1 //===- lib/CodeGen/MachineTraceMetrics.cpp --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/CodeGen/MachineTraceMetrics.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/DenseMap.h" 12 #include "llvm/ADT/Optional.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/SparseSet.h" 17 #include "llvm/CodeGen/MachineBasicBlock.h" 18 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstr.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineOperand.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/TargetRegisterInfo.h" 25 #include "llvm/CodeGen/TargetSchedule.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/MC/MCRegisterInfo.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/Format.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <iterator> 36 #include <tuple> 37 #include <utility> 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "machine-trace-metrics" 42 43 char MachineTraceMetrics::ID = 0; 44 45 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID; 46 47 INITIALIZE_PASS_BEGIN(MachineTraceMetrics, DEBUG_TYPE, 48 "Machine Trace Metrics", false, true) 49 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 50 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 51 INITIALIZE_PASS_END(MachineTraceMetrics, DEBUG_TYPE, 52 "Machine Trace Metrics", false, true) 53 54 MachineTraceMetrics::MachineTraceMetrics() : MachineFunctionPass(ID) { 55 std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr); 56 } 57 58 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const { 59 AU.setPreservesAll(); 60 AU.addRequired<MachineBranchProbabilityInfo>(); 61 AU.addRequired<MachineLoopInfo>(); 62 MachineFunctionPass::getAnalysisUsage(AU); 63 } 64 65 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) { 66 MF = &Func; 67 const TargetSubtargetInfo &ST = MF->getSubtarget(); 68 TII = ST.getInstrInfo(); 69 TRI = ST.getRegisterInfo(); 70 MRI = &MF->getRegInfo(); 71 Loops = &getAnalysis<MachineLoopInfo>(); 72 SchedModel.init(&ST); 73 BlockInfo.resize(MF->getNumBlockIDs()); 74 ProcResourceCycles.resize(MF->getNumBlockIDs() * 75 SchedModel.getNumProcResourceKinds()); 76 return false; 77 } 78 79 void MachineTraceMetrics::releaseMemory() { 80 MF = nullptr; 81 BlockInfo.clear(); 82 for (unsigned i = 0; i != TS_NumStrategies; ++i) { 83 delete Ensembles[i]; 84 Ensembles[i] = nullptr; 85 } 86 } 87 88 //===----------------------------------------------------------------------===// 89 // Fixed block information 90 //===----------------------------------------------------------------------===// 91 // 92 // The number of instructions in a basic block and the CPU resources used by 93 // those instructions don't depend on any given trace strategy. 94 95 /// Compute the resource usage in basic block MBB. 96 const MachineTraceMetrics::FixedBlockInfo* 97 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) { 98 assert(MBB && "No basic block"); 99 FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()]; 100 if (FBI->hasResources()) 101 return FBI; 102 103 // Compute resource usage in the block. 104 FBI->HasCalls = false; 105 unsigned InstrCount = 0; 106 107 // Add up per-processor resource cycles as well. 108 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 109 SmallVector<unsigned, 32> PRCycles(PRKinds); 110 111 for (const auto &MI : *MBB) { 112 if (MI.isTransient()) 113 continue; 114 ++InstrCount; 115 if (MI.isCall()) 116 FBI->HasCalls = true; 117 118 // Count processor resources used. 119 if (!SchedModel.hasInstrSchedModel()) 120 continue; 121 const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI); 122 if (!SC->isValid()) 123 continue; 124 125 for (TargetSchedModel::ProcResIter 126 PI = SchedModel.getWriteProcResBegin(SC), 127 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 128 assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind"); 129 PRCycles[PI->ProcResourceIdx] += PI->Cycles; 130 } 131 } 132 FBI->InstrCount = InstrCount; 133 134 // Scale the resource cycles so they are comparable. 135 unsigned PROffset = MBB->getNumber() * PRKinds; 136 for (unsigned K = 0; K != PRKinds; ++K) 137 ProcResourceCycles[PROffset + K] = 138 PRCycles[K] * SchedModel.getResourceFactor(K); 139 140 return FBI; 141 } 142 143 ArrayRef<unsigned> 144 MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const { 145 assert(BlockInfo[MBBNum].hasResources() && 146 "getResources() must be called before getProcResourceCycles()"); 147 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 148 assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size()); 149 return makeArrayRef(ProcResourceCycles.data() + MBBNum * PRKinds, PRKinds); 150 } 151 152 //===----------------------------------------------------------------------===// 153 // Ensemble utility functions 154 //===----------------------------------------------------------------------===// 155 156 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct) 157 : MTM(*ct) { 158 BlockInfo.resize(MTM.BlockInfo.size()); 159 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 160 ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds); 161 ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds); 162 } 163 164 // Virtual destructor serves as an anchor. 165 MachineTraceMetrics::Ensemble::~Ensemble() = default; 166 167 const MachineLoop* 168 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const { 169 return MTM.Loops->getLoopFor(MBB); 170 } 171 172 // Update resource-related information in the TraceBlockInfo for MBB. 173 // Only update resources related to the trace above MBB. 174 void MachineTraceMetrics::Ensemble:: 175 computeDepthResources(const MachineBasicBlock *MBB) { 176 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 177 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 178 unsigned PROffset = MBB->getNumber() * PRKinds; 179 180 // Compute resources from trace above. The top block is simple. 181 if (!TBI->Pred) { 182 TBI->InstrDepth = 0; 183 TBI->Head = MBB->getNumber(); 184 std::fill(ProcResourceDepths.begin() + PROffset, 185 ProcResourceDepths.begin() + PROffset + PRKinds, 0); 186 return; 187 } 188 189 // Compute from the block above. A post-order traversal ensures the 190 // predecessor is always computed first. 191 unsigned PredNum = TBI->Pred->getNumber(); 192 TraceBlockInfo *PredTBI = &BlockInfo[PredNum]; 193 assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet"); 194 const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred); 195 TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount; 196 TBI->Head = PredTBI->Head; 197 198 // Compute per-resource depths. 199 ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum); 200 ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum); 201 for (unsigned K = 0; K != PRKinds; ++K) 202 ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K]; 203 } 204 205 // Update resource-related information in the TraceBlockInfo for MBB. 206 // Only update resources related to the trace below MBB. 207 void MachineTraceMetrics::Ensemble:: 208 computeHeightResources(const MachineBasicBlock *MBB) { 209 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 210 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 211 unsigned PROffset = MBB->getNumber() * PRKinds; 212 213 // Compute resources for the current block. 214 TBI->InstrHeight = MTM.getResources(MBB)->InstrCount; 215 ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber()); 216 217 // The trace tail is done. 218 if (!TBI->Succ) { 219 TBI->Tail = MBB->getNumber(); 220 llvm::copy(PRCycles, ProcResourceHeights.begin() + PROffset); 221 return; 222 } 223 224 // Compute from the block below. A post-order traversal ensures the 225 // predecessor is always computed first. 226 unsigned SuccNum = TBI->Succ->getNumber(); 227 TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum]; 228 assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet"); 229 TBI->InstrHeight += SuccTBI->InstrHeight; 230 TBI->Tail = SuccTBI->Tail; 231 232 // Compute per-resource heights. 233 ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum); 234 for (unsigned K = 0; K != PRKinds; ++K) 235 ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K]; 236 } 237 238 // Check if depth resources for MBB are valid and return the TBI. 239 // Return NULL if the resources have been invalidated. 240 const MachineTraceMetrics::TraceBlockInfo* 241 MachineTraceMetrics::Ensemble:: 242 getDepthResources(const MachineBasicBlock *MBB) const { 243 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 244 return TBI->hasValidDepth() ? TBI : nullptr; 245 } 246 247 // Check if height resources for MBB are valid and return the TBI. 248 // Return NULL if the resources have been invalidated. 249 const MachineTraceMetrics::TraceBlockInfo* 250 MachineTraceMetrics::Ensemble:: 251 getHeightResources(const MachineBasicBlock *MBB) const { 252 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 253 return TBI->hasValidHeight() ? TBI : nullptr; 254 } 255 256 /// Get an array of processor resource depths for MBB. Indexed by processor 257 /// resource kind, this array contains the scaled processor resources consumed 258 /// by all blocks preceding MBB in its trace. It does not include instructions 259 /// in MBB. 260 /// 261 /// Compare TraceBlockInfo::InstrDepth. 262 ArrayRef<unsigned> 263 MachineTraceMetrics::Ensemble:: 264 getProcResourceDepths(unsigned MBBNum) const { 265 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 266 assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size()); 267 return makeArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds); 268 } 269 270 /// Get an array of processor resource heights for MBB. Indexed by processor 271 /// resource kind, this array contains the scaled processor resources consumed 272 /// by this block and all blocks following it in its trace. 273 /// 274 /// Compare TraceBlockInfo::InstrHeight. 275 ArrayRef<unsigned> 276 MachineTraceMetrics::Ensemble:: 277 getProcResourceHeights(unsigned MBBNum) const { 278 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 279 assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size()); 280 return makeArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds); 281 } 282 283 //===----------------------------------------------------------------------===// 284 // Trace Selection Strategies 285 //===----------------------------------------------------------------------===// 286 // 287 // A trace selection strategy is implemented as a sub-class of Ensemble. The 288 // trace through a block B is computed by two DFS traversals of the CFG 289 // starting from B. One upwards, and one downwards. During the upwards DFS, 290 // pickTracePred() is called on the post-ordered blocks. During the downwards 291 // DFS, pickTraceSucc() is called in a post-order. 292 // 293 294 // We never allow traces that leave loops, but we do allow traces to enter 295 // nested loops. We also never allow traces to contain back-edges. 296 // 297 // This means that a loop header can never appear above the center block of a 298 // trace, except as the trace head. Below the center block, loop exiting edges 299 // are banned. 300 // 301 // Return true if an edge from the From loop to the To loop is leaving a loop. 302 // Either of To and From can be null. 303 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) { 304 return From && !From->contains(To); 305 } 306 307 // MinInstrCountEnsemble - Pick the trace that executes the least number of 308 // instructions. 309 namespace { 310 311 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble { 312 const char *getName() const override { return "MinInstr"; } 313 const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override; 314 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override; 315 316 public: 317 MinInstrCountEnsemble(MachineTraceMetrics *mtm) 318 : MachineTraceMetrics::Ensemble(mtm) {} 319 }; 320 321 } // end anonymous namespace 322 323 // Select the preferred predecessor for MBB. 324 const MachineBasicBlock* 325 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) { 326 if (MBB->pred_empty()) 327 return nullptr; 328 const MachineLoop *CurLoop = getLoopFor(MBB); 329 // Don't leave loops, and never follow back-edges. 330 if (CurLoop && MBB == CurLoop->getHeader()) 331 return nullptr; 332 unsigned CurCount = MTM.getResources(MBB)->InstrCount; 333 const MachineBasicBlock *Best = nullptr; 334 unsigned BestDepth = 0; 335 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 336 const MachineTraceMetrics::TraceBlockInfo *PredTBI = 337 getDepthResources(Pred); 338 // Ignore cycles that aren't natural loops. 339 if (!PredTBI) 340 continue; 341 // Pick the predecessor that would give this block the smallest InstrDepth. 342 unsigned Depth = PredTBI->InstrDepth + CurCount; 343 if (!Best || Depth < BestDepth) { 344 Best = Pred; 345 BestDepth = Depth; 346 } 347 } 348 return Best; 349 } 350 351 // Select the preferred successor for MBB. 352 const MachineBasicBlock* 353 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) { 354 if (MBB->pred_empty()) 355 return nullptr; 356 const MachineLoop *CurLoop = getLoopFor(MBB); 357 const MachineBasicBlock *Best = nullptr; 358 unsigned BestHeight = 0; 359 for (const MachineBasicBlock *Succ : MBB->successors()) { 360 // Don't consider back-edges. 361 if (CurLoop && Succ == CurLoop->getHeader()) 362 continue; 363 // Don't consider successors exiting CurLoop. 364 if (isExitingLoop(CurLoop, getLoopFor(Succ))) 365 continue; 366 const MachineTraceMetrics::TraceBlockInfo *SuccTBI = 367 getHeightResources(Succ); 368 // Ignore cycles that aren't natural loops. 369 if (!SuccTBI) 370 continue; 371 // Pick the successor that would give this block the smallest InstrHeight. 372 unsigned Height = SuccTBI->InstrHeight; 373 if (!Best || Height < BestHeight) { 374 Best = Succ; 375 BestHeight = Height; 376 } 377 } 378 return Best; 379 } 380 381 // Get an Ensemble sub-class for the requested trace strategy. 382 MachineTraceMetrics::Ensemble * 383 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) { 384 assert(strategy < TS_NumStrategies && "Invalid trace strategy enum"); 385 Ensemble *&E = Ensembles[strategy]; 386 if (E) 387 return E; 388 389 // Allocate new Ensemble on demand. 390 switch (strategy) { 391 case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this)); 392 default: llvm_unreachable("Invalid trace strategy enum"); 393 } 394 } 395 396 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) { 397 LLVM_DEBUG(dbgs() << "Invalidate traces through " << printMBBReference(*MBB) 398 << '\n'); 399 BlockInfo[MBB->getNumber()].invalidate(); 400 for (unsigned i = 0; i != TS_NumStrategies; ++i) 401 if (Ensembles[i]) 402 Ensembles[i]->invalidate(MBB); 403 } 404 405 void MachineTraceMetrics::verifyAnalysis() const { 406 if (!MF) 407 return; 408 #ifndef NDEBUG 409 assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size"); 410 for (unsigned i = 0; i != TS_NumStrategies; ++i) 411 if (Ensembles[i]) 412 Ensembles[i]->verify(); 413 #endif 414 } 415 416 //===----------------------------------------------------------------------===// 417 // Trace building 418 //===----------------------------------------------------------------------===// 419 // 420 // Traces are built by two CFG traversals. To avoid recomputing too much, use a 421 // set abstraction that confines the search to the current loop, and doesn't 422 // revisit blocks. 423 424 namespace { 425 426 struct LoopBounds { 427 MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks; 428 SmallPtrSet<const MachineBasicBlock*, 8> Visited; 429 const MachineLoopInfo *Loops; 430 bool Downward = false; 431 432 LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks, 433 const MachineLoopInfo *loops) : Blocks(blocks), Loops(loops) {} 434 }; 435 436 } // end anonymous namespace 437 438 // Specialize po_iterator_storage in order to prune the post-order traversal so 439 // it is limited to the current loop and doesn't traverse the loop back edges. 440 namespace llvm { 441 442 template<> 443 class po_iterator_storage<LoopBounds, true> { 444 LoopBounds &LB; 445 446 public: 447 po_iterator_storage(LoopBounds &lb) : LB(lb) {} 448 449 void finishPostorder(const MachineBasicBlock*) {} 450 451 bool insertEdge(Optional<const MachineBasicBlock *> From, 452 const MachineBasicBlock *To) { 453 // Skip already visited To blocks. 454 MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()]; 455 if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth()) 456 return false; 457 // From is null once when To is the trace center block. 458 if (From) { 459 if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(*From)) { 460 // Don't follow backedges, don't leave FromLoop when going upwards. 461 if ((LB.Downward ? To : *From) == FromLoop->getHeader()) 462 return false; 463 // Don't leave FromLoop. 464 if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To))) 465 return false; 466 } 467 } 468 // To is a new block. Mark the block as visited in case the CFG has cycles 469 // that MachineLoopInfo didn't recognize as a natural loop. 470 return LB.Visited.insert(To).second; 471 } 472 }; 473 474 } // end namespace llvm 475 476 /// Compute the trace through MBB. 477 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) { 478 LLVM_DEBUG(dbgs() << "Computing " << getName() << " trace through " 479 << printMBBReference(*MBB) << '\n'); 480 // Set up loop bounds for the backwards post-order traversal. 481 LoopBounds Bounds(BlockInfo, MTM.Loops); 482 483 // Run an upwards post-order search for the trace start. 484 Bounds.Downward = false; 485 Bounds.Visited.clear(); 486 for (auto I : inverse_post_order_ext(MBB, Bounds)) { 487 LLVM_DEBUG(dbgs() << " pred for " << printMBBReference(*I) << ": "); 488 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 489 // All the predecessors have been visited, pick the preferred one. 490 TBI.Pred = pickTracePred(I); 491 LLVM_DEBUG({ 492 if (TBI.Pred) 493 dbgs() << printMBBReference(*TBI.Pred) << '\n'; 494 else 495 dbgs() << "null\n"; 496 }); 497 // The trace leading to I is now known, compute the depth resources. 498 computeDepthResources(I); 499 } 500 501 // Run a downwards post-order search for the trace end. 502 Bounds.Downward = true; 503 Bounds.Visited.clear(); 504 for (auto I : post_order_ext(MBB, Bounds)) { 505 LLVM_DEBUG(dbgs() << " succ for " << printMBBReference(*I) << ": "); 506 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 507 // All the successors have been visited, pick the preferred one. 508 TBI.Succ = pickTraceSucc(I); 509 LLVM_DEBUG({ 510 if (TBI.Succ) 511 dbgs() << printMBBReference(*TBI.Succ) << '\n'; 512 else 513 dbgs() << "null\n"; 514 }); 515 // The trace leaving I is now known, compute the height resources. 516 computeHeightResources(I); 517 } 518 } 519 520 /// Invalidate traces through BadMBB. 521 void 522 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) { 523 SmallVector<const MachineBasicBlock*, 16> WorkList; 524 TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()]; 525 526 // Invalidate height resources of blocks above MBB. 527 if (BadTBI.hasValidHeight()) { 528 BadTBI.invalidateHeight(); 529 WorkList.push_back(BadMBB); 530 do { 531 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 532 LLVM_DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' ' 533 << getName() << " height.\n"); 534 // Find any MBB predecessors that have MBB as their preferred successor. 535 // They are the only ones that need to be invalidated. 536 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 537 TraceBlockInfo &TBI = BlockInfo[Pred->getNumber()]; 538 if (!TBI.hasValidHeight()) 539 continue; 540 if (TBI.Succ == MBB) { 541 TBI.invalidateHeight(); 542 WorkList.push_back(Pred); 543 continue; 544 } 545 // Verify that TBI.Succ is actually a *I successor. 546 assert((!TBI.Succ || Pred->isSuccessor(TBI.Succ)) && "CFG changed"); 547 } 548 } while (!WorkList.empty()); 549 } 550 551 // Invalidate depth resources of blocks below MBB. 552 if (BadTBI.hasValidDepth()) { 553 BadTBI.invalidateDepth(); 554 WorkList.push_back(BadMBB); 555 do { 556 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 557 LLVM_DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' ' 558 << getName() << " depth.\n"); 559 // Find any MBB successors that have MBB as their preferred predecessor. 560 // They are the only ones that need to be invalidated. 561 for (const MachineBasicBlock *Succ : MBB->successors()) { 562 TraceBlockInfo &TBI = BlockInfo[Succ->getNumber()]; 563 if (!TBI.hasValidDepth()) 564 continue; 565 if (TBI.Pred == MBB) { 566 TBI.invalidateDepth(); 567 WorkList.push_back(Succ); 568 continue; 569 } 570 // Verify that TBI.Pred is actually a *I predecessor. 571 assert((!TBI.Pred || Succ->isPredecessor(TBI.Pred)) && "CFG changed"); 572 } 573 } while (!WorkList.empty()); 574 } 575 576 // Clear any per-instruction data. We only have to do this for BadMBB itself 577 // because the instructions in that block may change. Other blocks may be 578 // invalidated, but their instructions will stay the same, so there is no 579 // need to erase the Cycle entries. They will be overwritten when we 580 // recompute. 581 for (const auto &I : *BadMBB) 582 Cycles.erase(&I); 583 } 584 585 void MachineTraceMetrics::Ensemble::verify() const { 586 #ifndef NDEBUG 587 assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() && 588 "Outdated BlockInfo size"); 589 for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) { 590 const TraceBlockInfo &TBI = BlockInfo[Num]; 591 if (TBI.hasValidDepth() && TBI.Pred) { 592 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 593 assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace"); 594 assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() && 595 "Trace is broken, depth should have been invalidated."); 596 const MachineLoop *Loop = getLoopFor(MBB); 597 assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge"); 598 } 599 if (TBI.hasValidHeight() && TBI.Succ) { 600 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 601 assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace"); 602 assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() && 603 "Trace is broken, height should have been invalidated."); 604 const MachineLoop *Loop = getLoopFor(MBB); 605 const MachineLoop *SuccLoop = getLoopFor(TBI.Succ); 606 assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) && 607 "Trace contains backedge"); 608 } 609 } 610 #endif 611 } 612 613 //===----------------------------------------------------------------------===// 614 // Data Dependencies 615 //===----------------------------------------------------------------------===// 616 // 617 // Compute the depth and height of each instruction based on data dependencies 618 // and instruction latencies. These cycle numbers assume that the CPU can issue 619 // an infinite number of instructions per cycle as long as their dependencies 620 // are ready. 621 622 // A data dependency is represented as a defining MI and operand numbers on the 623 // defining and using MI. 624 namespace { 625 626 struct DataDep { 627 const MachineInstr *DefMI; 628 unsigned DefOp; 629 unsigned UseOp; 630 631 DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp) 632 : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {} 633 634 /// Create a DataDep from an SSA form virtual register. 635 DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp) 636 : UseOp(UseOp) { 637 assert(TargetRegisterInfo::isVirtualRegister(VirtReg)); 638 MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg); 639 assert(!DefI.atEnd() && "Register has no defs"); 640 DefMI = DefI->getParent(); 641 DefOp = DefI.getOperandNo(); 642 assert((++DefI).atEnd() && "Register has multiple defs"); 643 } 644 }; 645 646 } // end anonymous namespace 647 648 // Get the input data dependencies that must be ready before UseMI can issue. 649 // Return true if UseMI has any physreg operands. 650 static bool getDataDeps(const MachineInstr &UseMI, 651 SmallVectorImpl<DataDep> &Deps, 652 const MachineRegisterInfo *MRI) { 653 // Debug values should not be included in any calculations. 654 if (UseMI.isDebugInstr()) 655 return false; 656 657 bool HasPhysRegs = false; 658 for (MachineInstr::const_mop_iterator I = UseMI.operands_begin(), 659 E = UseMI.operands_end(); I != E; ++I) { 660 const MachineOperand &MO = *I; 661 if (!MO.isReg()) 662 continue; 663 unsigned Reg = MO.getReg(); 664 if (!Reg) 665 continue; 666 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 667 HasPhysRegs = true; 668 continue; 669 } 670 // Collect virtual register reads. 671 if (MO.readsReg()) 672 Deps.push_back(DataDep(MRI, Reg, UseMI.getOperandNo(I))); 673 } 674 return HasPhysRegs; 675 } 676 677 // Get the input data dependencies of a PHI instruction, using Pred as the 678 // preferred predecessor. 679 // This will add at most one dependency to Deps. 680 static void getPHIDeps(const MachineInstr &UseMI, 681 SmallVectorImpl<DataDep> &Deps, 682 const MachineBasicBlock *Pred, 683 const MachineRegisterInfo *MRI) { 684 // No predecessor at the beginning of a trace. Ignore dependencies. 685 if (!Pred) 686 return; 687 assert(UseMI.isPHI() && UseMI.getNumOperands() % 2 && "Bad PHI"); 688 for (unsigned i = 1; i != UseMI.getNumOperands(); i += 2) { 689 if (UseMI.getOperand(i + 1).getMBB() == Pred) { 690 unsigned Reg = UseMI.getOperand(i).getReg(); 691 Deps.push_back(DataDep(MRI, Reg, i)); 692 return; 693 } 694 } 695 } 696 697 // Identify physreg dependencies for UseMI, and update the live regunit 698 // tracking set when scanning instructions downwards. 699 static void updatePhysDepsDownwards(const MachineInstr *UseMI, 700 SmallVectorImpl<DataDep> &Deps, 701 SparseSet<LiveRegUnit> &RegUnits, 702 const TargetRegisterInfo *TRI) { 703 SmallVector<unsigned, 8> Kills; 704 SmallVector<unsigned, 8> LiveDefOps; 705 706 for (MachineInstr::const_mop_iterator MI = UseMI->operands_begin(), 707 ME = UseMI->operands_end(); MI != ME; ++MI) { 708 const MachineOperand &MO = *MI; 709 if (!MO.isReg()) 710 continue; 711 unsigned Reg = MO.getReg(); 712 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 713 continue; 714 // Track live defs and kills for updating RegUnits. 715 if (MO.isDef()) { 716 if (MO.isDead()) 717 Kills.push_back(Reg); 718 else 719 LiveDefOps.push_back(UseMI->getOperandNo(MI)); 720 } else if (MO.isKill()) 721 Kills.push_back(Reg); 722 // Identify dependencies. 723 if (!MO.readsReg()) 724 continue; 725 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 726 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 727 if (I == RegUnits.end()) 728 continue; 729 Deps.push_back(DataDep(I->MI, I->Op, UseMI->getOperandNo(MI))); 730 break; 731 } 732 } 733 734 // Update RegUnits to reflect live registers after UseMI. 735 // First kills. 736 for (unsigned Kill : Kills) 737 for (MCRegUnitIterator Units(Kill, TRI); Units.isValid(); ++Units) 738 RegUnits.erase(*Units); 739 740 // Second, live defs. 741 for (unsigned DefOp : LiveDefOps) { 742 for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI); 743 Units.isValid(); ++Units) { 744 LiveRegUnit &LRU = RegUnits[*Units]; 745 LRU.MI = UseMI; 746 LRU.Op = DefOp; 747 } 748 } 749 } 750 751 /// The length of the critical path through a trace is the maximum of two path 752 /// lengths: 753 /// 754 /// 1. The maximum height+depth over all instructions in the trace center block. 755 /// 756 /// 2. The longest cross-block dependency chain. For small blocks, it is 757 /// possible that the critical path through the trace doesn't include any 758 /// instructions in the block. 759 /// 760 /// This function computes the second number from the live-in list of the 761 /// center block. 762 unsigned MachineTraceMetrics::Ensemble:: 763 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) { 764 assert(TBI.HasValidInstrDepths && "Missing depth info"); 765 assert(TBI.HasValidInstrHeights && "Missing height info"); 766 unsigned MaxLen = 0; 767 for (const LiveInReg &LIR : TBI.LiveIns) { 768 if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg)) 769 continue; 770 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 771 // Ignore dependencies outside the current trace. 772 const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()]; 773 if (!DefTBI.isUsefulDominator(TBI)) 774 continue; 775 unsigned Len = LIR.Height + Cycles[DefMI].Depth; 776 MaxLen = std::max(MaxLen, Len); 777 } 778 return MaxLen; 779 } 780 781 void MachineTraceMetrics::Ensemble:: 782 updateDepth(MachineTraceMetrics::TraceBlockInfo &TBI, const MachineInstr &UseMI, 783 SparseSet<LiveRegUnit> &RegUnits) { 784 SmallVector<DataDep, 8> Deps; 785 // Collect all data dependencies. 786 if (UseMI.isPHI()) 787 getPHIDeps(UseMI, Deps, TBI.Pred, MTM.MRI); 788 else if (getDataDeps(UseMI, Deps, MTM.MRI)) 789 updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI); 790 791 // Filter and process dependencies, computing the earliest issue cycle. 792 unsigned Cycle = 0; 793 for (const DataDep &Dep : Deps) { 794 const TraceBlockInfo&DepTBI = 795 BlockInfo[Dep.DefMI->getParent()->getNumber()]; 796 // Ignore dependencies from outside the current trace. 797 if (!DepTBI.isUsefulDominator(TBI)) 798 continue; 799 assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency"); 800 unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth; 801 // Add latency if DefMI is a real instruction. Transients get latency 0. 802 if (!Dep.DefMI->isTransient()) 803 DepCycle += MTM.SchedModel 804 .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp); 805 Cycle = std::max(Cycle, DepCycle); 806 } 807 // Remember the instruction depth. 808 InstrCycles &MICycles = Cycles[&UseMI]; 809 MICycles.Depth = Cycle; 810 811 if (TBI.HasValidInstrHeights) { 812 // Update critical path length. 813 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height); 814 LLVM_DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI); 815 } else { 816 LLVM_DEBUG(dbgs() << Cycle << '\t' << UseMI); 817 } 818 } 819 820 void MachineTraceMetrics::Ensemble:: 821 updateDepth(const MachineBasicBlock *MBB, const MachineInstr &UseMI, 822 SparseSet<LiveRegUnit> &RegUnits) { 823 updateDepth(BlockInfo[MBB->getNumber()], UseMI, RegUnits); 824 } 825 826 void MachineTraceMetrics::Ensemble:: 827 updateDepths(MachineBasicBlock::iterator Start, 828 MachineBasicBlock::iterator End, 829 SparseSet<LiveRegUnit> &RegUnits) { 830 for (; Start != End; Start++) 831 updateDepth(Start->getParent(), *Start, RegUnits); 832 } 833 834 /// Compute instruction depths for all instructions above or in MBB in its 835 /// trace. This assumes that the trace through MBB has already been computed. 836 void MachineTraceMetrics::Ensemble:: 837 computeInstrDepths(const MachineBasicBlock *MBB) { 838 // The top of the trace may already be computed, and HasValidInstrDepths 839 // implies Head->HasValidInstrDepths, so we only need to start from the first 840 // block in the trace that needs to be recomputed. 841 SmallVector<const MachineBasicBlock*, 8> Stack; 842 do { 843 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 844 assert(TBI.hasValidDepth() && "Incomplete trace"); 845 if (TBI.HasValidInstrDepths) 846 break; 847 Stack.push_back(MBB); 848 MBB = TBI.Pred; 849 } while (MBB); 850 851 // FIXME: If MBB is non-null at this point, it is the last pre-computed block 852 // in the trace. We should track any live-out physregs that were defined in 853 // the trace. This is quite rare in SSA form, typically created by CSE 854 // hoisting a compare. 855 SparseSet<LiveRegUnit> RegUnits; 856 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 857 858 // Go through trace blocks in top-down order, stopping after the center block. 859 while (!Stack.empty()) { 860 MBB = Stack.pop_back_val(); 861 LLVM_DEBUG(dbgs() << "\nDepths for " << printMBBReference(*MBB) << ":\n"); 862 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 863 TBI.HasValidInstrDepths = true; 864 TBI.CriticalPath = 0; 865 866 // Print out resource depths here as well. 867 LLVM_DEBUG({ 868 dbgs() << format("%7u Instructions\n", TBI.InstrDepth); 869 ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber()); 870 for (unsigned K = 0; K != PRDepths.size(); ++K) 871 if (PRDepths[K]) { 872 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 873 dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K])) 874 << MTM.SchedModel.getProcResource(K)->Name << " (" 875 << PRDepths[K]/Factor << " ops x" << Factor << ")\n"; 876 } 877 }); 878 879 // Also compute the critical path length through MBB when possible. 880 if (TBI.HasValidInstrHeights) 881 TBI.CriticalPath = computeCrossBlockCriticalPath(TBI); 882 883 for (const auto &UseMI : *MBB) { 884 updateDepth(TBI, UseMI, RegUnits); 885 } 886 } 887 } 888 889 // Identify physreg dependencies for MI when scanning instructions upwards. 890 // Return the issue height of MI after considering any live regunits. 891 // Height is the issue height computed from virtual register dependencies alone. 892 static unsigned updatePhysDepsUpwards(const MachineInstr &MI, unsigned Height, 893 SparseSet<LiveRegUnit> &RegUnits, 894 const TargetSchedModel &SchedModel, 895 const TargetInstrInfo *TII, 896 const TargetRegisterInfo *TRI) { 897 SmallVector<unsigned, 8> ReadOps; 898 899 for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(), 900 MOE = MI.operands_end(); 901 MOI != MOE; ++MOI) { 902 const MachineOperand &MO = *MOI; 903 if (!MO.isReg()) 904 continue; 905 unsigned Reg = MO.getReg(); 906 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 907 continue; 908 if (MO.readsReg()) 909 ReadOps.push_back(MI.getOperandNo(MOI)); 910 if (!MO.isDef()) 911 continue; 912 // This is a def of Reg. Remove corresponding entries from RegUnits, and 913 // update MI Height to consider the physreg dependencies. 914 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 915 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 916 if (I == RegUnits.end()) 917 continue; 918 unsigned DepHeight = I->Cycle; 919 if (!MI.isTransient()) { 920 // We may not know the UseMI of this dependency, if it came from the 921 // live-in list. SchedModel can handle a NULL UseMI. 922 DepHeight += SchedModel.computeOperandLatency(&MI, MI.getOperandNo(MOI), 923 I->MI, I->Op); 924 } 925 Height = std::max(Height, DepHeight); 926 // This regunit is dead above MI. 927 RegUnits.erase(I); 928 } 929 } 930 931 // Now we know the height of MI. Update any regunits read. 932 for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) { 933 unsigned Reg = MI.getOperand(ReadOps[i]).getReg(); 934 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 935 LiveRegUnit &LRU = RegUnits[*Units]; 936 // Set the height to the highest reader of the unit. 937 if (LRU.Cycle <= Height && LRU.MI != &MI) { 938 LRU.Cycle = Height; 939 LRU.MI = &MI; 940 LRU.Op = ReadOps[i]; 941 } 942 } 943 } 944 945 return Height; 946 } 947 948 using MIHeightMap = DenseMap<const MachineInstr *, unsigned>; 949 950 // Push the height of DefMI upwards if required to match UseMI. 951 // Return true if this is the first time DefMI was seen. 952 static bool pushDepHeight(const DataDep &Dep, const MachineInstr &UseMI, 953 unsigned UseHeight, MIHeightMap &Heights, 954 const TargetSchedModel &SchedModel, 955 const TargetInstrInfo *TII) { 956 // Adjust height by Dep.DefMI latency. 957 if (!Dep.DefMI->isTransient()) 958 UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, 959 Dep.UseOp); 960 961 // Update Heights[DefMI] to be the maximum height seen. 962 MIHeightMap::iterator I; 963 bool New; 964 std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight)); 965 if (New) 966 return true; 967 968 // DefMI has been pushed before. Give it the max height. 969 if (I->second < UseHeight) 970 I->second = UseHeight; 971 return false; 972 } 973 974 /// Assuming that the virtual register defined by DefMI:DefOp was used by 975 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop 976 /// when reaching the block that contains DefMI. 977 void MachineTraceMetrics::Ensemble:: 978 addLiveIns(const MachineInstr *DefMI, unsigned DefOp, 979 ArrayRef<const MachineBasicBlock*> Trace) { 980 assert(!Trace.empty() && "Trace should contain at least one block"); 981 unsigned Reg = DefMI->getOperand(DefOp).getReg(); 982 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 983 const MachineBasicBlock *DefMBB = DefMI->getParent(); 984 985 // Reg is live-in to all blocks in Trace that follow DefMBB. 986 for (unsigned i = Trace.size(); i; --i) { 987 const MachineBasicBlock *MBB = Trace[i-1]; 988 if (MBB == DefMBB) 989 return; 990 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 991 // Just add the register. The height will be updated later. 992 TBI.LiveIns.push_back(Reg); 993 } 994 } 995 996 /// Compute instruction heights in the trace through MBB. This updates MBB and 997 /// the blocks below it in the trace. It is assumed that the trace has already 998 /// been computed. 999 void MachineTraceMetrics::Ensemble:: 1000 computeInstrHeights(const MachineBasicBlock *MBB) { 1001 // The bottom of the trace may already be computed. 1002 // Find the blocks that need updating. 1003 SmallVector<const MachineBasicBlock*, 8> Stack; 1004 do { 1005 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1006 assert(TBI.hasValidHeight() && "Incomplete trace"); 1007 if (TBI.HasValidInstrHeights) 1008 break; 1009 Stack.push_back(MBB); 1010 TBI.LiveIns.clear(); 1011 MBB = TBI.Succ; 1012 } while (MBB); 1013 1014 // As we move upwards in the trace, keep track of instructions that are 1015 // required by deeper trace instructions. Map MI -> height required so far. 1016 MIHeightMap Heights; 1017 1018 // For physregs, the def isn't known when we see the use. 1019 // Instead, keep track of the highest use of each regunit. 1020 SparseSet<LiveRegUnit> RegUnits; 1021 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 1022 1023 // If the bottom of the trace was already precomputed, initialize heights 1024 // from its live-in list. 1025 // MBB is the highest precomputed block in the trace. 1026 if (MBB) { 1027 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1028 for (LiveInReg &LI : TBI.LiveIns) { 1029 if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) { 1030 // For virtual registers, the def latency is included. 1031 unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)]; 1032 if (Height < LI.Height) 1033 Height = LI.Height; 1034 } else { 1035 // For register units, the def latency is not included because we don't 1036 // know the def yet. 1037 RegUnits[LI.Reg].Cycle = LI.Height; 1038 } 1039 } 1040 } 1041 1042 // Go through the trace blocks in bottom-up order. 1043 SmallVector<DataDep, 8> Deps; 1044 for (;!Stack.empty(); Stack.pop_back()) { 1045 MBB = Stack.back(); 1046 LLVM_DEBUG(dbgs() << "Heights for " << printMBBReference(*MBB) << ":\n"); 1047 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1048 TBI.HasValidInstrHeights = true; 1049 TBI.CriticalPath = 0; 1050 1051 LLVM_DEBUG({ 1052 dbgs() << format("%7u Instructions\n", TBI.InstrHeight); 1053 ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber()); 1054 for (unsigned K = 0; K != PRHeights.size(); ++K) 1055 if (PRHeights[K]) { 1056 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 1057 dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K])) 1058 << MTM.SchedModel.getProcResource(K)->Name << " (" 1059 << PRHeights[K]/Factor << " ops x" << Factor << ")\n"; 1060 } 1061 }); 1062 1063 // Get dependencies from PHIs in the trace successor. 1064 const MachineBasicBlock *Succ = TBI.Succ; 1065 // If MBB is the last block in the trace, and it has a back-edge to the 1066 // loop header, get loop-carried dependencies from PHIs in the header. For 1067 // that purpose, pretend that all the loop header PHIs have height 0. 1068 if (!Succ) 1069 if (const MachineLoop *Loop = getLoopFor(MBB)) 1070 if (MBB->isSuccessor(Loop->getHeader())) 1071 Succ = Loop->getHeader(); 1072 1073 if (Succ) { 1074 for (const auto &PHI : *Succ) { 1075 if (!PHI.isPHI()) 1076 break; 1077 Deps.clear(); 1078 getPHIDeps(PHI, Deps, MBB, MTM.MRI); 1079 if (!Deps.empty()) { 1080 // Loop header PHI heights are all 0. 1081 unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0; 1082 LLVM_DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI); 1083 if (pushDepHeight(Deps.front(), PHI, Height, Heights, MTM.SchedModel, 1084 MTM.TII)) 1085 addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack); 1086 } 1087 } 1088 } 1089 1090 // Go through the block backwards. 1091 for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin(); 1092 BI != BB;) { 1093 const MachineInstr &MI = *--BI; 1094 1095 // Find the MI height as determined by virtual register uses in the 1096 // trace below. 1097 unsigned Cycle = 0; 1098 MIHeightMap::iterator HeightI = Heights.find(&MI); 1099 if (HeightI != Heights.end()) { 1100 Cycle = HeightI->second; 1101 // We won't be seeing any more MI uses. 1102 Heights.erase(HeightI); 1103 } 1104 1105 // Don't process PHI deps. They depend on the specific predecessor, and 1106 // we'll get them when visiting the predecessor. 1107 Deps.clear(); 1108 bool HasPhysRegs = !MI.isPHI() && getDataDeps(MI, Deps, MTM.MRI); 1109 1110 // There may also be regunit dependencies to include in the height. 1111 if (HasPhysRegs) 1112 Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, MTM.SchedModel, 1113 MTM.TII, MTM.TRI); 1114 1115 // Update the required height of any virtual registers read by MI. 1116 for (const DataDep &Dep : Deps) 1117 if (pushDepHeight(Dep, MI, Cycle, Heights, MTM.SchedModel, MTM.TII)) 1118 addLiveIns(Dep.DefMI, Dep.DefOp, Stack); 1119 1120 InstrCycles &MICycles = Cycles[&MI]; 1121 MICycles.Height = Cycle; 1122 if (!TBI.HasValidInstrDepths) { 1123 LLVM_DEBUG(dbgs() << Cycle << '\t' << MI); 1124 continue; 1125 } 1126 // Update critical path length. 1127 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth); 1128 LLVM_DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << MI); 1129 } 1130 1131 // Update virtual live-in heights. They were added by addLiveIns() with a 0 1132 // height because the final height isn't known until now. 1133 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " Live-ins:"); 1134 for (LiveInReg &LIR : TBI.LiveIns) { 1135 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 1136 LIR.Height = Heights.lookup(DefMI); 1137 LLVM_DEBUG(dbgs() << ' ' << printReg(LIR.Reg) << '@' << LIR.Height); 1138 } 1139 1140 // Transfer the live regunits to the live-in list. 1141 for (SparseSet<LiveRegUnit>::const_iterator 1142 RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) { 1143 TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle)); 1144 LLVM_DEBUG(dbgs() << ' ' << printRegUnit(RI->RegUnit, MTM.TRI) << '@' 1145 << RI->Cycle); 1146 } 1147 LLVM_DEBUG(dbgs() << '\n'); 1148 1149 if (!TBI.HasValidInstrDepths) 1150 continue; 1151 // Add live-ins to the critical path length. 1152 TBI.CriticalPath = std::max(TBI.CriticalPath, 1153 computeCrossBlockCriticalPath(TBI)); 1154 LLVM_DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n'); 1155 } 1156 } 1157 1158 MachineTraceMetrics::Trace 1159 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) { 1160 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 1161 1162 if (!TBI.hasValidDepth() || !TBI.hasValidHeight()) 1163 computeTrace(MBB); 1164 if (!TBI.HasValidInstrDepths) 1165 computeInstrDepths(MBB); 1166 if (!TBI.HasValidInstrHeights) 1167 computeInstrHeights(MBB); 1168 1169 return Trace(*this, TBI); 1170 } 1171 1172 unsigned 1173 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr &MI) const { 1174 assert(getBlockNum() == unsigned(MI.getParent()->getNumber()) && 1175 "MI must be in the trace center block"); 1176 InstrCycles Cyc = getInstrCycles(MI); 1177 return getCriticalPath() - (Cyc.Depth + Cyc.Height); 1178 } 1179 1180 unsigned 1181 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr &PHI) const { 1182 const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum()); 1183 SmallVector<DataDep, 1> Deps; 1184 getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI); 1185 assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor"); 1186 DataDep &Dep = Deps.front(); 1187 unsigned DepCycle = getInstrCycles(*Dep.DefMI).Depth; 1188 // Add latency if DefMI is a real instruction. Transients get latency 0. 1189 if (!Dep.DefMI->isTransient()) 1190 DepCycle += TE.MTM.SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, 1191 &PHI, Dep.UseOp); 1192 return DepCycle; 1193 } 1194 1195 /// When bottom is set include instructions in current block in estimate. 1196 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const { 1197 // Find the limiting processor resource. 1198 // Numbers have been pre-scaled to be comparable. 1199 unsigned PRMax = 0; 1200 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1201 if (Bottom) { 1202 ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum()); 1203 for (unsigned K = 0; K != PRDepths.size(); ++K) 1204 PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]); 1205 } else { 1206 for (unsigned K = 0; K != PRDepths.size(); ++K) 1207 PRMax = std::max(PRMax, PRDepths[K]); 1208 } 1209 // Convert to cycle count. 1210 PRMax = TE.MTM.getCycles(PRMax); 1211 1212 /// All instructions before current block 1213 unsigned Instrs = TBI.InstrDepth; 1214 // plus instructions in current block 1215 if (Bottom) 1216 Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount; 1217 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1218 Instrs /= IW; 1219 // Assume issue width 1 without a schedule model. 1220 return std::max(Instrs, PRMax); 1221 } 1222 1223 unsigned MachineTraceMetrics::Trace::getResourceLength( 1224 ArrayRef<const MachineBasicBlock *> Extrablocks, 1225 ArrayRef<const MCSchedClassDesc *> ExtraInstrs, 1226 ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const { 1227 // Add up resources above and below the center block. 1228 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 1229 ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum()); 1230 unsigned PRMax = 0; 1231 1232 // Capture computing cycles from extra instructions 1233 auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs, 1234 unsigned ResourceIdx) 1235 ->unsigned { 1236 unsigned Cycles = 0; 1237 for (const MCSchedClassDesc *SC : Instrs) { 1238 if (!SC->isValid()) 1239 continue; 1240 for (TargetSchedModel::ProcResIter 1241 PI = TE.MTM.SchedModel.getWriteProcResBegin(SC), 1242 PE = TE.MTM.SchedModel.getWriteProcResEnd(SC); 1243 PI != PE; ++PI) { 1244 if (PI->ProcResourceIdx != ResourceIdx) 1245 continue; 1246 Cycles += 1247 (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(ResourceIdx)); 1248 } 1249 } 1250 return Cycles; 1251 }; 1252 1253 for (unsigned K = 0; K != PRDepths.size(); ++K) { 1254 unsigned PRCycles = PRDepths[K] + PRHeights[K]; 1255 for (const MachineBasicBlock *MBB : Extrablocks) 1256 PRCycles += TE.MTM.getProcResourceCycles(MBB->getNumber())[K]; 1257 PRCycles += extraCycles(ExtraInstrs, K); 1258 PRCycles -= extraCycles(RemoveInstrs, K); 1259 PRMax = std::max(PRMax, PRCycles); 1260 } 1261 // Convert to cycle count. 1262 PRMax = TE.MTM.getCycles(PRMax); 1263 1264 // Instrs: #instructions in current trace outside current block. 1265 unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight; 1266 // Add instruction count from the extra blocks. 1267 for (const MachineBasicBlock *MBB : Extrablocks) 1268 Instrs += TE.MTM.getResources(MBB)->InstrCount; 1269 Instrs += ExtraInstrs.size(); 1270 Instrs -= RemoveInstrs.size(); 1271 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 1272 Instrs /= IW; 1273 // Assume issue width 1 without a schedule model. 1274 return std::max(Instrs, PRMax); 1275 } 1276 1277 bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr &DefMI, 1278 const MachineInstr &UseMI) const { 1279 if (DefMI.getParent() == UseMI.getParent()) 1280 return true; 1281 1282 const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI.getParent()->getNumber()]; 1283 const TraceBlockInfo &TBI = TE.BlockInfo[UseMI.getParent()->getNumber()]; 1284 1285 return DepTBI.isUsefulDominator(TBI); 1286 } 1287 1288 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const { 1289 OS << getName() << " ensemble:\n"; 1290 for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { 1291 OS << " %bb." << i << '\t'; 1292 BlockInfo[i].print(OS); 1293 OS << '\n'; 1294 } 1295 } 1296 1297 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const { 1298 if (hasValidDepth()) { 1299 OS << "depth=" << InstrDepth; 1300 if (Pred) 1301 OS << " pred=" << printMBBReference(*Pred); 1302 else 1303 OS << " pred=null"; 1304 OS << " head=%bb." << Head; 1305 if (HasValidInstrDepths) 1306 OS << " +instrs"; 1307 } else 1308 OS << "depth invalid"; 1309 OS << ", "; 1310 if (hasValidHeight()) { 1311 OS << "height=" << InstrHeight; 1312 if (Succ) 1313 OS << " succ=" << printMBBReference(*Succ); 1314 else 1315 OS << " succ=null"; 1316 OS << " tail=%bb." << Tail; 1317 if (HasValidInstrHeights) 1318 OS << " +instrs"; 1319 } else 1320 OS << "height invalid"; 1321 if (HasValidInstrDepths && HasValidInstrHeights) 1322 OS << ", crit=" << CriticalPath; 1323 } 1324 1325 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const { 1326 unsigned MBBNum = &TBI - &TE.BlockInfo[0]; 1327 1328 OS << TE.getName() << " trace %bb." << TBI.Head << " --> %bb." << MBBNum 1329 << " --> %bb." << TBI.Tail << ':'; 1330 if (TBI.hasValidHeight() && TBI.hasValidDepth()) 1331 OS << ' ' << getInstrCount() << " instrs."; 1332 if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights) 1333 OS << ' ' << TBI.CriticalPath << " cycles."; 1334 1335 const MachineTraceMetrics::TraceBlockInfo *Block = &TBI; 1336 OS << "\n%bb." << MBBNum; 1337 while (Block->hasValidDepth() && Block->Pred) { 1338 unsigned Num = Block->Pred->getNumber(); 1339 OS << " <- " << printMBBReference(*Block->Pred); 1340 Block = &TE.BlockInfo[Num]; 1341 } 1342 1343 Block = &TBI; 1344 OS << "\n "; 1345 while (Block->hasValidHeight() && Block->Succ) { 1346 unsigned Num = Block->Succ->getNumber(); 1347 OS << " -> " << printMBBReference(*Block->Succ); 1348 Block = &TE.BlockInfo[Num]; 1349 } 1350 OS << '\n'; 1351 } 1352