1 //===- lib/CodeGen/MachineTraceMetrics.cpp --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/MachineTraceMetrics.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/DenseMap.h" 12 #include "llvm/ADT/Optional.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/SparseSet.h" 17 #include "llvm/CodeGen/MachineBasicBlock.h" 18 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstr.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineOperand.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/TargetRegisterInfo.h" 25 #include "llvm/CodeGen/TargetSchedule.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/MC/MCRegisterInfo.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/Format.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <iterator> 37 #include <tuple> 38 #include <utility> 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "machine-trace-metrics" 43 44 char MachineTraceMetrics::ID = 0; 45 46 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID; 47 48 INITIALIZE_PASS_BEGIN(MachineTraceMetrics, DEBUG_TYPE, 49 "Machine Trace Metrics", false, true) 50 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 51 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 52 INITIALIZE_PASS_END(MachineTraceMetrics, DEBUG_TYPE, 53 "Machine Trace Metrics", false, true) 54 55 MachineTraceMetrics::MachineTraceMetrics() : MachineFunctionPass(ID) { 56 std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr); 57 } 58 59 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const { 60 AU.setPreservesAll(); 61 AU.addRequired<MachineBranchProbabilityInfo>(); 62 AU.addRequired<MachineLoopInfo>(); 63 MachineFunctionPass::getAnalysisUsage(AU); 64 } 65 66 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) { 67 MF = &Func; 68 const TargetSubtargetInfo &ST = MF->getSubtarget(); 69 TII = ST.getInstrInfo(); 70 TRI = ST.getRegisterInfo(); 71 MRI = &MF->getRegInfo(); 72 Loops = &getAnalysis<MachineLoopInfo>(); 73 SchedModel.init(&ST); 74 BlockInfo.resize(MF->getNumBlockIDs()); 75 ProcResourceCycles.resize(MF->getNumBlockIDs() * 76 SchedModel.getNumProcResourceKinds()); 77 return false; 78 } 79 80 void MachineTraceMetrics::releaseMemory() { 81 MF = nullptr; 82 BlockInfo.clear(); 83 for (unsigned i = 0; i != TS_NumStrategies; ++i) { 84 delete Ensembles[i]; 85 Ensembles[i] = nullptr; 86 } 87 } 88 89 //===----------------------------------------------------------------------===// 90 // Fixed block information 91 //===----------------------------------------------------------------------===// 92 // 93 // The number of instructions in a basic block and the CPU resources used by 94 // those instructions don't depend on any given trace strategy. 95 96 /// Compute the resource usage in basic block MBB. 97 const MachineTraceMetrics::FixedBlockInfo* 98 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) { 99 assert(MBB && "No basic block"); 100 FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()]; 101 if (FBI->hasResources()) 102 return FBI; 103 104 // Compute resource usage in the block. 105 FBI->HasCalls = false; 106 unsigned InstrCount = 0; 107 108 // Add up per-processor resource cycles as well. 109 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 110 SmallVector<unsigned, 32> PRCycles(PRKinds); 111 112 for (const auto &MI : *MBB) { 113 if (MI.isTransient()) 114 continue; 115 ++InstrCount; 116 if (MI.isCall()) 117 FBI->HasCalls = true; 118 119 // Count processor resources used. 120 if (!SchedModel.hasInstrSchedModel()) 121 continue; 122 const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI); 123 if (!SC->isValid()) 124 continue; 125 126 for (TargetSchedModel::ProcResIter 127 PI = SchedModel.getWriteProcResBegin(SC), 128 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 129 assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind"); 130 PRCycles[PI->ProcResourceIdx] += PI->Cycles; 131 } 132 } 133 FBI->InstrCount = InstrCount; 134 135 // Scale the resource cycles so they are comparable. 136 unsigned PROffset = MBB->getNumber() * PRKinds; 137 for (unsigned K = 0; K != PRKinds; ++K) 138 ProcResourceCycles[PROffset + K] = 139 PRCycles[K] * SchedModel.getResourceFactor(K); 140 141 return FBI; 142 } 143 144 ArrayRef<unsigned> 145 MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const { 146 assert(BlockInfo[MBBNum].hasResources() && 147 "getResources() must be called before getProcResourceCycles()"); 148 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 149 assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size()); 150 return makeArrayRef(ProcResourceCycles.data() + MBBNum * PRKinds, PRKinds); 151 } 152 153 //===----------------------------------------------------------------------===// 154 // Ensemble utility functions 155 //===----------------------------------------------------------------------===// 156 157 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct) 158 : MTM(*ct) { 159 BlockInfo.resize(MTM.BlockInfo.size()); 160 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 161 ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds); 162 ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds); 163 } 164 165 // Virtual destructor serves as an anchor. 166 MachineTraceMetrics::Ensemble::~Ensemble() = default; 167 168 const MachineLoop* 169 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const { 170 return MTM.Loops->getLoopFor(MBB); 171 } 172 173 // Update resource-related information in the TraceBlockInfo for MBB. 174 // Only update resources related to the trace above MBB. 175 void MachineTraceMetrics::Ensemble:: 176 computeDepthResources(const MachineBasicBlock *MBB) { 177 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 178 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 179 unsigned PROffset = MBB->getNumber() * PRKinds; 180 181 // Compute resources from trace above. The top block is simple. 182 if (!TBI->Pred) { 183 TBI->InstrDepth = 0; 184 TBI->Head = MBB->getNumber(); 185 std::fill(ProcResourceDepths.begin() + PROffset, 186 ProcResourceDepths.begin() + PROffset + PRKinds, 0); 187 return; 188 } 189 190 // Compute from the block above. A post-order traversal ensures the 191 // predecessor is always computed first. 192 unsigned PredNum = TBI->Pred->getNumber(); 193 TraceBlockInfo *PredTBI = &BlockInfo[PredNum]; 194 assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet"); 195 const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred); 196 TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount; 197 TBI->Head = PredTBI->Head; 198 199 // Compute per-resource depths. 200 ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum); 201 ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum); 202 for (unsigned K = 0; K != PRKinds; ++K) 203 ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K]; 204 } 205 206 // Update resource-related information in the TraceBlockInfo for MBB. 207 // Only update resources related to the trace below MBB. 208 void MachineTraceMetrics::Ensemble:: 209 computeHeightResources(const MachineBasicBlock *MBB) { 210 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 211 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 212 unsigned PROffset = MBB->getNumber() * PRKinds; 213 214 // Compute resources for the current block. 215 TBI->InstrHeight = MTM.getResources(MBB)->InstrCount; 216 ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber()); 217 218 // The trace tail is done. 219 if (!TBI->Succ) { 220 TBI->Tail = MBB->getNumber(); 221 llvm::copy(PRCycles, ProcResourceHeights.begin() + PROffset); 222 return; 223 } 224 225 // Compute from the block below. A post-order traversal ensures the 226 // predecessor is always computed first. 227 unsigned SuccNum = TBI->Succ->getNumber(); 228 TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum]; 229 assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet"); 230 TBI->InstrHeight += SuccTBI->InstrHeight; 231 TBI->Tail = SuccTBI->Tail; 232 233 // Compute per-resource heights. 234 ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum); 235 for (unsigned K = 0; K != PRKinds; ++K) 236 ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K]; 237 } 238 239 // Check if depth resources for MBB are valid and return the TBI. 240 // Return NULL if the resources have been invalidated. 241 const MachineTraceMetrics::TraceBlockInfo* 242 MachineTraceMetrics::Ensemble:: 243 getDepthResources(const MachineBasicBlock *MBB) const { 244 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 245 return TBI->hasValidDepth() ? TBI : nullptr; 246 } 247 248 // Check if height resources for MBB are valid and return the TBI. 249 // Return NULL if the resources have been invalidated. 250 const MachineTraceMetrics::TraceBlockInfo* 251 MachineTraceMetrics::Ensemble:: 252 getHeightResources(const MachineBasicBlock *MBB) const { 253 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 254 return TBI->hasValidHeight() ? TBI : nullptr; 255 } 256 257 /// Get an array of processor resource depths for MBB. Indexed by processor 258 /// resource kind, this array contains the scaled processor resources consumed 259 /// by all blocks preceding MBB in its trace. It does not include instructions 260 /// in MBB. 261 /// 262 /// Compare TraceBlockInfo::InstrDepth. 263 ArrayRef<unsigned> 264 MachineTraceMetrics::Ensemble:: 265 getProcResourceDepths(unsigned MBBNum) const { 266 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 267 assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size()); 268 return makeArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds); 269 } 270 271 /// Get an array of processor resource heights for MBB. Indexed by processor 272 /// resource kind, this array contains the scaled processor resources consumed 273 /// by this block and all blocks following it in its trace. 274 /// 275 /// Compare TraceBlockInfo::InstrHeight. 276 ArrayRef<unsigned> 277 MachineTraceMetrics::Ensemble:: 278 getProcResourceHeights(unsigned MBBNum) const { 279 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 280 assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size()); 281 return makeArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds); 282 } 283 284 //===----------------------------------------------------------------------===// 285 // Trace Selection Strategies 286 //===----------------------------------------------------------------------===// 287 // 288 // A trace selection strategy is implemented as a sub-class of Ensemble. The 289 // trace through a block B is computed by two DFS traversals of the CFG 290 // starting from B. One upwards, and one downwards. During the upwards DFS, 291 // pickTracePred() is called on the post-ordered blocks. During the downwards 292 // DFS, pickTraceSucc() is called in a post-order. 293 // 294 295 // We never allow traces that leave loops, but we do allow traces to enter 296 // nested loops. We also never allow traces to contain back-edges. 297 // 298 // This means that a loop header can never appear above the center block of a 299 // trace, except as the trace head. Below the center block, loop exiting edges 300 // are banned. 301 // 302 // Return true if an edge from the From loop to the To loop is leaving a loop. 303 // Either of To and From can be null. 304 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) { 305 return From && !From->contains(To); 306 } 307 308 // MinInstrCountEnsemble - Pick the trace that executes the least number of 309 // instructions. 310 namespace { 311 312 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble { 313 const char *getName() const override { return "MinInstr"; } 314 const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override; 315 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override; 316 317 public: 318 MinInstrCountEnsemble(MachineTraceMetrics *mtm) 319 : MachineTraceMetrics::Ensemble(mtm) {} 320 }; 321 322 } // end anonymous namespace 323 324 // Select the preferred predecessor for MBB. 325 const MachineBasicBlock* 326 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) { 327 if (MBB->pred_empty()) 328 return nullptr; 329 const MachineLoop *CurLoop = getLoopFor(MBB); 330 // Don't leave loops, and never follow back-edges. 331 if (CurLoop && MBB == CurLoop->getHeader()) 332 return nullptr; 333 unsigned CurCount = MTM.getResources(MBB)->InstrCount; 334 const MachineBasicBlock *Best = nullptr; 335 unsigned BestDepth = 0; 336 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 337 const MachineTraceMetrics::TraceBlockInfo *PredTBI = 338 getDepthResources(Pred); 339 // Ignore cycles that aren't natural loops. 340 if (!PredTBI) 341 continue; 342 // Pick the predecessor that would give this block the smallest InstrDepth. 343 unsigned Depth = PredTBI->InstrDepth + CurCount; 344 if (!Best || Depth < BestDepth) { 345 Best = Pred; 346 BestDepth = Depth; 347 } 348 } 349 return Best; 350 } 351 352 // Select the preferred successor for MBB. 353 const MachineBasicBlock* 354 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) { 355 if (MBB->pred_empty()) 356 return nullptr; 357 const MachineLoop *CurLoop = getLoopFor(MBB); 358 const MachineBasicBlock *Best = nullptr; 359 unsigned BestHeight = 0; 360 for (const MachineBasicBlock *Succ : MBB->successors()) { 361 // Don't consider back-edges. 362 if (CurLoop && Succ == CurLoop->getHeader()) 363 continue; 364 // Don't consider successors exiting CurLoop. 365 if (isExitingLoop(CurLoop, getLoopFor(Succ))) 366 continue; 367 const MachineTraceMetrics::TraceBlockInfo *SuccTBI = 368 getHeightResources(Succ); 369 // Ignore cycles that aren't natural loops. 370 if (!SuccTBI) 371 continue; 372 // Pick the successor that would give this block the smallest InstrHeight. 373 unsigned Height = SuccTBI->InstrHeight; 374 if (!Best || Height < BestHeight) { 375 Best = Succ; 376 BestHeight = Height; 377 } 378 } 379 return Best; 380 } 381 382 // Get an Ensemble sub-class for the requested trace strategy. 383 MachineTraceMetrics::Ensemble * 384 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) { 385 assert(strategy < TS_NumStrategies && "Invalid trace strategy enum"); 386 Ensemble *&E = Ensembles[strategy]; 387 if (E) 388 return E; 389 390 // Allocate new Ensemble on demand. 391 switch (strategy) { 392 case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this)); 393 default: llvm_unreachable("Invalid trace strategy enum"); 394 } 395 } 396 397 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) { 398 LLVM_DEBUG(dbgs() << "Invalidate traces through " << printMBBReference(*MBB) 399 << '\n'); 400 BlockInfo[MBB->getNumber()].invalidate(); 401 for (unsigned i = 0; i != TS_NumStrategies; ++i) 402 if (Ensembles[i]) 403 Ensembles[i]->invalidate(MBB); 404 } 405 406 void MachineTraceMetrics::verifyAnalysis() const { 407 if (!MF) 408 return; 409 #ifndef NDEBUG 410 assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size"); 411 for (unsigned i = 0; i != TS_NumStrategies; ++i) 412 if (Ensembles[i]) 413 Ensembles[i]->verify(); 414 #endif 415 } 416 417 //===----------------------------------------------------------------------===// 418 // Trace building 419 //===----------------------------------------------------------------------===// 420 // 421 // Traces are built by two CFG traversals. To avoid recomputing too much, use a 422 // set abstraction that confines the search to the current loop, and doesn't 423 // revisit blocks. 424 425 namespace { 426 427 struct LoopBounds { 428 MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks; 429 SmallPtrSet<const MachineBasicBlock*, 8> Visited; 430 const MachineLoopInfo *Loops; 431 bool Downward = false; 432 433 LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks, 434 const MachineLoopInfo *loops) : Blocks(blocks), Loops(loops) {} 435 }; 436 437 } // end anonymous namespace 438 439 // Specialize po_iterator_storage in order to prune the post-order traversal so 440 // it is limited to the current loop and doesn't traverse the loop back edges. 441 namespace llvm { 442 443 template<> 444 class po_iterator_storage<LoopBounds, true> { 445 LoopBounds &LB; 446 447 public: 448 po_iterator_storage(LoopBounds &lb) : LB(lb) {} 449 450 void finishPostorder(const MachineBasicBlock*) {} 451 452 bool insertEdge(Optional<const MachineBasicBlock *> From, 453 const MachineBasicBlock *To) { 454 // Skip already visited To blocks. 455 MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()]; 456 if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth()) 457 return false; 458 // From is null once when To is the trace center block. 459 if (From) { 460 if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(*From)) { 461 // Don't follow backedges, don't leave FromLoop when going upwards. 462 if ((LB.Downward ? To : *From) == FromLoop->getHeader()) 463 return false; 464 // Don't leave FromLoop. 465 if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To))) 466 return false; 467 } 468 } 469 // To is a new block. Mark the block as visited in case the CFG has cycles 470 // that MachineLoopInfo didn't recognize as a natural loop. 471 return LB.Visited.insert(To).second; 472 } 473 }; 474 475 } // end namespace llvm 476 477 /// Compute the trace through MBB. 478 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) { 479 LLVM_DEBUG(dbgs() << "Computing " << getName() << " trace through " 480 << printMBBReference(*MBB) << '\n'); 481 // Set up loop bounds for the backwards post-order traversal. 482 LoopBounds Bounds(BlockInfo, MTM.Loops); 483 484 // Run an upwards post-order search for the trace start. 485 Bounds.Downward = false; 486 Bounds.Visited.clear(); 487 for (auto I : inverse_post_order_ext(MBB, Bounds)) { 488 LLVM_DEBUG(dbgs() << " pred for " << printMBBReference(*I) << ": "); 489 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 490 // All the predecessors have been visited, pick the preferred one. 491 TBI.Pred = pickTracePred(I); 492 LLVM_DEBUG({ 493 if (TBI.Pred) 494 dbgs() << printMBBReference(*TBI.Pred) << '\n'; 495 else 496 dbgs() << "null\n"; 497 }); 498 // The trace leading to I is now known, compute the depth resources. 499 computeDepthResources(I); 500 } 501 502 // Run a downwards post-order search for the trace end. 503 Bounds.Downward = true; 504 Bounds.Visited.clear(); 505 for (auto I : post_order_ext(MBB, Bounds)) { 506 LLVM_DEBUG(dbgs() << " succ for " << printMBBReference(*I) << ": "); 507 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 508 // All the successors have been visited, pick the preferred one. 509 TBI.Succ = pickTraceSucc(I); 510 LLVM_DEBUG({ 511 if (TBI.Succ) 512 dbgs() << printMBBReference(*TBI.Succ) << '\n'; 513 else 514 dbgs() << "null\n"; 515 }); 516 // The trace leaving I is now known, compute the height resources. 517 computeHeightResources(I); 518 } 519 } 520 521 /// Invalidate traces through BadMBB. 522 void 523 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) { 524 SmallVector<const MachineBasicBlock*, 16> WorkList; 525 TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()]; 526 527 // Invalidate height resources of blocks above MBB. 528 if (BadTBI.hasValidHeight()) { 529 BadTBI.invalidateHeight(); 530 WorkList.push_back(BadMBB); 531 do { 532 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 533 LLVM_DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' ' 534 << getName() << " height.\n"); 535 // Find any MBB predecessors that have MBB as their preferred successor. 536 // They are the only ones that need to be invalidated. 537 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 538 TraceBlockInfo &TBI = BlockInfo[Pred->getNumber()]; 539 if (!TBI.hasValidHeight()) 540 continue; 541 if (TBI.Succ == MBB) { 542 TBI.invalidateHeight(); 543 WorkList.push_back(Pred); 544 continue; 545 } 546 // Verify that TBI.Succ is actually a *I successor. 547 assert((!TBI.Succ || Pred->isSuccessor(TBI.Succ)) && "CFG changed"); 548 } 549 } while (!WorkList.empty()); 550 } 551 552 // Invalidate depth resources of blocks below MBB. 553 if (BadTBI.hasValidDepth()) { 554 BadTBI.invalidateDepth(); 555 WorkList.push_back(BadMBB); 556 do { 557 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 558 LLVM_DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' ' 559 << getName() << " depth.\n"); 560 // Find any MBB successors that have MBB as their preferred predecessor. 561 // They are the only ones that need to be invalidated. 562 for (const MachineBasicBlock *Succ : MBB->successors()) { 563 TraceBlockInfo &TBI = BlockInfo[Succ->getNumber()]; 564 if (!TBI.hasValidDepth()) 565 continue; 566 if (TBI.Pred == MBB) { 567 TBI.invalidateDepth(); 568 WorkList.push_back(Succ); 569 continue; 570 } 571 // Verify that TBI.Pred is actually a *I predecessor. 572 assert((!TBI.Pred || Succ->isPredecessor(TBI.Pred)) && "CFG changed"); 573 } 574 } while (!WorkList.empty()); 575 } 576 577 // Clear any per-instruction data. We only have to do this for BadMBB itself 578 // because the instructions in that block may change. Other blocks may be 579 // invalidated, but their instructions will stay the same, so there is no 580 // need to erase the Cycle entries. They will be overwritten when we 581 // recompute. 582 for (const auto &I : *BadMBB) 583 Cycles.erase(&I); 584 } 585 586 void MachineTraceMetrics::Ensemble::verify() const { 587 #ifndef NDEBUG 588 assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() && 589 "Outdated BlockInfo size"); 590 for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) { 591 const TraceBlockInfo &TBI = BlockInfo[Num]; 592 if (TBI.hasValidDepth() && TBI.Pred) { 593 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 594 assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace"); 595 assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() && 596 "Trace is broken, depth should have been invalidated."); 597 const MachineLoop *Loop = getLoopFor(MBB); 598 assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge"); 599 } 600 if (TBI.hasValidHeight() && TBI.Succ) { 601 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 602 assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace"); 603 assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() && 604 "Trace is broken, height should have been invalidated."); 605 const MachineLoop *Loop = getLoopFor(MBB); 606 const MachineLoop *SuccLoop = getLoopFor(TBI.Succ); 607 assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) && 608 "Trace contains backedge"); 609 } 610 } 611 #endif 612 } 613 614 //===----------------------------------------------------------------------===// 615 // Data Dependencies 616 //===----------------------------------------------------------------------===// 617 // 618 // Compute the depth and height of each instruction based on data dependencies 619 // and instruction latencies. These cycle numbers assume that the CPU can issue 620 // an infinite number of instructions per cycle as long as their dependencies 621 // are ready. 622 623 // A data dependency is represented as a defining MI and operand numbers on the 624 // defining and using MI. 625 namespace { 626 627 struct DataDep { 628 const MachineInstr *DefMI; 629 unsigned DefOp; 630 unsigned UseOp; 631 632 DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp) 633 : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {} 634 635 /// Create a DataDep from an SSA form virtual register. 636 DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp) 637 : UseOp(UseOp) { 638 assert(Register::isVirtualRegister(VirtReg)); 639 MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg); 640 assert(!DefI.atEnd() && "Register has no defs"); 641 DefMI = DefI->getParent(); 642 DefOp = DefI.getOperandNo(); 643 assert((++DefI).atEnd() && "Register has multiple defs"); 644 } 645 }; 646 647 } // end anonymous namespace 648 649 // Get the input data dependencies that must be ready before UseMI can issue. 650 // Return true if UseMI has any physreg operands. 651 static bool getDataDeps(const MachineInstr &UseMI, 652 SmallVectorImpl<DataDep> &Deps, 653 const MachineRegisterInfo *MRI) { 654 // Debug values should not be included in any calculations. 655 if (UseMI.isDebugInstr()) 656 return false; 657 658 bool HasPhysRegs = false; 659 for (MachineInstr::const_mop_iterator I = UseMI.operands_begin(), 660 E = UseMI.operands_end(); I != E; ++I) { 661 const MachineOperand &MO = *I; 662 if (!MO.isReg()) 663 continue; 664 Register Reg = MO.getReg(); 665 if (!Reg) 666 continue; 667 if (Register::isPhysicalRegister(Reg)) { 668 HasPhysRegs = true; 669 continue; 670 } 671 // Collect virtual register reads. 672 if (MO.readsReg()) 673 Deps.push_back(DataDep(MRI, Reg, UseMI.getOperandNo(I))); 674 } 675 return HasPhysRegs; 676 } 677 678 // Get the input data dependencies of a PHI instruction, using Pred as the 679 // preferred predecessor. 680 // This will add at most one dependency to Deps. 681 static void getPHIDeps(const MachineInstr &UseMI, 682 SmallVectorImpl<DataDep> &Deps, 683 const MachineBasicBlock *Pred, 684 const MachineRegisterInfo *MRI) { 685 // No predecessor at the beginning of a trace. Ignore dependencies. 686 if (!Pred) 687 return; 688 assert(UseMI.isPHI() && UseMI.getNumOperands() % 2 && "Bad PHI"); 689 for (unsigned i = 1; i != UseMI.getNumOperands(); i += 2) { 690 if (UseMI.getOperand(i + 1).getMBB() == Pred) { 691 Register Reg = UseMI.getOperand(i).getReg(); 692 Deps.push_back(DataDep(MRI, Reg, i)); 693 return; 694 } 695 } 696 } 697 698 // Identify physreg dependencies for UseMI, and update the live regunit 699 // tracking set when scanning instructions downwards. 700 static void updatePhysDepsDownwards(const MachineInstr *UseMI, 701 SmallVectorImpl<DataDep> &Deps, 702 SparseSet<LiveRegUnit> &RegUnits, 703 const TargetRegisterInfo *TRI) { 704 SmallVector<unsigned, 8> Kills; 705 SmallVector<unsigned, 8> LiveDefOps; 706 707 for (MachineInstr::const_mop_iterator MI = UseMI->operands_begin(), 708 ME = UseMI->operands_end(); MI != ME; ++MI) { 709 const MachineOperand &MO = *MI; 710 if (!MO.isReg()) 711 continue; 712 Register Reg = MO.getReg(); 713 if (!Register::isPhysicalRegister(Reg)) 714 continue; 715 // Track live defs and kills for updating RegUnits. 716 if (MO.isDef()) { 717 if (MO.isDead()) 718 Kills.push_back(Reg); 719 else 720 LiveDefOps.push_back(UseMI->getOperandNo(MI)); 721 } else if (MO.isKill()) 722 Kills.push_back(Reg); 723 // Identify dependencies. 724 if (!MO.readsReg()) 725 continue; 726 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 727 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 728 if (I == RegUnits.end()) 729 continue; 730 Deps.push_back(DataDep(I->MI, I->Op, UseMI->getOperandNo(MI))); 731 break; 732 } 733 } 734 735 // Update RegUnits to reflect live registers after UseMI. 736 // First kills. 737 for (unsigned Kill : Kills) 738 for (MCRegUnitIterator Units(Kill, TRI); Units.isValid(); ++Units) 739 RegUnits.erase(*Units); 740 741 // Second, live defs. 742 for (unsigned DefOp : LiveDefOps) { 743 for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI); 744 Units.isValid(); ++Units) { 745 LiveRegUnit &LRU = RegUnits[*Units]; 746 LRU.MI = UseMI; 747 LRU.Op = DefOp; 748 } 749 } 750 } 751 752 /// The length of the critical path through a trace is the maximum of two path 753 /// lengths: 754 /// 755 /// 1. The maximum height+depth over all instructions in the trace center block. 756 /// 757 /// 2. The longest cross-block dependency chain. For small blocks, it is 758 /// possible that the critical path through the trace doesn't include any 759 /// instructions in the block. 760 /// 761 /// This function computes the second number from the live-in list of the 762 /// center block. 763 unsigned MachineTraceMetrics::Ensemble:: 764 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) { 765 assert(TBI.HasValidInstrDepths && "Missing depth info"); 766 assert(TBI.HasValidInstrHeights && "Missing height info"); 767 unsigned MaxLen = 0; 768 for (const LiveInReg &LIR : TBI.LiveIns) { 769 if (!Register::isVirtualRegister(LIR.Reg)) 770 continue; 771 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 772 // Ignore dependencies outside the current trace. 773 const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()]; 774 if (!DefTBI.isUsefulDominator(TBI)) 775 continue; 776 unsigned Len = LIR.Height + Cycles[DefMI].Depth; 777 MaxLen = std::max(MaxLen, Len); 778 } 779 return MaxLen; 780 } 781 782 void MachineTraceMetrics::Ensemble:: 783 updateDepth(MachineTraceMetrics::TraceBlockInfo &TBI, const MachineInstr &UseMI, 784 SparseSet<LiveRegUnit> &RegUnits) { 785 SmallVector<DataDep, 8> Deps; 786 // Collect all data dependencies. 787 if (UseMI.isPHI()) 788 getPHIDeps(UseMI, Deps, TBI.Pred, MTM.MRI); 789 else if (getDataDeps(UseMI, Deps, MTM.MRI)) 790 updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI); 791 792 // Filter and process dependencies, computing the earliest issue cycle. 793 unsigned Cycle = 0; 794 for (const DataDep &Dep : Deps) { 795 const TraceBlockInfo&DepTBI = 796 BlockInfo[Dep.DefMI->getParent()->getNumber()]; 797 // Ignore dependencies from outside the current trace. 798 if (!DepTBI.isUsefulDominator(TBI)) 799 continue; 800 assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency"); 801 unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth; 802 // Add latency if DefMI is a real instruction. Transients get latency 0. 803 if (!Dep.DefMI->isTransient()) 804 DepCycle += MTM.SchedModel 805 .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp); 806 Cycle = std::max(Cycle, DepCycle); 807 } 808 // Remember the instruction depth. 809 InstrCycles &MICycles = Cycles[&UseMI]; 810 MICycles.Depth = Cycle; 811 812 if (TBI.HasValidInstrHeights) { 813 // Update critical path length. 814 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height); 815 LLVM_DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI); 816 } else { 817 LLVM_DEBUG(dbgs() << Cycle << '\t' << UseMI); 818 } 819 } 820 821 void MachineTraceMetrics::Ensemble:: 822 updateDepth(const MachineBasicBlock *MBB, const MachineInstr &UseMI, 823 SparseSet<LiveRegUnit> &RegUnits) { 824 updateDepth(BlockInfo[MBB->getNumber()], UseMI, RegUnits); 825 } 826 827 void MachineTraceMetrics::Ensemble:: 828 updateDepths(MachineBasicBlock::iterator Start, 829 MachineBasicBlock::iterator End, 830 SparseSet<LiveRegUnit> &RegUnits) { 831 for (; Start != End; Start++) 832 updateDepth(Start->getParent(), *Start, RegUnits); 833 } 834 835 /// Compute instruction depths for all instructions above or in MBB in its 836 /// trace. This assumes that the trace through MBB has already been computed. 837 void MachineTraceMetrics::Ensemble:: 838 computeInstrDepths(const MachineBasicBlock *MBB) { 839 // The top of the trace may already be computed, and HasValidInstrDepths 840 // implies Head->HasValidInstrDepths, so we only need to start from the first 841 // block in the trace that needs to be recomputed. 842 SmallVector<const MachineBasicBlock*, 8> Stack; 843 do { 844 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 845 assert(TBI.hasValidDepth() && "Incomplete trace"); 846 if (TBI.HasValidInstrDepths) 847 break; 848 Stack.push_back(MBB); 849 MBB = TBI.Pred; 850 } while (MBB); 851 852 // FIXME: If MBB is non-null at this point, it is the last pre-computed block 853 // in the trace. We should track any live-out physregs that were defined in 854 // the trace. This is quite rare in SSA form, typically created by CSE 855 // hoisting a compare. 856 SparseSet<LiveRegUnit> RegUnits; 857 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 858 859 // Go through trace blocks in top-down order, stopping after the center block. 860 while (!Stack.empty()) { 861 MBB = Stack.pop_back_val(); 862 LLVM_DEBUG(dbgs() << "\nDepths for " << printMBBReference(*MBB) << ":\n"); 863 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 864 TBI.HasValidInstrDepths = true; 865 TBI.CriticalPath = 0; 866 867 // Print out resource depths here as well. 868 LLVM_DEBUG({ 869 dbgs() << format("%7u Instructions\n", TBI.InstrDepth); 870 ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber()); 871 for (unsigned K = 0; K != PRDepths.size(); ++K) 872 if (PRDepths[K]) { 873 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 874 dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K])) 875 << MTM.SchedModel.getProcResource(K)->Name << " (" 876 << PRDepths[K]/Factor << " ops x" << Factor << ")\n"; 877 } 878 }); 879 880 // Also compute the critical path length through MBB when possible. 881 if (TBI.HasValidInstrHeights) 882 TBI.CriticalPath = computeCrossBlockCriticalPath(TBI); 883 884 for (const auto &UseMI : *MBB) { 885 updateDepth(TBI, UseMI, RegUnits); 886 } 887 } 888 } 889 890 // Identify physreg dependencies for MI when scanning instructions upwards. 891 // Return the issue height of MI after considering any live regunits. 892 // Height is the issue height computed from virtual register dependencies alone. 893 static unsigned updatePhysDepsUpwards(const MachineInstr &MI, unsigned Height, 894 SparseSet<LiveRegUnit> &RegUnits, 895 const TargetSchedModel &SchedModel, 896 const TargetInstrInfo *TII, 897 const TargetRegisterInfo *TRI) { 898 SmallVector<unsigned, 8> ReadOps; 899 900 for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(), 901 MOE = MI.operands_end(); 902 MOI != MOE; ++MOI) { 903 const MachineOperand &MO = *MOI; 904 if (!MO.isReg()) 905 continue; 906 Register Reg = MO.getReg(); 907 if (!Register::isPhysicalRegister(Reg)) 908 continue; 909 if (MO.readsReg()) 910 ReadOps.push_back(MI.getOperandNo(MOI)); 911 if (!MO.isDef()) 912 continue; 913 // This is a def of Reg. Remove corresponding entries from RegUnits, and 914 // update MI Height to consider the physreg dependencies. 915 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 916 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 917 if (I == RegUnits.end()) 918 continue; 919 unsigned DepHeight = I->Cycle; 920 if (!MI.isTransient()) { 921 // We may not know the UseMI of this dependency, if it came from the 922 // live-in list. SchedModel can handle a NULL UseMI. 923 DepHeight += SchedModel.computeOperandLatency(&MI, MI.getOperandNo(MOI), 924 I->MI, I->Op); 925 } 926 Height = std::max(Height, DepHeight); 927 // This regunit is dead above MI. 928 RegUnits.erase(I); 929 } 930 } 931 932 // Now we know the height of MI. Update any regunits read. 933 for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) { 934 Register Reg = MI.getOperand(ReadOps[i]).getReg(); 935 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 936 LiveRegUnit &LRU = RegUnits[*Units]; 937 // Set the height to the highest reader of the unit. 938 if (LRU.Cycle <= Height && LRU.MI != &MI) { 939 LRU.Cycle = Height; 940 LRU.MI = &MI; 941 LRU.Op = ReadOps[i]; 942 } 943 } 944 } 945 946 return Height; 947 } 948 949 using MIHeightMap = DenseMap<const MachineInstr *, unsigned>; 950 951 // Push the height of DefMI upwards if required to match UseMI. 952 // Return true if this is the first time DefMI was seen. 953 static bool pushDepHeight(const DataDep &Dep, const MachineInstr &UseMI, 954 unsigned UseHeight, MIHeightMap &Heights, 955 const TargetSchedModel &SchedModel, 956 const TargetInstrInfo *TII) { 957 // Adjust height by Dep.DefMI latency. 958 if (!Dep.DefMI->isTransient()) 959 UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, 960 Dep.UseOp); 961 962 // Update Heights[DefMI] to be the maximum height seen. 963 MIHeightMap::iterator I; 964 bool New; 965 std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight)); 966 if (New) 967 return true; 968 969 // DefMI has been pushed before. Give it the max height. 970 if (I->second < UseHeight) 971 I->second = UseHeight; 972 return false; 973 } 974 975 /// Assuming that the virtual register defined by DefMI:DefOp was used by 976 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop 977 /// when reaching the block that contains DefMI. 978 void MachineTraceMetrics::Ensemble:: 979 addLiveIns(const MachineInstr *DefMI, unsigned DefOp, 980 ArrayRef<const MachineBasicBlock*> Trace) { 981 assert(!Trace.empty() && "Trace should contain at least one block"); 982 unsigned Reg = DefMI->getOperand(DefOp).getReg(); 983 assert(Register::isVirtualRegister(Reg)); 984 const MachineBasicBlock *DefMBB = DefMI->getParent(); 985 986 // Reg is live-in to all blocks in Trace that follow DefMBB. 987 for (unsigned i = Trace.size(); i; --i) { 988 const MachineBasicBlock *MBB = Trace[i-1]; 989 if (MBB == DefMBB) 990 return; 991 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 992 // Just add the register. The height will be updated later. 993 TBI.LiveIns.push_back(Reg); 994 } 995 } 996 997 /// Compute instruction heights in the trace through MBB. This updates MBB and 998 /// the blocks below it in the trace. It is assumed that the trace has already 999 /// been computed. 1000 void MachineTraceMetrics::Ensemble:: 1001 computeInstrHeights(const MachineBasicBlock *MBB) { 1002 // The bottom of the trace may already be computed. 1003 // Find the blocks that need updating. 1004 SmallVector<const MachineBasicBlock*, 8> Stack; 1005 do { 1006 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1007 assert(TBI.hasValidHeight() && "Incomplete trace"); 1008 if (TBI.HasValidInstrHeights) 1009 break; 1010 Stack.push_back(MBB); 1011 TBI.LiveIns.clear(); 1012 MBB = TBI.Succ; 1013 } while (MBB); 1014 1015 // As we move upwards in the trace, keep track of instructions that are 1016 // required by deeper trace instructions. Map MI -> height required so far. 1017 MIHeightMap Heights; 1018 1019 // For physregs, the def isn't known when we see the use. 1020 // Instead, keep track of the highest use of each regunit. 1021 SparseSet<LiveRegUnit> RegUnits; 1022 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 1023 1024 // If the bottom of the trace was already precomputed, initialize heights 1025 // from its live-in list. 1026 // MBB is the highest precomputed block in the trace. 1027 if (MBB) { 1028 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1029 for (LiveInReg &LI : TBI.LiveIns) { 1030 if (Register::isVirtualRegister(LI.Reg)) { 1031 // For virtual registers, the def latency is included. 1032 unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)]; 1033 if (Height < LI.Height) 1034 Height = LI.Height; 1035 } else { 1036 // For register units, the def latency is not included because we don't 1037 // know the def yet. 1038 RegUnits[LI.Reg].Cycle = LI.Height; 1039 } 1040 } 1041 } 1042 1043 // Go through the trace blocks in bottom-up order. 1044 SmallVector<DataDep, 8> Deps; 1045 for (;!Stack.empty(); Stack.pop_back()) { 1046 MBB = Stack.back(); 1047 LLVM_DEBUG(dbgs() << "Heights for " << printMBBReference(*MBB) << ":\n"); 1048 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1049 TBI.HasValidInstrHeights = true; 1050 TBI.CriticalPath = 0; 1051 1052 LLVM_DEBUG({ 1053 dbgs() << format("%7u Instructions\n", TBI.InstrHeight); 1054 ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber()); 1055 for (unsigned K = 0; K != PRHeights.size(); ++K) 1056 if (PRHeights[K]) { 1057 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 1058 dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K])) 1059 << MTM.SchedModel.getProcResource(K)->Name << " (" 1060 << PRHeights[K]/Factor << " ops x" << Factor << ")\n"; 1061 } 1062 }); 1063 1064 // Get dependencies from PHIs in the trace successor. 1065 const MachineBasicBlock *Succ = TBI.Succ; 1066 // If MBB is the last block in the trace, and it has a back-edge to the 1067 // loop header, get loop-carried dependencies from PHIs in the header. For 1068 // that purpose, pretend that all the loop header PHIs have height 0. 1069 if (!Succ) 1070 if (const MachineLoop *Loop = getLoopFor(MBB)) 1071 if (MBB->isSuccessor(Loop->getHeader())) 1072 Succ = Loop->getHeader(); 1073 1074 if (Succ) { 1075 for (const auto &PHI : *Succ) { 1076 if (!PHI.isPHI()) 1077 break; 1078 Deps.clear(); 1079 getPHIDeps(PHI, Deps, MBB, MTM.MRI); 1080 if (!Deps.empty()) { 1081 // Loop header PHI heights are all 0. 1082 unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0; 1083 LLVM_DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI); 1084 if (pushDepHeight(Deps.front(), PHI, Height, Heights, MTM.SchedModel, 1085 MTM.TII)) 1086 addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack); 1087 } 1088 } 1089 } 1090 1091 // Go through the block backwards. 1092 for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin(); 1093 BI != BB;) { 1094 const MachineInstr &MI = *--BI; 1095 1096 // Find the MI height as determined by virtual register uses in the 1097 // trace below. 1098 unsigned Cycle = 0; 1099 MIHeightMap::iterator HeightI = Heights.find(&MI); 1100 if (HeightI != Heights.end()) { 1101 Cycle = HeightI->second; 1102 // We won't be seeing any more MI uses. 1103 Heights.erase(HeightI); 1104 } 1105 1106 // Don't process PHI deps. They depend on the specific predecessor, and 1107 // we'll get them when visiting the predecessor. 1108 Deps.clear(); 1109 bool HasPhysRegs = !MI.isPHI() && getDataDeps(MI, Deps, MTM.MRI); 1110 1111 // There may also be regunit dependencies to include in the height. 1112 if (HasPhysRegs) 1113 Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, MTM.SchedModel, 1114 MTM.TII, MTM.TRI); 1115 1116 // Update the required height of any virtual registers read by MI. 1117 for (const DataDep &Dep : Deps) 1118 if (pushDepHeight(Dep, MI, Cycle, Heights, MTM.SchedModel, MTM.TII)) 1119 addLiveIns(Dep.DefMI, Dep.DefOp, Stack); 1120 1121 InstrCycles &MICycles = Cycles[&MI]; 1122 MICycles.Height = Cycle; 1123 if (!TBI.HasValidInstrDepths) { 1124 LLVM_DEBUG(dbgs() << Cycle << '\t' << MI); 1125 continue; 1126 } 1127 // Update critical path length. 1128 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth); 1129 LLVM_DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << MI); 1130 } 1131 1132 // Update virtual live-in heights. They were added by addLiveIns() with a 0 1133 // height because the final height isn't known until now. 1134 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " Live-ins:"); 1135 for (LiveInReg &LIR : TBI.LiveIns) { 1136 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 1137 LIR.Height = Heights.lookup(DefMI); 1138 LLVM_DEBUG(dbgs() << ' ' << printReg(LIR.Reg) << '@' << LIR.Height); 1139 } 1140 1141 // Transfer the live regunits to the live-in list. 1142 for (SparseSet<LiveRegUnit>::const_iterator 1143 RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) { 1144 TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle)); 1145 LLVM_DEBUG(dbgs() << ' ' << printRegUnit(RI->RegUnit, MTM.TRI) << '@' 1146 << RI->Cycle); 1147 } 1148 LLVM_DEBUG(dbgs() << '\n'); 1149 1150 if (!TBI.HasValidInstrDepths) 1151 continue; 1152 // Add live-ins to the critical path length. 1153 TBI.CriticalPath = std::max(TBI.CriticalPath, 1154 computeCrossBlockCriticalPath(TBI)); 1155 LLVM_DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n'); 1156 } 1157 } 1158 1159 MachineTraceMetrics::Trace 1160 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) { 1161 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1162 1163 if (!TBI.hasValidDepth() || !TBI.hasValidHeight()) 1164 computeTrace(MBB); 1165 if (!TBI.HasValidInstrDepths) 1166 computeInstrDepths(MBB); 1167 if (!TBI.HasValidInstrHeights) 1168 computeInstrHeights(MBB); 1169 1170 return Trace(*this, TBI); 1171 } 1172 1173 unsigned 1174 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr &MI) const { 1175 assert(getBlockNum() == unsigned(MI.getParent()->getNumber()) && 1176 "MI must be in the trace center block"); 1177 InstrCycles Cyc = getInstrCycles(MI); 1178 return getCriticalPath() - (Cyc.Depth + Cyc.Height); 1179 } 1180 1181 unsigned 1182 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr &PHI) const { 1183 const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum()); 1184 SmallVector<DataDep, 1> Deps; 1185 getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI); 1186 assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor"); 1187 DataDep &Dep = Deps.front(); 1188 unsigned DepCycle = getInstrCycles(*Dep.DefMI).Depth; 1189 // Add latency if DefMI is a real instruction. Transients get latency 0. 1190 if (!Dep.DefMI->isTransient()) 1191 DepCycle += TE.MTM.SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, 1192 &PHI, Dep.UseOp); 1193 return DepCycle; 1194 } 1195 1196 /// When bottom is set include instructions in current block in estimate. 1197 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const { 1198 // Find the limiting processor resource. 1199 // Numbers have been pre-scaled to be comparable. 1200 unsigned PRMax = 0; 1201 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1202 if (Bottom) { 1203 ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum()); 1204 for (unsigned K = 0; K != PRDepths.size(); ++K) 1205 PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]); 1206 } else { 1207 for (unsigned K = 0; K != PRDepths.size(); ++K) 1208 PRMax = std::max(PRMax, PRDepths[K]); 1209 } 1210 // Convert to cycle count. 1211 PRMax = TE.MTM.getCycles(PRMax); 1212 1213 /// All instructions before current block 1214 unsigned Instrs = TBI.InstrDepth; 1215 // plus instructions in current block 1216 if (Bottom) 1217 Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount; 1218 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1219 Instrs /= IW; 1220 // Assume issue width 1 without a schedule model. 1221 return std::max(Instrs, PRMax); 1222 } 1223 1224 unsigned MachineTraceMetrics::Trace::getResourceLength( 1225 ArrayRef<const MachineBasicBlock *> Extrablocks, 1226 ArrayRef<const MCSchedClassDesc *> ExtraInstrs, 1227 ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const { 1228 // Add up resources above and below the center block. 1229 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1230 ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum()); 1231 unsigned PRMax = 0; 1232 1233 // Capture computing cycles from extra instructions 1234 auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs, 1235 unsigned ResourceIdx) 1236 ->unsigned { 1237 unsigned Cycles = 0; 1238 for (const MCSchedClassDesc *SC : Instrs) { 1239 if (!SC->isValid()) 1240 continue; 1241 for (TargetSchedModel::ProcResIter 1242 PI = TE.MTM.SchedModel.getWriteProcResBegin(SC), 1243 PE = TE.MTM.SchedModel.getWriteProcResEnd(SC); 1244 PI != PE; ++PI) { 1245 if (PI->ProcResourceIdx != ResourceIdx) 1246 continue; 1247 Cycles += 1248 (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(ResourceIdx)); 1249 } 1250 } 1251 return Cycles; 1252 }; 1253 1254 for (unsigned K = 0; K != PRDepths.size(); ++K) { 1255 unsigned PRCycles = PRDepths[K] + PRHeights[K]; 1256 for (const MachineBasicBlock *MBB : Extrablocks) 1257 PRCycles += TE.MTM.getProcResourceCycles(MBB->getNumber())[K]; 1258 PRCycles += extraCycles(ExtraInstrs, K); 1259 PRCycles -= extraCycles(RemoveInstrs, K); 1260 PRMax = std::max(PRMax, PRCycles); 1261 } 1262 // Convert to cycle count. 1263 PRMax = TE.MTM.getCycles(PRMax); 1264 1265 // Instrs: #instructions in current trace outside current block. 1266 unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight; 1267 // Add instruction count from the extra blocks. 1268 for (const MachineBasicBlock *MBB : Extrablocks) 1269 Instrs += TE.MTM.getResources(MBB)->InstrCount; 1270 Instrs += ExtraInstrs.size(); 1271 Instrs -= RemoveInstrs.size(); 1272 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1273 Instrs /= IW; 1274 // Assume issue width 1 without a schedule model. 1275 return std::max(Instrs, PRMax); 1276 } 1277 1278 bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr &DefMI, 1279 const MachineInstr &UseMI) const { 1280 if (DefMI.getParent() == UseMI.getParent()) 1281 return true; 1282 1283 const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI.getParent()->getNumber()]; 1284 const TraceBlockInfo &TBI = TE.BlockInfo[UseMI.getParent()->getNumber()]; 1285 1286 return DepTBI.isUsefulDominator(TBI); 1287 } 1288 1289 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const { 1290 OS << getName() << " ensemble:\n"; 1291 for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { 1292 OS << " %bb." << i << '\t'; 1293 BlockInfo[i].print(OS); 1294 OS << '\n'; 1295 } 1296 } 1297 1298 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const { 1299 if (hasValidDepth()) { 1300 OS << "depth=" << InstrDepth; 1301 if (Pred) 1302 OS << " pred=" << printMBBReference(*Pred); 1303 else 1304 OS << " pred=null"; 1305 OS << " head=%bb." << Head; 1306 if (HasValidInstrDepths) 1307 OS << " +instrs"; 1308 } else 1309 OS << "depth invalid"; 1310 OS << ", "; 1311 if (hasValidHeight()) { 1312 OS << "height=" << InstrHeight; 1313 if (Succ) 1314 OS << " succ=" << printMBBReference(*Succ); 1315 else 1316 OS << " succ=null"; 1317 OS << " tail=%bb." << Tail; 1318 if (HasValidInstrHeights) 1319 OS << " +instrs"; 1320 } else 1321 OS << "height invalid"; 1322 if (HasValidInstrDepths && HasValidInstrHeights) 1323 OS << ", crit=" << CriticalPath; 1324 } 1325 1326 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const { 1327 unsigned MBBNum = &TBI - &TE.BlockInfo[0]; 1328 1329 OS << TE.getName() << " trace %bb." << TBI.Head << " --> %bb." << MBBNum 1330 << " --> %bb." << TBI.Tail << ':'; 1331 if (TBI.hasValidHeight() && TBI.hasValidDepth()) 1332 OS << ' ' << getInstrCount() << " instrs."; 1333 if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights) 1334 OS << ' ' << TBI.CriticalPath << " cycles."; 1335 1336 const MachineTraceMetrics::TraceBlockInfo *Block = &TBI; 1337 OS << "\n%bb." << MBBNum; 1338 while (Block->hasValidDepth() && Block->Pred) { 1339 unsigned Num = Block->Pred->getNumber(); 1340 OS << " <- " << printMBBReference(*Block->Pred); 1341 Block = &TE.BlockInfo[Num]; 1342 } 1343 1344 Block = &TBI; 1345 OS << "\n "; 1346 while (Block->hasValidHeight() && Block->Succ) { 1347 unsigned Num = Block->Succ->getNumber(); 1348 OS << " -> " << printMBBReference(*Block->Succ); 1349 Block = &TE.BlockInfo[Num]; 1350 } 1351 OS << '\n'; 1352 } 1353