1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/SparseBitVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 28 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 29 #include "llvm/CodeGen/MachineDominators.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineLoopInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachinePostDominators.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/RegisterClassInfo.h" 38 #include "llvm/CodeGen/RegisterPressure.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/BranchProbability.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstdint> 55 #include <map> 56 #include <utility> 57 #include <vector> 58 59 using namespace llvm; 60 61 #define DEBUG_TYPE "machine-sink" 62 63 static cl::opt<bool> 64 SplitEdges("machine-sink-split", 65 cl::desc("Split critical edges during machine sinking"), 66 cl::init(true), cl::Hidden); 67 68 static cl::opt<bool> 69 UseBlockFreqInfo("machine-sink-bfi", 70 cl::desc("Use block frequency info to find successors to sink"), 71 cl::init(true), cl::Hidden); 72 73 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 74 "machine-sink-split-probability-threshold", 75 cl::desc( 76 "Percentage threshold for splitting single-instruction critical edge. " 77 "If the branch threshold is higher than this threshold, we allow " 78 "speculative execution of up to 1 instruction to avoid branching to " 79 "splitted critical edge"), 80 cl::init(40), cl::Hidden); 81 82 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( 83 "machine-sink-load-instrs-threshold", 84 cl::desc("Do not try to find alias store for a load if there is a in-path " 85 "block whose instruction number is higher than this threshold."), 86 cl::init(2000), cl::Hidden); 87 88 static cl::opt<unsigned> SinkLoadBlocksThreshold( 89 "machine-sink-load-blocks-threshold", 90 cl::desc("Do not try to find alias store for a load if the block number in " 91 "the straight line is higher than this threshold."), 92 cl::init(20), cl::Hidden); 93 94 STATISTIC(NumSunk, "Number of machine instructions sunk"); 95 STATISTIC(NumSplit, "Number of critical edges split"); 96 STATISTIC(NumCoalesces, "Number of copies coalesced"); 97 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 98 99 namespace { 100 101 class MachineSinking : public MachineFunctionPass { 102 const TargetInstrInfo *TII; 103 const TargetRegisterInfo *TRI; 104 MachineRegisterInfo *MRI; // Machine register information 105 MachineDominatorTree *DT; // Machine dominator tree 106 MachinePostDominatorTree *PDT; // Machine post dominator tree 107 MachineLoopInfo *LI; 108 MachineBlockFrequencyInfo *MBFI; 109 const MachineBranchProbabilityInfo *MBPI; 110 AliasAnalysis *AA; 111 RegisterClassInfo RegClassInfo; 112 113 // Remember which edges have been considered for breaking. 114 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 115 CEBCandidates; 116 // Remember which edges we are about to split. 117 // This is different from CEBCandidates since those edges 118 // will be split. 119 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 120 121 SparseBitVector<> RegsToClearKillFlags; 122 123 using AllSuccsCache = 124 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 125 126 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 127 /// post-dominated by another DBG_VALUE of the same variable location. 128 /// This is necessary to detect sequences such as: 129 /// %0 = someinst 130 /// DBG_VALUE %0, !123, !DIExpression() 131 /// %1 = anotherinst 132 /// DBG_VALUE %1, !123, !DIExpression() 133 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 134 /// would re-order assignments. 135 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 136 137 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 138 /// debug instructions to sink. 139 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 140 141 /// Record of debug variables that have had their locations set in the 142 /// current block. 143 DenseSet<DebugVariable> SeenDbgVars; 144 145 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 146 HasStoreCache; 147 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 148 std::vector<MachineInstr *>> 149 StoreInstrCache; 150 151 /// Cached BB's register pressure. 152 std::map<MachineBasicBlock *, std::vector<unsigned>> CachedRegisterPressure; 153 154 public: 155 static char ID; // Pass identification 156 157 MachineSinking() : MachineFunctionPass(ID) { 158 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 159 } 160 161 bool runOnMachineFunction(MachineFunction &MF) override; 162 163 void getAnalysisUsage(AnalysisUsage &AU) const override { 164 MachineFunctionPass::getAnalysisUsage(AU); 165 AU.addRequired<AAResultsWrapperPass>(); 166 AU.addRequired<MachineDominatorTree>(); 167 AU.addRequired<MachinePostDominatorTree>(); 168 AU.addRequired<MachineLoopInfo>(); 169 AU.addRequired<MachineBranchProbabilityInfo>(); 170 AU.addPreserved<MachineLoopInfo>(); 171 if (UseBlockFreqInfo) 172 AU.addRequired<MachineBlockFrequencyInfo>(); 173 } 174 175 void releaseMemory() override { 176 CEBCandidates.clear(); 177 } 178 179 private: 180 bool ProcessBlock(MachineBasicBlock &MBB); 181 void ProcessDbgInst(MachineInstr &MI); 182 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 183 MachineBasicBlock *From, 184 MachineBasicBlock *To); 185 186 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 187 MachineInstr &MI); 188 189 /// Postpone the splitting of the given critical 190 /// edge (\p From, \p To). 191 /// 192 /// We do not split the edges on the fly. Indeed, this invalidates 193 /// the dominance information and thus triggers a lot of updates 194 /// of that information underneath. 195 /// Instead, we postpone all the splits after each iteration of 196 /// the main loop. That way, the information is at least valid 197 /// for the lifetime of an iteration. 198 /// 199 /// \return True if the edge is marked as toSplit, false otherwise. 200 /// False can be returned if, for instance, this is not profitable. 201 bool PostponeSplitCriticalEdge(MachineInstr &MI, 202 MachineBasicBlock *From, 203 MachineBasicBlock *To, 204 bool BreakPHIEdge); 205 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 206 AllSuccsCache &AllSuccessors); 207 208 /// If we sink a COPY inst, some debug users of it's destination may no 209 /// longer be dominated by the COPY, and will eventually be dropped. 210 /// This is easily rectified by forwarding the non-dominated debug uses 211 /// to the copy source. 212 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 213 MachineBasicBlock *TargetBlock); 214 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 215 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 216 bool &LocalUse) const; 217 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 218 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 219 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 220 MachineBasicBlock *MBB, 221 MachineBasicBlock *SuccToSinkTo, 222 AllSuccsCache &AllSuccessors); 223 224 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 225 MachineBasicBlock *MBB); 226 227 SmallVector<MachineBasicBlock *, 4> & 228 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 229 AllSuccsCache &AllSuccessors) const; 230 231 std::vector<unsigned> &getBBRegisterPressure(MachineBasicBlock &MBB); 232 }; 233 234 } // end anonymous namespace 235 236 char MachineSinking::ID = 0; 237 238 char &llvm::MachineSinkingID = MachineSinking::ID; 239 240 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 241 "Machine code sinking", false, false) 242 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 243 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 244 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 245 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 246 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 247 "Machine code sinking", false, false) 248 249 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 250 MachineBasicBlock *MBB) { 251 if (!MI.isCopy()) 252 return false; 253 254 Register SrcReg = MI.getOperand(1).getReg(); 255 Register DstReg = MI.getOperand(0).getReg(); 256 if (!Register::isVirtualRegister(SrcReg) || 257 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg)) 258 return false; 259 260 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 261 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 262 if (SRC != DRC) 263 return false; 264 265 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 266 if (DefMI->isCopyLike()) 267 return false; 268 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 269 LLVM_DEBUG(dbgs() << "*** to: " << MI); 270 MRI->replaceRegWith(DstReg, SrcReg); 271 MI.eraseFromParent(); 272 273 // Conservatively, clear any kill flags, since it's possible that they are no 274 // longer correct. 275 MRI->clearKillFlags(SrcReg); 276 277 ++NumCoalesces; 278 return true; 279 } 280 281 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 282 /// occur in blocks dominated by the specified block. If any use is in the 283 /// definition block, then return false since it is never legal to move def 284 /// after uses. 285 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 286 MachineBasicBlock *MBB, 287 MachineBasicBlock *DefMBB, 288 bool &BreakPHIEdge, 289 bool &LocalUse) const { 290 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs"); 291 292 // Ignore debug uses because debug info doesn't affect the code. 293 if (MRI->use_nodbg_empty(Reg)) 294 return true; 295 296 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 297 // into and they are all PHI nodes. In this case, machine-sink must break 298 // the critical edge first. e.g. 299 // 300 // %bb.1: 301 // Predecessors according to CFG: %bb.0 302 // ... 303 // %def = DEC64_32r %x, implicit-def dead %eflags 304 // ... 305 // JE_4 <%bb.37>, implicit %eflags 306 // Successors according to CFG: %bb.37 %bb.2 307 // 308 // %bb.2: 309 // %p = PHI %y, %bb.0, %def, %bb.1 310 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 311 MachineInstr *UseInst = MO.getParent(); 312 unsigned OpNo = UseInst->getOperandNo(&MO); 313 MachineBasicBlock *UseBlock = UseInst->getParent(); 314 return UseBlock == MBB && UseInst->isPHI() && 315 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 316 })) { 317 BreakPHIEdge = true; 318 return true; 319 } 320 321 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 322 // Determine the block of the use. 323 MachineInstr *UseInst = MO.getParent(); 324 unsigned OpNo = &MO - &UseInst->getOperand(0); 325 MachineBasicBlock *UseBlock = UseInst->getParent(); 326 if (UseInst->isPHI()) { 327 // PHI nodes use the operand in the predecessor block, not the block with 328 // the PHI. 329 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 330 } else if (UseBlock == DefMBB) { 331 LocalUse = true; 332 return false; 333 } 334 335 // Check that it dominates. 336 if (!DT->dominates(MBB, UseBlock)) 337 return false; 338 } 339 340 return true; 341 } 342 343 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 344 if (skipFunction(MF.getFunction())) 345 return false; 346 347 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 348 349 TII = MF.getSubtarget().getInstrInfo(); 350 TRI = MF.getSubtarget().getRegisterInfo(); 351 MRI = &MF.getRegInfo(); 352 DT = &getAnalysis<MachineDominatorTree>(); 353 PDT = &getAnalysis<MachinePostDominatorTree>(); 354 LI = &getAnalysis<MachineLoopInfo>(); 355 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 356 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 357 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 358 RegClassInfo.runOnMachineFunction(MF); 359 360 bool EverMadeChange = false; 361 362 while (true) { 363 bool MadeChange = false; 364 365 // Process all basic blocks. 366 CEBCandidates.clear(); 367 ToSplit.clear(); 368 for (auto &MBB: MF) 369 MadeChange |= ProcessBlock(MBB); 370 371 // If we have anything we marked as toSplit, split it now. 372 for (auto &Pair : ToSplit) { 373 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 374 if (NewSucc != nullptr) { 375 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 376 << printMBBReference(*Pair.first) << " -- " 377 << printMBBReference(*NewSucc) << " -- " 378 << printMBBReference(*Pair.second) << '\n'); 379 if (MBFI) 380 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 381 382 MadeChange = true; 383 ++NumSplit; 384 } else 385 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 386 } 387 // If this iteration over the code changed anything, keep iterating. 388 if (!MadeChange) break; 389 EverMadeChange = true; 390 } 391 392 HasStoreCache.clear(); 393 StoreInstrCache.clear(); 394 395 // Now clear any kill flags for recorded registers. 396 for (auto I : RegsToClearKillFlags) 397 MRI->clearKillFlags(I); 398 RegsToClearKillFlags.clear(); 399 400 return EverMadeChange; 401 } 402 403 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 404 // Can't sink anything out of a block that has less than two successors. 405 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 406 407 // Don't bother sinking code out of unreachable blocks. In addition to being 408 // unprofitable, it can also lead to infinite looping, because in an 409 // unreachable loop there may be nowhere to stop. 410 if (!DT->isReachableFromEntry(&MBB)) return false; 411 412 bool MadeChange = false; 413 414 // Cache all successors, sorted by frequency info and loop depth. 415 AllSuccsCache AllSuccessors; 416 417 // Walk the basic block bottom-up. Remember if we saw a store. 418 MachineBasicBlock::iterator I = MBB.end(); 419 --I; 420 bool ProcessedBegin, SawStore = false; 421 do { 422 MachineInstr &MI = *I; // The instruction to sink. 423 424 // Predecrement I (if it's not begin) so that it isn't invalidated by 425 // sinking. 426 ProcessedBegin = I == MBB.begin(); 427 if (!ProcessedBegin) 428 --I; 429 430 if (MI.isDebugInstr()) { 431 if (MI.isDebugValue()) 432 ProcessDbgInst(MI); 433 continue; 434 } 435 436 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 437 if (Joined) { 438 MadeChange = true; 439 continue; 440 } 441 442 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 443 ++NumSunk; 444 MadeChange = true; 445 } 446 447 // If we just processed the first instruction in the block, we're done. 448 } while (!ProcessedBegin); 449 450 SeenDbgUsers.clear(); 451 SeenDbgVars.clear(); 452 // recalculate the bb register pressure after sinking one BB. 453 CachedRegisterPressure.clear(); 454 455 return MadeChange; 456 } 457 458 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 459 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 460 // we know what to sink if the vreg def sinks. 461 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 462 463 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 464 MI.getDebugLoc()->getInlinedAt()); 465 bool SeenBefore = SeenDbgVars.contains(Var); 466 467 MachineOperand &MO = MI.getDebugOperand(0); 468 if (MO.isReg() && MO.getReg().isVirtual()) 469 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 470 471 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 472 SeenDbgVars.insert(Var); 473 } 474 475 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 476 MachineBasicBlock *From, 477 MachineBasicBlock *To) { 478 // FIXME: Need much better heuristics. 479 480 // If the pass has already considered breaking this edge (during this pass 481 // through the function), then let's go ahead and break it. This means 482 // sinking multiple "cheap" instructions into the same block. 483 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 484 return true; 485 486 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 487 return true; 488 489 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 490 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 491 return true; 492 493 // MI is cheap, we probably don't want to break the critical edge for it. 494 // However, if this would allow some definitions of its source operands 495 // to be sunk then it's probably worth it. 496 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 497 const MachineOperand &MO = MI.getOperand(i); 498 if (!MO.isReg() || !MO.isUse()) 499 continue; 500 Register Reg = MO.getReg(); 501 if (Reg == 0) 502 continue; 503 504 // We don't move live definitions of physical registers, 505 // so sinking their uses won't enable any opportunities. 506 if (Register::isPhysicalRegister(Reg)) 507 continue; 508 509 // If this instruction is the only user of a virtual register, 510 // check if breaking the edge will enable sinking 511 // both this instruction and the defining instruction. 512 if (MRI->hasOneNonDBGUse(Reg)) { 513 // If the definition resides in same MBB, 514 // claim it's likely we can sink these together. 515 // If definition resides elsewhere, we aren't 516 // blocking it from being sunk so don't break the edge. 517 MachineInstr *DefMI = MRI->getVRegDef(Reg); 518 if (DefMI->getParent() == MI.getParent()) 519 return true; 520 } 521 } 522 523 return false; 524 } 525 526 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 527 MachineBasicBlock *FromBB, 528 MachineBasicBlock *ToBB, 529 bool BreakPHIEdge) { 530 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 531 return false; 532 533 // Avoid breaking back edge. From == To means backedge for single BB loop. 534 if (!SplitEdges || FromBB == ToBB) 535 return false; 536 537 // Check for backedges of more "complex" loops. 538 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 539 LI->isLoopHeader(ToBB)) 540 return false; 541 542 // It's not always legal to break critical edges and sink the computation 543 // to the edge. 544 // 545 // %bb.1: 546 // v1024 547 // Beq %bb.3 548 // <fallthrough> 549 // %bb.2: 550 // ... no uses of v1024 551 // <fallthrough> 552 // %bb.3: 553 // ... 554 // = v1024 555 // 556 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 557 // 558 // %bb.1: 559 // ... 560 // Bne %bb.2 561 // %bb.4: 562 // v1024 = 563 // B %bb.3 564 // %bb.2: 565 // ... no uses of v1024 566 // <fallthrough> 567 // %bb.3: 568 // ... 569 // = v1024 570 // 571 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 572 // flow. We need to ensure the new basic block where the computation is 573 // sunk to dominates all the uses. 574 // It's only legal to break critical edge and sink the computation to the 575 // new block if all the predecessors of "To", except for "From", are 576 // not dominated by "From". Given SSA property, this means these 577 // predecessors are dominated by "To". 578 // 579 // There is no need to do this check if all the uses are PHI nodes. PHI 580 // sources are only defined on the specific predecessor edges. 581 if (!BreakPHIEdge) { 582 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 583 E = ToBB->pred_end(); PI != E; ++PI) { 584 if (*PI == FromBB) 585 continue; 586 if (!DT->dominates(ToBB, *PI)) 587 return false; 588 } 589 } 590 591 ToSplit.insert(std::make_pair(FromBB, ToBB)); 592 593 return true; 594 } 595 596 std::vector<unsigned> & 597 MachineSinking::getBBRegisterPressure(MachineBasicBlock &MBB) { 598 // Currently to save compiling time, MBB's register pressure will not change 599 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 600 // register pressure is changed after sinking any instructions into it. 601 // FIXME: need a accurate and cheap register pressure estiminate model here. 602 auto RP = CachedRegisterPressure.find(&MBB); 603 if (RP != CachedRegisterPressure.end()) 604 return RP->second; 605 606 RegionPressure Pressure; 607 RegPressureTracker RPTracker(Pressure); 608 609 // Initialize the register pressure tracker. 610 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 611 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 612 613 for (MachineBasicBlock::iterator MII = MBB.instr_end(), 614 MIE = MBB.instr_begin(); 615 MII != MIE; --MII) { 616 MachineInstr &MI = *std::prev(MII); 617 if (MI.isDebugValue() || MI.isDebugLabel()) 618 continue; 619 RegisterOperands RegOpers; 620 RegOpers.collect(MI, *TRI, *MRI, false, false); 621 RPTracker.recedeSkipDebugValues(); 622 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 623 RPTracker.recede(RegOpers); 624 } 625 626 RPTracker.closeRegion(); 627 auto It = CachedRegisterPressure.insert( 628 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 629 return It.first->second; 630 } 631 632 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 633 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 634 MachineBasicBlock *MBB, 635 MachineBasicBlock *SuccToSinkTo, 636 AllSuccsCache &AllSuccessors) { 637 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 638 639 if (MBB == SuccToSinkTo) 640 return false; 641 642 // It is profitable if SuccToSinkTo does not post dominate current block. 643 if (!PDT->dominates(SuccToSinkTo, MBB)) 644 return true; 645 646 // It is profitable to sink an instruction from a deeper loop to a shallower 647 // loop, even if the latter post-dominates the former (PR21115). 648 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 649 return true; 650 651 // Check if only use in post dominated block is PHI instruction. 652 bool NonPHIUse = false; 653 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 654 MachineBasicBlock *UseBlock = UseInst.getParent(); 655 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 656 NonPHIUse = true; 657 } 658 if (!NonPHIUse) 659 return true; 660 661 // If SuccToSinkTo post dominates then also it may be profitable if MI 662 // can further profitably sinked into another block in next round. 663 bool BreakPHIEdge = false; 664 // FIXME - If finding successor is compile time expensive then cache results. 665 if (MachineBasicBlock *MBB2 = 666 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 667 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 668 669 MachineLoop *ML = LI->getLoopFor(MBB); 670 671 // If the instruction is not inside a loop, it is not profitable to sink MI to 672 // a post dominate block SuccToSinkTo. 673 if (!ML) 674 return false; 675 676 auto isRegisterPressureSetExceedLimit = [&](const TargetRegisterClass *RC) { 677 unsigned Weight = TRI->getRegClassWeight(RC).RegWeight; 678 const int *PS = TRI->getRegClassPressureSets(RC); 679 // Get register pressure for block SuccToSinkTo. 680 std::vector<unsigned> BBRegisterPressure = 681 getBBRegisterPressure(*SuccToSinkTo); 682 for (; *PS != -1; PS++) 683 // check if any register pressure set exceeds limit in block SuccToSinkTo 684 // after sinking. 685 if (Weight + BBRegisterPressure[*PS] >= 686 TRI->getRegPressureSetLimit(*MBB->getParent(), *PS)) 687 return true; 688 return false; 689 }; 690 691 // If this instruction is inside a loop and sinking this instruction can make 692 // more registers live range shorten, it is still prifitable. 693 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 694 const MachineOperand &MO = MI.getOperand(i); 695 // Ignore non-register operands. 696 if (!MO.isReg()) 697 continue; 698 Register Reg = MO.getReg(); 699 if (Reg == 0) 700 continue; 701 702 // Don't handle physical register. 703 if (Register::isPhysicalRegister(Reg)) 704 return false; 705 706 // Users for the defs are all dominated by SuccToSinkTo. 707 if (MO.isDef()) { 708 // This def register's live range is shortened after sinking. 709 bool LocalUse = false; 710 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 711 LocalUse)) 712 return false; 713 } else { 714 MachineInstr *DefMI = MRI->getVRegDef(Reg); 715 // DefMI is defined outside of loop. There should be no live range 716 // impact for this operand. Defination outside of loop means: 717 // 1: defination is outside of loop. 718 // 2: defination is in this loop, but it is a PHI in the loop header. 719 if (LI->getLoopFor(DefMI->getParent()) != ML || 720 (DefMI->isPHI() && LI->isLoopHeader(DefMI->getParent()))) 721 continue; 722 // The DefMI is defined inside the loop. 723 // If sinking this operand makes some register pressure set exceed limit, 724 // it is not profitable. 725 if (isRegisterPressureSetExceedLimit(MRI->getRegClass(Reg))) { 726 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 727 return false; 728 } 729 } 730 } 731 732 // If MI is in loop and all its operands are alive across the whole loop or if 733 // no operand sinking make register pressure set exceed limit, it is 734 // profitable to sink MI. 735 return true; 736 } 737 738 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 739 /// computing it if it was not already cached. 740 SmallVector<MachineBasicBlock *, 4> & 741 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 742 AllSuccsCache &AllSuccessors) const { 743 // Do we have the sorted successors in cache ? 744 auto Succs = AllSuccessors.find(MBB); 745 if (Succs != AllSuccessors.end()) 746 return Succs->second; 747 748 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); 749 750 // Handle cases where sinking can happen but where the sink point isn't a 751 // successor. For example: 752 // 753 // x = computation 754 // if () {} else {} 755 // use x 756 // 757 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 758 // DomTree children of MBB that have MBB as immediate dominator are added. 759 if (DTChild->getIDom()->getBlock() == MI.getParent() && 760 // Skip MBBs already added to the AllSuccs vector above. 761 !MBB->isSuccessor(DTChild->getBlock())) 762 AllSuccs.push_back(DTChild->getBlock()); 763 } 764 765 // Sort Successors according to their loop depth or block frequency info. 766 llvm::stable_sort( 767 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 768 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 769 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 770 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 771 return HasBlockFreq ? LHSFreq < RHSFreq 772 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 773 }); 774 775 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 776 777 return it.first->second; 778 } 779 780 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 781 MachineBasicBlock * 782 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 783 bool &BreakPHIEdge, 784 AllSuccsCache &AllSuccessors) { 785 assert (MBB && "Invalid MachineBasicBlock!"); 786 787 // Loop over all the operands of the specified instruction. If there is 788 // anything we can't handle, bail out. 789 790 // SuccToSinkTo - This is the successor to sink this instruction to, once we 791 // decide. 792 MachineBasicBlock *SuccToSinkTo = nullptr; 793 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 794 const MachineOperand &MO = MI.getOperand(i); 795 if (!MO.isReg()) continue; // Ignore non-register operands. 796 797 Register Reg = MO.getReg(); 798 if (Reg == 0) continue; 799 800 if (Register::isPhysicalRegister(Reg)) { 801 if (MO.isUse()) { 802 // If the physreg has no defs anywhere, it's just an ambient register 803 // and we can freely move its uses. Alternatively, if it's allocatable, 804 // it could get allocated to something with a def during allocation. 805 if (!MRI->isConstantPhysReg(Reg)) 806 return nullptr; 807 } else if (!MO.isDead()) { 808 // A def that isn't dead. We can't move it. 809 return nullptr; 810 } 811 } else { 812 // Virtual register uses are always safe to sink. 813 if (MO.isUse()) continue; 814 815 // If it's not safe to move defs of the register class, then abort. 816 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 817 return nullptr; 818 819 // Virtual register defs can only be sunk if all their uses are in blocks 820 // dominated by one of the successors. 821 if (SuccToSinkTo) { 822 // If a previous operand picked a block to sink to, then this operand 823 // must be sinkable to the same block. 824 bool LocalUse = false; 825 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 826 BreakPHIEdge, LocalUse)) 827 return nullptr; 828 829 continue; 830 } 831 832 // Otherwise, we should look at all the successors and decide which one 833 // we should sink to. If we have reliable block frequency information 834 // (frequency != 0) available, give successors with smaller frequencies 835 // higher priority, otherwise prioritize smaller loop depths. 836 for (MachineBasicBlock *SuccBlock : 837 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 838 bool LocalUse = false; 839 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 840 BreakPHIEdge, LocalUse)) { 841 SuccToSinkTo = SuccBlock; 842 break; 843 } 844 if (LocalUse) 845 // Def is used locally, it's never safe to move this def. 846 return nullptr; 847 } 848 849 // If we couldn't find a block to sink to, ignore this instruction. 850 if (!SuccToSinkTo) 851 return nullptr; 852 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 853 return nullptr; 854 } 855 } 856 857 // It is not possible to sink an instruction into its own block. This can 858 // happen with loops. 859 if (MBB == SuccToSinkTo) 860 return nullptr; 861 862 // It's not safe to sink instructions to EH landing pad. Control flow into 863 // landing pad is implicitly defined. 864 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 865 return nullptr; 866 867 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 868 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 869 // the source block (which this code does not yet do). So for now, forbid 870 // doing so. 871 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 872 return nullptr; 873 874 return SuccToSinkTo; 875 } 876 877 /// Return true if MI is likely to be usable as a memory operation by the 878 /// implicit null check optimization. 879 /// 880 /// This is a "best effort" heuristic, and should not be relied upon for 881 /// correctness. This returning true does not guarantee that the implicit null 882 /// check optimization is legal over MI, and this returning false does not 883 /// guarantee MI cannot possibly be used to do a null check. 884 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 885 const TargetInstrInfo *TII, 886 const TargetRegisterInfo *TRI) { 887 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 888 889 auto *MBB = MI.getParent(); 890 if (MBB->pred_size() != 1) 891 return false; 892 893 auto *PredMBB = *MBB->pred_begin(); 894 auto *PredBB = PredMBB->getBasicBlock(); 895 896 // Frontends that don't use implicit null checks have no reason to emit 897 // branches with make.implicit metadata, and this function should always 898 // return false for them. 899 if (!PredBB || 900 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 901 return false; 902 903 const MachineOperand *BaseOp; 904 int64_t Offset; 905 bool OffsetIsScalable; 906 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 907 return false; 908 909 if (!BaseOp->isReg()) 910 return false; 911 912 if (!(MI.mayLoad() && !MI.isPredicable())) 913 return false; 914 915 MachineBranchPredicate MBP; 916 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 917 return false; 918 919 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 920 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 921 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 922 MBP.LHS.getReg() == BaseOp->getReg(); 923 } 924 925 /// If the sunk instruction is a copy, try to forward the copy instead of 926 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 927 /// there's any subregister weirdness involved. Returns true if copy 928 /// propagation occurred. 929 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI) { 930 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 931 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 932 933 // Copy DBG_VALUE operand and set the original to undef. We then check to 934 // see whether this is something that can be copy-forwarded. If it isn't, 935 // continue around the loop. 936 MachineOperand &DbgMO = DbgMI.getDebugOperand(0); 937 938 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 939 auto CopyOperands = TII.isCopyInstr(SinkInst); 940 if (!CopyOperands) 941 return false; 942 SrcMO = CopyOperands->Source; 943 DstMO = CopyOperands->Destination; 944 945 // Check validity of forwarding this copy. 946 bool PostRA = MRI.getNumVirtRegs() == 0; 947 948 // Trying to forward between physical and virtual registers is too hard. 949 if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual()) 950 return false; 951 952 // Only try virtual register copy-forwarding before regalloc, and physical 953 // register copy-forwarding after regalloc. 954 bool arePhysRegs = !DbgMO.getReg().isVirtual(); 955 if (arePhysRegs != PostRA) 956 return false; 957 958 // Pre-regalloc, only forward if all subregisters agree (or there are no 959 // subregs at all). More analysis might recover some forwardable copies. 960 if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() || 961 DbgMO.getSubReg() != DstMO->getSubReg())) 962 return false; 963 964 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 965 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 966 // matches the copy destination. 967 if (PostRA && DbgMO.getReg() != DstMO->getReg()) 968 return false; 969 970 DbgMO.setReg(SrcMO->getReg()); 971 DbgMO.setSubReg(SrcMO->getSubReg()); 972 return true; 973 } 974 975 /// Sink an instruction and its associated debug instructions. 976 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 977 MachineBasicBlock::iterator InsertPos, 978 SmallVectorImpl<MachineInstr *> &DbgValuesToSink) { 979 980 // If we cannot find a location to use (merge with), then we erase the debug 981 // location to prevent debug-info driven tools from potentially reporting 982 // wrong location information. 983 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 984 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 985 InsertPos->getDebugLoc())); 986 else 987 MI.setDebugLoc(DebugLoc()); 988 989 // Move the instruction. 990 MachineBasicBlock *ParentBlock = MI.getParent(); 991 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 992 ++MachineBasicBlock::iterator(MI)); 993 994 // Sink a copy of debug users to the insert position. Mark the original 995 // DBG_VALUE location as 'undef', indicating that any earlier variable 996 // location should be terminated as we've optimised away the value at this 997 // point. 998 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 999 DBE = DbgValuesToSink.end(); 1000 DBI != DBE; ++DBI) { 1001 MachineInstr *DbgMI = *DBI; 1002 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(*DBI); 1003 SuccToSinkTo.insert(InsertPos, NewDbgMI); 1004 1005 if (!attemptDebugCopyProp(MI, *DbgMI)) 1006 DbgMI->setDebugValueUndef(); 1007 } 1008 } 1009 1010 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1011 /// and To. 1012 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1013 MachineBasicBlock *To, MachineInstr &MI) { 1014 // Make sure From and To are in straight line which means From dominates To 1015 // and To post dominates From. 1016 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1017 return true; 1018 1019 auto BlockPair = std::make_pair(From, To); 1020 1021 // Does these two blocks pair be queried before and have a definite cached 1022 // result? 1023 if (HasStoreCache.find(BlockPair) != HasStoreCache.end()) 1024 return HasStoreCache[BlockPair]; 1025 1026 if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end()) 1027 return llvm::any_of(StoreInstrCache[BlockPair], [&](MachineInstr *I) { 1028 return I->mayAlias(AA, MI, false); 1029 }); 1030 1031 bool SawStore = false; 1032 bool HasAliasedStore = false; 1033 DenseSet<MachineBasicBlock *> HandledBlocks; 1034 DenseSet<MachineBasicBlock *> HandledDomBlocks; 1035 // Go through all reachable blocks from From. 1036 for (MachineBasicBlock *BB : depth_first(From)) { 1037 // We insert the instruction at the start of block To, so no need to worry 1038 // about stores inside To. 1039 // Store in block From should be already considered when just enter function 1040 // SinkInstruction. 1041 if (BB == To || BB == From) 1042 continue; 1043 1044 // We already handle this BB in previous iteration. 1045 if (HandledBlocks.count(BB)) 1046 continue; 1047 1048 HandledBlocks.insert(BB); 1049 // To post dominates BB, it must be a path from block From. 1050 if (PDT->dominates(To, BB)) { 1051 if (!HandledDomBlocks.count(BB)) 1052 HandledDomBlocks.insert(BB); 1053 1054 // If this BB is too big or the block number in straight line between From 1055 // and To is too big, stop searching to save compiling time. 1056 if (BB->size() > SinkLoadInstsPerBlockThreshold || 1057 HandledDomBlocks.size() > SinkLoadBlocksThreshold) { 1058 for (auto *DomBB : HandledDomBlocks) { 1059 if (DomBB != BB && DT->dominates(DomBB, BB)) 1060 HasStoreCache[std::make_pair(DomBB, To)] = true; 1061 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1062 HasStoreCache[std::make_pair(From, DomBB)] = true; 1063 } 1064 HasStoreCache[BlockPair] = true; 1065 return true; 1066 } 1067 1068 for (MachineInstr &I : *BB) { 1069 // Treat as alias conservatively for a call or an ordered memory 1070 // operation. 1071 if (I.isCall() || I.hasOrderedMemoryRef()) { 1072 for (auto *DomBB : HandledDomBlocks) { 1073 if (DomBB != BB && DT->dominates(DomBB, BB)) 1074 HasStoreCache[std::make_pair(DomBB, To)] = true; 1075 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1076 HasStoreCache[std::make_pair(From, DomBB)] = true; 1077 } 1078 HasStoreCache[BlockPair] = true; 1079 return true; 1080 } 1081 1082 if (I.mayStore()) { 1083 SawStore = true; 1084 // We still have chance to sink MI if all stores between are not 1085 // aliased to MI. 1086 // Cache all store instructions, so that we don't need to go through 1087 // all From reachable blocks for next load instruction. 1088 if (I.mayAlias(AA, MI, false)) 1089 HasAliasedStore = true; 1090 StoreInstrCache[BlockPair].push_back(&I); 1091 } 1092 } 1093 } 1094 } 1095 // If there is no store at all, cache the result. 1096 if (!SawStore) 1097 HasStoreCache[BlockPair] = false; 1098 return HasAliasedStore; 1099 } 1100 1101 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1102 /// instruction out of its current block into a successor. 1103 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1104 AllSuccsCache &AllSuccessors) { 1105 // Don't sink instructions that the target prefers not to sink. 1106 if (!TII->shouldSink(MI)) 1107 return false; 1108 1109 // Check if it's safe to move the instruction. 1110 if (!MI.isSafeToMove(AA, SawStore)) 1111 return false; 1112 1113 // Convergent operations may not be made control-dependent on additional 1114 // values. 1115 if (MI.isConvergent()) 1116 return false; 1117 1118 // Don't break implicit null checks. This is a performance heuristic, and not 1119 // required for correctness. 1120 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1121 return false; 1122 1123 // FIXME: This should include support for sinking instructions within the 1124 // block they are currently in to shorten the live ranges. We often get 1125 // instructions sunk into the top of a large block, but it would be better to 1126 // also sink them down before their first use in the block. This xform has to 1127 // be careful not to *increase* register pressure though, e.g. sinking 1128 // "x = y + z" down if it kills y and z would increase the live ranges of y 1129 // and z and only shrink the live range of x. 1130 1131 bool BreakPHIEdge = false; 1132 MachineBasicBlock *ParentBlock = MI.getParent(); 1133 MachineBasicBlock *SuccToSinkTo = 1134 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1135 1136 // If there are no outputs, it must have side-effects. 1137 if (!SuccToSinkTo) 1138 return false; 1139 1140 // If the instruction to move defines a dead physical register which is live 1141 // when leaving the basic block, don't move it because it could turn into a 1142 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 1143 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1144 const MachineOperand &MO = MI.getOperand(I); 1145 if (!MO.isReg()) continue; 1146 Register Reg = MO.getReg(); 1147 if (Reg == 0 || !Register::isPhysicalRegister(Reg)) 1148 continue; 1149 if (SuccToSinkTo->isLiveIn(Reg)) 1150 return false; 1151 } 1152 1153 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1154 1155 // If the block has multiple predecessors, this is a critical edge. 1156 // Decide if we can sink along it or need to break the edge. 1157 if (SuccToSinkTo->pred_size() > 1) { 1158 // We cannot sink a load across a critical edge - there may be stores in 1159 // other code paths. 1160 bool TryBreak = false; 1161 bool Store = 1162 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1163 if (!MI.isSafeToMove(AA, Store)) { 1164 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1165 TryBreak = true; 1166 } 1167 1168 // We don't want to sink across a critical edge if we don't dominate the 1169 // successor. We could be introducing calculations to new code paths. 1170 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1171 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1172 TryBreak = true; 1173 } 1174 1175 // Don't sink instructions into a loop. 1176 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 1177 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 1178 TryBreak = true; 1179 } 1180 1181 // Otherwise we are OK with sinking along a critical edge. 1182 if (!TryBreak) 1183 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1184 else { 1185 // Mark this edge as to be split. 1186 // If the edge can actually be split, the next iteration of the main loop 1187 // will sink MI in the newly created block. 1188 bool Status = 1189 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1190 if (!Status) 1191 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1192 "break critical edge\n"); 1193 // The instruction will not be sunk this time. 1194 return false; 1195 } 1196 } 1197 1198 if (BreakPHIEdge) { 1199 // BreakPHIEdge is true if all the uses are in the successor MBB being 1200 // sunken into and they are all PHI nodes. In this case, machine-sink must 1201 // break the critical edge first. 1202 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 1203 SuccToSinkTo, BreakPHIEdge); 1204 if (!Status) 1205 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1206 "break critical edge\n"); 1207 // The instruction will not be sunk this time. 1208 return false; 1209 } 1210 1211 // Determine where to insert into. Skip phi nodes. 1212 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 1213 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 1214 ++InsertPos; 1215 1216 // Collect debug users of any vreg that this inst defines. 1217 SmallVector<MachineInstr *, 4> DbgUsersToSink; 1218 for (auto &MO : MI.operands()) { 1219 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1220 continue; 1221 if (!SeenDbgUsers.count(MO.getReg())) 1222 continue; 1223 1224 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1225 auto &Users = SeenDbgUsers[MO.getReg()]; 1226 for (auto &User : Users) { 1227 MachineInstr *DbgMI = User.getPointer(); 1228 if (User.getInt()) { 1229 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1230 // it, it can't be recovered. Set it undef. 1231 if (!attemptDebugCopyProp(MI, *DbgMI)) 1232 DbgMI->setDebugValueUndef(); 1233 } else { 1234 DbgUsersToSink.push_back(DbgMI); 1235 } 1236 } 1237 } 1238 1239 // After sinking, some debug users may not be dominated any more. If possible, 1240 // copy-propagate their operands. As it's expensive, don't do this if there's 1241 // no debuginfo in the program. 1242 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1243 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1244 1245 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1246 1247 // Conservatively, clear any kill flags, since it's possible that they are no 1248 // longer correct. 1249 // Note that we have to clear the kill flags for any register this instruction 1250 // uses as we may sink over another instruction which currently kills the 1251 // used registers. 1252 for (MachineOperand &MO : MI.operands()) { 1253 if (MO.isReg() && MO.isUse()) 1254 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 1255 } 1256 1257 return true; 1258 } 1259 1260 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1261 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1262 assert(MI.isCopy()); 1263 assert(MI.getOperand(1).isReg()); 1264 1265 // Enumerate all users of vreg operands that are def'd. Skip those that will 1266 // be sunk. For the rest, if they are not dominated by the block we will sink 1267 // MI into, propagate the copy source to them. 1268 SmallVector<MachineInstr *, 4> DbgDefUsers; 1269 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1270 for (auto &MO : MI.operands()) { 1271 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1272 continue; 1273 for (auto &User : MRI.use_instructions(MO.getReg())) { 1274 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1275 continue; 1276 1277 // If is in same block, will either sink or be use-before-def. 1278 if (User.getParent() == MI.getParent()) 1279 continue; 1280 1281 assert(User.getDebugOperand(0).isReg() && 1282 "DBG_VALUE user of vreg, but non reg operand?"); 1283 DbgDefUsers.push_back(&User); 1284 } 1285 } 1286 1287 // Point the users of this copy that are no longer dominated, at the source 1288 // of the copy. 1289 for (auto *User : DbgDefUsers) { 1290 User->getDebugOperand(0).setReg(MI.getOperand(1).getReg()); 1291 User->getDebugOperand(0).setSubReg(MI.getOperand(1).getSubReg()); 1292 } 1293 } 1294 1295 //===----------------------------------------------------------------------===// 1296 // This pass is not intended to be a replacement or a complete alternative 1297 // for the pre-ra machine sink pass. It is only designed to sink COPY 1298 // instructions which should be handled after RA. 1299 // 1300 // This pass sinks COPY instructions into a successor block, if the COPY is not 1301 // used in the current block and the COPY is live-in to a single successor 1302 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1303 // copy on paths where their results aren't needed. This also exposes 1304 // additional opportunites for dead copy elimination and shrink wrapping. 1305 // 1306 // These copies were either not handled by or are inserted after the MachineSink 1307 // pass. As an example of the former case, the MachineSink pass cannot sink 1308 // COPY instructions with allocatable source registers; for AArch64 these type 1309 // of copy instructions are frequently used to move function parameters (PhyReg) 1310 // into virtual registers in the entry block. 1311 // 1312 // For the machine IR below, this pass will sink %w19 in the entry into its 1313 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1314 // %bb.0: 1315 // %wzr = SUBSWri %w1, 1 1316 // %w19 = COPY %w0 1317 // Bcc 11, %bb.2 1318 // %bb.1: 1319 // Live Ins: %w19 1320 // BL @fun 1321 // %w0 = ADDWrr %w0, %w19 1322 // RET %w0 1323 // %bb.2: 1324 // %w0 = COPY %wzr 1325 // RET %w0 1326 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1327 // able to see %bb.0 as a candidate. 1328 //===----------------------------------------------------------------------===// 1329 namespace { 1330 1331 class PostRAMachineSinking : public MachineFunctionPass { 1332 public: 1333 bool runOnMachineFunction(MachineFunction &MF) override; 1334 1335 static char ID; 1336 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1337 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1338 1339 void getAnalysisUsage(AnalysisUsage &AU) const override { 1340 AU.setPreservesCFG(); 1341 MachineFunctionPass::getAnalysisUsage(AU); 1342 } 1343 1344 MachineFunctionProperties getRequiredProperties() const override { 1345 return MachineFunctionProperties().set( 1346 MachineFunctionProperties::Property::NoVRegs); 1347 } 1348 1349 private: 1350 /// Track which register units have been modified and used. 1351 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1352 1353 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1354 /// entry in this map for each unit it touches. 1355 DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs; 1356 1357 /// Sink Copy instructions unused in the same block close to their uses in 1358 /// successors. 1359 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1360 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1361 }; 1362 } // namespace 1363 1364 char PostRAMachineSinking::ID = 0; 1365 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1366 1367 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1368 "PostRA Machine Sink", false, false) 1369 1370 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1371 const TargetRegisterInfo *TRI) { 1372 LiveRegUnits LiveInRegUnits(*TRI); 1373 LiveInRegUnits.addLiveIns(MBB); 1374 return !LiveInRegUnits.available(Reg); 1375 } 1376 1377 static MachineBasicBlock * 1378 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1379 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1380 unsigned Reg, const TargetRegisterInfo *TRI) { 1381 // Try to find a single sinkable successor in which Reg is live-in. 1382 MachineBasicBlock *BB = nullptr; 1383 for (auto *SI : SinkableBBs) { 1384 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1385 // If BB is set here, Reg is live-in to at least two sinkable successors, 1386 // so quit. 1387 if (BB) 1388 return nullptr; 1389 BB = SI; 1390 } 1391 } 1392 // Reg is not live-in to any sinkable successors. 1393 if (!BB) 1394 return nullptr; 1395 1396 // Check if any register aliased with Reg is live-in in other successors. 1397 for (auto *SI : CurBB.successors()) { 1398 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1399 return nullptr; 1400 } 1401 return BB; 1402 } 1403 1404 static MachineBasicBlock * 1405 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1406 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1407 ArrayRef<unsigned> DefedRegsInCopy, 1408 const TargetRegisterInfo *TRI) { 1409 MachineBasicBlock *SingleBB = nullptr; 1410 for (auto DefReg : DefedRegsInCopy) { 1411 MachineBasicBlock *BB = 1412 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1413 if (!BB || (SingleBB && SingleBB != BB)) 1414 return nullptr; 1415 SingleBB = BB; 1416 } 1417 return SingleBB; 1418 } 1419 1420 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1421 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1422 LiveRegUnits &UsedRegUnits, 1423 const TargetRegisterInfo *TRI) { 1424 for (auto U : UsedOpsInCopy) { 1425 MachineOperand &MO = MI->getOperand(U); 1426 Register SrcReg = MO.getReg(); 1427 if (!UsedRegUnits.available(SrcReg)) { 1428 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1429 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1430 if (UI.killsRegister(SrcReg, TRI)) { 1431 UI.clearRegisterKills(SrcReg, TRI); 1432 MO.setIsKill(true); 1433 break; 1434 } 1435 } 1436 } 1437 } 1438 } 1439 1440 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1441 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1442 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1443 MachineFunction &MF = *SuccBB->getParent(); 1444 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1445 for (unsigned DefReg : DefedRegsInCopy) 1446 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S) 1447 SuccBB->removeLiveIn(*S); 1448 for (auto U : UsedOpsInCopy) { 1449 Register SrcReg = MI->getOperand(U).getReg(); 1450 LaneBitmask Mask; 1451 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) { 1452 Mask |= (*S).second; 1453 } 1454 SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll()); 1455 } 1456 SuccBB->sortUniqueLiveIns(); 1457 } 1458 1459 static bool hasRegisterDependency(MachineInstr *MI, 1460 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1461 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1462 LiveRegUnits &ModifiedRegUnits, 1463 LiveRegUnits &UsedRegUnits) { 1464 bool HasRegDependency = false; 1465 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1466 MachineOperand &MO = MI->getOperand(i); 1467 if (!MO.isReg()) 1468 continue; 1469 Register Reg = MO.getReg(); 1470 if (!Reg) 1471 continue; 1472 if (MO.isDef()) { 1473 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1474 HasRegDependency = true; 1475 break; 1476 } 1477 DefedRegsInCopy.push_back(Reg); 1478 1479 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1480 // For example, we can ignore modifications in reg with undef. However, 1481 // it's not perfectly clear if skipping the internal read is safe in all 1482 // other targets. 1483 } else if (MO.isUse()) { 1484 if (!ModifiedRegUnits.available(Reg)) { 1485 HasRegDependency = true; 1486 break; 1487 } 1488 UsedOpsInCopy.push_back(i); 1489 } 1490 } 1491 return HasRegDependency; 1492 } 1493 1494 static SmallSet<MCRegister, 4> getRegUnits(MCRegister Reg, 1495 const TargetRegisterInfo *TRI) { 1496 SmallSet<MCRegister, 4> RegUnits; 1497 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI) 1498 RegUnits.insert(*RI); 1499 return RegUnits; 1500 } 1501 1502 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1503 MachineFunction &MF, 1504 const TargetRegisterInfo *TRI, 1505 const TargetInstrInfo *TII) { 1506 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1507 // FIXME: For now, we sink only to a successor which has a single predecessor 1508 // so that we can directly sink COPY instructions to the successor without 1509 // adding any new block or branch instruction. 1510 for (MachineBasicBlock *SI : CurBB.successors()) 1511 if (!SI->livein_empty() && SI->pred_size() == 1) 1512 SinkableBBs.insert(SI); 1513 1514 if (SinkableBBs.empty()) 1515 return false; 1516 1517 bool Changed = false; 1518 1519 // Track which registers have been modified and used between the end of the 1520 // block and the current instruction. 1521 ModifiedRegUnits.clear(); 1522 UsedRegUnits.clear(); 1523 SeenDbgInstrs.clear(); 1524 1525 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) { 1526 MachineInstr *MI = &*I; 1527 ++I; 1528 1529 // Track the operand index for use in Copy. 1530 SmallVector<unsigned, 2> UsedOpsInCopy; 1531 // Track the register number defed in Copy. 1532 SmallVector<unsigned, 2> DefedRegsInCopy; 1533 1534 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 1535 // for DBG_VALUEs later, record them when they're encountered. 1536 if (MI->isDebugValue()) { 1537 auto &MO = MI->getDebugOperand(0); 1538 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) { 1539 // Bail if we can already tell the sink would be rejected, rather 1540 // than needlessly accumulating lots of DBG_VALUEs. 1541 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1542 ModifiedRegUnits, UsedRegUnits)) 1543 continue; 1544 1545 // Record debug use of each reg unit. 1546 SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI); 1547 for (MCRegister Reg : Units) 1548 SeenDbgInstrs[Reg].push_back(MI); 1549 } 1550 continue; 1551 } 1552 1553 if (MI->isDebugInstr()) 1554 continue; 1555 1556 // Do not move any instruction across function call. 1557 if (MI->isCall()) 1558 return false; 1559 1560 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) { 1561 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1562 TRI); 1563 continue; 1564 } 1565 1566 // Don't sink the COPY if it would violate a register dependency. 1567 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1568 ModifiedRegUnits, UsedRegUnits)) { 1569 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1570 TRI); 1571 continue; 1572 } 1573 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 1574 "Unexpect SrcReg or DefReg"); 1575 MachineBasicBlock *SuccBB = 1576 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 1577 // Don't sink if we cannot find a single sinkable successor in which Reg 1578 // is live-in. 1579 if (!SuccBB) { 1580 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1581 TRI); 1582 continue; 1583 } 1584 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 1585 "Unexpected predecessor"); 1586 1587 // Collect DBG_VALUEs that must sink with this copy. We've previously 1588 // recorded which reg units that DBG_VALUEs read, if this instruction 1589 // writes any of those units then the corresponding DBG_VALUEs must sink. 1590 SetVector<MachineInstr *> DbgValsToSinkSet; 1591 for (auto &MO : MI->operands()) { 1592 if (!MO.isReg() || !MO.isDef()) 1593 continue; 1594 1595 SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI); 1596 for (MCRegister Reg : Units) 1597 for (auto *MI : SeenDbgInstrs.lookup(Reg)) 1598 DbgValsToSinkSet.insert(MI); 1599 } 1600 SmallVector<MachineInstr *, 4> DbgValsToSink(DbgValsToSinkSet.begin(), 1601 DbgValsToSinkSet.end()); 1602 1603 // Clear the kill flag if SrcReg is killed between MI and the end of the 1604 // block. 1605 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 1606 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI(); 1607 performSink(*MI, *SuccBB, InsertPos, DbgValsToSink); 1608 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 1609 1610 Changed = true; 1611 ++NumPostRACopySink; 1612 } 1613 return Changed; 1614 } 1615 1616 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 1617 if (skipFunction(MF.getFunction())) 1618 return false; 1619 1620 bool Changed = false; 1621 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1622 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1623 1624 ModifiedRegUnits.init(*TRI); 1625 UsedRegUnits.init(*TRI); 1626 for (auto &BB : MF) 1627 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 1628 1629 return Changed; 1630 } 1631