xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineTraceMetrics.cpp (revision ba3c1f5972d7b90feb6e6da47905ff2757e0fe57)
1 //===- lib/CodeGen/MachineTraceMetrics.cpp --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/CodeGen/MachineTraceMetrics.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/DenseMap.h"
12 #include "llvm/ADT/PostOrderIterator.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/SparseSet.h"
16 #include "llvm/CodeGen/MachineBasicBlock.h"
17 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineOperand.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/CodeGen/TargetSchedule.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/InitializePasses.h"
27 #include "llvm/MC/MCRegisterInfo.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/Format.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <iterator>
36 #include <tuple>
37 #include <utility>
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "machine-trace-metrics"
42 
43 char MachineTraceMetrics::ID = 0;
44 
45 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID;
46 
47 INITIALIZE_PASS_BEGIN(MachineTraceMetrics, DEBUG_TYPE,
48                       "Machine Trace Metrics", false, true)
49 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
50 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
51 INITIALIZE_PASS_END(MachineTraceMetrics, DEBUG_TYPE,
52                     "Machine Trace Metrics", false, true)
53 
54 MachineTraceMetrics::MachineTraceMetrics() : MachineFunctionPass(ID) {
55   std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr);
56 }
57 
58 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const {
59   AU.setPreservesAll();
60   AU.addRequired<MachineBranchProbabilityInfo>();
61   AU.addRequired<MachineLoopInfo>();
62   MachineFunctionPass::getAnalysisUsage(AU);
63 }
64 
65 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) {
66   MF = &Func;
67   const TargetSubtargetInfo &ST = MF->getSubtarget();
68   TII = ST.getInstrInfo();
69   TRI = ST.getRegisterInfo();
70   MRI = &MF->getRegInfo();
71   Loops = &getAnalysis<MachineLoopInfo>();
72   SchedModel.init(&ST);
73   BlockInfo.resize(MF->getNumBlockIDs());
74   ProcResourceCycles.resize(MF->getNumBlockIDs() *
75                             SchedModel.getNumProcResourceKinds());
76   return false;
77 }
78 
79 void MachineTraceMetrics::releaseMemory() {
80   MF = nullptr;
81   BlockInfo.clear();
82   for (Ensemble *&E : Ensembles) {
83     delete E;
84     E = nullptr;
85   }
86 }
87 
88 //===----------------------------------------------------------------------===//
89 //                          Fixed block information
90 //===----------------------------------------------------------------------===//
91 //
92 // The number of instructions in a basic block and the CPU resources used by
93 // those instructions don't depend on any given trace strategy.
94 
95 /// Compute the resource usage in basic block MBB.
96 const MachineTraceMetrics::FixedBlockInfo*
97 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) {
98   assert(MBB && "No basic block");
99   FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()];
100   if (FBI->hasResources())
101     return FBI;
102 
103   // Compute resource usage in the block.
104   FBI->HasCalls = false;
105   unsigned InstrCount = 0;
106 
107   // Add up per-processor resource cycles as well.
108   unsigned PRKinds = SchedModel.getNumProcResourceKinds();
109   SmallVector<unsigned, 32> PRCycles(PRKinds);
110 
111   for (const auto &MI : *MBB) {
112     if (MI.isTransient())
113       continue;
114     ++InstrCount;
115     if (MI.isCall())
116       FBI->HasCalls = true;
117 
118     // Count processor resources used.
119     if (!SchedModel.hasInstrSchedModel())
120       continue;
121     const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI);
122     if (!SC->isValid())
123       continue;
124 
125     for (TargetSchedModel::ProcResIter
126          PI = SchedModel.getWriteProcResBegin(SC),
127          PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
128       assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind");
129       PRCycles[PI->ProcResourceIdx] += PI->Cycles;
130     }
131   }
132   FBI->InstrCount = InstrCount;
133 
134   // Scale the resource cycles so they are comparable.
135   unsigned PROffset = MBB->getNumber() * PRKinds;
136   for (unsigned K = 0; K != PRKinds; ++K)
137     ProcResourceCycles[PROffset + K] =
138       PRCycles[K] * SchedModel.getResourceFactor(K);
139 
140   return FBI;
141 }
142 
143 ArrayRef<unsigned>
144 MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const {
145   assert(BlockInfo[MBBNum].hasResources() &&
146          "getResources() must be called before getProcResourceCycles()");
147   unsigned PRKinds = SchedModel.getNumProcResourceKinds();
148   assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size());
149   return ArrayRef(ProcResourceCycles.data() + MBBNum * PRKinds, PRKinds);
150 }
151 
152 //===----------------------------------------------------------------------===//
153 //                         Ensemble utility functions
154 //===----------------------------------------------------------------------===//
155 
156 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct)
157   : MTM(*ct) {
158   BlockInfo.resize(MTM.BlockInfo.size());
159   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
160   ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds);
161   ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds);
162 }
163 
164 // Virtual destructor serves as an anchor.
165 MachineTraceMetrics::Ensemble::~Ensemble() = default;
166 
167 const MachineLoop*
168 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const {
169   return MTM.Loops->getLoopFor(MBB);
170 }
171 
172 // Update resource-related information in the TraceBlockInfo for MBB.
173 // Only update resources related to the trace above MBB.
174 void MachineTraceMetrics::Ensemble::
175 computeDepthResources(const MachineBasicBlock *MBB) {
176   TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
177   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
178   unsigned PROffset = MBB->getNumber() * PRKinds;
179 
180   // Compute resources from trace above. The top block is simple.
181   if (!TBI->Pred) {
182     TBI->InstrDepth = 0;
183     TBI->Head = MBB->getNumber();
184     std::fill(ProcResourceDepths.begin() + PROffset,
185               ProcResourceDepths.begin() + PROffset + PRKinds, 0);
186     return;
187   }
188 
189   // Compute from the block above. A post-order traversal ensures the
190   // predecessor is always computed first.
191   unsigned PredNum = TBI->Pred->getNumber();
192   TraceBlockInfo *PredTBI = &BlockInfo[PredNum];
193   assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet");
194   const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred);
195   TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount;
196   TBI->Head = PredTBI->Head;
197 
198   // Compute per-resource depths.
199   ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum);
200   ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum);
201   for (unsigned K = 0; K != PRKinds; ++K)
202     ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K];
203 }
204 
205 // Update resource-related information in the TraceBlockInfo for MBB.
206 // Only update resources related to the trace below MBB.
207 void MachineTraceMetrics::Ensemble::
208 computeHeightResources(const MachineBasicBlock *MBB) {
209   TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
210   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
211   unsigned PROffset = MBB->getNumber() * PRKinds;
212 
213   // Compute resources for the current block.
214   TBI->InstrHeight = MTM.getResources(MBB)->InstrCount;
215   ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber());
216 
217   // The trace tail is done.
218   if (!TBI->Succ) {
219     TBI->Tail = MBB->getNumber();
220     llvm::copy(PRCycles, ProcResourceHeights.begin() + PROffset);
221     return;
222   }
223 
224   // Compute from the block below. A post-order traversal ensures the
225   // predecessor is always computed first.
226   unsigned SuccNum = TBI->Succ->getNumber();
227   TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum];
228   assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet");
229   TBI->InstrHeight += SuccTBI->InstrHeight;
230   TBI->Tail = SuccTBI->Tail;
231 
232   // Compute per-resource heights.
233   ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum);
234   for (unsigned K = 0; K != PRKinds; ++K)
235     ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K];
236 }
237 
238 // Check if depth resources for MBB are valid and return the TBI.
239 // Return NULL if the resources have been invalidated.
240 const MachineTraceMetrics::TraceBlockInfo*
241 MachineTraceMetrics::Ensemble::
242 getDepthResources(const MachineBasicBlock *MBB) const {
243   const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
244   return TBI->hasValidDepth() ? TBI : nullptr;
245 }
246 
247 // Check if height resources for MBB are valid and return the TBI.
248 // Return NULL if the resources have been invalidated.
249 const MachineTraceMetrics::TraceBlockInfo*
250 MachineTraceMetrics::Ensemble::
251 getHeightResources(const MachineBasicBlock *MBB) const {
252   const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
253   return TBI->hasValidHeight() ? TBI : nullptr;
254 }
255 
256 /// Get an array of processor resource depths for MBB. Indexed by processor
257 /// resource kind, this array contains the scaled processor resources consumed
258 /// by all blocks preceding MBB in its trace. It does not include instructions
259 /// in MBB.
260 ///
261 /// Compare TraceBlockInfo::InstrDepth.
262 ArrayRef<unsigned>
263 MachineTraceMetrics::Ensemble::
264 getProcResourceDepths(unsigned MBBNum) const {
265   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
266   assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size());
267   return ArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds);
268 }
269 
270 /// Get an array of processor resource heights for MBB. Indexed by processor
271 /// resource kind, this array contains the scaled processor resources consumed
272 /// by this block and all blocks following it in its trace.
273 ///
274 /// Compare TraceBlockInfo::InstrHeight.
275 ArrayRef<unsigned>
276 MachineTraceMetrics::Ensemble::
277 getProcResourceHeights(unsigned MBBNum) const {
278   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
279   assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size());
280   return ArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds);
281 }
282 
283 //===----------------------------------------------------------------------===//
284 //                         Trace Selection Strategies
285 //===----------------------------------------------------------------------===//
286 //
287 // A trace selection strategy is implemented as a sub-class of Ensemble. The
288 // trace through a block B is computed by two DFS traversals of the CFG
289 // starting from B. One upwards, and one downwards. During the upwards DFS,
290 // pickTracePred() is called on the post-ordered blocks. During the downwards
291 // DFS, pickTraceSucc() is called in a post-order.
292 //
293 
294 // We never allow traces that leave loops, but we do allow traces to enter
295 // nested loops. We also never allow traces to contain back-edges.
296 //
297 // This means that a loop header can never appear above the center block of a
298 // trace, except as the trace head. Below the center block, loop exiting edges
299 // are banned.
300 //
301 // Return true if an edge from the From loop to the To loop is leaving a loop.
302 // Either of To and From can be null.
303 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) {
304   return From && !From->contains(To);
305 }
306 
307 // MinInstrCountEnsemble - Pick the trace that executes the least number of
308 // instructions.
309 namespace {
310 
311 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble {
312   const char *getName() const override { return "MinInstr"; }
313   const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override;
314   const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override;
315 
316 public:
317   MinInstrCountEnsemble(MachineTraceMetrics *mtm)
318     : MachineTraceMetrics::Ensemble(mtm) {}
319 };
320 
321 } // end anonymous namespace
322 
323 // Select the preferred predecessor for MBB.
324 const MachineBasicBlock*
325 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) {
326   if (MBB->pred_empty())
327     return nullptr;
328   const MachineLoop *CurLoop = getLoopFor(MBB);
329   // Don't leave loops, and never follow back-edges.
330   if (CurLoop && MBB == CurLoop->getHeader())
331     return nullptr;
332   unsigned CurCount = MTM.getResources(MBB)->InstrCount;
333   const MachineBasicBlock *Best = nullptr;
334   unsigned BestDepth = 0;
335   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
336     const MachineTraceMetrics::TraceBlockInfo *PredTBI =
337       getDepthResources(Pred);
338     // Ignore cycles that aren't natural loops.
339     if (!PredTBI)
340       continue;
341     // Pick the predecessor that would give this block the smallest InstrDepth.
342     unsigned Depth = PredTBI->InstrDepth + CurCount;
343     if (!Best || Depth < BestDepth) {
344       Best = Pred;
345       BestDepth = Depth;
346     }
347   }
348   return Best;
349 }
350 
351 // Select the preferred successor for MBB.
352 const MachineBasicBlock*
353 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) {
354   if (MBB->succ_empty())
355     return nullptr;
356   const MachineLoop *CurLoop = getLoopFor(MBB);
357   const MachineBasicBlock *Best = nullptr;
358   unsigned BestHeight = 0;
359   for (const MachineBasicBlock *Succ : MBB->successors()) {
360     // Don't consider back-edges.
361     if (CurLoop && Succ == CurLoop->getHeader())
362       continue;
363     // Don't consider successors exiting CurLoop.
364     if (isExitingLoop(CurLoop, getLoopFor(Succ)))
365       continue;
366     const MachineTraceMetrics::TraceBlockInfo *SuccTBI =
367       getHeightResources(Succ);
368     // Ignore cycles that aren't natural loops.
369     if (!SuccTBI)
370       continue;
371     // Pick the successor that would give this block the smallest InstrHeight.
372     unsigned Height = SuccTBI->InstrHeight;
373     if (!Best || Height < BestHeight) {
374       Best = Succ;
375       BestHeight = Height;
376     }
377   }
378   return Best;
379 }
380 
381 // Get an Ensemble sub-class for the requested trace strategy.
382 MachineTraceMetrics::Ensemble *
383 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) {
384   assert(strategy < TS_NumStrategies && "Invalid trace strategy enum");
385   Ensemble *&E = Ensembles[strategy];
386   if (E)
387     return E;
388 
389   // Allocate new Ensemble on demand.
390   switch (strategy) {
391   case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this));
392   default: llvm_unreachable("Invalid trace strategy enum");
393   }
394 }
395 
396 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) {
397   LLVM_DEBUG(dbgs() << "Invalidate traces through " << printMBBReference(*MBB)
398                     << '\n');
399   BlockInfo[MBB->getNumber()].invalidate();
400   for (Ensemble *E : Ensembles)
401     if (E)
402       E->invalidate(MBB);
403 }
404 
405 void MachineTraceMetrics::verifyAnalysis() const {
406   if (!MF)
407     return;
408 #ifndef NDEBUG
409   assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size");
410   for (Ensemble *E : Ensembles)
411     if (E)
412       E->verify();
413 #endif
414 }
415 
416 //===----------------------------------------------------------------------===//
417 //                               Trace building
418 //===----------------------------------------------------------------------===//
419 //
420 // Traces are built by two CFG traversals. To avoid recomputing too much, use a
421 // set abstraction that confines the search to the current loop, and doesn't
422 // revisit blocks.
423 
424 namespace {
425 
426 struct LoopBounds {
427   MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks;
428   SmallPtrSet<const MachineBasicBlock*, 8> Visited;
429   const MachineLoopInfo *Loops;
430   bool Downward = false;
431 
432   LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks,
433              const MachineLoopInfo *loops) : Blocks(blocks), Loops(loops) {}
434 };
435 
436 } // end anonymous namespace
437 
438 // Specialize po_iterator_storage in order to prune the post-order traversal so
439 // it is limited to the current loop and doesn't traverse the loop back edges.
440 namespace llvm {
441 
442 template<>
443 class po_iterator_storage<LoopBounds, true> {
444   LoopBounds &LB;
445 
446 public:
447   po_iterator_storage(LoopBounds &lb) : LB(lb) {}
448 
449   void finishPostorder(const MachineBasicBlock*) {}
450 
451   bool insertEdge(std::optional<const MachineBasicBlock *> From,
452                   const MachineBasicBlock *To) {
453     // Skip already visited To blocks.
454     MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()];
455     if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth())
456       return false;
457     // From is null once when To is the trace center block.
458     if (From) {
459       if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(*From)) {
460         // Don't follow backedges, don't leave FromLoop when going upwards.
461         if ((LB.Downward ? To : *From) == FromLoop->getHeader())
462           return false;
463         // Don't leave FromLoop.
464         if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To)))
465           return false;
466       }
467     }
468     // To is a new block. Mark the block as visited in case the CFG has cycles
469     // that MachineLoopInfo didn't recognize as a natural loop.
470     return LB.Visited.insert(To).second;
471   }
472 };
473 
474 } // end namespace llvm
475 
476 /// Compute the trace through MBB.
477 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) {
478   LLVM_DEBUG(dbgs() << "Computing " << getName() << " trace through "
479                     << printMBBReference(*MBB) << '\n');
480   // Set up loop bounds for the backwards post-order traversal.
481   LoopBounds Bounds(BlockInfo, MTM.Loops);
482 
483   // Run an upwards post-order search for the trace start.
484   Bounds.Downward = false;
485   Bounds.Visited.clear();
486   for (const auto *I : inverse_post_order_ext(MBB, Bounds)) {
487     LLVM_DEBUG(dbgs() << "  pred for " << printMBBReference(*I) << ": ");
488     TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
489     // All the predecessors have been visited, pick the preferred one.
490     TBI.Pred = pickTracePred(I);
491     LLVM_DEBUG({
492       if (TBI.Pred)
493         dbgs() << printMBBReference(*TBI.Pred) << '\n';
494       else
495         dbgs() << "null\n";
496     });
497     // The trace leading to I is now known, compute the depth resources.
498     computeDepthResources(I);
499   }
500 
501   // Run a downwards post-order search for the trace end.
502   Bounds.Downward = true;
503   Bounds.Visited.clear();
504   for (const auto *I : post_order_ext(MBB, Bounds)) {
505     LLVM_DEBUG(dbgs() << "  succ for " << printMBBReference(*I) << ": ");
506     TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
507     // All the successors have been visited, pick the preferred one.
508     TBI.Succ = pickTraceSucc(I);
509     LLVM_DEBUG({
510       if (TBI.Succ)
511         dbgs() << printMBBReference(*TBI.Succ) << '\n';
512       else
513         dbgs() << "null\n";
514     });
515     // The trace leaving I is now known, compute the height resources.
516     computeHeightResources(I);
517   }
518 }
519 
520 /// Invalidate traces through BadMBB.
521 void
522 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) {
523   SmallVector<const MachineBasicBlock*, 16> WorkList;
524   TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()];
525 
526   // Invalidate height resources of blocks above MBB.
527   if (BadTBI.hasValidHeight()) {
528     BadTBI.invalidateHeight();
529     WorkList.push_back(BadMBB);
530     do {
531       const MachineBasicBlock *MBB = WorkList.pop_back_val();
532       LLVM_DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' '
533                         << getName() << " height.\n");
534       // Find any MBB predecessors that have MBB as their preferred successor.
535       // They are the only ones that need to be invalidated.
536       for (const MachineBasicBlock *Pred : MBB->predecessors()) {
537         TraceBlockInfo &TBI = BlockInfo[Pred->getNumber()];
538         if (!TBI.hasValidHeight())
539           continue;
540         if (TBI.Succ == MBB) {
541           TBI.invalidateHeight();
542           WorkList.push_back(Pred);
543           continue;
544         }
545         // Verify that TBI.Succ is actually a *I successor.
546         assert((!TBI.Succ || Pred->isSuccessor(TBI.Succ)) && "CFG changed");
547       }
548     } while (!WorkList.empty());
549   }
550 
551   // Invalidate depth resources of blocks below MBB.
552   if (BadTBI.hasValidDepth()) {
553     BadTBI.invalidateDepth();
554     WorkList.push_back(BadMBB);
555     do {
556       const MachineBasicBlock *MBB = WorkList.pop_back_val();
557       LLVM_DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' '
558                         << getName() << " depth.\n");
559       // Find any MBB successors that have MBB as their preferred predecessor.
560       // They are the only ones that need to be invalidated.
561       for (const MachineBasicBlock *Succ : MBB->successors()) {
562         TraceBlockInfo &TBI = BlockInfo[Succ->getNumber()];
563         if (!TBI.hasValidDepth())
564           continue;
565         if (TBI.Pred == MBB) {
566           TBI.invalidateDepth();
567           WorkList.push_back(Succ);
568           continue;
569         }
570         // Verify that TBI.Pred is actually a *I predecessor.
571         assert((!TBI.Pred || Succ->isPredecessor(TBI.Pred)) && "CFG changed");
572       }
573     } while (!WorkList.empty());
574   }
575 
576   // Clear any per-instruction data. We only have to do this for BadMBB itself
577   // because the instructions in that block may change. Other blocks may be
578   // invalidated, but their instructions will stay the same, so there is no
579   // need to erase the Cycle entries. They will be overwritten when we
580   // recompute.
581   for (const auto &I : *BadMBB)
582     Cycles.erase(&I);
583 }
584 
585 void MachineTraceMetrics::Ensemble::verify() const {
586 #ifndef NDEBUG
587   assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() &&
588          "Outdated BlockInfo size");
589   for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) {
590     const TraceBlockInfo &TBI = BlockInfo[Num];
591     if (TBI.hasValidDepth() && TBI.Pred) {
592       const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
593       assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace");
594       assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() &&
595              "Trace is broken, depth should have been invalidated.");
596       const MachineLoop *Loop = getLoopFor(MBB);
597       assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge");
598     }
599     if (TBI.hasValidHeight() && TBI.Succ) {
600       const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
601       assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace");
602       assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() &&
603              "Trace is broken, height should have been invalidated.");
604       const MachineLoop *Loop = getLoopFor(MBB);
605       const MachineLoop *SuccLoop = getLoopFor(TBI.Succ);
606       assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) &&
607              "Trace contains backedge");
608     }
609   }
610 #endif
611 }
612 
613 //===----------------------------------------------------------------------===//
614 //                             Data Dependencies
615 //===----------------------------------------------------------------------===//
616 //
617 // Compute the depth and height of each instruction based on data dependencies
618 // and instruction latencies. These cycle numbers assume that the CPU can issue
619 // an infinite number of instructions per cycle as long as their dependencies
620 // are ready.
621 
622 // A data dependency is represented as a defining MI and operand numbers on the
623 // defining and using MI.
624 namespace {
625 
626 struct DataDep {
627   const MachineInstr *DefMI;
628   unsigned DefOp;
629   unsigned UseOp;
630 
631   DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp)
632     : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {}
633 
634   /// Create a DataDep from an SSA form virtual register.
635   DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp)
636     : UseOp(UseOp) {
637     assert(Register::isVirtualRegister(VirtReg));
638     MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg);
639     assert(!DefI.atEnd() && "Register has no defs");
640     DefMI = DefI->getParent();
641     DefOp = DefI.getOperandNo();
642     assert((++DefI).atEnd() && "Register has multiple defs");
643   }
644 };
645 
646 } // end anonymous namespace
647 
648 // Get the input data dependencies that must be ready before UseMI can issue.
649 // Return true if UseMI has any physreg operands.
650 static bool getDataDeps(const MachineInstr &UseMI,
651                         SmallVectorImpl<DataDep> &Deps,
652                         const MachineRegisterInfo *MRI) {
653   // Debug values should not be included in any calculations.
654   if (UseMI.isDebugInstr())
655     return false;
656 
657   bool HasPhysRegs = false;
658   for (MachineInstr::const_mop_iterator I = UseMI.operands_begin(),
659        E = UseMI.operands_end(); I != E; ++I) {
660     const MachineOperand &MO = *I;
661     if (!MO.isReg())
662       continue;
663     Register Reg = MO.getReg();
664     if (!Reg)
665       continue;
666     if (Reg.isPhysical()) {
667       HasPhysRegs = true;
668       continue;
669     }
670     // Collect virtual register reads.
671     if (MO.readsReg())
672       Deps.push_back(DataDep(MRI, Reg, UseMI.getOperandNo(I)));
673   }
674   return HasPhysRegs;
675 }
676 
677 // Get the input data dependencies of a PHI instruction, using Pred as the
678 // preferred predecessor.
679 // This will add at most one dependency to Deps.
680 static void getPHIDeps(const MachineInstr &UseMI,
681                        SmallVectorImpl<DataDep> &Deps,
682                        const MachineBasicBlock *Pred,
683                        const MachineRegisterInfo *MRI) {
684   // No predecessor at the beginning of a trace. Ignore dependencies.
685   if (!Pred)
686     return;
687   assert(UseMI.isPHI() && UseMI.getNumOperands() % 2 && "Bad PHI");
688   for (unsigned i = 1; i != UseMI.getNumOperands(); i += 2) {
689     if (UseMI.getOperand(i + 1).getMBB() == Pred) {
690       Register Reg = UseMI.getOperand(i).getReg();
691       Deps.push_back(DataDep(MRI, Reg, i));
692       return;
693     }
694   }
695 }
696 
697 // Identify physreg dependencies for UseMI, and update the live regunit
698 // tracking set when scanning instructions downwards.
699 static void updatePhysDepsDownwards(const MachineInstr *UseMI,
700                                     SmallVectorImpl<DataDep> &Deps,
701                                     SparseSet<LiveRegUnit> &RegUnits,
702                                     const TargetRegisterInfo *TRI) {
703   SmallVector<MCRegister, 8> Kills;
704   SmallVector<unsigned, 8> LiveDefOps;
705 
706   for (MachineInstr::const_mop_iterator MI = UseMI->operands_begin(),
707        ME = UseMI->operands_end(); MI != ME; ++MI) {
708     const MachineOperand &MO = *MI;
709     if (!MO.isReg() || !MO.getReg().isPhysical())
710       continue;
711     MCRegister Reg = MO.getReg().asMCReg();
712     // Track live defs and kills for updating RegUnits.
713     if (MO.isDef()) {
714       if (MO.isDead())
715         Kills.push_back(Reg);
716       else
717         LiveDefOps.push_back(UseMI->getOperandNo(MI));
718     } else if (MO.isKill())
719       Kills.push_back(Reg);
720     // Identify dependencies.
721     if (!MO.readsReg())
722       continue;
723     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
724       SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
725       if (I == RegUnits.end())
726         continue;
727       Deps.push_back(DataDep(I->MI, I->Op, UseMI->getOperandNo(MI)));
728       break;
729     }
730   }
731 
732   // Update RegUnits to reflect live registers after UseMI.
733   // First kills.
734   for (MCRegister Kill : Kills)
735     for (MCRegUnitIterator Units(Kill, TRI); Units.isValid(); ++Units)
736       RegUnits.erase(*Units);
737 
738   // Second, live defs.
739   for (unsigned DefOp : LiveDefOps) {
740     for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg().asMCReg(),
741                                  TRI);
742          Units.isValid(); ++Units) {
743       LiveRegUnit &LRU = RegUnits[*Units];
744       LRU.MI = UseMI;
745       LRU.Op = DefOp;
746     }
747   }
748 }
749 
750 /// The length of the critical path through a trace is the maximum of two path
751 /// lengths:
752 ///
753 /// 1. The maximum height+depth over all instructions in the trace center block.
754 ///
755 /// 2. The longest cross-block dependency chain. For small blocks, it is
756 ///    possible that the critical path through the trace doesn't include any
757 ///    instructions in the block.
758 ///
759 /// This function computes the second number from the live-in list of the
760 /// center block.
761 unsigned MachineTraceMetrics::Ensemble::
762 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) {
763   assert(TBI.HasValidInstrDepths && "Missing depth info");
764   assert(TBI.HasValidInstrHeights && "Missing height info");
765   unsigned MaxLen = 0;
766   for (const LiveInReg &LIR : TBI.LiveIns) {
767     if (!LIR.Reg.isVirtual())
768       continue;
769     const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
770     // Ignore dependencies outside the current trace.
771     const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()];
772     if (!DefTBI.isUsefulDominator(TBI))
773       continue;
774     unsigned Len = LIR.Height + Cycles[DefMI].Depth;
775     MaxLen = std::max(MaxLen, Len);
776   }
777   return MaxLen;
778 }
779 
780 void MachineTraceMetrics::Ensemble::
781 updateDepth(MachineTraceMetrics::TraceBlockInfo &TBI, const MachineInstr &UseMI,
782             SparseSet<LiveRegUnit> &RegUnits) {
783   SmallVector<DataDep, 8> Deps;
784   // Collect all data dependencies.
785   if (UseMI.isPHI())
786     getPHIDeps(UseMI, Deps, TBI.Pred, MTM.MRI);
787   else if (getDataDeps(UseMI, Deps, MTM.MRI))
788     updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI);
789 
790   // Filter and process dependencies, computing the earliest issue cycle.
791   unsigned Cycle = 0;
792   for (const DataDep &Dep : Deps) {
793     const TraceBlockInfo&DepTBI =
794       BlockInfo[Dep.DefMI->getParent()->getNumber()];
795     // Ignore dependencies from outside the current trace.
796     if (!DepTBI.isUsefulDominator(TBI))
797       continue;
798     assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency");
799     unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth;
800     // Add latency if DefMI is a real instruction. Transients get latency 0.
801     if (!Dep.DefMI->isTransient())
802       DepCycle += MTM.SchedModel
803         .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp);
804     Cycle = std::max(Cycle, DepCycle);
805   }
806   // Remember the instruction depth.
807   InstrCycles &MICycles = Cycles[&UseMI];
808   MICycles.Depth = Cycle;
809 
810   if (TBI.HasValidInstrHeights) {
811     // Update critical path length.
812     TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height);
813     LLVM_DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI);
814   } else {
815     LLVM_DEBUG(dbgs() << Cycle << '\t' << UseMI);
816   }
817 }
818 
819 void MachineTraceMetrics::Ensemble::
820 updateDepth(const MachineBasicBlock *MBB, const MachineInstr &UseMI,
821             SparseSet<LiveRegUnit> &RegUnits) {
822   updateDepth(BlockInfo[MBB->getNumber()], UseMI, RegUnits);
823 }
824 
825 void MachineTraceMetrics::Ensemble::
826 updateDepths(MachineBasicBlock::iterator Start,
827              MachineBasicBlock::iterator End,
828              SparseSet<LiveRegUnit> &RegUnits) {
829     for (; Start != End; Start++)
830       updateDepth(Start->getParent(), *Start, RegUnits);
831 }
832 
833 /// Compute instruction depths for all instructions above or in MBB in its
834 /// trace. This assumes that the trace through MBB has already been computed.
835 void MachineTraceMetrics::Ensemble::
836 computeInstrDepths(const MachineBasicBlock *MBB) {
837   // The top of the trace may already be computed, and HasValidInstrDepths
838   // implies Head->HasValidInstrDepths, so we only need to start from the first
839   // block in the trace that needs to be recomputed.
840   SmallVector<const MachineBasicBlock*, 8> Stack;
841   do {
842     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
843     assert(TBI.hasValidDepth() && "Incomplete trace");
844     if (TBI.HasValidInstrDepths)
845       break;
846     Stack.push_back(MBB);
847     MBB = TBI.Pred;
848   } while (MBB);
849 
850   // FIXME: If MBB is non-null at this point, it is the last pre-computed block
851   // in the trace. We should track any live-out physregs that were defined in
852   // the trace. This is quite rare in SSA form, typically created by CSE
853   // hoisting a compare.
854   SparseSet<LiveRegUnit> RegUnits;
855   RegUnits.setUniverse(MTM.TRI->getNumRegUnits());
856 
857   // Go through trace blocks in top-down order, stopping after the center block.
858   while (!Stack.empty()) {
859     MBB = Stack.pop_back_val();
860     LLVM_DEBUG(dbgs() << "\nDepths for " << printMBBReference(*MBB) << ":\n");
861     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
862     TBI.HasValidInstrDepths = true;
863     TBI.CriticalPath = 0;
864 
865     // Print out resource depths here as well.
866     LLVM_DEBUG({
867       dbgs() << format("%7u Instructions\n", TBI.InstrDepth);
868       ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber());
869       for (unsigned K = 0; K != PRDepths.size(); ++K)
870         if (PRDepths[K]) {
871           unsigned Factor = MTM.SchedModel.getResourceFactor(K);
872           dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K]))
873                  << MTM.SchedModel.getProcResource(K)->Name << " ("
874                  << PRDepths[K]/Factor << " ops x" << Factor << ")\n";
875         }
876     });
877 
878     // Also compute the critical path length through MBB when possible.
879     if (TBI.HasValidInstrHeights)
880       TBI.CriticalPath = computeCrossBlockCriticalPath(TBI);
881 
882     for (const auto &UseMI : *MBB) {
883       updateDepth(TBI, UseMI, RegUnits);
884     }
885   }
886 }
887 
888 // Identify physreg dependencies for MI when scanning instructions upwards.
889 // Return the issue height of MI after considering any live regunits.
890 // Height is the issue height computed from virtual register dependencies alone.
891 static unsigned updatePhysDepsUpwards(const MachineInstr &MI, unsigned Height,
892                                       SparseSet<LiveRegUnit> &RegUnits,
893                                       const TargetSchedModel &SchedModel,
894                                       const TargetInstrInfo *TII,
895                                       const TargetRegisterInfo *TRI) {
896   SmallVector<unsigned, 8> ReadOps;
897 
898   for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
899                                         MOE = MI.operands_end();
900        MOI != MOE; ++MOI) {
901     const MachineOperand &MO = *MOI;
902     if (!MO.isReg())
903       continue;
904     Register Reg = MO.getReg();
905     if (!Reg.isPhysical())
906       continue;
907     if (MO.readsReg())
908       ReadOps.push_back(MI.getOperandNo(MOI));
909     if (!MO.isDef())
910       continue;
911     // This is a def of Reg. Remove corresponding entries from RegUnits, and
912     // update MI Height to consider the physreg dependencies.
913     for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
914          ++Units) {
915       SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
916       if (I == RegUnits.end())
917         continue;
918       unsigned DepHeight = I->Cycle;
919       if (!MI.isTransient()) {
920         // We may not know the UseMI of this dependency, if it came from the
921         // live-in list. SchedModel can handle a NULL UseMI.
922         DepHeight += SchedModel.computeOperandLatency(&MI, MI.getOperandNo(MOI),
923                                                       I->MI, I->Op);
924       }
925       Height = std::max(Height, DepHeight);
926       // This regunit is dead above MI.
927       RegUnits.erase(I);
928     }
929   }
930 
931   // Now we know the height of MI. Update any regunits read.
932   for (size_t I = 0, E = ReadOps.size(); I != E; ++I) {
933     MCRegister Reg = MI.getOperand(ReadOps[I]).getReg().asMCReg();
934     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
935       LiveRegUnit &LRU = RegUnits[*Units];
936       // Set the height to the highest reader of the unit.
937       if (LRU.Cycle <= Height && LRU.MI != &MI) {
938         LRU.Cycle = Height;
939         LRU.MI = &MI;
940         LRU.Op = ReadOps[I];
941       }
942     }
943   }
944 
945   return Height;
946 }
947 
948 using MIHeightMap = DenseMap<const MachineInstr *, unsigned>;
949 
950 // Push the height of DefMI upwards if required to match UseMI.
951 // Return true if this is the first time DefMI was seen.
952 static bool pushDepHeight(const DataDep &Dep, const MachineInstr &UseMI,
953                           unsigned UseHeight, MIHeightMap &Heights,
954                           const TargetSchedModel &SchedModel,
955                           const TargetInstrInfo *TII) {
956   // Adjust height by Dep.DefMI latency.
957   if (!Dep.DefMI->isTransient())
958     UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI,
959                                                   Dep.UseOp);
960 
961   // Update Heights[DefMI] to be the maximum height seen.
962   MIHeightMap::iterator I;
963   bool New;
964   std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight));
965   if (New)
966     return true;
967 
968   // DefMI has been pushed before. Give it the max height.
969   if (I->second < UseHeight)
970     I->second = UseHeight;
971   return false;
972 }
973 
974 /// Assuming that the virtual register defined by DefMI:DefOp was used by
975 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop
976 /// when reaching the block that contains DefMI.
977 void MachineTraceMetrics::Ensemble::
978 addLiveIns(const MachineInstr *DefMI, unsigned DefOp,
979            ArrayRef<const MachineBasicBlock*> Trace) {
980   assert(!Trace.empty() && "Trace should contain at least one block");
981   Register Reg = DefMI->getOperand(DefOp).getReg();
982   assert(Reg.isVirtual());
983   const MachineBasicBlock *DefMBB = DefMI->getParent();
984 
985   // Reg is live-in to all blocks in Trace that follow DefMBB.
986   for (const MachineBasicBlock *MBB : llvm::reverse(Trace)) {
987     if (MBB == DefMBB)
988       return;
989     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
990     // Just add the register. The height will be updated later.
991     TBI.LiveIns.push_back(Reg);
992   }
993 }
994 
995 /// Compute instruction heights in the trace through MBB. This updates MBB and
996 /// the blocks below it in the trace. It is assumed that the trace has already
997 /// been computed.
998 void MachineTraceMetrics::Ensemble::
999 computeInstrHeights(const MachineBasicBlock *MBB) {
1000   // The bottom of the trace may already be computed.
1001   // Find the blocks that need updating.
1002   SmallVector<const MachineBasicBlock*, 8> Stack;
1003   do {
1004     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
1005     assert(TBI.hasValidHeight() && "Incomplete trace");
1006     if (TBI.HasValidInstrHeights)
1007       break;
1008     Stack.push_back(MBB);
1009     TBI.LiveIns.clear();
1010     MBB = TBI.Succ;
1011   } while (MBB);
1012 
1013   // As we move upwards in the trace, keep track of instructions that are
1014   // required by deeper trace instructions. Map MI -> height required so far.
1015   MIHeightMap Heights;
1016 
1017   // For physregs, the def isn't known when we see the use.
1018   // Instead, keep track of the highest use of each regunit.
1019   SparseSet<LiveRegUnit> RegUnits;
1020   RegUnits.setUniverse(MTM.TRI->getNumRegUnits());
1021 
1022   // If the bottom of the trace was already precomputed, initialize heights
1023   // from its live-in list.
1024   // MBB is the highest precomputed block in the trace.
1025   if (MBB) {
1026     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
1027     for (LiveInReg &LI : TBI.LiveIns) {
1028       if (LI.Reg.isVirtual()) {
1029         // For virtual registers, the def latency is included.
1030         unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)];
1031         if (Height < LI.Height)
1032           Height = LI.Height;
1033       } else {
1034         // For register units, the def latency is not included because we don't
1035         // know the def yet.
1036         RegUnits[LI.Reg].Cycle = LI.Height;
1037       }
1038     }
1039   }
1040 
1041   // Go through the trace blocks in bottom-up order.
1042   SmallVector<DataDep, 8> Deps;
1043   for (;!Stack.empty(); Stack.pop_back()) {
1044     MBB = Stack.back();
1045     LLVM_DEBUG(dbgs() << "Heights for " << printMBBReference(*MBB) << ":\n");
1046     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
1047     TBI.HasValidInstrHeights = true;
1048     TBI.CriticalPath = 0;
1049 
1050     LLVM_DEBUG({
1051       dbgs() << format("%7u Instructions\n", TBI.InstrHeight);
1052       ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber());
1053       for (unsigned K = 0; K != PRHeights.size(); ++K)
1054         if (PRHeights[K]) {
1055           unsigned Factor = MTM.SchedModel.getResourceFactor(K);
1056           dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K]))
1057                  << MTM.SchedModel.getProcResource(K)->Name << " ("
1058                  << PRHeights[K]/Factor << " ops x" << Factor << ")\n";
1059         }
1060     });
1061 
1062     // Get dependencies from PHIs in the trace successor.
1063     const MachineBasicBlock *Succ = TBI.Succ;
1064     // If MBB is the last block in the trace, and it has a back-edge to the
1065     // loop header, get loop-carried dependencies from PHIs in the header. For
1066     // that purpose, pretend that all the loop header PHIs have height 0.
1067     if (!Succ)
1068       if (const MachineLoop *Loop = getLoopFor(MBB))
1069         if (MBB->isSuccessor(Loop->getHeader()))
1070           Succ = Loop->getHeader();
1071 
1072     if (Succ) {
1073       for (const auto &PHI : *Succ) {
1074         if (!PHI.isPHI())
1075           break;
1076         Deps.clear();
1077         getPHIDeps(PHI, Deps, MBB, MTM.MRI);
1078         if (!Deps.empty()) {
1079           // Loop header PHI heights are all 0.
1080           unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0;
1081           LLVM_DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI);
1082           if (pushDepHeight(Deps.front(), PHI, Height, Heights, MTM.SchedModel,
1083                             MTM.TII))
1084             addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack);
1085         }
1086       }
1087     }
1088 
1089     // Go through the block backwards.
1090     for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin();
1091          BI != BB;) {
1092       const MachineInstr &MI = *--BI;
1093 
1094       // Find the MI height as determined by virtual register uses in the
1095       // trace below.
1096       unsigned Cycle = 0;
1097       MIHeightMap::iterator HeightI = Heights.find(&MI);
1098       if (HeightI != Heights.end()) {
1099         Cycle = HeightI->second;
1100         // We won't be seeing any more MI uses.
1101         Heights.erase(HeightI);
1102       }
1103 
1104       // Don't process PHI deps. They depend on the specific predecessor, and
1105       // we'll get them when visiting the predecessor.
1106       Deps.clear();
1107       bool HasPhysRegs = !MI.isPHI() && getDataDeps(MI, Deps, MTM.MRI);
1108 
1109       // There may also be regunit dependencies to include in the height.
1110       if (HasPhysRegs)
1111         Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, MTM.SchedModel,
1112                                       MTM.TII, MTM.TRI);
1113 
1114       // Update the required height of any virtual registers read by MI.
1115       for (const DataDep &Dep : Deps)
1116         if (pushDepHeight(Dep, MI, Cycle, Heights, MTM.SchedModel, MTM.TII))
1117           addLiveIns(Dep.DefMI, Dep.DefOp, Stack);
1118 
1119       InstrCycles &MICycles = Cycles[&MI];
1120       MICycles.Height = Cycle;
1121       if (!TBI.HasValidInstrDepths) {
1122         LLVM_DEBUG(dbgs() << Cycle << '\t' << MI);
1123         continue;
1124       }
1125       // Update critical path length.
1126       TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth);
1127       LLVM_DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << MI);
1128     }
1129 
1130     // Update virtual live-in heights. They were added by addLiveIns() with a 0
1131     // height because the final height isn't known until now.
1132     LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " Live-ins:");
1133     for (LiveInReg &LIR : TBI.LiveIns) {
1134       const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
1135       LIR.Height = Heights.lookup(DefMI);
1136       LLVM_DEBUG(dbgs() << ' ' << printReg(LIR.Reg) << '@' << LIR.Height);
1137     }
1138 
1139     // Transfer the live regunits to the live-in list.
1140     for (SparseSet<LiveRegUnit>::const_iterator
1141          RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) {
1142       TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle));
1143       LLVM_DEBUG(dbgs() << ' ' << printRegUnit(RI->RegUnit, MTM.TRI) << '@'
1144                         << RI->Cycle);
1145     }
1146     LLVM_DEBUG(dbgs() << '\n');
1147 
1148     if (!TBI.HasValidInstrDepths)
1149       continue;
1150     // Add live-ins to the critical path length.
1151     TBI.CriticalPath = std::max(TBI.CriticalPath,
1152                                 computeCrossBlockCriticalPath(TBI));
1153     LLVM_DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n');
1154   }
1155 }
1156 
1157 MachineTraceMetrics::Trace
1158 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) {
1159   TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
1160 
1161   if (!TBI.hasValidDepth() || !TBI.hasValidHeight())
1162     computeTrace(MBB);
1163   if (!TBI.HasValidInstrDepths)
1164     computeInstrDepths(MBB);
1165   if (!TBI.HasValidInstrHeights)
1166     computeInstrHeights(MBB);
1167 
1168   return Trace(*this, TBI);
1169 }
1170 
1171 unsigned
1172 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr &MI) const {
1173   assert(getBlockNum() == unsigned(MI.getParent()->getNumber()) &&
1174          "MI must be in the trace center block");
1175   InstrCycles Cyc = getInstrCycles(MI);
1176   return getCriticalPath() - (Cyc.Depth + Cyc.Height);
1177 }
1178 
1179 unsigned
1180 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr &PHI) const {
1181   const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum());
1182   SmallVector<DataDep, 1> Deps;
1183   getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI);
1184   assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor");
1185   DataDep &Dep = Deps.front();
1186   unsigned DepCycle = getInstrCycles(*Dep.DefMI).Depth;
1187   // Add latency if DefMI is a real instruction. Transients get latency 0.
1188   if (!Dep.DefMI->isTransient())
1189     DepCycle += TE.MTM.SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp,
1190                                                         &PHI, Dep.UseOp);
1191   return DepCycle;
1192 }
1193 
1194 /// When bottom is set include instructions in current block in estimate.
1195 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const {
1196   // Find the limiting processor resource.
1197   // Numbers have been pre-scaled to be comparable.
1198   unsigned PRMax = 0;
1199   ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
1200   if (Bottom) {
1201     ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum());
1202     for (unsigned K = 0; K != PRDepths.size(); ++K)
1203       PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]);
1204   } else {
1205     for (unsigned PRD : PRDepths)
1206       PRMax = std::max(PRMax, PRD);
1207   }
1208   // Convert to cycle count.
1209   PRMax = TE.MTM.getCycles(PRMax);
1210 
1211   /// All instructions before current block
1212   unsigned Instrs = TBI.InstrDepth;
1213   // plus instructions in current block
1214   if (Bottom)
1215     Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount;
1216   if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
1217     Instrs /= IW;
1218   // Assume issue width 1 without a schedule model.
1219   return std::max(Instrs, PRMax);
1220 }
1221 
1222 unsigned MachineTraceMetrics::Trace::getResourceLength(
1223     ArrayRef<const MachineBasicBlock *> Extrablocks,
1224     ArrayRef<const MCSchedClassDesc *> ExtraInstrs,
1225     ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const {
1226   // Add up resources above and below the center block.
1227   ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
1228   ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum());
1229   unsigned PRMax = 0;
1230 
1231   // Capture computing cycles from extra instructions
1232   auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs,
1233                             unsigned ResourceIdx)
1234                          ->unsigned {
1235     unsigned Cycles = 0;
1236     for (const MCSchedClassDesc *SC : Instrs) {
1237       if (!SC->isValid())
1238         continue;
1239       for (TargetSchedModel::ProcResIter
1240                PI = TE.MTM.SchedModel.getWriteProcResBegin(SC),
1241                PE = TE.MTM.SchedModel.getWriteProcResEnd(SC);
1242            PI != PE; ++PI) {
1243         if (PI->ProcResourceIdx != ResourceIdx)
1244           continue;
1245         Cycles +=
1246             (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(ResourceIdx));
1247       }
1248     }
1249     return Cycles;
1250   };
1251 
1252   for (unsigned K = 0; K != PRDepths.size(); ++K) {
1253     unsigned PRCycles = PRDepths[K] + PRHeights[K];
1254     for (const MachineBasicBlock *MBB : Extrablocks)
1255       PRCycles += TE.MTM.getProcResourceCycles(MBB->getNumber())[K];
1256     PRCycles += extraCycles(ExtraInstrs, K);
1257     PRCycles -= extraCycles(RemoveInstrs, K);
1258     PRMax = std::max(PRMax, PRCycles);
1259   }
1260   // Convert to cycle count.
1261   PRMax = TE.MTM.getCycles(PRMax);
1262 
1263   // Instrs: #instructions in current trace outside current block.
1264   unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight;
1265   // Add instruction count from the extra blocks.
1266   for (const MachineBasicBlock *MBB : Extrablocks)
1267     Instrs += TE.MTM.getResources(MBB)->InstrCount;
1268   Instrs += ExtraInstrs.size();
1269   Instrs -= RemoveInstrs.size();
1270   if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
1271     Instrs /= IW;
1272   // Assume issue width 1 without a schedule model.
1273   return std::max(Instrs, PRMax);
1274 }
1275 
1276 bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr &DefMI,
1277                                               const MachineInstr &UseMI) const {
1278   if (DefMI.getParent() == UseMI.getParent())
1279     return true;
1280 
1281   const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI.getParent()->getNumber()];
1282   const TraceBlockInfo &TBI = TE.BlockInfo[UseMI.getParent()->getNumber()];
1283 
1284   return DepTBI.isUsefulDominator(TBI);
1285 }
1286 
1287 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const {
1288   OS << getName() << " ensemble:\n";
1289   for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) {
1290     OS << "  %bb." << i << '\t';
1291     BlockInfo[i].print(OS);
1292     OS << '\n';
1293   }
1294 }
1295 
1296 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const {
1297   if (hasValidDepth()) {
1298     OS << "depth=" << InstrDepth;
1299     if (Pred)
1300       OS << " pred=" << printMBBReference(*Pred);
1301     else
1302       OS << " pred=null";
1303     OS << " head=%bb." << Head;
1304     if (HasValidInstrDepths)
1305       OS << " +instrs";
1306   } else
1307     OS << "depth invalid";
1308   OS << ", ";
1309   if (hasValidHeight()) {
1310     OS << "height=" << InstrHeight;
1311     if (Succ)
1312       OS << " succ=" << printMBBReference(*Succ);
1313     else
1314       OS << " succ=null";
1315     OS << " tail=%bb." << Tail;
1316     if (HasValidInstrHeights)
1317       OS << " +instrs";
1318   } else
1319     OS << "height invalid";
1320   if (HasValidInstrDepths && HasValidInstrHeights)
1321     OS << ", crit=" << CriticalPath;
1322 }
1323 
1324 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const {
1325   unsigned MBBNum = &TBI - &TE.BlockInfo[0];
1326 
1327   OS << TE.getName() << " trace %bb." << TBI.Head << " --> %bb." << MBBNum
1328      << " --> %bb." << TBI.Tail << ':';
1329   if (TBI.hasValidHeight() && TBI.hasValidDepth())
1330     OS << ' ' << getInstrCount() << " instrs.";
1331   if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights)
1332     OS << ' ' << TBI.CriticalPath << " cycles.";
1333 
1334   const MachineTraceMetrics::TraceBlockInfo *Block = &TBI;
1335   OS << "\n%bb." << MBBNum;
1336   while (Block->hasValidDepth() && Block->Pred) {
1337     unsigned Num = Block->Pred->getNumber();
1338     OS << " <- " << printMBBReference(*Block->Pred);
1339     Block = &TE.BlockInfo[Num];
1340   }
1341 
1342   Block = &TBI;
1343   OS << "\n    ";
1344   while (Block->hasValidHeight() && Block->Succ) {
1345     unsigned Num = Block->Succ->getNumber();
1346     OS << " -> " << printMBBReference(*Block->Succ);
1347     Block = &TE.BlockInfo[Num];
1348   }
1349   OS << '\n';
1350 }
1351