1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/SparseBitVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 28 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 29 #include "llvm/CodeGen/MachineDominators.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineLoopInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachinePostDominators.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/DebugInfoMetadata.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/MCRegisterInfo.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/BranchProbability.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstdint> 53 #include <map> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "machine-sink" 60 61 static cl::opt<bool> 62 SplitEdges("machine-sink-split", 63 cl::desc("Split critical edges during machine sinking"), 64 cl::init(true), cl::Hidden); 65 66 static cl::opt<bool> 67 UseBlockFreqInfo("machine-sink-bfi", 68 cl::desc("Use block frequency info to find successors to sink"), 69 cl::init(true), cl::Hidden); 70 71 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 72 "machine-sink-split-probability-threshold", 73 cl::desc( 74 "Percentage threshold for splitting single-instruction critical edge. " 75 "If the branch threshold is higher than this threshold, we allow " 76 "speculative execution of up to 1 instruction to avoid branching to " 77 "splitted critical edge"), 78 cl::init(40), cl::Hidden); 79 80 STATISTIC(NumSunk, "Number of machine instructions sunk"); 81 STATISTIC(NumSplit, "Number of critical edges split"); 82 STATISTIC(NumCoalesces, "Number of copies coalesced"); 83 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 84 85 namespace { 86 87 class MachineSinking : public MachineFunctionPass { 88 const TargetInstrInfo *TII; 89 const TargetRegisterInfo *TRI; 90 MachineRegisterInfo *MRI; // Machine register information 91 MachineDominatorTree *DT; // Machine dominator tree 92 MachinePostDominatorTree *PDT; // Machine post dominator tree 93 MachineLoopInfo *LI; 94 const MachineBlockFrequencyInfo *MBFI; 95 const MachineBranchProbabilityInfo *MBPI; 96 AliasAnalysis *AA; 97 98 // Remember which edges have been considered for breaking. 99 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 100 CEBCandidates; 101 // Remember which edges we are about to split. 102 // This is different from CEBCandidates since those edges 103 // will be split. 104 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 105 106 SparseBitVector<> RegsToClearKillFlags; 107 108 using AllSuccsCache = 109 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 110 111 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 112 /// post-dominated by another DBG_VALUE of the same variable location. 113 /// This is necessary to detect sequences such as: 114 /// %0 = someinst 115 /// DBG_VALUE %0, !123, !DIExpression() 116 /// %1 = anotherinst 117 /// DBG_VALUE %1, !123, !DIExpression() 118 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 119 /// would re-order assignments. 120 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 121 122 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 123 /// debug instructions to sink. 124 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 125 126 /// Record of debug variables that have had their locations set in the 127 /// current block. 128 DenseSet<DebugVariable> SeenDbgVars; 129 130 public: 131 static char ID; // Pass identification 132 133 MachineSinking() : MachineFunctionPass(ID) { 134 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 135 } 136 137 bool runOnMachineFunction(MachineFunction &MF) override; 138 139 void getAnalysisUsage(AnalysisUsage &AU) const override { 140 MachineFunctionPass::getAnalysisUsage(AU); 141 AU.addRequired<AAResultsWrapperPass>(); 142 AU.addRequired<MachineDominatorTree>(); 143 AU.addRequired<MachinePostDominatorTree>(); 144 AU.addRequired<MachineLoopInfo>(); 145 AU.addRequired<MachineBranchProbabilityInfo>(); 146 AU.addPreserved<MachineLoopInfo>(); 147 if (UseBlockFreqInfo) 148 AU.addRequired<MachineBlockFrequencyInfo>(); 149 } 150 151 void releaseMemory() override { 152 CEBCandidates.clear(); 153 } 154 155 private: 156 bool ProcessBlock(MachineBasicBlock &MBB); 157 void ProcessDbgInst(MachineInstr &MI); 158 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 159 MachineBasicBlock *From, 160 MachineBasicBlock *To); 161 162 /// Postpone the splitting of the given critical 163 /// edge (\p From, \p To). 164 /// 165 /// We do not split the edges on the fly. Indeed, this invalidates 166 /// the dominance information and thus triggers a lot of updates 167 /// of that information underneath. 168 /// Instead, we postpone all the splits after each iteration of 169 /// the main loop. That way, the information is at least valid 170 /// for the lifetime of an iteration. 171 /// 172 /// \return True if the edge is marked as toSplit, false otherwise. 173 /// False can be returned if, for instance, this is not profitable. 174 bool PostponeSplitCriticalEdge(MachineInstr &MI, 175 MachineBasicBlock *From, 176 MachineBasicBlock *To, 177 bool BreakPHIEdge); 178 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 179 AllSuccsCache &AllSuccessors); 180 181 /// If we sink a COPY inst, some debug users of it's destination may no 182 /// longer be dominated by the COPY, and will eventually be dropped. 183 /// This is easily rectified by forwarding the non-dominated debug uses 184 /// to the copy source. 185 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 186 MachineBasicBlock *TargetBlock); 187 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, 188 MachineBasicBlock *DefMBB, 189 bool &BreakPHIEdge, bool &LocalUse) const; 190 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 191 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 192 bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 193 MachineBasicBlock *MBB, 194 MachineBasicBlock *SuccToSinkTo, 195 AllSuccsCache &AllSuccessors); 196 197 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 198 MachineBasicBlock *MBB); 199 200 SmallVector<MachineBasicBlock *, 4> & 201 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 202 AllSuccsCache &AllSuccessors) const; 203 }; 204 205 } // end anonymous namespace 206 207 char MachineSinking::ID = 0; 208 209 char &llvm::MachineSinkingID = MachineSinking::ID; 210 211 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 212 "Machine code sinking", false, false) 213 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 214 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 215 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 216 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 217 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 218 "Machine code sinking", false, false) 219 220 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 221 MachineBasicBlock *MBB) { 222 if (!MI.isCopy()) 223 return false; 224 225 Register SrcReg = MI.getOperand(1).getReg(); 226 Register DstReg = MI.getOperand(0).getReg(); 227 if (!Register::isVirtualRegister(SrcReg) || 228 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg)) 229 return false; 230 231 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 232 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 233 if (SRC != DRC) 234 return false; 235 236 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 237 if (DefMI->isCopyLike()) 238 return false; 239 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 240 LLVM_DEBUG(dbgs() << "*** to: " << MI); 241 MRI->replaceRegWith(DstReg, SrcReg); 242 MI.eraseFromParent(); 243 244 // Conservatively, clear any kill flags, since it's possible that they are no 245 // longer correct. 246 MRI->clearKillFlags(SrcReg); 247 248 ++NumCoalesces; 249 return true; 250 } 251 252 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 253 /// occur in blocks dominated by the specified block. If any use is in the 254 /// definition block, then return false since it is never legal to move def 255 /// after uses. 256 bool 257 MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 258 MachineBasicBlock *MBB, 259 MachineBasicBlock *DefMBB, 260 bool &BreakPHIEdge, 261 bool &LocalUse) const { 262 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs"); 263 264 // Ignore debug uses because debug info doesn't affect the code. 265 if (MRI->use_nodbg_empty(Reg)) 266 return true; 267 268 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 269 // into and they are all PHI nodes. In this case, machine-sink must break 270 // the critical edge first. e.g. 271 // 272 // %bb.1: derived from LLVM BB %bb4.preheader 273 // Predecessors according to CFG: %bb.0 274 // ... 275 // %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags 276 // ... 277 // JE_4 <%bb.37>, implicit %eflags 278 // Successors according to CFG: %bb.37 %bb.2 279 // 280 // %bb.2: derived from LLVM BB %bb.nph 281 // Predecessors according to CFG: %bb.0 %bb.1 282 // %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1 283 BreakPHIEdge = true; 284 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 285 MachineInstr *UseInst = MO.getParent(); 286 unsigned OpNo = &MO - &UseInst->getOperand(0); 287 MachineBasicBlock *UseBlock = UseInst->getParent(); 288 if (!(UseBlock == MBB && UseInst->isPHI() && 289 UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) { 290 BreakPHIEdge = false; 291 break; 292 } 293 } 294 if (BreakPHIEdge) 295 return true; 296 297 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 298 // Determine the block of the use. 299 MachineInstr *UseInst = MO.getParent(); 300 unsigned OpNo = &MO - &UseInst->getOperand(0); 301 MachineBasicBlock *UseBlock = UseInst->getParent(); 302 if (UseInst->isPHI()) { 303 // PHI nodes use the operand in the predecessor block, not the block with 304 // the PHI. 305 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 306 } else if (UseBlock == DefMBB) { 307 LocalUse = true; 308 return false; 309 } 310 311 // Check that it dominates. 312 if (!DT->dominates(MBB, UseBlock)) 313 return false; 314 } 315 316 return true; 317 } 318 319 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 320 if (skipFunction(MF.getFunction())) 321 return false; 322 323 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 324 325 TII = MF.getSubtarget().getInstrInfo(); 326 TRI = MF.getSubtarget().getRegisterInfo(); 327 MRI = &MF.getRegInfo(); 328 DT = &getAnalysis<MachineDominatorTree>(); 329 PDT = &getAnalysis<MachinePostDominatorTree>(); 330 LI = &getAnalysis<MachineLoopInfo>(); 331 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 332 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 333 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 334 335 bool EverMadeChange = false; 336 337 while (true) { 338 bool MadeChange = false; 339 340 // Process all basic blocks. 341 CEBCandidates.clear(); 342 ToSplit.clear(); 343 for (auto &MBB: MF) 344 MadeChange |= ProcessBlock(MBB); 345 346 // If we have anything we marked as toSplit, split it now. 347 for (auto &Pair : ToSplit) { 348 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 349 if (NewSucc != nullptr) { 350 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 351 << printMBBReference(*Pair.first) << " -- " 352 << printMBBReference(*NewSucc) << " -- " 353 << printMBBReference(*Pair.second) << '\n'); 354 MadeChange = true; 355 ++NumSplit; 356 } else 357 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 358 } 359 // If this iteration over the code changed anything, keep iterating. 360 if (!MadeChange) break; 361 EverMadeChange = true; 362 } 363 364 // Now clear any kill flags for recorded registers. 365 for (auto I : RegsToClearKillFlags) 366 MRI->clearKillFlags(I); 367 RegsToClearKillFlags.clear(); 368 369 return EverMadeChange; 370 } 371 372 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 373 // Can't sink anything out of a block that has less than two successors. 374 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 375 376 // Don't bother sinking code out of unreachable blocks. In addition to being 377 // unprofitable, it can also lead to infinite looping, because in an 378 // unreachable loop there may be nowhere to stop. 379 if (!DT->isReachableFromEntry(&MBB)) return false; 380 381 bool MadeChange = false; 382 383 // Cache all successors, sorted by frequency info and loop depth. 384 AllSuccsCache AllSuccessors; 385 386 // Walk the basic block bottom-up. Remember if we saw a store. 387 MachineBasicBlock::iterator I = MBB.end(); 388 --I; 389 bool ProcessedBegin, SawStore = false; 390 do { 391 MachineInstr &MI = *I; // The instruction to sink. 392 393 // Predecrement I (if it's not begin) so that it isn't invalidated by 394 // sinking. 395 ProcessedBegin = I == MBB.begin(); 396 if (!ProcessedBegin) 397 --I; 398 399 if (MI.isDebugInstr()) { 400 if (MI.isDebugValue()) 401 ProcessDbgInst(MI); 402 continue; 403 } 404 405 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 406 if (Joined) { 407 MadeChange = true; 408 continue; 409 } 410 411 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 412 ++NumSunk; 413 MadeChange = true; 414 } 415 416 // If we just processed the first instruction in the block, we're done. 417 } while (!ProcessedBegin); 418 419 SeenDbgUsers.clear(); 420 SeenDbgVars.clear(); 421 422 return MadeChange; 423 } 424 425 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 426 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 427 // we know what to sink if the vreg def sinks. 428 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 429 430 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 431 MI.getDebugLoc()->getInlinedAt()); 432 bool SeenBefore = SeenDbgVars.count(Var) != 0; 433 434 MachineOperand &MO = MI.getOperand(0); 435 if (MO.isReg() && MO.getReg().isVirtual()) 436 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 437 438 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 439 SeenDbgVars.insert(Var); 440 } 441 442 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 443 MachineBasicBlock *From, 444 MachineBasicBlock *To) { 445 // FIXME: Need much better heuristics. 446 447 // If the pass has already considered breaking this edge (during this pass 448 // through the function), then let's go ahead and break it. This means 449 // sinking multiple "cheap" instructions into the same block. 450 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 451 return true; 452 453 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 454 return true; 455 456 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 457 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 458 return true; 459 460 // MI is cheap, we probably don't want to break the critical edge for it. 461 // However, if this would allow some definitions of its source operands 462 // to be sunk then it's probably worth it. 463 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 464 const MachineOperand &MO = MI.getOperand(i); 465 if (!MO.isReg() || !MO.isUse()) 466 continue; 467 Register Reg = MO.getReg(); 468 if (Reg == 0) 469 continue; 470 471 // We don't move live definitions of physical registers, 472 // so sinking their uses won't enable any opportunities. 473 if (Register::isPhysicalRegister(Reg)) 474 continue; 475 476 // If this instruction is the only user of a virtual register, 477 // check if breaking the edge will enable sinking 478 // both this instruction and the defining instruction. 479 if (MRI->hasOneNonDBGUse(Reg)) { 480 // If the definition resides in same MBB, 481 // claim it's likely we can sink these together. 482 // If definition resides elsewhere, we aren't 483 // blocking it from being sunk so don't break the edge. 484 MachineInstr *DefMI = MRI->getVRegDef(Reg); 485 if (DefMI->getParent() == MI.getParent()) 486 return true; 487 } 488 } 489 490 return false; 491 } 492 493 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 494 MachineBasicBlock *FromBB, 495 MachineBasicBlock *ToBB, 496 bool BreakPHIEdge) { 497 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 498 return false; 499 500 // Avoid breaking back edge. From == To means backedge for single BB loop. 501 if (!SplitEdges || FromBB == ToBB) 502 return false; 503 504 // Check for backedges of more "complex" loops. 505 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 506 LI->isLoopHeader(ToBB)) 507 return false; 508 509 // It's not always legal to break critical edges and sink the computation 510 // to the edge. 511 // 512 // %bb.1: 513 // v1024 514 // Beq %bb.3 515 // <fallthrough> 516 // %bb.2: 517 // ... no uses of v1024 518 // <fallthrough> 519 // %bb.3: 520 // ... 521 // = v1024 522 // 523 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 524 // 525 // %bb.1: 526 // ... 527 // Bne %bb.2 528 // %bb.4: 529 // v1024 = 530 // B %bb.3 531 // %bb.2: 532 // ... no uses of v1024 533 // <fallthrough> 534 // %bb.3: 535 // ... 536 // = v1024 537 // 538 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 539 // flow. We need to ensure the new basic block where the computation is 540 // sunk to dominates all the uses. 541 // It's only legal to break critical edge and sink the computation to the 542 // new block if all the predecessors of "To", except for "From", are 543 // not dominated by "From". Given SSA property, this means these 544 // predecessors are dominated by "To". 545 // 546 // There is no need to do this check if all the uses are PHI nodes. PHI 547 // sources are only defined on the specific predecessor edges. 548 if (!BreakPHIEdge) { 549 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 550 E = ToBB->pred_end(); PI != E; ++PI) { 551 if (*PI == FromBB) 552 continue; 553 if (!DT->dominates(ToBB, *PI)) 554 return false; 555 } 556 } 557 558 ToSplit.insert(std::make_pair(FromBB, ToBB)); 559 560 return true; 561 } 562 563 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 564 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 565 MachineBasicBlock *MBB, 566 MachineBasicBlock *SuccToSinkTo, 567 AllSuccsCache &AllSuccessors) { 568 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 569 570 if (MBB == SuccToSinkTo) 571 return false; 572 573 // It is profitable if SuccToSinkTo does not post dominate current block. 574 if (!PDT->dominates(SuccToSinkTo, MBB)) 575 return true; 576 577 // It is profitable to sink an instruction from a deeper loop to a shallower 578 // loop, even if the latter post-dominates the former (PR21115). 579 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 580 return true; 581 582 // Check if only use in post dominated block is PHI instruction. 583 bool NonPHIUse = false; 584 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 585 MachineBasicBlock *UseBlock = UseInst.getParent(); 586 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 587 NonPHIUse = true; 588 } 589 if (!NonPHIUse) 590 return true; 591 592 // If SuccToSinkTo post dominates then also it may be profitable if MI 593 // can further profitably sinked into another block in next round. 594 bool BreakPHIEdge = false; 595 // FIXME - If finding successor is compile time expensive then cache results. 596 if (MachineBasicBlock *MBB2 = 597 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 598 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 599 600 // If SuccToSinkTo is final destination and it is a post dominator of current 601 // block then it is not profitable to sink MI into SuccToSinkTo block. 602 return false; 603 } 604 605 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 606 /// computing it if it was not already cached. 607 SmallVector<MachineBasicBlock *, 4> & 608 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 609 AllSuccsCache &AllSuccessors) const { 610 // Do we have the sorted successors in cache ? 611 auto Succs = AllSuccessors.find(MBB); 612 if (Succs != AllSuccessors.end()) 613 return Succs->second; 614 615 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(), 616 MBB->succ_end()); 617 618 // Handle cases where sinking can happen but where the sink point isn't a 619 // successor. For example: 620 // 621 // x = computation 622 // if () {} else {} 623 // use x 624 // 625 const std::vector<MachineDomTreeNode *> &Children = 626 DT->getNode(MBB)->getChildren(); 627 for (const auto &DTChild : Children) 628 // DomTree children of MBB that have MBB as immediate dominator are added. 629 if (DTChild->getIDom()->getBlock() == MI.getParent() && 630 // Skip MBBs already added to the AllSuccs vector above. 631 !MBB->isSuccessor(DTChild->getBlock())) 632 AllSuccs.push_back(DTChild->getBlock()); 633 634 // Sort Successors according to their loop depth or block frequency info. 635 llvm::stable_sort( 636 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 637 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 638 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 639 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 640 return HasBlockFreq ? LHSFreq < RHSFreq 641 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 642 }); 643 644 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 645 646 return it.first->second; 647 } 648 649 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 650 MachineBasicBlock * 651 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 652 bool &BreakPHIEdge, 653 AllSuccsCache &AllSuccessors) { 654 assert (MBB && "Invalid MachineBasicBlock!"); 655 656 // Loop over all the operands of the specified instruction. If there is 657 // anything we can't handle, bail out. 658 659 // SuccToSinkTo - This is the successor to sink this instruction to, once we 660 // decide. 661 MachineBasicBlock *SuccToSinkTo = nullptr; 662 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 663 const MachineOperand &MO = MI.getOperand(i); 664 if (!MO.isReg()) continue; // Ignore non-register operands. 665 666 Register Reg = MO.getReg(); 667 if (Reg == 0) continue; 668 669 if (Register::isPhysicalRegister(Reg)) { 670 if (MO.isUse()) { 671 // If the physreg has no defs anywhere, it's just an ambient register 672 // and we can freely move its uses. Alternatively, if it's allocatable, 673 // it could get allocated to something with a def during allocation. 674 if (!MRI->isConstantPhysReg(Reg)) 675 return nullptr; 676 } else if (!MO.isDead()) { 677 // A def that isn't dead. We can't move it. 678 return nullptr; 679 } 680 } else { 681 // Virtual register uses are always safe to sink. 682 if (MO.isUse()) continue; 683 684 // If it's not safe to move defs of the register class, then abort. 685 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 686 return nullptr; 687 688 // Virtual register defs can only be sunk if all their uses are in blocks 689 // dominated by one of the successors. 690 if (SuccToSinkTo) { 691 // If a previous operand picked a block to sink to, then this operand 692 // must be sinkable to the same block. 693 bool LocalUse = false; 694 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 695 BreakPHIEdge, LocalUse)) 696 return nullptr; 697 698 continue; 699 } 700 701 // Otherwise, we should look at all the successors and decide which one 702 // we should sink to. If we have reliable block frequency information 703 // (frequency != 0) available, give successors with smaller frequencies 704 // higher priority, otherwise prioritize smaller loop depths. 705 for (MachineBasicBlock *SuccBlock : 706 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 707 bool LocalUse = false; 708 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 709 BreakPHIEdge, LocalUse)) { 710 SuccToSinkTo = SuccBlock; 711 break; 712 } 713 if (LocalUse) 714 // Def is used locally, it's never safe to move this def. 715 return nullptr; 716 } 717 718 // If we couldn't find a block to sink to, ignore this instruction. 719 if (!SuccToSinkTo) 720 return nullptr; 721 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 722 return nullptr; 723 } 724 } 725 726 // It is not possible to sink an instruction into its own block. This can 727 // happen with loops. 728 if (MBB == SuccToSinkTo) 729 return nullptr; 730 731 // It's not safe to sink instructions to EH landing pad. Control flow into 732 // landing pad is implicitly defined. 733 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 734 return nullptr; 735 736 return SuccToSinkTo; 737 } 738 739 /// Return true if MI is likely to be usable as a memory operation by the 740 /// implicit null check optimization. 741 /// 742 /// This is a "best effort" heuristic, and should not be relied upon for 743 /// correctness. This returning true does not guarantee that the implicit null 744 /// check optimization is legal over MI, and this returning false does not 745 /// guarantee MI cannot possibly be used to do a null check. 746 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 747 const TargetInstrInfo *TII, 748 const TargetRegisterInfo *TRI) { 749 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 750 751 auto *MBB = MI.getParent(); 752 if (MBB->pred_size() != 1) 753 return false; 754 755 auto *PredMBB = *MBB->pred_begin(); 756 auto *PredBB = PredMBB->getBasicBlock(); 757 758 // Frontends that don't use implicit null checks have no reason to emit 759 // branches with make.implicit metadata, and this function should always 760 // return false for them. 761 if (!PredBB || 762 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 763 return false; 764 765 const MachineOperand *BaseOp; 766 int64_t Offset; 767 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI)) 768 return false; 769 770 if (!BaseOp->isReg()) 771 return false; 772 773 if (!(MI.mayLoad() && !MI.isPredicable())) 774 return false; 775 776 MachineBranchPredicate MBP; 777 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 778 return false; 779 780 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 781 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 782 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 783 MBP.LHS.getReg() == BaseOp->getReg(); 784 } 785 786 /// If the sunk instruction is a copy, try to forward the copy instead of 787 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 788 /// there's any subregister weirdness involved. Returns true if copy 789 /// propagation occurred. 790 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI) { 791 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 792 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 793 794 // Copy DBG_VALUE operand and set the original to undef. We then check to 795 // see whether this is something that can be copy-forwarded. If it isn't, 796 // continue around the loop. 797 MachineOperand DbgMO = DbgMI.getOperand(0); 798 799 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 800 auto CopyOperands = TII.isCopyInstr(SinkInst); 801 if (!CopyOperands) 802 return false; 803 SrcMO = CopyOperands->Source; 804 DstMO = CopyOperands->Destination; 805 806 // Check validity of forwarding this copy. 807 bool PostRA = MRI.getNumVirtRegs() == 0; 808 809 // Trying to forward between physical and virtual registers is too hard. 810 if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual()) 811 return false; 812 813 // Only try virtual register copy-forwarding before regalloc, and physical 814 // register copy-forwarding after regalloc. 815 bool arePhysRegs = !DbgMO.getReg().isVirtual(); 816 if (arePhysRegs != PostRA) 817 return false; 818 819 // Pre-regalloc, only forward if all subregisters agree (or there are no 820 // subregs at all). More analysis might recover some forwardable copies. 821 if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() || 822 DbgMO.getSubReg() != DstMO->getSubReg())) 823 return false; 824 825 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 826 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 827 // matches the copy destination. 828 if (PostRA && DbgMO.getReg() != DstMO->getReg()) 829 return false; 830 831 DbgMI.getOperand(0).setReg(SrcMO->getReg()); 832 DbgMI.getOperand(0).setSubReg(SrcMO->getSubReg()); 833 return true; 834 } 835 836 /// Sink an instruction and its associated debug instructions. 837 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 838 MachineBasicBlock::iterator InsertPos, 839 SmallVectorImpl<MachineInstr *> &DbgValuesToSink) { 840 841 // If we cannot find a location to use (merge with), then we erase the debug 842 // location to prevent debug-info driven tools from potentially reporting 843 // wrong location information. 844 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 845 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 846 InsertPos->getDebugLoc())); 847 else 848 MI.setDebugLoc(DebugLoc()); 849 850 // Move the instruction. 851 MachineBasicBlock *ParentBlock = MI.getParent(); 852 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 853 ++MachineBasicBlock::iterator(MI)); 854 855 // Sink a copy of debug users to the insert position. Mark the original 856 // DBG_VALUE location as 'undef', indicating that any earlier variable 857 // location should be terminated as we've optimised away the value at this 858 // point. 859 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 860 DBE = DbgValuesToSink.end(); 861 DBI != DBE; ++DBI) { 862 MachineInstr *DbgMI = *DBI; 863 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(*DBI); 864 SuccToSinkTo.insert(InsertPos, NewDbgMI); 865 866 if (!attemptDebugCopyProp(MI, *DbgMI)) 867 DbgMI->getOperand(0).setReg(0); 868 } 869 } 870 871 /// SinkInstruction - Determine whether it is safe to sink the specified machine 872 /// instruction out of its current block into a successor. 873 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 874 AllSuccsCache &AllSuccessors) { 875 // Don't sink instructions that the target prefers not to sink. 876 if (!TII->shouldSink(MI)) 877 return false; 878 879 // Check if it's safe to move the instruction. 880 if (!MI.isSafeToMove(AA, SawStore)) 881 return false; 882 883 // Convergent operations may not be made control-dependent on additional 884 // values. 885 if (MI.isConvergent()) 886 return false; 887 888 // Don't break implicit null checks. This is a performance heuristic, and not 889 // required for correctness. 890 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 891 return false; 892 893 // FIXME: This should include support for sinking instructions within the 894 // block they are currently in to shorten the live ranges. We often get 895 // instructions sunk into the top of a large block, but it would be better to 896 // also sink them down before their first use in the block. This xform has to 897 // be careful not to *increase* register pressure though, e.g. sinking 898 // "x = y + z" down if it kills y and z would increase the live ranges of y 899 // and z and only shrink the live range of x. 900 901 bool BreakPHIEdge = false; 902 MachineBasicBlock *ParentBlock = MI.getParent(); 903 MachineBasicBlock *SuccToSinkTo = 904 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 905 906 // If there are no outputs, it must have side-effects. 907 if (!SuccToSinkTo) 908 return false; 909 910 // If the instruction to move defines a dead physical register which is live 911 // when leaving the basic block, don't move it because it could turn into a 912 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 913 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 914 const MachineOperand &MO = MI.getOperand(I); 915 if (!MO.isReg()) continue; 916 Register Reg = MO.getReg(); 917 if (Reg == 0 || !Register::isPhysicalRegister(Reg)) 918 continue; 919 if (SuccToSinkTo->isLiveIn(Reg)) 920 return false; 921 } 922 923 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 924 925 // If the block has multiple predecessors, this is a critical edge. 926 // Decide if we can sink along it or need to break the edge. 927 if (SuccToSinkTo->pred_size() > 1) { 928 // We cannot sink a load across a critical edge - there may be stores in 929 // other code paths. 930 bool TryBreak = false; 931 bool store = true; 932 if (!MI.isSafeToMove(AA, store)) { 933 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 934 TryBreak = true; 935 } 936 937 // We don't want to sink across a critical edge if we don't dominate the 938 // successor. We could be introducing calculations to new code paths. 939 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 940 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 941 TryBreak = true; 942 } 943 944 // Don't sink instructions into a loop. 945 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 946 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 947 TryBreak = true; 948 } 949 950 // Otherwise we are OK with sinking along a critical edge. 951 if (!TryBreak) 952 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 953 else { 954 // Mark this edge as to be split. 955 // If the edge can actually be split, the next iteration of the main loop 956 // will sink MI in the newly created block. 957 bool Status = 958 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 959 if (!Status) 960 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 961 "break critical edge\n"); 962 // The instruction will not be sunk this time. 963 return false; 964 } 965 } 966 967 if (BreakPHIEdge) { 968 // BreakPHIEdge is true if all the uses are in the successor MBB being 969 // sunken into and they are all PHI nodes. In this case, machine-sink must 970 // break the critical edge first. 971 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 972 SuccToSinkTo, BreakPHIEdge); 973 if (!Status) 974 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 975 "break critical edge\n"); 976 // The instruction will not be sunk this time. 977 return false; 978 } 979 980 // Determine where to insert into. Skip phi nodes. 981 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 982 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 983 ++InsertPos; 984 985 // Collect debug users of any vreg that this inst defines. 986 SmallVector<MachineInstr *, 4> DbgUsersToSink; 987 for (auto &MO : MI.operands()) { 988 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 989 continue; 990 if (!SeenDbgUsers.count(MO.getReg())) 991 continue; 992 993 // Sink any users that don't pass any other DBG_VALUEs for this variable. 994 auto &Users = SeenDbgUsers[MO.getReg()]; 995 for (auto &User : Users) { 996 MachineInstr *DbgMI = User.getPointer(); 997 if (User.getInt()) { 998 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 999 // it, it can't be recovered. Set it undef. 1000 if (!attemptDebugCopyProp(MI, *DbgMI)) 1001 DbgMI->getOperand(0).setReg(0); 1002 } else { 1003 DbgUsersToSink.push_back(DbgMI); 1004 } 1005 } 1006 } 1007 1008 // After sinking, some debug users may not be dominated any more. If possible, 1009 // copy-propagate their operands. As it's expensive, don't do this if there's 1010 // no debuginfo in the program. 1011 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1012 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1013 1014 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1015 1016 // Conservatively, clear any kill flags, since it's possible that they are no 1017 // longer correct. 1018 // Note that we have to clear the kill flags for any register this instruction 1019 // uses as we may sink over another instruction which currently kills the 1020 // used registers. 1021 for (MachineOperand &MO : MI.operands()) { 1022 if (MO.isReg() && MO.isUse()) 1023 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 1024 } 1025 1026 return true; 1027 } 1028 1029 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1030 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1031 assert(MI.isCopy()); 1032 assert(MI.getOperand(1).isReg()); 1033 1034 // Enumerate all users of vreg operands that are def'd. Skip those that will 1035 // be sunk. For the rest, if they are not dominated by the block we will sink 1036 // MI into, propagate the copy source to them. 1037 SmallVector<MachineInstr *, 4> DbgDefUsers; 1038 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1039 for (auto &MO : MI.operands()) { 1040 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1041 continue; 1042 for (auto &User : MRI.use_instructions(MO.getReg())) { 1043 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1044 continue; 1045 1046 // If is in same block, will either sink or be use-before-def. 1047 if (User.getParent() == MI.getParent()) 1048 continue; 1049 1050 assert(User.getOperand(0).isReg() && 1051 "DBG_VALUE user of vreg, but non reg operand?"); 1052 DbgDefUsers.push_back(&User); 1053 } 1054 } 1055 1056 // Point the users of this copy that are no longer dominated, at the source 1057 // of the copy. 1058 for (auto *User : DbgDefUsers) { 1059 User->getOperand(0).setReg(MI.getOperand(1).getReg()); 1060 User->getOperand(0).setSubReg(MI.getOperand(1).getSubReg()); 1061 } 1062 } 1063 1064 //===----------------------------------------------------------------------===// 1065 // This pass is not intended to be a replacement or a complete alternative 1066 // for the pre-ra machine sink pass. It is only designed to sink COPY 1067 // instructions which should be handled after RA. 1068 // 1069 // This pass sinks COPY instructions into a successor block, if the COPY is not 1070 // used in the current block and the COPY is live-in to a single successor 1071 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1072 // copy on paths where their results aren't needed. This also exposes 1073 // additional opportunites for dead copy elimination and shrink wrapping. 1074 // 1075 // These copies were either not handled by or are inserted after the MachineSink 1076 // pass. As an example of the former case, the MachineSink pass cannot sink 1077 // COPY instructions with allocatable source registers; for AArch64 these type 1078 // of copy instructions are frequently used to move function parameters (PhyReg) 1079 // into virtual registers in the entry block. 1080 // 1081 // For the machine IR below, this pass will sink %w19 in the entry into its 1082 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1083 // %bb.0: 1084 // %wzr = SUBSWri %w1, 1 1085 // %w19 = COPY %w0 1086 // Bcc 11, %bb.2 1087 // %bb.1: 1088 // Live Ins: %w19 1089 // BL @fun 1090 // %w0 = ADDWrr %w0, %w19 1091 // RET %w0 1092 // %bb.2: 1093 // %w0 = COPY %wzr 1094 // RET %w0 1095 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1096 // able to see %bb.0 as a candidate. 1097 //===----------------------------------------------------------------------===// 1098 namespace { 1099 1100 class PostRAMachineSinking : public MachineFunctionPass { 1101 public: 1102 bool runOnMachineFunction(MachineFunction &MF) override; 1103 1104 static char ID; 1105 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1106 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1107 1108 void getAnalysisUsage(AnalysisUsage &AU) const override { 1109 AU.setPreservesCFG(); 1110 MachineFunctionPass::getAnalysisUsage(AU); 1111 } 1112 1113 MachineFunctionProperties getRequiredProperties() const override { 1114 return MachineFunctionProperties().set( 1115 MachineFunctionProperties::Property::NoVRegs); 1116 } 1117 1118 private: 1119 /// Track which register units have been modified and used. 1120 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1121 1122 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1123 /// entry in this map for each unit it touches. 1124 DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs; 1125 1126 /// Sink Copy instructions unused in the same block close to their uses in 1127 /// successors. 1128 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1129 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1130 }; 1131 } // namespace 1132 1133 char PostRAMachineSinking::ID = 0; 1134 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1135 1136 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1137 "PostRA Machine Sink", false, false) 1138 1139 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1140 const TargetRegisterInfo *TRI) { 1141 LiveRegUnits LiveInRegUnits(*TRI); 1142 LiveInRegUnits.addLiveIns(MBB); 1143 return !LiveInRegUnits.available(Reg); 1144 } 1145 1146 static MachineBasicBlock * 1147 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1148 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1149 unsigned Reg, const TargetRegisterInfo *TRI) { 1150 // Try to find a single sinkable successor in which Reg is live-in. 1151 MachineBasicBlock *BB = nullptr; 1152 for (auto *SI : SinkableBBs) { 1153 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1154 // If BB is set here, Reg is live-in to at least two sinkable successors, 1155 // so quit. 1156 if (BB) 1157 return nullptr; 1158 BB = SI; 1159 } 1160 } 1161 // Reg is not live-in to any sinkable successors. 1162 if (!BB) 1163 return nullptr; 1164 1165 // Check if any register aliased with Reg is live-in in other successors. 1166 for (auto *SI : CurBB.successors()) { 1167 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1168 return nullptr; 1169 } 1170 return BB; 1171 } 1172 1173 static MachineBasicBlock * 1174 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1175 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1176 ArrayRef<unsigned> DefedRegsInCopy, 1177 const TargetRegisterInfo *TRI) { 1178 MachineBasicBlock *SingleBB = nullptr; 1179 for (auto DefReg : DefedRegsInCopy) { 1180 MachineBasicBlock *BB = 1181 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1182 if (!BB || (SingleBB && SingleBB != BB)) 1183 return nullptr; 1184 SingleBB = BB; 1185 } 1186 return SingleBB; 1187 } 1188 1189 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1190 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1191 LiveRegUnits &UsedRegUnits, 1192 const TargetRegisterInfo *TRI) { 1193 for (auto U : UsedOpsInCopy) { 1194 MachineOperand &MO = MI->getOperand(U); 1195 Register SrcReg = MO.getReg(); 1196 if (!UsedRegUnits.available(SrcReg)) { 1197 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1198 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1199 if (UI.killsRegister(SrcReg, TRI)) { 1200 UI.clearRegisterKills(SrcReg, TRI); 1201 MO.setIsKill(true); 1202 break; 1203 } 1204 } 1205 } 1206 } 1207 } 1208 1209 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1210 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1211 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1212 MachineFunction &MF = *SuccBB->getParent(); 1213 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1214 for (unsigned DefReg : DefedRegsInCopy) 1215 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S) 1216 SuccBB->removeLiveIn(*S); 1217 for (auto U : UsedOpsInCopy) { 1218 Register SrcReg = MI->getOperand(U).getReg(); 1219 LaneBitmask Mask; 1220 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) { 1221 Mask |= (*S).second; 1222 } 1223 SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll()); 1224 } 1225 SuccBB->sortUniqueLiveIns(); 1226 } 1227 1228 static bool hasRegisterDependency(MachineInstr *MI, 1229 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1230 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1231 LiveRegUnits &ModifiedRegUnits, 1232 LiveRegUnits &UsedRegUnits) { 1233 bool HasRegDependency = false; 1234 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1235 MachineOperand &MO = MI->getOperand(i); 1236 if (!MO.isReg()) 1237 continue; 1238 Register Reg = MO.getReg(); 1239 if (!Reg) 1240 continue; 1241 if (MO.isDef()) { 1242 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1243 HasRegDependency = true; 1244 break; 1245 } 1246 DefedRegsInCopy.push_back(Reg); 1247 1248 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1249 // For example, we can ignore modifications in reg with undef. However, 1250 // it's not perfectly clear if skipping the internal read is safe in all 1251 // other targets. 1252 } else if (MO.isUse()) { 1253 if (!ModifiedRegUnits.available(Reg)) { 1254 HasRegDependency = true; 1255 break; 1256 } 1257 UsedOpsInCopy.push_back(i); 1258 } 1259 } 1260 return HasRegDependency; 1261 } 1262 1263 static SmallSet<unsigned, 4> getRegUnits(unsigned Reg, 1264 const TargetRegisterInfo *TRI) { 1265 SmallSet<unsigned, 4> RegUnits; 1266 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI) 1267 RegUnits.insert(*RI); 1268 return RegUnits; 1269 } 1270 1271 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1272 MachineFunction &MF, 1273 const TargetRegisterInfo *TRI, 1274 const TargetInstrInfo *TII) { 1275 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1276 // FIXME: For now, we sink only to a successor which has a single predecessor 1277 // so that we can directly sink COPY instructions to the successor without 1278 // adding any new block or branch instruction. 1279 for (MachineBasicBlock *SI : CurBB.successors()) 1280 if (!SI->livein_empty() && SI->pred_size() == 1) 1281 SinkableBBs.insert(SI); 1282 1283 if (SinkableBBs.empty()) 1284 return false; 1285 1286 bool Changed = false; 1287 1288 // Track which registers have been modified and used between the end of the 1289 // block and the current instruction. 1290 ModifiedRegUnits.clear(); 1291 UsedRegUnits.clear(); 1292 SeenDbgInstrs.clear(); 1293 1294 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) { 1295 MachineInstr *MI = &*I; 1296 ++I; 1297 1298 // Track the operand index for use in Copy. 1299 SmallVector<unsigned, 2> UsedOpsInCopy; 1300 // Track the register number defed in Copy. 1301 SmallVector<unsigned, 2> DefedRegsInCopy; 1302 1303 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 1304 // for DBG_VALUEs later, record them when they're encountered. 1305 if (MI->isDebugValue()) { 1306 auto &MO = MI->getOperand(0); 1307 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) { 1308 // Bail if we can already tell the sink would be rejected, rather 1309 // than needlessly accumulating lots of DBG_VALUEs. 1310 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1311 ModifiedRegUnits, UsedRegUnits)) 1312 continue; 1313 1314 // Record debug use of each reg unit. 1315 SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI); 1316 for (unsigned Reg : Units) 1317 SeenDbgInstrs[Reg].push_back(MI); 1318 } 1319 continue; 1320 } 1321 1322 if (MI->isDebugInstr()) 1323 continue; 1324 1325 // Do not move any instruction across function call. 1326 if (MI->isCall()) 1327 return false; 1328 1329 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) { 1330 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1331 TRI); 1332 continue; 1333 } 1334 1335 // Don't sink the COPY if it would violate a register dependency. 1336 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1337 ModifiedRegUnits, UsedRegUnits)) { 1338 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1339 TRI); 1340 continue; 1341 } 1342 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 1343 "Unexpect SrcReg or DefReg"); 1344 MachineBasicBlock *SuccBB = 1345 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 1346 // Don't sink if we cannot find a single sinkable successor in which Reg 1347 // is live-in. 1348 if (!SuccBB) { 1349 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1350 TRI); 1351 continue; 1352 } 1353 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 1354 "Unexpected predecessor"); 1355 1356 // Collect DBG_VALUEs that must sink with this copy. We've previously 1357 // recorded which reg units that DBG_VALUEs read, if this instruction 1358 // writes any of those units then the corresponding DBG_VALUEs must sink. 1359 SetVector<MachineInstr *> DbgValsToSinkSet; 1360 SmallVector<MachineInstr *, 4> DbgValsToSink; 1361 for (auto &MO : MI->operands()) { 1362 if (!MO.isReg() || !MO.isDef()) 1363 continue; 1364 1365 SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI); 1366 for (unsigned Reg : Units) 1367 for (auto *MI : SeenDbgInstrs.lookup(Reg)) 1368 DbgValsToSinkSet.insert(MI); 1369 } 1370 DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(), 1371 DbgValsToSinkSet.end()); 1372 1373 // Clear the kill flag if SrcReg is killed between MI and the end of the 1374 // block. 1375 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 1376 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI(); 1377 performSink(*MI, *SuccBB, InsertPos, DbgValsToSink); 1378 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 1379 1380 Changed = true; 1381 ++NumPostRACopySink; 1382 } 1383 return Changed; 1384 } 1385 1386 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 1387 if (skipFunction(MF.getFunction())) 1388 return false; 1389 1390 bool Changed = false; 1391 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1392 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1393 1394 ModifiedRegUnits.init(*TRI); 1395 UsedRegUnits.init(*TRI); 1396 for (auto &BB : MF) 1397 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 1398 1399 return Changed; 1400 } 1401