xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineSink.cpp (revision 96190b4fef3b4a0cc3ca0606b0c4e3e69a5e6717)
1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass moves instructions into successor blocks when possible, so that
10 // they aren't executed on paths where their results aren't needed.
11 //
12 // This pass is not intended to be a replacement or a complete alternative
13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
14 // constructs that are not exposed before lowering and instruction selection.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/DepthFirstIterator.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/PointerIntPair.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
32 #include "llvm/CodeGen/MachineCycleAnalysis.h"
33 #include "llvm/CodeGen/MachineDominators.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineLoopInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/MachinePostDominators.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/RegisterClassInfo.h"
42 #include "llvm/CodeGen/RegisterPressure.h"
43 #include "llvm/CodeGen/TargetInstrInfo.h"
44 #include "llvm/CodeGen/TargetPassConfig.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSubtargetInfo.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/InitializePasses.h"
51 #include "llvm/MC/MCRegisterInfo.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/BranchProbability.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <utility>
61 #include <vector>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "machine-sink"
66 
67 static cl::opt<bool>
68 SplitEdges("machine-sink-split",
69            cl::desc("Split critical edges during machine sinking"),
70            cl::init(true), cl::Hidden);
71 
72 static cl::opt<bool>
73 UseBlockFreqInfo("machine-sink-bfi",
74            cl::desc("Use block frequency info to find successors to sink"),
75            cl::init(true), cl::Hidden);
76 
77 static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
78     "machine-sink-split-probability-threshold",
79     cl::desc(
80         "Percentage threshold for splitting single-instruction critical edge. "
81         "If the branch threshold is higher than this threshold, we allow "
82         "speculative execution of up to 1 instruction to avoid branching to "
83         "splitted critical edge"),
84     cl::init(40), cl::Hidden);
85 
86 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold(
87     "machine-sink-load-instrs-threshold",
88     cl::desc("Do not try to find alias store for a load if there is a in-path "
89              "block whose instruction number is higher than this threshold."),
90     cl::init(2000), cl::Hidden);
91 
92 static cl::opt<unsigned> SinkLoadBlocksThreshold(
93     "machine-sink-load-blocks-threshold",
94     cl::desc("Do not try to find alias store for a load if the block number in "
95              "the straight line is higher than this threshold."),
96     cl::init(20), cl::Hidden);
97 
98 static cl::opt<bool>
99     SinkInstsIntoCycle("sink-insts-to-avoid-spills",
100                        cl::desc("Sink instructions into cycles to avoid "
101                                 "register spills"),
102                        cl::init(false), cl::Hidden);
103 
104 static cl::opt<unsigned> SinkIntoCycleLimit(
105     "machine-sink-cycle-limit",
106     cl::desc("The maximum number of instructions considered for cycle sinking."),
107     cl::init(50), cl::Hidden);
108 
109 STATISTIC(NumSunk,      "Number of machine instructions sunk");
110 STATISTIC(NumCycleSunk,  "Number of machine instructions sunk into a cycle");
111 STATISTIC(NumSplit,     "Number of critical edges split");
112 STATISTIC(NumCoalesces, "Number of copies coalesced");
113 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
114 
115 namespace {
116 
117   class MachineSinking : public MachineFunctionPass {
118     const TargetSubtargetInfo *STI = nullptr;
119     const TargetInstrInfo *TII = nullptr;
120     const TargetRegisterInfo *TRI = nullptr;
121     MachineRegisterInfo *MRI = nullptr;      // Machine register information
122     MachineDominatorTree *DT = nullptr;      // Machine dominator tree
123     MachinePostDominatorTree *PDT = nullptr; // Machine post dominator tree
124     MachineCycleInfo *CI = nullptr;
125     MachineBlockFrequencyInfo *MBFI = nullptr;
126     const MachineBranchProbabilityInfo *MBPI = nullptr;
127     AliasAnalysis *AA = nullptr;
128     RegisterClassInfo RegClassInfo;
129 
130     // Remember which edges have been considered for breaking.
131     SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
132     CEBCandidates;
133     // Remember which edges we are about to split.
134     // This is different from CEBCandidates since those edges
135     // will be split.
136     SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
137 
138     DenseSet<Register> RegsToClearKillFlags;
139 
140     using AllSuccsCache =
141         DenseMap<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
142 
143     /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is
144     /// post-dominated by another DBG_VALUE of the same variable location.
145     /// This is necessary to detect sequences such as:
146     ///     %0 = someinst
147     ///     DBG_VALUE %0, !123, !DIExpression()
148     ///     %1 = anotherinst
149     ///     DBG_VALUE %1, !123, !DIExpression()
150     /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that
151     /// would re-order assignments.
152     using SeenDbgUser = PointerIntPair<MachineInstr *, 1>;
153 
154     /// Record of DBG_VALUE uses of vregs in a block, so that we can identify
155     /// debug instructions to sink.
156     SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers;
157 
158     /// Record of debug variables that have had their locations set in the
159     /// current block.
160     DenseSet<DebugVariable> SeenDbgVars;
161 
162     DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool>
163         HasStoreCache;
164 
165     DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>,
166              SmallVector<MachineInstr *>>
167         StoreInstrCache;
168 
169     /// Cached BB's register pressure.
170     DenseMap<const MachineBasicBlock *, std::vector<unsigned>>
171         CachedRegisterPressure;
172 
173     bool EnableSinkAndFold;
174 
175   public:
176     static char ID; // Pass identification
177 
178     MachineSinking() : MachineFunctionPass(ID) {
179       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
180     }
181 
182     bool runOnMachineFunction(MachineFunction &MF) override;
183 
184     void getAnalysisUsage(AnalysisUsage &AU) const override {
185       MachineFunctionPass::getAnalysisUsage(AU);
186       AU.addRequired<AAResultsWrapperPass>();
187       AU.addRequired<MachineDominatorTree>();
188       AU.addRequired<MachinePostDominatorTree>();
189       AU.addRequired<MachineCycleInfoWrapperPass>();
190       AU.addRequired<MachineBranchProbabilityInfo>();
191       AU.addPreserved<MachineCycleInfoWrapperPass>();
192       AU.addPreserved<MachineLoopInfo>();
193       if (UseBlockFreqInfo)
194         AU.addRequired<MachineBlockFrequencyInfo>();
195       AU.addRequired<TargetPassConfig>();
196     }
197 
198     void releaseMemory() override {
199       CEBCandidates.clear();
200     }
201 
202   private:
203     bool ProcessBlock(MachineBasicBlock &MBB);
204     void ProcessDbgInst(MachineInstr &MI);
205     bool isWorthBreakingCriticalEdge(MachineInstr &MI,
206                                      MachineBasicBlock *From,
207                                      MachineBasicBlock *To);
208 
209     bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To,
210                          MachineInstr &MI);
211 
212     /// Postpone the splitting of the given critical
213     /// edge (\p From, \p To).
214     ///
215     /// We do not split the edges on the fly. Indeed, this invalidates
216     /// the dominance information and thus triggers a lot of updates
217     /// of that information underneath.
218     /// Instead, we postpone all the splits after each iteration of
219     /// the main loop. That way, the information is at least valid
220     /// for the lifetime of an iteration.
221     ///
222     /// \return True if the edge is marked as toSplit, false otherwise.
223     /// False can be returned if, for instance, this is not profitable.
224     bool PostponeSplitCriticalEdge(MachineInstr &MI,
225                                    MachineBasicBlock *From,
226                                    MachineBasicBlock *To,
227                                    bool BreakPHIEdge);
228     bool SinkInstruction(MachineInstr &MI, bool &SawStore,
229                          AllSuccsCache &AllSuccessors);
230 
231     /// If we sink a COPY inst, some debug users of it's destination may no
232     /// longer be dominated by the COPY, and will eventually be dropped.
233     /// This is easily rectified by forwarding the non-dominated debug uses
234     /// to the copy source.
235     void SalvageUnsunkDebugUsersOfCopy(MachineInstr &,
236                                        MachineBasicBlock *TargetBlock);
237     bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB,
238                                  MachineBasicBlock *DefMBB, bool &BreakPHIEdge,
239                                  bool &LocalUse) const;
240     MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
241                bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
242 
243     void FindCycleSinkCandidates(MachineCycle *Cycle, MachineBasicBlock *BB,
244                                  SmallVectorImpl<MachineInstr *> &Candidates);
245     bool SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I);
246 
247     bool isProfitableToSinkTo(Register Reg, MachineInstr &MI,
248                               MachineBasicBlock *MBB,
249                               MachineBasicBlock *SuccToSinkTo,
250                               AllSuccsCache &AllSuccessors);
251 
252     bool PerformTrivialForwardCoalescing(MachineInstr &MI,
253                                          MachineBasicBlock *MBB);
254 
255     bool PerformSinkAndFold(MachineInstr &MI, MachineBasicBlock *MBB);
256 
257     SmallVector<MachineBasicBlock *, 4> &
258     GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
259                            AllSuccsCache &AllSuccessors) const;
260 
261     std::vector<unsigned> &getBBRegisterPressure(const MachineBasicBlock &MBB);
262 
263     bool registerPressureSetExceedsLimit(unsigned NRegs,
264                                          const TargetRegisterClass *RC,
265                                          const MachineBasicBlock &MBB);
266   };
267 
268 } // end anonymous namespace
269 
270 char MachineSinking::ID = 0;
271 
272 char &llvm::MachineSinkingID = MachineSinking::ID;
273 
274 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
275                       "Machine code sinking", false, false)
276 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
277 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
278 INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass)
279 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
280 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
281                     "Machine code sinking", false, false)
282 
283 /// Return true if a target defined block prologue instruction interferes
284 /// with a sink candidate.
285 static bool blockPrologueInterferes(const MachineBasicBlock *BB,
286                                     MachineBasicBlock::const_iterator End,
287                                     const MachineInstr &MI,
288                                     const TargetRegisterInfo *TRI,
289                                     const TargetInstrInfo *TII,
290                                     const MachineRegisterInfo *MRI) {
291   for (MachineBasicBlock::const_iterator PI = BB->getFirstNonPHI(); PI != End;
292        ++PI) {
293     // Only check target defined prologue instructions
294     if (!TII->isBasicBlockPrologue(*PI))
295       continue;
296     for (auto &MO : MI.operands()) {
297       if (!MO.isReg())
298         continue;
299       Register Reg = MO.getReg();
300       if (!Reg)
301         continue;
302       if (MO.isUse()) {
303         if (Reg.isPhysical() &&
304             (TII->isIgnorableUse(MO) || (MRI && MRI->isConstantPhysReg(Reg))))
305           continue;
306         if (PI->modifiesRegister(Reg, TRI))
307           return true;
308       } else {
309         if (PI->readsRegister(Reg, TRI))
310           return true;
311         // Check for interference with non-dead defs
312         auto *DefOp = PI->findRegisterDefOperand(Reg, false, true, TRI);
313         if (DefOp && !DefOp->isDead())
314           return true;
315       }
316     }
317   }
318 
319   return false;
320 }
321 
322 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
323                                                      MachineBasicBlock *MBB) {
324   if (!MI.isCopy())
325     return false;
326 
327   Register SrcReg = MI.getOperand(1).getReg();
328   Register DstReg = MI.getOperand(0).getReg();
329   if (!SrcReg.isVirtual() || !DstReg.isVirtual() ||
330       !MRI->hasOneNonDBGUse(SrcReg))
331     return false;
332 
333   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
334   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
335   if (SRC != DRC)
336     return false;
337 
338   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
339   if (DefMI->isCopyLike())
340     return false;
341   LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
342   LLVM_DEBUG(dbgs() << "*** to: " << MI);
343   MRI->replaceRegWith(DstReg, SrcReg);
344   MI.eraseFromParent();
345 
346   // Conservatively, clear any kill flags, since it's possible that they are no
347   // longer correct.
348   MRI->clearKillFlags(SrcReg);
349 
350   ++NumCoalesces;
351   return true;
352 }
353 
354 bool MachineSinking::PerformSinkAndFold(MachineInstr &MI,
355                                         MachineBasicBlock *MBB) {
356   if (MI.isCopy() || MI.mayLoadOrStore() ||
357       MI.getOpcode() == TargetOpcode::REG_SEQUENCE)
358     return false;
359 
360   // Don't sink instructions that the target prefers not to sink.
361   if (!TII->shouldSink(MI))
362     return false;
363 
364   // Check if it's safe to move the instruction.
365   bool SawStore = true;
366   if (!MI.isSafeToMove(AA, SawStore))
367     return false;
368 
369   // Convergent operations may not be made control-dependent on additional
370   // values.
371   if (MI.isConvergent())
372     return false;
373 
374   // Don't sink defs/uses of hard registers or if the instruction defines more
375   // than one register.
376   // Don't sink more than two register uses - it'll cover most of the cases and
377   // greatly simplifies the register pressure checks.
378   Register DefReg;
379   Register UsedRegA, UsedRegB;
380   for (const MachineOperand &MO : MI.operands()) {
381     if (MO.isImm() || MO.isRegMask() || MO.isRegLiveOut() || MO.isMetadata() ||
382         MO.isMCSymbol() || MO.isDbgInstrRef() || MO.isCFIIndex() ||
383         MO.isIntrinsicID() || MO.isPredicate() || MO.isShuffleMask())
384       continue;
385     if (!MO.isReg())
386       return false;
387 
388     Register Reg = MO.getReg();
389     if (Reg == 0)
390       continue;
391 
392     if (Reg.isVirtual()) {
393       if (MO.isDef()) {
394         if (DefReg)
395           return false;
396         DefReg = Reg;
397         continue;
398       }
399 
400       if (UsedRegA == 0)
401         UsedRegA = Reg;
402       else if (UsedRegB == 0)
403         UsedRegB = Reg;
404       else
405         return false;
406       continue;
407     }
408 
409     if (Reg.isPhysical() &&
410         (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO)))
411       continue;
412 
413     return false;
414   }
415 
416   // Scan uses of the destination register. Every use, except the last, must be
417   // a copy, with a chain of copies terminating with either a copy into a hard
418   // register, or a load/store instruction where the use is part of the
419   // address (*not* the stored value).
420   using SinkInfo = std::pair<MachineInstr *, ExtAddrMode>;
421   SmallVector<SinkInfo> SinkInto;
422   SmallVector<Register> Worklist;
423 
424   const TargetRegisterClass *RC = MRI->getRegClass(DefReg);
425   const TargetRegisterClass *RCA =
426       UsedRegA == 0 ? nullptr : MRI->getRegClass(UsedRegA);
427   const TargetRegisterClass *RCB =
428       UsedRegB == 0 ? nullptr : MRI->getRegClass(UsedRegB);
429 
430   Worklist.push_back(DefReg);
431   while (!Worklist.empty()) {
432     Register Reg = Worklist.pop_back_val();
433 
434     for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
435       ExtAddrMode MaybeAM;
436       MachineInstr &UseInst = *MO.getParent();
437       if (UseInst.isCopy()) {
438         Register DstReg;
439         if (const MachineOperand &O = UseInst.getOperand(0); O.isReg())
440           DstReg = O.getReg();
441         if (DstReg == 0)
442           return false;
443         if (DstReg.isVirtual()) {
444           Worklist.push_back(DstReg);
445           continue;
446         }
447         // If we are going to replace a copy, the original instruction must be
448         // as cheap as a copy.
449         if (!TII->isAsCheapAsAMove(MI))
450           return false;
451         // The hard register must be in the register class of the original
452         // instruction's destination register.
453         if (!RC->contains(DstReg))
454           return false;
455       } else if (UseInst.mayLoadOrStore()) {
456         ExtAddrMode AM;
457         if (!TII->canFoldIntoAddrMode(UseInst, Reg, MI, AM))
458           return false;
459         MaybeAM = AM;
460       } else {
461         return false;
462       }
463 
464       if (UseInst.getParent() != MI.getParent()) {
465         // If the register class of the register we are replacing is a superset
466         // of any of the register classes of the operands of the materialized
467         // instruction don't consider that live range extended.
468         const TargetRegisterClass *RCS = MRI->getRegClass(Reg);
469         if (RCA && RCA->hasSuperClassEq(RCS))
470           RCA = nullptr;
471         else if (RCB && RCB->hasSuperClassEq(RCS))
472           RCB = nullptr;
473         if (RCA || RCB) {
474           if (RCA == nullptr) {
475             RCA = RCB;
476             RCB = nullptr;
477           }
478 
479           unsigned NRegs = !!RCA + !!RCB;
480           if (RCA == RCB)
481             RCB = nullptr;
482 
483           // Check we don't exceed register pressure at the destination.
484           const MachineBasicBlock &MBB = *UseInst.getParent();
485           if (RCB == nullptr) {
486             if (registerPressureSetExceedsLimit(NRegs, RCA, MBB))
487               return false;
488           } else if (registerPressureSetExceedsLimit(1, RCA, MBB) ||
489                      registerPressureSetExceedsLimit(1, RCB, MBB)) {
490             return false;
491           }
492         }
493       }
494 
495       SinkInto.emplace_back(&UseInst, MaybeAM);
496     }
497   }
498 
499   if (SinkInto.empty())
500     return false;
501 
502   // Now we know we can fold the instruction in all its users.
503   for (auto &[SinkDst, MaybeAM] : SinkInto) {
504     MachineInstr *New = nullptr;
505     LLVM_DEBUG(dbgs() << "Sinking copy of"; MI.dump(); dbgs() << "into";
506                SinkDst->dump());
507     if (SinkDst->isCopy()) {
508       // TODO: After performing the sink-and-fold, the original instruction is
509       // deleted. Its value is still available (in a hard register), so if there
510       // are debug instructions which refer to the (now deleted) virtual
511       // register they could be updated to refer to the hard register, in
512       // principle. However, it's not clear how to do that, moreover in some
513       // cases the debug instructions may need to be replicated proportionally
514       // to the number of the COPY instructions replaced and in some extreme
515       // cases we can end up with quadratic increase in the number of debug
516       // instructions.
517 
518       // Sink a copy of the instruction, replacing a COPY instruction.
519       MachineBasicBlock::iterator InsertPt = SinkDst->getIterator();
520       Register DstReg = SinkDst->getOperand(0).getReg();
521       TII->reMaterialize(*SinkDst->getParent(), InsertPt, DstReg, 0, MI, *TRI);
522       New = &*std::prev(InsertPt);
523       if (!New->getDebugLoc())
524         New->setDebugLoc(SinkDst->getDebugLoc());
525 
526       // The operand registers of the "sunk" instruction have their live range
527       // extended and their kill flags may no longer be correct. Conservatively
528       // clear the kill flags.
529       if (UsedRegA)
530         MRI->clearKillFlags(UsedRegA);
531       if (UsedRegB)
532         MRI->clearKillFlags(UsedRegB);
533     } else {
534       // Fold instruction into the addressing mode of a memory instruction.
535       New = TII->emitLdStWithAddr(*SinkDst, MaybeAM);
536 
537       // The registers of the addressing mode may have their live range extended
538       // and their kill flags may no longer be correct. Conservatively clear the
539       // kill flags.
540       if (Register R = MaybeAM.BaseReg; R.isValid() && R.isVirtual())
541         MRI->clearKillFlags(R);
542       if (Register R = MaybeAM.ScaledReg; R.isValid() && R.isVirtual())
543         MRI->clearKillFlags(R);
544     }
545     LLVM_DEBUG(dbgs() << "yielding"; New->dump());
546     // Clear the StoreInstrCache, since we may invalidate it by erasing.
547     if (SinkDst->mayStore() && !SinkDst->hasOrderedMemoryRef())
548       StoreInstrCache.clear();
549     SinkDst->eraseFromParent();
550   }
551 
552   // Collect operands that need to be cleaned up because the registers no longer
553   // exist (in COPYs and debug instructions). We cannot delete instructions or
554   // clear operands while traversing register uses.
555   SmallVector<MachineOperand *> Cleanup;
556   Worklist.push_back(DefReg);
557   while (!Worklist.empty()) {
558     Register Reg = Worklist.pop_back_val();
559     for (MachineOperand &MO : MRI->use_operands(Reg)) {
560       MachineInstr *U = MO.getParent();
561       assert((U->isCopy() || U->isDebugInstr()) &&
562              "Only debug uses and copies must remain");
563       if (U->isCopy())
564         Worklist.push_back(U->getOperand(0).getReg());
565       Cleanup.push_back(&MO);
566     }
567   }
568 
569   // Delete the dead COPYs and clear operands in debug instructions
570   for (MachineOperand *MO : Cleanup) {
571     MachineInstr *I = MO->getParent();
572     if (I->isCopy()) {
573       I->eraseFromParent();
574     } else {
575       MO->setReg(0);
576       MO->setSubReg(0);
577     }
578   }
579 
580   MI.eraseFromParent();
581   return true;
582 }
583 
584 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
585 /// occur in blocks dominated by the specified block. If any use is in the
586 /// definition block, then return false since it is never legal to move def
587 /// after uses.
588 bool MachineSinking::AllUsesDominatedByBlock(Register Reg,
589                                              MachineBasicBlock *MBB,
590                                              MachineBasicBlock *DefMBB,
591                                              bool &BreakPHIEdge,
592                                              bool &LocalUse) const {
593   assert(Reg.isVirtual() && "Only makes sense for vregs");
594 
595   // Ignore debug uses because debug info doesn't affect the code.
596   if (MRI->use_nodbg_empty(Reg))
597     return true;
598 
599   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
600   // into and they are all PHI nodes. In this case, machine-sink must break
601   // the critical edge first. e.g.
602   //
603   // %bb.1:
604   //   Predecessors according to CFG: %bb.0
605   //     ...
606   //     %def = DEC64_32r %x, implicit-def dead %eflags
607   //     ...
608   //     JE_4 <%bb.37>, implicit %eflags
609   //   Successors according to CFG: %bb.37 %bb.2
610   //
611   // %bb.2:
612   //     %p = PHI %y, %bb.0, %def, %bb.1
613   if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) {
614         MachineInstr *UseInst = MO.getParent();
615         unsigned OpNo = MO.getOperandNo();
616         MachineBasicBlock *UseBlock = UseInst->getParent();
617         return UseBlock == MBB && UseInst->isPHI() &&
618                UseInst->getOperand(OpNo + 1).getMBB() == DefMBB;
619       })) {
620     BreakPHIEdge = true;
621     return true;
622   }
623 
624   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
625     // Determine the block of the use.
626     MachineInstr *UseInst = MO.getParent();
627     unsigned OpNo = &MO - &UseInst->getOperand(0);
628     MachineBasicBlock *UseBlock = UseInst->getParent();
629     if (UseInst->isPHI()) {
630       // PHI nodes use the operand in the predecessor block, not the block with
631       // the PHI.
632       UseBlock = UseInst->getOperand(OpNo+1).getMBB();
633     } else if (UseBlock == DefMBB) {
634       LocalUse = true;
635       return false;
636     }
637 
638     // Check that it dominates.
639     if (!DT->dominates(MBB, UseBlock))
640       return false;
641   }
642 
643   return true;
644 }
645 
646 /// Return true if this machine instruction loads from global offset table or
647 /// constant pool.
648 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
649   assert(MI.mayLoad() && "Expected MI that loads!");
650 
651   // If we lost memory operands, conservatively assume that the instruction
652   // reads from everything..
653   if (MI.memoperands_empty())
654     return true;
655 
656   for (MachineMemOperand *MemOp : MI.memoperands())
657     if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
658       if (PSV->isGOT() || PSV->isConstantPool())
659         return true;
660 
661   return false;
662 }
663 
664 void MachineSinking::FindCycleSinkCandidates(
665     MachineCycle *Cycle, MachineBasicBlock *BB,
666     SmallVectorImpl<MachineInstr *> &Candidates) {
667   for (auto &MI : *BB) {
668     LLVM_DEBUG(dbgs() << "CycleSink: Analysing candidate: " << MI);
669     if (!TII->shouldSink(MI)) {
670       LLVM_DEBUG(dbgs() << "CycleSink: Instruction not a candidate for this "
671                            "target\n");
672       continue;
673     }
674     if (!isCycleInvariant(Cycle, MI)) {
675       LLVM_DEBUG(dbgs() << "CycleSink: Instruction is not cycle invariant\n");
676       continue;
677     }
678     bool DontMoveAcrossStore = true;
679     if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) {
680       LLVM_DEBUG(dbgs() << "CycleSink: Instruction not safe to move.\n");
681       continue;
682     }
683     if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) {
684       LLVM_DEBUG(dbgs() << "CycleSink: Dont sink GOT or constant pool loads\n");
685       continue;
686     }
687     if (MI.isConvergent())
688       continue;
689 
690     const MachineOperand &MO = MI.getOperand(0);
691     if (!MO.isReg() || !MO.getReg() || !MO.isDef())
692       continue;
693     if (!MRI->hasOneDef(MO.getReg()))
694       continue;
695 
696     LLVM_DEBUG(dbgs() << "CycleSink: Instruction added as candidate.\n");
697     Candidates.push_back(&MI);
698   }
699 }
700 
701 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
702   if (skipFunction(MF.getFunction()))
703     return false;
704 
705   LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
706 
707   STI = &MF.getSubtarget();
708   TII = STI->getInstrInfo();
709   TRI = STI->getRegisterInfo();
710   MRI = &MF.getRegInfo();
711   DT = &getAnalysis<MachineDominatorTree>();
712   PDT = &getAnalysis<MachinePostDominatorTree>();
713   CI = &getAnalysis<MachineCycleInfoWrapperPass>().getCycleInfo();
714   MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
715   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
716   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
717   RegClassInfo.runOnMachineFunction(MF);
718   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
719   EnableSinkAndFold = PassConfig->getEnableSinkAndFold();
720 
721   bool EverMadeChange = false;
722 
723   while (true) {
724     bool MadeChange = false;
725 
726     // Process all basic blocks.
727     CEBCandidates.clear();
728     ToSplit.clear();
729     for (auto &MBB: MF)
730       MadeChange |= ProcessBlock(MBB);
731 
732     // If we have anything we marked as toSplit, split it now.
733     for (const auto &Pair : ToSplit) {
734       auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
735       if (NewSucc != nullptr) {
736         LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
737                           << printMBBReference(*Pair.first) << " -- "
738                           << printMBBReference(*NewSucc) << " -- "
739                           << printMBBReference(*Pair.second) << '\n');
740         if (MBFI)
741           MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI);
742 
743         MadeChange = true;
744         ++NumSplit;
745         CI->splitCriticalEdge(Pair.first, Pair.second, NewSucc);
746       } else
747         LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
748     }
749     // If this iteration over the code changed anything, keep iterating.
750     if (!MadeChange) break;
751     EverMadeChange = true;
752   }
753 
754   if (SinkInstsIntoCycle) {
755     SmallVector<MachineCycle *, 8> Cycles(CI->toplevel_begin(),
756                                           CI->toplevel_end());
757     for (auto *Cycle : Cycles) {
758       MachineBasicBlock *Preheader = Cycle->getCyclePreheader();
759       if (!Preheader) {
760         LLVM_DEBUG(dbgs() << "CycleSink: Can't find preheader\n");
761         continue;
762       }
763       SmallVector<MachineInstr *, 8> Candidates;
764       FindCycleSinkCandidates(Cycle, Preheader, Candidates);
765 
766       // Walk the candidates in reverse order so that we start with the use
767       // of a def-use chain, if there is any.
768       // TODO: Sort the candidates using a cost-model.
769       unsigned i = 0;
770       for (MachineInstr *I : llvm::reverse(Candidates)) {
771         if (i++ == SinkIntoCycleLimit) {
772           LLVM_DEBUG(dbgs() << "CycleSink:   Limit reached of instructions to "
773                                "be analysed.");
774           break;
775         }
776 
777         if (!SinkIntoCycle(Cycle, *I))
778           break;
779         EverMadeChange = true;
780         ++NumCycleSunk;
781       }
782     }
783   }
784 
785   HasStoreCache.clear();
786   StoreInstrCache.clear();
787 
788   // Now clear any kill flags for recorded registers.
789   for (auto I : RegsToClearKillFlags)
790     MRI->clearKillFlags(I);
791   RegsToClearKillFlags.clear();
792 
793   return EverMadeChange;
794 }
795 
796 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
797   if ((!EnableSinkAndFold && MBB.succ_size() <= 1) || MBB.empty())
798     return false;
799 
800   // Don't bother sinking code out of unreachable blocks. In addition to being
801   // unprofitable, it can also lead to infinite looping, because in an
802   // unreachable cycle there may be nowhere to stop.
803   if (!DT->isReachableFromEntry(&MBB)) return false;
804 
805   bool MadeChange = false;
806 
807   // Cache all successors, sorted by frequency info and cycle depth.
808   AllSuccsCache AllSuccessors;
809 
810   // Walk the basic block bottom-up.  Remember if we saw a store.
811   MachineBasicBlock::iterator I = MBB.end();
812   --I;
813   bool ProcessedBegin, SawStore = false;
814   do {
815     MachineInstr &MI = *I;  // The instruction to sink.
816 
817     // Predecrement I (if it's not begin) so that it isn't invalidated by
818     // sinking.
819     ProcessedBegin = I == MBB.begin();
820     if (!ProcessedBegin)
821       --I;
822 
823     if (MI.isDebugOrPseudoInstr()) {
824       if (MI.isDebugValue())
825         ProcessDbgInst(MI);
826       continue;
827     }
828 
829     if (EnableSinkAndFold && PerformSinkAndFold(MI, &MBB)) {
830       MadeChange = true;
831       continue;
832     }
833 
834     // Can't sink anything out of a block that has less than two successors.
835     if (MBB.succ_size() <= 1)
836       continue;
837 
838     if (PerformTrivialForwardCoalescing(MI, &MBB)) {
839       MadeChange = true;
840       continue;
841     }
842 
843     if (SinkInstruction(MI, SawStore, AllSuccessors)) {
844       ++NumSunk;
845       MadeChange = true;
846     }
847 
848     // If we just processed the first instruction in the block, we're done.
849   } while (!ProcessedBegin);
850 
851   SeenDbgUsers.clear();
852   SeenDbgVars.clear();
853   // recalculate the bb register pressure after sinking one BB.
854   CachedRegisterPressure.clear();
855   return MadeChange;
856 }
857 
858 void MachineSinking::ProcessDbgInst(MachineInstr &MI) {
859   // When we see DBG_VALUEs for registers, record any vreg it reads, so that
860   // we know what to sink if the vreg def sinks.
861   assert(MI.isDebugValue() && "Expected DBG_VALUE for processing");
862 
863   DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
864                     MI.getDebugLoc()->getInlinedAt());
865   bool SeenBefore = SeenDbgVars.contains(Var);
866 
867   for (MachineOperand &MO : MI.debug_operands()) {
868     if (MO.isReg() && MO.getReg().isVirtual())
869       SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore));
870   }
871 
872   // Record the variable for any DBG_VALUE, to avoid re-ordering any of them.
873   SeenDbgVars.insert(Var);
874 }
875 
876 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
877                                                  MachineBasicBlock *From,
878                                                  MachineBasicBlock *To) {
879   // FIXME: Need much better heuristics.
880 
881   // If the pass has already considered breaking this edge (during this pass
882   // through the function), then let's go ahead and break it. This means
883   // sinking multiple "cheap" instructions into the same block.
884   if (!CEBCandidates.insert(std::make_pair(From, To)).second)
885     return true;
886 
887   if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
888     return true;
889 
890   if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
891       BranchProbability(SplitEdgeProbabilityThreshold, 100))
892     return true;
893 
894   // MI is cheap, we probably don't want to break the critical edge for it.
895   // However, if this would allow some definitions of its source operands
896   // to be sunk then it's probably worth it.
897   for (const MachineOperand &MO : MI.all_uses()) {
898     Register Reg = MO.getReg();
899     if (Reg == 0)
900       continue;
901 
902     // We don't move live definitions of physical registers,
903     // so sinking their uses won't enable any opportunities.
904     if (Reg.isPhysical())
905       continue;
906 
907     // If this instruction is the only user of a virtual register,
908     // check if breaking the edge will enable sinking
909     // both this instruction and the defining instruction.
910     if (MRI->hasOneNonDBGUse(Reg)) {
911       // If the definition resides in same MBB,
912       // claim it's likely we can sink these together.
913       // If definition resides elsewhere, we aren't
914       // blocking it from being sunk so don't break the edge.
915       MachineInstr *DefMI = MRI->getVRegDef(Reg);
916       if (DefMI->getParent() == MI.getParent())
917         return true;
918     }
919   }
920 
921   return false;
922 }
923 
924 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
925                                                MachineBasicBlock *FromBB,
926                                                MachineBasicBlock *ToBB,
927                                                bool BreakPHIEdge) {
928   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
929     return false;
930 
931   // Avoid breaking back edge. From == To means backedge for single BB cycle.
932   if (!SplitEdges || FromBB == ToBB)
933     return false;
934 
935   MachineCycle *FromCycle = CI->getCycle(FromBB);
936   MachineCycle *ToCycle = CI->getCycle(ToBB);
937 
938   // Check for backedges of more "complex" cycles.
939   if (FromCycle == ToCycle && FromCycle &&
940       (!FromCycle->isReducible() || FromCycle->getHeader() == ToBB))
941     return false;
942 
943   // It's not always legal to break critical edges and sink the computation
944   // to the edge.
945   //
946   // %bb.1:
947   // v1024
948   // Beq %bb.3
949   // <fallthrough>
950   // %bb.2:
951   // ... no uses of v1024
952   // <fallthrough>
953   // %bb.3:
954   // ...
955   //       = v1024
956   //
957   // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
958   //
959   // %bb.1:
960   // ...
961   // Bne %bb.2
962   // %bb.4:
963   // v1024 =
964   // B %bb.3
965   // %bb.2:
966   // ... no uses of v1024
967   // <fallthrough>
968   // %bb.3:
969   // ...
970   //       = v1024
971   //
972   // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
973   // flow. We need to ensure the new basic block where the computation is
974   // sunk to dominates all the uses.
975   // It's only legal to break critical edge and sink the computation to the
976   // new block if all the predecessors of "To", except for "From", are
977   // not dominated by "From". Given SSA property, this means these
978   // predecessors are dominated by "To".
979   //
980   // There is no need to do this check if all the uses are PHI nodes. PHI
981   // sources are only defined on the specific predecessor edges.
982   if (!BreakPHIEdge) {
983     for (MachineBasicBlock *Pred : ToBB->predecessors())
984       if (Pred != FromBB && !DT->dominates(ToBB, Pred))
985         return false;
986   }
987 
988   ToSplit.insert(std::make_pair(FromBB, ToBB));
989 
990   return true;
991 }
992 
993 std::vector<unsigned> &
994 MachineSinking::getBBRegisterPressure(const MachineBasicBlock &MBB) {
995   // Currently to save compiling time, MBB's register pressure will not change
996   // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's
997   // register pressure is changed after sinking any instructions into it.
998   // FIXME: need a accurate and cheap register pressure estiminate model here.
999   auto RP = CachedRegisterPressure.find(&MBB);
1000   if (RP != CachedRegisterPressure.end())
1001     return RP->second;
1002 
1003   RegionPressure Pressure;
1004   RegPressureTracker RPTracker(Pressure);
1005 
1006   // Initialize the register pressure tracker.
1007   RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(),
1008                  /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
1009 
1010   for (MachineBasicBlock::const_iterator MII = MBB.instr_end(),
1011                                          MIE = MBB.instr_begin();
1012        MII != MIE; --MII) {
1013     const MachineInstr &MI = *std::prev(MII);
1014     if (MI.isDebugInstr() || MI.isPseudoProbe())
1015       continue;
1016     RegisterOperands RegOpers;
1017     RegOpers.collect(MI, *TRI, *MRI, false, false);
1018     RPTracker.recedeSkipDebugValues();
1019     assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!");
1020     RPTracker.recede(RegOpers);
1021   }
1022 
1023   RPTracker.closeRegion();
1024   auto It = CachedRegisterPressure.insert(
1025       std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure));
1026   return It.first->second;
1027 }
1028 
1029 bool MachineSinking::registerPressureSetExceedsLimit(
1030     unsigned NRegs, const TargetRegisterClass *RC,
1031     const MachineBasicBlock &MBB) {
1032   unsigned Weight = NRegs * TRI->getRegClassWeight(RC).RegWeight;
1033   const int *PS = TRI->getRegClassPressureSets(RC);
1034   std::vector<unsigned> BBRegisterPressure = getBBRegisterPressure(MBB);
1035   for (; *PS != -1; PS++)
1036     if (Weight + BBRegisterPressure[*PS] >=
1037         TRI->getRegPressureSetLimit(*MBB.getParent(), *PS))
1038       return true;
1039   return false;
1040 }
1041 
1042 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
1043 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI,
1044                                           MachineBasicBlock *MBB,
1045                                           MachineBasicBlock *SuccToSinkTo,
1046                                           AllSuccsCache &AllSuccessors) {
1047   assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
1048 
1049   if (MBB == SuccToSinkTo)
1050     return false;
1051 
1052   // It is profitable if SuccToSinkTo does not post dominate current block.
1053   if (!PDT->dominates(SuccToSinkTo, MBB))
1054     return true;
1055 
1056   // It is profitable to sink an instruction from a deeper cycle to a shallower
1057   // cycle, even if the latter post-dominates the former (PR21115).
1058   if (CI->getCycleDepth(MBB) > CI->getCycleDepth(SuccToSinkTo))
1059     return true;
1060 
1061   // Check if only use in post dominated block is PHI instruction.
1062   bool NonPHIUse = false;
1063   for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
1064     MachineBasicBlock *UseBlock = UseInst.getParent();
1065     if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
1066       NonPHIUse = true;
1067   }
1068   if (!NonPHIUse)
1069     return true;
1070 
1071   // If SuccToSinkTo post dominates then also it may be profitable if MI
1072   // can further profitably sinked into another block in next round.
1073   bool BreakPHIEdge = false;
1074   // FIXME - If finding successor is compile time expensive then cache results.
1075   if (MachineBasicBlock *MBB2 =
1076           FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
1077     return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
1078 
1079   MachineCycle *MCycle = CI->getCycle(MBB);
1080 
1081   // If the instruction is not inside a cycle, it is not profitable to sink MI to
1082   // a post dominate block SuccToSinkTo.
1083   if (!MCycle)
1084     return false;
1085 
1086   // If this instruction is inside a Cycle and sinking this instruction can make
1087   // more registers live range shorten, it is still prifitable.
1088   for (const MachineOperand &MO : MI.operands()) {
1089     // Ignore non-register operands.
1090     if (!MO.isReg())
1091       continue;
1092     Register Reg = MO.getReg();
1093     if (Reg == 0)
1094       continue;
1095 
1096     if (Reg.isPhysical()) {
1097       // Don't handle non-constant and non-ignorable physical register uses.
1098       if (MO.isUse() && !MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO))
1099         return false;
1100       continue;
1101     }
1102 
1103     // Users for the defs are all dominated by SuccToSinkTo.
1104     if (MO.isDef()) {
1105       // This def register's live range is shortened after sinking.
1106       bool LocalUse = false;
1107       if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge,
1108                                    LocalUse))
1109         return false;
1110     } else {
1111       MachineInstr *DefMI = MRI->getVRegDef(Reg);
1112       if (!DefMI)
1113         continue;
1114       MachineCycle *Cycle = CI->getCycle(DefMI->getParent());
1115       // DefMI is defined outside of cycle. There should be no live range
1116       // impact for this operand. Defination outside of cycle means:
1117       // 1: defination is outside of cycle.
1118       // 2: defination is in this cycle, but it is a PHI in the cycle header.
1119       if (Cycle != MCycle || (DefMI->isPHI() && Cycle && Cycle->isReducible() &&
1120                               Cycle->getHeader() == DefMI->getParent()))
1121         continue;
1122       // The DefMI is defined inside the cycle.
1123       // If sinking this operand makes some register pressure set exceed limit,
1124       // it is not profitable.
1125       if (registerPressureSetExceedsLimit(1, MRI->getRegClass(Reg),
1126                                           *SuccToSinkTo)) {
1127         LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable.");
1128         return false;
1129       }
1130     }
1131   }
1132 
1133   // If MI is in cycle and all its operands are alive across the whole cycle or
1134   // if no operand sinking make register pressure set exceed limit, it is
1135   // profitable to sink MI.
1136   return true;
1137 }
1138 
1139 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
1140 /// computing it if it was not already cached.
1141 SmallVector<MachineBasicBlock *, 4> &
1142 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
1143                                        AllSuccsCache &AllSuccessors) const {
1144   // Do we have the sorted successors in cache ?
1145   auto Succs = AllSuccessors.find(MBB);
1146   if (Succs != AllSuccessors.end())
1147     return Succs->second;
1148 
1149   SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors());
1150 
1151   // Handle cases where sinking can happen but where the sink point isn't a
1152   // successor. For example:
1153   //
1154   //   x = computation
1155   //   if () {} else {}
1156   //   use x
1157   //
1158   for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) {
1159     // DomTree children of MBB that have MBB as immediate dominator are added.
1160     if (DTChild->getIDom()->getBlock() == MI.getParent() &&
1161         // Skip MBBs already added to the AllSuccs vector above.
1162         !MBB->isSuccessor(DTChild->getBlock()))
1163       AllSuccs.push_back(DTChild->getBlock());
1164   }
1165 
1166   // Sort Successors according to their cycle depth or block frequency info.
1167   llvm::stable_sort(
1168       AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
1169         uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
1170         uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
1171         bool HasBlockFreq = LHSFreq != 0 || RHSFreq != 0;
1172         return HasBlockFreq ? LHSFreq < RHSFreq
1173                             : CI->getCycleDepth(L) < CI->getCycleDepth(R);
1174       });
1175 
1176   auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
1177 
1178   return it.first->second;
1179 }
1180 
1181 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
1182 MachineBasicBlock *
1183 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
1184                                  bool &BreakPHIEdge,
1185                                  AllSuccsCache &AllSuccessors) {
1186   assert (MBB && "Invalid MachineBasicBlock!");
1187 
1188   // loop over all the operands of the specified instruction.  If there is
1189   // anything we can't handle, bail out.
1190 
1191   // SuccToSinkTo - This is the successor to sink this instruction to, once we
1192   // decide.
1193   MachineBasicBlock *SuccToSinkTo = nullptr;
1194   for (const MachineOperand &MO : MI.operands()) {
1195     if (!MO.isReg()) continue;  // Ignore non-register operands.
1196 
1197     Register Reg = MO.getReg();
1198     if (Reg == 0) continue;
1199 
1200     if (Reg.isPhysical()) {
1201       if (MO.isUse()) {
1202         // If the physreg has no defs anywhere, it's just an ambient register
1203         // and we can freely move its uses. Alternatively, if it's allocatable,
1204         // it could get allocated to something with a def during allocation.
1205         if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO))
1206           return nullptr;
1207       } else if (!MO.isDead()) {
1208         // A def that isn't dead. We can't move it.
1209         return nullptr;
1210       }
1211     } else {
1212       // Virtual register uses are always safe to sink.
1213       if (MO.isUse()) continue;
1214 
1215       // If it's not safe to move defs of the register class, then abort.
1216       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
1217         return nullptr;
1218 
1219       // Virtual register defs can only be sunk if all their uses are in blocks
1220       // dominated by one of the successors.
1221       if (SuccToSinkTo) {
1222         // If a previous operand picked a block to sink to, then this operand
1223         // must be sinkable to the same block.
1224         bool LocalUse = false;
1225         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
1226                                      BreakPHIEdge, LocalUse))
1227           return nullptr;
1228 
1229         continue;
1230       }
1231 
1232       // Otherwise, we should look at all the successors and decide which one
1233       // we should sink to. If we have reliable block frequency information
1234       // (frequency != 0) available, give successors with smaller frequencies
1235       // higher priority, otherwise prioritize smaller cycle depths.
1236       for (MachineBasicBlock *SuccBlock :
1237            GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
1238         bool LocalUse = false;
1239         if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
1240                                     BreakPHIEdge, LocalUse)) {
1241           SuccToSinkTo = SuccBlock;
1242           break;
1243         }
1244         if (LocalUse)
1245           // Def is used locally, it's never safe to move this def.
1246           return nullptr;
1247       }
1248 
1249       // If we couldn't find a block to sink to, ignore this instruction.
1250       if (!SuccToSinkTo)
1251         return nullptr;
1252       if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
1253         return nullptr;
1254     }
1255   }
1256 
1257   // It is not possible to sink an instruction into its own block.  This can
1258   // happen with cycles.
1259   if (MBB == SuccToSinkTo)
1260     return nullptr;
1261 
1262   // It's not safe to sink instructions to EH landing pad. Control flow into
1263   // landing pad is implicitly defined.
1264   if (SuccToSinkTo && SuccToSinkTo->isEHPad())
1265     return nullptr;
1266 
1267   // It ought to be okay to sink instructions into an INLINEASM_BR target, but
1268   // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in
1269   // the source block (which this code does not yet do). So for now, forbid
1270   // doing so.
1271   if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget())
1272     return nullptr;
1273 
1274   if (SuccToSinkTo && !TII->isSafeToSink(MI, SuccToSinkTo, CI))
1275     return nullptr;
1276 
1277   return SuccToSinkTo;
1278 }
1279 
1280 /// Return true if MI is likely to be usable as a memory operation by the
1281 /// implicit null check optimization.
1282 ///
1283 /// This is a "best effort" heuristic, and should not be relied upon for
1284 /// correctness.  This returning true does not guarantee that the implicit null
1285 /// check optimization is legal over MI, and this returning false does not
1286 /// guarantee MI cannot possibly be used to do a null check.
1287 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
1288                                              const TargetInstrInfo *TII,
1289                                              const TargetRegisterInfo *TRI) {
1290   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
1291 
1292   auto *MBB = MI.getParent();
1293   if (MBB->pred_size() != 1)
1294     return false;
1295 
1296   auto *PredMBB = *MBB->pred_begin();
1297   auto *PredBB = PredMBB->getBasicBlock();
1298 
1299   // Frontends that don't use implicit null checks have no reason to emit
1300   // branches with make.implicit metadata, and this function should always
1301   // return false for them.
1302   if (!PredBB ||
1303       !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
1304     return false;
1305 
1306   const MachineOperand *BaseOp;
1307   int64_t Offset;
1308   bool OffsetIsScalable;
1309   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
1310     return false;
1311 
1312   if (!BaseOp->isReg())
1313     return false;
1314 
1315   if (!(MI.mayLoad() && !MI.isPredicable()))
1316     return false;
1317 
1318   MachineBranchPredicate MBP;
1319   if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
1320     return false;
1321 
1322   return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
1323          (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
1324           MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
1325          MBP.LHS.getReg() == BaseOp->getReg();
1326 }
1327 
1328 /// If the sunk instruction is a copy, try to forward the copy instead of
1329 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if
1330 /// there's any subregister weirdness involved. Returns true if copy
1331 /// propagation occurred.
1332 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI,
1333                                  Register Reg) {
1334   const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo();
1335   const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo();
1336 
1337   // Copy DBG_VALUE operand and set the original to undef. We then check to
1338   // see whether this is something that can be copy-forwarded. If it isn't,
1339   // continue around the loop.
1340 
1341   const MachineOperand *SrcMO = nullptr, *DstMO = nullptr;
1342   auto CopyOperands = TII.isCopyInstr(SinkInst);
1343   if (!CopyOperands)
1344     return false;
1345   SrcMO = CopyOperands->Source;
1346   DstMO = CopyOperands->Destination;
1347 
1348   // Check validity of forwarding this copy.
1349   bool PostRA = MRI.getNumVirtRegs() == 0;
1350 
1351   // Trying to forward between physical and virtual registers is too hard.
1352   if (Reg.isVirtual() != SrcMO->getReg().isVirtual())
1353     return false;
1354 
1355   // Only try virtual register copy-forwarding before regalloc, and physical
1356   // register copy-forwarding after regalloc.
1357   bool arePhysRegs = !Reg.isVirtual();
1358   if (arePhysRegs != PostRA)
1359     return false;
1360 
1361   // Pre-regalloc, only forward if all subregisters agree (or there are no
1362   // subregs at all). More analysis might recover some forwardable copies.
1363   if (!PostRA)
1364     for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg))
1365       if (DbgMO.getSubReg() != SrcMO->getSubReg() ||
1366           DbgMO.getSubReg() != DstMO->getSubReg())
1367         return false;
1368 
1369   // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register
1370   // of this copy. Only forward the copy if the DBG_VALUE operand exactly
1371   // matches the copy destination.
1372   if (PostRA && Reg != DstMO->getReg())
1373     return false;
1374 
1375   for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) {
1376     DbgMO.setReg(SrcMO->getReg());
1377     DbgMO.setSubReg(SrcMO->getSubReg());
1378   }
1379   return true;
1380 }
1381 
1382 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>;
1383 /// Sink an instruction and its associated debug instructions.
1384 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
1385                         MachineBasicBlock::iterator InsertPos,
1386                         ArrayRef<MIRegs> DbgValuesToSink) {
1387   // If we cannot find a location to use (merge with), then we erase the debug
1388   // location to prevent debug-info driven tools from potentially reporting
1389   // wrong location information.
1390   if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
1391     MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
1392                                                  InsertPos->getDebugLoc()));
1393   else
1394     MI.setDebugLoc(DebugLoc());
1395 
1396   // Move the instruction.
1397   MachineBasicBlock *ParentBlock = MI.getParent();
1398   SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
1399                       ++MachineBasicBlock::iterator(MI));
1400 
1401   // Sink a copy of debug users to the insert position. Mark the original
1402   // DBG_VALUE location as 'undef', indicating that any earlier variable
1403   // location should be terminated as we've optimised away the value at this
1404   // point.
1405   for (const auto &DbgValueToSink : DbgValuesToSink) {
1406     MachineInstr *DbgMI = DbgValueToSink.first;
1407     MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI);
1408     SuccToSinkTo.insert(InsertPos, NewDbgMI);
1409 
1410     bool PropagatedAllSunkOps = true;
1411     for (unsigned Reg : DbgValueToSink.second) {
1412       if (DbgMI->hasDebugOperandForReg(Reg)) {
1413         if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) {
1414           PropagatedAllSunkOps = false;
1415           break;
1416         }
1417       }
1418     }
1419     if (!PropagatedAllSunkOps)
1420       DbgMI->setDebugValueUndef();
1421   }
1422 }
1423 
1424 /// hasStoreBetween - check if there is store betweeen straight line blocks From
1425 /// and To.
1426 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From,
1427                                      MachineBasicBlock *To, MachineInstr &MI) {
1428   // Make sure From and To are in straight line which means From dominates To
1429   // and To post dominates From.
1430   if (!DT->dominates(From, To) || !PDT->dominates(To, From))
1431     return true;
1432 
1433   auto BlockPair = std::make_pair(From, To);
1434 
1435   // Does these two blocks pair be queried before and have a definite cached
1436   // result?
1437   if (auto It = HasStoreCache.find(BlockPair); It != HasStoreCache.end())
1438     return It->second;
1439 
1440   if (auto It = StoreInstrCache.find(BlockPair); It != StoreInstrCache.end())
1441     return llvm::any_of(It->second, [&](MachineInstr *I) {
1442       return I->mayAlias(AA, MI, false);
1443     });
1444 
1445   bool SawStore = false;
1446   bool HasAliasedStore = false;
1447   DenseSet<MachineBasicBlock *> HandledBlocks;
1448   DenseSet<MachineBasicBlock *> HandledDomBlocks;
1449   // Go through all reachable blocks from From.
1450   for (MachineBasicBlock *BB : depth_first(From)) {
1451     // We insert the instruction at the start of block To, so no need to worry
1452     // about stores inside To.
1453     // Store in block From should be already considered when just enter function
1454     // SinkInstruction.
1455     if (BB == To || BB == From)
1456       continue;
1457 
1458     // We already handle this BB in previous iteration.
1459     if (HandledBlocks.count(BB))
1460       continue;
1461 
1462     HandledBlocks.insert(BB);
1463     // To post dominates BB, it must be a path from block From.
1464     if (PDT->dominates(To, BB)) {
1465       if (!HandledDomBlocks.count(BB))
1466         HandledDomBlocks.insert(BB);
1467 
1468       // If this BB is too big or the block number in straight line between From
1469       // and To is too big, stop searching to save compiling time.
1470       if (BB->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold) ||
1471           HandledDomBlocks.size() > SinkLoadBlocksThreshold) {
1472         for (auto *DomBB : HandledDomBlocks) {
1473           if (DomBB != BB && DT->dominates(DomBB, BB))
1474             HasStoreCache[std::make_pair(DomBB, To)] = true;
1475           else if(DomBB != BB && DT->dominates(BB, DomBB))
1476             HasStoreCache[std::make_pair(From, DomBB)] = true;
1477         }
1478         HasStoreCache[BlockPair] = true;
1479         return true;
1480       }
1481 
1482       for (MachineInstr &I : *BB) {
1483         // Treat as alias conservatively for a call or an ordered memory
1484         // operation.
1485         if (I.isCall() || I.hasOrderedMemoryRef()) {
1486           for (auto *DomBB : HandledDomBlocks) {
1487             if (DomBB != BB && DT->dominates(DomBB, BB))
1488               HasStoreCache[std::make_pair(DomBB, To)] = true;
1489             else if(DomBB != BB && DT->dominates(BB, DomBB))
1490               HasStoreCache[std::make_pair(From, DomBB)] = true;
1491           }
1492           HasStoreCache[BlockPair] = true;
1493           return true;
1494         }
1495 
1496         if (I.mayStore()) {
1497           SawStore = true;
1498           // We still have chance to sink MI if all stores between are not
1499           // aliased to MI.
1500           // Cache all store instructions, so that we don't need to go through
1501           // all From reachable blocks for next load instruction.
1502           if (I.mayAlias(AA, MI, false))
1503             HasAliasedStore = true;
1504           StoreInstrCache[BlockPair].push_back(&I);
1505         }
1506       }
1507     }
1508   }
1509   // If there is no store at all, cache the result.
1510   if (!SawStore)
1511     HasStoreCache[BlockPair] = false;
1512   return HasAliasedStore;
1513 }
1514 
1515 /// Sink instructions into cycles if profitable. This especially tries to
1516 /// prevent register spills caused by register pressure if there is little to no
1517 /// overhead moving instructions into cycles.
1518 bool MachineSinking::SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I) {
1519   LLVM_DEBUG(dbgs() << "CycleSink: Finding sink block for: " << I);
1520   MachineBasicBlock *Preheader = Cycle->getCyclePreheader();
1521   assert(Preheader && "Cycle sink needs a preheader block");
1522   MachineBasicBlock *SinkBlock = nullptr;
1523   bool CanSink = true;
1524   const MachineOperand &MO = I.getOperand(0);
1525 
1526   for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
1527     LLVM_DEBUG(dbgs() << "CycleSink:   Analysing use: " << MI);
1528     if (!Cycle->contains(MI.getParent())) {
1529       LLVM_DEBUG(dbgs() << "CycleSink:   Use not in cycle, can't sink.\n");
1530       CanSink = false;
1531       break;
1532     }
1533 
1534     // FIXME: Come up with a proper cost model that estimates whether sinking
1535     // the instruction (and thus possibly executing it on every cycle
1536     // iteration) is more expensive than a register.
1537     // For now assumes that copies are cheap and thus almost always worth it.
1538     if (!MI.isCopy()) {
1539       LLVM_DEBUG(dbgs() << "CycleSink:   Use is not a copy\n");
1540       CanSink = false;
1541       break;
1542     }
1543     if (!SinkBlock) {
1544       SinkBlock = MI.getParent();
1545       LLVM_DEBUG(dbgs() << "CycleSink:   Setting sink block to: "
1546                         << printMBBReference(*SinkBlock) << "\n");
1547       continue;
1548     }
1549     SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent());
1550     if (!SinkBlock) {
1551       LLVM_DEBUG(dbgs() << "CycleSink:   Can't find nearest dominator\n");
1552       CanSink = false;
1553       break;
1554     }
1555     LLVM_DEBUG(dbgs() << "CycleSink:   Setting nearest common dom block: " <<
1556                printMBBReference(*SinkBlock) << "\n");
1557   }
1558 
1559   if (!CanSink) {
1560     LLVM_DEBUG(dbgs() << "CycleSink: Can't sink instruction.\n");
1561     return false;
1562   }
1563   if (!SinkBlock) {
1564     LLVM_DEBUG(dbgs() << "CycleSink: Not sinking, can't find sink block.\n");
1565     return false;
1566   }
1567   if (SinkBlock == Preheader) {
1568     LLVM_DEBUG(
1569         dbgs() << "CycleSink: Not sinking, sink block is the preheader\n");
1570     return false;
1571   }
1572   if (SinkBlock->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold)) {
1573     LLVM_DEBUG(
1574         dbgs() << "CycleSink: Not Sinking, block too large to analyse.\n");
1575     return false;
1576   }
1577 
1578   LLVM_DEBUG(dbgs() << "CycleSink: Sinking instruction!\n");
1579   SinkBlock->splice(SinkBlock->SkipPHIsAndLabels(SinkBlock->begin()), Preheader,
1580                     I);
1581 
1582   // Conservatively clear any kill flags on uses of sunk instruction
1583   for (MachineOperand &MO : I.operands()) {
1584     if (MO.isReg() && MO.readsReg())
1585       RegsToClearKillFlags.insert(MO.getReg());
1586   }
1587 
1588   // The instruction is moved from its basic block, so do not retain the
1589   // debug information.
1590   assert(!I.isDebugInstr() && "Should not sink debug inst");
1591   I.setDebugLoc(DebugLoc());
1592   return true;
1593 }
1594 
1595 /// SinkInstruction - Determine whether it is safe to sink the specified machine
1596 /// instruction out of its current block into a successor.
1597 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
1598                                      AllSuccsCache &AllSuccessors) {
1599   // Don't sink instructions that the target prefers not to sink.
1600   if (!TII->shouldSink(MI))
1601     return false;
1602 
1603   // Check if it's safe to move the instruction.
1604   if (!MI.isSafeToMove(AA, SawStore))
1605     return false;
1606 
1607   // Convergent operations may not be made control-dependent on additional
1608   // values.
1609   if (MI.isConvergent())
1610     return false;
1611 
1612   // Don't break implicit null checks.  This is a performance heuristic, and not
1613   // required for correctness.
1614   if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
1615     return false;
1616 
1617   // FIXME: This should include support for sinking instructions within the
1618   // block they are currently in to shorten the live ranges.  We often get
1619   // instructions sunk into the top of a large block, but it would be better to
1620   // also sink them down before their first use in the block.  This xform has to
1621   // be careful not to *increase* register pressure though, e.g. sinking
1622   // "x = y + z" down if it kills y and z would increase the live ranges of y
1623   // and z and only shrink the live range of x.
1624 
1625   bool BreakPHIEdge = false;
1626   MachineBasicBlock *ParentBlock = MI.getParent();
1627   MachineBasicBlock *SuccToSinkTo =
1628       FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
1629 
1630   // If there are no outputs, it must have side-effects.
1631   if (!SuccToSinkTo)
1632     return false;
1633 
1634   // If the instruction to move defines a dead physical register which is live
1635   // when leaving the basic block, don't move it because it could turn into a
1636   // "zombie" define of that preg. E.g., EFLAGS.
1637   for (const MachineOperand &MO : MI.all_defs()) {
1638     Register Reg = MO.getReg();
1639     if (Reg == 0 || !Reg.isPhysical())
1640       continue;
1641     if (SuccToSinkTo->isLiveIn(Reg))
1642       return false;
1643   }
1644 
1645   LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
1646 
1647   // If the block has multiple predecessors, this is a critical edge.
1648   // Decide if we can sink along it or need to break the edge.
1649   if (SuccToSinkTo->pred_size() > 1) {
1650     // We cannot sink a load across a critical edge - there may be stores in
1651     // other code paths.
1652     bool TryBreak = false;
1653     bool Store =
1654         MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true;
1655     if (!MI.isSafeToMove(AA, Store)) {
1656       LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
1657       TryBreak = true;
1658     }
1659 
1660     // We don't want to sink across a critical edge if we don't dominate the
1661     // successor. We could be introducing calculations to new code paths.
1662     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
1663       LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
1664       TryBreak = true;
1665     }
1666 
1667     // Don't sink instructions into a cycle.
1668     if (!TryBreak && CI->getCycle(SuccToSinkTo) &&
1669         (!CI->getCycle(SuccToSinkTo)->isReducible() ||
1670          CI->getCycle(SuccToSinkTo)->getHeader() == SuccToSinkTo)) {
1671       LLVM_DEBUG(dbgs() << " *** NOTE: cycle header found\n");
1672       TryBreak = true;
1673     }
1674 
1675     // Otherwise we are OK with sinking along a critical edge.
1676     if (!TryBreak)
1677       LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
1678     else {
1679       // Mark this edge as to be split.
1680       // If the edge can actually be split, the next iteration of the main loop
1681       // will sink MI in the newly created block.
1682       bool Status =
1683         PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
1684       if (!Status)
1685         LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
1686                              "break critical edge\n");
1687       // The instruction will not be sunk this time.
1688       return false;
1689     }
1690   }
1691 
1692   if (BreakPHIEdge) {
1693     // BreakPHIEdge is true if all the uses are in the successor MBB being
1694     // sunken into and they are all PHI nodes. In this case, machine-sink must
1695     // break the critical edge first.
1696     bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
1697                                             SuccToSinkTo, BreakPHIEdge);
1698     if (!Status)
1699       LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
1700                            "break critical edge\n");
1701     // The instruction will not be sunk this time.
1702     return false;
1703   }
1704 
1705   // Determine where to insert into. Skip phi nodes.
1706   MachineBasicBlock::iterator InsertPos =
1707       SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin());
1708   if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) {
1709     LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n");
1710     return false;
1711   }
1712 
1713   // Collect debug users of any vreg that this inst defines.
1714   SmallVector<MIRegs, 4> DbgUsersToSink;
1715   for (auto &MO : MI.all_defs()) {
1716     if (!MO.getReg().isVirtual())
1717       continue;
1718     if (!SeenDbgUsers.count(MO.getReg()))
1719       continue;
1720 
1721     // Sink any users that don't pass any other DBG_VALUEs for this variable.
1722     auto &Users = SeenDbgUsers[MO.getReg()];
1723     for (auto &User : Users) {
1724       MachineInstr *DbgMI = User.getPointer();
1725       if (User.getInt()) {
1726         // This DBG_VALUE would re-order assignments. If we can't copy-propagate
1727         // it, it can't be recovered. Set it undef.
1728         if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg()))
1729           DbgMI->setDebugValueUndef();
1730       } else {
1731         DbgUsersToSink.push_back(
1732             {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())});
1733       }
1734     }
1735   }
1736 
1737   // After sinking, some debug users may not be dominated any more. If possible,
1738   // copy-propagate their operands. As it's expensive, don't do this if there's
1739   // no debuginfo in the program.
1740   if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy())
1741     SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo);
1742 
1743   performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink);
1744 
1745   // Conservatively, clear any kill flags, since it's possible that they are no
1746   // longer correct.
1747   // Note that we have to clear the kill flags for any register this instruction
1748   // uses as we may sink over another instruction which currently kills the
1749   // used registers.
1750   for (MachineOperand &MO : MI.all_uses())
1751     RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags.
1752 
1753   return true;
1754 }
1755 
1756 void MachineSinking::SalvageUnsunkDebugUsersOfCopy(
1757     MachineInstr &MI, MachineBasicBlock *TargetBlock) {
1758   assert(MI.isCopy());
1759   assert(MI.getOperand(1).isReg());
1760 
1761   // Enumerate all users of vreg operands that are def'd. Skip those that will
1762   // be sunk. For the rest, if they are not dominated by the block we will sink
1763   // MI into, propagate the copy source to them.
1764   SmallVector<MachineInstr *, 4> DbgDefUsers;
1765   SmallVector<Register, 4> DbgUseRegs;
1766   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
1767   for (auto &MO : MI.all_defs()) {
1768     if (!MO.getReg().isVirtual())
1769       continue;
1770     DbgUseRegs.push_back(MO.getReg());
1771     for (auto &User : MRI.use_instructions(MO.getReg())) {
1772       if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent()))
1773         continue;
1774 
1775       // If is in same block, will either sink or be use-before-def.
1776       if (User.getParent() == MI.getParent())
1777         continue;
1778 
1779       assert(User.hasDebugOperandForReg(MO.getReg()) &&
1780              "DBG_VALUE user of vreg, but has no operand for it?");
1781       DbgDefUsers.push_back(&User);
1782     }
1783   }
1784 
1785   // Point the users of this copy that are no longer dominated, at the source
1786   // of the copy.
1787   for (auto *User : DbgDefUsers) {
1788     for (auto &Reg : DbgUseRegs) {
1789       for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) {
1790         DbgOp.setReg(MI.getOperand(1).getReg());
1791         DbgOp.setSubReg(MI.getOperand(1).getSubReg());
1792       }
1793     }
1794   }
1795 }
1796 
1797 //===----------------------------------------------------------------------===//
1798 // This pass is not intended to be a replacement or a complete alternative
1799 // for the pre-ra machine sink pass. It is only designed to sink COPY
1800 // instructions which should be handled after RA.
1801 //
1802 // This pass sinks COPY instructions into a successor block, if the COPY is not
1803 // used in the current block and the COPY is live-in to a single successor
1804 // (i.e., doesn't require the COPY to be duplicated).  This avoids executing the
1805 // copy on paths where their results aren't needed.  This also exposes
1806 // additional opportunites for dead copy elimination and shrink wrapping.
1807 //
1808 // These copies were either not handled by or are inserted after the MachineSink
1809 // pass. As an example of the former case, the MachineSink pass cannot sink
1810 // COPY instructions with allocatable source registers; for AArch64 these type
1811 // of copy instructions are frequently used to move function parameters (PhyReg)
1812 // into virtual registers in the entry block.
1813 //
1814 // For the machine IR below, this pass will sink %w19 in the entry into its
1815 // successor (%bb.1) because %w19 is only live-in in %bb.1.
1816 // %bb.0:
1817 //   %wzr = SUBSWri %w1, 1
1818 //   %w19 = COPY %w0
1819 //   Bcc 11, %bb.2
1820 // %bb.1:
1821 //   Live Ins: %w19
1822 //   BL @fun
1823 //   %w0 = ADDWrr %w0, %w19
1824 //   RET %w0
1825 // %bb.2:
1826 //   %w0 = COPY %wzr
1827 //   RET %w0
1828 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
1829 // able to see %bb.0 as a candidate.
1830 //===----------------------------------------------------------------------===//
1831 namespace {
1832 
1833 class PostRAMachineSinking : public MachineFunctionPass {
1834 public:
1835   bool runOnMachineFunction(MachineFunction &MF) override;
1836 
1837   static char ID;
1838   PostRAMachineSinking() : MachineFunctionPass(ID) {}
1839   StringRef getPassName() const override { return "PostRA Machine Sink"; }
1840 
1841   void getAnalysisUsage(AnalysisUsage &AU) const override {
1842     AU.setPreservesCFG();
1843     MachineFunctionPass::getAnalysisUsage(AU);
1844   }
1845 
1846   MachineFunctionProperties getRequiredProperties() const override {
1847     return MachineFunctionProperties().set(
1848         MachineFunctionProperties::Property::NoVRegs);
1849   }
1850 
1851 private:
1852   /// Track which register units have been modified and used.
1853   LiveRegUnits ModifiedRegUnits, UsedRegUnits;
1854 
1855   /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
1856   /// entry in this map for each unit it touches. The DBG_VALUE's entry
1857   /// consists of a pointer to the instruction itself, and a vector of registers
1858   /// referred to by the instruction that overlap the key register unit.
1859   DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs;
1860 
1861   /// Sink Copy instructions unused in the same block close to their uses in
1862   /// successors.
1863   bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
1864                      const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
1865 };
1866 } // namespace
1867 
1868 char PostRAMachineSinking::ID = 0;
1869 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
1870 
1871 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
1872                 "PostRA Machine Sink", false, false)
1873 
1874 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
1875                                   const TargetRegisterInfo *TRI) {
1876   LiveRegUnits LiveInRegUnits(*TRI);
1877   LiveInRegUnits.addLiveIns(MBB);
1878   return !LiveInRegUnits.available(Reg);
1879 }
1880 
1881 static MachineBasicBlock *
1882 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1883                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1884                       unsigned Reg, const TargetRegisterInfo *TRI) {
1885   // Try to find a single sinkable successor in which Reg is live-in.
1886   MachineBasicBlock *BB = nullptr;
1887   for (auto *SI : SinkableBBs) {
1888     if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
1889       // If BB is set here, Reg is live-in to at least two sinkable successors,
1890       // so quit.
1891       if (BB)
1892         return nullptr;
1893       BB = SI;
1894     }
1895   }
1896   // Reg is not live-in to any sinkable successors.
1897   if (!BB)
1898     return nullptr;
1899 
1900   // Check if any register aliased with Reg is live-in in other successors.
1901   for (auto *SI : CurBB.successors()) {
1902     if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1903       return nullptr;
1904   }
1905   return BB;
1906 }
1907 
1908 static MachineBasicBlock *
1909 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1910                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1911                       ArrayRef<unsigned> DefedRegsInCopy,
1912                       const TargetRegisterInfo *TRI) {
1913   MachineBasicBlock *SingleBB = nullptr;
1914   for (auto DefReg : DefedRegsInCopy) {
1915     MachineBasicBlock *BB =
1916         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1917     if (!BB || (SingleBB && SingleBB != BB))
1918       return nullptr;
1919     SingleBB = BB;
1920   }
1921   return SingleBB;
1922 }
1923 
1924 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1925                            SmallVectorImpl<unsigned> &UsedOpsInCopy,
1926                            LiveRegUnits &UsedRegUnits,
1927                            const TargetRegisterInfo *TRI) {
1928   for (auto U : UsedOpsInCopy) {
1929     MachineOperand &MO = MI->getOperand(U);
1930     Register SrcReg = MO.getReg();
1931     if (!UsedRegUnits.available(SrcReg)) {
1932       MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1933       for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1934         if (UI.killsRegister(SrcReg, TRI)) {
1935           UI.clearRegisterKills(SrcReg, TRI);
1936           MO.setIsKill(true);
1937           break;
1938         }
1939       }
1940     }
1941   }
1942 }
1943 
1944 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1945                          SmallVectorImpl<unsigned> &UsedOpsInCopy,
1946                          SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1947   MachineFunction &MF = *SuccBB->getParent();
1948   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1949   for (unsigned DefReg : DefedRegsInCopy)
1950     for (MCPhysReg S : TRI->subregs_inclusive(DefReg))
1951       SuccBB->removeLiveIn(S);
1952   for (auto U : UsedOpsInCopy) {
1953     Register SrcReg = MI->getOperand(U).getReg();
1954     LaneBitmask Mask;
1955     for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S)
1956       Mask |= (*S).second;
1957     SuccBB->addLiveIn(SrcReg, Mask);
1958   }
1959   SuccBB->sortUniqueLiveIns();
1960 }
1961 
1962 static bool hasRegisterDependency(MachineInstr *MI,
1963                                   SmallVectorImpl<unsigned> &UsedOpsInCopy,
1964                                   SmallVectorImpl<unsigned> &DefedRegsInCopy,
1965                                   LiveRegUnits &ModifiedRegUnits,
1966                                   LiveRegUnits &UsedRegUnits) {
1967   bool HasRegDependency = false;
1968   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1969     MachineOperand &MO = MI->getOperand(i);
1970     if (!MO.isReg())
1971       continue;
1972     Register Reg = MO.getReg();
1973     if (!Reg)
1974       continue;
1975     if (MO.isDef()) {
1976       if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1977         HasRegDependency = true;
1978         break;
1979       }
1980       DefedRegsInCopy.push_back(Reg);
1981 
1982       // FIXME: instead of isUse(), readsReg() would be a better fix here,
1983       // For example, we can ignore modifications in reg with undef. However,
1984       // it's not perfectly clear if skipping the internal read is safe in all
1985       // other targets.
1986     } else if (MO.isUse()) {
1987       if (!ModifiedRegUnits.available(Reg)) {
1988         HasRegDependency = true;
1989         break;
1990       }
1991       UsedOpsInCopy.push_back(i);
1992     }
1993   }
1994   return HasRegDependency;
1995 }
1996 
1997 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1998                                          MachineFunction &MF,
1999                                          const TargetRegisterInfo *TRI,
2000                                          const TargetInstrInfo *TII) {
2001   SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
2002   // FIXME: For now, we sink only to a successor which has a single predecessor
2003   // so that we can directly sink COPY instructions to the successor without
2004   // adding any new block or branch instruction.
2005   for (MachineBasicBlock *SI : CurBB.successors())
2006     if (!SI->livein_empty() && SI->pred_size() == 1)
2007       SinkableBBs.insert(SI);
2008 
2009   if (SinkableBBs.empty())
2010     return false;
2011 
2012   bool Changed = false;
2013 
2014   // Track which registers have been modified and used between the end of the
2015   // block and the current instruction.
2016   ModifiedRegUnits.clear();
2017   UsedRegUnits.clear();
2018   SeenDbgInstrs.clear();
2019 
2020   for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) {
2021     // Track the operand index for use in Copy.
2022     SmallVector<unsigned, 2> UsedOpsInCopy;
2023     // Track the register number defed in Copy.
2024     SmallVector<unsigned, 2> DefedRegsInCopy;
2025 
2026     // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
2027     // for DBG_VALUEs later, record them when they're encountered.
2028     if (MI.isDebugValue() && !MI.isDebugRef()) {
2029       SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits;
2030       bool IsValid = true;
2031       for (MachineOperand &MO : MI.debug_operands()) {
2032         if (MO.isReg() && MO.getReg().isPhysical()) {
2033           // Bail if we can already tell the sink would be rejected, rather
2034           // than needlessly accumulating lots of DBG_VALUEs.
2035           if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy,
2036                                     ModifiedRegUnits, UsedRegUnits)) {
2037             IsValid = false;
2038             break;
2039           }
2040 
2041           // Record debug use of each reg unit.
2042           for (MCRegUnit Unit : TRI->regunits(MO.getReg()))
2043             MIUnits[Unit].push_back(MO.getReg());
2044         }
2045       }
2046       if (IsValid) {
2047         for (auto &RegOps : MIUnits)
2048           SeenDbgInstrs[RegOps.first].emplace_back(&MI,
2049                                                    std::move(RegOps.second));
2050       }
2051       continue;
2052     }
2053 
2054     if (MI.isDebugOrPseudoInstr())
2055       continue;
2056 
2057     // Do not move any instruction across function call.
2058     if (MI.isCall())
2059       return false;
2060 
2061     if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) {
2062       LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
2063                                         TRI);
2064       continue;
2065     }
2066 
2067     // Don't sink the COPY if it would violate a register dependency.
2068     if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy,
2069                               ModifiedRegUnits, UsedRegUnits)) {
2070       LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
2071                                         TRI);
2072       continue;
2073     }
2074     assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
2075            "Unexpect SrcReg or DefReg");
2076     MachineBasicBlock *SuccBB =
2077         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
2078     // Don't sink if we cannot find a single sinkable successor in which Reg
2079     // is live-in.
2080     if (!SuccBB) {
2081       LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
2082                                         TRI);
2083       continue;
2084     }
2085     assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
2086            "Unexpected predecessor");
2087 
2088     // Collect DBG_VALUEs that must sink with this copy. We've previously
2089     // recorded which reg units that DBG_VALUEs read, if this instruction
2090     // writes any of those units then the corresponding DBG_VALUEs must sink.
2091     MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap;
2092     for (auto &MO : MI.all_defs()) {
2093       for (MCRegUnit Unit : TRI->regunits(MO.getReg())) {
2094         for (const auto &MIRegs : SeenDbgInstrs.lookup(Unit)) {
2095           auto &Regs = DbgValsToSinkMap[MIRegs.first];
2096           for (unsigned Reg : MIRegs.second)
2097             Regs.push_back(Reg);
2098         }
2099       }
2100     }
2101     auto DbgValsToSink = DbgValsToSinkMap.takeVector();
2102 
2103     LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccBB);
2104 
2105     MachineBasicBlock::iterator InsertPos =
2106         SuccBB->SkipPHIsAndLabels(SuccBB->begin());
2107     if (blockPrologueInterferes(SuccBB, InsertPos, MI, TRI, TII, nullptr)) {
2108       LLVM_DEBUG(
2109           dbgs() << " *** Not sinking: prologue interference\n");
2110       continue;
2111     }
2112 
2113     // Clear the kill flag if SrcReg is killed between MI and the end of the
2114     // block.
2115     clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
2116     performSink(MI, *SuccBB, InsertPos, DbgValsToSink);
2117     updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
2118 
2119     Changed = true;
2120     ++NumPostRACopySink;
2121   }
2122   return Changed;
2123 }
2124 
2125 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
2126   if (skipFunction(MF.getFunction()))
2127     return false;
2128 
2129   bool Changed = false;
2130   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2131   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
2132 
2133   ModifiedRegUnits.init(*TRI);
2134   UsedRegUnits.init(*TRI);
2135   for (auto &BB : MF)
2136     Changed |= tryToSinkCopy(BB, MF, TRI, TII);
2137 
2138   return Changed;
2139 }
2140