RegBank && Ty.isValid() &&
1737              RegBank->getSize() < Ty.getSizeInBits()) {
1738            report("Register bank is too small for virtual register", MO,
1739                   MONum);
1740            errs() << "Register bank " << RegBank->getName() << " too small("
1741                   << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1742                   << "-bits\n";
1743            return;
1744          }
1745          if (SubIdx)  {
1746            report("Generic virtual register does not allow subregister index", MO,
1747                   MONum);
1748            return;
1749          }
1750  
1751          // If this is a target specific instruction and this operand
1752          // has register class constraint, the virtual register must
1753          // comply to it.
1754          if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1755              MONum < MCID.getNumOperands() &&
1756              TII->getRegClass(MCID, MONum, TRI, *MF)) {
1757            report("Virtual register does not match instruction constraint", MO,
1758                   MONum);
1759            errs() << "Expect register class "
1760                   << TRI->getRegClassName(
1761                          TII->getRegClass(MCID, MONum, TRI, *MF))
1762                   << " but got nothing\n";
1763            return;
1764          }
1765  
1766          break;
1767        }
1768        if (SubIdx) {
1769          const TargetRegisterClass *SRC =
1770            TRI->getSubClassWithSubReg(RC, SubIdx);
1771          if (!SRC) {
1772            report("Invalid subregister index for virtual register", MO, MONum);
1773            errs() << "Register class " << TRI->getRegClassName(RC)
1774                << " does not support subreg index " << SubIdx << "\n";
1775            return;
1776          }
1777          if (RC != SRC) {
1778            report("Invalid register class for subregister index", MO, MONum);
1779            errs() << "Register class " << TRI->getRegClassName(RC)
1780                << " does not fully support subreg index " << SubIdx << "\n";
1781            return;
1782          }
1783        }
1784        if (MONum < MCID.getNumOperands()) {
1785          if (const TargetRegisterClass *DRC =
1786                TII->getRegClass(MCID, MONum, TRI, *MF)) {
1787            if (SubIdx) {
1788              const TargetRegisterClass *SuperRC =
1789                  TRI->getLargestLegalSuperClass(RC, *MF);
1790              if (!SuperRC) {
1791                report("No largest legal super class exists.", MO, MONum);
1792                return;
1793              }
1794              DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1795              if (!DRC) {
1796                report("No matching super-reg register class.", MO, MONum);
1797                return;
1798              }
1799            }
1800            if (!RC->hasSuperClassEq(DRC)) {
1801              report("Illegal virtual register for instruction", MO, MONum);
1802              errs() << "Expected a " << TRI->getRegClassName(DRC)
1803                  << " register, but got a " << TRI->getRegClassName(RC)
1804                  << " register\n";
1805            }
1806          }
1807        }
1808      }
1809      break;
1810    }
1811  
1812    case MachineOperand::MO_RegisterMask:
1813      regMasks.push_back(MO->getRegMask());
1814      break;
1815  
1816    case MachineOperand::MO_MachineBasicBlock:
1817      if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1818        report("PHI operand is not in the CFG", MO, MONum);
1819      break;
1820  
1821    case MachineOperand::MO_FrameIndex:
1822      if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1823          LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1824        int FI = MO->getIndex();
1825        LiveInterval &LI = LiveStks->getInterval(FI);
1826        SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1827  
1828        bool stores = MI->mayStore();
1829        bool loads = MI->mayLoad();
1830        // For a memory-to-memory move, we need to check if the frame
1831        // index is used for storing or loading, by inspecting the
1832        // memory operands.
1833        if (stores && loads) {
1834          for (auto *MMO : MI->memoperands()) {
1835            const PseudoSourceValue *PSV = MMO->getPseudoValue();
1836            if (PSV == nullptr) continue;
1837            const FixedStackPseudoSourceValue *Value =
1838              dyn_cast<FixedStackPseudoSourceValue>(PSV);
1839            if (Value == nullptr) continue;
1840            if (Value->getFrameIndex() != FI) continue;
1841  
1842            if (MMO->isStore())
1843              loads = false;
1844            else
1845              stores = false;
1846            break;
1847          }
1848          if (loads == stores)
1849            report("Missing fixed stack memoperand.", MI);
1850        }
1851        if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1852          report("Instruction loads from dead spill slot", MO, MONum);
1853          errs() << "Live stack: " << LI << '\n';
1854        }
1855        if (stores && !LI.liveAt(Idx.getRegSlot())) {
1856          report("Instruction stores to dead spill slot", MO, MONum);
1857          errs() << "Live stack: " << LI << '\n';
1858        }
1859      }
1860      break;
1861  
1862    default:
1863      break;
1864    }
1865  }
1866  
1867  void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1868      unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1869      LaneBitmask LaneMask) {
1870    LiveQueryResult LRQ = LR.Query(UseIdx);
1871    // Check if we have a segment at the use, note however that we only need one
1872    // live subregister range, the others may be dead.
1873    if (!LRQ.valueIn() && LaneMask.none()) {
1874      report("No live segment at use", MO, MONum);
1875      report_context_liverange(LR);
1876      report_context_vreg_regunit(VRegOrUnit);
1877      report_context(UseIdx);
1878    }
1879    if (MO->isKill() && !LRQ.isKill()) {
1880      report("Live range continues after kill flag", MO, MONum);
1881      report_context_liverange(LR);
1882      report_context_vreg_regunit(VRegOrUnit);
1883      if (LaneMask.any())
1884        report_context_lanemask(LaneMask);
1885      report_context(UseIdx);
1886    }
1887  }
1888  
1889  void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1890      unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1891      bool SubRangeCheck, LaneBitmask LaneMask) {
1892    if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1893      assert(VNI && "NULL valno is not allowed");
1894      if (VNI->def != DefIdx) {
1895        report("Inconsistent valno->def", MO, MONum);
1896        report_context_liverange(LR);
1897        report_context_vreg_regunit(VRegOrUnit);
1898        if (LaneMask.any())
1899          report_context_lanemask(LaneMask);
1900        report_context(*VNI);
1901        report_context(DefIdx);
1902      }
1903    } else {
1904      report("No live segment at def", MO, MONum);
1905      report_context_liverange(LR);
1906      report_context_vreg_regunit(VRegOrUnit);
1907      if (LaneMask.any())
1908        report_context_lanemask(LaneMask);
1909      report_context(DefIdx);
1910    }
1911    // Check that, if the dead def flag is present, LiveInts agree.
1912    if (MO->isDead()) {
1913      LiveQueryResult LRQ = LR.Query(DefIdx);
1914      if (!LRQ.isDeadDef()) {
1915        assert(Register::isVirtualRegister(VRegOrUnit) &&
1916               "Expecting a virtual register.");
1917        // A dead subreg def only tells us that the specific subreg is dead. There
1918        // could be other non-dead defs of other subregs, or we could have other
1919        // parts of the register being live through the instruction. So unless we
1920        // are checking liveness for a subrange it is ok for the live range to
1921        // continue, given that we have a dead def of a subregister.
1922        if (SubRangeCheck || MO->getSubReg() == 0) {
1923          report("Live range continues after dead def flag", MO, MONum);
1924          report_context_liverange(LR);
1925          report_context_vreg_regunit(VRegOrUnit);
1926          if (LaneMask.any())
1927            report_context_lanemask(LaneMask);
1928        }
1929      }
1930    }
1931  }
1932  
1933  void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1934    const MachineInstr *MI = MO->getParent();
1935    const unsigned Reg = MO->getReg();
1936  
1937    // Both use and def operands can read a register.
1938    if (MO->readsReg()) {
1939      if (MO->isKill())
1940        addRegWithSubRegs(regsKilled, Reg);
1941  
1942      // Check that LiveVars knows this kill.
1943      if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
1944        LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1945        if (!is_contained(VI.Kills, MI))
1946          report("Kill missing from LiveVariables", MO, MONum);
1947      }
1948  
1949      // Check LiveInts liveness and kill.
1950      if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1951        SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1952        // Check the cached regunit intervals.
1953        if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1954          for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1955            if (MRI->isReservedRegUnit(*Units))
1956              continue;
1957            if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1958              checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1959          }
1960        }
1961  
1962        if (Register::isVirtualRegister(Reg)) {
1963          if (LiveInts->hasInterval(Reg)) {
1964            // This is a virtual register interval.
1965            const LiveInterval &LI = LiveInts->getInterval(Reg);
1966            checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1967  
1968            if (LI.hasSubRanges() && !MO->isDef()) {
1969              unsigned SubRegIdx = MO->getSubReg();
1970              LaneBitmask MOMask = SubRegIdx != 0
1971                                 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1972                                 : MRI->getMaxLaneMaskForVReg(Reg);
1973              LaneBitmask LiveInMask;
1974              for (const LiveInterval::SubRange &SR : LI.subranges()) {
1975                if ((MOMask & SR.LaneMask).none())
1976                  continue;
1977                checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1978                LiveQueryResult LRQ = SR.Query(UseIdx);
1979                if (LRQ.valueIn())
1980                  LiveInMask |= SR.LaneMask;
1981              }
1982              // At least parts of the register has to be live at the use.
1983              if ((LiveInMask & MOMask).none()) {
1984                report("No live subrange at use", MO, MONum);
1985                report_context(LI);
1986                report_context(UseIdx);
1987              }
1988            }
1989          } else {
1990            report("Virtual register has no live interval", MO, MONum);
1991          }
1992        }
1993      }
1994  
1995      // Use of a dead register.
1996      if (!regsLive.count(Reg)) {
1997        if (Register::isPhysicalRegister(Reg)) {
1998          // Reserved registers may be used even when 'dead'.
1999          bool Bad = !isReserved(Reg);
2000          // We are fine if just any subregister has a defined value.
2001          if (Bad) {
2002  
2003            for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2004              if (regsLive.count(SubReg)) {
2005                Bad = false;
2006                break;
2007              }
2008            }
2009          }
2010          // If there is an additional implicit-use of a super register we stop
2011          // here. By definition we are fine if the super register is not
2012          // (completely) dead, if the complete super register is dead we will
2013          // get a report for its operand.
2014          if (Bad) {
2015            for (const MachineOperand &MOP : MI->uses()) {
2016              if (!MOP.isReg() || !MOP.isImplicit())
2017                continue;
2018  
2019              if (!Register::isPhysicalRegister(MOP.getReg()))
2020                continue;
2021  
2022              for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) {
2023                if (SubReg == Reg) {
2024                  Bad = false;
2025                  break;
2026                }
2027              }
2028            }
2029          }
2030          if (Bad)
2031            report("Using an undefined physical register", MO, MONum);
2032        } else if (MRI->def_empty(Reg)) {
2033          report("Reading virtual register without a def", MO, MONum);
2034        } else {
2035          BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2036          // We don't know which virtual registers are live in, so only complain
2037          // if vreg was killed in this MBB. Otherwise keep track of vregs that
2038          // must be live in. PHI instructions are handled separately.
2039          if (MInfo.regsKilled.count(Reg))
2040            report("Using a killed virtual register", MO, MONum);
2041          else if (!MI->isPHI())
2042            MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2043        }
2044      }
2045    }
2046  
2047    if (MO->isDef()) {
2048      // Register defined.
2049      // TODO: verify that earlyclobber ops are not used.
2050      if (MO->isDead())
2051        addRegWithSubRegs(regsDead, Reg);
2052      else
2053        addRegWithSubRegs(regsDefined, Reg);
2054  
2055      // Verify SSA form.
2056      if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2057          std::next(MRI->def_begin(Reg)) != MRI->def_end())
2058        report("Multiple virtual register defs in SSA form", MO, MONum);
2059  
2060      // Check LiveInts for a live segment, but only for virtual registers.
2061      if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2062        SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2063        DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2064  
2065        if (Register::isVirtualRegister(Reg)) {
2066          if (LiveInts->hasInterval(Reg)) {
2067            const LiveInterval &LI = LiveInts->getInterval(Reg);
2068            checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2069  
2070            if (LI.hasSubRanges()) {
2071              unsigned SubRegIdx = MO->getSubReg();
2072              LaneBitmask MOMask = SubRegIdx != 0
2073                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2074                : MRI->getMaxLaneMaskForVReg(Reg);
2075              for (const LiveInterval::SubRange &SR : LI.subranges()) {
2076                if ((SR.LaneMask & MOMask).none())
2077                  continue;
2078                checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2079              }
2080            }
2081          } else {
2082            report("Virtual register has no Live interval", MO, MONum);
2083          }
2084        }
2085      }
2086    }
2087  }
2088  
2089  // This function gets called after visiting all instructions in a bundle. The
2090  // argument points to the bundle header.
2091  // Normal stand-alone instructions are also considered 'bundles', and this
2092  // function is called for all of them.
2093  void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2094    BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2095    set_union(MInfo.regsKilled, regsKilled);
2096    set_subtract(regsLive, regsKilled); regsKilled.clear();
2097    // Kill any masked registers.
2098    while (!regMasks.empty()) {
2099      const uint32_t *Mask = regMasks.pop_back_val();
2100      for (unsigned Reg : regsLive)
2101        if (Register::isPhysicalRegister(Reg) &&
2102            MachineOperand::clobbersPhysReg(Mask, Reg))
2103          regsDead.push_back(Reg);
2104    }
2105    set_subtract(regsLive, regsDead);   regsDead.clear();
2106    set_union(regsLive, regsDefined);   regsDefined.clear();
2107  }
2108  
2109  void
2110  MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2111    MBBInfoMap[MBB].regsLiveOut = regsLive;
2112    regsLive.clear();
2113  
2114    if (Indexes) {
2115      SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2116      if (!(stop > lastIndex)) {
2117        report("Block ends before last instruction index", MBB);
2118        errs() << "Block ends at " << stop
2119            << " last instruction was at " << lastIndex << '\n';
2120      }
2121      lastIndex = stop;
2122    }
2123  }
2124  
2125  namespace {
2126  // This implements a set of registers that serves as a filter: can filter other
2127  // sets by passing through elements not in the filter and blocking those that
2128  // are. Any filter implicitly includes the full set of physical registers upon
2129  // creation, thus filtering them all out. The filter itself as a set only grows,
2130  // and needs to be as efficient as possible.
2131  struct VRegFilter {
2132    // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2133    // no duplicates. Both virtual and physical registers are fine.
2134    template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2135      SmallVector<unsigned, 0> VRegsBuffer;
2136      filterAndAdd(FromRegSet, VRegsBuffer);
2137    }
2138    // Filter \p FromRegSet through the filter and append passed elements into \p
2139    // ToVRegs. All elements appended are then added to the filter itself.
2140    // \returns true if anything changed.
2141    template <typename RegSetT>
2142    bool filterAndAdd(const RegSetT &FromRegSet,
2143                      SmallVectorImpl<unsigned> &ToVRegs) {
2144      unsigned SparseUniverse = Sparse.size();
2145      unsigned NewSparseUniverse = SparseUniverse;
2146      unsigned NewDenseSize = Dense.size();
2147      size_t Begin = ToVRegs.size();
2148      for (unsigned Reg : FromRegSet) {
2149        if (!Register::isVirtualRegister(Reg))
2150          continue;
2151        unsigned Index = Register::virtReg2Index(Reg);
2152        if (Index < SparseUniverseMax) {
2153          if (Index < SparseUniverse && Sparse.test(Index))
2154            continue;
2155          NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2156        } else {
2157          if (Dense.count(Reg))
2158            continue;
2159          ++NewDenseSize;
2160        }
2161        ToVRegs.push_back(Reg);
2162      }
2163      size_t End = ToVRegs.size();
2164      if (Begin == End)
2165        return false;
2166      // Reserving space in sets once performs better than doing so continuously
2167      // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2168      // tuned all the way down) and double iteration (the second one is over a
2169      // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2170      Sparse.resize(NewSparseUniverse);
2171      Dense.reserve(NewDenseSize);
2172      for (unsigned I = Begin; I < End; ++I) {
2173        unsigned Reg = ToVRegs[I];
2174        unsigned Index = Register::virtReg2Index(Reg);
2175        if (Index < SparseUniverseMax)
2176          Sparse.set(Index);
2177        else
2178          Dense.insert(Reg);
2179      }
2180      return true;
2181    }
2182  
2183  private:
2184    static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2185    // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2186    // are tracked by Dense. The only purpose of the threashold and the Dense set
2187    // is to have a reasonably growing memory usage in pathological cases (large
2188    // number of very sparse VRegFilter instances live at the same time). In
2189    // practice even in the worst-by-execution time cases having all elements
2190    // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2191    // space efficient than if tracked by Dense. The threashold is set to keep the
2192    // worst-case memory usage within 2x of figures determined empirically for
2193    // "all Dense" scenario in such worst-by-execution-time cases.
2194    BitVector Sparse;
2195    DenseSet<unsigned> Dense;
2196  };
2197  
2198  // Implements both a transfer function and a (binary, in-place) join operator
2199  // for a dataflow over register sets with set union join and filtering transfer
2200  // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2201  // Maintains out_b as its state, allowing for O(n) iteration over it at any
2202  // time, where n is the size of the set (as opposed to O(U) where U is the
2203  // universe). filter_b implicitly contains all physical registers at all times.
2204  class FilteringVRegSet {
2205    VRegFilter Filter;
2206    SmallVector<unsigned, 0> VRegs;
2207  
2208  public:
2209    // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2210    // Both virtual and physical registers are fine.
2211    template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2212      Filter.add(RS);
2213    }
2214    // Passes \p RS through the filter_b (transfer function) and adds what's left
2215    // to itself (out_b).
2216    template <typename RegSetT> bool add(const RegSetT &RS) {
2217      // Double-duty the Filter: to maintain VRegs a set (and the join operation
2218      // a set union) just add everything being added here to the Filter as well.
2219      return Filter.filterAndAdd(RS, VRegs);
2220    }
2221    using const_iterator = decltype(VRegs)::const_iterator;
2222    const_iterator begin() const { return VRegs.begin(); }
2223    const_iterator end() const { return VRegs.end(); }
2224    size_t size() const { return VRegs.size(); }
2225  };
2226  } // namespace
2227  
2228  // Calculate the largest possible vregsPassed sets. These are the registers that
2229  // can pass through an MBB live, but may not be live every time. It is assumed
2230  // that all vregsPassed sets are empty before the call.
2231  void MachineVerifier::calcRegsPassed() {
2232    // This is a forward dataflow, doing it in RPO. A standard map serves as a
2233    // priority (sorting by RPO number) queue, deduplicating worklist, and an RPO
2234    // number to MBB mapping all at once.
2235    std::map<unsigned, const MachineBasicBlock *> RPOWorklist;
2236    DenseMap<const MachineBasicBlock *, unsigned> RPONumbers;
2237    if (MF->empty()) {
2238      // ReversePostOrderTraversal doesn't handle empty functions.
2239      return;
2240    }
2241    std::vector<FilteringVRegSet> VRegsPassedSets(MF->size());
2242    for (const MachineBasicBlock *MBB :
2243         ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2244      // Careful with the evaluation order, fetch next number before allocating.
2245      unsigned Number = RPONumbers.size();
2246      RPONumbers[MBB] = Number;
2247      // Set-up the transfer functions for all blocks.
2248      const BBInfo &MInfo = MBBInfoMap[MBB];
2249      VRegsPassedSets[Number].addToFilter(MInfo.regsKilled);
2250      VRegsPassedSets[Number].addToFilter(MInfo.regsLiveOut);
2251    }
2252    // First push live-out regs to successors' vregsPassed. Remember the MBBs that
2253    // have any vregsPassed.
2254    for (const MachineBasicBlock &MBB : *MF) {
2255      const BBInfo &MInfo = MBBInfoMap[&MBB];
2256      if (!MInfo.reachable)
2257        continue;
2258      for (const MachineBasicBlock *Succ : MBB.successors()) {
2259        unsigned SuccNumber = RPONumbers[Succ];
2260        FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber];
2261        if (SuccSet.add(MInfo.regsLiveOut))
2262          RPOWorklist.emplace(SuccNumber, Succ);
2263      }
2264    }
2265  
2266    // Iteratively push vregsPassed to successors.
2267    while (!RPOWorklist.empty()) {
2268      auto Next = RPOWorklist.begin();
2269      const MachineBasicBlock *MBB = Next->second;
2270      RPOWorklist.erase(Next);
2271      FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[MBB]];
2272      for (const MachineBasicBlock *Succ : MBB->successors()) {
2273        if (Succ == MBB)
2274          continue;
2275        unsigned SuccNumber = RPONumbers[Succ];
2276        FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber];
2277        if (SuccSet.add(MSet))
2278          RPOWorklist.emplace(SuccNumber, Succ);
2279      }
2280    }
2281    // Copy the results back to BBInfos.
2282    for (const MachineBasicBlock &MBB : *MF) {
2283      BBInfo &MInfo = MBBInfoMap[&MBB];
2284      if (!MInfo.reachable)
2285        continue;
2286      const FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[&MBB]];
2287      MInfo.vregsPassed.reserve(MSet.size());
2288      MInfo.vregsPassed.insert(MSet.begin(), MSet.end());
2289    }
2290  }
2291  
2292  // Calculate the set of virtual registers that must be passed through each basic
2293  // block in order to satisfy the requirements of successor blocks. This is very
2294  // similar to calcRegsPassed, only backwards.
2295  void MachineVerifier::calcRegsRequired() {
2296    // First push live-in regs to predecessors' vregsRequired.
2297    SmallPtrSet<const MachineBasicBlock*, 8> todo;
2298    for (const auto &MBB : *MF) {
2299      BBInfo &MInfo = MBBInfoMap[&MBB];
2300      for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2301        BBInfo &PInfo = MBBInfoMap[Pred];
2302        if (PInfo.addRequired(MInfo.vregsLiveIn))
2303          todo.insert(Pred);
2304      }
2305    }
2306  
2307    // Iteratively push vregsRequired to predecessors. This will converge to the
2308    // same final state regardless of DenseSet iteration order.
2309    while (!todo.empty()) {
2310      const MachineBasicBlock *MBB = *todo.begin();
2311      todo.erase(MBB);
2312      BBInfo &MInfo = MBBInfoMap[MBB];
2313      for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2314        if (Pred == MBB)
2315          continue;
2316        BBInfo &SInfo = MBBInfoMap[Pred];
2317        if (SInfo.addRequired(MInfo.vregsRequired))
2318          todo.insert(Pred);
2319      }
2320    }
2321  }
2322  
2323  // Check PHI instructions at the beginning of MBB. It is assumed that
2324  // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2325  void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2326    BBInfo &MInfo = MBBInfoMap[&MBB];
2327  
2328    SmallPtrSet<const MachineBasicBlock*, 8> seen;
2329    for (const MachineInstr &Phi : MBB) {
2330      if (!Phi.isPHI())
2331        break;
2332      seen.clear();
2333  
2334      const MachineOperand &MODef = Phi.getOperand(0);
2335      if (!MODef.isReg() || !MODef.isDef()) {
2336        report("Expected first PHI operand to be a register def", &MODef, 0);
2337        continue;
2338      }
2339      if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2340          MODef.isEarlyClobber() || MODef.isDebug())
2341        report("Unexpected flag on PHI operand", &MODef, 0);
2342      Register DefReg = MODef.getReg();
2343      if (!Register::isVirtualRegister(DefReg))
2344        report("Expected first PHI operand to be a virtual register", &MODef, 0);
2345  
2346      for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2347        const MachineOperand &MO0 = Phi.getOperand(I);
2348        if (!MO0.isReg()) {
2349          report("Expected PHI operand to be a register", &MO0, I);
2350          continue;
2351        }
2352        if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2353            MO0.isDebug() || MO0.isTied())
2354          report("Unexpected flag on PHI operand", &MO0, I);
2355  
2356        const MachineOperand &MO1 = Phi.getOperand(I + 1);
2357        if (!MO1.isMBB()) {
2358          report("Expected PHI operand to be a basic block", &MO1, I + 1);
2359          continue;
2360        }
2361  
2362        const MachineBasicBlock &Pre = *MO1.getMBB();
2363        if (!Pre.isSuccessor(&MBB)) {
2364          report("PHI input is not a predecessor block", &MO1, I + 1);
2365          continue;
2366        }
2367  
2368        if (MInfo.reachable) {
2369          seen.insert(&Pre);
2370          BBInfo &PrInfo = MBBInfoMap[&Pre];
2371          if (!MO0.isUndef() && PrInfo.reachable &&
2372              !PrInfo.isLiveOut(MO0.getReg()))
2373            report("PHI operand is not live-out from predecessor", &MO0, I);
2374        }
2375      }
2376  
2377      // Did we see all predecessors?
2378      if (MInfo.reachable) {
2379        for (MachineBasicBlock *Pred : MBB.predecessors()) {
2380          if (!seen.count(Pred)) {
2381            report("Missing PHI operand", &Phi);
2382            errs() << printMBBReference(*Pred)
2383                   << " is a predecessor according to the CFG.\n";
2384          }
2385        }
2386      }
2387    }
2388  }
2389  
2390  void MachineVerifier::visitMachineFunctionAfter() {
2391    calcRegsPassed();
2392  
2393    for (const MachineBasicBlock &MBB : *MF)
2394      checkPHIOps(MBB);
2395  
2396    // Now check liveness info if available
2397    calcRegsRequired();
2398  
2399    // Check for killed virtual registers that should be live out.
2400    for (const auto &MBB : *MF) {
2401      BBInfo &MInfo = MBBInfoMap[&MBB];
2402      for (unsigned VReg : MInfo.vregsRequired)
2403        if (MInfo.regsKilled.count(VReg)) {
2404          report("Virtual register killed in block, but needed live out.", &MBB);
2405          errs() << "Virtual register " << printReg(VReg)
2406                 << " is used after the block.\n";
2407        }
2408    }
2409  
2410    if (!MF->empty()) {
2411      BBInfo &MInfo = MBBInfoMap[&MF->front()];
2412      for (unsigned VReg : MInfo.vregsRequired) {
2413        report("Virtual register defs don't dominate all uses.", MF);
2414        report_context_vreg(VReg);
2415      }
2416    }
2417  
2418    if (LiveVars)
2419      verifyLiveVariables();
2420    if (LiveInts)
2421      verifyLiveIntervals();
2422  
2423    // Check live-in list of each MBB. If a register is live into MBB, check
2424    // that the register is in regsLiveOut of each predecessor block. Since
2425    // this must come from a definition in the predecesssor or its live-in
2426    // list, this will catch a live-through case where the predecessor does not
2427    // have the register in its live-in list.  This currently only checks
2428    // registers that have no aliases, are not allocatable and are not
2429    // reserved, which could mean a condition code register for instance.
2430    if (MRI->tracksLiveness())
2431      for (const auto &MBB : *MF)
2432        for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2433          MCPhysReg LiveInReg = P.PhysReg;
2434          bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2435          if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2436            continue;
2437          for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2438            BBInfo &PInfo = MBBInfoMap[Pred];
2439            if (!PInfo.regsLiveOut.count(LiveInReg)) {
2440              report("Live in register not found to be live out from predecessor.",
2441                     &MBB);
2442              errs() << TRI->getName(LiveInReg)
2443                     << " not found to be live out from "
2444                     << printMBBReference(*Pred) << "\n";
2445            }
2446          }
2447        }
2448  
2449    for (auto CSInfo : MF->getCallSitesInfo())
2450      if (!CSInfo.first->isCall())
2451        report("Call site info referencing instruction that is not call", MF);
2452  }
2453  
2454  void MachineVerifier::verifyLiveVariables() {
2455    assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2456    for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2457      unsigned Reg = Register::index2VirtReg(i);
2458      LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2459      for (const auto &MBB : *MF) {
2460        BBInfo &MInfo = MBBInfoMap[&MBB];
2461  
2462        // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2463        if (MInfo.vregsRequired.count(Reg)) {
2464          if (!VI.AliveBlocks.test(MBB.getNumber())) {
2465            report("LiveVariables: Block missing from AliveBlocks", &MBB);
2466            errs() << "Virtual register " << printReg(Reg)
2467                   << " must be live through the block.\n";
2468          }
2469        } else {
2470          if (VI.AliveBlocks.test(MBB.getNumber())) {
2471            report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2472            errs() << "Virtual register " << printReg(Reg)
2473                   << " is not needed live through the block.\n";
2474          }
2475        }
2476      }
2477    }
2478  }
2479  
2480  void MachineVerifier::verifyLiveIntervals() {
2481    assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2482    for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2483      unsigned Reg = Register::index2VirtReg(i);
2484  
2485      // Spilling and splitting may leave unused registers around. Skip them.
2486      if (MRI->reg_nodbg_empty(Reg))
2487        continue;
2488  
2489      if (!LiveInts->hasInterval(Reg)) {
2490        report("Missing live interval for virtual register", MF);
2491        errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2492        continue;
2493      }
2494  
2495      const LiveInterval &LI = LiveInts->getInterval(Reg);
2496      assert(Reg == LI.reg && "Invalid reg to interval mapping");
2497      verifyLiveInterval(LI);
2498    }
2499  
2500    // Verify all the cached regunit intervals.
2501    for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2502      if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2503        verifyLiveRange(*LR, i);
2504  }
2505  
2506  void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2507                                             const VNInfo *VNI, unsigned Reg,
2508                                             LaneBitmask LaneMask) {
2509    if (VNI->isUnused())
2510      return;
2511  
2512    const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2513  
2514    if (!DefVNI) {
2515      report("Value not live at VNInfo def and not marked unused", MF);
2516      report_context(LR, Reg, LaneMask);
2517      report_context(*VNI);
2518      return;
2519    }
2520  
2521    if (DefVNI != VNI) {
2522      report("Live segment at def has different VNInfo", MF);
2523      report_context(LR, Reg, LaneMask);
2524      report_context(*VNI);
2525      return;
2526    }
2527  
2528    const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2529    if (!MBB) {
2530      report("Invalid VNInfo definition index", MF);
2531      report_context(LR, Reg, LaneMask);
2532      report_context(*VNI);
2533      return;
2534    }
2535  
2536    if (VNI->isPHIDef()) {
2537      if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2538        report("PHIDef VNInfo is not defined at MBB start", MBB);
2539        report_context(LR, Reg, LaneMask);
2540        report_context(*VNI);
2541      }
2542      return;
2543    }
2544  
2545    // Non-PHI def.
2546    const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2547    if (!MI) {
2548      report("No instruction at VNInfo def index", MBB);
2549      report_context(LR, Reg, LaneMask);
2550      report_context(*VNI);
2551      return;
2552    }
2553  
2554    if (Reg != 0) {
2555      bool hasDef = false;
2556      bool isEarlyClobber = false;
2557      for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2558        if (!MOI->isReg() || !MOI->isDef())
2559          continue;
2560        if (Register::isVirtualRegister(Reg)) {
2561          if (MOI->getReg() != Reg)
2562            continue;
2563        } else {
2564          if (!Register::isPhysicalRegister(MOI->getReg()) ||
2565              !TRI->hasRegUnit(MOI->getReg(), Reg))
2566            continue;
2567        }
2568        if (LaneMask.any() &&
2569            (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2570          continue;
2571        hasDef = true;
2572        if (MOI->isEarlyClobber())
2573          isEarlyClobber = true;
2574      }
2575  
2576      if (!hasDef) {
2577        report("Defining instruction does not modify register", MI);
2578        report_context(LR, Reg, LaneMask);
2579        report_context(*VNI);
2580      }
2581  
2582      // Early clobber defs begin at USE slots, but other defs must begin at
2583      // DEF slots.
2584      if (isEarlyClobber) {
2585        if (!VNI->def.isEarlyClobber()) {
2586          report("Early clobber def must be at an early-clobber slot", MBB);
2587          report_context(LR, Reg, LaneMask);
2588          report_context(*VNI);
2589        }
2590      } else if (!VNI->def.isRegister()) {
2591        report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2592        report_context(LR, Reg, LaneMask);
2593        report_context(*VNI);
2594      }
2595    }
2596  }
2597  
2598  void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2599                                               const LiveRange::const_iterator I,
2600                                               unsigned Reg, LaneBitmask LaneMask)
2601  {
2602    const LiveRange::Segment &S = *I;
2603    const VNInfo *VNI = S.valno;
2604    assert(VNI && "Live segment has no valno");
2605  
2606    if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2607      report("Foreign valno in live segment", MF);
2608      report_context(LR, Reg, LaneMask);
2609      report_context(S);
2610      report_context(*VNI);
2611    }
2612  
2613    if (VNI->isUnused()) {
2614      report("Live segment valno is marked unused", MF);
2615      report_context(LR, Reg, LaneMask);
2616      report_context(S);
2617    }
2618  
2619    const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2620    if (!MBB) {
2621      report("Bad start of live segment, no basic block", MF);
2622      report_context(LR, Reg, LaneMask);
2623      report_context(S);
2624      return;
2625    }
2626    SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2627    if (S.start != MBBStartIdx && S.start != VNI->def) {
2628      report("Live segment must begin at MBB entry or valno def", MBB);
2629      report_context(LR, Reg, LaneMask);
2630      report_context(S);
2631    }
2632  
2633    const MachineBasicBlock *EndMBB =
2634      LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2635    if (!EndMBB) {
2636      report("Bad end of live segment, no basic block", MF);
2637      report_context(LR, Reg, LaneMask);
2638      report_context(S);
2639      return;
2640    }
2641  
2642    // No more checks for live-out segments.
2643    if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2644      return;
2645  
2646    // RegUnit intervals are allowed dead phis.
2647    if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2648        S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2649      return;
2650  
2651    // The live segment is ending inside EndMBB
2652    const MachineInstr *MI =
2653      LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2654    if (!MI) {
2655      report("Live segment doesn't end at a valid instruction", EndMBB);
2656      report_context(LR, Reg, LaneMask);
2657      report_context(S);
2658      return;
2659    }
2660  
2661    // The block slot must refer to a basic block boundary.
2662    if (S.end.isBlock()) {
2663      report("Live segment ends at B slot of an instruction", EndMBB);
2664      report_context(LR, Reg, LaneMask);
2665      report_context(S);
2666    }
2667  
2668    if (S.end.isDead()) {
2669      // Segment ends on the dead slot.
2670      // That means there must be a dead def.
2671      if (!SlotIndex::isSameInstr(S.start, S.end)) {
2672        report("Live segment ending at dead slot spans instructions", EndMBB);
2673        report_context(LR, Reg, LaneMask);
2674        report_context(S);
2675      }
2676    }
2677  
2678    // A live segment can only end at an early-clobber slot if it is being
2679    // redefined by an early-clobber def.
2680    if (S.end.isEarlyClobber()) {
2681      if (I+1 == LR.end() || (I+1)->start != S.end) {
2682        report("Live segment ending at early clobber slot must be "
2683               "redefined by an EC def in the same instruction", EndMBB);
2684        report_context(LR, Reg, LaneMask);
2685        report_context(S);
2686      }
2687    }
2688  
2689    // The following checks only apply to virtual registers. Physreg liveness
2690    // is too weird to check.
2691    if (Register::isVirtualRegister(Reg)) {
2692      // A live segment can end with either a redefinition, a kill flag on a
2693      // use, or a dead flag on a def.
2694      bool hasRead = false;
2695      bool hasSubRegDef = false;
2696      bool hasDeadDef = false;
2697      for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2698        if (!MOI->isReg() || MOI->getReg() != Reg)
2699          continue;
2700        unsigned Sub = MOI->getSubReg();
2701        LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2702                                   : LaneBitmask::getAll();
2703        if (MOI->isDef()) {
2704          if (Sub != 0) {
2705            hasSubRegDef = true;
2706            // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2707            // mask for subregister defs. Read-undef defs will be handled by
2708            // readsReg below.
2709            SLM = ~SLM;
2710          }
2711          if (MOI->isDead())
2712            hasDeadDef = true;
2713        }
2714        if (LaneMask.any() && (LaneMask & SLM).none())
2715          continue;
2716        if (MOI->readsReg())
2717          hasRead = true;
2718      }
2719      if (S.end.isDead()) {
2720        // Make sure that the corresponding machine operand for a "dead" live
2721        // range has the dead flag. We cannot perform this check for subregister
2722        // liveranges as partially dead values are allowed.
2723        if (LaneMask.none() && !hasDeadDef) {
2724          report("Instruction ending live segment on dead slot has no dead flag",
2725                 MI);
2726          report_context(LR, Reg, LaneMask);
2727          report_context(S);
2728        }
2729      } else {
2730        if (!hasRead) {
2731          // When tracking subregister liveness, the main range must start new
2732          // values on partial register writes, even if there is no read.
2733          if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2734              !hasSubRegDef) {
2735            report("Instruction ending live segment doesn't read the register",
2736                   MI);
2737            report_context(LR, Reg, LaneMask);
2738            report_context(S);
2739          }
2740        }
2741      }
2742    }
2743  
2744    // Now check all the basic blocks in this live segment.
2745    MachineFunction::const_iterator MFI = MBB->getIterator();
2746    // Is this live segment the beginning of a non-PHIDef VN?
2747    if (S.start == VNI->def && !VNI->isPHIDef()) {
2748      // Not live-in to any blocks.
2749      if (MBB == EndMBB)
2750        return;
2751      // Skip this block.
2752      ++MFI;
2753    }
2754  
2755    SmallVector<SlotIndex, 4> Undefs;
2756    if (LaneMask.any()) {
2757      LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2758      OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2759    }
2760  
2761    while (true) {
2762      assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2763      // We don't know how to track physregs into a landing pad.
2764      if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
2765        if (&*MFI == EndMBB)
2766          break;
2767        ++MFI;
2768        continue;
2769      }
2770  
2771      // Is VNI a PHI-def in the current block?
2772      bool IsPHI = VNI->isPHIDef() &&
2773        VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2774  
2775      // Check that VNI is live-out of all predecessors.
2776      for (const MachineBasicBlock *Pred : MFI->predecessors()) {
2777        SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
2778        const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2779  
2780        // All predecessors must have a live-out value. However for a phi
2781        // instruction with subregister intervals
2782        // only one of the subregisters (not necessarily the current one) needs to
2783        // be defined.
2784        if (!PVNI && (LaneMask.none() || !IsPHI)) {
2785          if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
2786            continue;
2787          report("Register not marked live out of predecessor", Pred);
2788          report_context(LR, Reg, LaneMask);
2789          report_context(*VNI);
2790          errs() << " live into " << printMBBReference(*MFI) << '@'
2791                 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2792                 << PEnd << '\n';
2793          continue;
2794        }
2795  
2796        // Only PHI-defs can take different predecessor values.
2797        if (!IsPHI && PVNI != VNI) {
2798          report("Different value live out of predecessor", Pred);
2799          report_context(LR, Reg, LaneMask);
2800          errs() << "Valno #" << PVNI->id << " live out of "
2801                 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
2802                 << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2803                 << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2804        }
2805      }
2806      if (&*MFI == EndMBB)
2807        break;
2808      ++MFI;
2809    }
2810  }
2811  
2812  void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2813                                        LaneBitmask LaneMask) {
2814    for (const VNInfo *VNI : LR.valnos)
2815      verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2816  
2817    for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2818      verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2819  }
2820  
2821  void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2822    unsigned Reg = LI.reg;
2823    assert(Register::isVirtualRegister(Reg));
2824    verifyLiveRange(LI, Reg);
2825  
2826    LaneBitmask Mask;
2827    LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2828    for (const LiveInterval::SubRange &SR : LI.subranges()) {
2829      if ((Mask & SR.LaneMask).any()) {
2830        report("Lane masks of sub ranges overlap in live interval", MF);
2831        report_context(LI);
2832      }
2833      if ((SR.LaneMask & ~MaxMask).any()) {
2834        report("Subrange lanemask is invalid", MF);
2835        report_context(LI);
2836      }
2837      if (SR.empty()) {
2838        report("Subrange must not be empty", MF);
2839        report_context(SR, LI.reg, SR.LaneMask);
2840      }
2841      Mask |= SR.LaneMask;
2842      verifyLiveRange(SR, LI.reg, SR.LaneMask);
2843      if (!LI.covers(SR)) {
2844        report("A Subrange is not covered by the main range", MF);
2845        report_context(LI);
2846      }
2847    }
2848  
2849    // Check the LI only has one connected component.
2850    ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2851    unsigned NumComp = ConEQ.Classify(LI);
2852    if (NumComp > 1) {
2853      report("Multiple connected components in live interval", MF);
2854      report_context(LI);
2855      for (unsigned comp = 0; comp != NumComp; ++comp) {
2856        errs() << comp << ": valnos";
2857        for (const VNInfo *I : LI.valnos)
2858          if (comp == ConEQ.getEqClass(I))
2859            errs() << ' ' << I->id;
2860        errs() << '\n';
2861      }
2862    }
2863  }
2864  
2865  namespace {
2866  
2867    // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2868    // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2869    // value is zero.
2870    // We use a bool plus an integer to capture the stack state.
2871    struct StackStateOfBB {
2872      StackStateOfBB() = default;
2873      StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2874        EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2875        ExitIsSetup(ExitSetup) {}
2876  
2877      // Can be negative, which means we are setting up a frame.
2878      int EntryValue = 0;
2879      int ExitValue = 0;
2880      bool EntryIsSetup = false;
2881      bool ExitIsSetup = false;
2882    };
2883  
2884  } // end anonymous namespace
2885  
2886  /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2887  /// by a FrameDestroy <n>, stack adjustments are identical on all
2888  /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2889  void MachineVerifier::verifyStackFrame() {
2890    unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2891    unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2892    if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2893      return;
2894  
2895    SmallVector<StackStateOfBB, 8> SPState;
2896    SPState.resize(MF->getNumBlockIDs());
2897    df_iterator_default_set<const MachineBasicBlock*> Reachable;
2898  
2899    // Visit the MBBs in DFS order.
2900    for (df_ext_iterator<const MachineFunction *,
2901                         df_iterator_default_set<const MachineBasicBlock *>>
2902         DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2903         DFI != DFE; ++DFI) {
2904      const MachineBasicBlock *MBB = *DFI;
2905  
2906      StackStateOfBB BBState;
2907      // Check the exit state of the DFS stack predecessor.
2908      if (DFI.getPathLength() >= 2) {
2909        const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2910        assert(Reachable.count(StackPred) &&
2911               "DFS stack predecessor is already visited.\n");
2912        BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2913        BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2914        BBState.ExitValue = BBState.EntryValue;
2915        BBState.ExitIsSetup = BBState.EntryIsSetup;
2916      }
2917  
2918      // Update stack state by checking contents of MBB.
2919      for (const auto &I : *MBB) {
2920        if (I.getOpcode() == FrameSetupOpcode) {
2921          if (BBState.ExitIsSetup)
2922            report("FrameSetup is after another FrameSetup", &I);
2923          BBState.ExitValue -= TII->getFrameTotalSize(I);
2924          BBState.ExitIsSetup = true;
2925        }
2926  
2927        if (I.getOpcode() == FrameDestroyOpcode) {
2928          int Size = TII->getFrameTotalSize(I);
2929          if (!BBState.ExitIsSetup)
2930            report("FrameDestroy is not after a FrameSetup", &I);
2931          int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2932                                                 BBState.ExitValue;
2933          if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2934            report("FrameDestroy <n> is after FrameSetup <m>", &I);
2935            errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2936                << AbsSPAdj << ">.\n";
2937          }
2938          BBState.ExitValue += Size;
2939          BBState.ExitIsSetup = false;
2940        }
2941      }
2942      SPState[MBB->getNumber()] = BBState;
2943  
2944      // Make sure the exit state of any predecessor is consistent with the entry
2945      // state.
2946      for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2947        if (Reachable.count(Pred) &&
2948            (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
2949             SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2950          report("The exit stack state of a predecessor is inconsistent.", MBB);
2951          errs() << "Predecessor " << printMBBReference(*Pred)
2952                 << " has exit state (" << SPState[Pred->getNumber()].ExitValue
2953                 << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
2954                 << printMBBReference(*MBB) << " has entry state ("
2955                 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2956        }
2957      }
2958  
2959      // Make sure the entry state of any successor is consistent with the exit
2960      // state.
2961      for (const MachineBasicBlock *Succ : MBB->successors()) {
2962        if (Reachable.count(Succ) &&
2963            (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
2964             SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2965          report("The entry stack state of a successor is inconsistent.", MBB);
2966          errs() << "Successor " << printMBBReference(*Succ)
2967                 << " has entry state (" << SPState[Succ->getNumber()].EntryValue
2968                 << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
2969                 << printMBBReference(*MBB) << " has exit state ("
2970                 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2971        }
2972      }
2973  
2974      // Make sure a basic block with return ends with zero stack adjustment.
2975      if (!MBB->empty() && MBB->back().isReturn()) {
2976        if (BBState.ExitIsSetup)
2977          report("A return block ends with a FrameSetup.", MBB);
2978        if (BBState.ExitValue)
2979          report("A return block ends with a nonzero stack adjustment.", MBB);
2980      }
2981    }
2982  }
2983