1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/SparseBitVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 28 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 29 #include "llvm/CodeGen/MachineDominators.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineLoopInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachinePostDominators.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/DebugInfoMetadata.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/MCRegisterInfo.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/BranchProbability.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstdint> 53 #include <map> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "machine-sink" 60 61 static cl::opt<bool> 62 SplitEdges("machine-sink-split", 63 cl::desc("Split critical edges during machine sinking"), 64 cl::init(true), cl::Hidden); 65 66 static cl::opt<bool> 67 UseBlockFreqInfo("machine-sink-bfi", 68 cl::desc("Use block frequency info to find successors to sink"), 69 cl::init(true), cl::Hidden); 70 71 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 72 "machine-sink-split-probability-threshold", 73 cl::desc( 74 "Percentage threshold for splitting single-instruction critical edge. " 75 "If the branch threshold is higher than this threshold, we allow " 76 "speculative execution of up to 1 instruction to avoid branching to " 77 "splitted critical edge"), 78 cl::init(40), cl::Hidden); 79 80 STATISTIC(NumSunk, "Number of machine instructions sunk"); 81 STATISTIC(NumSplit, "Number of critical edges split"); 82 STATISTIC(NumCoalesces, "Number of copies coalesced"); 83 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 84 85 namespace { 86 87 class MachineSinking : public MachineFunctionPass { 88 const TargetInstrInfo *TII; 89 const TargetRegisterInfo *TRI; 90 MachineRegisterInfo *MRI; // Machine register information 91 MachineDominatorTree *DT; // Machine dominator tree 92 MachinePostDominatorTree *PDT; // Machine post dominator tree 93 MachineLoopInfo *LI; 94 const MachineBlockFrequencyInfo *MBFI; 95 const MachineBranchProbabilityInfo *MBPI; 96 AliasAnalysis *AA; 97 98 // Remember which edges have been considered for breaking. 99 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 100 CEBCandidates; 101 // Remember which edges we are about to split. 102 // This is different from CEBCandidates since those edges 103 // will be split. 104 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 105 106 SparseBitVector<> RegsToClearKillFlags; 107 108 using AllSuccsCache = 109 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 110 111 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 112 /// post-dominated by another DBG_VALUE of the same variable location. 113 /// This is necessary to detect sequences such as: 114 /// %0 = someinst 115 /// DBG_VALUE %0, !123, !DIExpression() 116 /// %1 = anotherinst 117 /// DBG_VALUE %1, !123, !DIExpression() 118 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 119 /// would re-order assignments. 120 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 121 122 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 123 /// debug instructions to sink. 124 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 125 126 /// Record of debug variables that have had their locations set in the 127 /// current block. 128 DenseSet<DebugVariable> SeenDbgVars; 129 130 public: 131 static char ID; // Pass identification 132 133 MachineSinking() : MachineFunctionPass(ID) { 134 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 135 } 136 137 bool runOnMachineFunction(MachineFunction &MF) override; 138 139 void getAnalysisUsage(AnalysisUsage &AU) const override { 140 MachineFunctionPass::getAnalysisUsage(AU); 141 AU.addRequired<AAResultsWrapperPass>(); 142 AU.addRequired<MachineDominatorTree>(); 143 AU.addRequired<MachinePostDominatorTree>(); 144 AU.addRequired<MachineLoopInfo>(); 145 AU.addRequired<MachineBranchProbabilityInfo>(); 146 AU.addPreserved<MachineLoopInfo>(); 147 if (UseBlockFreqInfo) 148 AU.addRequired<MachineBlockFrequencyInfo>(); 149 } 150 151 void releaseMemory() override { 152 CEBCandidates.clear(); 153 } 154 155 private: 156 bool ProcessBlock(MachineBasicBlock &MBB); 157 void ProcessDbgInst(MachineInstr &MI); 158 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 159 MachineBasicBlock *From, 160 MachineBasicBlock *To); 161 162 /// Postpone the splitting of the given critical 163 /// edge (\p From, \p To). 164 /// 165 /// We do not split the edges on the fly. Indeed, this invalidates 166 /// the dominance information and thus triggers a lot of updates 167 /// of that information underneath. 168 /// Instead, we postpone all the splits after each iteration of 169 /// the main loop. That way, the information is at least valid 170 /// for the lifetime of an iteration. 171 /// 172 /// \return True if the edge is marked as toSplit, false otherwise. 173 /// False can be returned if, for instance, this is not profitable. 174 bool PostponeSplitCriticalEdge(MachineInstr &MI, 175 MachineBasicBlock *From, 176 MachineBasicBlock *To, 177 bool BreakPHIEdge); 178 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 179 AllSuccsCache &AllSuccessors); 180 181 /// If we sink a COPY inst, some debug users of it's destination may no 182 /// longer be dominated by the COPY, and will eventually be dropped. 183 /// This is easily rectified by forwarding the non-dominated debug uses 184 /// to the copy source. 185 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 186 MachineBasicBlock *TargetBlock); 187 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, 188 MachineBasicBlock *DefMBB, 189 bool &BreakPHIEdge, bool &LocalUse) const; 190 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 191 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 192 bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 193 MachineBasicBlock *MBB, 194 MachineBasicBlock *SuccToSinkTo, 195 AllSuccsCache &AllSuccessors); 196 197 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 198 MachineBasicBlock *MBB); 199 200 SmallVector<MachineBasicBlock *, 4> & 201 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 202 AllSuccsCache &AllSuccessors) const; 203 }; 204 205 } // end anonymous namespace 206 207 char MachineSinking::ID = 0; 208 209 char &llvm::MachineSinkingID = MachineSinking::ID; 210 211 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 212 "Machine code sinking", false, false) 213 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 214 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 215 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 216 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 217 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 218 "Machine code sinking", false, false) 219 220 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 221 MachineBasicBlock *MBB) { 222 if (!MI.isCopy()) 223 return false; 224 225 Register SrcReg = MI.getOperand(1).getReg(); 226 Register DstReg = MI.getOperand(0).getReg(); 227 if (!Register::isVirtualRegister(SrcReg) || 228 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg)) 229 return false; 230 231 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 232 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 233 if (SRC != DRC) 234 return false; 235 236 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 237 if (DefMI->isCopyLike()) 238 return false; 239 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 240 LLVM_DEBUG(dbgs() << "*** to: " << MI); 241 MRI->replaceRegWith(DstReg, SrcReg); 242 MI.eraseFromParent(); 243 244 // Conservatively, clear any kill flags, since it's possible that they are no 245 // longer correct. 246 MRI->clearKillFlags(SrcReg); 247 248 ++NumCoalesces; 249 return true; 250 } 251 252 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 253 /// occur in blocks dominated by the specified block. If any use is in the 254 /// definition block, then return false since it is never legal to move def 255 /// after uses. 256 bool 257 MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 258 MachineBasicBlock *MBB, 259 MachineBasicBlock *DefMBB, 260 bool &BreakPHIEdge, 261 bool &LocalUse) const { 262 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs"); 263 264 // Ignore debug uses because debug info doesn't affect the code. 265 if (MRI->use_nodbg_empty(Reg)) 266 return true; 267 268 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 269 // into and they are all PHI nodes. In this case, machine-sink must break 270 // the critical edge first. e.g. 271 // 272 // %bb.1: 273 // Predecessors according to CFG: %bb.0 274 // ... 275 // %def = DEC64_32r %x, implicit-def dead %eflags 276 // ... 277 // JE_4 <%bb.37>, implicit %eflags 278 // Successors according to CFG: %bb.37 %bb.2 279 // 280 // %bb.2: 281 // %p = PHI %y, %bb.0, %def, %bb.1 282 if (llvm::all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 283 MachineInstr *UseInst = MO.getParent(); 284 unsigned OpNo = UseInst->getOperandNo(&MO); 285 MachineBasicBlock *UseBlock = UseInst->getParent(); 286 return UseBlock == MBB && UseInst->isPHI() && 287 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 288 })) { 289 BreakPHIEdge = true; 290 return true; 291 } 292 293 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 294 // Determine the block of the use. 295 MachineInstr *UseInst = MO.getParent(); 296 unsigned OpNo = &MO - &UseInst->getOperand(0); 297 MachineBasicBlock *UseBlock = UseInst->getParent(); 298 if (UseInst->isPHI()) { 299 // PHI nodes use the operand in the predecessor block, not the block with 300 // the PHI. 301 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 302 } else if (UseBlock == DefMBB) { 303 LocalUse = true; 304 return false; 305 } 306 307 // Check that it dominates. 308 if (!DT->dominates(MBB, UseBlock)) 309 return false; 310 } 311 312 return true; 313 } 314 315 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 316 if (skipFunction(MF.getFunction())) 317 return false; 318 319 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 320 321 TII = MF.getSubtarget().getInstrInfo(); 322 TRI = MF.getSubtarget().getRegisterInfo(); 323 MRI = &MF.getRegInfo(); 324 DT = &getAnalysis<MachineDominatorTree>(); 325 PDT = &getAnalysis<MachinePostDominatorTree>(); 326 LI = &getAnalysis<MachineLoopInfo>(); 327 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 328 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 329 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 330 331 bool EverMadeChange = false; 332 333 while (true) { 334 bool MadeChange = false; 335 336 // Process all basic blocks. 337 CEBCandidates.clear(); 338 ToSplit.clear(); 339 for (auto &MBB: MF) 340 MadeChange |= ProcessBlock(MBB); 341 342 // If we have anything we marked as toSplit, split it now. 343 for (auto &Pair : ToSplit) { 344 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 345 if (NewSucc != nullptr) { 346 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 347 << printMBBReference(*Pair.first) << " -- " 348 << printMBBReference(*NewSucc) << " -- " 349 << printMBBReference(*Pair.second) << '\n'); 350 MadeChange = true; 351 ++NumSplit; 352 } else 353 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 354 } 355 // If this iteration over the code changed anything, keep iterating. 356 if (!MadeChange) break; 357 EverMadeChange = true; 358 } 359 360 // Now clear any kill flags for recorded registers. 361 for (auto I : RegsToClearKillFlags) 362 MRI->clearKillFlags(I); 363 RegsToClearKillFlags.clear(); 364 365 return EverMadeChange; 366 } 367 368 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 369 // Can't sink anything out of a block that has less than two successors. 370 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 371 372 // Don't bother sinking code out of unreachable blocks. In addition to being 373 // unprofitable, it can also lead to infinite looping, because in an 374 // unreachable loop there may be nowhere to stop. 375 if (!DT->isReachableFromEntry(&MBB)) return false; 376 377 bool MadeChange = false; 378 379 // Cache all successors, sorted by frequency info and loop depth. 380 AllSuccsCache AllSuccessors; 381 382 // Walk the basic block bottom-up. Remember if we saw a store. 383 MachineBasicBlock::iterator I = MBB.end(); 384 --I; 385 bool ProcessedBegin, SawStore = false; 386 do { 387 MachineInstr &MI = *I; // The instruction to sink. 388 389 // Predecrement I (if it's not begin) so that it isn't invalidated by 390 // sinking. 391 ProcessedBegin = I == MBB.begin(); 392 if (!ProcessedBegin) 393 --I; 394 395 if (MI.isDebugInstr()) { 396 if (MI.isDebugValue()) 397 ProcessDbgInst(MI); 398 continue; 399 } 400 401 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 402 if (Joined) { 403 MadeChange = true; 404 continue; 405 } 406 407 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 408 ++NumSunk; 409 MadeChange = true; 410 } 411 412 // If we just processed the first instruction in the block, we're done. 413 } while (!ProcessedBegin); 414 415 SeenDbgUsers.clear(); 416 SeenDbgVars.clear(); 417 418 return MadeChange; 419 } 420 421 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 422 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 423 // we know what to sink if the vreg def sinks. 424 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 425 426 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 427 MI.getDebugLoc()->getInlinedAt()); 428 bool SeenBefore = SeenDbgVars.count(Var) != 0; 429 430 MachineOperand &MO = MI.getOperand(0); 431 if (MO.isReg() && MO.getReg().isVirtual()) 432 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 433 434 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 435 SeenDbgVars.insert(Var); 436 } 437 438 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 439 MachineBasicBlock *From, 440 MachineBasicBlock *To) { 441 // FIXME: Need much better heuristics. 442 443 // If the pass has already considered breaking this edge (during this pass 444 // through the function), then let's go ahead and break it. This means 445 // sinking multiple "cheap" instructions into the same block. 446 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 447 return true; 448 449 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 450 return true; 451 452 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 453 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 454 return true; 455 456 // MI is cheap, we probably don't want to break the critical edge for it. 457 // However, if this would allow some definitions of its source operands 458 // to be sunk then it's probably worth it. 459 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 460 const MachineOperand &MO = MI.getOperand(i); 461 if (!MO.isReg() || !MO.isUse()) 462 continue; 463 Register Reg = MO.getReg(); 464 if (Reg == 0) 465 continue; 466 467 // We don't move live definitions of physical registers, 468 // so sinking their uses won't enable any opportunities. 469 if (Register::isPhysicalRegister(Reg)) 470 continue; 471 472 // If this instruction is the only user of a virtual register, 473 // check if breaking the edge will enable sinking 474 // both this instruction and the defining instruction. 475 if (MRI->hasOneNonDBGUse(Reg)) { 476 // If the definition resides in same MBB, 477 // claim it's likely we can sink these together. 478 // If definition resides elsewhere, we aren't 479 // blocking it from being sunk so don't break the edge. 480 MachineInstr *DefMI = MRI->getVRegDef(Reg); 481 if (DefMI->getParent() == MI.getParent()) 482 return true; 483 } 484 } 485 486 return false; 487 } 488 489 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 490 MachineBasicBlock *FromBB, 491 MachineBasicBlock *ToBB, 492 bool BreakPHIEdge) { 493 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 494 return false; 495 496 // Avoid breaking back edge. From == To means backedge for single BB loop. 497 if (!SplitEdges || FromBB == ToBB) 498 return false; 499 500 // Check for backedges of more "complex" loops. 501 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 502 LI->isLoopHeader(ToBB)) 503 return false; 504 505 // It's not always legal to break critical edges and sink the computation 506 // to the edge. 507 // 508 // %bb.1: 509 // v1024 510 // Beq %bb.3 511 // <fallthrough> 512 // %bb.2: 513 // ... no uses of v1024 514 // <fallthrough> 515 // %bb.3: 516 // ... 517 // = v1024 518 // 519 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 520 // 521 // %bb.1: 522 // ... 523 // Bne %bb.2 524 // %bb.4: 525 // v1024 = 526 // B %bb.3 527 // %bb.2: 528 // ... no uses of v1024 529 // <fallthrough> 530 // %bb.3: 531 // ... 532 // = v1024 533 // 534 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 535 // flow. We need to ensure the new basic block where the computation is 536 // sunk to dominates all the uses. 537 // It's only legal to break critical edge and sink the computation to the 538 // new block if all the predecessors of "To", except for "From", are 539 // not dominated by "From". Given SSA property, this means these 540 // predecessors are dominated by "To". 541 // 542 // There is no need to do this check if all the uses are PHI nodes. PHI 543 // sources are only defined on the specific predecessor edges. 544 if (!BreakPHIEdge) { 545 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 546 E = ToBB->pred_end(); PI != E; ++PI) { 547 if (*PI == FromBB) 548 continue; 549 if (!DT->dominates(ToBB, *PI)) 550 return false; 551 } 552 } 553 554 ToSplit.insert(std::make_pair(FromBB, ToBB)); 555 556 return true; 557 } 558 559 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 560 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 561 MachineBasicBlock *MBB, 562 MachineBasicBlock *SuccToSinkTo, 563 AllSuccsCache &AllSuccessors) { 564 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 565 566 if (MBB == SuccToSinkTo) 567 return false; 568 569 // It is profitable if SuccToSinkTo does not post dominate current block. 570 if (!PDT->dominates(SuccToSinkTo, MBB)) 571 return true; 572 573 // It is profitable to sink an instruction from a deeper loop to a shallower 574 // loop, even if the latter post-dominates the former (PR21115). 575 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 576 return true; 577 578 // Check if only use in post dominated block is PHI instruction. 579 bool NonPHIUse = false; 580 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 581 MachineBasicBlock *UseBlock = UseInst.getParent(); 582 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 583 NonPHIUse = true; 584 } 585 if (!NonPHIUse) 586 return true; 587 588 // If SuccToSinkTo post dominates then also it may be profitable if MI 589 // can further profitably sinked into another block in next round. 590 bool BreakPHIEdge = false; 591 // FIXME - If finding successor is compile time expensive then cache results. 592 if (MachineBasicBlock *MBB2 = 593 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 594 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 595 596 // If SuccToSinkTo is final destination and it is a post dominator of current 597 // block then it is not profitable to sink MI into SuccToSinkTo block. 598 return false; 599 } 600 601 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 602 /// computing it if it was not already cached. 603 SmallVector<MachineBasicBlock *, 4> & 604 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 605 AllSuccsCache &AllSuccessors) const { 606 // Do we have the sorted successors in cache ? 607 auto Succs = AllSuccessors.find(MBB); 608 if (Succs != AllSuccessors.end()) 609 return Succs->second; 610 611 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(), 612 MBB->succ_end()); 613 614 // Handle cases where sinking can happen but where the sink point isn't a 615 // successor. For example: 616 // 617 // x = computation 618 // if () {} else {} 619 // use x 620 // 621 const std::vector<MachineDomTreeNode *> &Children = 622 DT->getNode(MBB)->getChildren(); 623 for (const auto &DTChild : Children) 624 // DomTree children of MBB that have MBB as immediate dominator are added. 625 if (DTChild->getIDom()->getBlock() == MI.getParent() && 626 // Skip MBBs already added to the AllSuccs vector above. 627 !MBB->isSuccessor(DTChild->getBlock())) 628 AllSuccs.push_back(DTChild->getBlock()); 629 630 // Sort Successors according to their loop depth or block frequency info. 631 llvm::stable_sort( 632 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 633 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 634 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 635 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 636 return HasBlockFreq ? LHSFreq < RHSFreq 637 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 638 }); 639 640 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 641 642 return it.first->second; 643 } 644 645 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 646 MachineBasicBlock * 647 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 648 bool &BreakPHIEdge, 649 AllSuccsCache &AllSuccessors) { 650 assert (MBB && "Invalid MachineBasicBlock!"); 651 652 // Loop over all the operands of the specified instruction. If there is 653 // anything we can't handle, bail out. 654 655 // SuccToSinkTo - This is the successor to sink this instruction to, once we 656 // decide. 657 MachineBasicBlock *SuccToSinkTo = nullptr; 658 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 659 const MachineOperand &MO = MI.getOperand(i); 660 if (!MO.isReg()) continue; // Ignore non-register operands. 661 662 Register Reg = MO.getReg(); 663 if (Reg == 0) continue; 664 665 if (Register::isPhysicalRegister(Reg)) { 666 if (MO.isUse()) { 667 // If the physreg has no defs anywhere, it's just an ambient register 668 // and we can freely move its uses. Alternatively, if it's allocatable, 669 // it could get allocated to something with a def during allocation. 670 if (!MRI->isConstantPhysReg(Reg)) 671 return nullptr; 672 } else if (!MO.isDead()) { 673 // A def that isn't dead. We can't move it. 674 return nullptr; 675 } 676 } else { 677 // Virtual register uses are always safe to sink. 678 if (MO.isUse()) continue; 679 680 // If it's not safe to move defs of the register class, then abort. 681 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 682 return nullptr; 683 684 // Virtual register defs can only be sunk if all their uses are in blocks 685 // dominated by one of the successors. 686 if (SuccToSinkTo) { 687 // If a previous operand picked a block to sink to, then this operand 688 // must be sinkable to the same block. 689 bool LocalUse = false; 690 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 691 BreakPHIEdge, LocalUse)) 692 return nullptr; 693 694 continue; 695 } 696 697 // Otherwise, we should look at all the successors and decide which one 698 // we should sink to. If we have reliable block frequency information 699 // (frequency != 0) available, give successors with smaller frequencies 700 // higher priority, otherwise prioritize smaller loop depths. 701 for (MachineBasicBlock *SuccBlock : 702 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 703 bool LocalUse = false; 704 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 705 BreakPHIEdge, LocalUse)) { 706 SuccToSinkTo = SuccBlock; 707 break; 708 } 709 if (LocalUse) 710 // Def is used locally, it's never safe to move this def. 711 return nullptr; 712 } 713 714 // If we couldn't find a block to sink to, ignore this instruction. 715 if (!SuccToSinkTo) 716 return nullptr; 717 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 718 return nullptr; 719 } 720 } 721 722 // It is not possible to sink an instruction into its own block. This can 723 // happen with loops. 724 if (MBB == SuccToSinkTo) 725 return nullptr; 726 727 // It's not safe to sink instructions to EH landing pad. Control flow into 728 // landing pad is implicitly defined. 729 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 730 return nullptr; 731 732 return SuccToSinkTo; 733 } 734 735 /// Return true if MI is likely to be usable as a memory operation by the 736 /// implicit null check optimization. 737 /// 738 /// This is a "best effort" heuristic, and should not be relied upon for 739 /// correctness. This returning true does not guarantee that the implicit null 740 /// check optimization is legal over MI, and this returning false does not 741 /// guarantee MI cannot possibly be used to do a null check. 742 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 743 const TargetInstrInfo *TII, 744 const TargetRegisterInfo *TRI) { 745 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 746 747 auto *MBB = MI.getParent(); 748 if (MBB->pred_size() != 1) 749 return false; 750 751 auto *PredMBB = *MBB->pred_begin(); 752 auto *PredBB = PredMBB->getBasicBlock(); 753 754 // Frontends that don't use implicit null checks have no reason to emit 755 // branches with make.implicit metadata, and this function should always 756 // return false for them. 757 if (!PredBB || 758 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 759 return false; 760 761 const MachineOperand *BaseOp; 762 int64_t Offset; 763 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI)) 764 return false; 765 766 if (!BaseOp->isReg()) 767 return false; 768 769 if (!(MI.mayLoad() && !MI.isPredicable())) 770 return false; 771 772 MachineBranchPredicate MBP; 773 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 774 return false; 775 776 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 777 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 778 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 779 MBP.LHS.getReg() == BaseOp->getReg(); 780 } 781 782 /// If the sunk instruction is a copy, try to forward the copy instead of 783 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 784 /// there's any subregister weirdness involved. Returns true if copy 785 /// propagation occurred. 786 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI) { 787 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 788 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 789 790 // Copy DBG_VALUE operand and set the original to undef. We then check to 791 // see whether this is something that can be copy-forwarded. If it isn't, 792 // continue around the loop. 793 MachineOperand DbgMO = DbgMI.getOperand(0); 794 795 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 796 auto CopyOperands = TII.isCopyInstr(SinkInst); 797 if (!CopyOperands) 798 return false; 799 SrcMO = CopyOperands->Source; 800 DstMO = CopyOperands->Destination; 801 802 // Check validity of forwarding this copy. 803 bool PostRA = MRI.getNumVirtRegs() == 0; 804 805 // Trying to forward between physical and virtual registers is too hard. 806 if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual()) 807 return false; 808 809 // Only try virtual register copy-forwarding before regalloc, and physical 810 // register copy-forwarding after regalloc. 811 bool arePhysRegs = !DbgMO.getReg().isVirtual(); 812 if (arePhysRegs != PostRA) 813 return false; 814 815 // Pre-regalloc, only forward if all subregisters agree (or there are no 816 // subregs at all). More analysis might recover some forwardable copies. 817 if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() || 818 DbgMO.getSubReg() != DstMO->getSubReg())) 819 return false; 820 821 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 822 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 823 // matches the copy destination. 824 if (PostRA && DbgMO.getReg() != DstMO->getReg()) 825 return false; 826 827 DbgMI.getOperand(0).setReg(SrcMO->getReg()); 828 DbgMI.getOperand(0).setSubReg(SrcMO->getSubReg()); 829 return true; 830 } 831 832 /// Sink an instruction and its associated debug instructions. 833 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 834 MachineBasicBlock::iterator InsertPos, 835 SmallVectorImpl<MachineInstr *> &DbgValuesToSink) { 836 837 // If we cannot find a location to use (merge with), then we erase the debug 838 // location to prevent debug-info driven tools from potentially reporting 839 // wrong location information. 840 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 841 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 842 InsertPos->getDebugLoc())); 843 else 844 MI.setDebugLoc(DebugLoc()); 845 846 // Move the instruction. 847 MachineBasicBlock *ParentBlock = MI.getParent(); 848 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 849 ++MachineBasicBlock::iterator(MI)); 850 851 // Sink a copy of debug users to the insert position. Mark the original 852 // DBG_VALUE location as 'undef', indicating that any earlier variable 853 // location should be terminated as we've optimised away the value at this 854 // point. 855 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 856 DBE = DbgValuesToSink.end(); 857 DBI != DBE; ++DBI) { 858 MachineInstr *DbgMI = *DBI; 859 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(*DBI); 860 SuccToSinkTo.insert(InsertPos, NewDbgMI); 861 862 if (!attemptDebugCopyProp(MI, *DbgMI)) 863 DbgMI->getOperand(0).setReg(0); 864 } 865 } 866 867 /// SinkInstruction - Determine whether it is safe to sink the specified machine 868 /// instruction out of its current block into a successor. 869 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 870 AllSuccsCache &AllSuccessors) { 871 // Don't sink instructions that the target prefers not to sink. 872 if (!TII->shouldSink(MI)) 873 return false; 874 875 // Check if it's safe to move the instruction. 876 if (!MI.isSafeToMove(AA, SawStore)) 877 return false; 878 879 // Convergent operations may not be made control-dependent on additional 880 // values. 881 if (MI.isConvergent()) 882 return false; 883 884 // Don't break implicit null checks. This is a performance heuristic, and not 885 // required for correctness. 886 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 887 return false; 888 889 // FIXME: This should include support for sinking instructions within the 890 // block they are currently in to shorten the live ranges. We often get 891 // instructions sunk into the top of a large block, but it would be better to 892 // also sink them down before their first use in the block. This xform has to 893 // be careful not to *increase* register pressure though, e.g. sinking 894 // "x = y + z" down if it kills y and z would increase the live ranges of y 895 // and z and only shrink the live range of x. 896 897 bool BreakPHIEdge = false; 898 MachineBasicBlock *ParentBlock = MI.getParent(); 899 MachineBasicBlock *SuccToSinkTo = 900 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 901 902 // If there are no outputs, it must have side-effects. 903 if (!SuccToSinkTo) 904 return false; 905 906 // If the instruction to move defines a dead physical register which is live 907 // when leaving the basic block, don't move it because it could turn into a 908 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 909 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 910 const MachineOperand &MO = MI.getOperand(I); 911 if (!MO.isReg()) continue; 912 Register Reg = MO.getReg(); 913 if (Reg == 0 || !Register::isPhysicalRegister(Reg)) 914 continue; 915 if (SuccToSinkTo->isLiveIn(Reg)) 916 return false; 917 } 918 919 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 920 921 // If the block has multiple predecessors, this is a critical edge. 922 // Decide if we can sink along it or need to break the edge. 923 if (SuccToSinkTo->pred_size() > 1) { 924 // We cannot sink a load across a critical edge - there may be stores in 925 // other code paths. 926 bool TryBreak = false; 927 bool store = true; 928 if (!MI.isSafeToMove(AA, store)) { 929 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 930 TryBreak = true; 931 } 932 933 // We don't want to sink across a critical edge if we don't dominate the 934 // successor. We could be introducing calculations to new code paths. 935 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 936 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 937 TryBreak = true; 938 } 939 940 // Don't sink instructions into a loop. 941 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 942 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 943 TryBreak = true; 944 } 945 946 // Otherwise we are OK with sinking along a critical edge. 947 if (!TryBreak) 948 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 949 else { 950 // Mark this edge as to be split. 951 // If the edge can actually be split, the next iteration of the main loop 952 // will sink MI in the newly created block. 953 bool Status = 954 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 955 if (!Status) 956 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 957 "break critical edge\n"); 958 // The instruction will not be sunk this time. 959 return false; 960 } 961 } 962 963 if (BreakPHIEdge) { 964 // BreakPHIEdge is true if all the uses are in the successor MBB being 965 // sunken into and they are all PHI nodes. In this case, machine-sink must 966 // break the critical edge first. 967 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 968 SuccToSinkTo, BreakPHIEdge); 969 if (!Status) 970 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 971 "break critical edge\n"); 972 // The instruction will not be sunk this time. 973 return false; 974 } 975 976 // Determine where to insert into. Skip phi nodes. 977 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 978 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 979 ++InsertPos; 980 981 // Collect debug users of any vreg that this inst defines. 982 SmallVector<MachineInstr *, 4> DbgUsersToSink; 983 for (auto &MO : MI.operands()) { 984 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 985 continue; 986 if (!SeenDbgUsers.count(MO.getReg())) 987 continue; 988 989 // Sink any users that don't pass any other DBG_VALUEs for this variable. 990 auto &Users = SeenDbgUsers[MO.getReg()]; 991 for (auto &User : Users) { 992 MachineInstr *DbgMI = User.getPointer(); 993 if (User.getInt()) { 994 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 995 // it, it can't be recovered. Set it undef. 996 if (!attemptDebugCopyProp(MI, *DbgMI)) 997 DbgMI->getOperand(0).setReg(0); 998 } else { 999 DbgUsersToSink.push_back(DbgMI); 1000 } 1001 } 1002 } 1003 1004 // After sinking, some debug users may not be dominated any more. If possible, 1005 // copy-propagate their operands. As it's expensive, don't do this if there's 1006 // no debuginfo in the program. 1007 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1008 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1009 1010 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1011 1012 // Conservatively, clear any kill flags, since it's possible that they are no 1013 // longer correct. 1014 // Note that we have to clear the kill flags for any register this instruction 1015 // uses as we may sink over another instruction which currently kills the 1016 // used registers. 1017 for (MachineOperand &MO : MI.operands()) { 1018 if (MO.isReg() && MO.isUse()) 1019 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 1020 } 1021 1022 return true; 1023 } 1024 1025 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1026 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1027 assert(MI.isCopy()); 1028 assert(MI.getOperand(1).isReg()); 1029 1030 // Enumerate all users of vreg operands that are def'd. Skip those that will 1031 // be sunk. For the rest, if they are not dominated by the block we will sink 1032 // MI into, propagate the copy source to them. 1033 SmallVector<MachineInstr *, 4> DbgDefUsers; 1034 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1035 for (auto &MO : MI.operands()) { 1036 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1037 continue; 1038 for (auto &User : MRI.use_instructions(MO.getReg())) { 1039 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1040 continue; 1041 1042 // If is in same block, will either sink or be use-before-def. 1043 if (User.getParent() == MI.getParent()) 1044 continue; 1045 1046 assert(User.getOperand(0).isReg() && 1047 "DBG_VALUE user of vreg, but non reg operand?"); 1048 DbgDefUsers.push_back(&User); 1049 } 1050 } 1051 1052 // Point the users of this copy that are no longer dominated, at the source 1053 // of the copy. 1054 for (auto *User : DbgDefUsers) { 1055 User->getOperand(0).setReg(MI.getOperand(1).getReg()); 1056 User->getOperand(0).setSubReg(MI.getOperand(1).getSubReg()); 1057 } 1058 } 1059 1060 //===----------------------------------------------------------------------===// 1061 // This pass is not intended to be a replacement or a complete alternative 1062 // for the pre-ra machine sink pass. It is only designed to sink COPY 1063 // instructions which should be handled after RA. 1064 // 1065 // This pass sinks COPY instructions into a successor block, if the COPY is not 1066 // used in the current block and the COPY is live-in to a single successor 1067 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1068 // copy on paths where their results aren't needed. This also exposes 1069 // additional opportunites for dead copy elimination and shrink wrapping. 1070 // 1071 // These copies were either not handled by or are inserted after the MachineSink 1072 // pass. As an example of the former case, the MachineSink pass cannot sink 1073 // COPY instructions with allocatable source registers; for AArch64 these type 1074 // of copy instructions are frequently used to move function parameters (PhyReg) 1075 // into virtual registers in the entry block. 1076 // 1077 // For the machine IR below, this pass will sink %w19 in the entry into its 1078 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1079 // %bb.0: 1080 // %wzr = SUBSWri %w1, 1 1081 // %w19 = COPY %w0 1082 // Bcc 11, %bb.2 1083 // %bb.1: 1084 // Live Ins: %w19 1085 // BL @fun 1086 // %w0 = ADDWrr %w0, %w19 1087 // RET %w0 1088 // %bb.2: 1089 // %w0 = COPY %wzr 1090 // RET %w0 1091 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1092 // able to see %bb.0 as a candidate. 1093 //===----------------------------------------------------------------------===// 1094 namespace { 1095 1096 class PostRAMachineSinking : public MachineFunctionPass { 1097 public: 1098 bool runOnMachineFunction(MachineFunction &MF) override; 1099 1100 static char ID; 1101 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1102 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1103 1104 void getAnalysisUsage(AnalysisUsage &AU) const override { 1105 AU.setPreservesCFG(); 1106 MachineFunctionPass::getAnalysisUsage(AU); 1107 } 1108 1109 MachineFunctionProperties getRequiredProperties() const override { 1110 return MachineFunctionProperties().set( 1111 MachineFunctionProperties::Property::NoVRegs); 1112 } 1113 1114 private: 1115 /// Track which register units have been modified and used. 1116 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1117 1118 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1119 /// entry in this map for each unit it touches. 1120 DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs; 1121 1122 /// Sink Copy instructions unused in the same block close to their uses in 1123 /// successors. 1124 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1125 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1126 }; 1127 } // namespace 1128 1129 char PostRAMachineSinking::ID = 0; 1130 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1131 1132 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1133 "PostRA Machine Sink", false, false) 1134 1135 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1136 const TargetRegisterInfo *TRI) { 1137 LiveRegUnits LiveInRegUnits(*TRI); 1138 LiveInRegUnits.addLiveIns(MBB); 1139 return !LiveInRegUnits.available(Reg); 1140 } 1141 1142 static MachineBasicBlock * 1143 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1144 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1145 unsigned Reg, const TargetRegisterInfo *TRI) { 1146 // Try to find a single sinkable successor in which Reg is live-in. 1147 MachineBasicBlock *BB = nullptr; 1148 for (auto *SI : SinkableBBs) { 1149 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1150 // If BB is set here, Reg is live-in to at least two sinkable successors, 1151 // so quit. 1152 if (BB) 1153 return nullptr; 1154 BB = SI; 1155 } 1156 } 1157 // Reg is not live-in to any sinkable successors. 1158 if (!BB) 1159 return nullptr; 1160 1161 // Check if any register aliased with Reg is live-in in other successors. 1162 for (auto *SI : CurBB.successors()) { 1163 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1164 return nullptr; 1165 } 1166 return BB; 1167 } 1168 1169 static MachineBasicBlock * 1170 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1171 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1172 ArrayRef<unsigned> DefedRegsInCopy, 1173 const TargetRegisterInfo *TRI) { 1174 MachineBasicBlock *SingleBB = nullptr; 1175 for (auto DefReg : DefedRegsInCopy) { 1176 MachineBasicBlock *BB = 1177 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1178 if (!BB || (SingleBB && SingleBB != BB)) 1179 return nullptr; 1180 SingleBB = BB; 1181 } 1182 return SingleBB; 1183 } 1184 1185 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1186 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1187 LiveRegUnits &UsedRegUnits, 1188 const TargetRegisterInfo *TRI) { 1189 for (auto U : UsedOpsInCopy) { 1190 MachineOperand &MO = MI->getOperand(U); 1191 Register SrcReg = MO.getReg(); 1192 if (!UsedRegUnits.available(SrcReg)) { 1193 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1194 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1195 if (UI.killsRegister(SrcReg, TRI)) { 1196 UI.clearRegisterKills(SrcReg, TRI); 1197 MO.setIsKill(true); 1198 break; 1199 } 1200 } 1201 } 1202 } 1203 } 1204 1205 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1206 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1207 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1208 MachineFunction &MF = *SuccBB->getParent(); 1209 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1210 for (unsigned DefReg : DefedRegsInCopy) 1211 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S) 1212 SuccBB->removeLiveIn(*S); 1213 for (auto U : UsedOpsInCopy) { 1214 Register SrcReg = MI->getOperand(U).getReg(); 1215 LaneBitmask Mask; 1216 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) { 1217 Mask |= (*S).second; 1218 } 1219 SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll()); 1220 } 1221 SuccBB->sortUniqueLiveIns(); 1222 } 1223 1224 static bool hasRegisterDependency(MachineInstr *MI, 1225 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1226 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1227 LiveRegUnits &ModifiedRegUnits, 1228 LiveRegUnits &UsedRegUnits) { 1229 bool HasRegDependency = false; 1230 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1231 MachineOperand &MO = MI->getOperand(i); 1232 if (!MO.isReg()) 1233 continue; 1234 Register Reg = MO.getReg(); 1235 if (!Reg) 1236 continue; 1237 if (MO.isDef()) { 1238 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1239 HasRegDependency = true; 1240 break; 1241 } 1242 DefedRegsInCopy.push_back(Reg); 1243 1244 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1245 // For example, we can ignore modifications in reg with undef. However, 1246 // it's not perfectly clear if skipping the internal read is safe in all 1247 // other targets. 1248 } else if (MO.isUse()) { 1249 if (!ModifiedRegUnits.available(Reg)) { 1250 HasRegDependency = true; 1251 break; 1252 } 1253 UsedOpsInCopy.push_back(i); 1254 } 1255 } 1256 return HasRegDependency; 1257 } 1258 1259 static SmallSet<unsigned, 4> getRegUnits(unsigned Reg, 1260 const TargetRegisterInfo *TRI) { 1261 SmallSet<unsigned, 4> RegUnits; 1262 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI) 1263 RegUnits.insert(*RI); 1264 return RegUnits; 1265 } 1266 1267 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1268 MachineFunction &MF, 1269 const TargetRegisterInfo *TRI, 1270 const TargetInstrInfo *TII) { 1271 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1272 // FIXME: For now, we sink only to a successor which has a single predecessor 1273 // so that we can directly sink COPY instructions to the successor without 1274 // adding any new block or branch instruction. 1275 for (MachineBasicBlock *SI : CurBB.successors()) 1276 if (!SI->livein_empty() && SI->pred_size() == 1) 1277 SinkableBBs.insert(SI); 1278 1279 if (SinkableBBs.empty()) 1280 return false; 1281 1282 bool Changed = false; 1283 1284 // Track which registers have been modified and used between the end of the 1285 // block and the current instruction. 1286 ModifiedRegUnits.clear(); 1287 UsedRegUnits.clear(); 1288 SeenDbgInstrs.clear(); 1289 1290 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) { 1291 MachineInstr *MI = &*I; 1292 ++I; 1293 1294 // Track the operand index for use in Copy. 1295 SmallVector<unsigned, 2> UsedOpsInCopy; 1296 // Track the register number defed in Copy. 1297 SmallVector<unsigned, 2> DefedRegsInCopy; 1298 1299 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 1300 // for DBG_VALUEs later, record them when they're encountered. 1301 if (MI->isDebugValue()) { 1302 auto &MO = MI->getOperand(0); 1303 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) { 1304 // Bail if we can already tell the sink would be rejected, rather 1305 // than needlessly accumulating lots of DBG_VALUEs. 1306 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1307 ModifiedRegUnits, UsedRegUnits)) 1308 continue; 1309 1310 // Record debug use of each reg unit. 1311 SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI); 1312 for (unsigned Reg : Units) 1313 SeenDbgInstrs[Reg].push_back(MI); 1314 } 1315 continue; 1316 } 1317 1318 if (MI->isDebugInstr()) 1319 continue; 1320 1321 // Do not move any instruction across function call. 1322 if (MI->isCall()) 1323 return false; 1324 1325 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) { 1326 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1327 TRI); 1328 continue; 1329 } 1330 1331 // Don't sink the COPY if it would violate a register dependency. 1332 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1333 ModifiedRegUnits, UsedRegUnits)) { 1334 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1335 TRI); 1336 continue; 1337 } 1338 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 1339 "Unexpect SrcReg or DefReg"); 1340 MachineBasicBlock *SuccBB = 1341 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 1342 // Don't sink if we cannot find a single sinkable successor in which Reg 1343 // is live-in. 1344 if (!SuccBB) { 1345 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1346 TRI); 1347 continue; 1348 } 1349 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 1350 "Unexpected predecessor"); 1351 1352 // Collect DBG_VALUEs that must sink with this copy. We've previously 1353 // recorded which reg units that DBG_VALUEs read, if this instruction 1354 // writes any of those units then the corresponding DBG_VALUEs must sink. 1355 SetVector<MachineInstr *> DbgValsToSinkSet; 1356 SmallVector<MachineInstr *, 4> DbgValsToSink; 1357 for (auto &MO : MI->operands()) { 1358 if (!MO.isReg() || !MO.isDef()) 1359 continue; 1360 1361 SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI); 1362 for (unsigned Reg : Units) 1363 for (auto *MI : SeenDbgInstrs.lookup(Reg)) 1364 DbgValsToSinkSet.insert(MI); 1365 } 1366 DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(), 1367 DbgValsToSinkSet.end()); 1368 1369 // Clear the kill flag if SrcReg is killed between MI and the end of the 1370 // block. 1371 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 1372 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI(); 1373 performSink(*MI, *SuccBB, InsertPos, DbgValsToSink); 1374 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 1375 1376 Changed = true; 1377 ++NumPostRACopySink; 1378 } 1379 return Changed; 1380 } 1381 1382 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 1383 if (skipFunction(MF.getFunction())) 1384 return false; 1385 1386 bool Changed = false; 1387 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1388 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1389 1390 ModifiedRegUnits.init(*TRI); 1391 UsedRegUnits.init(*TRI); 1392 for (auto &BB : MF) 1393 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 1394 1395 return Changed; 1396 } 1397