1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/PointerIntPair.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/SparseBitVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 29 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 30 #include "llvm/CodeGen/MachineDominators.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineLoopInfo.h" 35 #include "llvm/CodeGen/MachineOperand.h" 36 #include "llvm/CodeGen/MachinePostDominators.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/RegisterClassInfo.h" 39 #include "llvm/CodeGen/RegisterPressure.h" 40 #include "llvm/CodeGen/TargetInstrInfo.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/CodeGen/TargetSubtargetInfo.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/DebugInfoMetadata.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/MC/MCRegisterInfo.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/BranchProbability.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <cstdint> 56 #include <map> 57 #include <utility> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "machine-sink" 63 64 static cl::opt<bool> 65 SplitEdges("machine-sink-split", 66 cl::desc("Split critical edges during machine sinking"), 67 cl::init(true), cl::Hidden); 68 69 static cl::opt<bool> 70 UseBlockFreqInfo("machine-sink-bfi", 71 cl::desc("Use block frequency info to find successors to sink"), 72 cl::init(true), cl::Hidden); 73 74 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 75 "machine-sink-split-probability-threshold", 76 cl::desc( 77 "Percentage threshold for splitting single-instruction critical edge. " 78 "If the branch threshold is higher than this threshold, we allow " 79 "speculative execution of up to 1 instruction to avoid branching to " 80 "splitted critical edge"), 81 cl::init(40), cl::Hidden); 82 83 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( 84 "machine-sink-load-instrs-threshold", 85 cl::desc("Do not try to find alias store for a load if there is a in-path " 86 "block whose instruction number is higher than this threshold."), 87 cl::init(2000), cl::Hidden); 88 89 static cl::opt<unsigned> SinkLoadBlocksThreshold( 90 "machine-sink-load-blocks-threshold", 91 cl::desc("Do not try to find alias store for a load if the block number in " 92 "the straight line is higher than this threshold."), 93 cl::init(20), cl::Hidden); 94 95 static cl::opt<bool> 96 SinkInstsIntoLoop("sink-insts-to-avoid-spills", 97 cl::desc("Sink instructions into loops to avoid " 98 "register spills"), 99 cl::init(false), cl::Hidden); 100 101 static cl::opt<unsigned> SinkIntoLoopLimit( 102 "machine-sink-loop-limit", 103 cl::desc("The maximum number of instructions considered for loop sinking."), 104 cl::init(50), cl::Hidden); 105 106 STATISTIC(NumSunk, "Number of machine instructions sunk"); 107 STATISTIC(NumLoopSunk, "Number of machine instructions sunk into a loop"); 108 STATISTIC(NumSplit, "Number of critical edges split"); 109 STATISTIC(NumCoalesces, "Number of copies coalesced"); 110 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 111 112 namespace { 113 114 class MachineSinking : public MachineFunctionPass { 115 const TargetInstrInfo *TII; 116 const TargetRegisterInfo *TRI; 117 MachineRegisterInfo *MRI; // Machine register information 118 MachineDominatorTree *DT; // Machine dominator tree 119 MachinePostDominatorTree *PDT; // Machine post dominator tree 120 MachineLoopInfo *LI; 121 MachineBlockFrequencyInfo *MBFI; 122 const MachineBranchProbabilityInfo *MBPI; 123 AliasAnalysis *AA; 124 RegisterClassInfo RegClassInfo; 125 126 // Remember which edges have been considered for breaking. 127 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 128 CEBCandidates; 129 // Remember which edges we are about to split. 130 // This is different from CEBCandidates since those edges 131 // will be split. 132 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 133 134 SparseBitVector<> RegsToClearKillFlags; 135 136 using AllSuccsCache = 137 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 138 139 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 140 /// post-dominated by another DBG_VALUE of the same variable location. 141 /// This is necessary to detect sequences such as: 142 /// %0 = someinst 143 /// DBG_VALUE %0, !123, !DIExpression() 144 /// %1 = anotherinst 145 /// DBG_VALUE %1, !123, !DIExpression() 146 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 147 /// would re-order assignments. 148 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 149 150 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 151 /// debug instructions to sink. 152 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 153 154 /// Record of debug variables that have had their locations set in the 155 /// current block. 156 DenseSet<DebugVariable> SeenDbgVars; 157 158 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 159 HasStoreCache; 160 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 161 std::vector<MachineInstr *>> 162 StoreInstrCache; 163 164 /// Cached BB's register pressure. 165 std::map<MachineBasicBlock *, std::vector<unsigned>> CachedRegisterPressure; 166 167 public: 168 static char ID; // Pass identification 169 170 MachineSinking() : MachineFunctionPass(ID) { 171 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 172 } 173 174 bool runOnMachineFunction(MachineFunction &MF) override; 175 176 void getAnalysisUsage(AnalysisUsage &AU) const override { 177 MachineFunctionPass::getAnalysisUsage(AU); 178 AU.addRequired<AAResultsWrapperPass>(); 179 AU.addRequired<MachineDominatorTree>(); 180 AU.addRequired<MachinePostDominatorTree>(); 181 AU.addRequired<MachineLoopInfo>(); 182 AU.addRequired<MachineBranchProbabilityInfo>(); 183 AU.addPreserved<MachineLoopInfo>(); 184 if (UseBlockFreqInfo) 185 AU.addRequired<MachineBlockFrequencyInfo>(); 186 } 187 188 void releaseMemory() override { 189 CEBCandidates.clear(); 190 } 191 192 private: 193 bool ProcessBlock(MachineBasicBlock &MBB); 194 void ProcessDbgInst(MachineInstr &MI); 195 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 196 MachineBasicBlock *From, 197 MachineBasicBlock *To); 198 199 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 200 MachineInstr &MI); 201 202 /// Postpone the splitting of the given critical 203 /// edge (\p From, \p To). 204 /// 205 /// We do not split the edges on the fly. Indeed, this invalidates 206 /// the dominance information and thus triggers a lot of updates 207 /// of that information underneath. 208 /// Instead, we postpone all the splits after each iteration of 209 /// the main loop. That way, the information is at least valid 210 /// for the lifetime of an iteration. 211 /// 212 /// \return True if the edge is marked as toSplit, false otherwise. 213 /// False can be returned if, for instance, this is not profitable. 214 bool PostponeSplitCriticalEdge(MachineInstr &MI, 215 MachineBasicBlock *From, 216 MachineBasicBlock *To, 217 bool BreakPHIEdge); 218 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 219 AllSuccsCache &AllSuccessors); 220 221 /// If we sink a COPY inst, some debug users of it's destination may no 222 /// longer be dominated by the COPY, and will eventually be dropped. 223 /// This is easily rectified by forwarding the non-dominated debug uses 224 /// to the copy source. 225 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 226 MachineBasicBlock *TargetBlock); 227 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 228 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 229 bool &LocalUse) const; 230 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 231 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 232 233 void FindLoopSinkCandidates(MachineLoop *L, MachineBasicBlock *BB, 234 SmallVectorImpl<MachineInstr *> &Candidates); 235 bool SinkIntoLoop(MachineLoop *L, MachineInstr &I); 236 237 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 238 MachineBasicBlock *MBB, 239 MachineBasicBlock *SuccToSinkTo, 240 AllSuccsCache &AllSuccessors); 241 242 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 243 MachineBasicBlock *MBB); 244 245 SmallVector<MachineBasicBlock *, 4> & 246 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 247 AllSuccsCache &AllSuccessors) const; 248 249 std::vector<unsigned> &getBBRegisterPressure(MachineBasicBlock &MBB); 250 }; 251 252 } // end anonymous namespace 253 254 char MachineSinking::ID = 0; 255 256 char &llvm::MachineSinkingID = MachineSinking::ID; 257 258 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 259 "Machine code sinking", false, false) 260 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 261 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 262 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 263 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 264 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 265 "Machine code sinking", false, false) 266 267 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 268 MachineBasicBlock *MBB) { 269 if (!MI.isCopy()) 270 return false; 271 272 Register SrcReg = MI.getOperand(1).getReg(); 273 Register DstReg = MI.getOperand(0).getReg(); 274 if (!Register::isVirtualRegister(SrcReg) || 275 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg)) 276 return false; 277 278 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 279 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 280 if (SRC != DRC) 281 return false; 282 283 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 284 if (DefMI->isCopyLike()) 285 return false; 286 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 287 LLVM_DEBUG(dbgs() << "*** to: " << MI); 288 MRI->replaceRegWith(DstReg, SrcReg); 289 MI.eraseFromParent(); 290 291 // Conservatively, clear any kill flags, since it's possible that they are no 292 // longer correct. 293 MRI->clearKillFlags(SrcReg); 294 295 ++NumCoalesces; 296 return true; 297 } 298 299 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 300 /// occur in blocks dominated by the specified block. If any use is in the 301 /// definition block, then return false since it is never legal to move def 302 /// after uses. 303 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 304 MachineBasicBlock *MBB, 305 MachineBasicBlock *DefMBB, 306 bool &BreakPHIEdge, 307 bool &LocalUse) const { 308 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs"); 309 310 // Ignore debug uses because debug info doesn't affect the code. 311 if (MRI->use_nodbg_empty(Reg)) 312 return true; 313 314 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 315 // into and they are all PHI nodes. In this case, machine-sink must break 316 // the critical edge first. e.g. 317 // 318 // %bb.1: 319 // Predecessors according to CFG: %bb.0 320 // ... 321 // %def = DEC64_32r %x, implicit-def dead %eflags 322 // ... 323 // JE_4 <%bb.37>, implicit %eflags 324 // Successors according to CFG: %bb.37 %bb.2 325 // 326 // %bb.2: 327 // %p = PHI %y, %bb.0, %def, %bb.1 328 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 329 MachineInstr *UseInst = MO.getParent(); 330 unsigned OpNo = UseInst->getOperandNo(&MO); 331 MachineBasicBlock *UseBlock = UseInst->getParent(); 332 return UseBlock == MBB && UseInst->isPHI() && 333 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 334 })) { 335 BreakPHIEdge = true; 336 return true; 337 } 338 339 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 340 // Determine the block of the use. 341 MachineInstr *UseInst = MO.getParent(); 342 unsigned OpNo = &MO - &UseInst->getOperand(0); 343 MachineBasicBlock *UseBlock = UseInst->getParent(); 344 if (UseInst->isPHI()) { 345 // PHI nodes use the operand in the predecessor block, not the block with 346 // the PHI. 347 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 348 } else if (UseBlock == DefMBB) { 349 LocalUse = true; 350 return false; 351 } 352 353 // Check that it dominates. 354 if (!DT->dominates(MBB, UseBlock)) 355 return false; 356 } 357 358 return true; 359 } 360 361 /// Return true if this machine instruction loads from global offset table or 362 /// constant pool. 363 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 364 assert(MI.mayLoad() && "Expected MI that loads!"); 365 366 // If we lost memory operands, conservatively assume that the instruction 367 // reads from everything.. 368 if (MI.memoperands_empty()) 369 return true; 370 371 for (MachineMemOperand *MemOp : MI.memoperands()) 372 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 373 if (PSV->isGOT() || PSV->isConstantPool()) 374 return true; 375 376 return false; 377 } 378 379 void MachineSinking::FindLoopSinkCandidates(MachineLoop *L, MachineBasicBlock *BB, 380 SmallVectorImpl<MachineInstr *> &Candidates) { 381 for (auto &MI : *BB) { 382 LLVM_DEBUG(dbgs() << "LoopSink: Analysing candidate: " << MI); 383 if (!TII->shouldSink(MI)) { 384 LLVM_DEBUG(dbgs() << "LoopSink: Instruction not a candidate for this " 385 "target\n"); 386 continue; 387 } 388 if (!L->isLoopInvariant(MI)) { 389 LLVM_DEBUG(dbgs() << "LoopSink: Instruction is not loop invariant\n"); 390 continue; 391 } 392 bool DontMoveAcrossStore = true; 393 if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) { 394 LLVM_DEBUG(dbgs() << "LoopSink: Instruction not safe to move.\n"); 395 continue; 396 } 397 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { 398 LLVM_DEBUG(dbgs() << "LoopSink: Dont sink GOT or constant pool loads\n"); 399 continue; 400 } 401 if (MI.isConvergent()) 402 continue; 403 404 const MachineOperand &MO = MI.getOperand(0); 405 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 406 continue; 407 if (!MRI->hasOneDef(MO.getReg())) 408 continue; 409 410 LLVM_DEBUG(dbgs() << "LoopSink: Instruction added as candidate.\n"); 411 Candidates.push_back(&MI); 412 } 413 } 414 415 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 416 if (skipFunction(MF.getFunction())) 417 return false; 418 419 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 420 421 TII = MF.getSubtarget().getInstrInfo(); 422 TRI = MF.getSubtarget().getRegisterInfo(); 423 MRI = &MF.getRegInfo(); 424 DT = &getAnalysis<MachineDominatorTree>(); 425 PDT = &getAnalysis<MachinePostDominatorTree>(); 426 LI = &getAnalysis<MachineLoopInfo>(); 427 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 428 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 429 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 430 RegClassInfo.runOnMachineFunction(MF); 431 432 bool EverMadeChange = false; 433 434 while (true) { 435 bool MadeChange = false; 436 437 // Process all basic blocks. 438 CEBCandidates.clear(); 439 ToSplit.clear(); 440 for (auto &MBB: MF) 441 MadeChange |= ProcessBlock(MBB); 442 443 // If we have anything we marked as toSplit, split it now. 444 for (auto &Pair : ToSplit) { 445 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 446 if (NewSucc != nullptr) { 447 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 448 << printMBBReference(*Pair.first) << " -- " 449 << printMBBReference(*NewSucc) << " -- " 450 << printMBBReference(*Pair.second) << '\n'); 451 if (MBFI) 452 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 453 454 MadeChange = true; 455 ++NumSplit; 456 } else 457 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 458 } 459 // If this iteration over the code changed anything, keep iterating. 460 if (!MadeChange) break; 461 EverMadeChange = true; 462 } 463 464 if (SinkInstsIntoLoop) { 465 SmallVector<MachineLoop *, 8> Loops(LI->begin(), LI->end()); 466 for (auto *L : Loops) { 467 MachineBasicBlock *Preheader = LI->findLoopPreheader(L); 468 if (!Preheader) { 469 LLVM_DEBUG(dbgs() << "LoopSink: Can't find preheader\n"); 470 continue; 471 } 472 SmallVector<MachineInstr *, 8> Candidates; 473 FindLoopSinkCandidates(L, Preheader, Candidates); 474 475 // Walk the candidates in reverse order so that we start with the use 476 // of a def-use chain, if there is any. 477 // TODO: Sort the candidates using a cost-model. 478 unsigned i = 0; 479 for (auto It = Candidates.rbegin(); It != Candidates.rend(); ++It) { 480 if (i++ == SinkIntoLoopLimit) { 481 LLVM_DEBUG(dbgs() << "LoopSink: Limit reached of instructions to " 482 "be analysed."); 483 break; 484 } 485 486 MachineInstr *I = *It; 487 if (!SinkIntoLoop(L, *I)) 488 break; 489 EverMadeChange = true; 490 ++NumLoopSunk; 491 } 492 } 493 } 494 495 HasStoreCache.clear(); 496 StoreInstrCache.clear(); 497 498 // Now clear any kill flags for recorded registers. 499 for (auto I : RegsToClearKillFlags) 500 MRI->clearKillFlags(I); 501 RegsToClearKillFlags.clear(); 502 503 return EverMadeChange; 504 } 505 506 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 507 // Can't sink anything out of a block that has less than two successors. 508 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 509 510 // Don't bother sinking code out of unreachable blocks. In addition to being 511 // unprofitable, it can also lead to infinite looping, because in an 512 // unreachable loop there may be nowhere to stop. 513 if (!DT->isReachableFromEntry(&MBB)) return false; 514 515 bool MadeChange = false; 516 517 // Cache all successors, sorted by frequency info and loop depth. 518 AllSuccsCache AllSuccessors; 519 520 // Walk the basic block bottom-up. Remember if we saw a store. 521 MachineBasicBlock::iterator I = MBB.end(); 522 --I; 523 bool ProcessedBegin, SawStore = false; 524 do { 525 MachineInstr &MI = *I; // The instruction to sink. 526 527 // Predecrement I (if it's not begin) so that it isn't invalidated by 528 // sinking. 529 ProcessedBegin = I == MBB.begin(); 530 if (!ProcessedBegin) 531 --I; 532 533 if (MI.isDebugOrPseudoInstr()) { 534 if (MI.isDebugValue()) 535 ProcessDbgInst(MI); 536 continue; 537 } 538 539 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 540 if (Joined) { 541 MadeChange = true; 542 continue; 543 } 544 545 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 546 ++NumSunk; 547 MadeChange = true; 548 } 549 550 // If we just processed the first instruction in the block, we're done. 551 } while (!ProcessedBegin); 552 553 SeenDbgUsers.clear(); 554 SeenDbgVars.clear(); 555 // recalculate the bb register pressure after sinking one BB. 556 CachedRegisterPressure.clear(); 557 558 return MadeChange; 559 } 560 561 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 562 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 563 // we know what to sink if the vreg def sinks. 564 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 565 566 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 567 MI.getDebugLoc()->getInlinedAt()); 568 bool SeenBefore = SeenDbgVars.contains(Var); 569 570 for (MachineOperand &MO : MI.debug_operands()) { 571 if (MO.isReg() && MO.getReg().isVirtual()) 572 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 573 } 574 575 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 576 SeenDbgVars.insert(Var); 577 } 578 579 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 580 MachineBasicBlock *From, 581 MachineBasicBlock *To) { 582 // FIXME: Need much better heuristics. 583 584 // If the pass has already considered breaking this edge (during this pass 585 // through the function), then let's go ahead and break it. This means 586 // sinking multiple "cheap" instructions into the same block. 587 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 588 return true; 589 590 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 591 return true; 592 593 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 594 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 595 return true; 596 597 // MI is cheap, we probably don't want to break the critical edge for it. 598 // However, if this would allow some definitions of its source operands 599 // to be sunk then it's probably worth it. 600 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 601 const MachineOperand &MO = MI.getOperand(i); 602 if (!MO.isReg() || !MO.isUse()) 603 continue; 604 Register Reg = MO.getReg(); 605 if (Reg == 0) 606 continue; 607 608 // We don't move live definitions of physical registers, 609 // so sinking their uses won't enable any opportunities. 610 if (Register::isPhysicalRegister(Reg)) 611 continue; 612 613 // If this instruction is the only user of a virtual register, 614 // check if breaking the edge will enable sinking 615 // both this instruction and the defining instruction. 616 if (MRI->hasOneNonDBGUse(Reg)) { 617 // If the definition resides in same MBB, 618 // claim it's likely we can sink these together. 619 // If definition resides elsewhere, we aren't 620 // blocking it from being sunk so don't break the edge. 621 MachineInstr *DefMI = MRI->getVRegDef(Reg); 622 if (DefMI->getParent() == MI.getParent()) 623 return true; 624 } 625 } 626 627 return false; 628 } 629 630 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 631 MachineBasicBlock *FromBB, 632 MachineBasicBlock *ToBB, 633 bool BreakPHIEdge) { 634 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 635 return false; 636 637 // Avoid breaking back edge. From == To means backedge for single BB loop. 638 if (!SplitEdges || FromBB == ToBB) 639 return false; 640 641 // Check for backedges of more "complex" loops. 642 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 643 LI->isLoopHeader(ToBB)) 644 return false; 645 646 // It's not always legal to break critical edges and sink the computation 647 // to the edge. 648 // 649 // %bb.1: 650 // v1024 651 // Beq %bb.3 652 // <fallthrough> 653 // %bb.2: 654 // ... no uses of v1024 655 // <fallthrough> 656 // %bb.3: 657 // ... 658 // = v1024 659 // 660 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 661 // 662 // %bb.1: 663 // ... 664 // Bne %bb.2 665 // %bb.4: 666 // v1024 = 667 // B %bb.3 668 // %bb.2: 669 // ... no uses of v1024 670 // <fallthrough> 671 // %bb.3: 672 // ... 673 // = v1024 674 // 675 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 676 // flow. We need to ensure the new basic block where the computation is 677 // sunk to dominates all the uses. 678 // It's only legal to break critical edge and sink the computation to the 679 // new block if all the predecessors of "To", except for "From", are 680 // not dominated by "From". Given SSA property, this means these 681 // predecessors are dominated by "To". 682 // 683 // There is no need to do this check if all the uses are PHI nodes. PHI 684 // sources are only defined on the specific predecessor edges. 685 if (!BreakPHIEdge) { 686 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 687 E = ToBB->pred_end(); PI != E; ++PI) { 688 if (*PI == FromBB) 689 continue; 690 if (!DT->dominates(ToBB, *PI)) 691 return false; 692 } 693 } 694 695 ToSplit.insert(std::make_pair(FromBB, ToBB)); 696 697 return true; 698 } 699 700 std::vector<unsigned> & 701 MachineSinking::getBBRegisterPressure(MachineBasicBlock &MBB) { 702 // Currently to save compiling time, MBB's register pressure will not change 703 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 704 // register pressure is changed after sinking any instructions into it. 705 // FIXME: need a accurate and cheap register pressure estiminate model here. 706 auto RP = CachedRegisterPressure.find(&MBB); 707 if (RP != CachedRegisterPressure.end()) 708 return RP->second; 709 710 RegionPressure Pressure; 711 RegPressureTracker RPTracker(Pressure); 712 713 // Initialize the register pressure tracker. 714 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 715 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 716 717 for (MachineBasicBlock::iterator MII = MBB.instr_end(), 718 MIE = MBB.instr_begin(); 719 MII != MIE; --MII) { 720 MachineInstr &MI = *std::prev(MII); 721 if (MI.isDebugInstr() || MI.isPseudoProbe()) 722 continue; 723 RegisterOperands RegOpers; 724 RegOpers.collect(MI, *TRI, *MRI, false, false); 725 RPTracker.recedeSkipDebugValues(); 726 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 727 RPTracker.recede(RegOpers); 728 } 729 730 RPTracker.closeRegion(); 731 auto It = CachedRegisterPressure.insert( 732 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 733 return It.first->second; 734 } 735 736 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 737 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 738 MachineBasicBlock *MBB, 739 MachineBasicBlock *SuccToSinkTo, 740 AllSuccsCache &AllSuccessors) { 741 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 742 743 if (MBB == SuccToSinkTo) 744 return false; 745 746 // It is profitable if SuccToSinkTo does not post dominate current block. 747 if (!PDT->dominates(SuccToSinkTo, MBB)) 748 return true; 749 750 // It is profitable to sink an instruction from a deeper loop to a shallower 751 // loop, even if the latter post-dominates the former (PR21115). 752 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 753 return true; 754 755 // Check if only use in post dominated block is PHI instruction. 756 bool NonPHIUse = false; 757 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 758 MachineBasicBlock *UseBlock = UseInst.getParent(); 759 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 760 NonPHIUse = true; 761 } 762 if (!NonPHIUse) 763 return true; 764 765 // If SuccToSinkTo post dominates then also it may be profitable if MI 766 // can further profitably sinked into another block in next round. 767 bool BreakPHIEdge = false; 768 // FIXME - If finding successor is compile time expensive then cache results. 769 if (MachineBasicBlock *MBB2 = 770 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 771 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 772 773 MachineLoop *ML = LI->getLoopFor(MBB); 774 775 // If the instruction is not inside a loop, it is not profitable to sink MI to 776 // a post dominate block SuccToSinkTo. 777 if (!ML) 778 return false; 779 780 auto isRegisterPressureSetExceedLimit = [&](const TargetRegisterClass *RC) { 781 unsigned Weight = TRI->getRegClassWeight(RC).RegWeight; 782 const int *PS = TRI->getRegClassPressureSets(RC); 783 // Get register pressure for block SuccToSinkTo. 784 std::vector<unsigned> BBRegisterPressure = 785 getBBRegisterPressure(*SuccToSinkTo); 786 for (; *PS != -1; PS++) 787 // check if any register pressure set exceeds limit in block SuccToSinkTo 788 // after sinking. 789 if (Weight + BBRegisterPressure[*PS] >= 790 TRI->getRegPressureSetLimit(*MBB->getParent(), *PS)) 791 return true; 792 return false; 793 }; 794 795 // If this instruction is inside a loop and sinking this instruction can make 796 // more registers live range shorten, it is still prifitable. 797 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 798 const MachineOperand &MO = MI.getOperand(i); 799 // Ignore non-register operands. 800 if (!MO.isReg()) 801 continue; 802 Register Reg = MO.getReg(); 803 if (Reg == 0) 804 continue; 805 806 // Don't handle physical register. 807 if (Register::isPhysicalRegister(Reg)) 808 return false; 809 810 // Users for the defs are all dominated by SuccToSinkTo. 811 if (MO.isDef()) { 812 // This def register's live range is shortened after sinking. 813 bool LocalUse = false; 814 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 815 LocalUse)) 816 return false; 817 } else { 818 MachineInstr *DefMI = MRI->getVRegDef(Reg); 819 // DefMI is defined outside of loop. There should be no live range 820 // impact for this operand. Defination outside of loop means: 821 // 1: defination is outside of loop. 822 // 2: defination is in this loop, but it is a PHI in the loop header. 823 if (LI->getLoopFor(DefMI->getParent()) != ML || 824 (DefMI->isPHI() && LI->isLoopHeader(DefMI->getParent()))) 825 continue; 826 // The DefMI is defined inside the loop. 827 // If sinking this operand makes some register pressure set exceed limit, 828 // it is not profitable. 829 if (isRegisterPressureSetExceedLimit(MRI->getRegClass(Reg))) { 830 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 831 return false; 832 } 833 } 834 } 835 836 // If MI is in loop and all its operands are alive across the whole loop or if 837 // no operand sinking make register pressure set exceed limit, it is 838 // profitable to sink MI. 839 return true; 840 } 841 842 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 843 /// computing it if it was not already cached. 844 SmallVector<MachineBasicBlock *, 4> & 845 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 846 AllSuccsCache &AllSuccessors) const { 847 // Do we have the sorted successors in cache ? 848 auto Succs = AllSuccessors.find(MBB); 849 if (Succs != AllSuccessors.end()) 850 return Succs->second; 851 852 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); 853 854 // Handle cases where sinking can happen but where the sink point isn't a 855 // successor. For example: 856 // 857 // x = computation 858 // if () {} else {} 859 // use x 860 // 861 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 862 // DomTree children of MBB that have MBB as immediate dominator are added. 863 if (DTChild->getIDom()->getBlock() == MI.getParent() && 864 // Skip MBBs already added to the AllSuccs vector above. 865 !MBB->isSuccessor(DTChild->getBlock())) 866 AllSuccs.push_back(DTChild->getBlock()); 867 } 868 869 // Sort Successors according to their loop depth or block frequency info. 870 llvm::stable_sort( 871 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 872 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 873 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 874 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 875 return HasBlockFreq ? LHSFreq < RHSFreq 876 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 877 }); 878 879 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 880 881 return it.first->second; 882 } 883 884 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 885 MachineBasicBlock * 886 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 887 bool &BreakPHIEdge, 888 AllSuccsCache &AllSuccessors) { 889 assert (MBB && "Invalid MachineBasicBlock!"); 890 891 // Loop over all the operands of the specified instruction. If there is 892 // anything we can't handle, bail out. 893 894 // SuccToSinkTo - This is the successor to sink this instruction to, once we 895 // decide. 896 MachineBasicBlock *SuccToSinkTo = nullptr; 897 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 898 const MachineOperand &MO = MI.getOperand(i); 899 if (!MO.isReg()) continue; // Ignore non-register operands. 900 901 Register Reg = MO.getReg(); 902 if (Reg == 0) continue; 903 904 if (Register::isPhysicalRegister(Reg)) { 905 if (MO.isUse()) { 906 // If the physreg has no defs anywhere, it's just an ambient register 907 // and we can freely move its uses. Alternatively, if it's allocatable, 908 // it could get allocated to something with a def during allocation. 909 if (!MRI->isConstantPhysReg(Reg)) 910 return nullptr; 911 } else if (!MO.isDead()) { 912 // A def that isn't dead. We can't move it. 913 return nullptr; 914 } 915 } else { 916 // Virtual register uses are always safe to sink. 917 if (MO.isUse()) continue; 918 919 // If it's not safe to move defs of the register class, then abort. 920 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 921 return nullptr; 922 923 // Virtual register defs can only be sunk if all their uses are in blocks 924 // dominated by one of the successors. 925 if (SuccToSinkTo) { 926 // If a previous operand picked a block to sink to, then this operand 927 // must be sinkable to the same block. 928 bool LocalUse = false; 929 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 930 BreakPHIEdge, LocalUse)) 931 return nullptr; 932 933 continue; 934 } 935 936 // Otherwise, we should look at all the successors and decide which one 937 // we should sink to. If we have reliable block frequency information 938 // (frequency != 0) available, give successors with smaller frequencies 939 // higher priority, otherwise prioritize smaller loop depths. 940 for (MachineBasicBlock *SuccBlock : 941 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 942 bool LocalUse = false; 943 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 944 BreakPHIEdge, LocalUse)) { 945 SuccToSinkTo = SuccBlock; 946 break; 947 } 948 if (LocalUse) 949 // Def is used locally, it's never safe to move this def. 950 return nullptr; 951 } 952 953 // If we couldn't find a block to sink to, ignore this instruction. 954 if (!SuccToSinkTo) 955 return nullptr; 956 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 957 return nullptr; 958 } 959 } 960 961 // It is not possible to sink an instruction into its own block. This can 962 // happen with loops. 963 if (MBB == SuccToSinkTo) 964 return nullptr; 965 966 // It's not safe to sink instructions to EH landing pad. Control flow into 967 // landing pad is implicitly defined. 968 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 969 return nullptr; 970 971 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 972 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 973 // the source block (which this code does not yet do). So for now, forbid 974 // doing so. 975 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 976 return nullptr; 977 978 return SuccToSinkTo; 979 } 980 981 /// Return true if MI is likely to be usable as a memory operation by the 982 /// implicit null check optimization. 983 /// 984 /// This is a "best effort" heuristic, and should not be relied upon for 985 /// correctness. This returning true does not guarantee that the implicit null 986 /// check optimization is legal over MI, and this returning false does not 987 /// guarantee MI cannot possibly be used to do a null check. 988 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 989 const TargetInstrInfo *TII, 990 const TargetRegisterInfo *TRI) { 991 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 992 993 auto *MBB = MI.getParent(); 994 if (MBB->pred_size() != 1) 995 return false; 996 997 auto *PredMBB = *MBB->pred_begin(); 998 auto *PredBB = PredMBB->getBasicBlock(); 999 1000 // Frontends that don't use implicit null checks have no reason to emit 1001 // branches with make.implicit metadata, and this function should always 1002 // return false for them. 1003 if (!PredBB || 1004 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 1005 return false; 1006 1007 const MachineOperand *BaseOp; 1008 int64_t Offset; 1009 bool OffsetIsScalable; 1010 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 1011 return false; 1012 1013 if (!BaseOp->isReg()) 1014 return false; 1015 1016 if (!(MI.mayLoad() && !MI.isPredicable())) 1017 return false; 1018 1019 MachineBranchPredicate MBP; 1020 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 1021 return false; 1022 1023 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 1024 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 1025 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 1026 MBP.LHS.getReg() == BaseOp->getReg(); 1027 } 1028 1029 /// If the sunk instruction is a copy, try to forward the copy instead of 1030 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 1031 /// there's any subregister weirdness involved. Returns true if copy 1032 /// propagation occurred. 1033 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI, 1034 Register Reg) { 1035 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 1036 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 1037 1038 // Copy DBG_VALUE operand and set the original to undef. We then check to 1039 // see whether this is something that can be copy-forwarded. If it isn't, 1040 // continue around the loop. 1041 1042 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 1043 auto CopyOperands = TII.isCopyInstr(SinkInst); 1044 if (!CopyOperands) 1045 return false; 1046 SrcMO = CopyOperands->Source; 1047 DstMO = CopyOperands->Destination; 1048 1049 // Check validity of forwarding this copy. 1050 bool PostRA = MRI.getNumVirtRegs() == 0; 1051 1052 // Trying to forward between physical and virtual registers is too hard. 1053 if (Reg.isVirtual() != SrcMO->getReg().isVirtual()) 1054 return false; 1055 1056 // Only try virtual register copy-forwarding before regalloc, and physical 1057 // register copy-forwarding after regalloc. 1058 bool arePhysRegs = !Reg.isVirtual(); 1059 if (arePhysRegs != PostRA) 1060 return false; 1061 1062 // Pre-regalloc, only forward if all subregisters agree (or there are no 1063 // subregs at all). More analysis might recover some forwardable copies. 1064 if (!PostRA) 1065 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) 1066 if (DbgMO.getSubReg() != SrcMO->getSubReg() || 1067 DbgMO.getSubReg() != DstMO->getSubReg()) 1068 return false; 1069 1070 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 1071 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 1072 // matches the copy destination. 1073 if (PostRA && Reg != DstMO->getReg()) 1074 return false; 1075 1076 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) { 1077 DbgMO.setReg(SrcMO->getReg()); 1078 DbgMO.setSubReg(SrcMO->getSubReg()); 1079 } 1080 return true; 1081 } 1082 1083 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>; 1084 /// Sink an instruction and its associated debug instructions. 1085 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 1086 MachineBasicBlock::iterator InsertPos, 1087 SmallVectorImpl<MIRegs> &DbgValuesToSink) { 1088 1089 // If we cannot find a location to use (merge with), then we erase the debug 1090 // location to prevent debug-info driven tools from potentially reporting 1091 // wrong location information. 1092 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 1093 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 1094 InsertPos->getDebugLoc())); 1095 else 1096 MI.setDebugLoc(DebugLoc()); 1097 1098 // Move the instruction. 1099 MachineBasicBlock *ParentBlock = MI.getParent(); 1100 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 1101 ++MachineBasicBlock::iterator(MI)); 1102 1103 // Sink a copy of debug users to the insert position. Mark the original 1104 // DBG_VALUE location as 'undef', indicating that any earlier variable 1105 // location should be terminated as we've optimised away the value at this 1106 // point. 1107 for (auto DbgValueToSink : DbgValuesToSink) { 1108 MachineInstr *DbgMI = DbgValueToSink.first; 1109 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI); 1110 SuccToSinkTo.insert(InsertPos, NewDbgMI); 1111 1112 bool PropagatedAllSunkOps = true; 1113 for (unsigned Reg : DbgValueToSink.second) { 1114 if (DbgMI->hasDebugOperandForReg(Reg)) { 1115 if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) { 1116 PropagatedAllSunkOps = false; 1117 break; 1118 } 1119 } 1120 } 1121 if (!PropagatedAllSunkOps) 1122 DbgMI->setDebugValueUndef(); 1123 } 1124 } 1125 1126 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1127 /// and To. 1128 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1129 MachineBasicBlock *To, MachineInstr &MI) { 1130 // Make sure From and To are in straight line which means From dominates To 1131 // and To post dominates From. 1132 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1133 return true; 1134 1135 auto BlockPair = std::make_pair(From, To); 1136 1137 // Does these two blocks pair be queried before and have a definite cached 1138 // result? 1139 if (HasStoreCache.find(BlockPair) != HasStoreCache.end()) 1140 return HasStoreCache[BlockPair]; 1141 1142 if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end()) 1143 return llvm::any_of(StoreInstrCache[BlockPair], [&](MachineInstr *I) { 1144 return I->mayAlias(AA, MI, false); 1145 }); 1146 1147 bool SawStore = false; 1148 bool HasAliasedStore = false; 1149 DenseSet<MachineBasicBlock *> HandledBlocks; 1150 DenseSet<MachineBasicBlock *> HandledDomBlocks; 1151 // Go through all reachable blocks from From. 1152 for (MachineBasicBlock *BB : depth_first(From)) { 1153 // We insert the instruction at the start of block To, so no need to worry 1154 // about stores inside To. 1155 // Store in block From should be already considered when just enter function 1156 // SinkInstruction. 1157 if (BB == To || BB == From) 1158 continue; 1159 1160 // We already handle this BB in previous iteration. 1161 if (HandledBlocks.count(BB)) 1162 continue; 1163 1164 HandledBlocks.insert(BB); 1165 // To post dominates BB, it must be a path from block From. 1166 if (PDT->dominates(To, BB)) { 1167 if (!HandledDomBlocks.count(BB)) 1168 HandledDomBlocks.insert(BB); 1169 1170 // If this BB is too big or the block number in straight line between From 1171 // and To is too big, stop searching to save compiling time. 1172 if (BB->size() > SinkLoadInstsPerBlockThreshold || 1173 HandledDomBlocks.size() > SinkLoadBlocksThreshold) { 1174 for (auto *DomBB : HandledDomBlocks) { 1175 if (DomBB != BB && DT->dominates(DomBB, BB)) 1176 HasStoreCache[std::make_pair(DomBB, To)] = true; 1177 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1178 HasStoreCache[std::make_pair(From, DomBB)] = true; 1179 } 1180 HasStoreCache[BlockPair] = true; 1181 return true; 1182 } 1183 1184 for (MachineInstr &I : *BB) { 1185 // Treat as alias conservatively for a call or an ordered memory 1186 // operation. 1187 if (I.isCall() || I.hasOrderedMemoryRef()) { 1188 for (auto *DomBB : HandledDomBlocks) { 1189 if (DomBB != BB && DT->dominates(DomBB, BB)) 1190 HasStoreCache[std::make_pair(DomBB, To)] = true; 1191 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1192 HasStoreCache[std::make_pair(From, DomBB)] = true; 1193 } 1194 HasStoreCache[BlockPair] = true; 1195 return true; 1196 } 1197 1198 if (I.mayStore()) { 1199 SawStore = true; 1200 // We still have chance to sink MI if all stores between are not 1201 // aliased to MI. 1202 // Cache all store instructions, so that we don't need to go through 1203 // all From reachable blocks for next load instruction. 1204 if (I.mayAlias(AA, MI, false)) 1205 HasAliasedStore = true; 1206 StoreInstrCache[BlockPair].push_back(&I); 1207 } 1208 } 1209 } 1210 } 1211 // If there is no store at all, cache the result. 1212 if (!SawStore) 1213 HasStoreCache[BlockPair] = false; 1214 return HasAliasedStore; 1215 } 1216 1217 /// Sink instructions into loops if profitable. This especially tries to prevent 1218 /// register spills caused by register pressure if there is little to no 1219 /// overhead moving instructions into loops. 1220 bool MachineSinking::SinkIntoLoop(MachineLoop *L, MachineInstr &I) { 1221 LLVM_DEBUG(dbgs() << "LoopSink: Finding sink block for: " << I); 1222 MachineBasicBlock *Preheader = L->getLoopPreheader(); 1223 assert(Preheader && "Loop sink needs a preheader block"); 1224 MachineBasicBlock *SinkBlock = nullptr; 1225 bool CanSink = true; 1226 const MachineOperand &MO = I.getOperand(0); 1227 1228 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 1229 LLVM_DEBUG(dbgs() << "LoopSink: Analysing use: " << MI); 1230 if (!L->contains(&MI)) { 1231 LLVM_DEBUG(dbgs() << "LoopSink: Use not in loop, can't sink.\n"); 1232 CanSink = false; 1233 break; 1234 } 1235 1236 // FIXME: Come up with a proper cost model that estimates whether sinking 1237 // the instruction (and thus possibly executing it on every loop 1238 // iteration) is more expensive than a register. 1239 // For now assumes that copies are cheap and thus almost always worth it. 1240 if (!MI.isCopy()) { 1241 LLVM_DEBUG(dbgs() << "LoopSink: Use is not a copy\n"); 1242 CanSink = false; 1243 break; 1244 } 1245 if (!SinkBlock) { 1246 SinkBlock = MI.getParent(); 1247 LLVM_DEBUG(dbgs() << "LoopSink: Setting sink block to: " 1248 << printMBBReference(*SinkBlock) << "\n"); 1249 continue; 1250 } 1251 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent()); 1252 if (!SinkBlock) { 1253 LLVM_DEBUG(dbgs() << "LoopSink: Can't find nearest dominator\n"); 1254 CanSink = false; 1255 break; 1256 } 1257 LLVM_DEBUG(dbgs() << "LoopSink: Setting nearest common dom block: " << 1258 printMBBReference(*SinkBlock) << "\n"); 1259 } 1260 1261 if (!CanSink) { 1262 LLVM_DEBUG(dbgs() << "LoopSink: Can't sink instruction.\n"); 1263 return false; 1264 } 1265 if (!SinkBlock) { 1266 LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, can't find sink block.\n"); 1267 return false; 1268 } 1269 if (SinkBlock == Preheader) { 1270 LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, sink block is the preheader\n"); 1271 return false; 1272 } 1273 if (SinkBlock->size() > SinkLoadInstsPerBlockThreshold) { 1274 LLVM_DEBUG(dbgs() << "LoopSink: Not Sinking, block too large to analyse.\n"); 1275 return false; 1276 } 1277 1278 LLVM_DEBUG(dbgs() << "LoopSink: Sinking instruction!\n"); 1279 SinkBlock->splice(SinkBlock->getFirstNonPHI(), Preheader, I); 1280 1281 // The instruction is moved from its basic block, so do not retain the 1282 // debug information. 1283 assert(!I.isDebugInstr() && "Should not sink debug inst"); 1284 I.setDebugLoc(DebugLoc()); 1285 return true; 1286 } 1287 1288 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1289 /// instruction out of its current block into a successor. 1290 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1291 AllSuccsCache &AllSuccessors) { 1292 // Don't sink instructions that the target prefers not to sink. 1293 if (!TII->shouldSink(MI)) 1294 return false; 1295 1296 // Check if it's safe to move the instruction. 1297 if (!MI.isSafeToMove(AA, SawStore)) 1298 return false; 1299 1300 // Convergent operations may not be made control-dependent on additional 1301 // values. 1302 if (MI.isConvergent()) 1303 return false; 1304 1305 // Don't break implicit null checks. This is a performance heuristic, and not 1306 // required for correctness. 1307 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1308 return false; 1309 1310 // FIXME: This should include support for sinking instructions within the 1311 // block they are currently in to shorten the live ranges. We often get 1312 // instructions sunk into the top of a large block, but it would be better to 1313 // also sink them down before their first use in the block. This xform has to 1314 // be careful not to *increase* register pressure though, e.g. sinking 1315 // "x = y + z" down if it kills y and z would increase the live ranges of y 1316 // and z and only shrink the live range of x. 1317 1318 bool BreakPHIEdge = false; 1319 MachineBasicBlock *ParentBlock = MI.getParent(); 1320 MachineBasicBlock *SuccToSinkTo = 1321 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1322 1323 // If there are no outputs, it must have side-effects. 1324 if (!SuccToSinkTo) 1325 return false; 1326 1327 // If the instruction to move defines a dead physical register which is live 1328 // when leaving the basic block, don't move it because it could turn into a 1329 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 1330 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1331 const MachineOperand &MO = MI.getOperand(I); 1332 if (!MO.isReg()) continue; 1333 Register Reg = MO.getReg(); 1334 if (Reg == 0 || !Register::isPhysicalRegister(Reg)) 1335 continue; 1336 if (SuccToSinkTo->isLiveIn(Reg)) 1337 return false; 1338 } 1339 1340 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1341 1342 // If the block has multiple predecessors, this is a critical edge. 1343 // Decide if we can sink along it or need to break the edge. 1344 if (SuccToSinkTo->pred_size() > 1) { 1345 // We cannot sink a load across a critical edge - there may be stores in 1346 // other code paths. 1347 bool TryBreak = false; 1348 bool Store = 1349 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1350 if (!MI.isSafeToMove(AA, Store)) { 1351 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1352 TryBreak = true; 1353 } 1354 1355 // We don't want to sink across a critical edge if we don't dominate the 1356 // successor. We could be introducing calculations to new code paths. 1357 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1358 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1359 TryBreak = true; 1360 } 1361 1362 // Don't sink instructions into a loop. 1363 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 1364 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 1365 TryBreak = true; 1366 } 1367 1368 // Otherwise we are OK with sinking along a critical edge. 1369 if (!TryBreak) 1370 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1371 else { 1372 // Mark this edge as to be split. 1373 // If the edge can actually be split, the next iteration of the main loop 1374 // will sink MI in the newly created block. 1375 bool Status = 1376 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1377 if (!Status) 1378 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1379 "break critical edge\n"); 1380 // The instruction will not be sunk this time. 1381 return false; 1382 } 1383 } 1384 1385 if (BreakPHIEdge) { 1386 // BreakPHIEdge is true if all the uses are in the successor MBB being 1387 // sunken into and they are all PHI nodes. In this case, machine-sink must 1388 // break the critical edge first. 1389 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 1390 SuccToSinkTo, BreakPHIEdge); 1391 if (!Status) 1392 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1393 "break critical edge\n"); 1394 // The instruction will not be sunk this time. 1395 return false; 1396 } 1397 1398 // Determine where to insert into. Skip phi nodes. 1399 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 1400 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 1401 ++InsertPos; 1402 1403 // Collect debug users of any vreg that this inst defines. 1404 SmallVector<MIRegs, 4> DbgUsersToSink; 1405 for (auto &MO : MI.operands()) { 1406 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1407 continue; 1408 if (!SeenDbgUsers.count(MO.getReg())) 1409 continue; 1410 1411 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1412 auto &Users = SeenDbgUsers[MO.getReg()]; 1413 for (auto &User : Users) { 1414 MachineInstr *DbgMI = User.getPointer(); 1415 if (User.getInt()) { 1416 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1417 // it, it can't be recovered. Set it undef. 1418 if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg())) 1419 DbgMI->setDebugValueUndef(); 1420 } else { 1421 DbgUsersToSink.push_back( 1422 {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())}); 1423 } 1424 } 1425 } 1426 1427 // After sinking, some debug users may not be dominated any more. If possible, 1428 // copy-propagate their operands. As it's expensive, don't do this if there's 1429 // no debuginfo in the program. 1430 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1431 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1432 1433 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1434 1435 // Conservatively, clear any kill flags, since it's possible that they are no 1436 // longer correct. 1437 // Note that we have to clear the kill flags for any register this instruction 1438 // uses as we may sink over another instruction which currently kills the 1439 // used registers. 1440 for (MachineOperand &MO : MI.operands()) { 1441 if (MO.isReg() && MO.isUse()) 1442 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 1443 } 1444 1445 return true; 1446 } 1447 1448 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1449 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1450 assert(MI.isCopy()); 1451 assert(MI.getOperand(1).isReg()); 1452 1453 // Enumerate all users of vreg operands that are def'd. Skip those that will 1454 // be sunk. For the rest, if they are not dominated by the block we will sink 1455 // MI into, propagate the copy source to them. 1456 SmallVector<MachineInstr *, 4> DbgDefUsers; 1457 SmallVector<Register, 4> DbgUseRegs; 1458 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1459 for (auto &MO : MI.operands()) { 1460 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1461 continue; 1462 DbgUseRegs.push_back(MO.getReg()); 1463 for (auto &User : MRI.use_instructions(MO.getReg())) { 1464 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1465 continue; 1466 1467 // If is in same block, will either sink or be use-before-def. 1468 if (User.getParent() == MI.getParent()) 1469 continue; 1470 1471 assert(User.hasDebugOperandForReg(MO.getReg()) && 1472 "DBG_VALUE user of vreg, but has no operand for it?"); 1473 DbgDefUsers.push_back(&User); 1474 } 1475 } 1476 1477 // Point the users of this copy that are no longer dominated, at the source 1478 // of the copy. 1479 for (auto *User : DbgDefUsers) { 1480 for (auto &Reg : DbgUseRegs) { 1481 for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) { 1482 DbgOp.setReg(MI.getOperand(1).getReg()); 1483 DbgOp.setSubReg(MI.getOperand(1).getSubReg()); 1484 } 1485 } 1486 } 1487 } 1488 1489 //===----------------------------------------------------------------------===// 1490 // This pass is not intended to be a replacement or a complete alternative 1491 // for the pre-ra machine sink pass. It is only designed to sink COPY 1492 // instructions which should be handled after RA. 1493 // 1494 // This pass sinks COPY instructions into a successor block, if the COPY is not 1495 // used in the current block and the COPY is live-in to a single successor 1496 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1497 // copy on paths where their results aren't needed. This also exposes 1498 // additional opportunites for dead copy elimination and shrink wrapping. 1499 // 1500 // These copies were either not handled by or are inserted after the MachineSink 1501 // pass. As an example of the former case, the MachineSink pass cannot sink 1502 // COPY instructions with allocatable source registers; for AArch64 these type 1503 // of copy instructions are frequently used to move function parameters (PhyReg) 1504 // into virtual registers in the entry block. 1505 // 1506 // For the machine IR below, this pass will sink %w19 in the entry into its 1507 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1508 // %bb.0: 1509 // %wzr = SUBSWri %w1, 1 1510 // %w19 = COPY %w0 1511 // Bcc 11, %bb.2 1512 // %bb.1: 1513 // Live Ins: %w19 1514 // BL @fun 1515 // %w0 = ADDWrr %w0, %w19 1516 // RET %w0 1517 // %bb.2: 1518 // %w0 = COPY %wzr 1519 // RET %w0 1520 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1521 // able to see %bb.0 as a candidate. 1522 //===----------------------------------------------------------------------===// 1523 namespace { 1524 1525 class PostRAMachineSinking : public MachineFunctionPass { 1526 public: 1527 bool runOnMachineFunction(MachineFunction &MF) override; 1528 1529 static char ID; 1530 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1531 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1532 1533 void getAnalysisUsage(AnalysisUsage &AU) const override { 1534 AU.setPreservesCFG(); 1535 MachineFunctionPass::getAnalysisUsage(AU); 1536 } 1537 1538 MachineFunctionProperties getRequiredProperties() const override { 1539 return MachineFunctionProperties().set( 1540 MachineFunctionProperties::Property::NoVRegs); 1541 } 1542 1543 private: 1544 /// Track which register units have been modified and used. 1545 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1546 1547 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1548 /// entry in this map for each unit it touches. The DBG_VALUE's entry 1549 /// consists of a pointer to the instruction itself, and a vector of registers 1550 /// referred to by the instruction that overlap the key register unit. 1551 DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs; 1552 1553 /// Sink Copy instructions unused in the same block close to their uses in 1554 /// successors. 1555 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1556 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1557 }; 1558 } // namespace 1559 1560 char PostRAMachineSinking::ID = 0; 1561 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1562 1563 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1564 "PostRA Machine Sink", false, false) 1565 1566 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1567 const TargetRegisterInfo *TRI) { 1568 LiveRegUnits LiveInRegUnits(*TRI); 1569 LiveInRegUnits.addLiveIns(MBB); 1570 return !LiveInRegUnits.available(Reg); 1571 } 1572 1573 static MachineBasicBlock * 1574 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1575 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1576 unsigned Reg, const TargetRegisterInfo *TRI) { 1577 // Try to find a single sinkable successor in which Reg is live-in. 1578 MachineBasicBlock *BB = nullptr; 1579 for (auto *SI : SinkableBBs) { 1580 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1581 // If BB is set here, Reg is live-in to at least two sinkable successors, 1582 // so quit. 1583 if (BB) 1584 return nullptr; 1585 BB = SI; 1586 } 1587 } 1588 // Reg is not live-in to any sinkable successors. 1589 if (!BB) 1590 return nullptr; 1591 1592 // Check if any register aliased with Reg is live-in in other successors. 1593 for (auto *SI : CurBB.successors()) { 1594 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1595 return nullptr; 1596 } 1597 return BB; 1598 } 1599 1600 static MachineBasicBlock * 1601 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1602 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1603 ArrayRef<unsigned> DefedRegsInCopy, 1604 const TargetRegisterInfo *TRI) { 1605 MachineBasicBlock *SingleBB = nullptr; 1606 for (auto DefReg : DefedRegsInCopy) { 1607 MachineBasicBlock *BB = 1608 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1609 if (!BB || (SingleBB && SingleBB != BB)) 1610 return nullptr; 1611 SingleBB = BB; 1612 } 1613 return SingleBB; 1614 } 1615 1616 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1617 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1618 LiveRegUnits &UsedRegUnits, 1619 const TargetRegisterInfo *TRI) { 1620 for (auto U : UsedOpsInCopy) { 1621 MachineOperand &MO = MI->getOperand(U); 1622 Register SrcReg = MO.getReg(); 1623 if (!UsedRegUnits.available(SrcReg)) { 1624 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1625 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1626 if (UI.killsRegister(SrcReg, TRI)) { 1627 UI.clearRegisterKills(SrcReg, TRI); 1628 MO.setIsKill(true); 1629 break; 1630 } 1631 } 1632 } 1633 } 1634 } 1635 1636 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1637 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1638 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1639 MachineFunction &MF = *SuccBB->getParent(); 1640 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1641 for (unsigned DefReg : DefedRegsInCopy) 1642 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S) 1643 SuccBB->removeLiveIn(*S); 1644 for (auto U : UsedOpsInCopy) { 1645 Register SrcReg = MI->getOperand(U).getReg(); 1646 LaneBitmask Mask; 1647 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) { 1648 Mask |= (*S).second; 1649 } 1650 SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll()); 1651 } 1652 SuccBB->sortUniqueLiveIns(); 1653 } 1654 1655 static bool hasRegisterDependency(MachineInstr *MI, 1656 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1657 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1658 LiveRegUnits &ModifiedRegUnits, 1659 LiveRegUnits &UsedRegUnits) { 1660 bool HasRegDependency = false; 1661 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1662 MachineOperand &MO = MI->getOperand(i); 1663 if (!MO.isReg()) 1664 continue; 1665 Register Reg = MO.getReg(); 1666 if (!Reg) 1667 continue; 1668 if (MO.isDef()) { 1669 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1670 HasRegDependency = true; 1671 break; 1672 } 1673 DefedRegsInCopy.push_back(Reg); 1674 1675 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1676 // For example, we can ignore modifications in reg with undef. However, 1677 // it's not perfectly clear if skipping the internal read is safe in all 1678 // other targets. 1679 } else if (MO.isUse()) { 1680 if (!ModifiedRegUnits.available(Reg)) { 1681 HasRegDependency = true; 1682 break; 1683 } 1684 UsedOpsInCopy.push_back(i); 1685 } 1686 } 1687 return HasRegDependency; 1688 } 1689 1690 static SmallSet<MCRegister, 4> getRegUnits(MCRegister Reg, 1691 const TargetRegisterInfo *TRI) { 1692 SmallSet<MCRegister, 4> RegUnits; 1693 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI) 1694 RegUnits.insert(*RI); 1695 return RegUnits; 1696 } 1697 1698 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1699 MachineFunction &MF, 1700 const TargetRegisterInfo *TRI, 1701 const TargetInstrInfo *TII) { 1702 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1703 // FIXME: For now, we sink only to a successor which has a single predecessor 1704 // so that we can directly sink COPY instructions to the successor without 1705 // adding any new block or branch instruction. 1706 for (MachineBasicBlock *SI : CurBB.successors()) 1707 if (!SI->livein_empty() && SI->pred_size() == 1) 1708 SinkableBBs.insert(SI); 1709 1710 if (SinkableBBs.empty()) 1711 return false; 1712 1713 bool Changed = false; 1714 1715 // Track which registers have been modified and used between the end of the 1716 // block and the current instruction. 1717 ModifiedRegUnits.clear(); 1718 UsedRegUnits.clear(); 1719 SeenDbgInstrs.clear(); 1720 1721 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) { 1722 MachineInstr *MI = &*I; 1723 ++I; 1724 1725 // Track the operand index for use in Copy. 1726 SmallVector<unsigned, 2> UsedOpsInCopy; 1727 // Track the register number defed in Copy. 1728 SmallVector<unsigned, 2> DefedRegsInCopy; 1729 1730 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 1731 // for DBG_VALUEs later, record them when they're encountered. 1732 if (MI->isDebugValue()) { 1733 SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits; 1734 bool IsValid = true; 1735 for (MachineOperand &MO : MI->debug_operands()) { 1736 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) { 1737 // Bail if we can already tell the sink would be rejected, rather 1738 // than needlessly accumulating lots of DBG_VALUEs. 1739 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1740 ModifiedRegUnits, UsedRegUnits)) { 1741 IsValid = false; 1742 break; 1743 } 1744 1745 // Record debug use of each reg unit. 1746 SmallSet<MCRegister, 4> RegUnits = getRegUnits(MO.getReg(), TRI); 1747 for (MCRegister Reg : RegUnits) 1748 MIUnits[Reg].push_back(MO.getReg()); 1749 } 1750 } 1751 if (IsValid) { 1752 for (auto RegOps : MIUnits) 1753 SeenDbgInstrs[RegOps.first].push_back({MI, RegOps.second}); 1754 } 1755 continue; 1756 } 1757 1758 if (MI->isDebugOrPseudoInstr()) 1759 continue; 1760 1761 // Do not move any instruction across function call. 1762 if (MI->isCall()) 1763 return false; 1764 1765 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) { 1766 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1767 TRI); 1768 continue; 1769 } 1770 1771 // Don't sink the COPY if it would violate a register dependency. 1772 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1773 ModifiedRegUnits, UsedRegUnits)) { 1774 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1775 TRI); 1776 continue; 1777 } 1778 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 1779 "Unexpect SrcReg or DefReg"); 1780 MachineBasicBlock *SuccBB = 1781 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 1782 // Don't sink if we cannot find a single sinkable successor in which Reg 1783 // is live-in. 1784 if (!SuccBB) { 1785 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1786 TRI); 1787 continue; 1788 } 1789 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 1790 "Unexpected predecessor"); 1791 1792 // Collect DBG_VALUEs that must sink with this copy. We've previously 1793 // recorded which reg units that DBG_VALUEs read, if this instruction 1794 // writes any of those units then the corresponding DBG_VALUEs must sink. 1795 MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap; 1796 for (auto &MO : MI->operands()) { 1797 if (!MO.isReg() || !MO.isDef()) 1798 continue; 1799 1800 SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI); 1801 for (MCRegister Reg : Units) { 1802 for (auto MIRegs : SeenDbgInstrs.lookup(Reg)) { 1803 auto &Regs = DbgValsToSinkMap[MIRegs.first]; 1804 for (unsigned Reg : MIRegs.second) 1805 Regs.push_back(Reg); 1806 } 1807 } 1808 } 1809 SmallVector<MIRegs, 4> DbgValsToSink(DbgValsToSinkMap.begin(), 1810 DbgValsToSinkMap.end()); 1811 1812 // Clear the kill flag if SrcReg is killed between MI and the end of the 1813 // block. 1814 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 1815 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI(); 1816 performSink(*MI, *SuccBB, InsertPos, DbgValsToSink); 1817 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 1818 1819 Changed = true; 1820 ++NumPostRACopySink; 1821 } 1822 return Changed; 1823 } 1824 1825 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 1826 if (skipFunction(MF.getFunction())) 1827 return false; 1828 1829 bool Changed = false; 1830 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1831 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1832 1833 ModifiedRegUnits.init(*TRI); 1834 UsedRegUnits.init(*TRI); 1835 for (auto &BB : MF) 1836 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 1837 1838 return Changed; 1839 } 1840