1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/PointerIntPair.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/CFG.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 32 #include "llvm/CodeGen/MachineCycleAnalysis.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachinePostDominators.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/RegisterClassInfo.h" 42 #include "llvm/CodeGen/RegisterPressure.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetPassConfig.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/InitializePasses.h" 51 #include "llvm/MC/MCRegisterInfo.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/BranchProbability.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "machine-sink" 66 67 static cl::opt<bool> 68 SplitEdges("machine-sink-split", 69 cl::desc("Split critical edges during machine sinking"), 70 cl::init(true), cl::Hidden); 71 72 static cl::opt<bool> 73 UseBlockFreqInfo("machine-sink-bfi", 74 cl::desc("Use block frequency info to find successors to sink"), 75 cl::init(true), cl::Hidden); 76 77 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 78 "machine-sink-split-probability-threshold", 79 cl::desc( 80 "Percentage threshold for splitting single-instruction critical edge. " 81 "If the branch threshold is higher than this threshold, we allow " 82 "speculative execution of up to 1 instruction to avoid branching to " 83 "splitted critical edge"), 84 cl::init(40), cl::Hidden); 85 86 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( 87 "machine-sink-load-instrs-threshold", 88 cl::desc("Do not try to find alias store for a load if there is a in-path " 89 "block whose instruction number is higher than this threshold."), 90 cl::init(2000), cl::Hidden); 91 92 static cl::opt<unsigned> SinkLoadBlocksThreshold( 93 "machine-sink-load-blocks-threshold", 94 cl::desc("Do not try to find alias store for a load if the block number in " 95 "the straight line is higher than this threshold."), 96 cl::init(20), cl::Hidden); 97 98 static cl::opt<bool> 99 SinkInstsIntoCycle("sink-insts-to-avoid-spills", 100 cl::desc("Sink instructions into cycles to avoid " 101 "register spills"), 102 cl::init(false), cl::Hidden); 103 104 static cl::opt<unsigned> SinkIntoCycleLimit( 105 "machine-sink-cycle-limit", 106 cl::desc("The maximum number of instructions considered for cycle sinking."), 107 cl::init(50), cl::Hidden); 108 109 STATISTIC(NumSunk, "Number of machine instructions sunk"); 110 STATISTIC(NumCycleSunk, "Number of machine instructions sunk into a cycle"); 111 STATISTIC(NumSplit, "Number of critical edges split"); 112 STATISTIC(NumCoalesces, "Number of copies coalesced"); 113 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 114 115 namespace { 116 117 class MachineSinking : public MachineFunctionPass { 118 const TargetSubtargetInfo *STI = nullptr; 119 const TargetInstrInfo *TII = nullptr; 120 const TargetRegisterInfo *TRI = nullptr; 121 MachineRegisterInfo *MRI = nullptr; // Machine register information 122 MachineDominatorTree *DT = nullptr; // Machine dominator tree 123 MachinePostDominatorTree *PDT = nullptr; // Machine post dominator tree 124 MachineCycleInfo *CI = nullptr; 125 MachineBlockFrequencyInfo *MBFI = nullptr; 126 const MachineBranchProbabilityInfo *MBPI = nullptr; 127 AliasAnalysis *AA = nullptr; 128 RegisterClassInfo RegClassInfo; 129 130 // Remember which edges have been considered for breaking. 131 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 132 CEBCandidates; 133 // Remember which edges we are about to split. 134 // This is different from CEBCandidates since those edges 135 // will be split. 136 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 137 138 DenseSet<Register> RegsToClearKillFlags; 139 140 using AllSuccsCache = 141 DenseMap<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 142 143 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 144 /// post-dominated by another DBG_VALUE of the same variable location. 145 /// This is necessary to detect sequences such as: 146 /// %0 = someinst 147 /// DBG_VALUE %0, !123, !DIExpression() 148 /// %1 = anotherinst 149 /// DBG_VALUE %1, !123, !DIExpression() 150 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 151 /// would re-order assignments. 152 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 153 154 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 155 /// debug instructions to sink. 156 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 157 158 /// Record of debug variables that have had their locations set in the 159 /// current block. 160 DenseSet<DebugVariable> SeenDbgVars; 161 162 DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 163 HasStoreCache; 164 165 DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 166 SmallVector<MachineInstr *>> 167 StoreInstrCache; 168 169 /// Cached BB's register pressure. 170 DenseMap<const MachineBasicBlock *, std::vector<unsigned>> 171 CachedRegisterPressure; 172 173 bool EnableSinkAndFold; 174 175 public: 176 static char ID; // Pass identification 177 178 MachineSinking() : MachineFunctionPass(ID) { 179 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 180 } 181 182 bool runOnMachineFunction(MachineFunction &MF) override; 183 184 void getAnalysisUsage(AnalysisUsage &AU) const override { 185 MachineFunctionPass::getAnalysisUsage(AU); 186 AU.addRequired<AAResultsWrapperPass>(); 187 AU.addRequired<MachineDominatorTree>(); 188 AU.addRequired<MachinePostDominatorTree>(); 189 AU.addRequired<MachineCycleInfoWrapperPass>(); 190 AU.addRequired<MachineBranchProbabilityInfo>(); 191 AU.addPreserved<MachineCycleInfoWrapperPass>(); 192 AU.addPreserved<MachineLoopInfo>(); 193 if (UseBlockFreqInfo) 194 AU.addRequired<MachineBlockFrequencyInfo>(); 195 AU.addRequired<TargetPassConfig>(); 196 } 197 198 void releaseMemory() override { 199 CEBCandidates.clear(); 200 } 201 202 private: 203 bool ProcessBlock(MachineBasicBlock &MBB); 204 void ProcessDbgInst(MachineInstr &MI); 205 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 206 MachineBasicBlock *From, 207 MachineBasicBlock *To); 208 209 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 210 MachineInstr &MI); 211 212 /// Postpone the splitting of the given critical 213 /// edge (\p From, \p To). 214 /// 215 /// We do not split the edges on the fly. Indeed, this invalidates 216 /// the dominance information and thus triggers a lot of updates 217 /// of that information underneath. 218 /// Instead, we postpone all the splits after each iteration of 219 /// the main loop. That way, the information is at least valid 220 /// for the lifetime of an iteration. 221 /// 222 /// \return True if the edge is marked as toSplit, false otherwise. 223 /// False can be returned if, for instance, this is not profitable. 224 bool PostponeSplitCriticalEdge(MachineInstr &MI, 225 MachineBasicBlock *From, 226 MachineBasicBlock *To, 227 bool BreakPHIEdge); 228 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 229 AllSuccsCache &AllSuccessors); 230 231 /// If we sink a COPY inst, some debug users of it's destination may no 232 /// longer be dominated by the COPY, and will eventually be dropped. 233 /// This is easily rectified by forwarding the non-dominated debug uses 234 /// to the copy source. 235 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 236 MachineBasicBlock *TargetBlock); 237 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 238 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 239 bool &LocalUse) const; 240 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 241 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 242 243 void FindCycleSinkCandidates(MachineCycle *Cycle, MachineBasicBlock *BB, 244 SmallVectorImpl<MachineInstr *> &Candidates); 245 bool SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I); 246 247 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 248 MachineBasicBlock *MBB, 249 MachineBasicBlock *SuccToSinkTo, 250 AllSuccsCache &AllSuccessors); 251 252 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 253 MachineBasicBlock *MBB); 254 255 bool PerformSinkAndFold(MachineInstr &MI, MachineBasicBlock *MBB); 256 257 SmallVector<MachineBasicBlock *, 4> & 258 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 259 AllSuccsCache &AllSuccessors) const; 260 261 std::vector<unsigned> &getBBRegisterPressure(const MachineBasicBlock &MBB); 262 263 bool registerPressureSetExceedsLimit(unsigned NRegs, 264 const TargetRegisterClass *RC, 265 const MachineBasicBlock &MBB); 266 }; 267 268 } // end anonymous namespace 269 270 char MachineSinking::ID = 0; 271 272 char &llvm::MachineSinkingID = MachineSinking::ID; 273 274 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 275 "Machine code sinking", false, false) 276 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 277 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 278 INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass) 279 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 280 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 281 "Machine code sinking", false, false) 282 283 /// Return true if a target defined block prologue instruction interferes 284 /// with a sink candidate. 285 static bool blockPrologueInterferes(const MachineBasicBlock *BB, 286 MachineBasicBlock::const_iterator End, 287 const MachineInstr &MI, 288 const TargetRegisterInfo *TRI, 289 const TargetInstrInfo *TII, 290 const MachineRegisterInfo *MRI) { 291 for (MachineBasicBlock::const_iterator PI = BB->getFirstNonPHI(); PI != End; 292 ++PI) { 293 // Only check target defined prologue instructions 294 if (!TII->isBasicBlockPrologue(*PI)) 295 continue; 296 for (auto &MO : MI.operands()) { 297 if (!MO.isReg()) 298 continue; 299 Register Reg = MO.getReg(); 300 if (!Reg) 301 continue; 302 if (MO.isUse()) { 303 if (Reg.isPhysical() && 304 (TII->isIgnorableUse(MO) || (MRI && MRI->isConstantPhysReg(Reg)))) 305 continue; 306 if (PI->modifiesRegister(Reg, TRI)) 307 return true; 308 } else { 309 if (PI->readsRegister(Reg, TRI)) 310 return true; 311 // Check for interference with non-dead defs 312 auto *DefOp = PI->findRegisterDefOperand(Reg, false, true, TRI); 313 if (DefOp && !DefOp->isDead()) 314 return true; 315 } 316 } 317 } 318 319 return false; 320 } 321 322 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 323 MachineBasicBlock *MBB) { 324 if (!MI.isCopy()) 325 return false; 326 327 Register SrcReg = MI.getOperand(1).getReg(); 328 Register DstReg = MI.getOperand(0).getReg(); 329 if (!SrcReg.isVirtual() || !DstReg.isVirtual() || 330 !MRI->hasOneNonDBGUse(SrcReg)) 331 return false; 332 333 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 334 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 335 if (SRC != DRC) 336 return false; 337 338 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 339 if (DefMI->isCopyLike()) 340 return false; 341 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 342 LLVM_DEBUG(dbgs() << "*** to: " << MI); 343 MRI->replaceRegWith(DstReg, SrcReg); 344 MI.eraseFromParent(); 345 346 // Conservatively, clear any kill flags, since it's possible that they are no 347 // longer correct. 348 MRI->clearKillFlags(SrcReg); 349 350 ++NumCoalesces; 351 return true; 352 } 353 354 bool MachineSinking::PerformSinkAndFold(MachineInstr &MI, 355 MachineBasicBlock *MBB) { 356 if (MI.isCopy() || MI.mayLoadOrStore() || 357 MI.getOpcode() == TargetOpcode::REG_SEQUENCE) 358 return false; 359 360 // Don't sink instructions that the target prefers not to sink. 361 if (!TII->shouldSink(MI)) 362 return false; 363 364 // Check if it's safe to move the instruction. 365 bool SawStore = true; 366 if (!MI.isSafeToMove(AA, SawStore)) 367 return false; 368 369 // Convergent operations may not be made control-dependent on additional 370 // values. 371 if (MI.isConvergent()) 372 return false; 373 374 // Don't sink defs/uses of hard registers or if the instruction defines more 375 // than one register. 376 // Don't sink more than two register uses - it'll cover most of the cases and 377 // greatly simplifies the register pressure checks. 378 Register DefReg; 379 Register UsedRegA, UsedRegB; 380 for (const MachineOperand &MO : MI.operands()) { 381 if (MO.isImm() || MO.isRegMask() || MO.isRegLiveOut() || MO.isMetadata() || 382 MO.isMCSymbol() || MO.isDbgInstrRef() || MO.isCFIIndex() || 383 MO.isIntrinsicID() || MO.isPredicate() || MO.isShuffleMask()) 384 continue; 385 if (!MO.isReg()) 386 return false; 387 388 Register Reg = MO.getReg(); 389 if (Reg == 0) 390 continue; 391 392 if (Reg.isVirtual()) { 393 if (MO.isDef()) { 394 if (DefReg) 395 return false; 396 DefReg = Reg; 397 continue; 398 } 399 400 if (UsedRegA == 0) 401 UsedRegA = Reg; 402 else if (UsedRegB == 0) 403 UsedRegB = Reg; 404 else 405 return false; 406 continue; 407 } 408 409 if (Reg.isPhysical() && 410 (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO))) 411 continue; 412 413 return false; 414 } 415 416 // Scan uses of the destination register. Every use, except the last, must be 417 // a copy, with a chain of copies terminating with either a copy into a hard 418 // register, or a load/store instruction where the use is part of the 419 // address (*not* the stored value). 420 using SinkInfo = std::pair<MachineInstr *, ExtAddrMode>; 421 SmallVector<SinkInfo> SinkInto; 422 SmallVector<Register> Worklist; 423 424 const TargetRegisterClass *RC = MRI->getRegClass(DefReg); 425 const TargetRegisterClass *RCA = 426 UsedRegA == 0 ? nullptr : MRI->getRegClass(UsedRegA); 427 const TargetRegisterClass *RCB = 428 UsedRegB == 0 ? nullptr : MRI->getRegClass(UsedRegB); 429 430 Worklist.push_back(DefReg); 431 while (!Worklist.empty()) { 432 Register Reg = Worklist.pop_back_val(); 433 434 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 435 ExtAddrMode MaybeAM; 436 MachineInstr &UseInst = *MO.getParent(); 437 if (UseInst.isCopy()) { 438 Register DstReg; 439 if (const MachineOperand &O = UseInst.getOperand(0); O.isReg()) 440 DstReg = O.getReg(); 441 if (DstReg == 0) 442 return false; 443 if (DstReg.isVirtual()) { 444 Worklist.push_back(DstReg); 445 continue; 446 } 447 // If we are going to replace a copy, the original instruction must be 448 // as cheap as a copy. 449 if (!TII->isAsCheapAsAMove(MI)) 450 return false; 451 // The hard register must be in the register class of the original 452 // instruction's destination register. 453 if (!RC->contains(DstReg)) 454 return false; 455 } else if (UseInst.mayLoadOrStore()) { 456 ExtAddrMode AM; 457 if (!TII->canFoldIntoAddrMode(UseInst, Reg, MI, AM)) 458 return false; 459 MaybeAM = AM; 460 } else { 461 return false; 462 } 463 464 if (UseInst.getParent() != MI.getParent()) { 465 // If the register class of the register we are replacing is a superset 466 // of any of the register classes of the operands of the materialized 467 // instruction don't consider that live range extended. 468 const TargetRegisterClass *RCS = MRI->getRegClass(Reg); 469 if (RCA && RCA->hasSuperClassEq(RCS)) 470 RCA = nullptr; 471 else if (RCB && RCB->hasSuperClassEq(RCS)) 472 RCB = nullptr; 473 if (RCA || RCB) { 474 if (RCA == nullptr) { 475 RCA = RCB; 476 RCB = nullptr; 477 } 478 479 unsigned NRegs = !!RCA + !!RCB; 480 if (RCA == RCB) 481 RCB = nullptr; 482 483 // Check we don't exceed register pressure at the destination. 484 const MachineBasicBlock &MBB = *UseInst.getParent(); 485 if (RCB == nullptr) { 486 if (registerPressureSetExceedsLimit(NRegs, RCA, MBB)) 487 return false; 488 } else if (registerPressureSetExceedsLimit(1, RCA, MBB) || 489 registerPressureSetExceedsLimit(1, RCB, MBB)) { 490 return false; 491 } 492 } 493 } 494 495 SinkInto.emplace_back(&UseInst, MaybeAM); 496 } 497 } 498 499 if (SinkInto.empty()) 500 return false; 501 502 // Now we know we can fold the instruction in all its users. 503 for (auto &[SinkDst, MaybeAM] : SinkInto) { 504 MachineInstr *New = nullptr; 505 LLVM_DEBUG(dbgs() << "Sinking copy of"; MI.dump(); dbgs() << "into"; 506 SinkDst->dump()); 507 if (SinkDst->isCopy()) { 508 // TODO: After performing the sink-and-fold, the original instruction is 509 // deleted. Its value is still available (in a hard register), so if there 510 // are debug instructions which refer to the (now deleted) virtual 511 // register they could be updated to refer to the hard register, in 512 // principle. However, it's not clear how to do that, moreover in some 513 // cases the debug instructions may need to be replicated proportionally 514 // to the number of the COPY instructions replaced and in some extreme 515 // cases we can end up with quadratic increase in the number of debug 516 // instructions. 517 518 // Sink a copy of the instruction, replacing a COPY instruction. 519 MachineBasicBlock::iterator InsertPt = SinkDst->getIterator(); 520 Register DstReg = SinkDst->getOperand(0).getReg(); 521 TII->reMaterialize(*SinkDst->getParent(), InsertPt, DstReg, 0, MI, *TRI); 522 New = &*std::prev(InsertPt); 523 if (!New->getDebugLoc()) 524 New->setDebugLoc(SinkDst->getDebugLoc()); 525 526 // The operand registers of the "sunk" instruction have their live range 527 // extended and their kill flags may no longer be correct. Conservatively 528 // clear the kill flags. 529 if (UsedRegA) 530 MRI->clearKillFlags(UsedRegA); 531 if (UsedRegB) 532 MRI->clearKillFlags(UsedRegB); 533 } else { 534 // Fold instruction into the addressing mode of a memory instruction. 535 New = TII->emitLdStWithAddr(*SinkDst, MaybeAM); 536 537 // The registers of the addressing mode may have their live range extended 538 // and their kill flags may no longer be correct. Conservatively clear the 539 // kill flags. 540 if (Register R = MaybeAM.BaseReg; R.isValid() && R.isVirtual()) 541 MRI->clearKillFlags(R); 542 if (Register R = MaybeAM.ScaledReg; R.isValid() && R.isVirtual()) 543 MRI->clearKillFlags(R); 544 } 545 LLVM_DEBUG(dbgs() << "yielding"; New->dump()); 546 // Clear the StoreInstrCache, since we may invalidate it by erasing. 547 if (SinkDst->mayStore() && !SinkDst->hasOrderedMemoryRef()) 548 StoreInstrCache.clear(); 549 SinkDst->eraseFromParent(); 550 } 551 552 // Collect operands that need to be cleaned up because the registers no longer 553 // exist (in COPYs and debug instructions). We cannot delete instructions or 554 // clear operands while traversing register uses. 555 SmallVector<MachineOperand *> Cleanup; 556 Worklist.push_back(DefReg); 557 while (!Worklist.empty()) { 558 Register Reg = Worklist.pop_back_val(); 559 for (MachineOperand &MO : MRI->use_operands(Reg)) { 560 MachineInstr *U = MO.getParent(); 561 assert((U->isCopy() || U->isDebugInstr()) && 562 "Only debug uses and copies must remain"); 563 if (U->isCopy()) 564 Worklist.push_back(U->getOperand(0).getReg()); 565 Cleanup.push_back(&MO); 566 } 567 } 568 569 // Delete the dead COPYs and clear operands in debug instructions 570 for (MachineOperand *MO : Cleanup) { 571 MachineInstr *I = MO->getParent(); 572 if (I->isCopy()) { 573 I->eraseFromParent(); 574 } else { 575 MO->setReg(0); 576 MO->setSubReg(0); 577 } 578 } 579 580 MI.eraseFromParent(); 581 return true; 582 } 583 584 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 585 /// occur in blocks dominated by the specified block. If any use is in the 586 /// definition block, then return false since it is never legal to move def 587 /// after uses. 588 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 589 MachineBasicBlock *MBB, 590 MachineBasicBlock *DefMBB, 591 bool &BreakPHIEdge, 592 bool &LocalUse) const { 593 assert(Reg.isVirtual() && "Only makes sense for vregs"); 594 595 // Ignore debug uses because debug info doesn't affect the code. 596 if (MRI->use_nodbg_empty(Reg)) 597 return true; 598 599 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 600 // into and they are all PHI nodes. In this case, machine-sink must break 601 // the critical edge first. e.g. 602 // 603 // %bb.1: 604 // Predecessors according to CFG: %bb.0 605 // ... 606 // %def = DEC64_32r %x, implicit-def dead %eflags 607 // ... 608 // JE_4 <%bb.37>, implicit %eflags 609 // Successors according to CFG: %bb.37 %bb.2 610 // 611 // %bb.2: 612 // %p = PHI %y, %bb.0, %def, %bb.1 613 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 614 MachineInstr *UseInst = MO.getParent(); 615 unsigned OpNo = MO.getOperandNo(); 616 MachineBasicBlock *UseBlock = UseInst->getParent(); 617 return UseBlock == MBB && UseInst->isPHI() && 618 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 619 })) { 620 BreakPHIEdge = true; 621 return true; 622 } 623 624 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 625 // Determine the block of the use. 626 MachineInstr *UseInst = MO.getParent(); 627 unsigned OpNo = &MO - &UseInst->getOperand(0); 628 MachineBasicBlock *UseBlock = UseInst->getParent(); 629 if (UseInst->isPHI()) { 630 // PHI nodes use the operand in the predecessor block, not the block with 631 // the PHI. 632 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 633 } else if (UseBlock == DefMBB) { 634 LocalUse = true; 635 return false; 636 } 637 638 // Check that it dominates. 639 if (!DT->dominates(MBB, UseBlock)) 640 return false; 641 } 642 643 return true; 644 } 645 646 /// Return true if this machine instruction loads from global offset table or 647 /// constant pool. 648 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 649 assert(MI.mayLoad() && "Expected MI that loads!"); 650 651 // If we lost memory operands, conservatively assume that the instruction 652 // reads from everything.. 653 if (MI.memoperands_empty()) 654 return true; 655 656 for (MachineMemOperand *MemOp : MI.memoperands()) 657 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 658 if (PSV->isGOT() || PSV->isConstantPool()) 659 return true; 660 661 return false; 662 } 663 664 void MachineSinking::FindCycleSinkCandidates( 665 MachineCycle *Cycle, MachineBasicBlock *BB, 666 SmallVectorImpl<MachineInstr *> &Candidates) { 667 for (auto &MI : *BB) { 668 LLVM_DEBUG(dbgs() << "CycleSink: Analysing candidate: " << MI); 669 if (!TII->shouldSink(MI)) { 670 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not a candidate for this " 671 "target\n"); 672 continue; 673 } 674 if (!isCycleInvariant(Cycle, MI)) { 675 LLVM_DEBUG(dbgs() << "CycleSink: Instruction is not cycle invariant\n"); 676 continue; 677 } 678 bool DontMoveAcrossStore = true; 679 if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) { 680 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not safe to move.\n"); 681 continue; 682 } 683 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { 684 LLVM_DEBUG(dbgs() << "CycleSink: Dont sink GOT or constant pool loads\n"); 685 continue; 686 } 687 if (MI.isConvergent()) 688 continue; 689 690 const MachineOperand &MO = MI.getOperand(0); 691 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 692 continue; 693 if (!MRI->hasOneDef(MO.getReg())) 694 continue; 695 696 LLVM_DEBUG(dbgs() << "CycleSink: Instruction added as candidate.\n"); 697 Candidates.push_back(&MI); 698 } 699 } 700 701 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 702 if (skipFunction(MF.getFunction())) 703 return false; 704 705 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 706 707 STI = &MF.getSubtarget(); 708 TII = STI->getInstrInfo(); 709 TRI = STI->getRegisterInfo(); 710 MRI = &MF.getRegInfo(); 711 DT = &getAnalysis<MachineDominatorTree>(); 712 PDT = &getAnalysis<MachinePostDominatorTree>(); 713 CI = &getAnalysis<MachineCycleInfoWrapperPass>().getCycleInfo(); 714 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 715 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 716 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 717 RegClassInfo.runOnMachineFunction(MF); 718 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 719 EnableSinkAndFold = PassConfig->getEnableSinkAndFold(); 720 721 bool EverMadeChange = false; 722 723 while (true) { 724 bool MadeChange = false; 725 726 // Process all basic blocks. 727 CEBCandidates.clear(); 728 ToSplit.clear(); 729 for (auto &MBB: MF) 730 MadeChange |= ProcessBlock(MBB); 731 732 // If we have anything we marked as toSplit, split it now. 733 for (const auto &Pair : ToSplit) { 734 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 735 if (NewSucc != nullptr) { 736 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 737 << printMBBReference(*Pair.first) << " -- " 738 << printMBBReference(*NewSucc) << " -- " 739 << printMBBReference(*Pair.second) << '\n'); 740 if (MBFI) 741 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 742 743 MadeChange = true; 744 ++NumSplit; 745 CI->splitCriticalEdge(Pair.first, Pair.second, NewSucc); 746 } else 747 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 748 } 749 // If this iteration over the code changed anything, keep iterating. 750 if (!MadeChange) break; 751 EverMadeChange = true; 752 } 753 754 if (SinkInstsIntoCycle) { 755 SmallVector<MachineCycle *, 8> Cycles(CI->toplevel_begin(), 756 CI->toplevel_end()); 757 for (auto *Cycle : Cycles) { 758 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 759 if (!Preheader) { 760 LLVM_DEBUG(dbgs() << "CycleSink: Can't find preheader\n"); 761 continue; 762 } 763 SmallVector<MachineInstr *, 8> Candidates; 764 FindCycleSinkCandidates(Cycle, Preheader, Candidates); 765 766 // Walk the candidates in reverse order so that we start with the use 767 // of a def-use chain, if there is any. 768 // TODO: Sort the candidates using a cost-model. 769 unsigned i = 0; 770 for (MachineInstr *I : llvm::reverse(Candidates)) { 771 if (i++ == SinkIntoCycleLimit) { 772 LLVM_DEBUG(dbgs() << "CycleSink: Limit reached of instructions to " 773 "be analysed."); 774 break; 775 } 776 777 if (!SinkIntoCycle(Cycle, *I)) 778 break; 779 EverMadeChange = true; 780 ++NumCycleSunk; 781 } 782 } 783 } 784 785 HasStoreCache.clear(); 786 StoreInstrCache.clear(); 787 788 // Now clear any kill flags for recorded registers. 789 for (auto I : RegsToClearKillFlags) 790 MRI->clearKillFlags(I); 791 RegsToClearKillFlags.clear(); 792 793 return EverMadeChange; 794 } 795 796 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 797 if ((!EnableSinkAndFold && MBB.succ_size() <= 1) || MBB.empty()) 798 return false; 799 800 // Don't bother sinking code out of unreachable blocks. In addition to being 801 // unprofitable, it can also lead to infinite looping, because in an 802 // unreachable cycle there may be nowhere to stop. 803 if (!DT->isReachableFromEntry(&MBB)) return false; 804 805 bool MadeChange = false; 806 807 // Cache all successors, sorted by frequency info and cycle depth. 808 AllSuccsCache AllSuccessors; 809 810 // Walk the basic block bottom-up. Remember if we saw a store. 811 MachineBasicBlock::iterator I = MBB.end(); 812 --I; 813 bool ProcessedBegin, SawStore = false; 814 do { 815 MachineInstr &MI = *I; // The instruction to sink. 816 817 // Predecrement I (if it's not begin) so that it isn't invalidated by 818 // sinking. 819 ProcessedBegin = I == MBB.begin(); 820 if (!ProcessedBegin) 821 --I; 822 823 if (MI.isDebugOrPseudoInstr()) { 824 if (MI.isDebugValue()) 825 ProcessDbgInst(MI); 826 continue; 827 } 828 829 if (EnableSinkAndFold && PerformSinkAndFold(MI, &MBB)) { 830 MadeChange = true; 831 continue; 832 } 833 834 // Can't sink anything out of a block that has less than two successors. 835 if (MBB.succ_size() <= 1) 836 continue; 837 838 if (PerformTrivialForwardCoalescing(MI, &MBB)) { 839 MadeChange = true; 840 continue; 841 } 842 843 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 844 ++NumSunk; 845 MadeChange = true; 846 } 847 848 // If we just processed the first instruction in the block, we're done. 849 } while (!ProcessedBegin); 850 851 SeenDbgUsers.clear(); 852 SeenDbgVars.clear(); 853 // recalculate the bb register pressure after sinking one BB. 854 CachedRegisterPressure.clear(); 855 return MadeChange; 856 } 857 858 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 859 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 860 // we know what to sink if the vreg def sinks. 861 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 862 863 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 864 MI.getDebugLoc()->getInlinedAt()); 865 bool SeenBefore = SeenDbgVars.contains(Var); 866 867 for (MachineOperand &MO : MI.debug_operands()) { 868 if (MO.isReg() && MO.getReg().isVirtual()) 869 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 870 } 871 872 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 873 SeenDbgVars.insert(Var); 874 } 875 876 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 877 MachineBasicBlock *From, 878 MachineBasicBlock *To) { 879 // FIXME: Need much better heuristics. 880 881 // If the pass has already considered breaking this edge (during this pass 882 // through the function), then let's go ahead and break it. This means 883 // sinking multiple "cheap" instructions into the same block. 884 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 885 return true; 886 887 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 888 return true; 889 890 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 891 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 892 return true; 893 894 // MI is cheap, we probably don't want to break the critical edge for it. 895 // However, if this would allow some definitions of its source operands 896 // to be sunk then it's probably worth it. 897 for (const MachineOperand &MO : MI.all_uses()) { 898 Register Reg = MO.getReg(); 899 if (Reg == 0) 900 continue; 901 902 // We don't move live definitions of physical registers, 903 // so sinking their uses won't enable any opportunities. 904 if (Reg.isPhysical()) 905 continue; 906 907 // If this instruction is the only user of a virtual register, 908 // check if breaking the edge will enable sinking 909 // both this instruction and the defining instruction. 910 if (MRI->hasOneNonDBGUse(Reg)) { 911 // If the definition resides in same MBB, 912 // claim it's likely we can sink these together. 913 // If definition resides elsewhere, we aren't 914 // blocking it from being sunk so don't break the edge. 915 MachineInstr *DefMI = MRI->getVRegDef(Reg); 916 if (DefMI->getParent() == MI.getParent()) 917 return true; 918 } 919 } 920 921 return false; 922 } 923 924 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 925 MachineBasicBlock *FromBB, 926 MachineBasicBlock *ToBB, 927 bool BreakPHIEdge) { 928 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 929 return false; 930 931 // Avoid breaking back edge. From == To means backedge for single BB cycle. 932 if (!SplitEdges || FromBB == ToBB) 933 return false; 934 935 MachineCycle *FromCycle = CI->getCycle(FromBB); 936 MachineCycle *ToCycle = CI->getCycle(ToBB); 937 938 // Check for backedges of more "complex" cycles. 939 if (FromCycle == ToCycle && FromCycle && 940 (!FromCycle->isReducible() || FromCycle->getHeader() == ToBB)) 941 return false; 942 943 // It's not always legal to break critical edges and sink the computation 944 // to the edge. 945 // 946 // %bb.1: 947 // v1024 948 // Beq %bb.3 949 // <fallthrough> 950 // %bb.2: 951 // ... no uses of v1024 952 // <fallthrough> 953 // %bb.3: 954 // ... 955 // = v1024 956 // 957 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 958 // 959 // %bb.1: 960 // ... 961 // Bne %bb.2 962 // %bb.4: 963 // v1024 = 964 // B %bb.3 965 // %bb.2: 966 // ... no uses of v1024 967 // <fallthrough> 968 // %bb.3: 969 // ... 970 // = v1024 971 // 972 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 973 // flow. We need to ensure the new basic block where the computation is 974 // sunk to dominates all the uses. 975 // It's only legal to break critical edge and sink the computation to the 976 // new block if all the predecessors of "To", except for "From", are 977 // not dominated by "From". Given SSA property, this means these 978 // predecessors are dominated by "To". 979 // 980 // There is no need to do this check if all the uses are PHI nodes. PHI 981 // sources are only defined on the specific predecessor edges. 982 if (!BreakPHIEdge) { 983 for (MachineBasicBlock *Pred : ToBB->predecessors()) 984 if (Pred != FromBB && !DT->dominates(ToBB, Pred)) 985 return false; 986 } 987 988 ToSplit.insert(std::make_pair(FromBB, ToBB)); 989 990 return true; 991 } 992 993 std::vector<unsigned> & 994 MachineSinking::getBBRegisterPressure(const MachineBasicBlock &MBB) { 995 // Currently to save compiling time, MBB's register pressure will not change 996 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 997 // register pressure is changed after sinking any instructions into it. 998 // FIXME: need a accurate and cheap register pressure estiminate model here. 999 auto RP = CachedRegisterPressure.find(&MBB); 1000 if (RP != CachedRegisterPressure.end()) 1001 return RP->second; 1002 1003 RegionPressure Pressure; 1004 RegPressureTracker RPTracker(Pressure); 1005 1006 // Initialize the register pressure tracker. 1007 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 1008 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 1009 1010 for (MachineBasicBlock::const_iterator MII = MBB.instr_end(), 1011 MIE = MBB.instr_begin(); 1012 MII != MIE; --MII) { 1013 const MachineInstr &MI = *std::prev(MII); 1014 if (MI.isDebugInstr() || MI.isPseudoProbe()) 1015 continue; 1016 RegisterOperands RegOpers; 1017 RegOpers.collect(MI, *TRI, *MRI, false, false); 1018 RPTracker.recedeSkipDebugValues(); 1019 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 1020 RPTracker.recede(RegOpers); 1021 } 1022 1023 RPTracker.closeRegion(); 1024 auto It = CachedRegisterPressure.insert( 1025 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 1026 return It.first->second; 1027 } 1028 1029 bool MachineSinking::registerPressureSetExceedsLimit( 1030 unsigned NRegs, const TargetRegisterClass *RC, 1031 const MachineBasicBlock &MBB) { 1032 unsigned Weight = NRegs * TRI->getRegClassWeight(RC).RegWeight; 1033 const int *PS = TRI->getRegClassPressureSets(RC); 1034 std::vector<unsigned> BBRegisterPressure = getBBRegisterPressure(MBB); 1035 for (; *PS != -1; PS++) 1036 if (Weight + BBRegisterPressure[*PS] >= 1037 TRI->getRegPressureSetLimit(*MBB.getParent(), *PS)) 1038 return true; 1039 return false; 1040 } 1041 1042 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 1043 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 1044 MachineBasicBlock *MBB, 1045 MachineBasicBlock *SuccToSinkTo, 1046 AllSuccsCache &AllSuccessors) { 1047 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 1048 1049 if (MBB == SuccToSinkTo) 1050 return false; 1051 1052 // It is profitable if SuccToSinkTo does not post dominate current block. 1053 if (!PDT->dominates(SuccToSinkTo, MBB)) 1054 return true; 1055 1056 // It is profitable to sink an instruction from a deeper cycle to a shallower 1057 // cycle, even if the latter post-dominates the former (PR21115). 1058 if (CI->getCycleDepth(MBB) > CI->getCycleDepth(SuccToSinkTo)) 1059 return true; 1060 1061 // Check if only use in post dominated block is PHI instruction. 1062 bool NonPHIUse = false; 1063 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 1064 MachineBasicBlock *UseBlock = UseInst.getParent(); 1065 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 1066 NonPHIUse = true; 1067 } 1068 if (!NonPHIUse) 1069 return true; 1070 1071 // If SuccToSinkTo post dominates then also it may be profitable if MI 1072 // can further profitably sinked into another block in next round. 1073 bool BreakPHIEdge = false; 1074 // FIXME - If finding successor is compile time expensive then cache results. 1075 if (MachineBasicBlock *MBB2 = 1076 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 1077 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 1078 1079 MachineCycle *MCycle = CI->getCycle(MBB); 1080 1081 // If the instruction is not inside a cycle, it is not profitable to sink MI to 1082 // a post dominate block SuccToSinkTo. 1083 if (!MCycle) 1084 return false; 1085 1086 // If this instruction is inside a Cycle and sinking this instruction can make 1087 // more registers live range shorten, it is still prifitable. 1088 for (const MachineOperand &MO : MI.operands()) { 1089 // Ignore non-register operands. 1090 if (!MO.isReg()) 1091 continue; 1092 Register Reg = MO.getReg(); 1093 if (Reg == 0) 1094 continue; 1095 1096 if (Reg.isPhysical()) { 1097 // Don't handle non-constant and non-ignorable physical register uses. 1098 if (MO.isUse() && !MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 1099 return false; 1100 continue; 1101 } 1102 1103 // Users for the defs are all dominated by SuccToSinkTo. 1104 if (MO.isDef()) { 1105 // This def register's live range is shortened after sinking. 1106 bool LocalUse = false; 1107 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 1108 LocalUse)) 1109 return false; 1110 } else { 1111 MachineInstr *DefMI = MRI->getVRegDef(Reg); 1112 if (!DefMI) 1113 continue; 1114 MachineCycle *Cycle = CI->getCycle(DefMI->getParent()); 1115 // DefMI is defined outside of cycle. There should be no live range 1116 // impact for this operand. Defination outside of cycle means: 1117 // 1: defination is outside of cycle. 1118 // 2: defination is in this cycle, but it is a PHI in the cycle header. 1119 if (Cycle != MCycle || (DefMI->isPHI() && Cycle && Cycle->isReducible() && 1120 Cycle->getHeader() == DefMI->getParent())) 1121 continue; 1122 // The DefMI is defined inside the cycle. 1123 // If sinking this operand makes some register pressure set exceed limit, 1124 // it is not profitable. 1125 if (registerPressureSetExceedsLimit(1, MRI->getRegClass(Reg), 1126 *SuccToSinkTo)) { 1127 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 1128 return false; 1129 } 1130 } 1131 } 1132 1133 // If MI is in cycle and all its operands are alive across the whole cycle or 1134 // if no operand sinking make register pressure set exceed limit, it is 1135 // profitable to sink MI. 1136 return true; 1137 } 1138 1139 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 1140 /// computing it if it was not already cached. 1141 SmallVector<MachineBasicBlock *, 4> & 1142 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 1143 AllSuccsCache &AllSuccessors) const { 1144 // Do we have the sorted successors in cache ? 1145 auto Succs = AllSuccessors.find(MBB); 1146 if (Succs != AllSuccessors.end()) 1147 return Succs->second; 1148 1149 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); 1150 1151 // Handle cases where sinking can happen but where the sink point isn't a 1152 // successor. For example: 1153 // 1154 // x = computation 1155 // if () {} else {} 1156 // use x 1157 // 1158 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 1159 // DomTree children of MBB that have MBB as immediate dominator are added. 1160 if (DTChild->getIDom()->getBlock() == MI.getParent() && 1161 // Skip MBBs already added to the AllSuccs vector above. 1162 !MBB->isSuccessor(DTChild->getBlock())) 1163 AllSuccs.push_back(DTChild->getBlock()); 1164 } 1165 1166 // Sort Successors according to their cycle depth or block frequency info. 1167 llvm::stable_sort( 1168 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 1169 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 1170 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 1171 bool HasBlockFreq = LHSFreq != 0 || RHSFreq != 0; 1172 return HasBlockFreq ? LHSFreq < RHSFreq 1173 : CI->getCycleDepth(L) < CI->getCycleDepth(R); 1174 }); 1175 1176 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 1177 1178 return it.first->second; 1179 } 1180 1181 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 1182 MachineBasicBlock * 1183 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 1184 bool &BreakPHIEdge, 1185 AllSuccsCache &AllSuccessors) { 1186 assert (MBB && "Invalid MachineBasicBlock!"); 1187 1188 // loop over all the operands of the specified instruction. If there is 1189 // anything we can't handle, bail out. 1190 1191 // SuccToSinkTo - This is the successor to sink this instruction to, once we 1192 // decide. 1193 MachineBasicBlock *SuccToSinkTo = nullptr; 1194 for (const MachineOperand &MO : MI.operands()) { 1195 if (!MO.isReg()) continue; // Ignore non-register operands. 1196 1197 Register Reg = MO.getReg(); 1198 if (Reg == 0) continue; 1199 1200 if (Reg.isPhysical()) { 1201 if (MO.isUse()) { 1202 // If the physreg has no defs anywhere, it's just an ambient register 1203 // and we can freely move its uses. Alternatively, if it's allocatable, 1204 // it could get allocated to something with a def during allocation. 1205 if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 1206 return nullptr; 1207 } else if (!MO.isDead()) { 1208 // A def that isn't dead. We can't move it. 1209 return nullptr; 1210 } 1211 } else { 1212 // Virtual register uses are always safe to sink. 1213 if (MO.isUse()) continue; 1214 1215 // If it's not safe to move defs of the register class, then abort. 1216 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 1217 return nullptr; 1218 1219 // Virtual register defs can only be sunk if all their uses are in blocks 1220 // dominated by one of the successors. 1221 if (SuccToSinkTo) { 1222 // If a previous operand picked a block to sink to, then this operand 1223 // must be sinkable to the same block. 1224 bool LocalUse = false; 1225 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 1226 BreakPHIEdge, LocalUse)) 1227 return nullptr; 1228 1229 continue; 1230 } 1231 1232 // Otherwise, we should look at all the successors and decide which one 1233 // we should sink to. If we have reliable block frequency information 1234 // (frequency != 0) available, give successors with smaller frequencies 1235 // higher priority, otherwise prioritize smaller cycle depths. 1236 for (MachineBasicBlock *SuccBlock : 1237 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 1238 bool LocalUse = false; 1239 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 1240 BreakPHIEdge, LocalUse)) { 1241 SuccToSinkTo = SuccBlock; 1242 break; 1243 } 1244 if (LocalUse) 1245 // Def is used locally, it's never safe to move this def. 1246 return nullptr; 1247 } 1248 1249 // If we couldn't find a block to sink to, ignore this instruction. 1250 if (!SuccToSinkTo) 1251 return nullptr; 1252 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 1253 return nullptr; 1254 } 1255 } 1256 1257 // It is not possible to sink an instruction into its own block. This can 1258 // happen with cycles. 1259 if (MBB == SuccToSinkTo) 1260 return nullptr; 1261 1262 // It's not safe to sink instructions to EH landing pad. Control flow into 1263 // landing pad is implicitly defined. 1264 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 1265 return nullptr; 1266 1267 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 1268 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 1269 // the source block (which this code does not yet do). So for now, forbid 1270 // doing so. 1271 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 1272 return nullptr; 1273 1274 if (SuccToSinkTo && !TII->isSafeToSink(MI, SuccToSinkTo, CI)) 1275 return nullptr; 1276 1277 return SuccToSinkTo; 1278 } 1279 1280 /// Return true if MI is likely to be usable as a memory operation by the 1281 /// implicit null check optimization. 1282 /// 1283 /// This is a "best effort" heuristic, and should not be relied upon for 1284 /// correctness. This returning true does not guarantee that the implicit null 1285 /// check optimization is legal over MI, and this returning false does not 1286 /// guarantee MI cannot possibly be used to do a null check. 1287 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 1288 const TargetInstrInfo *TII, 1289 const TargetRegisterInfo *TRI) { 1290 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 1291 1292 auto *MBB = MI.getParent(); 1293 if (MBB->pred_size() != 1) 1294 return false; 1295 1296 auto *PredMBB = *MBB->pred_begin(); 1297 auto *PredBB = PredMBB->getBasicBlock(); 1298 1299 // Frontends that don't use implicit null checks have no reason to emit 1300 // branches with make.implicit metadata, and this function should always 1301 // return false for them. 1302 if (!PredBB || 1303 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 1304 return false; 1305 1306 const MachineOperand *BaseOp; 1307 int64_t Offset; 1308 bool OffsetIsScalable; 1309 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 1310 return false; 1311 1312 if (!BaseOp->isReg()) 1313 return false; 1314 1315 if (!(MI.mayLoad() && !MI.isPredicable())) 1316 return false; 1317 1318 MachineBranchPredicate MBP; 1319 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 1320 return false; 1321 1322 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 1323 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 1324 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 1325 MBP.LHS.getReg() == BaseOp->getReg(); 1326 } 1327 1328 /// If the sunk instruction is a copy, try to forward the copy instead of 1329 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 1330 /// there's any subregister weirdness involved. Returns true if copy 1331 /// propagation occurred. 1332 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI, 1333 Register Reg) { 1334 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 1335 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 1336 1337 // Copy DBG_VALUE operand and set the original to undef. We then check to 1338 // see whether this is something that can be copy-forwarded. If it isn't, 1339 // continue around the loop. 1340 1341 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 1342 auto CopyOperands = TII.isCopyInstr(SinkInst); 1343 if (!CopyOperands) 1344 return false; 1345 SrcMO = CopyOperands->Source; 1346 DstMO = CopyOperands->Destination; 1347 1348 // Check validity of forwarding this copy. 1349 bool PostRA = MRI.getNumVirtRegs() == 0; 1350 1351 // Trying to forward between physical and virtual registers is too hard. 1352 if (Reg.isVirtual() != SrcMO->getReg().isVirtual()) 1353 return false; 1354 1355 // Only try virtual register copy-forwarding before regalloc, and physical 1356 // register copy-forwarding after regalloc. 1357 bool arePhysRegs = !Reg.isVirtual(); 1358 if (arePhysRegs != PostRA) 1359 return false; 1360 1361 // Pre-regalloc, only forward if all subregisters agree (or there are no 1362 // subregs at all). More analysis might recover some forwardable copies. 1363 if (!PostRA) 1364 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) 1365 if (DbgMO.getSubReg() != SrcMO->getSubReg() || 1366 DbgMO.getSubReg() != DstMO->getSubReg()) 1367 return false; 1368 1369 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 1370 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 1371 // matches the copy destination. 1372 if (PostRA && Reg != DstMO->getReg()) 1373 return false; 1374 1375 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) { 1376 DbgMO.setReg(SrcMO->getReg()); 1377 DbgMO.setSubReg(SrcMO->getSubReg()); 1378 } 1379 return true; 1380 } 1381 1382 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>; 1383 /// Sink an instruction and its associated debug instructions. 1384 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 1385 MachineBasicBlock::iterator InsertPos, 1386 ArrayRef<MIRegs> DbgValuesToSink) { 1387 // If we cannot find a location to use (merge with), then we erase the debug 1388 // location to prevent debug-info driven tools from potentially reporting 1389 // wrong location information. 1390 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 1391 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 1392 InsertPos->getDebugLoc())); 1393 else 1394 MI.setDebugLoc(DebugLoc()); 1395 1396 // Move the instruction. 1397 MachineBasicBlock *ParentBlock = MI.getParent(); 1398 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 1399 ++MachineBasicBlock::iterator(MI)); 1400 1401 // Sink a copy of debug users to the insert position. Mark the original 1402 // DBG_VALUE location as 'undef', indicating that any earlier variable 1403 // location should be terminated as we've optimised away the value at this 1404 // point. 1405 for (const auto &DbgValueToSink : DbgValuesToSink) { 1406 MachineInstr *DbgMI = DbgValueToSink.first; 1407 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI); 1408 SuccToSinkTo.insert(InsertPos, NewDbgMI); 1409 1410 bool PropagatedAllSunkOps = true; 1411 for (unsigned Reg : DbgValueToSink.second) { 1412 if (DbgMI->hasDebugOperandForReg(Reg)) { 1413 if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) { 1414 PropagatedAllSunkOps = false; 1415 break; 1416 } 1417 } 1418 } 1419 if (!PropagatedAllSunkOps) 1420 DbgMI->setDebugValueUndef(); 1421 } 1422 } 1423 1424 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1425 /// and To. 1426 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1427 MachineBasicBlock *To, MachineInstr &MI) { 1428 // Make sure From and To are in straight line which means From dominates To 1429 // and To post dominates From. 1430 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1431 return true; 1432 1433 auto BlockPair = std::make_pair(From, To); 1434 1435 // Does these two blocks pair be queried before and have a definite cached 1436 // result? 1437 if (auto It = HasStoreCache.find(BlockPair); It != HasStoreCache.end()) 1438 return It->second; 1439 1440 if (auto It = StoreInstrCache.find(BlockPair); It != StoreInstrCache.end()) 1441 return llvm::any_of(It->second, [&](MachineInstr *I) { 1442 return I->mayAlias(AA, MI, false); 1443 }); 1444 1445 bool SawStore = false; 1446 bool HasAliasedStore = false; 1447 DenseSet<MachineBasicBlock *> HandledBlocks; 1448 DenseSet<MachineBasicBlock *> HandledDomBlocks; 1449 // Go through all reachable blocks from From. 1450 for (MachineBasicBlock *BB : depth_first(From)) { 1451 // We insert the instruction at the start of block To, so no need to worry 1452 // about stores inside To. 1453 // Store in block From should be already considered when just enter function 1454 // SinkInstruction. 1455 if (BB == To || BB == From) 1456 continue; 1457 1458 // We already handle this BB in previous iteration. 1459 if (HandledBlocks.count(BB)) 1460 continue; 1461 1462 HandledBlocks.insert(BB); 1463 // To post dominates BB, it must be a path from block From. 1464 if (PDT->dominates(To, BB)) { 1465 if (!HandledDomBlocks.count(BB)) 1466 HandledDomBlocks.insert(BB); 1467 1468 // If this BB is too big or the block number in straight line between From 1469 // and To is too big, stop searching to save compiling time. 1470 if (BB->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold) || 1471 HandledDomBlocks.size() > SinkLoadBlocksThreshold) { 1472 for (auto *DomBB : HandledDomBlocks) { 1473 if (DomBB != BB && DT->dominates(DomBB, BB)) 1474 HasStoreCache[std::make_pair(DomBB, To)] = true; 1475 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1476 HasStoreCache[std::make_pair(From, DomBB)] = true; 1477 } 1478 HasStoreCache[BlockPair] = true; 1479 return true; 1480 } 1481 1482 for (MachineInstr &I : *BB) { 1483 // Treat as alias conservatively for a call or an ordered memory 1484 // operation. 1485 if (I.isCall() || I.hasOrderedMemoryRef()) { 1486 for (auto *DomBB : HandledDomBlocks) { 1487 if (DomBB != BB && DT->dominates(DomBB, BB)) 1488 HasStoreCache[std::make_pair(DomBB, To)] = true; 1489 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1490 HasStoreCache[std::make_pair(From, DomBB)] = true; 1491 } 1492 HasStoreCache[BlockPair] = true; 1493 return true; 1494 } 1495 1496 if (I.mayStore()) { 1497 SawStore = true; 1498 // We still have chance to sink MI if all stores between are not 1499 // aliased to MI. 1500 // Cache all store instructions, so that we don't need to go through 1501 // all From reachable blocks for next load instruction. 1502 if (I.mayAlias(AA, MI, false)) 1503 HasAliasedStore = true; 1504 StoreInstrCache[BlockPair].push_back(&I); 1505 } 1506 } 1507 } 1508 } 1509 // If there is no store at all, cache the result. 1510 if (!SawStore) 1511 HasStoreCache[BlockPair] = false; 1512 return HasAliasedStore; 1513 } 1514 1515 /// Sink instructions into cycles if profitable. This especially tries to 1516 /// prevent register spills caused by register pressure if there is little to no 1517 /// overhead moving instructions into cycles. 1518 bool MachineSinking::SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I) { 1519 LLVM_DEBUG(dbgs() << "CycleSink: Finding sink block for: " << I); 1520 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 1521 assert(Preheader && "Cycle sink needs a preheader block"); 1522 MachineBasicBlock *SinkBlock = nullptr; 1523 bool CanSink = true; 1524 const MachineOperand &MO = I.getOperand(0); 1525 1526 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 1527 LLVM_DEBUG(dbgs() << "CycleSink: Analysing use: " << MI); 1528 if (!Cycle->contains(MI.getParent())) { 1529 LLVM_DEBUG(dbgs() << "CycleSink: Use not in cycle, can't sink.\n"); 1530 CanSink = false; 1531 break; 1532 } 1533 1534 // FIXME: Come up with a proper cost model that estimates whether sinking 1535 // the instruction (and thus possibly executing it on every cycle 1536 // iteration) is more expensive than a register. 1537 // For now assumes that copies are cheap and thus almost always worth it. 1538 if (!MI.isCopy()) { 1539 LLVM_DEBUG(dbgs() << "CycleSink: Use is not a copy\n"); 1540 CanSink = false; 1541 break; 1542 } 1543 if (!SinkBlock) { 1544 SinkBlock = MI.getParent(); 1545 LLVM_DEBUG(dbgs() << "CycleSink: Setting sink block to: " 1546 << printMBBReference(*SinkBlock) << "\n"); 1547 continue; 1548 } 1549 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent()); 1550 if (!SinkBlock) { 1551 LLVM_DEBUG(dbgs() << "CycleSink: Can't find nearest dominator\n"); 1552 CanSink = false; 1553 break; 1554 } 1555 LLVM_DEBUG(dbgs() << "CycleSink: Setting nearest common dom block: " << 1556 printMBBReference(*SinkBlock) << "\n"); 1557 } 1558 1559 if (!CanSink) { 1560 LLVM_DEBUG(dbgs() << "CycleSink: Can't sink instruction.\n"); 1561 return false; 1562 } 1563 if (!SinkBlock) { 1564 LLVM_DEBUG(dbgs() << "CycleSink: Not sinking, can't find sink block.\n"); 1565 return false; 1566 } 1567 if (SinkBlock == Preheader) { 1568 LLVM_DEBUG( 1569 dbgs() << "CycleSink: Not sinking, sink block is the preheader\n"); 1570 return false; 1571 } 1572 if (SinkBlock->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold)) { 1573 LLVM_DEBUG( 1574 dbgs() << "CycleSink: Not Sinking, block too large to analyse.\n"); 1575 return false; 1576 } 1577 1578 LLVM_DEBUG(dbgs() << "CycleSink: Sinking instruction!\n"); 1579 SinkBlock->splice(SinkBlock->SkipPHIsAndLabels(SinkBlock->begin()), Preheader, 1580 I); 1581 1582 // Conservatively clear any kill flags on uses of sunk instruction 1583 for (MachineOperand &MO : I.operands()) { 1584 if (MO.isReg() && MO.readsReg()) 1585 RegsToClearKillFlags.insert(MO.getReg()); 1586 } 1587 1588 // The instruction is moved from its basic block, so do not retain the 1589 // debug information. 1590 assert(!I.isDebugInstr() && "Should not sink debug inst"); 1591 I.setDebugLoc(DebugLoc()); 1592 return true; 1593 } 1594 1595 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1596 /// instruction out of its current block into a successor. 1597 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1598 AllSuccsCache &AllSuccessors) { 1599 // Don't sink instructions that the target prefers not to sink. 1600 if (!TII->shouldSink(MI)) 1601 return false; 1602 1603 // Check if it's safe to move the instruction. 1604 if (!MI.isSafeToMove(AA, SawStore)) 1605 return false; 1606 1607 // Convergent operations may not be made control-dependent on additional 1608 // values. 1609 if (MI.isConvergent()) 1610 return false; 1611 1612 // Don't break implicit null checks. This is a performance heuristic, and not 1613 // required for correctness. 1614 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1615 return false; 1616 1617 // FIXME: This should include support for sinking instructions within the 1618 // block they are currently in to shorten the live ranges. We often get 1619 // instructions sunk into the top of a large block, but it would be better to 1620 // also sink them down before their first use in the block. This xform has to 1621 // be careful not to *increase* register pressure though, e.g. sinking 1622 // "x = y + z" down if it kills y and z would increase the live ranges of y 1623 // and z and only shrink the live range of x. 1624 1625 bool BreakPHIEdge = false; 1626 MachineBasicBlock *ParentBlock = MI.getParent(); 1627 MachineBasicBlock *SuccToSinkTo = 1628 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1629 1630 // If there are no outputs, it must have side-effects. 1631 if (!SuccToSinkTo) 1632 return false; 1633 1634 // If the instruction to move defines a dead physical register which is live 1635 // when leaving the basic block, don't move it because it could turn into a 1636 // "zombie" define of that preg. E.g., EFLAGS. 1637 for (const MachineOperand &MO : MI.all_defs()) { 1638 Register Reg = MO.getReg(); 1639 if (Reg == 0 || !Reg.isPhysical()) 1640 continue; 1641 if (SuccToSinkTo->isLiveIn(Reg)) 1642 return false; 1643 } 1644 1645 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1646 1647 // If the block has multiple predecessors, this is a critical edge. 1648 // Decide if we can sink along it or need to break the edge. 1649 if (SuccToSinkTo->pred_size() > 1) { 1650 // We cannot sink a load across a critical edge - there may be stores in 1651 // other code paths. 1652 bool TryBreak = false; 1653 bool Store = 1654 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1655 if (!MI.isSafeToMove(AA, Store)) { 1656 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1657 TryBreak = true; 1658 } 1659 1660 // We don't want to sink across a critical edge if we don't dominate the 1661 // successor. We could be introducing calculations to new code paths. 1662 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1663 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1664 TryBreak = true; 1665 } 1666 1667 // Don't sink instructions into a cycle. 1668 if (!TryBreak && CI->getCycle(SuccToSinkTo) && 1669 (!CI->getCycle(SuccToSinkTo)->isReducible() || 1670 CI->getCycle(SuccToSinkTo)->getHeader() == SuccToSinkTo)) { 1671 LLVM_DEBUG(dbgs() << " *** NOTE: cycle header found\n"); 1672 TryBreak = true; 1673 } 1674 1675 // Otherwise we are OK with sinking along a critical edge. 1676 if (!TryBreak) 1677 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1678 else { 1679 // Mark this edge as to be split. 1680 // If the edge can actually be split, the next iteration of the main loop 1681 // will sink MI in the newly created block. 1682 bool Status = 1683 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1684 if (!Status) 1685 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1686 "break critical edge\n"); 1687 // The instruction will not be sunk this time. 1688 return false; 1689 } 1690 } 1691 1692 if (BreakPHIEdge) { 1693 // BreakPHIEdge is true if all the uses are in the successor MBB being 1694 // sunken into and they are all PHI nodes. In this case, machine-sink must 1695 // break the critical edge first. 1696 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 1697 SuccToSinkTo, BreakPHIEdge); 1698 if (!Status) 1699 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1700 "break critical edge\n"); 1701 // The instruction will not be sunk this time. 1702 return false; 1703 } 1704 1705 // Determine where to insert into. Skip phi nodes. 1706 MachineBasicBlock::iterator InsertPos = 1707 SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin()); 1708 if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) { 1709 LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n"); 1710 return false; 1711 } 1712 1713 // Collect debug users of any vreg that this inst defines. 1714 SmallVector<MIRegs, 4> DbgUsersToSink; 1715 for (auto &MO : MI.all_defs()) { 1716 if (!MO.getReg().isVirtual()) 1717 continue; 1718 if (!SeenDbgUsers.count(MO.getReg())) 1719 continue; 1720 1721 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1722 auto &Users = SeenDbgUsers[MO.getReg()]; 1723 for (auto &User : Users) { 1724 MachineInstr *DbgMI = User.getPointer(); 1725 if (User.getInt()) { 1726 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1727 // it, it can't be recovered. Set it undef. 1728 if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg())) 1729 DbgMI->setDebugValueUndef(); 1730 } else { 1731 DbgUsersToSink.push_back( 1732 {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())}); 1733 } 1734 } 1735 } 1736 1737 // After sinking, some debug users may not be dominated any more. If possible, 1738 // copy-propagate their operands. As it's expensive, don't do this if there's 1739 // no debuginfo in the program. 1740 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1741 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1742 1743 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1744 1745 // Conservatively, clear any kill flags, since it's possible that they are no 1746 // longer correct. 1747 // Note that we have to clear the kill flags for any register this instruction 1748 // uses as we may sink over another instruction which currently kills the 1749 // used registers. 1750 for (MachineOperand &MO : MI.all_uses()) 1751 RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags. 1752 1753 return true; 1754 } 1755 1756 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1757 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1758 assert(MI.isCopy()); 1759 assert(MI.getOperand(1).isReg()); 1760 1761 // Enumerate all users of vreg operands that are def'd. Skip those that will 1762 // be sunk. For the rest, if they are not dominated by the block we will sink 1763 // MI into, propagate the copy source to them. 1764 SmallVector<MachineInstr *, 4> DbgDefUsers; 1765 SmallVector<Register, 4> DbgUseRegs; 1766 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1767 for (auto &MO : MI.all_defs()) { 1768 if (!MO.getReg().isVirtual()) 1769 continue; 1770 DbgUseRegs.push_back(MO.getReg()); 1771 for (auto &User : MRI.use_instructions(MO.getReg())) { 1772 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1773 continue; 1774 1775 // If is in same block, will either sink or be use-before-def. 1776 if (User.getParent() == MI.getParent()) 1777 continue; 1778 1779 assert(User.hasDebugOperandForReg(MO.getReg()) && 1780 "DBG_VALUE user of vreg, but has no operand for it?"); 1781 DbgDefUsers.push_back(&User); 1782 } 1783 } 1784 1785 // Point the users of this copy that are no longer dominated, at the source 1786 // of the copy. 1787 for (auto *User : DbgDefUsers) { 1788 for (auto &Reg : DbgUseRegs) { 1789 for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) { 1790 DbgOp.setReg(MI.getOperand(1).getReg()); 1791 DbgOp.setSubReg(MI.getOperand(1).getSubReg()); 1792 } 1793 } 1794 } 1795 } 1796 1797 //===----------------------------------------------------------------------===// 1798 // This pass is not intended to be a replacement or a complete alternative 1799 // for the pre-ra machine sink pass. It is only designed to sink COPY 1800 // instructions which should be handled after RA. 1801 // 1802 // This pass sinks COPY instructions into a successor block, if the COPY is not 1803 // used in the current block and the COPY is live-in to a single successor 1804 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1805 // copy on paths where their results aren't needed. This also exposes 1806 // additional opportunites for dead copy elimination and shrink wrapping. 1807 // 1808 // These copies were either not handled by or are inserted after the MachineSink 1809 // pass. As an example of the former case, the MachineSink pass cannot sink 1810 // COPY instructions with allocatable source registers; for AArch64 these type 1811 // of copy instructions are frequently used to move function parameters (PhyReg) 1812 // into virtual registers in the entry block. 1813 // 1814 // For the machine IR below, this pass will sink %w19 in the entry into its 1815 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1816 // %bb.0: 1817 // %wzr = SUBSWri %w1, 1 1818 // %w19 = COPY %w0 1819 // Bcc 11, %bb.2 1820 // %bb.1: 1821 // Live Ins: %w19 1822 // BL @fun 1823 // %w0 = ADDWrr %w0, %w19 1824 // RET %w0 1825 // %bb.2: 1826 // %w0 = COPY %wzr 1827 // RET %w0 1828 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1829 // able to see %bb.0 as a candidate. 1830 //===----------------------------------------------------------------------===// 1831 namespace { 1832 1833 class PostRAMachineSinking : public MachineFunctionPass { 1834 public: 1835 bool runOnMachineFunction(MachineFunction &MF) override; 1836 1837 static char ID; 1838 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1839 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1840 1841 void getAnalysisUsage(AnalysisUsage &AU) const override { 1842 AU.setPreservesCFG(); 1843 MachineFunctionPass::getAnalysisUsage(AU); 1844 } 1845 1846 MachineFunctionProperties getRequiredProperties() const override { 1847 return MachineFunctionProperties().set( 1848 MachineFunctionProperties::Property::NoVRegs); 1849 } 1850 1851 private: 1852 /// Track which register units have been modified and used. 1853 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1854 1855 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1856 /// entry in this map for each unit it touches. The DBG_VALUE's entry 1857 /// consists of a pointer to the instruction itself, and a vector of registers 1858 /// referred to by the instruction that overlap the key register unit. 1859 DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs; 1860 1861 /// Sink Copy instructions unused in the same block close to their uses in 1862 /// successors. 1863 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1864 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1865 }; 1866 } // namespace 1867 1868 char PostRAMachineSinking::ID = 0; 1869 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1870 1871 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1872 "PostRA Machine Sink", false, false) 1873 1874 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1875 const TargetRegisterInfo *TRI) { 1876 LiveRegUnits LiveInRegUnits(*TRI); 1877 LiveInRegUnits.addLiveIns(MBB); 1878 return !LiveInRegUnits.available(Reg); 1879 } 1880 1881 static MachineBasicBlock * 1882 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1883 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1884 unsigned Reg, const TargetRegisterInfo *TRI) { 1885 // Try to find a single sinkable successor in which Reg is live-in. 1886 MachineBasicBlock *BB = nullptr; 1887 for (auto *SI : SinkableBBs) { 1888 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1889 // If BB is set here, Reg is live-in to at least two sinkable successors, 1890 // so quit. 1891 if (BB) 1892 return nullptr; 1893 BB = SI; 1894 } 1895 } 1896 // Reg is not live-in to any sinkable successors. 1897 if (!BB) 1898 return nullptr; 1899 1900 // Check if any register aliased with Reg is live-in in other successors. 1901 for (auto *SI : CurBB.successors()) { 1902 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1903 return nullptr; 1904 } 1905 return BB; 1906 } 1907 1908 static MachineBasicBlock * 1909 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1910 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1911 ArrayRef<unsigned> DefedRegsInCopy, 1912 const TargetRegisterInfo *TRI) { 1913 MachineBasicBlock *SingleBB = nullptr; 1914 for (auto DefReg : DefedRegsInCopy) { 1915 MachineBasicBlock *BB = 1916 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1917 if (!BB || (SingleBB && SingleBB != BB)) 1918 return nullptr; 1919 SingleBB = BB; 1920 } 1921 return SingleBB; 1922 } 1923 1924 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1925 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1926 LiveRegUnits &UsedRegUnits, 1927 const TargetRegisterInfo *TRI) { 1928 for (auto U : UsedOpsInCopy) { 1929 MachineOperand &MO = MI->getOperand(U); 1930 Register SrcReg = MO.getReg(); 1931 if (!UsedRegUnits.available(SrcReg)) { 1932 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1933 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1934 if (UI.killsRegister(SrcReg, TRI)) { 1935 UI.clearRegisterKills(SrcReg, TRI); 1936 MO.setIsKill(true); 1937 break; 1938 } 1939 } 1940 } 1941 } 1942 } 1943 1944 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1945 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1946 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1947 MachineFunction &MF = *SuccBB->getParent(); 1948 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1949 for (unsigned DefReg : DefedRegsInCopy) 1950 for (MCPhysReg S : TRI->subregs_inclusive(DefReg)) 1951 SuccBB->removeLiveIn(S); 1952 for (auto U : UsedOpsInCopy) { 1953 Register SrcReg = MI->getOperand(U).getReg(); 1954 LaneBitmask Mask; 1955 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) 1956 Mask |= (*S).second; 1957 SuccBB->addLiveIn(SrcReg, Mask); 1958 } 1959 SuccBB->sortUniqueLiveIns(); 1960 } 1961 1962 static bool hasRegisterDependency(MachineInstr *MI, 1963 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1964 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1965 LiveRegUnits &ModifiedRegUnits, 1966 LiveRegUnits &UsedRegUnits) { 1967 bool HasRegDependency = false; 1968 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1969 MachineOperand &MO = MI->getOperand(i); 1970 if (!MO.isReg()) 1971 continue; 1972 Register Reg = MO.getReg(); 1973 if (!Reg) 1974 continue; 1975 if (MO.isDef()) { 1976 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1977 HasRegDependency = true; 1978 break; 1979 } 1980 DefedRegsInCopy.push_back(Reg); 1981 1982 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1983 // For example, we can ignore modifications in reg with undef. However, 1984 // it's not perfectly clear if skipping the internal read is safe in all 1985 // other targets. 1986 } else if (MO.isUse()) { 1987 if (!ModifiedRegUnits.available(Reg)) { 1988 HasRegDependency = true; 1989 break; 1990 } 1991 UsedOpsInCopy.push_back(i); 1992 } 1993 } 1994 return HasRegDependency; 1995 } 1996 1997 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1998 MachineFunction &MF, 1999 const TargetRegisterInfo *TRI, 2000 const TargetInstrInfo *TII) { 2001 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 2002 // FIXME: For now, we sink only to a successor which has a single predecessor 2003 // so that we can directly sink COPY instructions to the successor without 2004 // adding any new block or branch instruction. 2005 for (MachineBasicBlock *SI : CurBB.successors()) 2006 if (!SI->livein_empty() && SI->pred_size() == 1) 2007 SinkableBBs.insert(SI); 2008 2009 if (SinkableBBs.empty()) 2010 return false; 2011 2012 bool Changed = false; 2013 2014 // Track which registers have been modified and used between the end of the 2015 // block and the current instruction. 2016 ModifiedRegUnits.clear(); 2017 UsedRegUnits.clear(); 2018 SeenDbgInstrs.clear(); 2019 2020 for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) { 2021 // Track the operand index for use in Copy. 2022 SmallVector<unsigned, 2> UsedOpsInCopy; 2023 // Track the register number defed in Copy. 2024 SmallVector<unsigned, 2> DefedRegsInCopy; 2025 2026 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 2027 // for DBG_VALUEs later, record them when they're encountered. 2028 if (MI.isDebugValue() && !MI.isDebugRef()) { 2029 SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits; 2030 bool IsValid = true; 2031 for (MachineOperand &MO : MI.debug_operands()) { 2032 if (MO.isReg() && MO.getReg().isPhysical()) { 2033 // Bail if we can already tell the sink would be rejected, rather 2034 // than needlessly accumulating lots of DBG_VALUEs. 2035 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2036 ModifiedRegUnits, UsedRegUnits)) { 2037 IsValid = false; 2038 break; 2039 } 2040 2041 // Record debug use of each reg unit. 2042 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) 2043 MIUnits[Unit].push_back(MO.getReg()); 2044 } 2045 } 2046 if (IsValid) { 2047 for (auto &RegOps : MIUnits) 2048 SeenDbgInstrs[RegOps.first].emplace_back(&MI, 2049 std::move(RegOps.second)); 2050 } 2051 continue; 2052 } 2053 2054 if (MI.isDebugOrPseudoInstr()) 2055 continue; 2056 2057 // Do not move any instruction across function call. 2058 if (MI.isCall()) 2059 return false; 2060 2061 if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) { 2062 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2063 TRI); 2064 continue; 2065 } 2066 2067 // Don't sink the COPY if it would violate a register dependency. 2068 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2069 ModifiedRegUnits, UsedRegUnits)) { 2070 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2071 TRI); 2072 continue; 2073 } 2074 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 2075 "Unexpect SrcReg or DefReg"); 2076 MachineBasicBlock *SuccBB = 2077 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 2078 // Don't sink if we cannot find a single sinkable successor in which Reg 2079 // is live-in. 2080 if (!SuccBB) { 2081 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2082 TRI); 2083 continue; 2084 } 2085 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 2086 "Unexpected predecessor"); 2087 2088 // Collect DBG_VALUEs that must sink with this copy. We've previously 2089 // recorded which reg units that DBG_VALUEs read, if this instruction 2090 // writes any of those units then the corresponding DBG_VALUEs must sink. 2091 MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap; 2092 for (auto &MO : MI.all_defs()) { 2093 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) { 2094 for (const auto &MIRegs : SeenDbgInstrs.lookup(Unit)) { 2095 auto &Regs = DbgValsToSinkMap[MIRegs.first]; 2096 for (unsigned Reg : MIRegs.second) 2097 Regs.push_back(Reg); 2098 } 2099 } 2100 } 2101 auto DbgValsToSink = DbgValsToSinkMap.takeVector(); 2102 2103 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccBB); 2104 2105 MachineBasicBlock::iterator InsertPos = 2106 SuccBB->SkipPHIsAndLabels(SuccBB->begin()); 2107 if (blockPrologueInterferes(SuccBB, InsertPos, MI, TRI, TII, nullptr)) { 2108 LLVM_DEBUG( 2109 dbgs() << " *** Not sinking: prologue interference\n"); 2110 continue; 2111 } 2112 2113 // Clear the kill flag if SrcReg is killed between MI and the end of the 2114 // block. 2115 clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 2116 performSink(MI, *SuccBB, InsertPos, DbgValsToSink); 2117 updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 2118 2119 Changed = true; 2120 ++NumPostRACopySink; 2121 } 2122 return Changed; 2123 } 2124 2125 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 2126 if (skipFunction(MF.getFunction())) 2127 return false; 2128 2129 bool Changed = false; 2130 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2131 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 2132 2133 ModifiedRegUnits.init(*TRI); 2134 UsedRegUnits.init(*TRI); 2135 for (auto &BB : MF) 2136 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 2137 2138 return Changed; 2139 } 2140