xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineSink.cpp (revision 48daf251932bd09f2dc1356aa1cf72b043f1f892)
1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass moves instructions into successor blocks when possible, so that
10 // they aren't executed on paths where their results aren't needed.
11 //
12 // This pass is not intended to be a replacement or a complete alternative
13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
14 // constructs that are not exposed before lowering and instruction selection.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/SparseBitVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
29 #include "llvm/CodeGen/MachineDominators.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachinePostDominators.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/MCRegisterInfo.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstdint>
53 #include <map>
54 #include <utility>
55 #include <vector>
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "machine-sink"
60 
61 static cl::opt<bool>
62 SplitEdges("machine-sink-split",
63            cl::desc("Split critical edges during machine sinking"),
64            cl::init(true), cl::Hidden);
65 
66 static cl::opt<bool>
67 UseBlockFreqInfo("machine-sink-bfi",
68            cl::desc("Use block frequency info to find successors to sink"),
69            cl::init(true), cl::Hidden);
70 
71 static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
72     "machine-sink-split-probability-threshold",
73     cl::desc(
74         "Percentage threshold for splitting single-instruction critical edge. "
75         "If the branch threshold is higher than this threshold, we allow "
76         "speculative execution of up to 1 instruction to avoid branching to "
77         "splitted critical edge"),
78     cl::init(40), cl::Hidden);
79 
80 STATISTIC(NumSunk,      "Number of machine instructions sunk");
81 STATISTIC(NumSplit,     "Number of critical edges split");
82 STATISTIC(NumCoalesces, "Number of copies coalesced");
83 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
84 
85 namespace {
86 
87   class MachineSinking : public MachineFunctionPass {
88     const TargetInstrInfo *TII;
89     const TargetRegisterInfo *TRI;
90     MachineRegisterInfo  *MRI;     // Machine register information
91     MachineDominatorTree *DT;      // Machine dominator tree
92     MachinePostDominatorTree *PDT; // Machine post dominator tree
93     MachineLoopInfo *LI;
94     const MachineBlockFrequencyInfo *MBFI;
95     const MachineBranchProbabilityInfo *MBPI;
96     AliasAnalysis *AA;
97 
98     // Remember which edges have been considered for breaking.
99     SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
100     CEBCandidates;
101     // Remember which edges we are about to split.
102     // This is different from CEBCandidates since those edges
103     // will be split.
104     SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
105 
106     SparseBitVector<> RegsToClearKillFlags;
107 
108     using AllSuccsCache =
109         std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
110 
111     /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is
112     /// post-dominated by another DBG_VALUE of the same variable location.
113     /// This is necessary to detect sequences such as:
114     ///     %0 = someinst
115     ///     DBG_VALUE %0, !123, !DIExpression()
116     ///     %1 = anotherinst
117     ///     DBG_VALUE %1, !123, !DIExpression()
118     /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that
119     /// would re-order assignments.
120     using SeenDbgUser = PointerIntPair<MachineInstr *, 1>;
121 
122     /// Record of DBG_VALUE uses of vregs in a block, so that we can identify
123     /// debug instructions to sink.
124     SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers;
125 
126     /// Record of debug variables that have had their locations set in the
127     /// current block.
128     DenseSet<DebugVariable> SeenDbgVars;
129 
130   public:
131     static char ID; // Pass identification
132 
133     MachineSinking() : MachineFunctionPass(ID) {
134       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
135     }
136 
137     bool runOnMachineFunction(MachineFunction &MF) override;
138 
139     void getAnalysisUsage(AnalysisUsage &AU) const override {
140       MachineFunctionPass::getAnalysisUsage(AU);
141       AU.addRequired<AAResultsWrapperPass>();
142       AU.addRequired<MachineDominatorTree>();
143       AU.addRequired<MachinePostDominatorTree>();
144       AU.addRequired<MachineLoopInfo>();
145       AU.addRequired<MachineBranchProbabilityInfo>();
146       AU.addPreserved<MachineLoopInfo>();
147       if (UseBlockFreqInfo)
148         AU.addRequired<MachineBlockFrequencyInfo>();
149     }
150 
151     void releaseMemory() override {
152       CEBCandidates.clear();
153     }
154 
155   private:
156     bool ProcessBlock(MachineBasicBlock &MBB);
157     void ProcessDbgInst(MachineInstr &MI);
158     bool isWorthBreakingCriticalEdge(MachineInstr &MI,
159                                      MachineBasicBlock *From,
160                                      MachineBasicBlock *To);
161 
162     /// Postpone the splitting of the given critical
163     /// edge (\p From, \p To).
164     ///
165     /// We do not split the edges on the fly. Indeed, this invalidates
166     /// the dominance information and thus triggers a lot of updates
167     /// of that information underneath.
168     /// Instead, we postpone all the splits after each iteration of
169     /// the main loop. That way, the information is at least valid
170     /// for the lifetime of an iteration.
171     ///
172     /// \return True if the edge is marked as toSplit, false otherwise.
173     /// False can be returned if, for instance, this is not profitable.
174     bool PostponeSplitCriticalEdge(MachineInstr &MI,
175                                    MachineBasicBlock *From,
176                                    MachineBasicBlock *To,
177                                    bool BreakPHIEdge);
178     bool SinkInstruction(MachineInstr &MI, bool &SawStore,
179                          AllSuccsCache &AllSuccessors);
180 
181     /// If we sink a COPY inst, some debug users of it's destination may no
182     /// longer be dominated by the COPY, and will eventually be dropped.
183     /// This is easily rectified by forwarding the non-dominated debug uses
184     /// to the copy source.
185     void SalvageUnsunkDebugUsersOfCopy(MachineInstr &,
186                                        MachineBasicBlock *TargetBlock);
187     bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
188                                  MachineBasicBlock *DefMBB,
189                                  bool &BreakPHIEdge, bool &LocalUse) const;
190     MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
191                bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
192     bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
193                               MachineBasicBlock *MBB,
194                               MachineBasicBlock *SuccToSinkTo,
195                               AllSuccsCache &AllSuccessors);
196 
197     bool PerformTrivialForwardCoalescing(MachineInstr &MI,
198                                          MachineBasicBlock *MBB);
199 
200     SmallVector<MachineBasicBlock *, 4> &
201     GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
202                            AllSuccsCache &AllSuccessors) const;
203   };
204 
205 } // end anonymous namespace
206 
207 char MachineSinking::ID = 0;
208 
209 char &llvm::MachineSinkingID = MachineSinking::ID;
210 
211 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
212                       "Machine code sinking", false, false)
213 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
214 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
215 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
216 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
217 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
218                     "Machine code sinking", false, false)
219 
220 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
221                                                      MachineBasicBlock *MBB) {
222   if (!MI.isCopy())
223     return false;
224 
225   Register SrcReg = MI.getOperand(1).getReg();
226   Register DstReg = MI.getOperand(0).getReg();
227   if (!Register::isVirtualRegister(SrcReg) ||
228       !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg))
229     return false;
230 
231   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
232   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
233   if (SRC != DRC)
234     return false;
235 
236   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
237   if (DefMI->isCopyLike())
238     return false;
239   LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
240   LLVM_DEBUG(dbgs() << "*** to: " << MI);
241   MRI->replaceRegWith(DstReg, SrcReg);
242   MI.eraseFromParent();
243 
244   // Conservatively, clear any kill flags, since it's possible that they are no
245   // longer correct.
246   MRI->clearKillFlags(SrcReg);
247 
248   ++NumCoalesces;
249   return true;
250 }
251 
252 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
253 /// occur in blocks dominated by the specified block. If any use is in the
254 /// definition block, then return false since it is never legal to move def
255 /// after uses.
256 bool
257 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
258                                         MachineBasicBlock *MBB,
259                                         MachineBasicBlock *DefMBB,
260                                         bool &BreakPHIEdge,
261                                         bool &LocalUse) const {
262   assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs");
263 
264   // Ignore debug uses because debug info doesn't affect the code.
265   if (MRI->use_nodbg_empty(Reg))
266     return true;
267 
268   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
269   // into and they are all PHI nodes. In this case, machine-sink must break
270   // the critical edge first. e.g.
271   //
272   // %bb.1:
273   //   Predecessors according to CFG: %bb.0
274   //     ...
275   //     %def = DEC64_32r %x, implicit-def dead %eflags
276   //     ...
277   //     JE_4 <%bb.37>, implicit %eflags
278   //   Successors according to CFG: %bb.37 %bb.2
279   //
280   // %bb.2:
281   //     %p = PHI %y, %bb.0, %def, %bb.1
282   if (llvm::all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) {
283         MachineInstr *UseInst = MO.getParent();
284         unsigned OpNo = UseInst->getOperandNo(&MO);
285         MachineBasicBlock *UseBlock = UseInst->getParent();
286         return UseBlock == MBB && UseInst->isPHI() &&
287                UseInst->getOperand(OpNo + 1).getMBB() == DefMBB;
288       })) {
289     BreakPHIEdge = true;
290     return true;
291   }
292 
293   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
294     // Determine the block of the use.
295     MachineInstr *UseInst = MO.getParent();
296     unsigned OpNo = &MO - &UseInst->getOperand(0);
297     MachineBasicBlock *UseBlock = UseInst->getParent();
298     if (UseInst->isPHI()) {
299       // PHI nodes use the operand in the predecessor block, not the block with
300       // the PHI.
301       UseBlock = UseInst->getOperand(OpNo+1).getMBB();
302     } else if (UseBlock == DefMBB) {
303       LocalUse = true;
304       return false;
305     }
306 
307     // Check that it dominates.
308     if (!DT->dominates(MBB, UseBlock))
309       return false;
310   }
311 
312   return true;
313 }
314 
315 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
316   if (skipFunction(MF.getFunction()))
317     return false;
318 
319   LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
320 
321   TII = MF.getSubtarget().getInstrInfo();
322   TRI = MF.getSubtarget().getRegisterInfo();
323   MRI = &MF.getRegInfo();
324   DT = &getAnalysis<MachineDominatorTree>();
325   PDT = &getAnalysis<MachinePostDominatorTree>();
326   LI = &getAnalysis<MachineLoopInfo>();
327   MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
328   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
329   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
330 
331   bool EverMadeChange = false;
332 
333   while (true) {
334     bool MadeChange = false;
335 
336     // Process all basic blocks.
337     CEBCandidates.clear();
338     ToSplit.clear();
339     for (auto &MBB: MF)
340       MadeChange |= ProcessBlock(MBB);
341 
342     // If we have anything we marked as toSplit, split it now.
343     for (auto &Pair : ToSplit) {
344       auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
345       if (NewSucc != nullptr) {
346         LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
347                           << printMBBReference(*Pair.first) << " -- "
348                           << printMBBReference(*NewSucc) << " -- "
349                           << printMBBReference(*Pair.second) << '\n');
350         MadeChange = true;
351         ++NumSplit;
352       } else
353         LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
354     }
355     // If this iteration over the code changed anything, keep iterating.
356     if (!MadeChange) break;
357     EverMadeChange = true;
358   }
359 
360   // Now clear any kill flags for recorded registers.
361   for (auto I : RegsToClearKillFlags)
362     MRI->clearKillFlags(I);
363   RegsToClearKillFlags.clear();
364 
365   return EverMadeChange;
366 }
367 
368 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
369   // Can't sink anything out of a block that has less than two successors.
370   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
371 
372   // Don't bother sinking code out of unreachable blocks. In addition to being
373   // unprofitable, it can also lead to infinite looping, because in an
374   // unreachable loop there may be nowhere to stop.
375   if (!DT->isReachableFromEntry(&MBB)) return false;
376 
377   bool MadeChange = false;
378 
379   // Cache all successors, sorted by frequency info and loop depth.
380   AllSuccsCache AllSuccessors;
381 
382   // Walk the basic block bottom-up.  Remember if we saw a store.
383   MachineBasicBlock::iterator I = MBB.end();
384   --I;
385   bool ProcessedBegin, SawStore = false;
386   do {
387     MachineInstr &MI = *I;  // The instruction to sink.
388 
389     // Predecrement I (if it's not begin) so that it isn't invalidated by
390     // sinking.
391     ProcessedBegin = I == MBB.begin();
392     if (!ProcessedBegin)
393       --I;
394 
395     if (MI.isDebugInstr()) {
396       if (MI.isDebugValue())
397         ProcessDbgInst(MI);
398       continue;
399     }
400 
401     bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
402     if (Joined) {
403       MadeChange = true;
404       continue;
405     }
406 
407     if (SinkInstruction(MI, SawStore, AllSuccessors)) {
408       ++NumSunk;
409       MadeChange = true;
410     }
411 
412     // If we just processed the first instruction in the block, we're done.
413   } while (!ProcessedBegin);
414 
415   SeenDbgUsers.clear();
416   SeenDbgVars.clear();
417 
418   return MadeChange;
419 }
420 
421 void MachineSinking::ProcessDbgInst(MachineInstr &MI) {
422   // When we see DBG_VALUEs for registers, record any vreg it reads, so that
423   // we know what to sink if the vreg def sinks.
424   assert(MI.isDebugValue() && "Expected DBG_VALUE for processing");
425 
426   DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
427                     MI.getDebugLoc()->getInlinedAt());
428   bool SeenBefore = SeenDbgVars.count(Var) != 0;
429 
430   MachineOperand &MO = MI.getOperand(0);
431   if (MO.isReg() && MO.getReg().isVirtual())
432     SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore));
433 
434   // Record the variable for any DBG_VALUE, to avoid re-ordering any of them.
435   SeenDbgVars.insert(Var);
436 }
437 
438 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
439                                                  MachineBasicBlock *From,
440                                                  MachineBasicBlock *To) {
441   // FIXME: Need much better heuristics.
442 
443   // If the pass has already considered breaking this edge (during this pass
444   // through the function), then let's go ahead and break it. This means
445   // sinking multiple "cheap" instructions into the same block.
446   if (!CEBCandidates.insert(std::make_pair(From, To)).second)
447     return true;
448 
449   if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
450     return true;
451 
452   if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
453       BranchProbability(SplitEdgeProbabilityThreshold, 100))
454     return true;
455 
456   // MI is cheap, we probably don't want to break the critical edge for it.
457   // However, if this would allow some definitions of its source operands
458   // to be sunk then it's probably worth it.
459   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
460     const MachineOperand &MO = MI.getOperand(i);
461     if (!MO.isReg() || !MO.isUse())
462       continue;
463     Register Reg = MO.getReg();
464     if (Reg == 0)
465       continue;
466 
467     // We don't move live definitions of physical registers,
468     // so sinking their uses won't enable any opportunities.
469     if (Register::isPhysicalRegister(Reg))
470       continue;
471 
472     // If this instruction is the only user of a virtual register,
473     // check if breaking the edge will enable sinking
474     // both this instruction and the defining instruction.
475     if (MRI->hasOneNonDBGUse(Reg)) {
476       // If the definition resides in same MBB,
477       // claim it's likely we can sink these together.
478       // If definition resides elsewhere, we aren't
479       // blocking it from being sunk so don't break the edge.
480       MachineInstr *DefMI = MRI->getVRegDef(Reg);
481       if (DefMI->getParent() == MI.getParent())
482         return true;
483     }
484   }
485 
486   return false;
487 }
488 
489 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
490                                                MachineBasicBlock *FromBB,
491                                                MachineBasicBlock *ToBB,
492                                                bool BreakPHIEdge) {
493   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
494     return false;
495 
496   // Avoid breaking back edge. From == To means backedge for single BB loop.
497   if (!SplitEdges || FromBB == ToBB)
498     return false;
499 
500   // Check for backedges of more "complex" loops.
501   if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
502       LI->isLoopHeader(ToBB))
503     return false;
504 
505   // It's not always legal to break critical edges and sink the computation
506   // to the edge.
507   //
508   // %bb.1:
509   // v1024
510   // Beq %bb.3
511   // <fallthrough>
512   // %bb.2:
513   // ... no uses of v1024
514   // <fallthrough>
515   // %bb.3:
516   // ...
517   //       = v1024
518   //
519   // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
520   //
521   // %bb.1:
522   // ...
523   // Bne %bb.2
524   // %bb.4:
525   // v1024 =
526   // B %bb.3
527   // %bb.2:
528   // ... no uses of v1024
529   // <fallthrough>
530   // %bb.3:
531   // ...
532   //       = v1024
533   //
534   // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
535   // flow. We need to ensure the new basic block where the computation is
536   // sunk to dominates all the uses.
537   // It's only legal to break critical edge and sink the computation to the
538   // new block if all the predecessors of "To", except for "From", are
539   // not dominated by "From". Given SSA property, this means these
540   // predecessors are dominated by "To".
541   //
542   // There is no need to do this check if all the uses are PHI nodes. PHI
543   // sources are only defined on the specific predecessor edges.
544   if (!BreakPHIEdge) {
545     for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
546            E = ToBB->pred_end(); PI != E; ++PI) {
547       if (*PI == FromBB)
548         continue;
549       if (!DT->dominates(ToBB, *PI))
550         return false;
551     }
552   }
553 
554   ToSplit.insert(std::make_pair(FromBB, ToBB));
555 
556   return true;
557 }
558 
559 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
560 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
561                                           MachineBasicBlock *MBB,
562                                           MachineBasicBlock *SuccToSinkTo,
563                                           AllSuccsCache &AllSuccessors) {
564   assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
565 
566   if (MBB == SuccToSinkTo)
567     return false;
568 
569   // It is profitable if SuccToSinkTo does not post dominate current block.
570   if (!PDT->dominates(SuccToSinkTo, MBB))
571     return true;
572 
573   // It is profitable to sink an instruction from a deeper loop to a shallower
574   // loop, even if the latter post-dominates the former (PR21115).
575   if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
576     return true;
577 
578   // Check if only use in post dominated block is PHI instruction.
579   bool NonPHIUse = false;
580   for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
581     MachineBasicBlock *UseBlock = UseInst.getParent();
582     if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
583       NonPHIUse = true;
584   }
585   if (!NonPHIUse)
586     return true;
587 
588   // If SuccToSinkTo post dominates then also it may be profitable if MI
589   // can further profitably sinked into another block in next round.
590   bool BreakPHIEdge = false;
591   // FIXME - If finding successor is compile time expensive then cache results.
592   if (MachineBasicBlock *MBB2 =
593           FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
594     return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
595 
596   // If SuccToSinkTo is final destination and it is a post dominator of current
597   // block then it is not profitable to sink MI into SuccToSinkTo block.
598   return false;
599 }
600 
601 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
602 /// computing it if it was not already cached.
603 SmallVector<MachineBasicBlock *, 4> &
604 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
605                                        AllSuccsCache &AllSuccessors) const {
606   // Do we have the sorted successors in cache ?
607   auto Succs = AllSuccessors.find(MBB);
608   if (Succs != AllSuccessors.end())
609     return Succs->second;
610 
611   SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
612                                                MBB->succ_end());
613 
614   // Handle cases where sinking can happen but where the sink point isn't a
615   // successor. For example:
616   //
617   //   x = computation
618   //   if () {} else {}
619   //   use x
620   //
621   const std::vector<MachineDomTreeNode *> &Children =
622     DT->getNode(MBB)->getChildren();
623   for (const auto &DTChild : Children)
624     // DomTree children of MBB that have MBB as immediate dominator are added.
625     if (DTChild->getIDom()->getBlock() == MI.getParent() &&
626         // Skip MBBs already added to the AllSuccs vector above.
627         !MBB->isSuccessor(DTChild->getBlock()))
628       AllSuccs.push_back(DTChild->getBlock());
629 
630   // Sort Successors according to their loop depth or block frequency info.
631   llvm::stable_sort(
632       AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
633         uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
634         uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
635         bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
636         return HasBlockFreq ? LHSFreq < RHSFreq
637                             : LI->getLoopDepth(L) < LI->getLoopDepth(R);
638       });
639 
640   auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
641 
642   return it.first->second;
643 }
644 
645 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
646 MachineBasicBlock *
647 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
648                                  bool &BreakPHIEdge,
649                                  AllSuccsCache &AllSuccessors) {
650   assert (MBB && "Invalid MachineBasicBlock!");
651 
652   // Loop over all the operands of the specified instruction.  If there is
653   // anything we can't handle, bail out.
654 
655   // SuccToSinkTo - This is the successor to sink this instruction to, once we
656   // decide.
657   MachineBasicBlock *SuccToSinkTo = nullptr;
658   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
659     const MachineOperand &MO = MI.getOperand(i);
660     if (!MO.isReg()) continue;  // Ignore non-register operands.
661 
662     Register Reg = MO.getReg();
663     if (Reg == 0) continue;
664 
665     if (Register::isPhysicalRegister(Reg)) {
666       if (MO.isUse()) {
667         // If the physreg has no defs anywhere, it's just an ambient register
668         // and we can freely move its uses. Alternatively, if it's allocatable,
669         // it could get allocated to something with a def during allocation.
670         if (!MRI->isConstantPhysReg(Reg))
671           return nullptr;
672       } else if (!MO.isDead()) {
673         // A def that isn't dead. We can't move it.
674         return nullptr;
675       }
676     } else {
677       // Virtual register uses are always safe to sink.
678       if (MO.isUse()) continue;
679 
680       // If it's not safe to move defs of the register class, then abort.
681       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
682         return nullptr;
683 
684       // Virtual register defs can only be sunk if all their uses are in blocks
685       // dominated by one of the successors.
686       if (SuccToSinkTo) {
687         // If a previous operand picked a block to sink to, then this operand
688         // must be sinkable to the same block.
689         bool LocalUse = false;
690         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
691                                      BreakPHIEdge, LocalUse))
692           return nullptr;
693 
694         continue;
695       }
696 
697       // Otherwise, we should look at all the successors and decide which one
698       // we should sink to. If we have reliable block frequency information
699       // (frequency != 0) available, give successors with smaller frequencies
700       // higher priority, otherwise prioritize smaller loop depths.
701       for (MachineBasicBlock *SuccBlock :
702            GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
703         bool LocalUse = false;
704         if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
705                                     BreakPHIEdge, LocalUse)) {
706           SuccToSinkTo = SuccBlock;
707           break;
708         }
709         if (LocalUse)
710           // Def is used locally, it's never safe to move this def.
711           return nullptr;
712       }
713 
714       // If we couldn't find a block to sink to, ignore this instruction.
715       if (!SuccToSinkTo)
716         return nullptr;
717       if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
718         return nullptr;
719     }
720   }
721 
722   // It is not possible to sink an instruction into its own block.  This can
723   // happen with loops.
724   if (MBB == SuccToSinkTo)
725     return nullptr;
726 
727   // It's not safe to sink instructions to EH landing pad. Control flow into
728   // landing pad is implicitly defined.
729   if (SuccToSinkTo && SuccToSinkTo->isEHPad())
730     return nullptr;
731 
732   return SuccToSinkTo;
733 }
734 
735 /// Return true if MI is likely to be usable as a memory operation by the
736 /// implicit null check optimization.
737 ///
738 /// This is a "best effort" heuristic, and should not be relied upon for
739 /// correctness.  This returning true does not guarantee that the implicit null
740 /// check optimization is legal over MI, and this returning false does not
741 /// guarantee MI cannot possibly be used to do a null check.
742 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
743                                              const TargetInstrInfo *TII,
744                                              const TargetRegisterInfo *TRI) {
745   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
746 
747   auto *MBB = MI.getParent();
748   if (MBB->pred_size() != 1)
749     return false;
750 
751   auto *PredMBB = *MBB->pred_begin();
752   auto *PredBB = PredMBB->getBasicBlock();
753 
754   // Frontends that don't use implicit null checks have no reason to emit
755   // branches with make.implicit metadata, and this function should always
756   // return false for them.
757   if (!PredBB ||
758       !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
759     return false;
760 
761   const MachineOperand *BaseOp;
762   int64_t Offset;
763   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
764     return false;
765 
766   if (!BaseOp->isReg())
767     return false;
768 
769   if (!(MI.mayLoad() && !MI.isPredicable()))
770     return false;
771 
772   MachineBranchPredicate MBP;
773   if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
774     return false;
775 
776   return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
777          (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
778           MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
779          MBP.LHS.getReg() == BaseOp->getReg();
780 }
781 
782 /// If the sunk instruction is a copy, try to forward the copy instead of
783 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if
784 /// there's any subregister weirdness involved. Returns true if copy
785 /// propagation occurred.
786 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI) {
787   const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo();
788   const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo();
789 
790   // Copy DBG_VALUE operand and set the original to undef. We then check to
791   // see whether this is something that can be copy-forwarded. If it isn't,
792   // continue around the loop.
793   MachineOperand DbgMO = DbgMI.getOperand(0);
794 
795   const MachineOperand *SrcMO = nullptr, *DstMO = nullptr;
796   auto CopyOperands = TII.isCopyInstr(SinkInst);
797   if (!CopyOperands)
798     return false;
799   SrcMO = CopyOperands->Source;
800   DstMO = CopyOperands->Destination;
801 
802   // Check validity of forwarding this copy.
803   bool PostRA = MRI.getNumVirtRegs() == 0;
804 
805   // Trying to forward between physical and virtual registers is too hard.
806   if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual())
807     return false;
808 
809   // Only try virtual register copy-forwarding before regalloc, and physical
810   // register copy-forwarding after regalloc.
811   bool arePhysRegs = !DbgMO.getReg().isVirtual();
812   if (arePhysRegs != PostRA)
813     return false;
814 
815   // Pre-regalloc, only forward if all subregisters agree (or there are no
816   // subregs at all). More analysis might recover some forwardable copies.
817   if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() ||
818                   DbgMO.getSubReg() != DstMO->getSubReg()))
819     return false;
820 
821   // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register
822   // of this copy. Only forward the copy if the DBG_VALUE operand exactly
823   // matches the copy destination.
824   if (PostRA && DbgMO.getReg() != DstMO->getReg())
825     return false;
826 
827   DbgMI.getOperand(0).setReg(SrcMO->getReg());
828   DbgMI.getOperand(0).setSubReg(SrcMO->getSubReg());
829   return true;
830 }
831 
832 /// Sink an instruction and its associated debug instructions.
833 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
834                         MachineBasicBlock::iterator InsertPos,
835                         SmallVectorImpl<MachineInstr *> &DbgValuesToSink) {
836 
837   // If we cannot find a location to use (merge with), then we erase the debug
838   // location to prevent debug-info driven tools from potentially reporting
839   // wrong location information.
840   if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
841     MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
842                                                  InsertPos->getDebugLoc()));
843   else
844     MI.setDebugLoc(DebugLoc());
845 
846   // Move the instruction.
847   MachineBasicBlock *ParentBlock = MI.getParent();
848   SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
849                       ++MachineBasicBlock::iterator(MI));
850 
851   // Sink a copy of debug users to the insert position. Mark the original
852   // DBG_VALUE location as 'undef', indicating that any earlier variable
853   // location should be terminated as we've optimised away the value at this
854   // point.
855   for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
856                                                  DBE = DbgValuesToSink.end();
857        DBI != DBE; ++DBI) {
858     MachineInstr *DbgMI = *DBI;
859     MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(*DBI);
860     SuccToSinkTo.insert(InsertPos, NewDbgMI);
861 
862     if (!attemptDebugCopyProp(MI, *DbgMI))
863       DbgMI->getOperand(0).setReg(0);
864   }
865 }
866 
867 /// SinkInstruction - Determine whether it is safe to sink the specified machine
868 /// instruction out of its current block into a successor.
869 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
870                                      AllSuccsCache &AllSuccessors) {
871   // Don't sink instructions that the target prefers not to sink.
872   if (!TII->shouldSink(MI))
873     return false;
874 
875   // Check if it's safe to move the instruction.
876   if (!MI.isSafeToMove(AA, SawStore))
877     return false;
878 
879   // Convergent operations may not be made control-dependent on additional
880   // values.
881   if (MI.isConvergent())
882     return false;
883 
884   // Don't break implicit null checks.  This is a performance heuristic, and not
885   // required for correctness.
886   if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
887     return false;
888 
889   // FIXME: This should include support for sinking instructions within the
890   // block they are currently in to shorten the live ranges.  We often get
891   // instructions sunk into the top of a large block, but it would be better to
892   // also sink them down before their first use in the block.  This xform has to
893   // be careful not to *increase* register pressure though, e.g. sinking
894   // "x = y + z" down if it kills y and z would increase the live ranges of y
895   // and z and only shrink the live range of x.
896 
897   bool BreakPHIEdge = false;
898   MachineBasicBlock *ParentBlock = MI.getParent();
899   MachineBasicBlock *SuccToSinkTo =
900       FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
901 
902   // If there are no outputs, it must have side-effects.
903   if (!SuccToSinkTo)
904     return false;
905 
906   // If the instruction to move defines a dead physical register which is live
907   // when leaving the basic block, don't move it because it could turn into a
908   // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
909   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
910     const MachineOperand &MO = MI.getOperand(I);
911     if (!MO.isReg()) continue;
912     Register Reg = MO.getReg();
913     if (Reg == 0 || !Register::isPhysicalRegister(Reg))
914       continue;
915     if (SuccToSinkTo->isLiveIn(Reg))
916       return false;
917   }
918 
919   LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
920 
921   // If the block has multiple predecessors, this is a critical edge.
922   // Decide if we can sink along it or need to break the edge.
923   if (SuccToSinkTo->pred_size() > 1) {
924     // We cannot sink a load across a critical edge - there may be stores in
925     // other code paths.
926     bool TryBreak = false;
927     bool store = true;
928     if (!MI.isSafeToMove(AA, store)) {
929       LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
930       TryBreak = true;
931     }
932 
933     // We don't want to sink across a critical edge if we don't dominate the
934     // successor. We could be introducing calculations to new code paths.
935     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
936       LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
937       TryBreak = true;
938     }
939 
940     // Don't sink instructions into a loop.
941     if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
942       LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
943       TryBreak = true;
944     }
945 
946     // Otherwise we are OK with sinking along a critical edge.
947     if (!TryBreak)
948       LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
949     else {
950       // Mark this edge as to be split.
951       // If the edge can actually be split, the next iteration of the main loop
952       // will sink MI in the newly created block.
953       bool Status =
954         PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
955       if (!Status)
956         LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
957                              "break critical edge\n");
958       // The instruction will not be sunk this time.
959       return false;
960     }
961   }
962 
963   if (BreakPHIEdge) {
964     // BreakPHIEdge is true if all the uses are in the successor MBB being
965     // sunken into and they are all PHI nodes. In this case, machine-sink must
966     // break the critical edge first.
967     bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
968                                             SuccToSinkTo, BreakPHIEdge);
969     if (!Status)
970       LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
971                            "break critical edge\n");
972     // The instruction will not be sunk this time.
973     return false;
974   }
975 
976   // Determine where to insert into. Skip phi nodes.
977   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
978   while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
979     ++InsertPos;
980 
981   // Collect debug users of any vreg that this inst defines.
982   SmallVector<MachineInstr *, 4> DbgUsersToSink;
983   for (auto &MO : MI.operands()) {
984     if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
985       continue;
986     if (!SeenDbgUsers.count(MO.getReg()))
987       continue;
988 
989     // Sink any users that don't pass any other DBG_VALUEs for this variable.
990     auto &Users = SeenDbgUsers[MO.getReg()];
991     for (auto &User : Users) {
992       MachineInstr *DbgMI = User.getPointer();
993       if (User.getInt()) {
994         // This DBG_VALUE would re-order assignments. If we can't copy-propagate
995         // it, it can't be recovered. Set it undef.
996         if (!attemptDebugCopyProp(MI, *DbgMI))
997           DbgMI->getOperand(0).setReg(0);
998       } else {
999         DbgUsersToSink.push_back(DbgMI);
1000       }
1001     }
1002   }
1003 
1004   // After sinking, some debug users may not be dominated any more. If possible,
1005   // copy-propagate their operands. As it's expensive, don't do this if there's
1006   // no debuginfo in the program.
1007   if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy())
1008     SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo);
1009 
1010   performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink);
1011 
1012   // Conservatively, clear any kill flags, since it's possible that they are no
1013   // longer correct.
1014   // Note that we have to clear the kill flags for any register this instruction
1015   // uses as we may sink over another instruction which currently kills the
1016   // used registers.
1017   for (MachineOperand &MO : MI.operands()) {
1018     if (MO.isReg() && MO.isUse())
1019       RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
1020   }
1021 
1022   return true;
1023 }
1024 
1025 void MachineSinking::SalvageUnsunkDebugUsersOfCopy(
1026     MachineInstr &MI, MachineBasicBlock *TargetBlock) {
1027   assert(MI.isCopy());
1028   assert(MI.getOperand(1).isReg());
1029 
1030   // Enumerate all users of vreg operands that are def'd. Skip those that will
1031   // be sunk. For the rest, if they are not dominated by the block we will sink
1032   // MI into, propagate the copy source to them.
1033   SmallVector<MachineInstr *, 4> DbgDefUsers;
1034   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
1035   for (auto &MO : MI.operands()) {
1036     if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
1037       continue;
1038     for (auto &User : MRI.use_instructions(MO.getReg())) {
1039       if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent()))
1040         continue;
1041 
1042       // If is in same block, will either sink or be use-before-def.
1043       if (User.getParent() == MI.getParent())
1044         continue;
1045 
1046       assert(User.getOperand(0).isReg() &&
1047              "DBG_VALUE user of vreg, but non reg operand?");
1048       DbgDefUsers.push_back(&User);
1049     }
1050   }
1051 
1052   // Point the users of this copy that are no longer dominated, at the source
1053   // of the copy.
1054   for (auto *User : DbgDefUsers) {
1055     User->getOperand(0).setReg(MI.getOperand(1).getReg());
1056     User->getOperand(0).setSubReg(MI.getOperand(1).getSubReg());
1057   }
1058 }
1059 
1060 //===----------------------------------------------------------------------===//
1061 // This pass is not intended to be a replacement or a complete alternative
1062 // for the pre-ra machine sink pass. It is only designed to sink COPY
1063 // instructions which should be handled after RA.
1064 //
1065 // This pass sinks COPY instructions into a successor block, if the COPY is not
1066 // used in the current block and the COPY is live-in to a single successor
1067 // (i.e., doesn't require the COPY to be duplicated).  This avoids executing the
1068 // copy on paths where their results aren't needed.  This also exposes
1069 // additional opportunites for dead copy elimination and shrink wrapping.
1070 //
1071 // These copies were either not handled by or are inserted after the MachineSink
1072 // pass. As an example of the former case, the MachineSink pass cannot sink
1073 // COPY instructions with allocatable source registers; for AArch64 these type
1074 // of copy instructions are frequently used to move function parameters (PhyReg)
1075 // into virtual registers in the entry block.
1076 //
1077 // For the machine IR below, this pass will sink %w19 in the entry into its
1078 // successor (%bb.1) because %w19 is only live-in in %bb.1.
1079 // %bb.0:
1080 //   %wzr = SUBSWri %w1, 1
1081 //   %w19 = COPY %w0
1082 //   Bcc 11, %bb.2
1083 // %bb.1:
1084 //   Live Ins: %w19
1085 //   BL @fun
1086 //   %w0 = ADDWrr %w0, %w19
1087 //   RET %w0
1088 // %bb.2:
1089 //   %w0 = COPY %wzr
1090 //   RET %w0
1091 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
1092 // able to see %bb.0 as a candidate.
1093 //===----------------------------------------------------------------------===//
1094 namespace {
1095 
1096 class PostRAMachineSinking : public MachineFunctionPass {
1097 public:
1098   bool runOnMachineFunction(MachineFunction &MF) override;
1099 
1100   static char ID;
1101   PostRAMachineSinking() : MachineFunctionPass(ID) {}
1102   StringRef getPassName() const override { return "PostRA Machine Sink"; }
1103 
1104   void getAnalysisUsage(AnalysisUsage &AU) const override {
1105     AU.setPreservesCFG();
1106     MachineFunctionPass::getAnalysisUsage(AU);
1107   }
1108 
1109   MachineFunctionProperties getRequiredProperties() const override {
1110     return MachineFunctionProperties().set(
1111         MachineFunctionProperties::Property::NoVRegs);
1112   }
1113 
1114 private:
1115   /// Track which register units have been modified and used.
1116   LiveRegUnits ModifiedRegUnits, UsedRegUnits;
1117 
1118   /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
1119   /// entry in this map for each unit it touches.
1120   DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs;
1121 
1122   /// Sink Copy instructions unused in the same block close to their uses in
1123   /// successors.
1124   bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
1125                      const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
1126 };
1127 } // namespace
1128 
1129 char PostRAMachineSinking::ID = 0;
1130 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
1131 
1132 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
1133                 "PostRA Machine Sink", false, false)
1134 
1135 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
1136                                   const TargetRegisterInfo *TRI) {
1137   LiveRegUnits LiveInRegUnits(*TRI);
1138   LiveInRegUnits.addLiveIns(MBB);
1139   return !LiveInRegUnits.available(Reg);
1140 }
1141 
1142 static MachineBasicBlock *
1143 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1144                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1145                       unsigned Reg, const TargetRegisterInfo *TRI) {
1146   // Try to find a single sinkable successor in which Reg is live-in.
1147   MachineBasicBlock *BB = nullptr;
1148   for (auto *SI : SinkableBBs) {
1149     if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
1150       // If BB is set here, Reg is live-in to at least two sinkable successors,
1151       // so quit.
1152       if (BB)
1153         return nullptr;
1154       BB = SI;
1155     }
1156   }
1157   // Reg is not live-in to any sinkable successors.
1158   if (!BB)
1159     return nullptr;
1160 
1161   // Check if any register aliased with Reg is live-in in other successors.
1162   for (auto *SI : CurBB.successors()) {
1163     if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1164       return nullptr;
1165   }
1166   return BB;
1167 }
1168 
1169 static MachineBasicBlock *
1170 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1171                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1172                       ArrayRef<unsigned> DefedRegsInCopy,
1173                       const TargetRegisterInfo *TRI) {
1174   MachineBasicBlock *SingleBB = nullptr;
1175   for (auto DefReg : DefedRegsInCopy) {
1176     MachineBasicBlock *BB =
1177         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1178     if (!BB || (SingleBB && SingleBB != BB))
1179       return nullptr;
1180     SingleBB = BB;
1181   }
1182   return SingleBB;
1183 }
1184 
1185 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1186                            SmallVectorImpl<unsigned> &UsedOpsInCopy,
1187                            LiveRegUnits &UsedRegUnits,
1188                            const TargetRegisterInfo *TRI) {
1189   for (auto U : UsedOpsInCopy) {
1190     MachineOperand &MO = MI->getOperand(U);
1191     Register SrcReg = MO.getReg();
1192     if (!UsedRegUnits.available(SrcReg)) {
1193       MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1194       for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1195         if (UI.killsRegister(SrcReg, TRI)) {
1196           UI.clearRegisterKills(SrcReg, TRI);
1197           MO.setIsKill(true);
1198           break;
1199         }
1200       }
1201     }
1202   }
1203 }
1204 
1205 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1206                          SmallVectorImpl<unsigned> &UsedOpsInCopy,
1207                          SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1208   MachineFunction &MF = *SuccBB->getParent();
1209   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1210   for (unsigned DefReg : DefedRegsInCopy)
1211     for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1212       SuccBB->removeLiveIn(*S);
1213   for (auto U : UsedOpsInCopy) {
1214     Register SrcReg = MI->getOperand(U).getReg();
1215     LaneBitmask Mask;
1216     for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) {
1217       Mask |= (*S).second;
1218     }
1219     SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll());
1220   }
1221   SuccBB->sortUniqueLiveIns();
1222 }
1223 
1224 static bool hasRegisterDependency(MachineInstr *MI,
1225                                   SmallVectorImpl<unsigned> &UsedOpsInCopy,
1226                                   SmallVectorImpl<unsigned> &DefedRegsInCopy,
1227                                   LiveRegUnits &ModifiedRegUnits,
1228                                   LiveRegUnits &UsedRegUnits) {
1229   bool HasRegDependency = false;
1230   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1231     MachineOperand &MO = MI->getOperand(i);
1232     if (!MO.isReg())
1233       continue;
1234     Register Reg = MO.getReg();
1235     if (!Reg)
1236       continue;
1237     if (MO.isDef()) {
1238       if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1239         HasRegDependency = true;
1240         break;
1241       }
1242       DefedRegsInCopy.push_back(Reg);
1243 
1244       // FIXME: instead of isUse(), readsReg() would be a better fix here,
1245       // For example, we can ignore modifications in reg with undef. However,
1246       // it's not perfectly clear if skipping the internal read is safe in all
1247       // other targets.
1248     } else if (MO.isUse()) {
1249       if (!ModifiedRegUnits.available(Reg)) {
1250         HasRegDependency = true;
1251         break;
1252       }
1253       UsedOpsInCopy.push_back(i);
1254     }
1255   }
1256   return HasRegDependency;
1257 }
1258 
1259 static SmallSet<unsigned, 4> getRegUnits(unsigned Reg,
1260                                          const TargetRegisterInfo *TRI) {
1261   SmallSet<unsigned, 4> RegUnits;
1262   for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI)
1263     RegUnits.insert(*RI);
1264   return RegUnits;
1265 }
1266 
1267 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1268                                          MachineFunction &MF,
1269                                          const TargetRegisterInfo *TRI,
1270                                          const TargetInstrInfo *TII) {
1271   SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1272   // FIXME: For now, we sink only to a successor which has a single predecessor
1273   // so that we can directly sink COPY instructions to the successor without
1274   // adding any new block or branch instruction.
1275   for (MachineBasicBlock *SI : CurBB.successors())
1276     if (!SI->livein_empty() && SI->pred_size() == 1)
1277       SinkableBBs.insert(SI);
1278 
1279   if (SinkableBBs.empty())
1280     return false;
1281 
1282   bool Changed = false;
1283 
1284   // Track which registers have been modified and used between the end of the
1285   // block and the current instruction.
1286   ModifiedRegUnits.clear();
1287   UsedRegUnits.clear();
1288   SeenDbgInstrs.clear();
1289 
1290   for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
1291     MachineInstr *MI = &*I;
1292     ++I;
1293 
1294     // Track the operand index for use in Copy.
1295     SmallVector<unsigned, 2> UsedOpsInCopy;
1296     // Track the register number defed in Copy.
1297     SmallVector<unsigned, 2> DefedRegsInCopy;
1298 
1299     // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1300     // for DBG_VALUEs later, record them when they're encountered.
1301     if (MI->isDebugValue()) {
1302       auto &MO = MI->getOperand(0);
1303       if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
1304         // Bail if we can already tell the sink would be rejected, rather
1305         // than needlessly accumulating lots of DBG_VALUEs.
1306         if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1307                                   ModifiedRegUnits, UsedRegUnits))
1308           continue;
1309 
1310         // Record debug use of each reg unit.
1311         SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
1312         for (unsigned Reg : Units)
1313           SeenDbgInstrs[Reg].push_back(MI);
1314       }
1315       continue;
1316     }
1317 
1318     if (MI->isDebugInstr())
1319       continue;
1320 
1321     // Do not move any instruction across function call.
1322     if (MI->isCall())
1323       return false;
1324 
1325     if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
1326       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1327                                         TRI);
1328       continue;
1329     }
1330 
1331     // Don't sink the COPY if it would violate a register dependency.
1332     if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1333                               ModifiedRegUnits, UsedRegUnits)) {
1334       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1335                                         TRI);
1336       continue;
1337     }
1338     assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1339            "Unexpect SrcReg or DefReg");
1340     MachineBasicBlock *SuccBB =
1341         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1342     // Don't sink if we cannot find a single sinkable successor in which Reg
1343     // is live-in.
1344     if (!SuccBB) {
1345       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1346                                         TRI);
1347       continue;
1348     }
1349     assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1350            "Unexpected predecessor");
1351 
1352     // Collect DBG_VALUEs that must sink with this copy. We've previously
1353     // recorded which reg units that DBG_VALUEs read, if this instruction
1354     // writes any of those units then the corresponding DBG_VALUEs must sink.
1355     SetVector<MachineInstr *> DbgValsToSinkSet;
1356     SmallVector<MachineInstr *, 4> DbgValsToSink;
1357     for (auto &MO : MI->operands()) {
1358       if (!MO.isReg() || !MO.isDef())
1359         continue;
1360 
1361       SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
1362       for (unsigned Reg : Units)
1363         for (auto *MI : SeenDbgInstrs.lookup(Reg))
1364           DbgValsToSinkSet.insert(MI);
1365     }
1366     DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(),
1367                          DbgValsToSinkSet.end());
1368 
1369     // Clear the kill flag if SrcReg is killed between MI and the end of the
1370     // block.
1371     clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1372     MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1373     performSink(*MI, *SuccBB, InsertPos, DbgValsToSink);
1374     updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1375 
1376     Changed = true;
1377     ++NumPostRACopySink;
1378   }
1379   return Changed;
1380 }
1381 
1382 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1383   if (skipFunction(MF.getFunction()))
1384     return false;
1385 
1386   bool Changed = false;
1387   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1388   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1389 
1390   ModifiedRegUnits.init(*TRI);
1391   UsedRegUnits.init(*TRI);
1392   for (auto &BB : MF)
1393     Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1394 
1395   return Changed;
1396 }
1397