1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled with the command-line option 20 // -verify-machineinstrs. 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervals.h" 37 #include "llvm/CodeGen/LiveRangeCalc.h" 38 #include "llvm/CodeGen/LiveStacks.h" 39 #include "llvm/CodeGen/LiveVariables.h" 40 #include "llvm/CodeGen/LowLevelType.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineFrameInfo.h" 43 #include "llvm/CodeGen/MachineFunction.h" 44 #include "llvm/CodeGen/MachineFunctionPass.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBundle.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/PseudoSourceValue.h" 51 #include "llvm/CodeGen/RegisterBank.h" 52 #include "llvm/CodeGen/RegisterBankInfo.h" 53 #include "llvm/CodeGen/SlotIndexes.h" 54 #include "llvm/CodeGen/StackMaps.h" 55 #include "llvm/CodeGen/TargetInstrInfo.h" 56 #include "llvm/CodeGen/TargetOpcodes.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/EHPersonalities.h" 62 #include "llvm/IR/Function.h" 63 #include "llvm/IR/InlineAsm.h" 64 #include "llvm/IR/Instructions.h" 65 #include "llvm/InitializePasses.h" 66 #include "llvm/MC/LaneBitmask.h" 67 #include "llvm/MC/MCAsmInfo.h" 68 #include "llvm/MC/MCDwarf.h" 69 #include "llvm/MC/MCInstrDesc.h" 70 #include "llvm/MC/MCRegisterInfo.h" 71 #include "llvm/MC/MCTargetOptions.h" 72 #include "llvm/Pass.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/MathExtras.h" 76 #include "llvm/Support/ModRef.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Target/TargetMachine.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <cstddef> 82 #include <cstdint> 83 #include <iterator> 84 #include <string> 85 #include <utility> 86 87 using namespace llvm; 88 89 namespace { 90 91 struct MachineVerifier { 92 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 93 94 unsigned verify(const MachineFunction &MF); 95 96 Pass *const PASS; 97 const char *Banner; 98 const MachineFunction *MF = nullptr; 99 const TargetMachine *TM = nullptr; 100 const TargetInstrInfo *TII = nullptr; 101 const TargetRegisterInfo *TRI = nullptr; 102 const MachineRegisterInfo *MRI = nullptr; 103 const RegisterBankInfo *RBI = nullptr; 104 105 unsigned foundErrors = 0; 106 107 // Avoid querying the MachineFunctionProperties for each operand. 108 bool isFunctionRegBankSelected = false; 109 bool isFunctionSelected = false; 110 bool isFunctionTracksDebugUserValues = false; 111 112 using RegVector = SmallVector<Register, 16>; 113 using RegMaskVector = SmallVector<const uint32_t *, 4>; 114 using RegSet = DenseSet<Register>; 115 using RegMap = DenseMap<Register, const MachineInstr *>; 116 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 117 118 const MachineInstr *FirstNonPHI = nullptr; 119 const MachineInstr *FirstTerminator = nullptr; 120 BlockSet FunctionBlocks; 121 122 BitVector regsReserved; 123 RegSet regsLive; 124 RegVector regsDefined, regsDead, regsKilled; 125 RegMaskVector regMasks; 126 127 SlotIndex lastIndex; 128 129 // Add Reg and any sub-registers to RV 130 void addRegWithSubRegs(RegVector &RV, Register Reg) { 131 RV.push_back(Reg); 132 if (Reg.isPhysical()) 133 append_range(RV, TRI->subregs(Reg.asMCReg())); 134 } 135 136 struct BBInfo { 137 // Is this MBB reachable from the MF entry point? 138 bool reachable = false; 139 140 // Vregs that must be live in because they are used without being 141 // defined. Map value is the user. vregsLiveIn doesn't include regs 142 // that only are used by PHI nodes. 143 RegMap vregsLiveIn; 144 145 // Regs killed in MBB. They may be defined again, and will then be in both 146 // regsKilled and regsLiveOut. 147 RegSet regsKilled; 148 149 // Regs defined in MBB and live out. Note that vregs passing through may 150 // be live out without being mentioned here. 151 RegSet regsLiveOut; 152 153 // Vregs that pass through MBB untouched. This set is disjoint from 154 // regsKilled and regsLiveOut. 155 RegSet vregsPassed; 156 157 // Vregs that must pass through MBB because they are needed by a successor 158 // block. This set is disjoint from regsLiveOut. 159 RegSet vregsRequired; 160 161 // Set versions of block's predecessor and successor lists. 162 BlockSet Preds, Succs; 163 164 BBInfo() = default; 165 166 // Add register to vregsRequired if it belongs there. Return true if 167 // anything changed. 168 bool addRequired(Register Reg) { 169 if (!Reg.isVirtual()) 170 return false; 171 if (regsLiveOut.count(Reg)) 172 return false; 173 return vregsRequired.insert(Reg).second; 174 } 175 176 // Same for a full set. 177 bool addRequired(const RegSet &RS) { 178 bool Changed = false; 179 for (Register Reg : RS) 180 Changed |= addRequired(Reg); 181 return Changed; 182 } 183 184 // Same for a full map. 185 bool addRequired(const RegMap &RM) { 186 bool Changed = false; 187 for (const auto &I : RM) 188 Changed |= addRequired(I.first); 189 return Changed; 190 } 191 192 // Live-out registers are either in regsLiveOut or vregsPassed. 193 bool isLiveOut(Register Reg) const { 194 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 195 } 196 }; 197 198 // Extra register info per MBB. 199 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 200 201 bool isReserved(Register Reg) { 202 return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id()); 203 } 204 205 bool isAllocatable(Register Reg) const { 206 return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 207 !regsReserved.test(Reg.id()); 208 } 209 210 // Analysis information if available 211 LiveVariables *LiveVars = nullptr; 212 LiveIntervals *LiveInts = nullptr; 213 LiveStacks *LiveStks = nullptr; 214 SlotIndexes *Indexes = nullptr; 215 216 void visitMachineFunctionBefore(); 217 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 218 void visitMachineBundleBefore(const MachineInstr *MI); 219 220 /// Verify that all of \p MI's virtual register operands are scalars. 221 /// \returns True if all virtual register operands are scalar. False 222 /// otherwise. 223 bool verifyAllRegOpsScalar(const MachineInstr &MI, 224 const MachineRegisterInfo &MRI); 225 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 226 void verifyPreISelGenericInstruction(const MachineInstr *MI); 227 void visitMachineInstrBefore(const MachineInstr *MI); 228 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 229 void visitMachineBundleAfter(const MachineInstr *MI); 230 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 231 void visitMachineFunctionAfter(); 232 233 void report(const char *msg, const MachineFunction *MF); 234 void report(const char *msg, const MachineBasicBlock *MBB); 235 void report(const char *msg, const MachineInstr *MI); 236 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 237 LLT MOVRegType = LLT{}); 238 void report(const Twine &Msg, const MachineInstr *MI); 239 240 void report_context(const LiveInterval &LI) const; 241 void report_context(const LiveRange &LR, Register VRegUnit, 242 LaneBitmask LaneMask) const; 243 void report_context(const LiveRange::Segment &S) const; 244 void report_context(const VNInfo &VNI) const; 245 void report_context(SlotIndex Pos) const; 246 void report_context(MCPhysReg PhysReg) const; 247 void report_context_liverange(const LiveRange &LR) const; 248 void report_context_lanemask(LaneBitmask LaneMask) const; 249 void report_context_vreg(Register VReg) const; 250 void report_context_vreg_regunit(Register VRegOrUnit) const; 251 252 void verifyInlineAsm(const MachineInstr *MI); 253 254 void checkLiveness(const MachineOperand *MO, unsigned MONum); 255 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 256 SlotIndex UseIdx, const LiveRange &LR, 257 Register VRegOrUnit, 258 LaneBitmask LaneMask = LaneBitmask::getNone()); 259 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 260 SlotIndex DefIdx, const LiveRange &LR, 261 Register VRegOrUnit, bool SubRangeCheck = false, 262 LaneBitmask LaneMask = LaneBitmask::getNone()); 263 264 void markReachable(const MachineBasicBlock *MBB); 265 void calcRegsPassed(); 266 void checkPHIOps(const MachineBasicBlock &MBB); 267 268 void calcRegsRequired(); 269 void verifyLiveVariables(); 270 void verifyLiveIntervals(); 271 void verifyLiveInterval(const LiveInterval&); 272 void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register, 273 LaneBitmask); 274 void verifyLiveRangeSegment(const LiveRange &, 275 const LiveRange::const_iterator I, Register, 276 LaneBitmask); 277 void verifyLiveRange(const LiveRange &, Register, 278 LaneBitmask LaneMask = LaneBitmask::getNone()); 279 280 void verifyStackFrame(); 281 282 void verifySlotIndexes() const; 283 void verifyProperties(const MachineFunction &MF); 284 }; 285 286 struct MachineVerifierPass : public MachineFunctionPass { 287 static char ID; // Pass ID, replacement for typeid 288 289 const std::string Banner; 290 291 MachineVerifierPass(std::string banner = std::string()) 292 : MachineFunctionPass(ID), Banner(std::move(banner)) { 293 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 294 } 295 296 void getAnalysisUsage(AnalysisUsage &AU) const override { 297 AU.addUsedIfAvailable<LiveStacks>(); 298 AU.addUsedIfAvailable<LiveVariables>(); 299 AU.addUsedIfAvailable<SlotIndexes>(); 300 AU.addUsedIfAvailable<LiveIntervals>(); 301 AU.setPreservesAll(); 302 MachineFunctionPass::getAnalysisUsage(AU); 303 } 304 305 bool runOnMachineFunction(MachineFunction &MF) override { 306 // Skip functions that have known verification problems. 307 // FIXME: Remove this mechanism when all problematic passes have been 308 // fixed. 309 if (MF.getProperties().hasProperty( 310 MachineFunctionProperties::Property::FailsVerification)) 311 return false; 312 313 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 314 if (FoundErrors) 315 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 316 return false; 317 } 318 }; 319 320 } // end anonymous namespace 321 322 char MachineVerifierPass::ID = 0; 323 324 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 325 "Verify generated machine code", false, false) 326 327 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 328 return new MachineVerifierPass(Banner); 329 } 330 331 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *, 332 const std::string &Banner, 333 const MachineFunction &MF) { 334 // TODO: Use MFAM after porting below analyses. 335 // LiveVariables *LiveVars; 336 // LiveIntervals *LiveInts; 337 // LiveStacks *LiveStks; 338 // SlotIndexes *Indexes; 339 unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF); 340 if (FoundErrors) 341 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors."); 342 } 343 344 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 345 const { 346 MachineFunction &MF = const_cast<MachineFunction&>(*this); 347 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 348 if (AbortOnErrors && FoundErrors) 349 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 350 return FoundErrors == 0; 351 } 352 353 void MachineVerifier::verifySlotIndexes() const { 354 if (Indexes == nullptr) 355 return; 356 357 // Ensure the IdxMBB list is sorted by slot indexes. 358 SlotIndex Last; 359 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 360 E = Indexes->MBBIndexEnd(); I != E; ++I) { 361 assert(!Last.isValid() || I->first > Last); 362 Last = I->first; 363 } 364 } 365 366 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 367 // If a pass has introduced virtual registers without clearing the 368 // NoVRegs property (or set it without allocating the vregs) 369 // then report an error. 370 if (MF.getProperties().hasProperty( 371 MachineFunctionProperties::Property::NoVRegs) && 372 MRI->getNumVirtRegs()) 373 report("Function has NoVRegs property but there are VReg operands", &MF); 374 } 375 376 unsigned MachineVerifier::verify(const MachineFunction &MF) { 377 foundErrors = 0; 378 379 this->MF = &MF; 380 TM = &MF.getTarget(); 381 TII = MF.getSubtarget().getInstrInfo(); 382 TRI = MF.getSubtarget().getRegisterInfo(); 383 RBI = MF.getSubtarget().getRegBankInfo(); 384 MRI = &MF.getRegInfo(); 385 386 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 387 MachineFunctionProperties::Property::FailedISel); 388 389 // If we're mid-GlobalISel and we already triggered the fallback path then 390 // it's expected that the MIR is somewhat broken but that's ok since we'll 391 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 392 if (isFunctionFailedISel) 393 return foundErrors; 394 395 isFunctionRegBankSelected = MF.getProperties().hasProperty( 396 MachineFunctionProperties::Property::RegBankSelected); 397 isFunctionSelected = MF.getProperties().hasProperty( 398 MachineFunctionProperties::Property::Selected); 399 isFunctionTracksDebugUserValues = MF.getProperties().hasProperty( 400 MachineFunctionProperties::Property::TracksDebugUserValues); 401 402 LiveVars = nullptr; 403 LiveInts = nullptr; 404 LiveStks = nullptr; 405 Indexes = nullptr; 406 if (PASS) { 407 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 408 // We don't want to verify LiveVariables if LiveIntervals is available. 409 if (!LiveInts) 410 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 411 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 412 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 413 } 414 415 verifySlotIndexes(); 416 417 verifyProperties(MF); 418 419 visitMachineFunctionBefore(); 420 for (const MachineBasicBlock &MBB : MF) { 421 visitMachineBasicBlockBefore(&MBB); 422 // Keep track of the current bundle header. 423 const MachineInstr *CurBundle = nullptr; 424 // Do we expect the next instruction to be part of the same bundle? 425 bool InBundle = false; 426 427 for (const MachineInstr &MI : MBB.instrs()) { 428 if (MI.getParent() != &MBB) { 429 report("Bad instruction parent pointer", &MBB); 430 errs() << "Instruction: " << MI; 431 continue; 432 } 433 434 // Check for consistent bundle flags. 435 if (InBundle && !MI.isBundledWithPred()) 436 report("Missing BundledPred flag, " 437 "BundledSucc was set on predecessor", 438 &MI); 439 if (!InBundle && MI.isBundledWithPred()) 440 report("BundledPred flag is set, " 441 "but BundledSucc not set on predecessor", 442 &MI); 443 444 // Is this a bundle header? 445 if (!MI.isInsideBundle()) { 446 if (CurBundle) 447 visitMachineBundleAfter(CurBundle); 448 CurBundle = &MI; 449 visitMachineBundleBefore(CurBundle); 450 } else if (!CurBundle) 451 report("No bundle header", &MI); 452 visitMachineInstrBefore(&MI); 453 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 454 const MachineOperand &Op = MI.getOperand(I); 455 if (Op.getParent() != &MI) { 456 // Make sure to use correct addOperand / removeOperand / ChangeTo 457 // functions when replacing operands of a MachineInstr. 458 report("Instruction has operand with wrong parent set", &MI); 459 } 460 461 visitMachineOperand(&Op, I); 462 } 463 464 // Was this the last bundled instruction? 465 InBundle = MI.isBundledWithSucc(); 466 } 467 if (CurBundle) 468 visitMachineBundleAfter(CurBundle); 469 if (InBundle) 470 report("BundledSucc flag set on last instruction in block", &MBB.back()); 471 visitMachineBasicBlockAfter(&MBB); 472 } 473 visitMachineFunctionAfter(); 474 475 // Clean up. 476 regsLive.clear(); 477 regsDefined.clear(); 478 regsDead.clear(); 479 regsKilled.clear(); 480 regMasks.clear(); 481 MBBInfoMap.clear(); 482 483 return foundErrors; 484 } 485 486 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 487 assert(MF); 488 errs() << '\n'; 489 if (!foundErrors++) { 490 if (Banner) 491 errs() << "# " << Banner << '\n'; 492 if (LiveInts != nullptr) 493 LiveInts->print(errs()); 494 else 495 MF->print(errs(), Indexes); 496 } 497 errs() << "*** Bad machine code: " << msg << " ***\n" 498 << "- function: " << MF->getName() << "\n"; 499 } 500 501 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 502 assert(MBB); 503 report(msg, MBB->getParent()); 504 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 505 << MBB->getName() << " (" << (const void *)MBB << ')'; 506 if (Indexes) 507 errs() << " [" << Indexes->getMBBStartIdx(MBB) 508 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 509 errs() << '\n'; 510 } 511 512 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 513 assert(MI); 514 report(msg, MI->getParent()); 515 errs() << "- instruction: "; 516 if (Indexes && Indexes->hasIndex(*MI)) 517 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 518 MI->print(errs(), /*IsStandalone=*/true); 519 } 520 521 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 522 unsigned MONum, LLT MOVRegType) { 523 assert(MO); 524 report(msg, MO->getParent()); 525 errs() << "- operand " << MONum << ": "; 526 MO->print(errs(), MOVRegType, TRI); 527 errs() << "\n"; 528 } 529 530 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) { 531 report(Msg.str().c_str(), MI); 532 } 533 534 void MachineVerifier::report_context(SlotIndex Pos) const { 535 errs() << "- at: " << Pos << '\n'; 536 } 537 538 void MachineVerifier::report_context(const LiveInterval &LI) const { 539 errs() << "- interval: " << LI << '\n'; 540 } 541 542 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit, 543 LaneBitmask LaneMask) const { 544 report_context_liverange(LR); 545 report_context_vreg_regunit(VRegUnit); 546 if (LaneMask.any()) 547 report_context_lanemask(LaneMask); 548 } 549 550 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 551 errs() << "- segment: " << S << '\n'; 552 } 553 554 void MachineVerifier::report_context(const VNInfo &VNI) const { 555 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 556 } 557 558 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 559 errs() << "- liverange: " << LR << '\n'; 560 } 561 562 void MachineVerifier::report_context(MCPhysReg PReg) const { 563 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 564 } 565 566 void MachineVerifier::report_context_vreg(Register VReg) const { 567 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 568 } 569 570 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const { 571 if (VRegOrUnit.isVirtual()) { 572 report_context_vreg(VRegOrUnit); 573 } else { 574 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 575 } 576 } 577 578 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 579 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 580 } 581 582 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 583 BBInfo &MInfo = MBBInfoMap[MBB]; 584 if (!MInfo.reachable) { 585 MInfo.reachable = true; 586 for (const MachineBasicBlock *Succ : MBB->successors()) 587 markReachable(Succ); 588 } 589 } 590 591 void MachineVerifier::visitMachineFunctionBefore() { 592 lastIndex = SlotIndex(); 593 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 594 : TRI->getReservedRegs(*MF); 595 596 if (!MF->empty()) 597 markReachable(&MF->front()); 598 599 // Build a set of the basic blocks in the function. 600 FunctionBlocks.clear(); 601 for (const auto &MBB : *MF) { 602 FunctionBlocks.insert(&MBB); 603 BBInfo &MInfo = MBBInfoMap[&MBB]; 604 605 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 606 if (MInfo.Preds.size() != MBB.pred_size()) 607 report("MBB has duplicate entries in its predecessor list.", &MBB); 608 609 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 610 if (MInfo.Succs.size() != MBB.succ_size()) 611 report("MBB has duplicate entries in its successor list.", &MBB); 612 } 613 614 // Check that the register use lists are sane. 615 MRI->verifyUseLists(); 616 617 if (!MF->empty()) 618 verifyStackFrame(); 619 } 620 621 void 622 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 623 FirstTerminator = nullptr; 624 FirstNonPHI = nullptr; 625 626 if (!MF->getProperties().hasProperty( 627 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 628 // If this block has allocatable physical registers live-in, check that 629 // it is an entry block or landing pad. 630 for (const auto &LI : MBB->liveins()) { 631 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 632 MBB->getIterator() != MBB->getParent()->begin() && 633 !MBB->isInlineAsmBrIndirectTarget()) { 634 report("MBB has allocatable live-in, but isn't entry, landing-pad, or " 635 "inlineasm-br-indirect-target.", 636 MBB); 637 report_context(LI.PhysReg); 638 } 639 } 640 } 641 642 if (MBB->isIRBlockAddressTaken()) { 643 if (!MBB->getAddressTakenIRBlock()->hasAddressTaken()) 644 report("ir-block-address-taken is associated with basic block not used by " 645 "a blockaddress.", 646 MBB); 647 } 648 649 // Count the number of landing pad successors. 650 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; 651 for (const auto *succ : MBB->successors()) { 652 if (succ->isEHPad()) 653 LandingPadSuccs.insert(succ); 654 if (!FunctionBlocks.count(succ)) 655 report("MBB has successor that isn't part of the function.", MBB); 656 if (!MBBInfoMap[succ].Preds.count(MBB)) { 657 report("Inconsistent CFG", MBB); 658 errs() << "MBB is not in the predecessor list of the successor " 659 << printMBBReference(*succ) << ".\n"; 660 } 661 } 662 663 // Check the predecessor list. 664 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 665 if (!FunctionBlocks.count(Pred)) 666 report("MBB has predecessor that isn't part of the function.", MBB); 667 if (!MBBInfoMap[Pred].Succs.count(MBB)) { 668 report("Inconsistent CFG", MBB); 669 errs() << "MBB is not in the successor list of the predecessor " 670 << printMBBReference(*Pred) << ".\n"; 671 } 672 } 673 674 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 675 const BasicBlock *BB = MBB->getBasicBlock(); 676 const Function &F = MF->getFunction(); 677 if (LandingPadSuccs.size() > 1 && 678 !(AsmInfo && 679 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 680 BB && isa<SwitchInst>(BB->getTerminator())) && 681 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 682 report("MBB has more than one landing pad successor", MBB); 683 684 // Call analyzeBranch. If it succeeds, there several more conditions to check. 685 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 686 SmallVector<MachineOperand, 4> Cond; 687 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 688 Cond)) { 689 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's 690 // check whether its answers match up with reality. 691 if (!TBB && !FBB) { 692 // Block falls through to its successor. 693 if (!MBB->empty() && MBB->back().isBarrier() && 694 !TII->isPredicated(MBB->back())) { 695 report("MBB exits via unconditional fall-through but ends with a " 696 "barrier instruction!", MBB); 697 } 698 if (!Cond.empty()) { 699 report("MBB exits via unconditional fall-through but has a condition!", 700 MBB); 701 } 702 } else if (TBB && !FBB && Cond.empty()) { 703 // Block unconditionally branches somewhere. 704 if (MBB->empty()) { 705 report("MBB exits via unconditional branch but doesn't contain " 706 "any instructions!", MBB); 707 } else if (!MBB->back().isBarrier()) { 708 report("MBB exits via unconditional branch but doesn't end with a " 709 "barrier instruction!", MBB); 710 } else if (!MBB->back().isTerminator()) { 711 report("MBB exits via unconditional branch but the branch isn't a " 712 "terminator instruction!", MBB); 713 } 714 } else if (TBB && !FBB && !Cond.empty()) { 715 // Block conditionally branches somewhere, otherwise falls through. 716 if (MBB->empty()) { 717 report("MBB exits via conditional branch/fall-through but doesn't " 718 "contain any instructions!", MBB); 719 } else if (MBB->back().isBarrier()) { 720 report("MBB exits via conditional branch/fall-through but ends with a " 721 "barrier instruction!", MBB); 722 } else if (!MBB->back().isTerminator()) { 723 report("MBB exits via conditional branch/fall-through but the branch " 724 "isn't a terminator instruction!", MBB); 725 } 726 } else if (TBB && FBB) { 727 // Block conditionally branches somewhere, otherwise branches 728 // somewhere else. 729 if (MBB->empty()) { 730 report("MBB exits via conditional branch/branch but doesn't " 731 "contain any instructions!", MBB); 732 } else if (!MBB->back().isBarrier()) { 733 report("MBB exits via conditional branch/branch but doesn't end with a " 734 "barrier instruction!", MBB); 735 } else if (!MBB->back().isTerminator()) { 736 report("MBB exits via conditional branch/branch but the branch " 737 "isn't a terminator instruction!", MBB); 738 } 739 if (Cond.empty()) { 740 report("MBB exits via conditional branch/branch but there's no " 741 "condition!", MBB); 742 } 743 } else { 744 report("analyzeBranch returned invalid data!", MBB); 745 } 746 747 // Now check that the successors match up with the answers reported by 748 // analyzeBranch. 749 if (TBB && !MBB->isSuccessor(TBB)) 750 report("MBB exits via jump or conditional branch, but its target isn't a " 751 "CFG successor!", 752 MBB); 753 if (FBB && !MBB->isSuccessor(FBB)) 754 report("MBB exits via conditional branch, but its target isn't a CFG " 755 "successor!", 756 MBB); 757 758 // There might be a fallthrough to the next block if there's either no 759 // unconditional true branch, or if there's a condition, and one of the 760 // branches is missing. 761 bool Fallthrough = !TBB || (!Cond.empty() && !FBB); 762 763 // A conditional fallthrough must be an actual CFG successor, not 764 // unreachable. (Conversely, an unconditional fallthrough might not really 765 // be a successor, because the block might end in unreachable.) 766 if (!Cond.empty() && !FBB) { 767 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); 768 if (MBBI == MF->end()) { 769 report("MBB conditionally falls through out of function!", MBB); 770 } else if (!MBB->isSuccessor(&*MBBI)) 771 report("MBB exits via conditional branch/fall-through but the CFG " 772 "successors don't match the actual successors!", 773 MBB); 774 } 775 776 // Verify that there aren't any extra un-accounted-for successors. 777 for (const MachineBasicBlock *SuccMBB : MBB->successors()) { 778 // If this successor is one of the branch targets, it's okay. 779 if (SuccMBB == TBB || SuccMBB == FBB) 780 continue; 781 // If we might have a fallthrough, and the successor is the fallthrough 782 // block, that's also ok. 783 if (Fallthrough && SuccMBB == MBB->getNextNode()) 784 continue; 785 // Also accept successors which are for exception-handling or might be 786 // inlineasm_br targets. 787 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget()) 788 continue; 789 report("MBB has unexpected successors which are not branch targets, " 790 "fallthrough, EHPads, or inlineasm_br targets.", 791 MBB); 792 } 793 } 794 795 regsLive.clear(); 796 if (MRI->tracksLiveness()) { 797 for (const auto &LI : MBB->liveins()) { 798 if (!Register::isPhysicalRegister(LI.PhysReg)) { 799 report("MBB live-in list contains non-physical register", MBB); 800 continue; 801 } 802 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) 803 regsLive.insert(SubReg); 804 } 805 } 806 807 const MachineFrameInfo &MFI = MF->getFrameInfo(); 808 BitVector PR = MFI.getPristineRegs(*MF); 809 for (unsigned I : PR.set_bits()) { 810 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) 811 regsLive.insert(SubReg); 812 } 813 814 regsKilled.clear(); 815 regsDefined.clear(); 816 817 if (Indexes) 818 lastIndex = Indexes->getMBBStartIdx(MBB); 819 } 820 821 // This function gets called for all bundle headers, including normal 822 // stand-alone unbundled instructions. 823 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 824 if (Indexes && Indexes->hasIndex(*MI)) { 825 SlotIndex idx = Indexes->getInstructionIndex(*MI); 826 if (!(idx > lastIndex)) { 827 report("Instruction index out of order", MI); 828 errs() << "Last instruction was at " << lastIndex << '\n'; 829 } 830 lastIndex = idx; 831 } 832 833 // Ensure non-terminators don't follow terminators. 834 if (MI->isTerminator()) { 835 if (!FirstTerminator) 836 FirstTerminator = MI; 837 } else if (FirstTerminator) { 838 // For GlobalISel, G_INVOKE_REGION_START is a terminator that we allow to 839 // precede non-terminators. 840 if (FirstTerminator->getOpcode() != TargetOpcode::G_INVOKE_REGION_START) { 841 report("Non-terminator instruction after the first terminator", MI); 842 errs() << "First terminator was:\t" << *FirstTerminator; 843 } 844 } 845 } 846 847 // The operands on an INLINEASM instruction must follow a template. 848 // Verify that the flag operands make sense. 849 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 850 // The first two operands on INLINEASM are the asm string and global flags. 851 if (MI->getNumOperands() < 2) { 852 report("Too few operands on inline asm", MI); 853 return; 854 } 855 if (!MI->getOperand(0).isSymbol()) 856 report("Asm string must be an external symbol", MI); 857 if (!MI->getOperand(1).isImm()) 858 report("Asm flags must be an immediate", MI); 859 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 860 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 861 // and Extra_IsConvergent = 32. 862 if (!isUInt<6>(MI->getOperand(1).getImm())) 863 report("Unknown asm flags", &MI->getOperand(1), 1); 864 865 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 866 867 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 868 unsigned NumOps; 869 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 870 const MachineOperand &MO = MI->getOperand(OpNo); 871 // There may be implicit ops after the fixed operands. 872 if (!MO.isImm()) 873 break; 874 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 875 } 876 877 if (OpNo > MI->getNumOperands()) 878 report("Missing operands in last group", MI); 879 880 // An optional MDNode follows the groups. 881 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 882 ++OpNo; 883 884 // All trailing operands must be implicit registers. 885 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 886 const MachineOperand &MO = MI->getOperand(OpNo); 887 if (!MO.isReg() || !MO.isImplicit()) 888 report("Expected implicit register after groups", &MO, OpNo); 889 } 890 891 if (MI->getOpcode() == TargetOpcode::INLINEASM_BR) { 892 const MachineBasicBlock *MBB = MI->getParent(); 893 894 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands(); 895 i != e; ++i) { 896 const MachineOperand &MO = MI->getOperand(i); 897 898 if (!MO.isMBB()) 899 continue; 900 901 // Check the successor & predecessor lists look ok, assume they are 902 // not. Find the indirect target without going through the successors. 903 const MachineBasicBlock *IndirectTargetMBB = MO.getMBB(); 904 if (!IndirectTargetMBB) { 905 report("INLINEASM_BR indirect target does not exist", &MO, i); 906 break; 907 } 908 909 if (!MBB->isSuccessor(IndirectTargetMBB)) 910 report("INLINEASM_BR indirect target missing from successor list", &MO, 911 i); 912 913 if (!IndirectTargetMBB->isPredecessor(MBB)) 914 report("INLINEASM_BR indirect target predecessor list missing parent", 915 &MO, i); 916 } 917 } 918 } 919 920 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI, 921 const MachineRegisterInfo &MRI) { 922 if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) { 923 if (!Op.isReg()) 924 return false; 925 const auto Reg = Op.getReg(); 926 if (Reg.isPhysical()) 927 return false; 928 return !MRI.getType(Reg).isScalar(); 929 })) 930 return true; 931 report("All register operands must have scalar types", &MI); 932 return false; 933 } 934 935 /// Check that types are consistent when two operands need to have the same 936 /// number of vector elements. 937 /// \return true if the types are valid. 938 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 939 const MachineInstr *MI) { 940 if (Ty0.isVector() != Ty1.isVector()) { 941 report("operand types must be all-vector or all-scalar", MI); 942 // Generally we try to report as many issues as possible at once, but in 943 // this case it's not clear what should we be comparing the size of the 944 // scalar with: the size of the whole vector or its lane. Instead of 945 // making an arbitrary choice and emitting not so helpful message, let's 946 // avoid the extra noise and stop here. 947 return false; 948 } 949 950 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { 951 report("operand types must preserve number of vector elements", MI); 952 return false; 953 } 954 955 return true; 956 } 957 958 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 959 if (isFunctionSelected) 960 report("Unexpected generic instruction in a Selected function", MI); 961 962 const MCInstrDesc &MCID = MI->getDesc(); 963 unsigned NumOps = MI->getNumOperands(); 964 965 // Branches must reference a basic block if they are not indirect 966 if (MI->isBranch() && !MI->isIndirectBranch()) { 967 bool HasMBB = false; 968 for (const MachineOperand &Op : MI->operands()) { 969 if (Op.isMBB()) { 970 HasMBB = true; 971 break; 972 } 973 } 974 975 if (!HasMBB) { 976 report("Branch instruction is missing a basic block operand or " 977 "isIndirectBranch property", 978 MI); 979 } 980 } 981 982 // Check types. 983 SmallVector<LLT, 4> Types; 984 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 985 I != E; ++I) { 986 if (!MCID.operands()[I].isGenericType()) 987 continue; 988 // Generic instructions specify type equality constraints between some of 989 // their operands. Make sure these are consistent. 990 size_t TypeIdx = MCID.operands()[I].getGenericTypeIndex(); 991 Types.resize(std::max(TypeIdx + 1, Types.size())); 992 993 const MachineOperand *MO = &MI->getOperand(I); 994 if (!MO->isReg()) { 995 report("generic instruction must use register operands", MI); 996 continue; 997 } 998 999 LLT OpTy = MRI->getType(MO->getReg()); 1000 // Don't report a type mismatch if there is no actual mismatch, only a 1001 // type missing, to reduce noise: 1002 if (OpTy.isValid()) { 1003 // Only the first valid type for a type index will be printed: don't 1004 // overwrite it later so it's always clear which type was expected: 1005 if (!Types[TypeIdx].isValid()) 1006 Types[TypeIdx] = OpTy; 1007 else if (Types[TypeIdx] != OpTy) 1008 report("Type mismatch in generic instruction", MO, I, OpTy); 1009 } else { 1010 // Generic instructions must have types attached to their operands. 1011 report("Generic instruction is missing a virtual register type", MO, I); 1012 } 1013 } 1014 1015 // Generic opcodes must not have physical register operands. 1016 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 1017 const MachineOperand *MO = &MI->getOperand(I); 1018 if (MO->isReg() && MO->getReg().isPhysical()) 1019 report("Generic instruction cannot have physical register", MO, I); 1020 } 1021 1022 // Avoid out of bounds in checks below. This was already reported earlier. 1023 if (MI->getNumOperands() < MCID.getNumOperands()) 1024 return; 1025 1026 StringRef ErrorInfo; 1027 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1028 report(ErrorInfo.data(), MI); 1029 1030 // Verify properties of various specific instruction types 1031 unsigned Opc = MI->getOpcode(); 1032 switch (Opc) { 1033 case TargetOpcode::G_ASSERT_SEXT: 1034 case TargetOpcode::G_ASSERT_ZEXT: { 1035 std::string OpcName = 1036 Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT"; 1037 if (!MI->getOperand(2).isImm()) { 1038 report(Twine(OpcName, " expects an immediate operand #2"), MI); 1039 break; 1040 } 1041 1042 Register Dst = MI->getOperand(0).getReg(); 1043 Register Src = MI->getOperand(1).getReg(); 1044 LLT SrcTy = MRI->getType(Src); 1045 int64_t Imm = MI->getOperand(2).getImm(); 1046 if (Imm <= 0) { 1047 report(Twine(OpcName, " size must be >= 1"), MI); 1048 break; 1049 } 1050 1051 if (Imm >= SrcTy.getScalarSizeInBits()) { 1052 report(Twine(OpcName, " size must be less than source bit width"), MI); 1053 break; 1054 } 1055 1056 const RegisterBank *SrcRB = RBI->getRegBank(Src, *MRI, *TRI); 1057 const RegisterBank *DstRB = RBI->getRegBank(Dst, *MRI, *TRI); 1058 1059 // Allow only the source bank to be set. 1060 if ((SrcRB && DstRB && SrcRB != DstRB) || (DstRB && !SrcRB)) { 1061 report(Twine(OpcName, " cannot change register bank"), MI); 1062 break; 1063 } 1064 1065 // Don't allow a class change. Do allow member class->regbank. 1066 const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Dst); 1067 if (DstRC && DstRC != MRI->getRegClassOrNull(Src)) { 1068 report( 1069 Twine(OpcName, " source and destination register classes must match"), 1070 MI); 1071 break; 1072 } 1073 1074 break; 1075 } 1076 1077 case TargetOpcode::G_CONSTANT: 1078 case TargetOpcode::G_FCONSTANT: { 1079 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1080 if (DstTy.isVector()) 1081 report("Instruction cannot use a vector result type", MI); 1082 1083 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 1084 if (!MI->getOperand(1).isCImm()) { 1085 report("G_CONSTANT operand must be cimm", MI); 1086 break; 1087 } 1088 1089 const ConstantInt *CI = MI->getOperand(1).getCImm(); 1090 if (CI->getBitWidth() != DstTy.getSizeInBits()) 1091 report("inconsistent constant size", MI); 1092 } else { 1093 if (!MI->getOperand(1).isFPImm()) { 1094 report("G_FCONSTANT operand must be fpimm", MI); 1095 break; 1096 } 1097 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 1098 1099 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 1100 DstTy.getSizeInBits()) { 1101 report("inconsistent constant size", MI); 1102 } 1103 } 1104 1105 break; 1106 } 1107 case TargetOpcode::G_LOAD: 1108 case TargetOpcode::G_STORE: 1109 case TargetOpcode::G_ZEXTLOAD: 1110 case TargetOpcode::G_SEXTLOAD: { 1111 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 1112 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1113 if (!PtrTy.isPointer()) 1114 report("Generic memory instruction must access a pointer", MI); 1115 1116 // Generic loads and stores must have a single MachineMemOperand 1117 // describing that access. 1118 if (!MI->hasOneMemOperand()) { 1119 report("Generic instruction accessing memory must have one mem operand", 1120 MI); 1121 } else { 1122 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1123 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 1124 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 1125 if (MMO.getSizeInBits() >= ValTy.getSizeInBits()) 1126 report("Generic extload must have a narrower memory type", MI); 1127 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 1128 if (MMO.getSize() > ValTy.getSizeInBytes()) 1129 report("load memory size cannot exceed result size", MI); 1130 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 1131 if (ValTy.getSizeInBytes() < MMO.getSize()) 1132 report("store memory size cannot exceed value size", MI); 1133 } 1134 1135 const AtomicOrdering Order = MMO.getSuccessOrdering(); 1136 if (Opc == TargetOpcode::G_STORE) { 1137 if (Order == AtomicOrdering::Acquire || 1138 Order == AtomicOrdering::AcquireRelease) 1139 report("atomic store cannot use acquire ordering", MI); 1140 1141 } else { 1142 if (Order == AtomicOrdering::Release || 1143 Order == AtomicOrdering::AcquireRelease) 1144 report("atomic load cannot use release ordering", MI); 1145 } 1146 } 1147 1148 break; 1149 } 1150 case TargetOpcode::G_PHI: { 1151 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1152 if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()), 1153 [this, &DstTy](const MachineOperand &MO) { 1154 if (!MO.isReg()) 1155 return true; 1156 LLT Ty = MRI->getType(MO.getReg()); 1157 if (!Ty.isValid() || (Ty != DstTy)) 1158 return false; 1159 return true; 1160 })) 1161 report("Generic Instruction G_PHI has operands with incompatible/missing " 1162 "types", 1163 MI); 1164 break; 1165 } 1166 case TargetOpcode::G_BITCAST: { 1167 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1168 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1169 if (!DstTy.isValid() || !SrcTy.isValid()) 1170 break; 1171 1172 if (SrcTy.isPointer() != DstTy.isPointer()) 1173 report("bitcast cannot convert between pointers and other types", MI); 1174 1175 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1176 report("bitcast sizes must match", MI); 1177 1178 if (SrcTy == DstTy) 1179 report("bitcast must change the type", MI); 1180 1181 break; 1182 } 1183 case TargetOpcode::G_INTTOPTR: 1184 case TargetOpcode::G_PTRTOINT: 1185 case TargetOpcode::G_ADDRSPACE_CAST: { 1186 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1187 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1188 if (!DstTy.isValid() || !SrcTy.isValid()) 1189 break; 1190 1191 verifyVectorElementMatch(DstTy, SrcTy, MI); 1192 1193 DstTy = DstTy.getScalarType(); 1194 SrcTy = SrcTy.getScalarType(); 1195 1196 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1197 if (!DstTy.isPointer()) 1198 report("inttoptr result type must be a pointer", MI); 1199 if (SrcTy.isPointer()) 1200 report("inttoptr source type must not be a pointer", MI); 1201 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1202 if (!SrcTy.isPointer()) 1203 report("ptrtoint source type must be a pointer", MI); 1204 if (DstTy.isPointer()) 1205 report("ptrtoint result type must not be a pointer", MI); 1206 } else { 1207 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1208 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1209 report("addrspacecast types must be pointers", MI); 1210 else { 1211 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1212 report("addrspacecast must convert different address spaces", MI); 1213 } 1214 } 1215 1216 break; 1217 } 1218 case TargetOpcode::G_PTR_ADD: { 1219 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1220 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1221 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1222 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1223 break; 1224 1225 if (!PtrTy.getScalarType().isPointer()) 1226 report("gep first operand must be a pointer", MI); 1227 1228 if (OffsetTy.getScalarType().isPointer()) 1229 report("gep offset operand must not be a pointer", MI); 1230 1231 // TODO: Is the offset allowed to be a scalar with a vector? 1232 break; 1233 } 1234 case TargetOpcode::G_PTRMASK: { 1235 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1236 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1237 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg()); 1238 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) 1239 break; 1240 1241 if (!DstTy.getScalarType().isPointer()) 1242 report("ptrmask result type must be a pointer", MI); 1243 1244 if (!MaskTy.getScalarType().isScalar()) 1245 report("ptrmask mask type must be an integer", MI); 1246 1247 verifyVectorElementMatch(DstTy, MaskTy, MI); 1248 break; 1249 } 1250 case TargetOpcode::G_SEXT: 1251 case TargetOpcode::G_ZEXT: 1252 case TargetOpcode::G_ANYEXT: 1253 case TargetOpcode::G_TRUNC: 1254 case TargetOpcode::G_FPEXT: 1255 case TargetOpcode::G_FPTRUNC: { 1256 // Number of operands and presense of types is already checked (and 1257 // reported in case of any issues), so no need to report them again. As 1258 // we're trying to report as many issues as possible at once, however, the 1259 // instructions aren't guaranteed to have the right number of operands or 1260 // types attached to them at this point 1261 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1262 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1263 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1264 if (!DstTy.isValid() || !SrcTy.isValid()) 1265 break; 1266 1267 LLT DstElTy = DstTy.getScalarType(); 1268 LLT SrcElTy = SrcTy.getScalarType(); 1269 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1270 report("Generic extend/truncate can not operate on pointers", MI); 1271 1272 verifyVectorElementMatch(DstTy, SrcTy, MI); 1273 1274 unsigned DstSize = DstElTy.getSizeInBits(); 1275 unsigned SrcSize = SrcElTy.getSizeInBits(); 1276 switch (MI->getOpcode()) { 1277 default: 1278 if (DstSize <= SrcSize) 1279 report("Generic extend has destination type no larger than source", MI); 1280 break; 1281 case TargetOpcode::G_TRUNC: 1282 case TargetOpcode::G_FPTRUNC: 1283 if (DstSize >= SrcSize) 1284 report("Generic truncate has destination type no smaller than source", 1285 MI); 1286 break; 1287 } 1288 break; 1289 } 1290 case TargetOpcode::G_SELECT: { 1291 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1292 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1293 if (!SelTy.isValid() || !CondTy.isValid()) 1294 break; 1295 1296 // Scalar condition select on a vector is valid. 1297 if (CondTy.isVector()) 1298 verifyVectorElementMatch(SelTy, CondTy, MI); 1299 break; 1300 } 1301 case TargetOpcode::G_MERGE_VALUES: { 1302 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1303 // e.g. s2N = MERGE sN, sN 1304 // Merging multiple scalars into a vector is not allowed, should use 1305 // G_BUILD_VECTOR for that. 1306 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1307 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1308 if (DstTy.isVector() || SrcTy.isVector()) 1309 report("G_MERGE_VALUES cannot operate on vectors", MI); 1310 1311 const unsigned NumOps = MI->getNumOperands(); 1312 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1313 report("G_MERGE_VALUES result size is inconsistent", MI); 1314 1315 for (unsigned I = 2; I != NumOps; ++I) { 1316 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1317 report("G_MERGE_VALUES source types do not match", MI); 1318 } 1319 1320 break; 1321 } 1322 case TargetOpcode::G_UNMERGE_VALUES: { 1323 unsigned NumDsts = MI->getNumOperands() - 1; 1324 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1325 for (unsigned i = 1; i < NumDsts; ++i) { 1326 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) { 1327 report("G_UNMERGE_VALUES destination types do not match", MI); 1328 break; 1329 } 1330 } 1331 1332 LLT SrcTy = MRI->getType(MI->getOperand(NumDsts).getReg()); 1333 if (DstTy.isVector()) { 1334 // This case is the converse of G_CONCAT_VECTORS. 1335 if (!SrcTy.isVector() || SrcTy.getScalarType() != DstTy.getScalarType() || 1336 SrcTy.getNumElements() != NumDsts * DstTy.getNumElements()) 1337 report("G_UNMERGE_VALUES source operand does not match vector " 1338 "destination operands", 1339 MI); 1340 } else if (SrcTy.isVector()) { 1341 // This case is the converse of G_BUILD_VECTOR, but relaxed to allow 1342 // mismatched types as long as the total size matches: 1343 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<4 x s32>) 1344 if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) 1345 report("G_UNMERGE_VALUES vector source operand does not match scalar " 1346 "destination operands", 1347 MI); 1348 } else { 1349 // This case is the converse of G_MERGE_VALUES. 1350 if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) { 1351 report("G_UNMERGE_VALUES scalar source operand does not match scalar " 1352 "destination operands", 1353 MI); 1354 } 1355 } 1356 break; 1357 } 1358 case TargetOpcode::G_BUILD_VECTOR: { 1359 // Source types must be scalars, dest type a vector. Total size of scalars 1360 // must match the dest vector size. 1361 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1362 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1363 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1364 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1365 break; 1366 } 1367 1368 if (DstTy.getElementType() != SrcEltTy) 1369 report("G_BUILD_VECTOR result element type must match source type", MI); 1370 1371 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1372 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1373 1374 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1375 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1376 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1377 1378 break; 1379 } 1380 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1381 // Source types must be scalars, dest type a vector. Scalar types must be 1382 // larger than the dest vector elt type, as this is a truncating operation. 1383 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1384 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1385 if (!DstTy.isVector() || SrcEltTy.isVector()) 1386 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1387 MI); 1388 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1389 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1390 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1391 MI); 1392 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1393 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1394 "dest elt type", 1395 MI); 1396 break; 1397 } 1398 case TargetOpcode::G_CONCAT_VECTORS: { 1399 // Source types should be vectors, and total size should match the dest 1400 // vector size. 1401 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1402 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1403 if (!DstTy.isVector() || !SrcTy.isVector()) 1404 report("G_CONCAT_VECTOR requires vector source and destination operands", 1405 MI); 1406 1407 if (MI->getNumOperands() < 3) 1408 report("G_CONCAT_VECTOR requires at least 2 source operands", MI); 1409 1410 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1411 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1412 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1413 if (DstTy.getNumElements() != 1414 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1415 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1416 break; 1417 } 1418 case TargetOpcode::G_ICMP: 1419 case TargetOpcode::G_FCMP: { 1420 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1421 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1422 1423 if ((DstTy.isVector() != SrcTy.isVector()) || 1424 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1425 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1426 1427 break; 1428 } 1429 case TargetOpcode::G_EXTRACT: { 1430 const MachineOperand &SrcOp = MI->getOperand(1); 1431 if (!SrcOp.isReg()) { 1432 report("extract source must be a register", MI); 1433 break; 1434 } 1435 1436 const MachineOperand &OffsetOp = MI->getOperand(2); 1437 if (!OffsetOp.isImm()) { 1438 report("extract offset must be a constant", MI); 1439 break; 1440 } 1441 1442 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1443 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1444 if (SrcSize == DstSize) 1445 report("extract source must be larger than result", MI); 1446 1447 if (DstSize + OffsetOp.getImm() > SrcSize) 1448 report("extract reads past end of register", MI); 1449 break; 1450 } 1451 case TargetOpcode::G_INSERT: { 1452 const MachineOperand &SrcOp = MI->getOperand(2); 1453 if (!SrcOp.isReg()) { 1454 report("insert source must be a register", MI); 1455 break; 1456 } 1457 1458 const MachineOperand &OffsetOp = MI->getOperand(3); 1459 if (!OffsetOp.isImm()) { 1460 report("insert offset must be a constant", MI); 1461 break; 1462 } 1463 1464 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1465 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1466 1467 if (DstSize <= SrcSize) 1468 report("inserted size must be smaller than total register", MI); 1469 1470 if (SrcSize + OffsetOp.getImm() > DstSize) 1471 report("insert writes past end of register", MI); 1472 1473 break; 1474 } 1475 case TargetOpcode::G_JUMP_TABLE: { 1476 if (!MI->getOperand(1).isJTI()) 1477 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1478 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1479 if (!DstTy.isPointer()) 1480 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1481 break; 1482 } 1483 case TargetOpcode::G_BRJT: { 1484 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1485 report("G_BRJT src operand 0 must be a pointer type", MI); 1486 1487 if (!MI->getOperand(1).isJTI()) 1488 report("G_BRJT src operand 1 must be a jump table index", MI); 1489 1490 const auto &IdxOp = MI->getOperand(2); 1491 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1492 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1493 break; 1494 } 1495 case TargetOpcode::G_INTRINSIC: 1496 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: { 1497 // TODO: Should verify number of def and use operands, but the current 1498 // interface requires passing in IR types for mangling. 1499 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1500 if (!IntrIDOp.isIntrinsicID()) { 1501 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1502 break; 1503 } 1504 1505 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC; 1506 unsigned IntrID = IntrIDOp.getIntrinsicID(); 1507 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1508 AttributeList Attrs = Intrinsic::getAttributes( 1509 MF->getFunction().getContext(), static_cast<Intrinsic::ID>(IntrID)); 1510 bool DeclHasSideEffects = !Attrs.getMemoryEffects().doesNotAccessMemory(); 1511 if (NoSideEffects && DeclHasSideEffects) { 1512 report("G_INTRINSIC used with intrinsic that accesses memory", MI); 1513 break; 1514 } 1515 if (!NoSideEffects && !DeclHasSideEffects) { 1516 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI); 1517 break; 1518 } 1519 } 1520 1521 break; 1522 } 1523 case TargetOpcode::G_SEXT_INREG: { 1524 if (!MI->getOperand(2).isImm()) { 1525 report("G_SEXT_INREG expects an immediate operand #2", MI); 1526 break; 1527 } 1528 1529 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1530 int64_t Imm = MI->getOperand(2).getImm(); 1531 if (Imm <= 0) 1532 report("G_SEXT_INREG size must be >= 1", MI); 1533 if (Imm >= SrcTy.getScalarSizeInBits()) 1534 report("G_SEXT_INREG size must be less than source bit width", MI); 1535 break; 1536 } 1537 case TargetOpcode::G_SHUFFLE_VECTOR: { 1538 const MachineOperand &MaskOp = MI->getOperand(3); 1539 if (!MaskOp.isShuffleMask()) { 1540 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1541 break; 1542 } 1543 1544 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1545 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1546 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1547 1548 if (Src0Ty != Src1Ty) 1549 report("Source operands must be the same type", MI); 1550 1551 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1552 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1553 1554 // Don't check that all operands are vector because scalars are used in 1555 // place of 1 element vectors. 1556 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1557 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1558 1559 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); 1560 1561 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1562 report("Wrong result type for shufflemask", MI); 1563 1564 for (int Idx : MaskIdxes) { 1565 if (Idx < 0) 1566 continue; 1567 1568 if (Idx >= 2 * SrcNumElts) 1569 report("Out of bounds shuffle index", MI); 1570 } 1571 1572 break; 1573 } 1574 case TargetOpcode::G_DYN_STACKALLOC: { 1575 const MachineOperand &DstOp = MI->getOperand(0); 1576 const MachineOperand &AllocOp = MI->getOperand(1); 1577 const MachineOperand &AlignOp = MI->getOperand(2); 1578 1579 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { 1580 report("dst operand 0 must be a pointer type", MI); 1581 break; 1582 } 1583 1584 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { 1585 report("src operand 1 must be a scalar reg type", MI); 1586 break; 1587 } 1588 1589 if (!AlignOp.isImm()) { 1590 report("src operand 2 must be an immediate type", MI); 1591 break; 1592 } 1593 break; 1594 } 1595 case TargetOpcode::G_MEMCPY_INLINE: 1596 case TargetOpcode::G_MEMCPY: 1597 case TargetOpcode::G_MEMMOVE: { 1598 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1599 if (MMOs.size() != 2) { 1600 report("memcpy/memmove must have 2 memory operands", MI); 1601 break; 1602 } 1603 1604 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) || 1605 (MMOs[1]->isStore() || !MMOs[1]->isLoad())) { 1606 report("wrong memory operand types", MI); 1607 break; 1608 } 1609 1610 if (MMOs[0]->getSize() != MMOs[1]->getSize()) 1611 report("inconsistent memory operand sizes", MI); 1612 1613 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 1614 LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg()); 1615 1616 if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) { 1617 report("memory instruction operand must be a pointer", MI); 1618 break; 1619 } 1620 1621 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 1622 report("inconsistent store address space", MI); 1623 if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace()) 1624 report("inconsistent load address space", MI); 1625 1626 if (Opc != TargetOpcode::G_MEMCPY_INLINE) 1627 if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL)) 1628 report("'tail' flag (operand 3) must be an immediate 0 or 1", MI); 1629 1630 break; 1631 } 1632 case TargetOpcode::G_BZERO: 1633 case TargetOpcode::G_MEMSET: { 1634 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1635 std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero"; 1636 if (MMOs.size() != 1) { 1637 report(Twine(Name, " must have 1 memory operand"), MI); 1638 break; 1639 } 1640 1641 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) { 1642 report(Twine(Name, " memory operand must be a store"), MI); 1643 break; 1644 } 1645 1646 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 1647 if (!DstPtrTy.isPointer()) { 1648 report(Twine(Name, " operand must be a pointer"), MI); 1649 break; 1650 } 1651 1652 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 1653 report("inconsistent " + Twine(Name, " address space"), MI); 1654 1655 if (!MI->getOperand(MI->getNumOperands() - 1).isImm() || 1656 (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL)) 1657 report("'tail' flag (last operand) must be an immediate 0 or 1", MI); 1658 1659 break; 1660 } 1661 case TargetOpcode::G_VECREDUCE_SEQ_FADD: 1662 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: { 1663 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1664 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 1665 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 1666 if (!DstTy.isScalar()) 1667 report("Vector reduction requires a scalar destination type", MI); 1668 if (!Src1Ty.isScalar()) 1669 report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI); 1670 if (!Src2Ty.isVector()) 1671 report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI); 1672 break; 1673 } 1674 case TargetOpcode::G_VECREDUCE_FADD: 1675 case TargetOpcode::G_VECREDUCE_FMUL: 1676 case TargetOpcode::G_VECREDUCE_FMAX: 1677 case TargetOpcode::G_VECREDUCE_FMIN: 1678 case TargetOpcode::G_VECREDUCE_ADD: 1679 case TargetOpcode::G_VECREDUCE_MUL: 1680 case TargetOpcode::G_VECREDUCE_AND: 1681 case TargetOpcode::G_VECREDUCE_OR: 1682 case TargetOpcode::G_VECREDUCE_XOR: 1683 case TargetOpcode::G_VECREDUCE_SMAX: 1684 case TargetOpcode::G_VECREDUCE_SMIN: 1685 case TargetOpcode::G_VECREDUCE_UMAX: 1686 case TargetOpcode::G_VECREDUCE_UMIN: { 1687 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1688 if (!DstTy.isScalar()) 1689 report("Vector reduction requires a scalar destination type", MI); 1690 break; 1691 } 1692 1693 case TargetOpcode::G_SBFX: 1694 case TargetOpcode::G_UBFX: { 1695 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1696 if (DstTy.isVector()) { 1697 report("Bitfield extraction is not supported on vectors", MI); 1698 break; 1699 } 1700 break; 1701 } 1702 case TargetOpcode::G_SHL: 1703 case TargetOpcode::G_LSHR: 1704 case TargetOpcode::G_ASHR: 1705 case TargetOpcode::G_ROTR: 1706 case TargetOpcode::G_ROTL: { 1707 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 1708 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 1709 if (Src1Ty.isVector() != Src2Ty.isVector()) { 1710 report("Shifts and rotates require operands to be either all scalars or " 1711 "all vectors", 1712 MI); 1713 break; 1714 } 1715 break; 1716 } 1717 case TargetOpcode::G_LLROUND: 1718 case TargetOpcode::G_LROUND: { 1719 verifyAllRegOpsScalar(*MI, *MRI); 1720 break; 1721 } 1722 case TargetOpcode::G_IS_FPCLASS: { 1723 LLT DestTy = MRI->getType(MI->getOperand(0).getReg()); 1724 LLT DestEltTy = DestTy.getScalarType(); 1725 if (!DestEltTy.isScalar()) { 1726 report("Destination must be a scalar or vector of scalars", MI); 1727 break; 1728 } 1729 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1730 LLT SrcEltTy = SrcTy.getScalarType(); 1731 if (!SrcEltTy.isScalar()) { 1732 report("Source must be a scalar or vector of scalars", MI); 1733 break; 1734 } 1735 if (!verifyVectorElementMatch(DestTy, SrcTy, MI)) 1736 break; 1737 const MachineOperand &TestMO = MI->getOperand(2); 1738 if (!TestMO.isImm()) { 1739 report("floating-point class set (operand 2) must be an immediate", MI); 1740 break; 1741 } 1742 int64_t Test = TestMO.getImm(); 1743 if (Test < 0 || Test > fcAllFlags) { 1744 report("Incorrect floating-point class set (operand 2)", MI); 1745 break; 1746 } 1747 break; 1748 } 1749 case TargetOpcode::G_ASSERT_ALIGN: { 1750 if (MI->getOperand(2).getImm() < 1) 1751 report("alignment immediate must be >= 1", MI); 1752 break; 1753 } 1754 case TargetOpcode::G_CONSTANT_POOL: { 1755 if (!MI->getOperand(1).isCPI()) 1756 report("Src operand 1 must be a constant pool index", MI); 1757 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1758 report("Dst operand 0 must be a pointer", MI); 1759 break; 1760 } 1761 default: 1762 break; 1763 } 1764 } 1765 1766 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 1767 const MCInstrDesc &MCID = MI->getDesc(); 1768 if (MI->getNumOperands() < MCID.getNumOperands()) { 1769 report("Too few operands", MI); 1770 errs() << MCID.getNumOperands() << " operands expected, but " 1771 << MI->getNumOperands() << " given.\n"; 1772 } 1773 1774 if (MI->isPHI()) { 1775 if (MF->getProperties().hasProperty( 1776 MachineFunctionProperties::Property::NoPHIs)) 1777 report("Found PHI instruction with NoPHIs property set", MI); 1778 1779 if (FirstNonPHI) 1780 report("Found PHI instruction after non-PHI", MI); 1781 } else if (FirstNonPHI == nullptr) 1782 FirstNonPHI = MI; 1783 1784 // Check the tied operands. 1785 if (MI->isInlineAsm()) 1786 verifyInlineAsm(MI); 1787 1788 // Check that unspillable terminators define a reg and have at most one use. 1789 if (TII->isUnspillableTerminator(MI)) { 1790 if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef()) 1791 report("Unspillable Terminator does not define a reg", MI); 1792 Register Def = MI->getOperand(0).getReg(); 1793 if (Def.isVirtual() && 1794 !MF->getProperties().hasProperty( 1795 MachineFunctionProperties::Property::NoPHIs) && 1796 std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1) 1797 report("Unspillable Terminator expected to have at most one use!", MI); 1798 } 1799 1800 // A fully-formed DBG_VALUE must have a location. Ignore partially formed 1801 // DBG_VALUEs: these are convenient to use in tests, but should never get 1802 // generated. 1803 if (MI->isDebugValue() && MI->getNumOperands() == 4) 1804 if (!MI->getDebugLoc()) 1805 report("Missing DebugLoc for debug instruction", MI); 1806 1807 // Meta instructions should never be the subject of debug value tracking, 1808 // they don't create a value in the output program at all. 1809 if (MI->isMetaInstruction() && MI->peekDebugInstrNum()) 1810 report("Metadata instruction should not have a value tracking number", MI); 1811 1812 // Check the MachineMemOperands for basic consistency. 1813 for (MachineMemOperand *Op : MI->memoperands()) { 1814 if (Op->isLoad() && !MI->mayLoad()) 1815 report("Missing mayLoad flag", MI); 1816 if (Op->isStore() && !MI->mayStore()) 1817 report("Missing mayStore flag", MI); 1818 } 1819 1820 // Debug values must not have a slot index. 1821 // Other instructions must have one, unless they are inside a bundle. 1822 if (LiveInts) { 1823 bool mapped = !LiveInts->isNotInMIMap(*MI); 1824 if (MI->isDebugOrPseudoInstr()) { 1825 if (mapped) 1826 report("Debug instruction has a slot index", MI); 1827 } else if (MI->isInsideBundle()) { 1828 if (mapped) 1829 report("Instruction inside bundle has a slot index", MI); 1830 } else { 1831 if (!mapped) 1832 report("Missing slot index", MI); 1833 } 1834 } 1835 1836 unsigned Opc = MCID.getOpcode(); 1837 if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) { 1838 verifyPreISelGenericInstruction(MI); 1839 return; 1840 } 1841 1842 StringRef ErrorInfo; 1843 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1844 report(ErrorInfo.data(), MI); 1845 1846 // Verify properties of various specific instruction types 1847 switch (MI->getOpcode()) { 1848 case TargetOpcode::COPY: { 1849 const MachineOperand &DstOp = MI->getOperand(0); 1850 const MachineOperand &SrcOp = MI->getOperand(1); 1851 const Register SrcReg = SrcOp.getReg(); 1852 const Register DstReg = DstOp.getReg(); 1853 1854 LLT DstTy = MRI->getType(DstReg); 1855 LLT SrcTy = MRI->getType(SrcReg); 1856 if (SrcTy.isValid() && DstTy.isValid()) { 1857 // If both types are valid, check that the types are the same. 1858 if (SrcTy != DstTy) { 1859 report("Copy Instruction is illegal with mismatching types", MI); 1860 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1861 } 1862 1863 break; 1864 } 1865 1866 if (!SrcTy.isValid() && !DstTy.isValid()) 1867 break; 1868 1869 // If we have only one valid type, this is likely a copy between a virtual 1870 // and physical register. 1871 unsigned SrcSize = 0; 1872 unsigned DstSize = 0; 1873 if (SrcReg.isPhysical() && DstTy.isValid()) { 1874 const TargetRegisterClass *SrcRC = 1875 TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy); 1876 if (SrcRC) 1877 SrcSize = TRI->getRegSizeInBits(*SrcRC); 1878 } 1879 1880 if (SrcSize == 0) 1881 SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI); 1882 1883 if (DstReg.isPhysical() && SrcTy.isValid()) { 1884 const TargetRegisterClass *DstRC = 1885 TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy); 1886 if (DstRC) 1887 DstSize = TRI->getRegSizeInBits(*DstRC); 1888 } 1889 1890 if (DstSize == 0) 1891 DstSize = TRI->getRegSizeInBits(DstReg, *MRI); 1892 1893 if (SrcSize != 0 && DstSize != 0 && SrcSize != DstSize) { 1894 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1895 report("Copy Instruction is illegal with mismatching sizes", MI); 1896 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1897 << "\n"; 1898 } 1899 } 1900 break; 1901 } 1902 case TargetOpcode::STATEPOINT: { 1903 StatepointOpers SO(MI); 1904 if (!MI->getOperand(SO.getIDPos()).isImm() || 1905 !MI->getOperand(SO.getNBytesPos()).isImm() || 1906 !MI->getOperand(SO.getNCallArgsPos()).isImm()) { 1907 report("meta operands to STATEPOINT not constant!", MI); 1908 break; 1909 } 1910 1911 auto VerifyStackMapConstant = [&](unsigned Offset) { 1912 if (Offset >= MI->getNumOperands()) { 1913 report("stack map constant to STATEPOINT is out of range!", MI); 1914 return; 1915 } 1916 if (!MI->getOperand(Offset - 1).isImm() || 1917 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || 1918 !MI->getOperand(Offset).isImm()) 1919 report("stack map constant to STATEPOINT not well formed!", MI); 1920 }; 1921 VerifyStackMapConstant(SO.getCCIdx()); 1922 VerifyStackMapConstant(SO.getFlagsIdx()); 1923 VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); 1924 VerifyStackMapConstant(SO.getNumGCPtrIdx()); 1925 VerifyStackMapConstant(SO.getNumAllocaIdx()); 1926 VerifyStackMapConstant(SO.getNumGcMapEntriesIdx()); 1927 1928 // Verify that all explicit statepoint defs are tied to gc operands as 1929 // they are expected to be a relocation of gc operands. 1930 unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx(); 1931 unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2; 1932 for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) { 1933 unsigned UseOpIdx; 1934 if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) { 1935 report("STATEPOINT defs expected to be tied", MI); 1936 break; 1937 } 1938 if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) { 1939 report("STATEPOINT def tied to non-gc operand", MI); 1940 break; 1941 } 1942 } 1943 1944 // TODO: verify we have properly encoded deopt arguments 1945 } break; 1946 case TargetOpcode::INSERT_SUBREG: { 1947 unsigned InsertedSize; 1948 if (unsigned SubIdx = MI->getOperand(2).getSubReg()) 1949 InsertedSize = TRI->getSubRegIdxSize(SubIdx); 1950 else 1951 InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI); 1952 unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm()); 1953 if (SubRegSize < InsertedSize) { 1954 report("INSERT_SUBREG expected inserted value to have equal or lesser " 1955 "size than the subreg it was inserted into", MI); 1956 break; 1957 } 1958 } break; 1959 case TargetOpcode::REG_SEQUENCE: { 1960 unsigned NumOps = MI->getNumOperands(); 1961 if (!(NumOps & 1)) { 1962 report("Invalid number of operands for REG_SEQUENCE", MI); 1963 break; 1964 } 1965 1966 for (unsigned I = 1; I != NumOps; I += 2) { 1967 const MachineOperand &RegOp = MI->getOperand(I); 1968 const MachineOperand &SubRegOp = MI->getOperand(I + 1); 1969 1970 if (!RegOp.isReg()) 1971 report("Invalid register operand for REG_SEQUENCE", &RegOp, I); 1972 1973 if (!SubRegOp.isImm() || SubRegOp.getImm() == 0 || 1974 SubRegOp.getImm() >= TRI->getNumSubRegIndices()) { 1975 report("Invalid subregister index operand for REG_SEQUENCE", 1976 &SubRegOp, I + 1); 1977 } 1978 } 1979 1980 Register DstReg = MI->getOperand(0).getReg(); 1981 if (DstReg.isPhysical()) 1982 report("REG_SEQUENCE does not support physical register results", MI); 1983 1984 if (MI->getOperand(0).getSubReg()) 1985 report("Invalid subreg result for REG_SEQUENCE", MI); 1986 1987 break; 1988 } 1989 } 1990 } 1991 1992 void 1993 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1994 const MachineInstr *MI = MO->getParent(); 1995 const MCInstrDesc &MCID = MI->getDesc(); 1996 unsigned NumDefs = MCID.getNumDefs(); 1997 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1998 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1999 2000 // The first MCID.NumDefs operands must be explicit register defines 2001 if (MONum < NumDefs) { 2002 const MCOperandInfo &MCOI = MCID.operands()[MONum]; 2003 if (!MO->isReg()) 2004 report("Explicit definition must be a register", MO, MONum); 2005 else if (!MO->isDef() && !MCOI.isOptionalDef()) 2006 report("Explicit definition marked as use", MO, MONum); 2007 else if (MO->isImplicit()) 2008 report("Explicit definition marked as implicit", MO, MONum); 2009 } else if (MONum < MCID.getNumOperands()) { 2010 const MCOperandInfo &MCOI = MCID.operands()[MONum]; 2011 // Don't check if it's the last operand in a variadic instruction. See, 2012 // e.g., LDM_RET in the arm back end. Check non-variadic operands only. 2013 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; 2014 if (!IsOptional) { 2015 if (MO->isReg()) { 2016 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) 2017 report("Explicit operand marked as def", MO, MONum); 2018 if (MO->isImplicit()) 2019 report("Explicit operand marked as implicit", MO, MONum); 2020 } 2021 2022 // Check that an instruction has register operands only as expected. 2023 if (MCOI.OperandType == MCOI::OPERAND_REGISTER && 2024 !MO->isReg() && !MO->isFI()) 2025 report("Expected a register operand.", MO, MONum); 2026 if (MO->isReg()) { 2027 if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || 2028 (MCOI.OperandType == MCOI::OPERAND_PCREL && 2029 !TII->isPCRelRegisterOperandLegal(*MO))) 2030 report("Expected a non-register operand.", MO, MONum); 2031 } 2032 } 2033 2034 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 2035 if (TiedTo != -1) { 2036 if (!MO->isReg()) 2037 report("Tied use must be a register", MO, MONum); 2038 else if (!MO->isTied()) 2039 report("Operand should be tied", MO, MONum); 2040 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 2041 report("Tied def doesn't match MCInstrDesc", MO, MONum); 2042 else if (MO->getReg().isPhysical()) { 2043 const MachineOperand &MOTied = MI->getOperand(TiedTo); 2044 if (!MOTied.isReg()) 2045 report("Tied counterpart must be a register", &MOTied, TiedTo); 2046 else if (MOTied.getReg().isPhysical() && 2047 MO->getReg() != MOTied.getReg()) 2048 report("Tied physical registers must match.", &MOTied, TiedTo); 2049 } 2050 } else if (MO->isReg() && MO->isTied()) 2051 report("Explicit operand should not be tied", MO, MONum); 2052 } else { 2053 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 2054 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 2055 report("Extra explicit operand on non-variadic instruction", MO, MONum); 2056 } 2057 2058 switch (MO->getType()) { 2059 case MachineOperand::MO_Register: { 2060 // Verify debug flag on debug instructions. Check this first because reg0 2061 // indicates an undefined debug value. 2062 if (MI->isDebugInstr() && MO->isUse()) { 2063 if (!MO->isDebug()) 2064 report("Register operand must be marked debug", MO, MONum); 2065 } else if (MO->isDebug()) { 2066 report("Register operand must not be marked debug", MO, MONum); 2067 } 2068 2069 const Register Reg = MO->getReg(); 2070 if (!Reg) 2071 return; 2072 if (MRI->tracksLiveness() && !MI->isDebugInstr()) 2073 checkLiveness(MO, MONum); 2074 2075 if (MO->isDef() && MO->isUndef() && !MO->getSubReg() && 2076 MO->getReg().isVirtual()) // TODO: Apply to physregs too 2077 report("Undef virtual register def operands require a subregister", MO, MONum); 2078 2079 // Verify the consistency of tied operands. 2080 if (MO->isTied()) { 2081 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 2082 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 2083 if (!OtherMO.isReg()) 2084 report("Must be tied to a register", MO, MONum); 2085 if (!OtherMO.isTied()) 2086 report("Missing tie flags on tied operand", MO, MONum); 2087 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 2088 report("Inconsistent tie links", MO, MONum); 2089 if (MONum < MCID.getNumDefs()) { 2090 if (OtherIdx < MCID.getNumOperands()) { 2091 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 2092 report("Explicit def tied to explicit use without tie constraint", 2093 MO, MONum); 2094 } else { 2095 if (!OtherMO.isImplicit()) 2096 report("Explicit def should be tied to implicit use", MO, MONum); 2097 } 2098 } 2099 } 2100 2101 // Verify two-address constraints after the twoaddressinstruction pass. 2102 // Both twoaddressinstruction pass and phi-node-elimination pass call 2103 // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after 2104 // twoaddressinstruction pass not after phi-node-elimination pass. So we 2105 // shouldn't use the NoSSA as the condition, we should based on 2106 // TiedOpsRewritten property to verify two-address constraints, this 2107 // property will be set in twoaddressinstruction pass. 2108 unsigned DefIdx; 2109 if (MF->getProperties().hasProperty( 2110 MachineFunctionProperties::Property::TiedOpsRewritten) && 2111 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) && 2112 Reg != MI->getOperand(DefIdx).getReg()) 2113 report("Two-address instruction operands must be identical", MO, MONum); 2114 2115 // Check register classes. 2116 unsigned SubIdx = MO->getSubReg(); 2117 2118 if (Reg.isPhysical()) { 2119 if (SubIdx) { 2120 report("Illegal subregister index for physical register", MO, MONum); 2121 return; 2122 } 2123 if (MONum < MCID.getNumOperands()) { 2124 if (const TargetRegisterClass *DRC = 2125 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2126 if (!DRC->contains(Reg)) { 2127 report("Illegal physical register for instruction", MO, MONum); 2128 errs() << printReg(Reg, TRI) << " is not a " 2129 << TRI->getRegClassName(DRC) << " register.\n"; 2130 } 2131 } 2132 } 2133 if (MO->isRenamable()) { 2134 if (MRI->isReserved(Reg)) { 2135 report("isRenamable set on reserved register", MO, MONum); 2136 return; 2137 } 2138 } 2139 } else { 2140 // Virtual register. 2141 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 2142 if (!RC) { 2143 // This is a generic virtual register. 2144 2145 // Do not allow undef uses for generic virtual registers. This ensures 2146 // getVRegDef can never fail and return null on a generic register. 2147 // 2148 // FIXME: This restriction should probably be broadened to all SSA 2149 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still 2150 // run on the SSA function just before phi elimination. 2151 if (MO->isUndef()) 2152 report("Generic virtual register use cannot be undef", MO, MONum); 2153 2154 // Debug value instruction is permitted to use undefined vregs. 2155 // This is a performance measure to skip the overhead of immediately 2156 // pruning unused debug operands. The final undef substitution occurs 2157 // when debug values are allocated in LDVImpl::handleDebugValue, so 2158 // these verifications always apply after this pass. 2159 if (isFunctionTracksDebugUserValues || !MO->isUse() || 2160 !MI->isDebugValue() || !MRI->def_empty(Reg)) { 2161 // If we're post-Select, we can't have gvregs anymore. 2162 if (isFunctionSelected) { 2163 report("Generic virtual register invalid in a Selected function", 2164 MO, MONum); 2165 return; 2166 } 2167 2168 // The gvreg must have a type and it must not have a SubIdx. 2169 LLT Ty = MRI->getType(Reg); 2170 if (!Ty.isValid()) { 2171 report("Generic virtual register must have a valid type", MO, 2172 MONum); 2173 return; 2174 } 2175 2176 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 2177 const RegisterBankInfo *RBI = MF->getSubtarget().getRegBankInfo(); 2178 2179 // If we're post-RegBankSelect, the gvreg must have a bank. 2180 if (!RegBank && isFunctionRegBankSelected) { 2181 report("Generic virtual register must have a bank in a " 2182 "RegBankSelected function", 2183 MO, MONum); 2184 return; 2185 } 2186 2187 // Make sure the register fits into its register bank if any. 2188 if (RegBank && Ty.isValid() && 2189 RBI->getMaximumSize(RegBank->getID()) < Ty.getSizeInBits()) { 2190 report("Register bank is too small for virtual register", MO, 2191 MONum); 2192 errs() << "Register bank " << RegBank->getName() << " too small(" 2193 << RBI->getMaximumSize(RegBank->getID()) << ") to fit " 2194 << Ty.getSizeInBits() << "-bits\n"; 2195 return; 2196 } 2197 } 2198 2199 if (SubIdx) { 2200 report("Generic virtual register does not allow subregister index", MO, 2201 MONum); 2202 return; 2203 } 2204 2205 // If this is a target specific instruction and this operand 2206 // has register class constraint, the virtual register must 2207 // comply to it. 2208 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 2209 MONum < MCID.getNumOperands() && 2210 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2211 report("Virtual register does not match instruction constraint", MO, 2212 MONum); 2213 errs() << "Expect register class " 2214 << TRI->getRegClassName( 2215 TII->getRegClass(MCID, MONum, TRI, *MF)) 2216 << " but got nothing\n"; 2217 return; 2218 } 2219 2220 break; 2221 } 2222 if (SubIdx) { 2223 const TargetRegisterClass *SRC = 2224 TRI->getSubClassWithSubReg(RC, SubIdx); 2225 if (!SRC) { 2226 report("Invalid subregister index for virtual register", MO, MONum); 2227 errs() << "Register class " << TRI->getRegClassName(RC) 2228 << " does not support subreg index " << SubIdx << "\n"; 2229 return; 2230 } 2231 if (RC != SRC) { 2232 report("Invalid register class for subregister index", MO, MONum); 2233 errs() << "Register class " << TRI->getRegClassName(RC) 2234 << " does not fully support subreg index " << SubIdx << "\n"; 2235 return; 2236 } 2237 } 2238 if (MONum < MCID.getNumOperands()) { 2239 if (const TargetRegisterClass *DRC = 2240 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2241 if (SubIdx) { 2242 const TargetRegisterClass *SuperRC = 2243 TRI->getLargestLegalSuperClass(RC, *MF); 2244 if (!SuperRC) { 2245 report("No largest legal super class exists.", MO, MONum); 2246 return; 2247 } 2248 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 2249 if (!DRC) { 2250 report("No matching super-reg register class.", MO, MONum); 2251 return; 2252 } 2253 } 2254 if (!RC->hasSuperClassEq(DRC)) { 2255 report("Illegal virtual register for instruction", MO, MONum); 2256 errs() << "Expected a " << TRI->getRegClassName(DRC) 2257 << " register, but got a " << TRI->getRegClassName(RC) 2258 << " register\n"; 2259 } 2260 } 2261 } 2262 } 2263 break; 2264 } 2265 2266 case MachineOperand::MO_RegisterMask: 2267 regMasks.push_back(MO->getRegMask()); 2268 break; 2269 2270 case MachineOperand::MO_MachineBasicBlock: 2271 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 2272 report("PHI operand is not in the CFG", MO, MONum); 2273 break; 2274 2275 case MachineOperand::MO_FrameIndex: 2276 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 2277 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2278 int FI = MO->getIndex(); 2279 LiveInterval &LI = LiveStks->getInterval(FI); 2280 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 2281 2282 bool stores = MI->mayStore(); 2283 bool loads = MI->mayLoad(); 2284 // For a memory-to-memory move, we need to check if the frame 2285 // index is used for storing or loading, by inspecting the 2286 // memory operands. 2287 if (stores && loads) { 2288 for (auto *MMO : MI->memoperands()) { 2289 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 2290 if (PSV == nullptr) continue; 2291 const FixedStackPseudoSourceValue *Value = 2292 dyn_cast<FixedStackPseudoSourceValue>(PSV); 2293 if (Value == nullptr) continue; 2294 if (Value->getFrameIndex() != FI) continue; 2295 2296 if (MMO->isStore()) 2297 loads = false; 2298 else 2299 stores = false; 2300 break; 2301 } 2302 if (loads == stores) 2303 report("Missing fixed stack memoperand.", MI); 2304 } 2305 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 2306 report("Instruction loads from dead spill slot", MO, MONum); 2307 errs() << "Live stack: " << LI << '\n'; 2308 } 2309 if (stores && !LI.liveAt(Idx.getRegSlot())) { 2310 report("Instruction stores to dead spill slot", MO, MONum); 2311 errs() << "Live stack: " << LI << '\n'; 2312 } 2313 } 2314 break; 2315 2316 case MachineOperand::MO_CFIIndex: 2317 if (MO->getCFIIndex() >= MF->getFrameInstructions().size()) 2318 report("CFI instruction has invalid index", MO, MONum); 2319 break; 2320 2321 default: 2322 break; 2323 } 2324 } 2325 2326 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 2327 unsigned MONum, SlotIndex UseIdx, 2328 const LiveRange &LR, 2329 Register VRegOrUnit, 2330 LaneBitmask LaneMask) { 2331 LiveQueryResult LRQ = LR.Query(UseIdx); 2332 // Check if we have a segment at the use, note however that we only need one 2333 // live subregister range, the others may be dead. 2334 if (!LRQ.valueIn() && LaneMask.none()) { 2335 report("No live segment at use", MO, MONum); 2336 report_context_liverange(LR); 2337 report_context_vreg_regunit(VRegOrUnit); 2338 report_context(UseIdx); 2339 } 2340 if (MO->isKill() && !LRQ.isKill()) { 2341 report("Live range continues after kill flag", MO, MONum); 2342 report_context_liverange(LR); 2343 report_context_vreg_regunit(VRegOrUnit); 2344 if (LaneMask.any()) 2345 report_context_lanemask(LaneMask); 2346 report_context(UseIdx); 2347 } 2348 } 2349 2350 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 2351 unsigned MONum, SlotIndex DefIdx, 2352 const LiveRange &LR, 2353 Register VRegOrUnit, 2354 bool SubRangeCheck, 2355 LaneBitmask LaneMask) { 2356 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 2357 // The LR can correspond to the whole reg and its def slot is not obliged 2358 // to be the same as the MO' def slot. E.g. when we check here "normal" 2359 // subreg MO but there is other EC subreg MO in the same instruction so the 2360 // whole reg has EC def slot and differs from the currently checked MO' def 2361 // slot. For example: 2362 // %0 [16e,32r:0) 0@16e L..3 [16e,32r:0) 0@16e L..C [16r,32r:0) 0@16r 2363 // Check that there is an early-clobber def of the same superregister 2364 // somewhere is performed in visitMachineFunctionAfter() 2365 if (((SubRangeCheck || MO->getSubReg() == 0) && VNI->def != DefIdx) || 2366 !SlotIndex::isSameInstr(VNI->def, DefIdx) || 2367 (VNI->def != DefIdx && 2368 (!VNI->def.isEarlyClobber() || !DefIdx.isRegister()))) { 2369 report("Inconsistent valno->def", MO, MONum); 2370 report_context_liverange(LR); 2371 report_context_vreg_regunit(VRegOrUnit); 2372 if (LaneMask.any()) 2373 report_context_lanemask(LaneMask); 2374 report_context(*VNI); 2375 report_context(DefIdx); 2376 } 2377 } else { 2378 report("No live segment at def", MO, MONum); 2379 report_context_liverange(LR); 2380 report_context_vreg_regunit(VRegOrUnit); 2381 if (LaneMask.any()) 2382 report_context_lanemask(LaneMask); 2383 report_context(DefIdx); 2384 } 2385 // Check that, if the dead def flag is present, LiveInts agree. 2386 if (MO->isDead()) { 2387 LiveQueryResult LRQ = LR.Query(DefIdx); 2388 if (!LRQ.isDeadDef()) { 2389 assert(VRegOrUnit.isVirtual() && "Expecting a virtual register."); 2390 // A dead subreg def only tells us that the specific subreg is dead. There 2391 // could be other non-dead defs of other subregs, or we could have other 2392 // parts of the register being live through the instruction. So unless we 2393 // are checking liveness for a subrange it is ok for the live range to 2394 // continue, given that we have a dead def of a subregister. 2395 if (SubRangeCheck || MO->getSubReg() == 0) { 2396 report("Live range continues after dead def flag", MO, MONum); 2397 report_context_liverange(LR); 2398 report_context_vreg_regunit(VRegOrUnit); 2399 if (LaneMask.any()) 2400 report_context_lanemask(LaneMask); 2401 } 2402 } 2403 } 2404 } 2405 2406 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 2407 const MachineInstr *MI = MO->getParent(); 2408 const Register Reg = MO->getReg(); 2409 const unsigned SubRegIdx = MO->getSubReg(); 2410 2411 const LiveInterval *LI = nullptr; 2412 if (LiveInts && Reg.isVirtual()) { 2413 if (LiveInts->hasInterval(Reg)) { 2414 LI = &LiveInts->getInterval(Reg); 2415 if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() && 2416 !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(Reg)) 2417 report("Live interval for subreg operand has no subranges", MO, MONum); 2418 } else { 2419 report("Virtual register has no live interval", MO, MONum); 2420 } 2421 } 2422 2423 // Both use and def operands can read a register. 2424 if (MO->readsReg()) { 2425 if (MO->isKill()) 2426 addRegWithSubRegs(regsKilled, Reg); 2427 2428 // Check that LiveVars knows this kill (unless we are inside a bundle, in 2429 // which case we have already checked that LiveVars knows any kills on the 2430 // bundle header instead). 2431 if (LiveVars && Reg.isVirtual() && MO->isKill() && 2432 !MI->isBundledWithPred()) { 2433 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2434 if (!is_contained(VI.Kills, MI)) 2435 report("Kill missing from LiveVariables", MO, MONum); 2436 } 2437 2438 // Check LiveInts liveness and kill. 2439 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2440 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 2441 // Check the cached regunit intervals. 2442 if (Reg.isPhysical() && !isReserved(Reg)) { 2443 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) { 2444 if (MRI->isReservedRegUnit(Unit)) 2445 continue; 2446 if (const LiveRange *LR = LiveInts->getCachedRegUnit(Unit)) 2447 checkLivenessAtUse(MO, MONum, UseIdx, *LR, Unit); 2448 } 2449 } 2450 2451 if (Reg.isVirtual()) { 2452 // This is a virtual register interval. 2453 checkLivenessAtUse(MO, MONum, UseIdx, *LI, Reg); 2454 2455 if (LI->hasSubRanges() && !MO->isDef()) { 2456 LaneBitmask MOMask = SubRegIdx != 0 2457 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2458 : MRI->getMaxLaneMaskForVReg(Reg); 2459 LaneBitmask LiveInMask; 2460 for (const LiveInterval::SubRange &SR : LI->subranges()) { 2461 if ((MOMask & SR.LaneMask).none()) 2462 continue; 2463 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 2464 LiveQueryResult LRQ = SR.Query(UseIdx); 2465 if (LRQ.valueIn()) 2466 LiveInMask |= SR.LaneMask; 2467 } 2468 // At least parts of the register has to be live at the use. 2469 if ((LiveInMask & MOMask).none()) { 2470 report("No live subrange at use", MO, MONum); 2471 report_context(*LI); 2472 report_context(UseIdx); 2473 } 2474 } 2475 } 2476 } 2477 2478 // Use of a dead register. 2479 if (!regsLive.count(Reg)) { 2480 if (Reg.isPhysical()) { 2481 // Reserved registers may be used even when 'dead'. 2482 bool Bad = !isReserved(Reg); 2483 // We are fine if just any subregister has a defined value. 2484 if (Bad) { 2485 2486 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { 2487 if (regsLive.count(SubReg)) { 2488 Bad = false; 2489 break; 2490 } 2491 } 2492 } 2493 // If there is an additional implicit-use of a super register we stop 2494 // here. By definition we are fine if the super register is not 2495 // (completely) dead, if the complete super register is dead we will 2496 // get a report for its operand. 2497 if (Bad) { 2498 for (const MachineOperand &MOP : MI->uses()) { 2499 if (!MOP.isReg() || !MOP.isImplicit()) 2500 continue; 2501 2502 if (!MOP.getReg().isPhysical()) 2503 continue; 2504 2505 if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg)) 2506 Bad = false; 2507 } 2508 } 2509 if (Bad) 2510 report("Using an undefined physical register", MO, MONum); 2511 } else if (MRI->def_empty(Reg)) { 2512 report("Reading virtual register without a def", MO, MONum); 2513 } else { 2514 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2515 // We don't know which virtual registers are live in, so only complain 2516 // if vreg was killed in this MBB. Otherwise keep track of vregs that 2517 // must be live in. PHI instructions are handled separately. 2518 if (MInfo.regsKilled.count(Reg)) 2519 report("Using a killed virtual register", MO, MONum); 2520 else if (!MI->isPHI()) 2521 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 2522 } 2523 } 2524 } 2525 2526 if (MO->isDef()) { 2527 // Register defined. 2528 // TODO: verify that earlyclobber ops are not used. 2529 if (MO->isDead()) 2530 addRegWithSubRegs(regsDead, Reg); 2531 else 2532 addRegWithSubRegs(regsDefined, Reg); 2533 2534 // Verify SSA form. 2535 if (MRI->isSSA() && Reg.isVirtual() && 2536 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 2537 report("Multiple virtual register defs in SSA form", MO, MONum); 2538 2539 // Check LiveInts for a live segment, but only for virtual registers. 2540 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2541 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 2542 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 2543 2544 if (Reg.isVirtual()) { 2545 checkLivenessAtDef(MO, MONum, DefIdx, *LI, Reg); 2546 2547 if (LI->hasSubRanges()) { 2548 LaneBitmask MOMask = SubRegIdx != 0 2549 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2550 : MRI->getMaxLaneMaskForVReg(Reg); 2551 for (const LiveInterval::SubRange &SR : LI->subranges()) { 2552 if ((SR.LaneMask & MOMask).none()) 2553 continue; 2554 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 2555 } 2556 } 2557 } 2558 } 2559 } 2560 } 2561 2562 // This function gets called after visiting all instructions in a bundle. The 2563 // argument points to the bundle header. 2564 // Normal stand-alone instructions are also considered 'bundles', and this 2565 // function is called for all of them. 2566 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 2567 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2568 set_union(MInfo.regsKilled, regsKilled); 2569 set_subtract(regsLive, regsKilled); regsKilled.clear(); 2570 // Kill any masked registers. 2571 while (!regMasks.empty()) { 2572 const uint32_t *Mask = regMasks.pop_back_val(); 2573 for (Register Reg : regsLive) 2574 if (Reg.isPhysical() && 2575 MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg())) 2576 regsDead.push_back(Reg); 2577 } 2578 set_subtract(regsLive, regsDead); regsDead.clear(); 2579 set_union(regsLive, regsDefined); regsDefined.clear(); 2580 } 2581 2582 void 2583 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 2584 MBBInfoMap[MBB].regsLiveOut = regsLive; 2585 regsLive.clear(); 2586 2587 if (Indexes) { 2588 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 2589 if (!(stop > lastIndex)) { 2590 report("Block ends before last instruction index", MBB); 2591 errs() << "Block ends at " << stop 2592 << " last instruction was at " << lastIndex << '\n'; 2593 } 2594 lastIndex = stop; 2595 } 2596 } 2597 2598 namespace { 2599 // This implements a set of registers that serves as a filter: can filter other 2600 // sets by passing through elements not in the filter and blocking those that 2601 // are. Any filter implicitly includes the full set of physical registers upon 2602 // creation, thus filtering them all out. The filter itself as a set only grows, 2603 // and needs to be as efficient as possible. 2604 struct VRegFilter { 2605 // Add elements to the filter itself. \pre Input set \p FromRegSet must have 2606 // no duplicates. Both virtual and physical registers are fine. 2607 template <typename RegSetT> void add(const RegSetT &FromRegSet) { 2608 SmallVector<Register, 0> VRegsBuffer; 2609 filterAndAdd(FromRegSet, VRegsBuffer); 2610 } 2611 // Filter \p FromRegSet through the filter and append passed elements into \p 2612 // ToVRegs. All elements appended are then added to the filter itself. 2613 // \returns true if anything changed. 2614 template <typename RegSetT> 2615 bool filterAndAdd(const RegSetT &FromRegSet, 2616 SmallVectorImpl<Register> &ToVRegs) { 2617 unsigned SparseUniverse = Sparse.size(); 2618 unsigned NewSparseUniverse = SparseUniverse; 2619 unsigned NewDenseSize = Dense.size(); 2620 size_t Begin = ToVRegs.size(); 2621 for (Register Reg : FromRegSet) { 2622 if (!Reg.isVirtual()) 2623 continue; 2624 unsigned Index = Register::virtReg2Index(Reg); 2625 if (Index < SparseUniverseMax) { 2626 if (Index < SparseUniverse && Sparse.test(Index)) 2627 continue; 2628 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); 2629 } else { 2630 if (Dense.count(Reg)) 2631 continue; 2632 ++NewDenseSize; 2633 } 2634 ToVRegs.push_back(Reg); 2635 } 2636 size_t End = ToVRegs.size(); 2637 if (Begin == End) 2638 return false; 2639 // Reserving space in sets once performs better than doing so continuously 2640 // and pays easily for double look-ups (even in Dense with SparseUniverseMax 2641 // tuned all the way down) and double iteration (the second one is over a 2642 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). 2643 Sparse.resize(NewSparseUniverse); 2644 Dense.reserve(NewDenseSize); 2645 for (unsigned I = Begin; I < End; ++I) { 2646 Register Reg = ToVRegs[I]; 2647 unsigned Index = Register::virtReg2Index(Reg); 2648 if (Index < SparseUniverseMax) 2649 Sparse.set(Index); 2650 else 2651 Dense.insert(Reg); 2652 } 2653 return true; 2654 } 2655 2656 private: 2657 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; 2658 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound 2659 // are tracked by Dense. The only purpose of the threashold and the Dense set 2660 // is to have a reasonably growing memory usage in pathological cases (large 2661 // number of very sparse VRegFilter instances live at the same time). In 2662 // practice even in the worst-by-execution time cases having all elements 2663 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more 2664 // space efficient than if tracked by Dense. The threashold is set to keep the 2665 // worst-case memory usage within 2x of figures determined empirically for 2666 // "all Dense" scenario in such worst-by-execution-time cases. 2667 BitVector Sparse; 2668 DenseSet<unsigned> Dense; 2669 }; 2670 2671 // Implements both a transfer function and a (binary, in-place) join operator 2672 // for a dataflow over register sets with set union join and filtering transfer 2673 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. 2674 // Maintains out_b as its state, allowing for O(n) iteration over it at any 2675 // time, where n is the size of the set (as opposed to O(U) where U is the 2676 // universe). filter_b implicitly contains all physical registers at all times. 2677 class FilteringVRegSet { 2678 VRegFilter Filter; 2679 SmallVector<Register, 0> VRegs; 2680 2681 public: 2682 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. 2683 // Both virtual and physical registers are fine. 2684 template <typename RegSetT> void addToFilter(const RegSetT &RS) { 2685 Filter.add(RS); 2686 } 2687 // Passes \p RS through the filter_b (transfer function) and adds what's left 2688 // to itself (out_b). 2689 template <typename RegSetT> bool add(const RegSetT &RS) { 2690 // Double-duty the Filter: to maintain VRegs a set (and the join operation 2691 // a set union) just add everything being added here to the Filter as well. 2692 return Filter.filterAndAdd(RS, VRegs); 2693 } 2694 using const_iterator = decltype(VRegs)::const_iterator; 2695 const_iterator begin() const { return VRegs.begin(); } 2696 const_iterator end() const { return VRegs.end(); } 2697 size_t size() const { return VRegs.size(); } 2698 }; 2699 } // namespace 2700 2701 // Calculate the largest possible vregsPassed sets. These are the registers that 2702 // can pass through an MBB live, but may not be live every time. It is assumed 2703 // that all vregsPassed sets are empty before the call. 2704 void MachineVerifier::calcRegsPassed() { 2705 if (MF->empty()) 2706 // ReversePostOrderTraversal doesn't handle empty functions. 2707 return; 2708 2709 for (const MachineBasicBlock *MB : 2710 ReversePostOrderTraversal<const MachineFunction *>(MF)) { 2711 FilteringVRegSet VRegs; 2712 BBInfo &Info = MBBInfoMap[MB]; 2713 assert(Info.reachable); 2714 2715 VRegs.addToFilter(Info.regsKilled); 2716 VRegs.addToFilter(Info.regsLiveOut); 2717 for (const MachineBasicBlock *Pred : MB->predecessors()) { 2718 const BBInfo &PredInfo = MBBInfoMap[Pred]; 2719 if (!PredInfo.reachable) 2720 continue; 2721 2722 VRegs.add(PredInfo.regsLiveOut); 2723 VRegs.add(PredInfo.vregsPassed); 2724 } 2725 Info.vregsPassed.reserve(VRegs.size()); 2726 Info.vregsPassed.insert(VRegs.begin(), VRegs.end()); 2727 } 2728 } 2729 2730 // Calculate the set of virtual registers that must be passed through each basic 2731 // block in order to satisfy the requirements of successor blocks. This is very 2732 // similar to calcRegsPassed, only backwards. 2733 void MachineVerifier::calcRegsRequired() { 2734 // First push live-in regs to predecessors' vregsRequired. 2735 SmallPtrSet<const MachineBasicBlock*, 8> todo; 2736 for (const auto &MBB : *MF) { 2737 BBInfo &MInfo = MBBInfoMap[&MBB]; 2738 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2739 BBInfo &PInfo = MBBInfoMap[Pred]; 2740 if (PInfo.addRequired(MInfo.vregsLiveIn)) 2741 todo.insert(Pred); 2742 } 2743 2744 // Handle the PHI node. 2745 for (const MachineInstr &MI : MBB.phis()) { 2746 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 2747 // Skip those Operands which are undef regs or not regs. 2748 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg()) 2749 continue; 2750 2751 // Get register and predecessor for one PHI edge. 2752 Register Reg = MI.getOperand(i).getReg(); 2753 const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB(); 2754 2755 BBInfo &PInfo = MBBInfoMap[Pred]; 2756 if (PInfo.addRequired(Reg)) 2757 todo.insert(Pred); 2758 } 2759 } 2760 } 2761 2762 // Iteratively push vregsRequired to predecessors. This will converge to the 2763 // same final state regardless of DenseSet iteration order. 2764 while (!todo.empty()) { 2765 const MachineBasicBlock *MBB = *todo.begin(); 2766 todo.erase(MBB); 2767 BBInfo &MInfo = MBBInfoMap[MBB]; 2768 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 2769 if (Pred == MBB) 2770 continue; 2771 BBInfo &SInfo = MBBInfoMap[Pred]; 2772 if (SInfo.addRequired(MInfo.vregsRequired)) 2773 todo.insert(Pred); 2774 } 2775 } 2776 } 2777 2778 // Check PHI instructions at the beginning of MBB. It is assumed that 2779 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 2780 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 2781 BBInfo &MInfo = MBBInfoMap[&MBB]; 2782 2783 SmallPtrSet<const MachineBasicBlock*, 8> seen; 2784 for (const MachineInstr &Phi : MBB) { 2785 if (!Phi.isPHI()) 2786 break; 2787 seen.clear(); 2788 2789 const MachineOperand &MODef = Phi.getOperand(0); 2790 if (!MODef.isReg() || !MODef.isDef()) { 2791 report("Expected first PHI operand to be a register def", &MODef, 0); 2792 continue; 2793 } 2794 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 2795 MODef.isEarlyClobber() || MODef.isDebug()) 2796 report("Unexpected flag on PHI operand", &MODef, 0); 2797 Register DefReg = MODef.getReg(); 2798 if (!DefReg.isVirtual()) 2799 report("Expected first PHI operand to be a virtual register", &MODef, 0); 2800 2801 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 2802 const MachineOperand &MO0 = Phi.getOperand(I); 2803 if (!MO0.isReg()) { 2804 report("Expected PHI operand to be a register", &MO0, I); 2805 continue; 2806 } 2807 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 2808 MO0.isDebug() || MO0.isTied()) 2809 report("Unexpected flag on PHI operand", &MO0, I); 2810 2811 const MachineOperand &MO1 = Phi.getOperand(I + 1); 2812 if (!MO1.isMBB()) { 2813 report("Expected PHI operand to be a basic block", &MO1, I + 1); 2814 continue; 2815 } 2816 2817 const MachineBasicBlock &Pre = *MO1.getMBB(); 2818 if (!Pre.isSuccessor(&MBB)) { 2819 report("PHI input is not a predecessor block", &MO1, I + 1); 2820 continue; 2821 } 2822 2823 if (MInfo.reachable) { 2824 seen.insert(&Pre); 2825 BBInfo &PrInfo = MBBInfoMap[&Pre]; 2826 if (!MO0.isUndef() && PrInfo.reachable && 2827 !PrInfo.isLiveOut(MO0.getReg())) 2828 report("PHI operand is not live-out from predecessor", &MO0, I); 2829 } 2830 } 2831 2832 // Did we see all predecessors? 2833 if (MInfo.reachable) { 2834 for (MachineBasicBlock *Pred : MBB.predecessors()) { 2835 if (!seen.count(Pred)) { 2836 report("Missing PHI operand", &Phi); 2837 errs() << printMBBReference(*Pred) 2838 << " is a predecessor according to the CFG.\n"; 2839 } 2840 } 2841 } 2842 } 2843 } 2844 2845 void MachineVerifier::visitMachineFunctionAfter() { 2846 calcRegsPassed(); 2847 2848 for (const MachineBasicBlock &MBB : *MF) 2849 checkPHIOps(MBB); 2850 2851 // Now check liveness info if available 2852 calcRegsRequired(); 2853 2854 // Check for killed virtual registers that should be live out. 2855 for (const auto &MBB : *MF) { 2856 BBInfo &MInfo = MBBInfoMap[&MBB]; 2857 for (Register VReg : MInfo.vregsRequired) 2858 if (MInfo.regsKilled.count(VReg)) { 2859 report("Virtual register killed in block, but needed live out.", &MBB); 2860 errs() << "Virtual register " << printReg(VReg) 2861 << " is used after the block.\n"; 2862 } 2863 } 2864 2865 if (!MF->empty()) { 2866 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2867 for (Register VReg : MInfo.vregsRequired) { 2868 report("Virtual register defs don't dominate all uses.", MF); 2869 report_context_vreg(VReg); 2870 } 2871 } 2872 2873 if (LiveVars) 2874 verifyLiveVariables(); 2875 if (LiveInts) 2876 verifyLiveIntervals(); 2877 2878 // Check live-in list of each MBB. If a register is live into MBB, check 2879 // that the register is in regsLiveOut of each predecessor block. Since 2880 // this must come from a definition in the predecesssor or its live-in 2881 // list, this will catch a live-through case where the predecessor does not 2882 // have the register in its live-in list. This currently only checks 2883 // registers that have no aliases, are not allocatable and are not 2884 // reserved, which could mean a condition code register for instance. 2885 if (MRI->tracksLiveness()) 2886 for (const auto &MBB : *MF) 2887 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 2888 MCPhysReg LiveInReg = P.PhysReg; 2889 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); 2890 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) 2891 continue; 2892 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2893 BBInfo &PInfo = MBBInfoMap[Pred]; 2894 if (!PInfo.regsLiveOut.count(LiveInReg)) { 2895 report("Live in register not found to be live out from predecessor.", 2896 &MBB); 2897 errs() << TRI->getName(LiveInReg) 2898 << " not found to be live out from " 2899 << printMBBReference(*Pred) << "\n"; 2900 } 2901 } 2902 } 2903 2904 for (auto CSInfo : MF->getCallSitesInfo()) 2905 if (!CSInfo.first->isCall()) 2906 report("Call site info referencing instruction that is not call", MF); 2907 2908 // If there's debug-info, check that we don't have any duplicate value 2909 // tracking numbers. 2910 if (MF->getFunction().getSubprogram()) { 2911 DenseSet<unsigned> SeenNumbers; 2912 for (const auto &MBB : *MF) { 2913 for (const auto &MI : MBB) { 2914 if (auto Num = MI.peekDebugInstrNum()) { 2915 auto Result = SeenNumbers.insert((unsigned)Num); 2916 if (!Result.second) 2917 report("Instruction has a duplicated value tracking number", &MI); 2918 } 2919 } 2920 } 2921 } 2922 } 2923 2924 void MachineVerifier::verifyLiveVariables() { 2925 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2926 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2927 Register Reg = Register::index2VirtReg(I); 2928 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2929 for (const auto &MBB : *MF) { 2930 BBInfo &MInfo = MBBInfoMap[&MBB]; 2931 2932 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2933 if (MInfo.vregsRequired.count(Reg)) { 2934 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2935 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2936 errs() << "Virtual register " << printReg(Reg) 2937 << " must be live through the block.\n"; 2938 } 2939 } else { 2940 if (VI.AliveBlocks.test(MBB.getNumber())) { 2941 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2942 errs() << "Virtual register " << printReg(Reg) 2943 << " is not needed live through the block.\n"; 2944 } 2945 } 2946 } 2947 } 2948 } 2949 2950 void MachineVerifier::verifyLiveIntervals() { 2951 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2952 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2953 Register Reg = Register::index2VirtReg(I); 2954 2955 // Spilling and splitting may leave unused registers around. Skip them. 2956 if (MRI->reg_nodbg_empty(Reg)) 2957 continue; 2958 2959 if (!LiveInts->hasInterval(Reg)) { 2960 report("Missing live interval for virtual register", MF); 2961 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2962 continue; 2963 } 2964 2965 const LiveInterval &LI = LiveInts->getInterval(Reg); 2966 assert(Reg == LI.reg() && "Invalid reg to interval mapping"); 2967 verifyLiveInterval(LI); 2968 } 2969 2970 // Verify all the cached regunit intervals. 2971 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2972 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2973 verifyLiveRange(*LR, i); 2974 } 2975 2976 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2977 const VNInfo *VNI, Register Reg, 2978 LaneBitmask LaneMask) { 2979 if (VNI->isUnused()) 2980 return; 2981 2982 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2983 2984 if (!DefVNI) { 2985 report("Value not live at VNInfo def and not marked unused", MF); 2986 report_context(LR, Reg, LaneMask); 2987 report_context(*VNI); 2988 return; 2989 } 2990 2991 if (DefVNI != VNI) { 2992 report("Live segment at def has different VNInfo", MF); 2993 report_context(LR, Reg, LaneMask); 2994 report_context(*VNI); 2995 return; 2996 } 2997 2998 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2999 if (!MBB) { 3000 report("Invalid VNInfo definition index", MF); 3001 report_context(LR, Reg, LaneMask); 3002 report_context(*VNI); 3003 return; 3004 } 3005 3006 if (VNI->isPHIDef()) { 3007 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 3008 report("PHIDef VNInfo is not defined at MBB start", MBB); 3009 report_context(LR, Reg, LaneMask); 3010 report_context(*VNI); 3011 } 3012 return; 3013 } 3014 3015 // Non-PHI def. 3016 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 3017 if (!MI) { 3018 report("No instruction at VNInfo def index", MBB); 3019 report_context(LR, Reg, LaneMask); 3020 report_context(*VNI); 3021 return; 3022 } 3023 3024 if (Reg != 0) { 3025 bool hasDef = false; 3026 bool isEarlyClobber = false; 3027 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 3028 if (!MOI->isReg() || !MOI->isDef()) 3029 continue; 3030 if (Reg.isVirtual()) { 3031 if (MOI->getReg() != Reg) 3032 continue; 3033 } else { 3034 if (!MOI->getReg().isPhysical() || !TRI->hasRegUnit(MOI->getReg(), Reg)) 3035 continue; 3036 } 3037 if (LaneMask.any() && 3038 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 3039 continue; 3040 hasDef = true; 3041 if (MOI->isEarlyClobber()) 3042 isEarlyClobber = true; 3043 } 3044 3045 if (!hasDef) { 3046 report("Defining instruction does not modify register", MI); 3047 report_context(LR, Reg, LaneMask); 3048 report_context(*VNI); 3049 } 3050 3051 // Early clobber defs begin at USE slots, but other defs must begin at 3052 // DEF slots. 3053 if (isEarlyClobber) { 3054 if (!VNI->def.isEarlyClobber()) { 3055 report("Early clobber def must be at an early-clobber slot", MBB); 3056 report_context(LR, Reg, LaneMask); 3057 report_context(*VNI); 3058 } 3059 } else if (!VNI->def.isRegister()) { 3060 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 3061 report_context(LR, Reg, LaneMask); 3062 report_context(*VNI); 3063 } 3064 } 3065 } 3066 3067 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 3068 const LiveRange::const_iterator I, 3069 Register Reg, 3070 LaneBitmask LaneMask) { 3071 const LiveRange::Segment &S = *I; 3072 const VNInfo *VNI = S.valno; 3073 assert(VNI && "Live segment has no valno"); 3074 3075 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 3076 report("Foreign valno in live segment", MF); 3077 report_context(LR, Reg, LaneMask); 3078 report_context(S); 3079 report_context(*VNI); 3080 } 3081 3082 if (VNI->isUnused()) { 3083 report("Live segment valno is marked unused", MF); 3084 report_context(LR, Reg, LaneMask); 3085 report_context(S); 3086 } 3087 3088 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 3089 if (!MBB) { 3090 report("Bad start of live segment, no basic block", MF); 3091 report_context(LR, Reg, LaneMask); 3092 report_context(S); 3093 return; 3094 } 3095 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 3096 if (S.start != MBBStartIdx && S.start != VNI->def) { 3097 report("Live segment must begin at MBB entry or valno def", MBB); 3098 report_context(LR, Reg, LaneMask); 3099 report_context(S); 3100 } 3101 3102 const MachineBasicBlock *EndMBB = 3103 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 3104 if (!EndMBB) { 3105 report("Bad end of live segment, no basic block", MF); 3106 report_context(LR, Reg, LaneMask); 3107 report_context(S); 3108 return; 3109 } 3110 3111 // Checks for non-live-out segments. 3112 if (S.end != LiveInts->getMBBEndIdx(EndMBB)) { 3113 // RegUnit intervals are allowed dead phis. 3114 if (!Reg.isVirtual() && VNI->isPHIDef() && S.start == VNI->def && 3115 S.end == VNI->def.getDeadSlot()) 3116 return; 3117 3118 // The live segment is ending inside EndMBB 3119 const MachineInstr *MI = 3120 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 3121 if (!MI) { 3122 report("Live segment doesn't end at a valid instruction", EndMBB); 3123 report_context(LR, Reg, LaneMask); 3124 report_context(S); 3125 return; 3126 } 3127 3128 // The block slot must refer to a basic block boundary. 3129 if (S.end.isBlock()) { 3130 report("Live segment ends at B slot of an instruction", EndMBB); 3131 report_context(LR, Reg, LaneMask); 3132 report_context(S); 3133 } 3134 3135 if (S.end.isDead()) { 3136 // Segment ends on the dead slot. 3137 // That means there must be a dead def. 3138 if (!SlotIndex::isSameInstr(S.start, S.end)) { 3139 report("Live segment ending at dead slot spans instructions", EndMBB); 3140 report_context(LR, Reg, LaneMask); 3141 report_context(S); 3142 } 3143 } 3144 3145 // After tied operands are rewritten, a live segment can only end at an 3146 // early-clobber slot if it is being redefined by an early-clobber def. 3147 // TODO: Before tied operands are rewritten, a live segment can only end at 3148 // an early-clobber slot if the last use is tied to an early-clobber def. 3149 if (MF->getProperties().hasProperty( 3150 MachineFunctionProperties::Property::TiedOpsRewritten) && 3151 S.end.isEarlyClobber()) { 3152 if (I + 1 == LR.end() || (I + 1)->start != S.end) { 3153 report("Live segment ending at early clobber slot must be " 3154 "redefined by an EC def in the same instruction", 3155 EndMBB); 3156 report_context(LR, Reg, LaneMask); 3157 report_context(S); 3158 } 3159 } 3160 3161 // The following checks only apply to virtual registers. Physreg liveness 3162 // is too weird to check. 3163 if (Reg.isVirtual()) { 3164 // A live segment can end with either a redefinition, a kill flag on a 3165 // use, or a dead flag on a def. 3166 bool hasRead = false; 3167 bool hasSubRegDef = false; 3168 bool hasDeadDef = false; 3169 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 3170 if (!MOI->isReg() || MOI->getReg() != Reg) 3171 continue; 3172 unsigned Sub = MOI->getSubReg(); 3173 LaneBitmask SLM = 3174 Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) : LaneBitmask::getAll(); 3175 if (MOI->isDef()) { 3176 if (Sub != 0) { 3177 hasSubRegDef = true; 3178 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 3179 // mask for subregister defs. Read-undef defs will be handled by 3180 // readsReg below. 3181 SLM = ~SLM; 3182 } 3183 if (MOI->isDead()) 3184 hasDeadDef = true; 3185 } 3186 if (LaneMask.any() && (LaneMask & SLM).none()) 3187 continue; 3188 if (MOI->readsReg()) 3189 hasRead = true; 3190 } 3191 if (S.end.isDead()) { 3192 // Make sure that the corresponding machine operand for a "dead" live 3193 // range has the dead flag. We cannot perform this check for subregister 3194 // liveranges as partially dead values are allowed. 3195 if (LaneMask.none() && !hasDeadDef) { 3196 report( 3197 "Instruction ending live segment on dead slot has no dead flag", 3198 MI); 3199 report_context(LR, Reg, LaneMask); 3200 report_context(S); 3201 } 3202 } else { 3203 if (!hasRead) { 3204 // When tracking subregister liveness, the main range must start new 3205 // values on partial register writes, even if there is no read. 3206 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 3207 !hasSubRegDef) { 3208 report("Instruction ending live segment doesn't read the register", 3209 MI); 3210 report_context(LR, Reg, LaneMask); 3211 report_context(S); 3212 } 3213 } 3214 } 3215 } 3216 } 3217 3218 // Now check all the basic blocks in this live segment. 3219 MachineFunction::const_iterator MFI = MBB->getIterator(); 3220 // Is this live segment the beginning of a non-PHIDef VN? 3221 if (S.start == VNI->def && !VNI->isPHIDef()) { 3222 // Not live-in to any blocks. 3223 if (MBB == EndMBB) 3224 return; 3225 // Skip this block. 3226 ++MFI; 3227 } 3228 3229 SmallVector<SlotIndex, 4> Undefs; 3230 if (LaneMask.any()) { 3231 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 3232 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 3233 } 3234 3235 while (true) { 3236 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 3237 // We don't know how to track physregs into a landing pad. 3238 if (!Reg.isVirtual() && MFI->isEHPad()) { 3239 if (&*MFI == EndMBB) 3240 break; 3241 ++MFI; 3242 continue; 3243 } 3244 3245 // Is VNI a PHI-def in the current block? 3246 bool IsPHI = VNI->isPHIDef() && 3247 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 3248 3249 // Check that VNI is live-out of all predecessors. 3250 for (const MachineBasicBlock *Pred : MFI->predecessors()) { 3251 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred); 3252 // Predecessor of landing pad live-out on last call. 3253 if (MFI->isEHPad()) { 3254 for (const MachineInstr &MI : llvm::reverse(*Pred)) { 3255 if (MI.isCall()) { 3256 PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex(); 3257 break; 3258 } 3259 } 3260 } 3261 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 3262 3263 // All predecessors must have a live-out value. However for a phi 3264 // instruction with subregister intervals 3265 // only one of the subregisters (not necessarily the current one) needs to 3266 // be defined. 3267 if (!PVNI && (LaneMask.none() || !IsPHI)) { 3268 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes)) 3269 continue; 3270 report("Register not marked live out of predecessor", Pred); 3271 report_context(LR, Reg, LaneMask); 3272 report_context(*VNI); 3273 errs() << " live into " << printMBBReference(*MFI) << '@' 3274 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 3275 << PEnd << '\n'; 3276 continue; 3277 } 3278 3279 // Only PHI-defs can take different predecessor values. 3280 if (!IsPHI && PVNI != VNI) { 3281 report("Different value live out of predecessor", Pred); 3282 report_context(LR, Reg, LaneMask); 3283 errs() << "Valno #" << PVNI->id << " live out of " 3284 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #" 3285 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 3286 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 3287 } 3288 } 3289 if (&*MFI == EndMBB) 3290 break; 3291 ++MFI; 3292 } 3293 } 3294 3295 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg, 3296 LaneBitmask LaneMask) { 3297 for (const VNInfo *VNI : LR.valnos) 3298 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 3299 3300 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 3301 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 3302 } 3303 3304 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 3305 Register Reg = LI.reg(); 3306 assert(Reg.isVirtual()); 3307 verifyLiveRange(LI, Reg); 3308 3309 LaneBitmask Mask; 3310 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3311 for (const LiveInterval::SubRange &SR : LI.subranges()) { 3312 if ((Mask & SR.LaneMask).any()) { 3313 report("Lane masks of sub ranges overlap in live interval", MF); 3314 report_context(LI); 3315 } 3316 if ((SR.LaneMask & ~MaxMask).any()) { 3317 report("Subrange lanemask is invalid", MF); 3318 report_context(LI); 3319 } 3320 if (SR.empty()) { 3321 report("Subrange must not be empty", MF); 3322 report_context(SR, LI.reg(), SR.LaneMask); 3323 } 3324 Mask |= SR.LaneMask; 3325 verifyLiveRange(SR, LI.reg(), SR.LaneMask); 3326 if (!LI.covers(SR)) { 3327 report("A Subrange is not covered by the main range", MF); 3328 report_context(LI); 3329 } 3330 } 3331 3332 // Check the LI only has one connected component. 3333 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 3334 unsigned NumComp = ConEQ.Classify(LI); 3335 if (NumComp > 1) { 3336 report("Multiple connected components in live interval", MF); 3337 report_context(LI); 3338 for (unsigned comp = 0; comp != NumComp; ++comp) { 3339 errs() << comp << ": valnos"; 3340 for (const VNInfo *I : LI.valnos) 3341 if (comp == ConEQ.getEqClass(I)) 3342 errs() << ' ' << I->id; 3343 errs() << '\n'; 3344 } 3345 } 3346 } 3347 3348 namespace { 3349 3350 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 3351 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 3352 // value is zero. 3353 // We use a bool plus an integer to capture the stack state. 3354 struct StackStateOfBB { 3355 StackStateOfBB() = default; 3356 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 3357 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 3358 ExitIsSetup(ExitSetup) {} 3359 3360 // Can be negative, which means we are setting up a frame. 3361 int EntryValue = 0; 3362 int ExitValue = 0; 3363 bool EntryIsSetup = false; 3364 bool ExitIsSetup = false; 3365 }; 3366 3367 } // end anonymous namespace 3368 3369 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 3370 /// by a FrameDestroy <n>, stack adjustments are identical on all 3371 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 3372 void MachineVerifier::verifyStackFrame() { 3373 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 3374 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 3375 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 3376 return; 3377 3378 SmallVector<StackStateOfBB, 8> SPState; 3379 SPState.resize(MF->getNumBlockIDs()); 3380 df_iterator_default_set<const MachineBasicBlock*> Reachable; 3381 3382 // Visit the MBBs in DFS order. 3383 for (df_ext_iterator<const MachineFunction *, 3384 df_iterator_default_set<const MachineBasicBlock *>> 3385 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 3386 DFI != DFE; ++DFI) { 3387 const MachineBasicBlock *MBB = *DFI; 3388 3389 StackStateOfBB BBState; 3390 // Check the exit state of the DFS stack predecessor. 3391 if (DFI.getPathLength() >= 2) { 3392 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 3393 assert(Reachable.count(StackPred) && 3394 "DFS stack predecessor is already visited.\n"); 3395 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 3396 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 3397 BBState.ExitValue = BBState.EntryValue; 3398 BBState.ExitIsSetup = BBState.EntryIsSetup; 3399 } 3400 3401 // Update stack state by checking contents of MBB. 3402 for (const auto &I : *MBB) { 3403 if (I.getOpcode() == FrameSetupOpcode) { 3404 if (BBState.ExitIsSetup) 3405 report("FrameSetup is after another FrameSetup", &I); 3406 BBState.ExitValue -= TII->getFrameTotalSize(I); 3407 BBState.ExitIsSetup = true; 3408 } 3409 3410 if (I.getOpcode() == FrameDestroyOpcode) { 3411 int Size = TII->getFrameTotalSize(I); 3412 if (!BBState.ExitIsSetup) 3413 report("FrameDestroy is not after a FrameSetup", &I); 3414 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 3415 BBState.ExitValue; 3416 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 3417 report("FrameDestroy <n> is after FrameSetup <m>", &I); 3418 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 3419 << AbsSPAdj << ">.\n"; 3420 } 3421 BBState.ExitValue += Size; 3422 BBState.ExitIsSetup = false; 3423 } 3424 } 3425 SPState[MBB->getNumber()] = BBState; 3426 3427 // Make sure the exit state of any predecessor is consistent with the entry 3428 // state. 3429 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 3430 if (Reachable.count(Pred) && 3431 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || 3432 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 3433 report("The exit stack state of a predecessor is inconsistent.", MBB); 3434 errs() << "Predecessor " << printMBBReference(*Pred) 3435 << " has exit state (" << SPState[Pred->getNumber()].ExitValue 3436 << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while " 3437 << printMBBReference(*MBB) << " has entry state (" 3438 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 3439 } 3440 } 3441 3442 // Make sure the entry state of any successor is consistent with the exit 3443 // state. 3444 for (const MachineBasicBlock *Succ : MBB->successors()) { 3445 if (Reachable.count(Succ) && 3446 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || 3447 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 3448 report("The entry stack state of a successor is inconsistent.", MBB); 3449 errs() << "Successor " << printMBBReference(*Succ) 3450 << " has entry state (" << SPState[Succ->getNumber()].EntryValue 3451 << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while " 3452 << printMBBReference(*MBB) << " has exit state (" 3453 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 3454 } 3455 } 3456 3457 // Make sure a basic block with return ends with zero stack adjustment. 3458 if (!MBB->empty() && MBB->back().isReturn()) { 3459 if (BBState.ExitIsSetup) 3460 report("A return block ends with a FrameSetup.", MBB); 3461 if (BBState.ExitValue) 3462 report("A return block ends with a nonzero stack adjustment.", MBB); 3463 } 3464 } 3465 } 3466