1 //===- lib/CodeGen/MachineTraceMetrics.cpp --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/MachineTraceMetrics.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/DenseMap.h" 12 #include "llvm/ADT/PostOrderIterator.h" 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/SparseSet.h" 16 #include "llvm/CodeGen/MachineBasicBlock.h" 17 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineInstr.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineOperand.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/TargetRegisterInfo.h" 24 #include "llvm/CodeGen/TargetSchedule.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/InitializePasses.h" 27 #include "llvm/MC/MCRegisterInfo.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/Format.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <iterator> 36 #include <tuple> 37 #include <utility> 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "machine-trace-metrics" 42 43 char MachineTraceMetrics::ID = 0; 44 45 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID; 46 47 INITIALIZE_PASS_BEGIN(MachineTraceMetrics, DEBUG_TYPE, 48 "Machine Trace Metrics", false, true) 49 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) 50 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 51 INITIALIZE_PASS_END(MachineTraceMetrics, DEBUG_TYPE, 52 "Machine Trace Metrics", false, true) 53 54 MachineTraceMetrics::MachineTraceMetrics() : MachineFunctionPass(ID) { 55 std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr); 56 } 57 58 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const { 59 AU.setPreservesAll(); 60 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); 61 AU.addRequired<MachineLoopInfoWrapperPass>(); 62 MachineFunctionPass::getAnalysisUsage(AU); 63 } 64 65 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) { 66 MF = &Func; 67 const TargetSubtargetInfo &ST = MF->getSubtarget(); 68 TII = ST.getInstrInfo(); 69 TRI = ST.getRegisterInfo(); 70 MRI = &MF->getRegInfo(); 71 Loops = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 72 SchedModel.init(&ST); 73 BlockInfo.resize(MF->getNumBlockIDs()); 74 ProcReleaseAtCycles.resize(MF->getNumBlockIDs() * 75 SchedModel.getNumProcResourceKinds()); 76 return false; 77 } 78 79 void MachineTraceMetrics::releaseMemory() { 80 MF = nullptr; 81 BlockInfo.clear(); 82 for (Ensemble *&E : Ensembles) { 83 delete E; 84 E = nullptr; 85 } 86 } 87 88 //===----------------------------------------------------------------------===// 89 // Fixed block information 90 //===----------------------------------------------------------------------===// 91 // 92 // The number of instructions in a basic block and the CPU resources used by 93 // those instructions don't depend on any given trace strategy. 94 95 /// Compute the resource usage in basic block MBB. 96 const MachineTraceMetrics::FixedBlockInfo* 97 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) { 98 assert(MBB && "No basic block"); 99 FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()]; 100 if (FBI->hasResources()) 101 return FBI; 102 103 // Compute resource usage in the block. 104 FBI->HasCalls = false; 105 unsigned InstrCount = 0; 106 107 // Add up per-processor resource cycles as well. 108 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 109 SmallVector<unsigned, 32> PRCycles(PRKinds); 110 111 for (const auto &MI : *MBB) { 112 if (MI.isTransient()) 113 continue; 114 ++InstrCount; 115 if (MI.isCall()) 116 FBI->HasCalls = true; 117 118 // Count processor resources used. 119 if (!SchedModel.hasInstrSchedModel()) 120 continue; 121 const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI); 122 if (!SC->isValid()) 123 continue; 124 125 for (TargetSchedModel::ProcResIter 126 PI = SchedModel.getWriteProcResBegin(SC), 127 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 128 assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind"); 129 PRCycles[PI->ProcResourceIdx] += PI->ReleaseAtCycle; 130 } 131 } 132 FBI->InstrCount = InstrCount; 133 134 // Scale the resource cycles so they are comparable. 135 unsigned PROffset = MBB->getNumber() * PRKinds; 136 for (unsigned K = 0; K != PRKinds; ++K) 137 ProcReleaseAtCycles[PROffset + K] = 138 PRCycles[K] * SchedModel.getResourceFactor(K); 139 140 return FBI; 141 } 142 143 ArrayRef<unsigned> 144 MachineTraceMetrics::getProcReleaseAtCycles(unsigned MBBNum) const { 145 assert(BlockInfo[MBBNum].hasResources() && 146 "getResources() must be called before getProcReleaseAtCycles()"); 147 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 148 assert((MBBNum+1) * PRKinds <= ProcReleaseAtCycles.size()); 149 return ArrayRef(ProcReleaseAtCycles.data() + MBBNum * PRKinds, PRKinds); 150 } 151 152 //===----------------------------------------------------------------------===// 153 // Ensemble utility functions 154 //===----------------------------------------------------------------------===// 155 156 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct) 157 : MTM(*ct) { 158 BlockInfo.resize(MTM.BlockInfo.size()); 159 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 160 ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds); 161 ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds); 162 } 163 164 // Virtual destructor serves as an anchor. 165 MachineTraceMetrics::Ensemble::~Ensemble() = default; 166 167 const MachineLoop* 168 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const { 169 return MTM.Loops->getLoopFor(MBB); 170 } 171 172 // Update resource-related information in the TraceBlockInfo for MBB. 173 // Only update resources related to the trace above MBB. 174 void MachineTraceMetrics::Ensemble:: 175 computeDepthResources(const MachineBasicBlock *MBB) { 176 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 177 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 178 unsigned PROffset = MBB->getNumber() * PRKinds; 179 180 // Compute resources from trace above. The top block is simple. 181 if (!TBI->Pred) { 182 TBI->InstrDepth = 0; 183 TBI->Head = MBB->getNumber(); 184 std::fill(ProcResourceDepths.begin() + PROffset, 185 ProcResourceDepths.begin() + PROffset + PRKinds, 0); 186 return; 187 } 188 189 // Compute from the block above. A post-order traversal ensures the 190 // predecessor is always computed first. 191 unsigned PredNum = TBI->Pred->getNumber(); 192 TraceBlockInfo *PredTBI = &BlockInfo[PredNum]; 193 assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet"); 194 const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred); 195 TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount; 196 TBI->Head = PredTBI->Head; 197 198 // Compute per-resource depths. 199 ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum); 200 ArrayRef<unsigned> PredPRCycles = MTM.getProcReleaseAtCycles(PredNum); 201 for (unsigned K = 0; K != PRKinds; ++K) 202 ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K]; 203 } 204 205 // Update resource-related information in the TraceBlockInfo for MBB. 206 // Only update resources related to the trace below MBB. 207 void MachineTraceMetrics::Ensemble:: 208 computeHeightResources(const MachineBasicBlock *MBB) { 209 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 210 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 211 unsigned PROffset = MBB->getNumber() * PRKinds; 212 213 // Compute resources for the current block. 214 TBI->InstrHeight = MTM.getResources(MBB)->InstrCount; 215 ArrayRef<unsigned> PRCycles = MTM.getProcReleaseAtCycles(MBB->getNumber()); 216 217 // The trace tail is done. 218 if (!TBI->Succ) { 219 TBI->Tail = MBB->getNumber(); 220 llvm::copy(PRCycles, ProcResourceHeights.begin() + PROffset); 221 return; 222 } 223 224 // Compute from the block below. A post-order traversal ensures the 225 // predecessor is always computed first. 226 unsigned SuccNum = TBI->Succ->getNumber(); 227 TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum]; 228 assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet"); 229 TBI->InstrHeight += SuccTBI->InstrHeight; 230 TBI->Tail = SuccTBI->Tail; 231 232 // Compute per-resource heights. 233 ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum); 234 for (unsigned K = 0; K != PRKinds; ++K) 235 ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K]; 236 } 237 238 // Check if depth resources for MBB are valid and return the TBI. 239 // Return NULL if the resources have been invalidated. 240 const MachineTraceMetrics::TraceBlockInfo* 241 MachineTraceMetrics::Ensemble:: 242 getDepthResources(const MachineBasicBlock *MBB) const { 243 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 244 return TBI->hasValidDepth() ? TBI : nullptr; 245 } 246 247 // Check if height resources for MBB are valid and return the TBI. 248 // Return NULL if the resources have been invalidated. 249 const MachineTraceMetrics::TraceBlockInfo* 250 MachineTraceMetrics::Ensemble:: 251 getHeightResources(const MachineBasicBlock *MBB) const { 252 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 253 return TBI->hasValidHeight() ? TBI : nullptr; 254 } 255 256 /// Get an array of processor resource depths for MBB. Indexed by processor 257 /// resource kind, this array contains the scaled processor resources consumed 258 /// by all blocks preceding MBB in its trace. It does not include instructions 259 /// in MBB. 260 /// 261 /// Compare TraceBlockInfo::InstrDepth. 262 ArrayRef<unsigned> 263 MachineTraceMetrics::Ensemble:: 264 getProcResourceDepths(unsigned MBBNum) const { 265 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 266 assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size()); 267 return ArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds); 268 } 269 270 /// Get an array of processor resource heights for MBB. Indexed by processor 271 /// resource kind, this array contains the scaled processor resources consumed 272 /// by this block and all blocks following it in its trace. 273 /// 274 /// Compare TraceBlockInfo::InstrHeight. 275 ArrayRef<unsigned> 276 MachineTraceMetrics::Ensemble:: 277 getProcResourceHeights(unsigned MBBNum) const { 278 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 279 assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size()); 280 return ArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds); 281 } 282 283 //===----------------------------------------------------------------------===// 284 // Trace Selection Strategies 285 //===----------------------------------------------------------------------===// 286 // 287 // A trace selection strategy is implemented as a sub-class of Ensemble. The 288 // trace through a block B is computed by two DFS traversals of the CFG 289 // starting from B. One upwards, and one downwards. During the upwards DFS, 290 // pickTracePred() is called on the post-ordered blocks. During the downwards 291 // DFS, pickTraceSucc() is called in a post-order. 292 // 293 294 // We never allow traces that leave loops, but we do allow traces to enter 295 // nested loops. We also never allow traces to contain back-edges. 296 // 297 // This means that a loop header can never appear above the center block of a 298 // trace, except as the trace head. Below the center block, loop exiting edges 299 // are banned. 300 // 301 // Return true if an edge from the From loop to the To loop is leaving a loop. 302 // Either of To and From can be null. 303 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) { 304 return From && !From->contains(To); 305 } 306 307 // MinInstrCountEnsemble - Pick the trace that executes the least number of 308 // instructions. 309 namespace { 310 311 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble { 312 const char *getName() const override { return "MinInstr"; } 313 const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override; 314 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override; 315 316 public: 317 MinInstrCountEnsemble(MachineTraceMetrics *mtm) 318 : MachineTraceMetrics::Ensemble(mtm) {} 319 }; 320 321 /// Pick only the current basic block for the trace and do not choose any 322 /// predecessors/successors. 323 class LocalEnsemble : public MachineTraceMetrics::Ensemble { 324 const char *getName() const override { return "Local"; } 325 const MachineBasicBlock *pickTracePred(const MachineBasicBlock *) override { 326 return nullptr; 327 }; 328 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock *) override { 329 return nullptr; 330 }; 331 332 public: 333 LocalEnsemble(MachineTraceMetrics *MTM) 334 : MachineTraceMetrics::Ensemble(MTM) {} 335 }; 336 } // end anonymous namespace 337 338 // Select the preferred predecessor for MBB. 339 const MachineBasicBlock* 340 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) { 341 if (MBB->pred_empty()) 342 return nullptr; 343 const MachineLoop *CurLoop = getLoopFor(MBB); 344 // Don't leave loops, and never follow back-edges. 345 if (CurLoop && MBB == CurLoop->getHeader()) 346 return nullptr; 347 unsigned CurCount = MTM.getResources(MBB)->InstrCount; 348 const MachineBasicBlock *Best = nullptr; 349 unsigned BestDepth = 0; 350 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 351 const MachineTraceMetrics::TraceBlockInfo *PredTBI = 352 getDepthResources(Pred); 353 // Ignore cycles that aren't natural loops. 354 if (!PredTBI) 355 continue; 356 // Pick the predecessor that would give this block the smallest InstrDepth. 357 unsigned Depth = PredTBI->InstrDepth + CurCount; 358 if (!Best || Depth < BestDepth) { 359 Best = Pred; 360 BestDepth = Depth; 361 } 362 } 363 return Best; 364 } 365 366 // Select the preferred successor for MBB. 367 const MachineBasicBlock* 368 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) { 369 if (MBB->succ_empty()) 370 return nullptr; 371 const MachineLoop *CurLoop = getLoopFor(MBB); 372 const MachineBasicBlock *Best = nullptr; 373 unsigned BestHeight = 0; 374 for (const MachineBasicBlock *Succ : MBB->successors()) { 375 // Don't consider back-edges. 376 if (CurLoop && Succ == CurLoop->getHeader()) 377 continue; 378 // Don't consider successors exiting CurLoop. 379 if (isExitingLoop(CurLoop, getLoopFor(Succ))) 380 continue; 381 const MachineTraceMetrics::TraceBlockInfo *SuccTBI = 382 getHeightResources(Succ); 383 // Ignore cycles that aren't natural loops. 384 if (!SuccTBI) 385 continue; 386 // Pick the successor that would give this block the smallest InstrHeight. 387 unsigned Height = SuccTBI->InstrHeight; 388 if (!Best || Height < BestHeight) { 389 Best = Succ; 390 BestHeight = Height; 391 } 392 } 393 return Best; 394 } 395 396 // Get an Ensemble sub-class for the requested trace strategy. 397 MachineTraceMetrics::Ensemble * 398 MachineTraceMetrics::getEnsemble(MachineTraceStrategy strategy) { 399 assert(strategy < MachineTraceStrategy::TS_NumStrategies && 400 "Invalid trace strategy enum"); 401 Ensemble *&E = Ensembles[static_cast<size_t>(strategy)]; 402 if (E) 403 return E; 404 405 // Allocate new Ensemble on demand. 406 switch (strategy) { 407 case MachineTraceStrategy::TS_MinInstrCount: 408 return (E = new MinInstrCountEnsemble(this)); 409 case MachineTraceStrategy::TS_Local: 410 return (E = new LocalEnsemble(this)); 411 default: llvm_unreachable("Invalid trace strategy enum"); 412 } 413 } 414 415 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) { 416 LLVM_DEBUG(dbgs() << "Invalidate traces through " << printMBBReference(*MBB) 417 << '\n'); 418 BlockInfo[MBB->getNumber()].invalidate(); 419 for (Ensemble *E : Ensembles) 420 if (E) 421 E->invalidate(MBB); 422 } 423 424 void MachineTraceMetrics::verifyAnalysis() const { 425 if (!MF) 426 return; 427 #ifndef NDEBUG 428 assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size"); 429 for (Ensemble *E : Ensembles) 430 if (E) 431 E->verify(); 432 #endif 433 } 434 435 //===----------------------------------------------------------------------===// 436 // Trace building 437 //===----------------------------------------------------------------------===// 438 // 439 // Traces are built by two CFG traversals. To avoid recomputing too much, use a 440 // set abstraction that confines the search to the current loop, and doesn't 441 // revisit blocks. 442 443 namespace { 444 445 struct LoopBounds { 446 MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks; 447 SmallPtrSet<const MachineBasicBlock*, 8> Visited; 448 const MachineLoopInfo *Loops; 449 bool Downward = false; 450 451 LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks, 452 const MachineLoopInfo *loops) : Blocks(blocks), Loops(loops) {} 453 }; 454 455 } // end anonymous namespace 456 457 // Specialize po_iterator_storage in order to prune the post-order traversal so 458 // it is limited to the current loop and doesn't traverse the loop back edges. 459 namespace llvm { 460 461 template<> 462 class po_iterator_storage<LoopBounds, true> { 463 LoopBounds &LB; 464 465 public: 466 po_iterator_storage(LoopBounds &lb) : LB(lb) {} 467 468 void finishPostorder(const MachineBasicBlock*) {} 469 470 bool insertEdge(std::optional<const MachineBasicBlock *> From, 471 const MachineBasicBlock *To) { 472 // Skip already visited To blocks. 473 MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()]; 474 if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth()) 475 return false; 476 // From is null once when To is the trace center block. 477 if (From) { 478 if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(*From)) { 479 // Don't follow backedges, don't leave FromLoop when going upwards. 480 if ((LB.Downward ? To : *From) == FromLoop->getHeader()) 481 return false; 482 // Don't leave FromLoop. 483 if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To))) 484 return false; 485 } 486 } 487 // To is a new block. Mark the block as visited in case the CFG has cycles 488 // that MachineLoopInfo didn't recognize as a natural loop. 489 return LB.Visited.insert(To).second; 490 } 491 }; 492 493 } // end namespace llvm 494 495 /// Compute the trace through MBB. 496 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) { 497 LLVM_DEBUG(dbgs() << "Computing " << getName() << " trace through " 498 << printMBBReference(*MBB) << '\n'); 499 // Set up loop bounds for the backwards post-order traversal. 500 LoopBounds Bounds(BlockInfo, MTM.Loops); 501 502 // Run an upwards post-order search for the trace start. 503 Bounds.Downward = false; 504 Bounds.Visited.clear(); 505 for (const auto *I : inverse_post_order_ext(MBB, Bounds)) { 506 LLVM_DEBUG(dbgs() << " pred for " << printMBBReference(*I) << ": "); 507 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 508 // All the predecessors have been visited, pick the preferred one. 509 TBI.Pred = pickTracePred(I); 510 LLVM_DEBUG({ 511 if (TBI.Pred) 512 dbgs() << printMBBReference(*TBI.Pred) << '\n'; 513 else 514 dbgs() << "null\n"; 515 }); 516 // The trace leading to I is now known, compute the depth resources. 517 computeDepthResources(I); 518 } 519 520 // Run a downwards post-order search for the trace end. 521 Bounds.Downward = true; 522 Bounds.Visited.clear(); 523 for (const auto *I : post_order_ext(MBB, Bounds)) { 524 LLVM_DEBUG(dbgs() << " succ for " << printMBBReference(*I) << ": "); 525 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 526 // All the successors have been visited, pick the preferred one. 527 TBI.Succ = pickTraceSucc(I); 528 LLVM_DEBUG({ 529 if (TBI.Succ) 530 dbgs() << printMBBReference(*TBI.Succ) << '\n'; 531 else 532 dbgs() << "null\n"; 533 }); 534 // The trace leaving I is now known, compute the height resources. 535 computeHeightResources(I); 536 } 537 } 538 539 /// Invalidate traces through BadMBB. 540 void 541 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) { 542 SmallVector<const MachineBasicBlock*, 16> WorkList; 543 TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()]; 544 545 // Invalidate height resources of blocks above MBB. 546 if (BadTBI.hasValidHeight()) { 547 BadTBI.invalidateHeight(); 548 WorkList.push_back(BadMBB); 549 do { 550 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 551 LLVM_DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' ' 552 << getName() << " height.\n"); 553 // Find any MBB predecessors that have MBB as their preferred successor. 554 // They are the only ones that need to be invalidated. 555 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 556 TraceBlockInfo &TBI = BlockInfo[Pred->getNumber()]; 557 if (!TBI.hasValidHeight()) 558 continue; 559 if (TBI.Succ == MBB) { 560 TBI.invalidateHeight(); 561 WorkList.push_back(Pred); 562 continue; 563 } 564 // Verify that TBI.Succ is actually a *I successor. 565 assert((!TBI.Succ || Pred->isSuccessor(TBI.Succ)) && "CFG changed"); 566 } 567 } while (!WorkList.empty()); 568 } 569 570 // Invalidate depth resources of blocks below MBB. 571 if (BadTBI.hasValidDepth()) { 572 BadTBI.invalidateDepth(); 573 WorkList.push_back(BadMBB); 574 do { 575 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 576 LLVM_DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' ' 577 << getName() << " depth.\n"); 578 // Find any MBB successors that have MBB as their preferred predecessor. 579 // They are the only ones that need to be invalidated. 580 for (const MachineBasicBlock *Succ : MBB->successors()) { 581 TraceBlockInfo &TBI = BlockInfo[Succ->getNumber()]; 582 if (!TBI.hasValidDepth()) 583 continue; 584 if (TBI.Pred == MBB) { 585 TBI.invalidateDepth(); 586 WorkList.push_back(Succ); 587 continue; 588 } 589 // Verify that TBI.Pred is actually a *I predecessor. 590 assert((!TBI.Pred || Succ->isPredecessor(TBI.Pred)) && "CFG changed"); 591 } 592 } while (!WorkList.empty()); 593 } 594 595 // Clear any per-instruction data. We only have to do this for BadMBB itself 596 // because the instructions in that block may change. Other blocks may be 597 // invalidated, but their instructions will stay the same, so there is no 598 // need to erase the Cycle entries. They will be overwritten when we 599 // recompute. 600 for (const auto &I : *BadMBB) 601 Cycles.erase(&I); 602 } 603 604 void MachineTraceMetrics::Ensemble::verify() const { 605 #ifndef NDEBUG 606 assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() && 607 "Outdated BlockInfo size"); 608 for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) { 609 const TraceBlockInfo &TBI = BlockInfo[Num]; 610 if (TBI.hasValidDepth() && TBI.Pred) { 611 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 612 assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace"); 613 assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() && 614 "Trace is broken, depth should have been invalidated."); 615 const MachineLoop *Loop = getLoopFor(MBB); 616 assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge"); 617 } 618 if (TBI.hasValidHeight() && TBI.Succ) { 619 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 620 assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace"); 621 assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() && 622 "Trace is broken, height should have been invalidated."); 623 const MachineLoop *Loop = getLoopFor(MBB); 624 const MachineLoop *SuccLoop = getLoopFor(TBI.Succ); 625 assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) && 626 "Trace contains backedge"); 627 } 628 } 629 #endif 630 } 631 632 //===----------------------------------------------------------------------===// 633 // Data Dependencies 634 //===----------------------------------------------------------------------===// 635 // 636 // Compute the depth and height of each instruction based on data dependencies 637 // and instruction latencies. These cycle numbers assume that the CPU can issue 638 // an infinite number of instructions per cycle as long as their dependencies 639 // are ready. 640 641 // A data dependency is represented as a defining MI and operand numbers on the 642 // defining and using MI. 643 namespace { 644 645 struct DataDep { 646 const MachineInstr *DefMI; 647 unsigned DefOp; 648 unsigned UseOp; 649 650 DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp) 651 : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {} 652 653 /// Create a DataDep from an SSA form virtual register. 654 DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp) 655 : UseOp(UseOp) { 656 assert(Register::isVirtualRegister(VirtReg)); 657 MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg); 658 assert(!DefI.atEnd() && "Register has no defs"); 659 DefMI = DefI->getParent(); 660 DefOp = DefI.getOperandNo(); 661 assert((++DefI).atEnd() && "Register has multiple defs"); 662 } 663 }; 664 665 } // end anonymous namespace 666 667 // Get the input data dependencies that must be ready before UseMI can issue. 668 // Return true if UseMI has any physreg operands. 669 static bool getDataDeps(const MachineInstr &UseMI, 670 SmallVectorImpl<DataDep> &Deps, 671 const MachineRegisterInfo *MRI) { 672 // Debug values should not be included in any calculations. 673 if (UseMI.isDebugInstr()) 674 return false; 675 676 bool HasPhysRegs = false; 677 for (const MachineOperand &MO : UseMI.operands()) { 678 if (!MO.isReg()) 679 continue; 680 Register Reg = MO.getReg(); 681 if (!Reg) 682 continue; 683 if (Reg.isPhysical()) { 684 HasPhysRegs = true; 685 continue; 686 } 687 // Collect virtual register reads. 688 if (MO.readsReg()) 689 Deps.push_back(DataDep(MRI, Reg, MO.getOperandNo())); 690 } 691 return HasPhysRegs; 692 } 693 694 // Get the input data dependencies of a PHI instruction, using Pred as the 695 // preferred predecessor. 696 // This will add at most one dependency to Deps. 697 static void getPHIDeps(const MachineInstr &UseMI, 698 SmallVectorImpl<DataDep> &Deps, 699 const MachineBasicBlock *Pred, 700 const MachineRegisterInfo *MRI) { 701 // No predecessor at the beginning of a trace. Ignore dependencies. 702 if (!Pred) 703 return; 704 assert(UseMI.isPHI() && UseMI.getNumOperands() % 2 && "Bad PHI"); 705 for (unsigned i = 1; i != UseMI.getNumOperands(); i += 2) { 706 if (UseMI.getOperand(i + 1).getMBB() == Pred) { 707 Register Reg = UseMI.getOperand(i).getReg(); 708 Deps.push_back(DataDep(MRI, Reg, i)); 709 return; 710 } 711 } 712 } 713 714 // Identify physreg dependencies for UseMI, and update the live regunit 715 // tracking set when scanning instructions downwards. 716 static void updatePhysDepsDownwards(const MachineInstr *UseMI, 717 SmallVectorImpl<DataDep> &Deps, 718 SparseSet<LiveRegUnit> &RegUnits, 719 const TargetRegisterInfo *TRI) { 720 SmallVector<MCRegister, 8> Kills; 721 SmallVector<unsigned, 8> LiveDefOps; 722 723 for (const MachineOperand &MO : UseMI->operands()) { 724 if (!MO.isReg() || !MO.getReg().isPhysical()) 725 continue; 726 MCRegister Reg = MO.getReg().asMCReg(); 727 // Track live defs and kills for updating RegUnits. 728 if (MO.isDef()) { 729 if (MO.isDead()) 730 Kills.push_back(Reg); 731 else 732 LiveDefOps.push_back(MO.getOperandNo()); 733 } else if (MO.isKill()) 734 Kills.push_back(Reg); 735 // Identify dependencies. 736 if (!MO.readsReg()) 737 continue; 738 for (MCRegUnit Unit : TRI->regunits(Reg)) { 739 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(Unit); 740 if (I == RegUnits.end()) 741 continue; 742 Deps.push_back(DataDep(I->MI, I->Op, MO.getOperandNo())); 743 break; 744 } 745 } 746 747 // Update RegUnits to reflect live registers after UseMI. 748 // First kills. 749 for (MCRegister Kill : Kills) 750 for (MCRegUnit Unit : TRI->regunits(Kill)) 751 RegUnits.erase(Unit); 752 753 // Second, live defs. 754 for (unsigned DefOp : LiveDefOps) { 755 for (MCRegUnit Unit : 756 TRI->regunits(UseMI->getOperand(DefOp).getReg().asMCReg())) { 757 LiveRegUnit &LRU = RegUnits[Unit]; 758 LRU.MI = UseMI; 759 LRU.Op = DefOp; 760 } 761 } 762 } 763 764 /// The length of the critical path through a trace is the maximum of two path 765 /// lengths: 766 /// 767 /// 1. The maximum height+depth over all instructions in the trace center block. 768 /// 769 /// 2. The longest cross-block dependency chain. For small blocks, it is 770 /// possible that the critical path through the trace doesn't include any 771 /// instructions in the block. 772 /// 773 /// This function computes the second number from the live-in list of the 774 /// center block. 775 unsigned MachineTraceMetrics::Ensemble:: 776 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) { 777 assert(TBI.HasValidInstrDepths && "Missing depth info"); 778 assert(TBI.HasValidInstrHeights && "Missing height info"); 779 unsigned MaxLen = 0; 780 for (const LiveInReg &LIR : TBI.LiveIns) { 781 if (!LIR.Reg.isVirtual()) 782 continue; 783 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 784 // Ignore dependencies outside the current trace. 785 const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()]; 786 if (!DefTBI.isUsefulDominator(TBI)) 787 continue; 788 unsigned Len = LIR.Height + Cycles[DefMI].Depth; 789 MaxLen = std::max(MaxLen, Len); 790 } 791 return MaxLen; 792 } 793 794 void MachineTraceMetrics::Ensemble:: 795 updateDepth(MachineTraceMetrics::TraceBlockInfo &TBI, const MachineInstr &UseMI, 796 SparseSet<LiveRegUnit> &RegUnits) { 797 SmallVector<DataDep, 8> Deps; 798 // Collect all data dependencies. 799 if (UseMI.isPHI()) 800 getPHIDeps(UseMI, Deps, TBI.Pred, MTM.MRI); 801 else if (getDataDeps(UseMI, Deps, MTM.MRI)) 802 updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI); 803 804 // Filter and process dependencies, computing the earliest issue cycle. 805 unsigned Cycle = 0; 806 for (const DataDep &Dep : Deps) { 807 const TraceBlockInfo&DepTBI = 808 BlockInfo[Dep.DefMI->getParent()->getNumber()]; 809 // Ignore dependencies from outside the current trace. 810 if (!DepTBI.isUsefulDominator(TBI)) 811 continue; 812 assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency"); 813 unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth; 814 // Add latency if DefMI is a real instruction. Transients get latency 0. 815 if (!Dep.DefMI->isTransient()) 816 DepCycle += MTM.SchedModel 817 .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp); 818 Cycle = std::max(Cycle, DepCycle); 819 } 820 // Remember the instruction depth. 821 InstrCycles &MICycles = Cycles[&UseMI]; 822 MICycles.Depth = Cycle; 823 824 if (TBI.HasValidInstrHeights) { 825 // Update critical path length. 826 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height); 827 LLVM_DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI); 828 } else { 829 LLVM_DEBUG(dbgs() << Cycle << '\t' << UseMI); 830 } 831 } 832 833 void MachineTraceMetrics::Ensemble:: 834 updateDepth(const MachineBasicBlock *MBB, const MachineInstr &UseMI, 835 SparseSet<LiveRegUnit> &RegUnits) { 836 updateDepth(BlockInfo[MBB->getNumber()], UseMI, RegUnits); 837 } 838 839 void MachineTraceMetrics::Ensemble:: 840 updateDepths(MachineBasicBlock::iterator Start, 841 MachineBasicBlock::iterator End, 842 SparseSet<LiveRegUnit> &RegUnits) { 843 for (; Start != End; Start++) 844 updateDepth(Start->getParent(), *Start, RegUnits); 845 } 846 847 /// Compute instruction depths for all instructions above or in MBB in its 848 /// trace. This assumes that the trace through MBB has already been computed. 849 void MachineTraceMetrics::Ensemble:: 850 computeInstrDepths(const MachineBasicBlock *MBB) { 851 // The top of the trace may already be computed, and HasValidInstrDepths 852 // implies Head->HasValidInstrDepths, so we only need to start from the first 853 // block in the trace that needs to be recomputed. 854 SmallVector<const MachineBasicBlock*, 8> Stack; 855 do { 856 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 857 assert(TBI.hasValidDepth() && "Incomplete trace"); 858 if (TBI.HasValidInstrDepths) 859 break; 860 Stack.push_back(MBB); 861 MBB = TBI.Pred; 862 } while (MBB); 863 864 // FIXME: If MBB is non-null at this point, it is the last pre-computed block 865 // in the trace. We should track any live-out physregs that were defined in 866 // the trace. This is quite rare in SSA form, typically created by CSE 867 // hoisting a compare. 868 SparseSet<LiveRegUnit> RegUnits; 869 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 870 871 // Go through trace blocks in top-down order, stopping after the center block. 872 while (!Stack.empty()) { 873 MBB = Stack.pop_back_val(); 874 LLVM_DEBUG(dbgs() << "\nDepths for " << printMBBReference(*MBB) << ":\n"); 875 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 876 TBI.HasValidInstrDepths = true; 877 TBI.CriticalPath = 0; 878 879 // Print out resource depths here as well. 880 LLVM_DEBUG({ 881 dbgs() << format("%7u Instructions\n", TBI.InstrDepth); 882 ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber()); 883 for (unsigned K = 0; K != PRDepths.size(); ++K) 884 if (PRDepths[K]) { 885 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 886 dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K])) 887 << MTM.SchedModel.getProcResource(K)->Name << " (" 888 << PRDepths[K]/Factor << " ops x" << Factor << ")\n"; 889 } 890 }); 891 892 // Also compute the critical path length through MBB when possible. 893 if (TBI.HasValidInstrHeights) 894 TBI.CriticalPath = computeCrossBlockCriticalPath(TBI); 895 896 for (const auto &UseMI : *MBB) { 897 updateDepth(TBI, UseMI, RegUnits); 898 } 899 } 900 } 901 902 // Identify physreg dependencies for MI when scanning instructions upwards. 903 // Return the issue height of MI after considering any live regunits. 904 // Height is the issue height computed from virtual register dependencies alone. 905 static unsigned updatePhysDepsUpwards(const MachineInstr &MI, unsigned Height, 906 SparseSet<LiveRegUnit> &RegUnits, 907 const TargetSchedModel &SchedModel, 908 const TargetInstrInfo *TII, 909 const TargetRegisterInfo *TRI) { 910 SmallVector<unsigned, 8> ReadOps; 911 912 for (const MachineOperand &MO : MI.operands()) { 913 if (!MO.isReg()) 914 continue; 915 Register Reg = MO.getReg(); 916 if (!Reg.isPhysical()) 917 continue; 918 if (MO.readsReg()) 919 ReadOps.push_back(MO.getOperandNo()); 920 if (!MO.isDef()) 921 continue; 922 // This is a def of Reg. Remove corresponding entries from RegUnits, and 923 // update MI Height to consider the physreg dependencies. 924 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) { 925 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(Unit); 926 if (I == RegUnits.end()) 927 continue; 928 unsigned DepHeight = I->Cycle; 929 if (!MI.isTransient()) { 930 // We may not know the UseMI of this dependency, if it came from the 931 // live-in list. SchedModel can handle a NULL UseMI. 932 DepHeight += SchedModel.computeOperandLatency(&MI, MO.getOperandNo(), 933 I->MI, I->Op); 934 } 935 Height = std::max(Height, DepHeight); 936 // This regunit is dead above MI. 937 RegUnits.erase(I); 938 } 939 } 940 941 // Now we know the height of MI. Update any regunits read. 942 for (unsigned Op : ReadOps) { 943 MCRegister Reg = MI.getOperand(Op).getReg().asMCReg(); 944 for (MCRegUnit Unit : TRI->regunits(Reg)) { 945 LiveRegUnit &LRU = RegUnits[Unit]; 946 // Set the height to the highest reader of the unit. 947 if (LRU.Cycle <= Height && LRU.MI != &MI) { 948 LRU.Cycle = Height; 949 LRU.MI = &MI; 950 LRU.Op = Op; 951 } 952 } 953 } 954 955 return Height; 956 } 957 958 using MIHeightMap = DenseMap<const MachineInstr *, unsigned>; 959 960 // Push the height of DefMI upwards if required to match UseMI. 961 // Return true if this is the first time DefMI was seen. 962 static bool pushDepHeight(const DataDep &Dep, const MachineInstr &UseMI, 963 unsigned UseHeight, MIHeightMap &Heights, 964 const TargetSchedModel &SchedModel, 965 const TargetInstrInfo *TII) { 966 // Adjust height by Dep.DefMI latency. 967 if (!Dep.DefMI->isTransient()) 968 UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, 969 Dep.UseOp); 970 971 // Update Heights[DefMI] to be the maximum height seen. 972 MIHeightMap::iterator I; 973 bool New; 974 std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight)); 975 if (New) 976 return true; 977 978 // DefMI has been pushed before. Give it the max height. 979 if (I->second < UseHeight) 980 I->second = UseHeight; 981 return false; 982 } 983 984 /// Assuming that the virtual register defined by DefMI:DefOp was used by 985 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop 986 /// when reaching the block that contains DefMI. 987 void MachineTraceMetrics::Ensemble:: 988 addLiveIns(const MachineInstr *DefMI, unsigned DefOp, 989 ArrayRef<const MachineBasicBlock*> Trace) { 990 assert(!Trace.empty() && "Trace should contain at least one block"); 991 Register Reg = DefMI->getOperand(DefOp).getReg(); 992 assert(Reg.isVirtual()); 993 const MachineBasicBlock *DefMBB = DefMI->getParent(); 994 995 // Reg is live-in to all blocks in Trace that follow DefMBB. 996 for (const MachineBasicBlock *MBB : llvm::reverse(Trace)) { 997 if (MBB == DefMBB) 998 return; 999 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1000 // Just add the register. The height will be updated later. 1001 TBI.LiveIns.push_back(Reg); 1002 } 1003 } 1004 1005 /// Compute instruction heights in the trace through MBB. This updates MBB and 1006 /// the blocks below it in the trace. It is assumed that the trace has already 1007 /// been computed. 1008 void MachineTraceMetrics::Ensemble:: 1009 computeInstrHeights(const MachineBasicBlock *MBB) { 1010 // The bottom of the trace may already be computed. 1011 // Find the blocks that need updating. 1012 SmallVector<const MachineBasicBlock*, 8> Stack; 1013 do { 1014 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1015 assert(TBI.hasValidHeight() && "Incomplete trace"); 1016 if (TBI.HasValidInstrHeights) 1017 break; 1018 Stack.push_back(MBB); 1019 TBI.LiveIns.clear(); 1020 MBB = TBI.Succ; 1021 } while (MBB); 1022 1023 // As we move upwards in the trace, keep track of instructions that are 1024 // required by deeper trace instructions. Map MI -> height required so far. 1025 MIHeightMap Heights; 1026 1027 // For physregs, the def isn't known when we see the use. 1028 // Instead, keep track of the highest use of each regunit. 1029 SparseSet<LiveRegUnit> RegUnits; 1030 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 1031 1032 // If the bottom of the trace was already precomputed, initialize heights 1033 // from its live-in list. 1034 // MBB is the highest precomputed block in the trace. 1035 if (MBB) { 1036 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1037 for (LiveInReg &LI : TBI.LiveIns) { 1038 if (LI.Reg.isVirtual()) { 1039 // For virtual registers, the def latency is included. 1040 unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)]; 1041 if (Height < LI.Height) 1042 Height = LI.Height; 1043 } else { 1044 // For register units, the def latency is not included because we don't 1045 // know the def yet. 1046 RegUnits[LI.Reg].Cycle = LI.Height; 1047 } 1048 } 1049 } 1050 1051 // Go through the trace blocks in bottom-up order. 1052 SmallVector<DataDep, 8> Deps; 1053 for (;!Stack.empty(); Stack.pop_back()) { 1054 MBB = Stack.back(); 1055 LLVM_DEBUG(dbgs() << "Heights for " << printMBBReference(*MBB) << ":\n"); 1056 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1057 TBI.HasValidInstrHeights = true; 1058 TBI.CriticalPath = 0; 1059 1060 LLVM_DEBUG({ 1061 dbgs() << format("%7u Instructions\n", TBI.InstrHeight); 1062 ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber()); 1063 for (unsigned K = 0; K != PRHeights.size(); ++K) 1064 if (PRHeights[K]) { 1065 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 1066 dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K])) 1067 << MTM.SchedModel.getProcResource(K)->Name << " (" 1068 << PRHeights[K]/Factor << " ops x" << Factor << ")\n"; 1069 } 1070 }); 1071 1072 // Get dependencies from PHIs in the trace successor. 1073 const MachineBasicBlock *Succ = TBI.Succ; 1074 // If MBB is the last block in the trace, and it has a back-edge to the 1075 // loop header, get loop-carried dependencies from PHIs in the header. For 1076 // that purpose, pretend that all the loop header PHIs have height 0. 1077 if (!Succ) 1078 if (const MachineLoop *Loop = getLoopFor(MBB)) 1079 if (MBB->isSuccessor(Loop->getHeader())) 1080 Succ = Loop->getHeader(); 1081 1082 if (Succ) { 1083 for (const auto &PHI : *Succ) { 1084 if (!PHI.isPHI()) 1085 break; 1086 Deps.clear(); 1087 getPHIDeps(PHI, Deps, MBB, MTM.MRI); 1088 if (!Deps.empty()) { 1089 // Loop header PHI heights are all 0. 1090 unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0; 1091 LLVM_DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI); 1092 if (pushDepHeight(Deps.front(), PHI, Height, Heights, MTM.SchedModel, 1093 MTM.TII)) 1094 addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack); 1095 } 1096 } 1097 } 1098 1099 // Go through the block backwards. 1100 for (const MachineInstr &MI : reverse(*MBB)) { 1101 // Find the MI height as determined by virtual register uses in the 1102 // trace below. 1103 unsigned Cycle = 0; 1104 MIHeightMap::iterator HeightI = Heights.find(&MI); 1105 if (HeightI != Heights.end()) { 1106 Cycle = HeightI->second; 1107 // We won't be seeing any more MI uses. 1108 Heights.erase(HeightI); 1109 } 1110 1111 // Don't process PHI deps. They depend on the specific predecessor, and 1112 // we'll get them when visiting the predecessor. 1113 Deps.clear(); 1114 bool HasPhysRegs = !MI.isPHI() && getDataDeps(MI, Deps, MTM.MRI); 1115 1116 // There may also be regunit dependencies to include in the height. 1117 if (HasPhysRegs) 1118 Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, MTM.SchedModel, 1119 MTM.TII, MTM.TRI); 1120 1121 // Update the required height of any virtual registers read by MI. 1122 for (const DataDep &Dep : Deps) 1123 if (pushDepHeight(Dep, MI, Cycle, Heights, MTM.SchedModel, MTM.TII)) 1124 addLiveIns(Dep.DefMI, Dep.DefOp, Stack); 1125 1126 InstrCycles &MICycles = Cycles[&MI]; 1127 MICycles.Height = Cycle; 1128 if (!TBI.HasValidInstrDepths) { 1129 LLVM_DEBUG(dbgs() << Cycle << '\t' << MI); 1130 continue; 1131 } 1132 // Update critical path length. 1133 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth); 1134 LLVM_DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << MI); 1135 } 1136 1137 // Update virtual live-in heights. They were added by addLiveIns() with a 0 1138 // height because the final height isn't known until now. 1139 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " Live-ins:"); 1140 for (LiveInReg &LIR : TBI.LiveIns) { 1141 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 1142 LIR.Height = Heights.lookup(DefMI); 1143 LLVM_DEBUG(dbgs() << ' ' << printReg(LIR.Reg) << '@' << LIR.Height); 1144 } 1145 1146 // Transfer the live regunits to the live-in list. 1147 for (const LiveRegUnit &RU : RegUnits) { 1148 TBI.LiveIns.push_back(LiveInReg(RU.RegUnit, RU.Cycle)); 1149 LLVM_DEBUG(dbgs() << ' ' << printRegUnit(RU.RegUnit, MTM.TRI) << '@' 1150 << RU.Cycle); 1151 } 1152 LLVM_DEBUG(dbgs() << '\n'); 1153 1154 if (!TBI.HasValidInstrDepths) 1155 continue; 1156 // Add live-ins to the critical path length. 1157 TBI.CriticalPath = std::max(TBI.CriticalPath, 1158 computeCrossBlockCriticalPath(TBI)); 1159 LLVM_DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n'); 1160 } 1161 } 1162 1163 MachineTraceMetrics::Trace 1164 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) { 1165 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1166 1167 if (!TBI.hasValidDepth() || !TBI.hasValidHeight()) 1168 computeTrace(MBB); 1169 if (!TBI.HasValidInstrDepths) 1170 computeInstrDepths(MBB); 1171 if (!TBI.HasValidInstrHeights) 1172 computeInstrHeights(MBB); 1173 1174 return Trace(*this, TBI); 1175 } 1176 1177 unsigned 1178 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr &MI) const { 1179 assert(getBlockNum() == unsigned(MI.getParent()->getNumber()) && 1180 "MI must be in the trace center block"); 1181 InstrCycles Cyc = getInstrCycles(MI); 1182 return getCriticalPath() - (Cyc.Depth + Cyc.Height); 1183 } 1184 1185 unsigned 1186 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr &PHI) const { 1187 const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum()); 1188 SmallVector<DataDep, 1> Deps; 1189 getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI); 1190 assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor"); 1191 DataDep &Dep = Deps.front(); 1192 unsigned DepCycle = getInstrCycles(*Dep.DefMI).Depth; 1193 // Add latency if DefMI is a real instruction. Transients get latency 0. 1194 if (!Dep.DefMI->isTransient()) 1195 DepCycle += TE.MTM.SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, 1196 &PHI, Dep.UseOp); 1197 return DepCycle; 1198 } 1199 1200 /// When bottom is set include instructions in current block in estimate. 1201 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const { 1202 // Find the limiting processor resource. 1203 // Numbers have been pre-scaled to be comparable. 1204 unsigned PRMax = 0; 1205 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1206 if (Bottom) { 1207 ArrayRef<unsigned> PRCycles = TE.MTM.getProcReleaseAtCycles(getBlockNum()); 1208 for (unsigned K = 0; K != PRDepths.size(); ++K) 1209 PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]); 1210 } else { 1211 for (unsigned PRD : PRDepths) 1212 PRMax = std::max(PRMax, PRD); 1213 } 1214 // Convert to cycle count. 1215 PRMax = TE.MTM.getCycles(PRMax); 1216 1217 /// All instructions before current block 1218 unsigned Instrs = TBI.InstrDepth; 1219 // plus instructions in current block 1220 if (Bottom) 1221 Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount; 1222 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1223 Instrs /= IW; 1224 // Assume issue width 1 without a schedule model. 1225 return std::max(Instrs, PRMax); 1226 } 1227 1228 unsigned MachineTraceMetrics::Trace::getResourceLength( 1229 ArrayRef<const MachineBasicBlock *> Extrablocks, 1230 ArrayRef<const MCSchedClassDesc *> ExtraInstrs, 1231 ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const { 1232 // Add up resources above and below the center block. 1233 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1234 ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum()); 1235 unsigned PRMax = 0; 1236 1237 // Capture computing cycles from extra instructions 1238 auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs, 1239 unsigned ResourceIdx) 1240 ->unsigned { 1241 unsigned Cycles = 0; 1242 for (const MCSchedClassDesc *SC : Instrs) { 1243 if (!SC->isValid()) 1244 continue; 1245 for (TargetSchedModel::ProcResIter 1246 PI = TE.MTM.SchedModel.getWriteProcResBegin(SC), 1247 PE = TE.MTM.SchedModel.getWriteProcResEnd(SC); 1248 PI != PE; ++PI) { 1249 if (PI->ProcResourceIdx != ResourceIdx) 1250 continue; 1251 Cycles += (PI->ReleaseAtCycle * 1252 TE.MTM.SchedModel.getResourceFactor(ResourceIdx)); 1253 } 1254 } 1255 return Cycles; 1256 }; 1257 1258 for (unsigned K = 0; K != PRDepths.size(); ++K) { 1259 unsigned PRCycles = PRDepths[K] + PRHeights[K]; 1260 for (const MachineBasicBlock *MBB : Extrablocks) 1261 PRCycles += TE.MTM.getProcReleaseAtCycles(MBB->getNumber())[K]; 1262 PRCycles += extraCycles(ExtraInstrs, K); 1263 PRCycles -= extraCycles(RemoveInstrs, K); 1264 PRMax = std::max(PRMax, PRCycles); 1265 } 1266 // Convert to cycle count. 1267 PRMax = TE.MTM.getCycles(PRMax); 1268 1269 // Instrs: #instructions in current trace outside current block. 1270 unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight; 1271 // Add instruction count from the extra blocks. 1272 for (const MachineBasicBlock *MBB : Extrablocks) 1273 Instrs += TE.MTM.getResources(MBB)->InstrCount; 1274 Instrs += ExtraInstrs.size(); 1275 Instrs -= RemoveInstrs.size(); 1276 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1277 Instrs /= IW; 1278 // Assume issue width 1 without a schedule model. 1279 return std::max(Instrs, PRMax); 1280 } 1281 1282 bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr &DefMI, 1283 const MachineInstr &UseMI) const { 1284 if (DefMI.getParent() == UseMI.getParent()) 1285 return true; 1286 1287 const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI.getParent()->getNumber()]; 1288 const TraceBlockInfo &TBI = TE.BlockInfo[UseMI.getParent()->getNumber()]; 1289 1290 return DepTBI.isUsefulDominator(TBI); 1291 } 1292 1293 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const { 1294 OS << getName() << " ensemble:\n"; 1295 for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { 1296 OS << " %bb." << i << '\t'; 1297 BlockInfo[i].print(OS); 1298 OS << '\n'; 1299 } 1300 } 1301 1302 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const { 1303 if (hasValidDepth()) { 1304 OS << "depth=" << InstrDepth; 1305 if (Pred) 1306 OS << " pred=" << printMBBReference(*Pred); 1307 else 1308 OS << " pred=null"; 1309 OS << " head=%bb." << Head; 1310 if (HasValidInstrDepths) 1311 OS << " +instrs"; 1312 } else 1313 OS << "depth invalid"; 1314 OS << ", "; 1315 if (hasValidHeight()) { 1316 OS << "height=" << InstrHeight; 1317 if (Succ) 1318 OS << " succ=" << printMBBReference(*Succ); 1319 else 1320 OS << " succ=null"; 1321 OS << " tail=%bb." << Tail; 1322 if (HasValidInstrHeights) 1323 OS << " +instrs"; 1324 } else 1325 OS << "height invalid"; 1326 if (HasValidInstrDepths && HasValidInstrHeights) 1327 OS << ", crit=" << CriticalPath; 1328 } 1329 1330 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const { 1331 unsigned MBBNum = &TBI - &TE.BlockInfo[0]; 1332 1333 OS << TE.getName() << " trace %bb." << TBI.Head << " --> %bb." << MBBNum 1334 << " --> %bb." << TBI.Tail << ':'; 1335 if (TBI.hasValidHeight() && TBI.hasValidDepth()) 1336 OS << ' ' << getInstrCount() << " instrs."; 1337 if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights) 1338 OS << ' ' << TBI.CriticalPath << " cycles."; 1339 1340 const MachineTraceMetrics::TraceBlockInfo *Block = &TBI; 1341 OS << "\n%bb." << MBBNum; 1342 while (Block->hasValidDepth() && Block->Pred) { 1343 unsigned Num = Block->Pred->getNumber(); 1344 OS << " <- " << printMBBReference(*Block->Pred); 1345 Block = &TE.BlockInfo[Num]; 1346 } 1347 1348 Block = &TBI; 1349 OS << "\n "; 1350 while (Block->hasValidHeight() && Block->Succ) { 1351 unsigned Num = Block->Succ->getNumber(); 1352 OS << " -> " << printMBBReference(*Block->Succ); 1353 Block = &TE.BlockInfo[Num]; 1354 } 1355 OS << '\n'; 1356 } 1357