xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineVerifier.cpp (revision 1323ec571215a77ddd21294f0871979d5ad6b992)
1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalCalc.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(const MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<Register, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<Register>;
108     using RegMap = DenseMap<Register, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, Register Reg) {
124       RV.push_back(Reg);
125       if (Reg.isPhysical())
126         append_range(RV, TRI->subregs(Reg.asMCReg()));
127     }
128 
129     struct BBInfo {
130       // Is this MBB reachable from the MF entry point?
131       bool reachable = false;
132 
133       // Vregs that must be live in because they are used without being
134       // defined. Map value is the user. vregsLiveIn doesn't include regs
135       // that only are used by PHI nodes.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsRequired if it belongs there. Return true if
160       // anything changed.
161       bool addRequired(Register Reg) {
162         if (!Reg.isVirtual())
163           return false;
164         if (regsLiveOut.count(Reg))
165           return false;
166         return vregsRequired.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addRequired(const RegSet &RS) {
171         bool Changed = false;
172         for (Register Reg : RS)
173           Changed |= addRequired(Reg);
174         return Changed;
175       }
176 
177       // Same for a full map.
178       bool addRequired(const RegMap &RM) {
179         bool Changed = false;
180         for (const auto &I : RM)
181           Changed |= addRequired(I.first);
182         return Changed;
183       }
184 
185       // Live-out registers are either in regsLiveOut or vregsPassed.
186       bool isLiveOut(Register Reg) const {
187         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
188       }
189     };
190 
191     // Extra register info per MBB.
192     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
193 
194     bool isReserved(Register Reg) {
195       return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
196     }
197 
198     bool isAllocatable(Register Reg) const {
199       return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
200              !regsReserved.test(Reg.id());
201     }
202 
203     // Analysis information if available
204     LiveVariables *LiveVars;
205     LiveIntervals *LiveInts;
206     LiveStacks *LiveStks;
207     SlotIndexes *Indexes;
208 
209     void visitMachineFunctionBefore();
210     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
211     void visitMachineBundleBefore(const MachineInstr *MI);
212 
213     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
214     void verifyPreISelGenericInstruction(const MachineInstr *MI);
215     void visitMachineInstrBefore(const MachineInstr *MI);
216     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
217     void visitMachineBundleAfter(const MachineInstr *MI);
218     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
219     void visitMachineFunctionAfter();
220 
221     void report(const char *msg, const MachineFunction *MF);
222     void report(const char *msg, const MachineBasicBlock *MBB);
223     void report(const char *msg, const MachineInstr *MI);
224     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
225                 LLT MOVRegType = LLT{});
226     void report(const Twine &Msg, const MachineInstr *MI);
227 
228     void report_context(const LiveInterval &LI) const;
229     void report_context(const LiveRange &LR, Register VRegUnit,
230                         LaneBitmask LaneMask) const;
231     void report_context(const LiveRange::Segment &S) const;
232     void report_context(const VNInfo &VNI) const;
233     void report_context(SlotIndex Pos) const;
234     void report_context(MCPhysReg PhysReg) const;
235     void report_context_liverange(const LiveRange &LR) const;
236     void report_context_lanemask(LaneBitmask LaneMask) const;
237     void report_context_vreg(Register VReg) const;
238     void report_context_vreg_regunit(Register VRegOrUnit) const;
239 
240     void verifyInlineAsm(const MachineInstr *MI);
241 
242     void checkLiveness(const MachineOperand *MO, unsigned MONum);
243     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
244                             SlotIndex UseIdx, const LiveRange &LR,
245                             Register VRegOrUnit,
246                             LaneBitmask LaneMask = LaneBitmask::getNone());
247     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
248                             SlotIndex DefIdx, const LiveRange &LR,
249                             Register VRegOrUnit, bool SubRangeCheck = false,
250                             LaneBitmask LaneMask = LaneBitmask::getNone());
251 
252     void markReachable(const MachineBasicBlock *MBB);
253     void calcRegsPassed();
254     void checkPHIOps(const MachineBasicBlock &MBB);
255 
256     void calcRegsRequired();
257     void verifyLiveVariables();
258     void verifyLiveIntervals();
259     void verifyLiveInterval(const LiveInterval&);
260     void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
261                               LaneBitmask);
262     void verifyLiveRangeSegment(const LiveRange &,
263                                 const LiveRange::const_iterator I, Register,
264                                 LaneBitmask);
265     void verifyLiveRange(const LiveRange &, Register,
266                          LaneBitmask LaneMask = LaneBitmask::getNone());
267 
268     void verifyStackFrame();
269 
270     void verifySlotIndexes() const;
271     void verifyProperties(const MachineFunction &MF);
272   };
273 
274   struct MachineVerifierPass : public MachineFunctionPass {
275     static char ID; // Pass ID, replacement for typeid
276 
277     const std::string Banner;
278 
279     MachineVerifierPass(std::string banner = std::string())
280       : MachineFunctionPass(ID), Banner(std::move(banner)) {
281         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
282       }
283 
284     void getAnalysisUsage(AnalysisUsage &AU) const override {
285       AU.setPreservesAll();
286       MachineFunctionPass::getAnalysisUsage(AU);
287     }
288 
289     bool runOnMachineFunction(MachineFunction &MF) override {
290       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
291       if (FoundErrors)
292         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
293       return false;
294     }
295   };
296 
297 } // end anonymous namespace
298 
299 char MachineVerifierPass::ID = 0;
300 
301 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
302                 "Verify generated machine code", false, false)
303 
304 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
305   return new MachineVerifierPass(Banner);
306 }
307 
308 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
309                                  const std::string &Banner,
310                                  const MachineFunction &MF) {
311   // TODO: Use MFAM after porting below analyses.
312   // LiveVariables *LiveVars;
313   // LiveIntervals *LiveInts;
314   // LiveStacks *LiveStks;
315   // SlotIndexes *Indexes;
316   unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
317   if (FoundErrors)
318     report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
319 }
320 
321 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
322     const {
323   MachineFunction &MF = const_cast<MachineFunction&>(*this);
324   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
325   if (AbortOnErrors && FoundErrors)
326     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
327   return FoundErrors == 0;
328 }
329 
330 void MachineVerifier::verifySlotIndexes() const {
331   if (Indexes == nullptr)
332     return;
333 
334   // Ensure the IdxMBB list is sorted by slot indexes.
335   SlotIndex Last;
336   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
337        E = Indexes->MBBIndexEnd(); I != E; ++I) {
338     assert(!Last.isValid() || I->first > Last);
339     Last = I->first;
340   }
341 }
342 
343 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
344   // If a pass has introduced virtual registers without clearing the
345   // NoVRegs property (or set it without allocating the vregs)
346   // then report an error.
347   if (MF.getProperties().hasProperty(
348           MachineFunctionProperties::Property::NoVRegs) &&
349       MRI->getNumVirtRegs())
350     report("Function has NoVRegs property but there are VReg operands", &MF);
351 }
352 
353 unsigned MachineVerifier::verify(const MachineFunction &MF) {
354   foundErrors = 0;
355 
356   this->MF = &MF;
357   TM = &MF.getTarget();
358   TII = MF.getSubtarget().getInstrInfo();
359   TRI = MF.getSubtarget().getRegisterInfo();
360   MRI = &MF.getRegInfo();
361 
362   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
363       MachineFunctionProperties::Property::FailedISel);
364 
365   // If we're mid-GlobalISel and we already triggered the fallback path then
366   // it's expected that the MIR is somewhat broken but that's ok since we'll
367   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
368   if (isFunctionFailedISel)
369     return foundErrors;
370 
371   isFunctionRegBankSelected = MF.getProperties().hasProperty(
372       MachineFunctionProperties::Property::RegBankSelected);
373   isFunctionSelected = MF.getProperties().hasProperty(
374       MachineFunctionProperties::Property::Selected);
375 
376   LiveVars = nullptr;
377   LiveInts = nullptr;
378   LiveStks = nullptr;
379   Indexes = nullptr;
380   if (PASS) {
381     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
382     // We don't want to verify LiveVariables if LiveIntervals is available.
383     if (!LiveInts)
384       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
385     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
386     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
387   }
388 
389   verifySlotIndexes();
390 
391   verifyProperties(MF);
392 
393   visitMachineFunctionBefore();
394   for (const MachineBasicBlock &MBB : MF) {
395     visitMachineBasicBlockBefore(&MBB);
396     // Keep track of the current bundle header.
397     const MachineInstr *CurBundle = nullptr;
398     // Do we expect the next instruction to be part of the same bundle?
399     bool InBundle = false;
400 
401     for (const MachineInstr &MI : MBB.instrs()) {
402       if (MI.getParent() != &MBB) {
403         report("Bad instruction parent pointer", &MBB);
404         errs() << "Instruction: " << MI;
405         continue;
406       }
407 
408       // Check for consistent bundle flags.
409       if (InBundle && !MI.isBundledWithPred())
410         report("Missing BundledPred flag, "
411                "BundledSucc was set on predecessor",
412                &MI);
413       if (!InBundle && MI.isBundledWithPred())
414         report("BundledPred flag is set, "
415                "but BundledSucc not set on predecessor",
416                &MI);
417 
418       // Is this a bundle header?
419       if (!MI.isInsideBundle()) {
420         if (CurBundle)
421           visitMachineBundleAfter(CurBundle);
422         CurBundle = &MI;
423         visitMachineBundleBefore(CurBundle);
424       } else if (!CurBundle)
425         report("No bundle header", &MI);
426       visitMachineInstrBefore(&MI);
427       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
428         const MachineOperand &Op = MI.getOperand(I);
429         if (Op.getParent() != &MI) {
430           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
431           // functions when replacing operands of a MachineInstr.
432           report("Instruction has operand with wrong parent set", &MI);
433         }
434 
435         visitMachineOperand(&Op, I);
436       }
437 
438       // Was this the last bundled instruction?
439       InBundle = MI.isBundledWithSucc();
440     }
441     if (CurBundle)
442       visitMachineBundleAfter(CurBundle);
443     if (InBundle)
444       report("BundledSucc flag set on last instruction in block", &MBB.back());
445     visitMachineBasicBlockAfter(&MBB);
446   }
447   visitMachineFunctionAfter();
448 
449   // Clean up.
450   regsLive.clear();
451   regsDefined.clear();
452   regsDead.clear();
453   regsKilled.clear();
454   regMasks.clear();
455   MBBInfoMap.clear();
456 
457   return foundErrors;
458 }
459 
460 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
461   assert(MF);
462   errs() << '\n';
463   if (!foundErrors++) {
464     if (Banner)
465       errs() << "# " << Banner << '\n';
466     if (LiveInts != nullptr)
467       LiveInts->print(errs());
468     else
469       MF->print(errs(), Indexes);
470   }
471   errs() << "*** Bad machine code: " << msg << " ***\n"
472       << "- function:    " << MF->getName() << "\n";
473 }
474 
475 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
476   assert(MBB);
477   report(msg, MBB->getParent());
478   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
479          << MBB->getName() << " (" << (const void *)MBB << ')';
480   if (Indexes)
481     errs() << " [" << Indexes->getMBBStartIdx(MBB)
482         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
483   errs() << '\n';
484 }
485 
486 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
487   assert(MI);
488   report(msg, MI->getParent());
489   errs() << "- instruction: ";
490   if (Indexes && Indexes->hasIndex(*MI))
491     errs() << Indexes->getInstructionIndex(*MI) << '\t';
492   MI->print(errs(), /*IsStandalone=*/true);
493 }
494 
495 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
496                              unsigned MONum, LLT MOVRegType) {
497   assert(MO);
498   report(msg, MO->getParent());
499   errs() << "- operand " << MONum << ":   ";
500   MO->print(errs(), MOVRegType, TRI);
501   errs() << "\n";
502 }
503 
504 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) {
505   report(Msg.str().c_str(), MI);
506 }
507 
508 void MachineVerifier::report_context(SlotIndex Pos) const {
509   errs() << "- at:          " << Pos << '\n';
510 }
511 
512 void MachineVerifier::report_context(const LiveInterval &LI) const {
513   errs() << "- interval:    " << LI << '\n';
514 }
515 
516 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
517                                      LaneBitmask LaneMask) const {
518   report_context_liverange(LR);
519   report_context_vreg_regunit(VRegUnit);
520   if (LaneMask.any())
521     report_context_lanemask(LaneMask);
522 }
523 
524 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
525   errs() << "- segment:     " << S << '\n';
526 }
527 
528 void MachineVerifier::report_context(const VNInfo &VNI) const {
529   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
530 }
531 
532 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
533   errs() << "- liverange:   " << LR << '\n';
534 }
535 
536 void MachineVerifier::report_context(MCPhysReg PReg) const {
537   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
538 }
539 
540 void MachineVerifier::report_context_vreg(Register VReg) const {
541   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
542 }
543 
544 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
545   if (Register::isVirtualRegister(VRegOrUnit)) {
546     report_context_vreg(VRegOrUnit);
547   } else {
548     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
549   }
550 }
551 
552 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
553   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
554 }
555 
556 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
557   BBInfo &MInfo = MBBInfoMap[MBB];
558   if (!MInfo.reachable) {
559     MInfo.reachable = true;
560     for (const MachineBasicBlock *Succ : MBB->successors())
561       markReachable(Succ);
562   }
563 }
564 
565 void MachineVerifier::visitMachineFunctionBefore() {
566   lastIndex = SlotIndex();
567   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
568                                            : TRI->getReservedRegs(*MF);
569 
570   if (!MF->empty())
571     markReachable(&MF->front());
572 
573   // Build a set of the basic blocks in the function.
574   FunctionBlocks.clear();
575   for (const auto &MBB : *MF) {
576     FunctionBlocks.insert(&MBB);
577     BBInfo &MInfo = MBBInfoMap[&MBB];
578 
579     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
580     if (MInfo.Preds.size() != MBB.pred_size())
581       report("MBB has duplicate entries in its predecessor list.", &MBB);
582 
583     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
584     if (MInfo.Succs.size() != MBB.succ_size())
585       report("MBB has duplicate entries in its successor list.", &MBB);
586   }
587 
588   // Check that the register use lists are sane.
589   MRI->verifyUseLists();
590 
591   if (!MF->empty())
592     verifyStackFrame();
593 }
594 
595 void
596 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
597   FirstTerminator = nullptr;
598   FirstNonPHI = nullptr;
599 
600   if (!MF->getProperties().hasProperty(
601       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
602     // If this block has allocatable physical registers live-in, check that
603     // it is an entry block or landing pad.
604     for (const auto &LI : MBB->liveins()) {
605       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
606           MBB->getIterator() != MBB->getParent()->begin()) {
607         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
608         report_context(LI.PhysReg);
609       }
610     }
611   }
612 
613   // Count the number of landing pad successors.
614   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
615   for (const auto *succ : MBB->successors()) {
616     if (succ->isEHPad())
617       LandingPadSuccs.insert(succ);
618     if (!FunctionBlocks.count(succ))
619       report("MBB has successor that isn't part of the function.", MBB);
620     if (!MBBInfoMap[succ].Preds.count(MBB)) {
621       report("Inconsistent CFG", MBB);
622       errs() << "MBB is not in the predecessor list of the successor "
623              << printMBBReference(*succ) << ".\n";
624     }
625   }
626 
627   // Check the predecessor list.
628   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
629     if (!FunctionBlocks.count(Pred))
630       report("MBB has predecessor that isn't part of the function.", MBB);
631     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
632       report("Inconsistent CFG", MBB);
633       errs() << "MBB is not in the successor list of the predecessor "
634              << printMBBReference(*Pred) << ".\n";
635     }
636   }
637 
638   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
639   const BasicBlock *BB = MBB->getBasicBlock();
640   const Function &F = MF->getFunction();
641   if (LandingPadSuccs.size() > 1 &&
642       !(AsmInfo &&
643         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
644         BB && isa<SwitchInst>(BB->getTerminator())) &&
645       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
646     report("MBB has more than one landing pad successor", MBB);
647 
648   // Call analyzeBranch. If it succeeds, there several more conditions to check.
649   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
650   SmallVector<MachineOperand, 4> Cond;
651   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
652                           Cond)) {
653     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
654     // check whether its answers match up with reality.
655     if (!TBB && !FBB) {
656       // Block falls through to its successor.
657       if (!MBB->empty() && MBB->back().isBarrier() &&
658           !TII->isPredicated(MBB->back())) {
659         report("MBB exits via unconditional fall-through but ends with a "
660                "barrier instruction!", MBB);
661       }
662       if (!Cond.empty()) {
663         report("MBB exits via unconditional fall-through but has a condition!",
664                MBB);
665       }
666     } else if (TBB && !FBB && Cond.empty()) {
667       // Block unconditionally branches somewhere.
668       if (MBB->empty()) {
669         report("MBB exits via unconditional branch but doesn't contain "
670                "any instructions!", MBB);
671       } else if (!MBB->back().isBarrier()) {
672         report("MBB exits via unconditional branch but doesn't end with a "
673                "barrier instruction!", MBB);
674       } else if (!MBB->back().isTerminator()) {
675         report("MBB exits via unconditional branch but the branch isn't a "
676                "terminator instruction!", MBB);
677       }
678     } else if (TBB && !FBB && !Cond.empty()) {
679       // Block conditionally branches somewhere, otherwise falls through.
680       if (MBB->empty()) {
681         report("MBB exits via conditional branch/fall-through but doesn't "
682                "contain any instructions!", MBB);
683       } else if (MBB->back().isBarrier()) {
684         report("MBB exits via conditional branch/fall-through but ends with a "
685                "barrier instruction!", MBB);
686       } else if (!MBB->back().isTerminator()) {
687         report("MBB exits via conditional branch/fall-through but the branch "
688                "isn't a terminator instruction!", MBB);
689       }
690     } else if (TBB && FBB) {
691       // Block conditionally branches somewhere, otherwise branches
692       // somewhere else.
693       if (MBB->empty()) {
694         report("MBB exits via conditional branch/branch but doesn't "
695                "contain any instructions!", MBB);
696       } else if (!MBB->back().isBarrier()) {
697         report("MBB exits via conditional branch/branch but doesn't end with a "
698                "barrier instruction!", MBB);
699       } else if (!MBB->back().isTerminator()) {
700         report("MBB exits via conditional branch/branch but the branch "
701                "isn't a terminator instruction!", MBB);
702       }
703       if (Cond.empty()) {
704         report("MBB exits via conditional branch/branch but there's no "
705                "condition!", MBB);
706       }
707     } else {
708       report("analyzeBranch returned invalid data!", MBB);
709     }
710 
711     // Now check that the successors match up with the answers reported by
712     // analyzeBranch.
713     if (TBB && !MBB->isSuccessor(TBB))
714       report("MBB exits via jump or conditional branch, but its target isn't a "
715              "CFG successor!",
716              MBB);
717     if (FBB && !MBB->isSuccessor(FBB))
718       report("MBB exits via conditional branch, but its target isn't a CFG "
719              "successor!",
720              MBB);
721 
722     // There might be a fallthrough to the next block if there's either no
723     // unconditional true branch, or if there's a condition, and one of the
724     // branches is missing.
725     bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
726 
727     // A conditional fallthrough must be an actual CFG successor, not
728     // unreachable. (Conversely, an unconditional fallthrough might not really
729     // be a successor, because the block might end in unreachable.)
730     if (!Cond.empty() && !FBB) {
731       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
732       if (MBBI == MF->end()) {
733         report("MBB conditionally falls through out of function!", MBB);
734       } else if (!MBB->isSuccessor(&*MBBI))
735         report("MBB exits via conditional branch/fall-through but the CFG "
736                "successors don't match the actual successors!",
737                MBB);
738     }
739 
740     // Verify that there aren't any extra un-accounted-for successors.
741     for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
742       // If this successor is one of the branch targets, it's okay.
743       if (SuccMBB == TBB || SuccMBB == FBB)
744         continue;
745       // If we might have a fallthrough, and the successor is the fallthrough
746       // block, that's also ok.
747       if (Fallthrough && SuccMBB == MBB->getNextNode())
748         continue;
749       // Also accept successors which are for exception-handling or might be
750       // inlineasm_br targets.
751       if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
752         continue;
753       report("MBB has unexpected successors which are not branch targets, "
754              "fallthrough, EHPads, or inlineasm_br targets.",
755              MBB);
756     }
757   }
758 
759   regsLive.clear();
760   if (MRI->tracksLiveness()) {
761     for (const auto &LI : MBB->liveins()) {
762       if (!Register::isPhysicalRegister(LI.PhysReg)) {
763         report("MBB live-in list contains non-physical register", MBB);
764         continue;
765       }
766       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
767         regsLive.insert(SubReg);
768     }
769   }
770 
771   const MachineFrameInfo &MFI = MF->getFrameInfo();
772   BitVector PR = MFI.getPristineRegs(*MF);
773   for (unsigned I : PR.set_bits()) {
774     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
775       regsLive.insert(SubReg);
776   }
777 
778   regsKilled.clear();
779   regsDefined.clear();
780 
781   if (Indexes)
782     lastIndex = Indexes->getMBBStartIdx(MBB);
783 }
784 
785 // This function gets called for all bundle headers, including normal
786 // stand-alone unbundled instructions.
787 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
788   if (Indexes && Indexes->hasIndex(*MI)) {
789     SlotIndex idx = Indexes->getInstructionIndex(*MI);
790     if (!(idx > lastIndex)) {
791       report("Instruction index out of order", MI);
792       errs() << "Last instruction was at " << lastIndex << '\n';
793     }
794     lastIndex = idx;
795   }
796 
797   // Ensure non-terminators don't follow terminators.
798   if (MI->isTerminator()) {
799     if (!FirstTerminator)
800       FirstTerminator = MI;
801   } else if (FirstTerminator) {
802     report("Non-terminator instruction after the first terminator", MI);
803     errs() << "First terminator was:\t" << *FirstTerminator;
804   }
805 }
806 
807 // The operands on an INLINEASM instruction must follow a template.
808 // Verify that the flag operands make sense.
809 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
810   // The first two operands on INLINEASM are the asm string and global flags.
811   if (MI->getNumOperands() < 2) {
812     report("Too few operands on inline asm", MI);
813     return;
814   }
815   if (!MI->getOperand(0).isSymbol())
816     report("Asm string must be an external symbol", MI);
817   if (!MI->getOperand(1).isImm())
818     report("Asm flags must be an immediate", MI);
819   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
820   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
821   // and Extra_IsConvergent = 32.
822   if (!isUInt<6>(MI->getOperand(1).getImm()))
823     report("Unknown asm flags", &MI->getOperand(1), 1);
824 
825   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
826 
827   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
828   unsigned NumOps;
829   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
830     const MachineOperand &MO = MI->getOperand(OpNo);
831     // There may be implicit ops after the fixed operands.
832     if (!MO.isImm())
833       break;
834     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
835   }
836 
837   if (OpNo > MI->getNumOperands())
838     report("Missing operands in last group", MI);
839 
840   // An optional MDNode follows the groups.
841   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
842     ++OpNo;
843 
844   // All trailing operands must be implicit registers.
845   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
846     const MachineOperand &MO = MI->getOperand(OpNo);
847     if (!MO.isReg() || !MO.isImplicit())
848       report("Expected implicit register after groups", &MO, OpNo);
849   }
850 }
851 
852 /// Check that types are consistent when two operands need to have the same
853 /// number of vector elements.
854 /// \return true if the types are valid.
855 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
856                                                const MachineInstr *MI) {
857   if (Ty0.isVector() != Ty1.isVector()) {
858     report("operand types must be all-vector or all-scalar", MI);
859     // Generally we try to report as many issues as possible at once, but in
860     // this case it's not clear what should we be comparing the size of the
861     // scalar with: the size of the whole vector or its lane. Instead of
862     // making an arbitrary choice and emitting not so helpful message, let's
863     // avoid the extra noise and stop here.
864     return false;
865   }
866 
867   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
868     report("operand types must preserve number of vector elements", MI);
869     return false;
870   }
871 
872   return true;
873 }
874 
875 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
876   if (isFunctionSelected)
877     report("Unexpected generic instruction in a Selected function", MI);
878 
879   const MCInstrDesc &MCID = MI->getDesc();
880   unsigned NumOps = MI->getNumOperands();
881 
882   // Branches must reference a basic block if they are not indirect
883   if (MI->isBranch() && !MI->isIndirectBranch()) {
884     bool HasMBB = false;
885     for (const MachineOperand &Op : MI->operands()) {
886       if (Op.isMBB()) {
887         HasMBB = true;
888         break;
889       }
890     }
891 
892     if (!HasMBB) {
893       report("Branch instruction is missing a basic block operand or "
894              "isIndirectBranch property",
895              MI);
896     }
897   }
898 
899   // Check types.
900   SmallVector<LLT, 4> Types;
901   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
902        I != E; ++I) {
903     if (!MCID.OpInfo[I].isGenericType())
904       continue;
905     // Generic instructions specify type equality constraints between some of
906     // their operands. Make sure these are consistent.
907     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
908     Types.resize(std::max(TypeIdx + 1, Types.size()));
909 
910     const MachineOperand *MO = &MI->getOperand(I);
911     if (!MO->isReg()) {
912       report("generic instruction must use register operands", MI);
913       continue;
914     }
915 
916     LLT OpTy = MRI->getType(MO->getReg());
917     // Don't report a type mismatch if there is no actual mismatch, only a
918     // type missing, to reduce noise:
919     if (OpTy.isValid()) {
920       // Only the first valid type for a type index will be printed: don't
921       // overwrite it later so it's always clear which type was expected:
922       if (!Types[TypeIdx].isValid())
923         Types[TypeIdx] = OpTy;
924       else if (Types[TypeIdx] != OpTy)
925         report("Type mismatch in generic instruction", MO, I, OpTy);
926     } else {
927       // Generic instructions must have types attached to their operands.
928       report("Generic instruction is missing a virtual register type", MO, I);
929     }
930   }
931 
932   // Generic opcodes must not have physical register operands.
933   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
934     const MachineOperand *MO = &MI->getOperand(I);
935     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
936       report("Generic instruction cannot have physical register", MO, I);
937   }
938 
939   // Avoid out of bounds in checks below. This was already reported earlier.
940   if (MI->getNumOperands() < MCID.getNumOperands())
941     return;
942 
943   StringRef ErrorInfo;
944   if (!TII->verifyInstruction(*MI, ErrorInfo))
945     report(ErrorInfo.data(), MI);
946 
947   // Verify properties of various specific instruction types
948   unsigned Opc = MI->getOpcode();
949   switch (Opc) {
950   case TargetOpcode::G_ASSERT_SEXT:
951   case TargetOpcode::G_ASSERT_ZEXT: {
952     std::string OpcName =
953         Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT";
954     if (!MI->getOperand(2).isImm()) {
955       report(Twine(OpcName, " expects an immediate operand #2"), MI);
956       break;
957     }
958 
959     Register Dst = MI->getOperand(0).getReg();
960     Register Src = MI->getOperand(1).getReg();
961     LLT SrcTy = MRI->getType(Src);
962     int64_t Imm = MI->getOperand(2).getImm();
963     if (Imm <= 0) {
964       report(Twine(OpcName, " size must be >= 1"), MI);
965       break;
966     }
967 
968     if (Imm >= SrcTy.getScalarSizeInBits()) {
969       report(Twine(OpcName, " size must be less than source bit width"), MI);
970       break;
971     }
972 
973     if (MRI->getRegBankOrNull(Src) != MRI->getRegBankOrNull(Dst)) {
974       report(
975           Twine(OpcName, " source and destination register banks must match"),
976           MI);
977       break;
978     }
979 
980     if (MRI->getRegClassOrNull(Src) != MRI->getRegClassOrNull(Dst))
981       report(
982           Twine(OpcName, " source and destination register classes must match"),
983           MI);
984 
985     break;
986   }
987 
988   case TargetOpcode::G_CONSTANT:
989   case TargetOpcode::G_FCONSTANT: {
990     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
991     if (DstTy.isVector())
992       report("Instruction cannot use a vector result type", MI);
993 
994     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
995       if (!MI->getOperand(1).isCImm()) {
996         report("G_CONSTANT operand must be cimm", MI);
997         break;
998       }
999 
1000       const ConstantInt *CI = MI->getOperand(1).getCImm();
1001       if (CI->getBitWidth() != DstTy.getSizeInBits())
1002         report("inconsistent constant size", MI);
1003     } else {
1004       if (!MI->getOperand(1).isFPImm()) {
1005         report("G_FCONSTANT operand must be fpimm", MI);
1006         break;
1007       }
1008       const ConstantFP *CF = MI->getOperand(1).getFPImm();
1009 
1010       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1011           DstTy.getSizeInBits()) {
1012         report("inconsistent constant size", MI);
1013       }
1014     }
1015 
1016     break;
1017   }
1018   case TargetOpcode::G_LOAD:
1019   case TargetOpcode::G_STORE:
1020   case TargetOpcode::G_ZEXTLOAD:
1021   case TargetOpcode::G_SEXTLOAD: {
1022     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1023     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1024     if (!PtrTy.isPointer())
1025       report("Generic memory instruction must access a pointer", MI);
1026 
1027     // Generic loads and stores must have a single MachineMemOperand
1028     // describing that access.
1029     if (!MI->hasOneMemOperand()) {
1030       report("Generic instruction accessing memory must have one mem operand",
1031              MI);
1032     } else {
1033       const MachineMemOperand &MMO = **MI->memoperands_begin();
1034       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1035           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1036         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1037           report("Generic extload must have a narrower memory type", MI);
1038       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1039         if (MMO.getSize() > ValTy.getSizeInBytes())
1040           report("load memory size cannot exceed result size", MI);
1041       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1042         if (ValTy.getSizeInBytes() < MMO.getSize())
1043           report("store memory size cannot exceed value size", MI);
1044       }
1045     }
1046 
1047     break;
1048   }
1049   case TargetOpcode::G_PHI: {
1050     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1051     if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
1052                                     [this, &DstTy](const MachineOperand &MO) {
1053                                       if (!MO.isReg())
1054                                         return true;
1055                                       LLT Ty = MRI->getType(MO.getReg());
1056                                       if (!Ty.isValid() || (Ty != DstTy))
1057                                         return false;
1058                                       return true;
1059                                     }))
1060       report("Generic Instruction G_PHI has operands with incompatible/missing "
1061              "types",
1062              MI);
1063     break;
1064   }
1065   case TargetOpcode::G_BITCAST: {
1066     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1067     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1068     if (!DstTy.isValid() || !SrcTy.isValid())
1069       break;
1070 
1071     if (SrcTy.isPointer() != DstTy.isPointer())
1072       report("bitcast cannot convert between pointers and other types", MI);
1073 
1074     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1075       report("bitcast sizes must match", MI);
1076 
1077     if (SrcTy == DstTy)
1078       report("bitcast must change the type", MI);
1079 
1080     break;
1081   }
1082   case TargetOpcode::G_INTTOPTR:
1083   case TargetOpcode::G_PTRTOINT:
1084   case TargetOpcode::G_ADDRSPACE_CAST: {
1085     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1086     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1087     if (!DstTy.isValid() || !SrcTy.isValid())
1088       break;
1089 
1090     verifyVectorElementMatch(DstTy, SrcTy, MI);
1091 
1092     DstTy = DstTy.getScalarType();
1093     SrcTy = SrcTy.getScalarType();
1094 
1095     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1096       if (!DstTy.isPointer())
1097         report("inttoptr result type must be a pointer", MI);
1098       if (SrcTy.isPointer())
1099         report("inttoptr source type must not be a pointer", MI);
1100     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1101       if (!SrcTy.isPointer())
1102         report("ptrtoint source type must be a pointer", MI);
1103       if (DstTy.isPointer())
1104         report("ptrtoint result type must not be a pointer", MI);
1105     } else {
1106       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1107       if (!SrcTy.isPointer() || !DstTy.isPointer())
1108         report("addrspacecast types must be pointers", MI);
1109       else {
1110         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1111           report("addrspacecast must convert different address spaces", MI);
1112       }
1113     }
1114 
1115     break;
1116   }
1117   case TargetOpcode::G_PTR_ADD: {
1118     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1119     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1120     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1121     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1122       break;
1123 
1124     if (!PtrTy.getScalarType().isPointer())
1125       report("gep first operand must be a pointer", MI);
1126 
1127     if (OffsetTy.getScalarType().isPointer())
1128       report("gep offset operand must not be a pointer", MI);
1129 
1130     // TODO: Is the offset allowed to be a scalar with a vector?
1131     break;
1132   }
1133   case TargetOpcode::G_PTRMASK: {
1134     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1135     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1136     LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1137     if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1138       break;
1139 
1140     if (!DstTy.getScalarType().isPointer())
1141       report("ptrmask result type must be a pointer", MI);
1142 
1143     if (!MaskTy.getScalarType().isScalar())
1144       report("ptrmask mask type must be an integer", MI);
1145 
1146     verifyVectorElementMatch(DstTy, MaskTy, MI);
1147     break;
1148   }
1149   case TargetOpcode::G_SEXT:
1150   case TargetOpcode::G_ZEXT:
1151   case TargetOpcode::G_ANYEXT:
1152   case TargetOpcode::G_TRUNC:
1153   case TargetOpcode::G_FPEXT:
1154   case TargetOpcode::G_FPTRUNC: {
1155     // Number of operands and presense of types is already checked (and
1156     // reported in case of any issues), so no need to report them again. As
1157     // we're trying to report as many issues as possible at once, however, the
1158     // instructions aren't guaranteed to have the right number of operands or
1159     // types attached to them at this point
1160     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1161     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1162     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1163     if (!DstTy.isValid() || !SrcTy.isValid())
1164       break;
1165 
1166     LLT DstElTy = DstTy.getScalarType();
1167     LLT SrcElTy = SrcTy.getScalarType();
1168     if (DstElTy.isPointer() || SrcElTy.isPointer())
1169       report("Generic extend/truncate can not operate on pointers", MI);
1170 
1171     verifyVectorElementMatch(DstTy, SrcTy, MI);
1172 
1173     unsigned DstSize = DstElTy.getSizeInBits();
1174     unsigned SrcSize = SrcElTy.getSizeInBits();
1175     switch (MI->getOpcode()) {
1176     default:
1177       if (DstSize <= SrcSize)
1178         report("Generic extend has destination type no larger than source", MI);
1179       break;
1180     case TargetOpcode::G_TRUNC:
1181     case TargetOpcode::G_FPTRUNC:
1182       if (DstSize >= SrcSize)
1183         report("Generic truncate has destination type no smaller than source",
1184                MI);
1185       break;
1186     }
1187     break;
1188   }
1189   case TargetOpcode::G_SELECT: {
1190     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1191     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1192     if (!SelTy.isValid() || !CondTy.isValid())
1193       break;
1194 
1195     // Scalar condition select on a vector is valid.
1196     if (CondTy.isVector())
1197       verifyVectorElementMatch(SelTy, CondTy, MI);
1198     break;
1199   }
1200   case TargetOpcode::G_MERGE_VALUES: {
1201     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1202     // e.g. s2N = MERGE sN, sN
1203     // Merging multiple scalars into a vector is not allowed, should use
1204     // G_BUILD_VECTOR for that.
1205     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1206     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1207     if (DstTy.isVector() || SrcTy.isVector())
1208       report("G_MERGE_VALUES cannot operate on vectors", MI);
1209 
1210     const unsigned NumOps = MI->getNumOperands();
1211     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1212       report("G_MERGE_VALUES result size is inconsistent", MI);
1213 
1214     for (unsigned I = 2; I != NumOps; ++I) {
1215       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1216         report("G_MERGE_VALUES source types do not match", MI);
1217     }
1218 
1219     break;
1220   }
1221   case TargetOpcode::G_UNMERGE_VALUES: {
1222     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1223     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1224     // For now G_UNMERGE can split vectors.
1225     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1226       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1227         report("G_UNMERGE_VALUES destination types do not match", MI);
1228     }
1229     if (SrcTy.getSizeInBits() !=
1230         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1231       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1232              MI);
1233     }
1234     break;
1235   }
1236   case TargetOpcode::G_BUILD_VECTOR: {
1237     // Source types must be scalars, dest type a vector. Total size of scalars
1238     // must match the dest vector size.
1239     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1240     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1241     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1242       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1243       break;
1244     }
1245 
1246     if (DstTy.getElementType() != SrcEltTy)
1247       report("G_BUILD_VECTOR result element type must match source type", MI);
1248 
1249     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1250       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1251 
1252     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1253       if (MRI->getType(MI->getOperand(1).getReg()) !=
1254           MRI->getType(MI->getOperand(i).getReg()))
1255         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1256     }
1257 
1258     break;
1259   }
1260   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1261     // Source types must be scalars, dest type a vector. Scalar types must be
1262     // larger than the dest vector elt type, as this is a truncating operation.
1263     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1264     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1265     if (!DstTy.isVector() || SrcEltTy.isVector())
1266       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1267              MI);
1268     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1269       if (MRI->getType(MI->getOperand(1).getReg()) !=
1270           MRI->getType(MI->getOperand(i).getReg()))
1271         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1272                MI);
1273     }
1274     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1275       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1276              "dest elt type",
1277              MI);
1278     break;
1279   }
1280   case TargetOpcode::G_CONCAT_VECTORS: {
1281     // Source types should be vectors, and total size should match the dest
1282     // vector size.
1283     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1284     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1285     if (!DstTy.isVector() || !SrcTy.isVector())
1286       report("G_CONCAT_VECTOR requires vector source and destination operands",
1287              MI);
1288 
1289     if (MI->getNumOperands() < 3)
1290       report("G_CONCAT_VECTOR requires at least 2 source operands", MI);
1291 
1292     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1293       if (MRI->getType(MI->getOperand(1).getReg()) !=
1294           MRI->getType(MI->getOperand(i).getReg()))
1295         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1296     }
1297     if (DstTy.getNumElements() !=
1298         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1299       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1300     break;
1301   }
1302   case TargetOpcode::G_ICMP:
1303   case TargetOpcode::G_FCMP: {
1304     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1305     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1306 
1307     if ((DstTy.isVector() != SrcTy.isVector()) ||
1308         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1309       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1310 
1311     break;
1312   }
1313   case TargetOpcode::G_EXTRACT: {
1314     const MachineOperand &SrcOp = MI->getOperand(1);
1315     if (!SrcOp.isReg()) {
1316       report("extract source must be a register", MI);
1317       break;
1318     }
1319 
1320     const MachineOperand &OffsetOp = MI->getOperand(2);
1321     if (!OffsetOp.isImm()) {
1322       report("extract offset must be a constant", MI);
1323       break;
1324     }
1325 
1326     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1327     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1328     if (SrcSize == DstSize)
1329       report("extract source must be larger than result", MI);
1330 
1331     if (DstSize + OffsetOp.getImm() > SrcSize)
1332       report("extract reads past end of register", MI);
1333     break;
1334   }
1335   case TargetOpcode::G_INSERT: {
1336     const MachineOperand &SrcOp = MI->getOperand(2);
1337     if (!SrcOp.isReg()) {
1338       report("insert source must be a register", MI);
1339       break;
1340     }
1341 
1342     const MachineOperand &OffsetOp = MI->getOperand(3);
1343     if (!OffsetOp.isImm()) {
1344       report("insert offset must be a constant", MI);
1345       break;
1346     }
1347 
1348     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1349     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1350 
1351     if (DstSize <= SrcSize)
1352       report("inserted size must be smaller than total register", MI);
1353 
1354     if (SrcSize + OffsetOp.getImm() > DstSize)
1355       report("insert writes past end of register", MI);
1356 
1357     break;
1358   }
1359   case TargetOpcode::G_JUMP_TABLE: {
1360     if (!MI->getOperand(1).isJTI())
1361       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1362     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1363     if (!DstTy.isPointer())
1364       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1365     break;
1366   }
1367   case TargetOpcode::G_BRJT: {
1368     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1369       report("G_BRJT src operand 0 must be a pointer type", MI);
1370 
1371     if (!MI->getOperand(1).isJTI())
1372       report("G_BRJT src operand 1 must be a jump table index", MI);
1373 
1374     const auto &IdxOp = MI->getOperand(2);
1375     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1376       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1377     break;
1378   }
1379   case TargetOpcode::G_INTRINSIC:
1380   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1381     // TODO: Should verify number of def and use operands, but the current
1382     // interface requires passing in IR types for mangling.
1383     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1384     if (!IntrIDOp.isIntrinsicID()) {
1385       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1386       break;
1387     }
1388 
1389     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1390     unsigned IntrID = IntrIDOp.getIntrinsicID();
1391     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1392       AttributeList Attrs
1393         = Intrinsic::getAttributes(MF->getFunction().getContext(),
1394                                    static_cast<Intrinsic::ID>(IntrID));
1395       bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
1396       if (NoSideEffects && DeclHasSideEffects) {
1397         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1398         break;
1399       }
1400       if (!NoSideEffects && !DeclHasSideEffects) {
1401         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1402         break;
1403       }
1404     }
1405 
1406     break;
1407   }
1408   case TargetOpcode::G_SEXT_INREG: {
1409     if (!MI->getOperand(2).isImm()) {
1410       report("G_SEXT_INREG expects an immediate operand #2", MI);
1411       break;
1412     }
1413 
1414     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1415     int64_t Imm = MI->getOperand(2).getImm();
1416     if (Imm <= 0)
1417       report("G_SEXT_INREG size must be >= 1", MI);
1418     if (Imm >= SrcTy.getScalarSizeInBits())
1419       report("G_SEXT_INREG size must be less than source bit width", MI);
1420     break;
1421   }
1422   case TargetOpcode::G_SHUFFLE_VECTOR: {
1423     const MachineOperand &MaskOp = MI->getOperand(3);
1424     if (!MaskOp.isShuffleMask()) {
1425       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1426       break;
1427     }
1428 
1429     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1430     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1431     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1432 
1433     if (Src0Ty != Src1Ty)
1434       report("Source operands must be the same type", MI);
1435 
1436     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1437       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1438 
1439     // Don't check that all operands are vector because scalars are used in
1440     // place of 1 element vectors.
1441     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1442     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1443 
1444     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1445 
1446     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1447       report("Wrong result type for shufflemask", MI);
1448 
1449     for (int Idx : MaskIdxes) {
1450       if (Idx < 0)
1451         continue;
1452 
1453       if (Idx >= 2 * SrcNumElts)
1454         report("Out of bounds shuffle index", MI);
1455     }
1456 
1457     break;
1458   }
1459   case TargetOpcode::G_DYN_STACKALLOC: {
1460     const MachineOperand &DstOp = MI->getOperand(0);
1461     const MachineOperand &AllocOp = MI->getOperand(1);
1462     const MachineOperand &AlignOp = MI->getOperand(2);
1463 
1464     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1465       report("dst operand 0 must be a pointer type", MI);
1466       break;
1467     }
1468 
1469     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1470       report("src operand 1 must be a scalar reg type", MI);
1471       break;
1472     }
1473 
1474     if (!AlignOp.isImm()) {
1475       report("src operand 2 must be an immediate type", MI);
1476       break;
1477     }
1478     break;
1479   }
1480   case TargetOpcode::G_MEMCPY_INLINE:
1481   case TargetOpcode::G_MEMCPY:
1482   case TargetOpcode::G_MEMMOVE: {
1483     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1484     if (MMOs.size() != 2) {
1485       report("memcpy/memmove must have 2 memory operands", MI);
1486       break;
1487     }
1488 
1489     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1490         (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1491       report("wrong memory operand types", MI);
1492       break;
1493     }
1494 
1495     if (MMOs[0]->getSize() != MMOs[1]->getSize())
1496       report("inconsistent memory operand sizes", MI);
1497 
1498     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1499     LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1500 
1501     if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1502       report("memory instruction operand must be a pointer", MI);
1503       break;
1504     }
1505 
1506     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1507       report("inconsistent store address space", MI);
1508     if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1509       report("inconsistent load address space", MI);
1510 
1511     if (Opc != TargetOpcode::G_MEMCPY_INLINE)
1512       if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL))
1513         report("'tail' flag (operand 3) must be an immediate 0 or 1", MI);
1514 
1515     break;
1516   }
1517   case TargetOpcode::G_BZERO:
1518   case TargetOpcode::G_MEMSET: {
1519     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1520     std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero";
1521     if (MMOs.size() != 1) {
1522       report(Twine(Name, " must have 1 memory operand"), MI);
1523       break;
1524     }
1525 
1526     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
1527       report(Twine(Name, " memory operand must be a store"), MI);
1528       break;
1529     }
1530 
1531     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1532     if (!DstPtrTy.isPointer()) {
1533       report(Twine(Name, " operand must be a pointer"), MI);
1534       break;
1535     }
1536 
1537     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1538       report("inconsistent " + Twine(Name, " address space"), MI);
1539 
1540     if (!MI->getOperand(MI->getNumOperands() - 1).isImm() ||
1541         (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL))
1542       report("'tail' flag (last operand) must be an immediate 0 or 1", MI);
1543 
1544     break;
1545   }
1546   case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1547   case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
1548     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1549     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1550     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1551     if (!DstTy.isScalar())
1552       report("Vector reduction requires a scalar destination type", MI);
1553     if (!Src1Ty.isScalar())
1554       report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
1555     if (!Src2Ty.isVector())
1556       report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
1557     break;
1558   }
1559   case TargetOpcode::G_VECREDUCE_FADD:
1560   case TargetOpcode::G_VECREDUCE_FMUL:
1561   case TargetOpcode::G_VECREDUCE_FMAX:
1562   case TargetOpcode::G_VECREDUCE_FMIN:
1563   case TargetOpcode::G_VECREDUCE_ADD:
1564   case TargetOpcode::G_VECREDUCE_MUL:
1565   case TargetOpcode::G_VECREDUCE_AND:
1566   case TargetOpcode::G_VECREDUCE_OR:
1567   case TargetOpcode::G_VECREDUCE_XOR:
1568   case TargetOpcode::G_VECREDUCE_SMAX:
1569   case TargetOpcode::G_VECREDUCE_SMIN:
1570   case TargetOpcode::G_VECREDUCE_UMAX:
1571   case TargetOpcode::G_VECREDUCE_UMIN: {
1572     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1573     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1574     if (!DstTy.isScalar())
1575       report("Vector reduction requires a scalar destination type", MI);
1576     if (!SrcTy.isVector())
1577       report("Vector reduction requires vector source=", MI);
1578     break;
1579   }
1580 
1581   case TargetOpcode::G_SBFX:
1582   case TargetOpcode::G_UBFX: {
1583     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1584     if (DstTy.isVector()) {
1585       report("Bitfield extraction is not supported on vectors", MI);
1586       break;
1587     }
1588     break;
1589   }
1590   case TargetOpcode::G_ROTR:
1591   case TargetOpcode::G_ROTL: {
1592     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1593     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1594     if (Src1Ty.isVector() != Src2Ty.isVector()) {
1595       report("Rotate requires operands to be either all scalars or all vectors",
1596              MI);
1597       break;
1598     }
1599     break;
1600   }
1601 
1602   default:
1603     break;
1604   }
1605 }
1606 
1607 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1608   const MCInstrDesc &MCID = MI->getDesc();
1609   if (MI->getNumOperands() < MCID.getNumOperands()) {
1610     report("Too few operands", MI);
1611     errs() << MCID.getNumOperands() << " operands expected, but "
1612            << MI->getNumOperands() << " given.\n";
1613   }
1614 
1615   if (MI->isPHI()) {
1616     if (MF->getProperties().hasProperty(
1617             MachineFunctionProperties::Property::NoPHIs))
1618       report("Found PHI instruction with NoPHIs property set", MI);
1619 
1620     if (FirstNonPHI)
1621       report("Found PHI instruction after non-PHI", MI);
1622   } else if (FirstNonPHI == nullptr)
1623     FirstNonPHI = MI;
1624 
1625   // Check the tied operands.
1626   if (MI->isInlineAsm())
1627     verifyInlineAsm(MI);
1628 
1629   // Check that unspillable terminators define a reg and have at most one use.
1630   if (TII->isUnspillableTerminator(MI)) {
1631     if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
1632       report("Unspillable Terminator does not define a reg", MI);
1633     Register Def = MI->getOperand(0).getReg();
1634     if (Def.isVirtual() &&
1635         std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
1636       report("Unspillable Terminator expected to have at most one use!", MI);
1637   }
1638 
1639   // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1640   // DBG_VALUEs: these are convenient to use in tests, but should never get
1641   // generated.
1642   if (MI->isDebugValue() && MI->getNumOperands() == 4)
1643     if (!MI->getDebugLoc())
1644       report("Missing DebugLoc for debug instruction", MI);
1645 
1646   // Meta instructions should never be the subject of debug value tracking,
1647   // they don't create a value in the output program at all.
1648   if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
1649     report("Metadata instruction should not have a value tracking number", MI);
1650 
1651   // Check the MachineMemOperands for basic consistency.
1652   for (MachineMemOperand *Op : MI->memoperands()) {
1653     if (Op->isLoad() && !MI->mayLoad())
1654       report("Missing mayLoad flag", MI);
1655     if (Op->isStore() && !MI->mayStore())
1656       report("Missing mayStore flag", MI);
1657   }
1658 
1659   // Debug values must not have a slot index.
1660   // Other instructions must have one, unless they are inside a bundle.
1661   if (LiveInts) {
1662     bool mapped = !LiveInts->isNotInMIMap(*MI);
1663     if (MI->isDebugOrPseudoInstr()) {
1664       if (mapped)
1665         report("Debug instruction has a slot index", MI);
1666     } else if (MI->isInsideBundle()) {
1667       if (mapped)
1668         report("Instruction inside bundle has a slot index", MI);
1669     } else {
1670       if (!mapped)
1671         report("Missing slot index", MI);
1672     }
1673   }
1674 
1675   unsigned Opc = MCID.getOpcode();
1676   if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) {
1677     verifyPreISelGenericInstruction(MI);
1678     return;
1679   }
1680 
1681   StringRef ErrorInfo;
1682   if (!TII->verifyInstruction(*MI, ErrorInfo))
1683     report(ErrorInfo.data(), MI);
1684 
1685   // Verify properties of various specific instruction types
1686   switch (MI->getOpcode()) {
1687   case TargetOpcode::COPY: {
1688     const MachineOperand &DstOp = MI->getOperand(0);
1689     const MachineOperand &SrcOp = MI->getOperand(1);
1690     const Register SrcReg = SrcOp.getReg();
1691     const Register DstReg = DstOp.getReg();
1692 
1693     LLT DstTy = MRI->getType(DstReg);
1694     LLT SrcTy = MRI->getType(SrcReg);
1695     if (SrcTy.isValid() && DstTy.isValid()) {
1696       // If both types are valid, check that the types are the same.
1697       if (SrcTy != DstTy) {
1698         report("Copy Instruction is illegal with mismatching types", MI);
1699         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1700       }
1701 
1702       break;
1703     }
1704 
1705     if (!SrcTy.isValid() && !DstTy.isValid())
1706       break;
1707 
1708     // If we have only one valid type, this is likely a copy between a virtual
1709     // and physical register.
1710     unsigned SrcSize = 0;
1711     unsigned DstSize = 0;
1712     if (SrcReg.isPhysical() && DstTy.isValid()) {
1713       const TargetRegisterClass *SrcRC =
1714           TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy);
1715       if (SrcRC)
1716         SrcSize = TRI->getRegSizeInBits(*SrcRC);
1717     }
1718 
1719     if (SrcSize == 0)
1720       SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
1721 
1722     if (DstReg.isPhysical() && SrcTy.isValid()) {
1723       const TargetRegisterClass *DstRC =
1724           TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy);
1725       if (DstRC)
1726         DstSize = TRI->getRegSizeInBits(*DstRC);
1727     }
1728 
1729     if (DstSize == 0)
1730       DstSize = TRI->getRegSizeInBits(DstReg, *MRI);
1731 
1732     if (SrcSize != 0 && DstSize != 0 && SrcSize != DstSize) {
1733       if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1734         report("Copy Instruction is illegal with mismatching sizes", MI);
1735         errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1736                << "\n";
1737       }
1738     }
1739     break;
1740   }
1741   case TargetOpcode::STATEPOINT: {
1742     StatepointOpers SO(MI);
1743     if (!MI->getOperand(SO.getIDPos()).isImm() ||
1744         !MI->getOperand(SO.getNBytesPos()).isImm() ||
1745         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1746       report("meta operands to STATEPOINT not constant!", MI);
1747       break;
1748     }
1749 
1750     auto VerifyStackMapConstant = [&](unsigned Offset) {
1751       if (Offset >= MI->getNumOperands()) {
1752         report("stack map constant to STATEPOINT is out of range!", MI);
1753         return;
1754       }
1755       if (!MI->getOperand(Offset - 1).isImm() ||
1756           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1757           !MI->getOperand(Offset).isImm())
1758         report("stack map constant to STATEPOINT not well formed!", MI);
1759     };
1760     VerifyStackMapConstant(SO.getCCIdx());
1761     VerifyStackMapConstant(SO.getFlagsIdx());
1762     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1763     VerifyStackMapConstant(SO.getNumGCPtrIdx());
1764     VerifyStackMapConstant(SO.getNumAllocaIdx());
1765     VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
1766 
1767     // Verify that all explicit statepoint defs are tied to gc operands as
1768     // they are expected to be a relocation of gc operands.
1769     unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
1770     unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
1771     for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
1772       unsigned UseOpIdx;
1773       if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
1774         report("STATEPOINT defs expected to be tied", MI);
1775         break;
1776       }
1777       if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
1778         report("STATEPOINT def tied to non-gc operand", MI);
1779         break;
1780       }
1781     }
1782 
1783     // TODO: verify we have properly encoded deopt arguments
1784   } break;
1785   case TargetOpcode::INSERT_SUBREG: {
1786     unsigned InsertedSize;
1787     if (unsigned SubIdx = MI->getOperand(2).getSubReg())
1788       InsertedSize = TRI->getSubRegIdxSize(SubIdx);
1789     else
1790       InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI);
1791     unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm());
1792     if (SubRegSize < InsertedSize) {
1793       report("INSERT_SUBREG expected inserted value to have equal or lesser "
1794              "size than the subreg it was inserted into", MI);
1795       break;
1796     }
1797   } break;
1798   }
1799 }
1800 
1801 void
1802 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1803   const MachineInstr *MI = MO->getParent();
1804   const MCInstrDesc &MCID = MI->getDesc();
1805   unsigned NumDefs = MCID.getNumDefs();
1806   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1807     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1808 
1809   // The first MCID.NumDefs operands must be explicit register defines
1810   if (MONum < NumDefs) {
1811     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1812     if (!MO->isReg())
1813       report("Explicit definition must be a register", MO, MONum);
1814     else if (!MO->isDef() && !MCOI.isOptionalDef())
1815       report("Explicit definition marked as use", MO, MONum);
1816     else if (MO->isImplicit())
1817       report("Explicit definition marked as implicit", MO, MONum);
1818   } else if (MONum < MCID.getNumOperands()) {
1819     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1820     // Don't check if it's the last operand in a variadic instruction. See,
1821     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1822     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1823     if (!IsOptional) {
1824       if (MO->isReg()) {
1825         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1826           report("Explicit operand marked as def", MO, MONum);
1827         if (MO->isImplicit())
1828           report("Explicit operand marked as implicit", MO, MONum);
1829       }
1830 
1831       // Check that an instruction has register operands only as expected.
1832       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1833           !MO->isReg() && !MO->isFI())
1834         report("Expected a register operand.", MO, MONum);
1835       if (MO->isReg()) {
1836         if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1837             (MCOI.OperandType == MCOI::OPERAND_PCREL &&
1838              !TII->isPCRelRegisterOperandLegal(*MO)))
1839           report("Expected a non-register operand.", MO, MONum);
1840       }
1841     }
1842 
1843     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1844     if (TiedTo != -1) {
1845       if (!MO->isReg())
1846         report("Tied use must be a register", MO, MONum);
1847       else if (!MO->isTied())
1848         report("Operand should be tied", MO, MONum);
1849       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1850         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1851       else if (Register::isPhysicalRegister(MO->getReg())) {
1852         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1853         if (!MOTied.isReg())
1854           report("Tied counterpart must be a register", &MOTied, TiedTo);
1855         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1856                  MO->getReg() != MOTied.getReg())
1857           report("Tied physical registers must match.", &MOTied, TiedTo);
1858       }
1859     } else if (MO->isReg() && MO->isTied())
1860       report("Explicit operand should not be tied", MO, MONum);
1861   } else {
1862     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1863     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1864       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1865   }
1866 
1867   switch (MO->getType()) {
1868   case MachineOperand::MO_Register: {
1869     const Register Reg = MO->getReg();
1870     if (!Reg)
1871       return;
1872     if (MRI->tracksLiveness() && !MI->isDebugValue())
1873       checkLiveness(MO, MONum);
1874 
1875     // Verify the consistency of tied operands.
1876     if (MO->isTied()) {
1877       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1878       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1879       if (!OtherMO.isReg())
1880         report("Must be tied to a register", MO, MONum);
1881       if (!OtherMO.isTied())
1882         report("Missing tie flags on tied operand", MO, MONum);
1883       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1884         report("Inconsistent tie links", MO, MONum);
1885       if (MONum < MCID.getNumDefs()) {
1886         if (OtherIdx < MCID.getNumOperands()) {
1887           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1888             report("Explicit def tied to explicit use without tie constraint",
1889                    MO, MONum);
1890         } else {
1891           if (!OtherMO.isImplicit())
1892             report("Explicit def should be tied to implicit use", MO, MONum);
1893         }
1894       }
1895     }
1896 
1897     // Verify two-address constraints after the twoaddressinstruction pass.
1898     // Both twoaddressinstruction pass and phi-node-elimination pass call
1899     // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
1900     // twoaddressinstruction pass not after phi-node-elimination pass. So we
1901     // shouldn't use the NoSSA as the condition, we should based on
1902     // TiedOpsRewritten property to verify two-address constraints, this
1903     // property will be set in twoaddressinstruction pass.
1904     unsigned DefIdx;
1905     if (MF->getProperties().hasProperty(
1906             MachineFunctionProperties::Property::TiedOpsRewritten) &&
1907         MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1908         Reg != MI->getOperand(DefIdx).getReg())
1909       report("Two-address instruction operands must be identical", MO, MONum);
1910 
1911     // Check register classes.
1912     unsigned SubIdx = MO->getSubReg();
1913 
1914     if (Register::isPhysicalRegister(Reg)) {
1915       if (SubIdx) {
1916         report("Illegal subregister index for physical register", MO, MONum);
1917         return;
1918       }
1919       if (MONum < MCID.getNumOperands()) {
1920         if (const TargetRegisterClass *DRC =
1921               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1922           if (!DRC->contains(Reg)) {
1923             report("Illegal physical register for instruction", MO, MONum);
1924             errs() << printReg(Reg, TRI) << " is not a "
1925                    << TRI->getRegClassName(DRC) << " register.\n";
1926           }
1927         }
1928       }
1929       if (MO->isRenamable()) {
1930         if (MRI->isReserved(Reg)) {
1931           report("isRenamable set on reserved register", MO, MONum);
1932           return;
1933         }
1934       }
1935       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1936         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1937         return;
1938       }
1939     } else {
1940       // Virtual register.
1941       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1942       if (!RC) {
1943         // This is a generic virtual register.
1944 
1945         // Do not allow undef uses for generic virtual registers. This ensures
1946         // getVRegDef can never fail and return null on a generic register.
1947         //
1948         // FIXME: This restriction should probably be broadened to all SSA
1949         // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
1950         // run on the SSA function just before phi elimination.
1951         if (MO->isUndef())
1952           report("Generic virtual register use cannot be undef", MO, MONum);
1953 
1954         // If we're post-Select, we can't have gvregs anymore.
1955         if (isFunctionSelected) {
1956           report("Generic virtual register invalid in a Selected function",
1957                  MO, MONum);
1958           return;
1959         }
1960 
1961         // The gvreg must have a type and it must not have a SubIdx.
1962         LLT Ty = MRI->getType(Reg);
1963         if (!Ty.isValid()) {
1964           report("Generic virtual register must have a valid type", MO,
1965                  MONum);
1966           return;
1967         }
1968 
1969         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1970 
1971         // If we're post-RegBankSelect, the gvreg must have a bank.
1972         if (!RegBank && isFunctionRegBankSelected) {
1973           report("Generic virtual register must have a bank in a "
1974                  "RegBankSelected function",
1975                  MO, MONum);
1976           return;
1977         }
1978 
1979         // Make sure the register fits into its register bank if any.
1980         if (RegBank && Ty.isValid() &&
1981             RegBank->getSize() < Ty.getSizeInBits()) {
1982           report("Register bank is too small for virtual register", MO,
1983                  MONum);
1984           errs() << "Register bank " << RegBank->getName() << " too small("
1985                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1986                  << "-bits\n";
1987           return;
1988         }
1989         if (SubIdx)  {
1990           report("Generic virtual register does not allow subregister index", MO,
1991                  MONum);
1992           return;
1993         }
1994 
1995         // If this is a target specific instruction and this operand
1996         // has register class constraint, the virtual register must
1997         // comply to it.
1998         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1999             MONum < MCID.getNumOperands() &&
2000             TII->getRegClass(MCID, MONum, TRI, *MF)) {
2001           report("Virtual register does not match instruction constraint", MO,
2002                  MONum);
2003           errs() << "Expect register class "
2004                  << TRI->getRegClassName(
2005                         TII->getRegClass(MCID, MONum, TRI, *MF))
2006                  << " but got nothing\n";
2007           return;
2008         }
2009 
2010         break;
2011       }
2012       if (SubIdx) {
2013         const TargetRegisterClass *SRC =
2014           TRI->getSubClassWithSubReg(RC, SubIdx);
2015         if (!SRC) {
2016           report("Invalid subregister index for virtual register", MO, MONum);
2017           errs() << "Register class " << TRI->getRegClassName(RC)
2018               << " does not support subreg index " << SubIdx << "\n";
2019           return;
2020         }
2021         if (RC != SRC) {
2022           report("Invalid register class for subregister index", MO, MONum);
2023           errs() << "Register class " << TRI->getRegClassName(RC)
2024               << " does not fully support subreg index " << SubIdx << "\n";
2025           return;
2026         }
2027       }
2028       if (MONum < MCID.getNumOperands()) {
2029         if (const TargetRegisterClass *DRC =
2030               TII->getRegClass(MCID, MONum, TRI, *MF)) {
2031           if (SubIdx) {
2032             const TargetRegisterClass *SuperRC =
2033                 TRI->getLargestLegalSuperClass(RC, *MF);
2034             if (!SuperRC) {
2035               report("No largest legal super class exists.", MO, MONum);
2036               return;
2037             }
2038             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
2039             if (!DRC) {
2040               report("No matching super-reg register class.", MO, MONum);
2041               return;
2042             }
2043           }
2044           if (!RC->hasSuperClassEq(DRC)) {
2045             report("Illegal virtual register for instruction", MO, MONum);
2046             errs() << "Expected a " << TRI->getRegClassName(DRC)
2047                 << " register, but got a " << TRI->getRegClassName(RC)
2048                 << " register\n";
2049           }
2050         }
2051       }
2052     }
2053     break;
2054   }
2055 
2056   case MachineOperand::MO_RegisterMask:
2057     regMasks.push_back(MO->getRegMask());
2058     break;
2059 
2060   case MachineOperand::MO_MachineBasicBlock:
2061     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
2062       report("PHI operand is not in the CFG", MO, MONum);
2063     break;
2064 
2065   case MachineOperand::MO_FrameIndex:
2066     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
2067         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2068       int FI = MO->getIndex();
2069       LiveInterval &LI = LiveStks->getInterval(FI);
2070       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
2071 
2072       bool stores = MI->mayStore();
2073       bool loads = MI->mayLoad();
2074       // For a memory-to-memory move, we need to check if the frame
2075       // index is used for storing or loading, by inspecting the
2076       // memory operands.
2077       if (stores && loads) {
2078         for (auto *MMO : MI->memoperands()) {
2079           const PseudoSourceValue *PSV = MMO->getPseudoValue();
2080           if (PSV == nullptr) continue;
2081           const FixedStackPseudoSourceValue *Value =
2082             dyn_cast<FixedStackPseudoSourceValue>(PSV);
2083           if (Value == nullptr) continue;
2084           if (Value->getFrameIndex() != FI) continue;
2085 
2086           if (MMO->isStore())
2087             loads = false;
2088           else
2089             stores = false;
2090           break;
2091         }
2092         if (loads == stores)
2093           report("Missing fixed stack memoperand.", MI);
2094       }
2095       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
2096         report("Instruction loads from dead spill slot", MO, MONum);
2097         errs() << "Live stack: " << LI << '\n';
2098       }
2099       if (stores && !LI.liveAt(Idx.getRegSlot())) {
2100         report("Instruction stores to dead spill slot", MO, MONum);
2101         errs() << "Live stack: " << LI << '\n';
2102       }
2103     }
2104     break;
2105 
2106   default:
2107     break;
2108   }
2109 }
2110 
2111 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
2112                                          unsigned MONum, SlotIndex UseIdx,
2113                                          const LiveRange &LR,
2114                                          Register VRegOrUnit,
2115                                          LaneBitmask LaneMask) {
2116   LiveQueryResult LRQ = LR.Query(UseIdx);
2117   // Check if we have a segment at the use, note however that we only need one
2118   // live subregister range, the others may be dead.
2119   if (!LRQ.valueIn() && LaneMask.none()) {
2120     report("No live segment at use", MO, MONum);
2121     report_context_liverange(LR);
2122     report_context_vreg_regunit(VRegOrUnit);
2123     report_context(UseIdx);
2124   }
2125   if (MO->isKill() && !LRQ.isKill()) {
2126     report("Live range continues after kill flag", MO, MONum);
2127     report_context_liverange(LR);
2128     report_context_vreg_regunit(VRegOrUnit);
2129     if (LaneMask.any())
2130       report_context_lanemask(LaneMask);
2131     report_context(UseIdx);
2132   }
2133 }
2134 
2135 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2136                                          unsigned MONum, SlotIndex DefIdx,
2137                                          const LiveRange &LR,
2138                                          Register VRegOrUnit,
2139                                          bool SubRangeCheck,
2140                                          LaneBitmask LaneMask) {
2141   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
2142     assert(VNI && "NULL valno is not allowed");
2143     if (VNI->def != DefIdx) {
2144       report("Inconsistent valno->def", MO, MONum);
2145       report_context_liverange(LR);
2146       report_context_vreg_regunit(VRegOrUnit);
2147       if (LaneMask.any())
2148         report_context_lanemask(LaneMask);
2149       report_context(*VNI);
2150       report_context(DefIdx);
2151     }
2152   } else {
2153     report("No live segment at def", MO, MONum);
2154     report_context_liverange(LR);
2155     report_context_vreg_regunit(VRegOrUnit);
2156     if (LaneMask.any())
2157       report_context_lanemask(LaneMask);
2158     report_context(DefIdx);
2159   }
2160   // Check that, if the dead def flag is present, LiveInts agree.
2161   if (MO->isDead()) {
2162     LiveQueryResult LRQ = LR.Query(DefIdx);
2163     if (!LRQ.isDeadDef()) {
2164       assert(Register::isVirtualRegister(VRegOrUnit) &&
2165              "Expecting a virtual register.");
2166       // A dead subreg def only tells us that the specific subreg is dead. There
2167       // could be other non-dead defs of other subregs, or we could have other
2168       // parts of the register being live through the instruction. So unless we
2169       // are checking liveness for a subrange it is ok for the live range to
2170       // continue, given that we have a dead def of a subregister.
2171       if (SubRangeCheck || MO->getSubReg() == 0) {
2172         report("Live range continues after dead def flag", MO, MONum);
2173         report_context_liverange(LR);
2174         report_context_vreg_regunit(VRegOrUnit);
2175         if (LaneMask.any())
2176           report_context_lanemask(LaneMask);
2177       }
2178     }
2179   }
2180 }
2181 
2182 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2183   const MachineInstr *MI = MO->getParent();
2184   const Register Reg = MO->getReg();
2185 
2186   // Both use and def operands can read a register.
2187   if (MO->readsReg()) {
2188     if (MO->isKill())
2189       addRegWithSubRegs(regsKilled, Reg);
2190 
2191     // Check that LiveVars knows this kill.
2192     if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
2193       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2194       if (!is_contained(VI.Kills, MI))
2195         report("Kill missing from LiveVariables", MO, MONum);
2196     }
2197 
2198     // Check LiveInts liveness and kill.
2199     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2200       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
2201       // Check the cached regunit intervals.
2202       if (Reg.isPhysical() && !isReserved(Reg)) {
2203         for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
2204              ++Units) {
2205           if (MRI->isReservedRegUnit(*Units))
2206             continue;
2207           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
2208             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
2209         }
2210       }
2211 
2212       if (Register::isVirtualRegister(Reg)) {
2213         if (LiveInts->hasInterval(Reg)) {
2214           // This is a virtual register interval.
2215           const LiveInterval &LI = LiveInts->getInterval(Reg);
2216           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
2217 
2218           if (LI.hasSubRanges() && !MO->isDef()) {
2219             unsigned SubRegIdx = MO->getSubReg();
2220             LaneBitmask MOMask = SubRegIdx != 0
2221                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2222                                : MRI->getMaxLaneMaskForVReg(Reg);
2223             LaneBitmask LiveInMask;
2224             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2225               if ((MOMask & SR.LaneMask).none())
2226                 continue;
2227               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2228               LiveQueryResult LRQ = SR.Query(UseIdx);
2229               if (LRQ.valueIn())
2230                 LiveInMask |= SR.LaneMask;
2231             }
2232             // At least parts of the register has to be live at the use.
2233             if ((LiveInMask & MOMask).none()) {
2234               report("No live subrange at use", MO, MONum);
2235               report_context(LI);
2236               report_context(UseIdx);
2237             }
2238           }
2239         } else {
2240           report("Virtual register has no live interval", MO, MONum);
2241         }
2242       }
2243     }
2244 
2245     // Use of a dead register.
2246     if (!regsLive.count(Reg)) {
2247       if (Register::isPhysicalRegister(Reg)) {
2248         // Reserved registers may be used even when 'dead'.
2249         bool Bad = !isReserved(Reg);
2250         // We are fine if just any subregister has a defined value.
2251         if (Bad) {
2252 
2253           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2254             if (regsLive.count(SubReg)) {
2255               Bad = false;
2256               break;
2257             }
2258           }
2259         }
2260         // If there is an additional implicit-use of a super register we stop
2261         // here. By definition we are fine if the super register is not
2262         // (completely) dead, if the complete super register is dead we will
2263         // get a report for its operand.
2264         if (Bad) {
2265           for (const MachineOperand &MOP : MI->uses()) {
2266             if (!MOP.isReg() || !MOP.isImplicit())
2267               continue;
2268 
2269             if (!Register::isPhysicalRegister(MOP.getReg()))
2270               continue;
2271 
2272             if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg))
2273               Bad = false;
2274           }
2275         }
2276         if (Bad)
2277           report("Using an undefined physical register", MO, MONum);
2278       } else if (MRI->def_empty(Reg)) {
2279         report("Reading virtual register without a def", MO, MONum);
2280       } else {
2281         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2282         // We don't know which virtual registers are live in, so only complain
2283         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2284         // must be live in. PHI instructions are handled separately.
2285         if (MInfo.regsKilled.count(Reg))
2286           report("Using a killed virtual register", MO, MONum);
2287         else if (!MI->isPHI())
2288           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2289       }
2290     }
2291   }
2292 
2293   if (MO->isDef()) {
2294     // Register defined.
2295     // TODO: verify that earlyclobber ops are not used.
2296     if (MO->isDead())
2297       addRegWithSubRegs(regsDead, Reg);
2298     else
2299       addRegWithSubRegs(regsDefined, Reg);
2300 
2301     // Verify SSA form.
2302     if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2303         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2304       report("Multiple virtual register defs in SSA form", MO, MONum);
2305 
2306     // Check LiveInts for a live segment, but only for virtual registers.
2307     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2308       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2309       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2310 
2311       if (Register::isVirtualRegister(Reg)) {
2312         if (LiveInts->hasInterval(Reg)) {
2313           const LiveInterval &LI = LiveInts->getInterval(Reg);
2314           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2315 
2316           if (LI.hasSubRanges()) {
2317             unsigned SubRegIdx = MO->getSubReg();
2318             LaneBitmask MOMask = SubRegIdx != 0
2319               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2320               : MRI->getMaxLaneMaskForVReg(Reg);
2321             for (const LiveInterval::SubRange &SR : LI.subranges()) {
2322               if ((SR.LaneMask & MOMask).none())
2323                 continue;
2324               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2325             }
2326           }
2327         } else {
2328           report("Virtual register has no Live interval", MO, MONum);
2329         }
2330       }
2331     }
2332   }
2333 }
2334 
2335 // This function gets called after visiting all instructions in a bundle. The
2336 // argument points to the bundle header.
2337 // Normal stand-alone instructions are also considered 'bundles', and this
2338 // function is called for all of them.
2339 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2340   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2341   set_union(MInfo.regsKilled, regsKilled);
2342   set_subtract(regsLive, regsKilled); regsKilled.clear();
2343   // Kill any masked registers.
2344   while (!regMasks.empty()) {
2345     const uint32_t *Mask = regMasks.pop_back_val();
2346     for (Register Reg : regsLive)
2347       if (Reg.isPhysical() &&
2348           MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
2349         regsDead.push_back(Reg);
2350   }
2351   set_subtract(regsLive, regsDead);   regsDead.clear();
2352   set_union(regsLive, regsDefined);   regsDefined.clear();
2353 }
2354 
2355 void
2356 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2357   MBBInfoMap[MBB].regsLiveOut = regsLive;
2358   regsLive.clear();
2359 
2360   if (Indexes) {
2361     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2362     if (!(stop > lastIndex)) {
2363       report("Block ends before last instruction index", MBB);
2364       errs() << "Block ends at " << stop
2365           << " last instruction was at " << lastIndex << '\n';
2366     }
2367     lastIndex = stop;
2368   }
2369 }
2370 
2371 namespace {
2372 // This implements a set of registers that serves as a filter: can filter other
2373 // sets by passing through elements not in the filter and blocking those that
2374 // are. Any filter implicitly includes the full set of physical registers upon
2375 // creation, thus filtering them all out. The filter itself as a set only grows,
2376 // and needs to be as efficient as possible.
2377 struct VRegFilter {
2378   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2379   // no duplicates. Both virtual and physical registers are fine.
2380   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2381     SmallVector<Register, 0> VRegsBuffer;
2382     filterAndAdd(FromRegSet, VRegsBuffer);
2383   }
2384   // Filter \p FromRegSet through the filter and append passed elements into \p
2385   // ToVRegs. All elements appended are then added to the filter itself.
2386   // \returns true if anything changed.
2387   template <typename RegSetT>
2388   bool filterAndAdd(const RegSetT &FromRegSet,
2389                     SmallVectorImpl<Register> &ToVRegs) {
2390     unsigned SparseUniverse = Sparse.size();
2391     unsigned NewSparseUniverse = SparseUniverse;
2392     unsigned NewDenseSize = Dense.size();
2393     size_t Begin = ToVRegs.size();
2394     for (Register Reg : FromRegSet) {
2395       if (!Reg.isVirtual())
2396         continue;
2397       unsigned Index = Register::virtReg2Index(Reg);
2398       if (Index < SparseUniverseMax) {
2399         if (Index < SparseUniverse && Sparse.test(Index))
2400           continue;
2401         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2402       } else {
2403         if (Dense.count(Reg))
2404           continue;
2405         ++NewDenseSize;
2406       }
2407       ToVRegs.push_back(Reg);
2408     }
2409     size_t End = ToVRegs.size();
2410     if (Begin == End)
2411       return false;
2412     // Reserving space in sets once performs better than doing so continuously
2413     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2414     // tuned all the way down) and double iteration (the second one is over a
2415     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2416     Sparse.resize(NewSparseUniverse);
2417     Dense.reserve(NewDenseSize);
2418     for (unsigned I = Begin; I < End; ++I) {
2419       Register Reg = ToVRegs[I];
2420       unsigned Index = Register::virtReg2Index(Reg);
2421       if (Index < SparseUniverseMax)
2422         Sparse.set(Index);
2423       else
2424         Dense.insert(Reg);
2425     }
2426     return true;
2427   }
2428 
2429 private:
2430   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2431   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2432   // are tracked by Dense. The only purpose of the threashold and the Dense set
2433   // is to have a reasonably growing memory usage in pathological cases (large
2434   // number of very sparse VRegFilter instances live at the same time). In
2435   // practice even in the worst-by-execution time cases having all elements
2436   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2437   // space efficient than if tracked by Dense. The threashold is set to keep the
2438   // worst-case memory usage within 2x of figures determined empirically for
2439   // "all Dense" scenario in such worst-by-execution-time cases.
2440   BitVector Sparse;
2441   DenseSet<unsigned> Dense;
2442 };
2443 
2444 // Implements both a transfer function and a (binary, in-place) join operator
2445 // for a dataflow over register sets with set union join and filtering transfer
2446 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2447 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2448 // time, where n is the size of the set (as opposed to O(U) where U is the
2449 // universe). filter_b implicitly contains all physical registers at all times.
2450 class FilteringVRegSet {
2451   VRegFilter Filter;
2452   SmallVector<Register, 0> VRegs;
2453 
2454 public:
2455   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2456   // Both virtual and physical registers are fine.
2457   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2458     Filter.add(RS);
2459   }
2460   // Passes \p RS through the filter_b (transfer function) and adds what's left
2461   // to itself (out_b).
2462   template <typename RegSetT> bool add(const RegSetT &RS) {
2463     // Double-duty the Filter: to maintain VRegs a set (and the join operation
2464     // a set union) just add everything being added here to the Filter as well.
2465     return Filter.filterAndAdd(RS, VRegs);
2466   }
2467   using const_iterator = decltype(VRegs)::const_iterator;
2468   const_iterator begin() const { return VRegs.begin(); }
2469   const_iterator end() const { return VRegs.end(); }
2470   size_t size() const { return VRegs.size(); }
2471 };
2472 } // namespace
2473 
2474 // Calculate the largest possible vregsPassed sets. These are the registers that
2475 // can pass through an MBB live, but may not be live every time. It is assumed
2476 // that all vregsPassed sets are empty before the call.
2477 void MachineVerifier::calcRegsPassed() {
2478   if (MF->empty())
2479     // ReversePostOrderTraversal doesn't handle empty functions.
2480     return;
2481 
2482   for (const MachineBasicBlock *MB :
2483        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2484     FilteringVRegSet VRegs;
2485     BBInfo &Info = MBBInfoMap[MB];
2486     assert(Info.reachable);
2487 
2488     VRegs.addToFilter(Info.regsKilled);
2489     VRegs.addToFilter(Info.regsLiveOut);
2490     for (const MachineBasicBlock *Pred : MB->predecessors()) {
2491       const BBInfo &PredInfo = MBBInfoMap[Pred];
2492       if (!PredInfo.reachable)
2493         continue;
2494 
2495       VRegs.add(PredInfo.regsLiveOut);
2496       VRegs.add(PredInfo.vregsPassed);
2497     }
2498     Info.vregsPassed.reserve(VRegs.size());
2499     Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
2500   }
2501 }
2502 
2503 // Calculate the set of virtual registers that must be passed through each basic
2504 // block in order to satisfy the requirements of successor blocks. This is very
2505 // similar to calcRegsPassed, only backwards.
2506 void MachineVerifier::calcRegsRequired() {
2507   // First push live-in regs to predecessors' vregsRequired.
2508   SmallPtrSet<const MachineBasicBlock*, 8> todo;
2509   for (const auto &MBB : *MF) {
2510     BBInfo &MInfo = MBBInfoMap[&MBB];
2511     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2512       BBInfo &PInfo = MBBInfoMap[Pred];
2513       if (PInfo.addRequired(MInfo.vregsLiveIn))
2514         todo.insert(Pred);
2515     }
2516 
2517     // Handle the PHI node.
2518     for (const MachineInstr &MI : MBB.phis()) {
2519       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2520         // Skip those Operands which are undef regs or not regs.
2521         if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
2522           continue;
2523 
2524         // Get register and predecessor for one PHI edge.
2525         Register Reg = MI.getOperand(i).getReg();
2526         const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
2527 
2528         BBInfo &PInfo = MBBInfoMap[Pred];
2529         if (PInfo.addRequired(Reg))
2530           todo.insert(Pred);
2531       }
2532     }
2533   }
2534 
2535   // Iteratively push vregsRequired to predecessors. This will converge to the
2536   // same final state regardless of DenseSet iteration order.
2537   while (!todo.empty()) {
2538     const MachineBasicBlock *MBB = *todo.begin();
2539     todo.erase(MBB);
2540     BBInfo &MInfo = MBBInfoMap[MBB];
2541     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2542       if (Pred == MBB)
2543         continue;
2544       BBInfo &SInfo = MBBInfoMap[Pred];
2545       if (SInfo.addRequired(MInfo.vregsRequired))
2546         todo.insert(Pred);
2547     }
2548   }
2549 }
2550 
2551 // Check PHI instructions at the beginning of MBB. It is assumed that
2552 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2553 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2554   BBInfo &MInfo = MBBInfoMap[&MBB];
2555 
2556   SmallPtrSet<const MachineBasicBlock*, 8> seen;
2557   for (const MachineInstr &Phi : MBB) {
2558     if (!Phi.isPHI())
2559       break;
2560     seen.clear();
2561 
2562     const MachineOperand &MODef = Phi.getOperand(0);
2563     if (!MODef.isReg() || !MODef.isDef()) {
2564       report("Expected first PHI operand to be a register def", &MODef, 0);
2565       continue;
2566     }
2567     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2568         MODef.isEarlyClobber() || MODef.isDebug())
2569       report("Unexpected flag on PHI operand", &MODef, 0);
2570     Register DefReg = MODef.getReg();
2571     if (!Register::isVirtualRegister(DefReg))
2572       report("Expected first PHI operand to be a virtual register", &MODef, 0);
2573 
2574     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2575       const MachineOperand &MO0 = Phi.getOperand(I);
2576       if (!MO0.isReg()) {
2577         report("Expected PHI operand to be a register", &MO0, I);
2578         continue;
2579       }
2580       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2581           MO0.isDebug() || MO0.isTied())
2582         report("Unexpected flag on PHI operand", &MO0, I);
2583 
2584       const MachineOperand &MO1 = Phi.getOperand(I + 1);
2585       if (!MO1.isMBB()) {
2586         report("Expected PHI operand to be a basic block", &MO1, I + 1);
2587         continue;
2588       }
2589 
2590       const MachineBasicBlock &Pre = *MO1.getMBB();
2591       if (!Pre.isSuccessor(&MBB)) {
2592         report("PHI input is not a predecessor block", &MO1, I + 1);
2593         continue;
2594       }
2595 
2596       if (MInfo.reachable) {
2597         seen.insert(&Pre);
2598         BBInfo &PrInfo = MBBInfoMap[&Pre];
2599         if (!MO0.isUndef() && PrInfo.reachable &&
2600             !PrInfo.isLiveOut(MO0.getReg()))
2601           report("PHI operand is not live-out from predecessor", &MO0, I);
2602       }
2603     }
2604 
2605     // Did we see all predecessors?
2606     if (MInfo.reachable) {
2607       for (MachineBasicBlock *Pred : MBB.predecessors()) {
2608         if (!seen.count(Pred)) {
2609           report("Missing PHI operand", &Phi);
2610           errs() << printMBBReference(*Pred)
2611                  << " is a predecessor according to the CFG.\n";
2612         }
2613       }
2614     }
2615   }
2616 }
2617 
2618 void MachineVerifier::visitMachineFunctionAfter() {
2619   calcRegsPassed();
2620 
2621   for (const MachineBasicBlock &MBB : *MF)
2622     checkPHIOps(MBB);
2623 
2624   // Now check liveness info if available
2625   calcRegsRequired();
2626 
2627   // Check for killed virtual registers that should be live out.
2628   for (const auto &MBB : *MF) {
2629     BBInfo &MInfo = MBBInfoMap[&MBB];
2630     for (Register VReg : MInfo.vregsRequired)
2631       if (MInfo.regsKilled.count(VReg)) {
2632         report("Virtual register killed in block, but needed live out.", &MBB);
2633         errs() << "Virtual register " << printReg(VReg)
2634                << " is used after the block.\n";
2635       }
2636   }
2637 
2638   if (!MF->empty()) {
2639     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2640     for (Register VReg : MInfo.vregsRequired) {
2641       report("Virtual register defs don't dominate all uses.", MF);
2642       report_context_vreg(VReg);
2643     }
2644   }
2645 
2646   if (LiveVars)
2647     verifyLiveVariables();
2648   if (LiveInts)
2649     verifyLiveIntervals();
2650 
2651   // Check live-in list of each MBB. If a register is live into MBB, check
2652   // that the register is in regsLiveOut of each predecessor block. Since
2653   // this must come from a definition in the predecesssor or its live-in
2654   // list, this will catch a live-through case where the predecessor does not
2655   // have the register in its live-in list.  This currently only checks
2656   // registers that have no aliases, are not allocatable and are not
2657   // reserved, which could mean a condition code register for instance.
2658   if (MRI->tracksLiveness())
2659     for (const auto &MBB : *MF)
2660       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2661         MCPhysReg LiveInReg = P.PhysReg;
2662         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2663         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2664           continue;
2665         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2666           BBInfo &PInfo = MBBInfoMap[Pred];
2667           if (!PInfo.regsLiveOut.count(LiveInReg)) {
2668             report("Live in register not found to be live out from predecessor.",
2669                    &MBB);
2670             errs() << TRI->getName(LiveInReg)
2671                    << " not found to be live out from "
2672                    << printMBBReference(*Pred) << "\n";
2673           }
2674         }
2675       }
2676 
2677   for (auto CSInfo : MF->getCallSitesInfo())
2678     if (!CSInfo.first->isCall())
2679       report("Call site info referencing instruction that is not call", MF);
2680 
2681   // If there's debug-info, check that we don't have any duplicate value
2682   // tracking numbers.
2683   if (MF->getFunction().getSubprogram()) {
2684     DenseSet<unsigned> SeenNumbers;
2685     for (auto &MBB : *MF) {
2686       for (auto &MI : MBB) {
2687         if (auto Num = MI.peekDebugInstrNum()) {
2688           auto Result = SeenNumbers.insert((unsigned)Num);
2689           if (!Result.second)
2690             report("Instruction has a duplicated value tracking number", &MI);
2691         }
2692       }
2693     }
2694   }
2695 }
2696 
2697 void MachineVerifier::verifyLiveVariables() {
2698   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2699   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2700     Register Reg = Register::index2VirtReg(I);
2701     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2702     for (const auto &MBB : *MF) {
2703       BBInfo &MInfo = MBBInfoMap[&MBB];
2704 
2705       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2706       if (MInfo.vregsRequired.count(Reg)) {
2707         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2708           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2709           errs() << "Virtual register " << printReg(Reg)
2710                  << " must be live through the block.\n";
2711         }
2712       } else {
2713         if (VI.AliveBlocks.test(MBB.getNumber())) {
2714           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2715           errs() << "Virtual register " << printReg(Reg)
2716                  << " is not needed live through the block.\n";
2717         }
2718       }
2719     }
2720   }
2721 }
2722 
2723 void MachineVerifier::verifyLiveIntervals() {
2724   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2725   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2726     Register Reg = Register::index2VirtReg(I);
2727 
2728     // Spilling and splitting may leave unused registers around. Skip them.
2729     if (MRI->reg_nodbg_empty(Reg))
2730       continue;
2731 
2732     if (!LiveInts->hasInterval(Reg)) {
2733       report("Missing live interval for virtual register", MF);
2734       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2735       continue;
2736     }
2737 
2738     const LiveInterval &LI = LiveInts->getInterval(Reg);
2739     assert(Reg == LI.reg() && "Invalid reg to interval mapping");
2740     verifyLiveInterval(LI);
2741   }
2742 
2743   // Verify all the cached regunit intervals.
2744   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2745     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2746       verifyLiveRange(*LR, i);
2747 }
2748 
2749 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2750                                            const VNInfo *VNI, Register Reg,
2751                                            LaneBitmask LaneMask) {
2752   if (VNI->isUnused())
2753     return;
2754 
2755   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2756 
2757   if (!DefVNI) {
2758     report("Value not live at VNInfo def and not marked unused", MF);
2759     report_context(LR, Reg, LaneMask);
2760     report_context(*VNI);
2761     return;
2762   }
2763 
2764   if (DefVNI != VNI) {
2765     report("Live segment at def has different VNInfo", MF);
2766     report_context(LR, Reg, LaneMask);
2767     report_context(*VNI);
2768     return;
2769   }
2770 
2771   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2772   if (!MBB) {
2773     report("Invalid VNInfo definition index", MF);
2774     report_context(LR, Reg, LaneMask);
2775     report_context(*VNI);
2776     return;
2777   }
2778 
2779   if (VNI->isPHIDef()) {
2780     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2781       report("PHIDef VNInfo is not defined at MBB start", MBB);
2782       report_context(LR, Reg, LaneMask);
2783       report_context(*VNI);
2784     }
2785     return;
2786   }
2787 
2788   // Non-PHI def.
2789   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2790   if (!MI) {
2791     report("No instruction at VNInfo def index", MBB);
2792     report_context(LR, Reg, LaneMask);
2793     report_context(*VNI);
2794     return;
2795   }
2796 
2797   if (Reg != 0) {
2798     bool hasDef = false;
2799     bool isEarlyClobber = false;
2800     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2801       if (!MOI->isReg() || !MOI->isDef())
2802         continue;
2803       if (Register::isVirtualRegister(Reg)) {
2804         if (MOI->getReg() != Reg)
2805           continue;
2806       } else {
2807         if (!Register::isPhysicalRegister(MOI->getReg()) ||
2808             !TRI->hasRegUnit(MOI->getReg(), Reg))
2809           continue;
2810       }
2811       if (LaneMask.any() &&
2812           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2813         continue;
2814       hasDef = true;
2815       if (MOI->isEarlyClobber())
2816         isEarlyClobber = true;
2817     }
2818 
2819     if (!hasDef) {
2820       report("Defining instruction does not modify register", MI);
2821       report_context(LR, Reg, LaneMask);
2822       report_context(*VNI);
2823     }
2824 
2825     // Early clobber defs begin at USE slots, but other defs must begin at
2826     // DEF slots.
2827     if (isEarlyClobber) {
2828       if (!VNI->def.isEarlyClobber()) {
2829         report("Early clobber def must be at an early-clobber slot", MBB);
2830         report_context(LR, Reg, LaneMask);
2831         report_context(*VNI);
2832       }
2833     } else if (!VNI->def.isRegister()) {
2834       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2835       report_context(LR, Reg, LaneMask);
2836       report_context(*VNI);
2837     }
2838   }
2839 }
2840 
2841 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2842                                              const LiveRange::const_iterator I,
2843                                              Register Reg,
2844                                              LaneBitmask LaneMask) {
2845   const LiveRange::Segment &S = *I;
2846   const VNInfo *VNI = S.valno;
2847   assert(VNI && "Live segment has no valno");
2848 
2849   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2850     report("Foreign valno in live segment", MF);
2851     report_context(LR, Reg, LaneMask);
2852     report_context(S);
2853     report_context(*VNI);
2854   }
2855 
2856   if (VNI->isUnused()) {
2857     report("Live segment valno is marked unused", MF);
2858     report_context(LR, Reg, LaneMask);
2859     report_context(S);
2860   }
2861 
2862   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2863   if (!MBB) {
2864     report("Bad start of live segment, no basic block", MF);
2865     report_context(LR, Reg, LaneMask);
2866     report_context(S);
2867     return;
2868   }
2869   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2870   if (S.start != MBBStartIdx && S.start != VNI->def) {
2871     report("Live segment must begin at MBB entry or valno def", MBB);
2872     report_context(LR, Reg, LaneMask);
2873     report_context(S);
2874   }
2875 
2876   const MachineBasicBlock *EndMBB =
2877     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2878   if (!EndMBB) {
2879     report("Bad end of live segment, no basic block", MF);
2880     report_context(LR, Reg, LaneMask);
2881     report_context(S);
2882     return;
2883   }
2884 
2885   // No more checks for live-out segments.
2886   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2887     return;
2888 
2889   // RegUnit intervals are allowed dead phis.
2890   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2891       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2892     return;
2893 
2894   // The live segment is ending inside EndMBB
2895   const MachineInstr *MI =
2896     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2897   if (!MI) {
2898     report("Live segment doesn't end at a valid instruction", EndMBB);
2899     report_context(LR, Reg, LaneMask);
2900     report_context(S);
2901     return;
2902   }
2903 
2904   // The block slot must refer to a basic block boundary.
2905   if (S.end.isBlock()) {
2906     report("Live segment ends at B slot of an instruction", EndMBB);
2907     report_context(LR, Reg, LaneMask);
2908     report_context(S);
2909   }
2910 
2911   if (S.end.isDead()) {
2912     // Segment ends on the dead slot.
2913     // That means there must be a dead def.
2914     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2915       report("Live segment ending at dead slot spans instructions", EndMBB);
2916       report_context(LR, Reg, LaneMask);
2917       report_context(S);
2918     }
2919   }
2920 
2921   // A live segment can only end at an early-clobber slot if it is being
2922   // redefined by an early-clobber def.
2923   if (S.end.isEarlyClobber()) {
2924     if (I+1 == LR.end() || (I+1)->start != S.end) {
2925       report("Live segment ending at early clobber slot must be "
2926              "redefined by an EC def in the same instruction", EndMBB);
2927       report_context(LR, Reg, LaneMask);
2928       report_context(S);
2929     }
2930   }
2931 
2932   // The following checks only apply to virtual registers. Physreg liveness
2933   // is too weird to check.
2934   if (Register::isVirtualRegister(Reg)) {
2935     // A live segment can end with either a redefinition, a kill flag on a
2936     // use, or a dead flag on a def.
2937     bool hasRead = false;
2938     bool hasSubRegDef = false;
2939     bool hasDeadDef = false;
2940     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2941       if (!MOI->isReg() || MOI->getReg() != Reg)
2942         continue;
2943       unsigned Sub = MOI->getSubReg();
2944       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2945                                  : LaneBitmask::getAll();
2946       if (MOI->isDef()) {
2947         if (Sub != 0) {
2948           hasSubRegDef = true;
2949           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2950           // mask for subregister defs. Read-undef defs will be handled by
2951           // readsReg below.
2952           SLM = ~SLM;
2953         }
2954         if (MOI->isDead())
2955           hasDeadDef = true;
2956       }
2957       if (LaneMask.any() && (LaneMask & SLM).none())
2958         continue;
2959       if (MOI->readsReg())
2960         hasRead = true;
2961     }
2962     if (S.end.isDead()) {
2963       // Make sure that the corresponding machine operand for a "dead" live
2964       // range has the dead flag. We cannot perform this check for subregister
2965       // liveranges as partially dead values are allowed.
2966       if (LaneMask.none() && !hasDeadDef) {
2967         report("Instruction ending live segment on dead slot has no dead flag",
2968                MI);
2969         report_context(LR, Reg, LaneMask);
2970         report_context(S);
2971       }
2972     } else {
2973       if (!hasRead) {
2974         // When tracking subregister liveness, the main range must start new
2975         // values on partial register writes, even if there is no read.
2976         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2977             !hasSubRegDef) {
2978           report("Instruction ending live segment doesn't read the register",
2979                  MI);
2980           report_context(LR, Reg, LaneMask);
2981           report_context(S);
2982         }
2983       }
2984     }
2985   }
2986 
2987   // Now check all the basic blocks in this live segment.
2988   MachineFunction::const_iterator MFI = MBB->getIterator();
2989   // Is this live segment the beginning of a non-PHIDef VN?
2990   if (S.start == VNI->def && !VNI->isPHIDef()) {
2991     // Not live-in to any blocks.
2992     if (MBB == EndMBB)
2993       return;
2994     // Skip this block.
2995     ++MFI;
2996   }
2997 
2998   SmallVector<SlotIndex, 4> Undefs;
2999   if (LaneMask.any()) {
3000     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
3001     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
3002   }
3003 
3004   while (true) {
3005     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
3006     // We don't know how to track physregs into a landing pad.
3007     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
3008       if (&*MFI == EndMBB)
3009         break;
3010       ++MFI;
3011       continue;
3012     }
3013 
3014     // Is VNI a PHI-def in the current block?
3015     bool IsPHI = VNI->isPHIDef() &&
3016       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
3017 
3018     // Check that VNI is live-out of all predecessors.
3019     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
3020       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
3021       // Predecessor of landing pad live-out on last call.
3022       if (MFI->isEHPad()) {
3023         for (auto I = Pred->rbegin(), E = Pred->rend(); I != E; ++I) {
3024           if (I->isCall()) {
3025             PEnd = Indexes->getInstructionIndex(*I).getBoundaryIndex();
3026             break;
3027           }
3028         }
3029       }
3030       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
3031 
3032       // All predecessors must have a live-out value. However for a phi
3033       // instruction with subregister intervals
3034       // only one of the subregisters (not necessarily the current one) needs to
3035       // be defined.
3036       if (!PVNI && (LaneMask.none() || !IsPHI)) {
3037         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
3038           continue;
3039         report("Register not marked live out of predecessor", Pred);
3040         report_context(LR, Reg, LaneMask);
3041         report_context(*VNI);
3042         errs() << " live into " << printMBBReference(*MFI) << '@'
3043                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
3044                << PEnd << '\n';
3045         continue;
3046       }
3047 
3048       // Only PHI-defs can take different predecessor values.
3049       if (!IsPHI && PVNI != VNI) {
3050         report("Different value live out of predecessor", Pred);
3051         report_context(LR, Reg, LaneMask);
3052         errs() << "Valno #" << PVNI->id << " live out of "
3053                << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
3054                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
3055                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
3056       }
3057     }
3058     if (&*MFI == EndMBB)
3059       break;
3060     ++MFI;
3061   }
3062 }
3063 
3064 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
3065                                       LaneBitmask LaneMask) {
3066   for (const VNInfo *VNI : LR.valnos)
3067     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
3068 
3069   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
3070     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
3071 }
3072 
3073 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
3074   Register Reg = LI.reg();
3075   assert(Register::isVirtualRegister(Reg));
3076   verifyLiveRange(LI, Reg);
3077 
3078   LaneBitmask Mask;
3079   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3080   for (const LiveInterval::SubRange &SR : LI.subranges()) {
3081     if ((Mask & SR.LaneMask).any()) {
3082       report("Lane masks of sub ranges overlap in live interval", MF);
3083       report_context(LI);
3084     }
3085     if ((SR.LaneMask & ~MaxMask).any()) {
3086       report("Subrange lanemask is invalid", MF);
3087       report_context(LI);
3088     }
3089     if (SR.empty()) {
3090       report("Subrange must not be empty", MF);
3091       report_context(SR, LI.reg(), SR.LaneMask);
3092     }
3093     Mask |= SR.LaneMask;
3094     verifyLiveRange(SR, LI.reg(), SR.LaneMask);
3095     if (!LI.covers(SR)) {
3096       report("A Subrange is not covered by the main range", MF);
3097       report_context(LI);
3098     }
3099   }
3100 
3101   // Check the LI only has one connected component.
3102   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
3103   unsigned NumComp = ConEQ.Classify(LI);
3104   if (NumComp > 1) {
3105     report("Multiple connected components in live interval", MF);
3106     report_context(LI);
3107     for (unsigned comp = 0; comp != NumComp; ++comp) {
3108       errs() << comp << ": valnos";
3109       for (const VNInfo *I : LI.valnos)
3110         if (comp == ConEQ.getEqClass(I))
3111           errs() << ' ' << I->id;
3112       errs() << '\n';
3113     }
3114   }
3115 }
3116 
3117 namespace {
3118 
3119   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
3120   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
3121   // value is zero.
3122   // We use a bool plus an integer to capture the stack state.
3123   struct StackStateOfBB {
3124     StackStateOfBB() = default;
3125     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
3126       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
3127       ExitIsSetup(ExitSetup) {}
3128 
3129     // Can be negative, which means we are setting up a frame.
3130     int EntryValue = 0;
3131     int ExitValue = 0;
3132     bool EntryIsSetup = false;
3133     bool ExitIsSetup = false;
3134   };
3135 
3136 } // end anonymous namespace
3137 
3138 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3139 /// by a FrameDestroy <n>, stack adjustments are identical on all
3140 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
3141 void MachineVerifier::verifyStackFrame() {
3142   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
3143   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
3144   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
3145     return;
3146 
3147   SmallVector<StackStateOfBB, 8> SPState;
3148   SPState.resize(MF->getNumBlockIDs());
3149   df_iterator_default_set<const MachineBasicBlock*> Reachable;
3150 
3151   // Visit the MBBs in DFS order.
3152   for (df_ext_iterator<const MachineFunction *,
3153                        df_iterator_default_set<const MachineBasicBlock *>>
3154        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3155        DFI != DFE; ++DFI) {
3156     const MachineBasicBlock *MBB = *DFI;
3157 
3158     StackStateOfBB BBState;
3159     // Check the exit state of the DFS stack predecessor.
3160     if (DFI.getPathLength() >= 2) {
3161       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3162       assert(Reachable.count(StackPred) &&
3163              "DFS stack predecessor is already visited.\n");
3164       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3165       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3166       BBState.ExitValue = BBState.EntryValue;
3167       BBState.ExitIsSetup = BBState.EntryIsSetup;
3168     }
3169 
3170     // Update stack state by checking contents of MBB.
3171     for (const auto &I : *MBB) {
3172       if (I.getOpcode() == FrameSetupOpcode) {
3173         if (BBState.ExitIsSetup)
3174           report("FrameSetup is after another FrameSetup", &I);
3175         BBState.ExitValue -= TII->getFrameTotalSize(I);
3176         BBState.ExitIsSetup = true;
3177       }
3178 
3179       if (I.getOpcode() == FrameDestroyOpcode) {
3180         int Size = TII->getFrameTotalSize(I);
3181         if (!BBState.ExitIsSetup)
3182           report("FrameDestroy is not after a FrameSetup", &I);
3183         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3184                                                BBState.ExitValue;
3185         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3186           report("FrameDestroy <n> is after FrameSetup <m>", &I);
3187           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
3188               << AbsSPAdj << ">.\n";
3189         }
3190         BBState.ExitValue += Size;
3191         BBState.ExitIsSetup = false;
3192       }
3193     }
3194     SPState[MBB->getNumber()] = BBState;
3195 
3196     // Make sure the exit state of any predecessor is consistent with the entry
3197     // state.
3198     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3199       if (Reachable.count(Pred) &&
3200           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
3201            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
3202         report("The exit stack state of a predecessor is inconsistent.", MBB);
3203         errs() << "Predecessor " << printMBBReference(*Pred)
3204                << " has exit state (" << SPState[Pred->getNumber()].ExitValue
3205                << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
3206                << printMBBReference(*MBB) << " has entry state ("
3207                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
3208       }
3209     }
3210 
3211     // Make sure the entry state of any successor is consistent with the exit
3212     // state.
3213     for (const MachineBasicBlock *Succ : MBB->successors()) {
3214       if (Reachable.count(Succ) &&
3215           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3216            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3217         report("The entry stack state of a successor is inconsistent.", MBB);
3218         errs() << "Successor " << printMBBReference(*Succ)
3219                << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3220                << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3221                << printMBBReference(*MBB) << " has exit state ("
3222                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3223       }
3224     }
3225 
3226     // Make sure a basic block with return ends with zero stack adjustment.
3227     if (!MBB->empty() && MBB->back().isReturn()) {
3228       if (BBState.ExitIsSetup)
3229         report("A return block ends with a FrameSetup.", MBB);
3230       if (BBState.ExitValue)
3231         report("A return block ends with a nonzero stack adjustment.", MBB);
3232     }
3233   }
3234 }
3235