1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/PointerIntPair.h" 21 #include "llvm/ADT/PostOrderIterator.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/SparseBitVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/CFG.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineLoopInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachinePostDominators.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/CodeGen/RegisterClassInfo.h" 41 #include "llvm/CodeGen/RegisterPressure.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/InitializePasses.h" 49 #include "llvm/MC/MCRegisterInfo.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/BranchProbability.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstdint> 58 #include <map> 59 #include <utility> 60 #include <vector> 61 62 using namespace llvm; 63 64 #define DEBUG_TYPE "machine-sink" 65 66 static cl::opt<bool> 67 SplitEdges("machine-sink-split", 68 cl::desc("Split critical edges during machine sinking"), 69 cl::init(true), cl::Hidden); 70 71 static cl::opt<bool> 72 UseBlockFreqInfo("machine-sink-bfi", 73 cl::desc("Use block frequency info to find successors to sink"), 74 cl::init(true), cl::Hidden); 75 76 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 77 "machine-sink-split-probability-threshold", 78 cl::desc( 79 "Percentage threshold for splitting single-instruction critical edge. " 80 "If the branch threshold is higher than this threshold, we allow " 81 "speculative execution of up to 1 instruction to avoid branching to " 82 "splitted critical edge"), 83 cl::init(40), cl::Hidden); 84 85 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( 86 "machine-sink-load-instrs-threshold", 87 cl::desc("Do not try to find alias store for a load if there is a in-path " 88 "block whose instruction number is higher than this threshold."), 89 cl::init(2000), cl::Hidden); 90 91 static cl::opt<unsigned> SinkLoadBlocksThreshold( 92 "machine-sink-load-blocks-threshold", 93 cl::desc("Do not try to find alias store for a load if the block number in " 94 "the straight line is higher than this threshold."), 95 cl::init(20), cl::Hidden); 96 97 static cl::opt<bool> 98 SinkInstsIntoLoop("sink-insts-to-avoid-spills", 99 cl::desc("Sink instructions into loops to avoid " 100 "register spills"), 101 cl::init(false), cl::Hidden); 102 103 static cl::opt<unsigned> SinkIntoLoopLimit( 104 "machine-sink-loop-limit", 105 cl::desc("The maximum number of instructions considered for loop sinking."), 106 cl::init(50), cl::Hidden); 107 108 STATISTIC(NumSunk, "Number of machine instructions sunk"); 109 STATISTIC(NumLoopSunk, "Number of machine instructions sunk into a loop"); 110 STATISTIC(NumSplit, "Number of critical edges split"); 111 STATISTIC(NumCoalesces, "Number of copies coalesced"); 112 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 113 114 namespace { 115 116 class MachineSinking : public MachineFunctionPass { 117 const TargetInstrInfo *TII; 118 const TargetRegisterInfo *TRI; 119 MachineRegisterInfo *MRI; // Machine register information 120 MachineDominatorTree *DT; // Machine dominator tree 121 MachinePostDominatorTree *PDT; // Machine post dominator tree 122 MachineLoopInfo *LI; 123 MachineBlockFrequencyInfo *MBFI; 124 const MachineBranchProbabilityInfo *MBPI; 125 AliasAnalysis *AA; 126 RegisterClassInfo RegClassInfo; 127 128 // Remember which edges have been considered for breaking. 129 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 130 CEBCandidates; 131 // Remember which edges we are about to split. 132 // This is different from CEBCandidates since those edges 133 // will be split. 134 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 135 136 DenseSet<Register> RegsToClearKillFlags; 137 138 using AllSuccsCache = 139 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 140 141 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 142 /// post-dominated by another DBG_VALUE of the same variable location. 143 /// This is necessary to detect sequences such as: 144 /// %0 = someinst 145 /// DBG_VALUE %0, !123, !DIExpression() 146 /// %1 = anotherinst 147 /// DBG_VALUE %1, !123, !DIExpression() 148 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 149 /// would re-order assignments. 150 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 151 152 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 153 /// debug instructions to sink. 154 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 155 156 /// Record of debug variables that have had their locations set in the 157 /// current block. 158 DenseSet<DebugVariable> SeenDbgVars; 159 160 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 161 HasStoreCache; 162 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 163 std::vector<MachineInstr *>> 164 StoreInstrCache; 165 166 /// Cached BB's register pressure. 167 std::map<MachineBasicBlock *, std::vector<unsigned>> CachedRegisterPressure; 168 169 public: 170 static char ID; // Pass identification 171 172 MachineSinking() : MachineFunctionPass(ID) { 173 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 174 } 175 176 bool runOnMachineFunction(MachineFunction &MF) override; 177 178 void getAnalysisUsage(AnalysisUsage &AU) const override { 179 MachineFunctionPass::getAnalysisUsage(AU); 180 AU.addRequired<AAResultsWrapperPass>(); 181 AU.addRequired<MachineDominatorTree>(); 182 AU.addRequired<MachinePostDominatorTree>(); 183 AU.addRequired<MachineLoopInfo>(); 184 AU.addRequired<MachineBranchProbabilityInfo>(); 185 AU.addPreserved<MachineLoopInfo>(); 186 if (UseBlockFreqInfo) 187 AU.addRequired<MachineBlockFrequencyInfo>(); 188 } 189 190 void releaseMemory() override { 191 CEBCandidates.clear(); 192 } 193 194 private: 195 bool ProcessBlock(MachineBasicBlock &MBB); 196 void ProcessDbgInst(MachineInstr &MI); 197 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 198 MachineBasicBlock *From, 199 MachineBasicBlock *To); 200 201 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 202 MachineInstr &MI); 203 204 /// Postpone the splitting of the given critical 205 /// edge (\p From, \p To). 206 /// 207 /// We do not split the edges on the fly. Indeed, this invalidates 208 /// the dominance information and thus triggers a lot of updates 209 /// of that information underneath. 210 /// Instead, we postpone all the splits after each iteration of 211 /// the main loop. That way, the information is at least valid 212 /// for the lifetime of an iteration. 213 /// 214 /// \return True if the edge is marked as toSplit, false otherwise. 215 /// False can be returned if, for instance, this is not profitable. 216 bool PostponeSplitCriticalEdge(MachineInstr &MI, 217 MachineBasicBlock *From, 218 MachineBasicBlock *To, 219 bool BreakPHIEdge); 220 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 221 AllSuccsCache &AllSuccessors); 222 223 /// If we sink a COPY inst, some debug users of it's destination may no 224 /// longer be dominated by the COPY, and will eventually be dropped. 225 /// This is easily rectified by forwarding the non-dominated debug uses 226 /// to the copy source. 227 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 228 MachineBasicBlock *TargetBlock); 229 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 230 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 231 bool &LocalUse) const; 232 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 233 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 234 235 void FindLoopSinkCandidates(MachineLoop *L, MachineBasicBlock *BB, 236 SmallVectorImpl<MachineInstr *> &Candidates); 237 bool SinkIntoLoop(MachineLoop *L, MachineInstr &I); 238 239 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 240 MachineBasicBlock *MBB, 241 MachineBasicBlock *SuccToSinkTo, 242 AllSuccsCache &AllSuccessors); 243 244 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 245 MachineBasicBlock *MBB); 246 247 SmallVector<MachineBasicBlock *, 4> & 248 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 249 AllSuccsCache &AllSuccessors) const; 250 251 std::vector<unsigned> &getBBRegisterPressure(MachineBasicBlock &MBB); 252 }; 253 254 } // end anonymous namespace 255 256 char MachineSinking::ID = 0; 257 258 char &llvm::MachineSinkingID = MachineSinking::ID; 259 260 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 261 "Machine code sinking", false, false) 262 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 263 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 264 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 265 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 266 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 267 "Machine code sinking", false, false) 268 269 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 270 MachineBasicBlock *MBB) { 271 if (!MI.isCopy()) 272 return false; 273 274 Register SrcReg = MI.getOperand(1).getReg(); 275 Register DstReg = MI.getOperand(0).getReg(); 276 if (!Register::isVirtualRegister(SrcReg) || 277 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg)) 278 return false; 279 280 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 281 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 282 if (SRC != DRC) 283 return false; 284 285 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 286 if (DefMI->isCopyLike()) 287 return false; 288 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 289 LLVM_DEBUG(dbgs() << "*** to: " << MI); 290 MRI->replaceRegWith(DstReg, SrcReg); 291 MI.eraseFromParent(); 292 293 // Conservatively, clear any kill flags, since it's possible that they are no 294 // longer correct. 295 MRI->clearKillFlags(SrcReg); 296 297 ++NumCoalesces; 298 return true; 299 } 300 301 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 302 /// occur in blocks dominated by the specified block. If any use is in the 303 /// definition block, then return false since it is never legal to move def 304 /// after uses. 305 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 306 MachineBasicBlock *MBB, 307 MachineBasicBlock *DefMBB, 308 bool &BreakPHIEdge, 309 bool &LocalUse) const { 310 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs"); 311 312 // Ignore debug uses because debug info doesn't affect the code. 313 if (MRI->use_nodbg_empty(Reg)) 314 return true; 315 316 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 317 // into and they are all PHI nodes. In this case, machine-sink must break 318 // the critical edge first. e.g. 319 // 320 // %bb.1: 321 // Predecessors according to CFG: %bb.0 322 // ... 323 // %def = DEC64_32r %x, implicit-def dead %eflags 324 // ... 325 // JE_4 <%bb.37>, implicit %eflags 326 // Successors according to CFG: %bb.37 %bb.2 327 // 328 // %bb.2: 329 // %p = PHI %y, %bb.0, %def, %bb.1 330 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 331 MachineInstr *UseInst = MO.getParent(); 332 unsigned OpNo = UseInst->getOperandNo(&MO); 333 MachineBasicBlock *UseBlock = UseInst->getParent(); 334 return UseBlock == MBB && UseInst->isPHI() && 335 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 336 })) { 337 BreakPHIEdge = true; 338 return true; 339 } 340 341 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 342 // Determine the block of the use. 343 MachineInstr *UseInst = MO.getParent(); 344 unsigned OpNo = &MO - &UseInst->getOperand(0); 345 MachineBasicBlock *UseBlock = UseInst->getParent(); 346 if (UseInst->isPHI()) { 347 // PHI nodes use the operand in the predecessor block, not the block with 348 // the PHI. 349 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 350 } else if (UseBlock == DefMBB) { 351 LocalUse = true; 352 return false; 353 } 354 355 // Check that it dominates. 356 if (!DT->dominates(MBB, UseBlock)) 357 return false; 358 } 359 360 return true; 361 } 362 363 /// Return true if this machine instruction loads from global offset table or 364 /// constant pool. 365 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 366 assert(MI.mayLoad() && "Expected MI that loads!"); 367 368 // If we lost memory operands, conservatively assume that the instruction 369 // reads from everything.. 370 if (MI.memoperands_empty()) 371 return true; 372 373 for (MachineMemOperand *MemOp : MI.memoperands()) 374 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 375 if (PSV->isGOT() || PSV->isConstantPool()) 376 return true; 377 378 return false; 379 } 380 381 void MachineSinking::FindLoopSinkCandidates(MachineLoop *L, MachineBasicBlock *BB, 382 SmallVectorImpl<MachineInstr *> &Candidates) { 383 for (auto &MI : *BB) { 384 LLVM_DEBUG(dbgs() << "LoopSink: Analysing candidate: " << MI); 385 if (!TII->shouldSink(MI)) { 386 LLVM_DEBUG(dbgs() << "LoopSink: Instruction not a candidate for this " 387 "target\n"); 388 continue; 389 } 390 if (!L->isLoopInvariant(MI)) { 391 LLVM_DEBUG(dbgs() << "LoopSink: Instruction is not loop invariant\n"); 392 continue; 393 } 394 bool DontMoveAcrossStore = true; 395 if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) { 396 LLVM_DEBUG(dbgs() << "LoopSink: Instruction not safe to move.\n"); 397 continue; 398 } 399 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { 400 LLVM_DEBUG(dbgs() << "LoopSink: Dont sink GOT or constant pool loads\n"); 401 continue; 402 } 403 if (MI.isConvergent()) 404 continue; 405 406 const MachineOperand &MO = MI.getOperand(0); 407 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 408 continue; 409 if (!MRI->hasOneDef(MO.getReg())) 410 continue; 411 412 LLVM_DEBUG(dbgs() << "LoopSink: Instruction added as candidate.\n"); 413 Candidates.push_back(&MI); 414 } 415 } 416 417 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 418 if (skipFunction(MF.getFunction())) 419 return false; 420 421 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 422 423 TII = MF.getSubtarget().getInstrInfo(); 424 TRI = MF.getSubtarget().getRegisterInfo(); 425 MRI = &MF.getRegInfo(); 426 DT = &getAnalysis<MachineDominatorTree>(); 427 PDT = &getAnalysis<MachinePostDominatorTree>(); 428 LI = &getAnalysis<MachineLoopInfo>(); 429 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 430 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 431 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 432 RegClassInfo.runOnMachineFunction(MF); 433 434 // MachineSink currently uses MachineLoopInfo, which only recognizes natural 435 // loops. As such, we could sink instructions into irreducible cycles, which 436 // would be non-profitable. 437 // WARNING: The current implementation of hasStoreBetween() is incorrect for 438 // sinking into irreducible cycles (PR53990), this bailout is currently 439 // necessary for correctness, not just profitability. 440 ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin()); 441 if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *LI)) 442 return false; 443 444 bool EverMadeChange = false; 445 446 while (true) { 447 bool MadeChange = false; 448 449 // Process all basic blocks. 450 CEBCandidates.clear(); 451 ToSplit.clear(); 452 for (auto &MBB: MF) 453 MadeChange |= ProcessBlock(MBB); 454 455 // If we have anything we marked as toSplit, split it now. 456 for (auto &Pair : ToSplit) { 457 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 458 if (NewSucc != nullptr) { 459 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 460 << printMBBReference(*Pair.first) << " -- " 461 << printMBBReference(*NewSucc) << " -- " 462 << printMBBReference(*Pair.second) << '\n'); 463 if (MBFI) 464 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 465 466 MadeChange = true; 467 ++NumSplit; 468 } else 469 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 470 } 471 // If this iteration over the code changed anything, keep iterating. 472 if (!MadeChange) break; 473 EverMadeChange = true; 474 } 475 476 if (SinkInstsIntoLoop) { 477 SmallVector<MachineLoop *, 8> Loops(LI->begin(), LI->end()); 478 for (auto *L : Loops) { 479 MachineBasicBlock *Preheader = LI->findLoopPreheader(L); 480 if (!Preheader) { 481 LLVM_DEBUG(dbgs() << "LoopSink: Can't find preheader\n"); 482 continue; 483 } 484 SmallVector<MachineInstr *, 8> Candidates; 485 FindLoopSinkCandidates(L, Preheader, Candidates); 486 487 // Walk the candidates in reverse order so that we start with the use 488 // of a def-use chain, if there is any. 489 // TODO: Sort the candidates using a cost-model. 490 unsigned i = 0; 491 for (MachineInstr *I : llvm::reverse(Candidates)) { 492 if (i++ == SinkIntoLoopLimit) { 493 LLVM_DEBUG(dbgs() << "LoopSink: Limit reached of instructions to " 494 "be analysed."); 495 break; 496 } 497 498 if (!SinkIntoLoop(L, *I)) 499 break; 500 EverMadeChange = true; 501 ++NumLoopSunk; 502 } 503 } 504 } 505 506 HasStoreCache.clear(); 507 StoreInstrCache.clear(); 508 509 // Now clear any kill flags for recorded registers. 510 for (auto I : RegsToClearKillFlags) 511 MRI->clearKillFlags(I); 512 RegsToClearKillFlags.clear(); 513 514 return EverMadeChange; 515 } 516 517 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 518 // Can't sink anything out of a block that has less than two successors. 519 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 520 521 // Don't bother sinking code out of unreachable blocks. In addition to being 522 // unprofitable, it can also lead to infinite looping, because in an 523 // unreachable loop there may be nowhere to stop. 524 if (!DT->isReachableFromEntry(&MBB)) return false; 525 526 bool MadeChange = false; 527 528 // Cache all successors, sorted by frequency info and loop depth. 529 AllSuccsCache AllSuccessors; 530 531 // Walk the basic block bottom-up. Remember if we saw a store. 532 MachineBasicBlock::iterator I = MBB.end(); 533 --I; 534 bool ProcessedBegin, SawStore = false; 535 do { 536 MachineInstr &MI = *I; // The instruction to sink. 537 538 // Predecrement I (if it's not begin) so that it isn't invalidated by 539 // sinking. 540 ProcessedBegin = I == MBB.begin(); 541 if (!ProcessedBegin) 542 --I; 543 544 if (MI.isDebugOrPseudoInstr()) { 545 if (MI.isDebugValue()) 546 ProcessDbgInst(MI); 547 continue; 548 } 549 550 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 551 if (Joined) { 552 MadeChange = true; 553 continue; 554 } 555 556 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 557 ++NumSunk; 558 MadeChange = true; 559 } 560 561 // If we just processed the first instruction in the block, we're done. 562 } while (!ProcessedBegin); 563 564 SeenDbgUsers.clear(); 565 SeenDbgVars.clear(); 566 // recalculate the bb register pressure after sinking one BB. 567 CachedRegisterPressure.clear(); 568 569 return MadeChange; 570 } 571 572 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 573 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 574 // we know what to sink if the vreg def sinks. 575 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 576 577 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 578 MI.getDebugLoc()->getInlinedAt()); 579 bool SeenBefore = SeenDbgVars.contains(Var); 580 581 for (MachineOperand &MO : MI.debug_operands()) { 582 if (MO.isReg() && MO.getReg().isVirtual()) 583 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 584 } 585 586 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 587 SeenDbgVars.insert(Var); 588 } 589 590 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 591 MachineBasicBlock *From, 592 MachineBasicBlock *To) { 593 // FIXME: Need much better heuristics. 594 595 // If the pass has already considered breaking this edge (during this pass 596 // through the function), then let's go ahead and break it. This means 597 // sinking multiple "cheap" instructions into the same block. 598 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 599 return true; 600 601 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 602 return true; 603 604 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 605 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 606 return true; 607 608 // MI is cheap, we probably don't want to break the critical edge for it. 609 // However, if this would allow some definitions of its source operands 610 // to be sunk then it's probably worth it. 611 for (const MachineOperand &MO : MI.operands()) { 612 if (!MO.isReg() || !MO.isUse()) 613 continue; 614 Register Reg = MO.getReg(); 615 if (Reg == 0) 616 continue; 617 618 // We don't move live definitions of physical registers, 619 // so sinking their uses won't enable any opportunities. 620 if (Register::isPhysicalRegister(Reg)) 621 continue; 622 623 // If this instruction is the only user of a virtual register, 624 // check if breaking the edge will enable sinking 625 // both this instruction and the defining instruction. 626 if (MRI->hasOneNonDBGUse(Reg)) { 627 // If the definition resides in same MBB, 628 // claim it's likely we can sink these together. 629 // If definition resides elsewhere, we aren't 630 // blocking it from being sunk so don't break the edge. 631 MachineInstr *DefMI = MRI->getVRegDef(Reg); 632 if (DefMI->getParent() == MI.getParent()) 633 return true; 634 } 635 } 636 637 return false; 638 } 639 640 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 641 MachineBasicBlock *FromBB, 642 MachineBasicBlock *ToBB, 643 bool BreakPHIEdge) { 644 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 645 return false; 646 647 // Avoid breaking back edge. From == To means backedge for single BB loop. 648 if (!SplitEdges || FromBB == ToBB) 649 return false; 650 651 // Check for backedges of more "complex" loops. 652 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 653 LI->isLoopHeader(ToBB)) 654 return false; 655 656 // It's not always legal to break critical edges and sink the computation 657 // to the edge. 658 // 659 // %bb.1: 660 // v1024 661 // Beq %bb.3 662 // <fallthrough> 663 // %bb.2: 664 // ... no uses of v1024 665 // <fallthrough> 666 // %bb.3: 667 // ... 668 // = v1024 669 // 670 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 671 // 672 // %bb.1: 673 // ... 674 // Bne %bb.2 675 // %bb.4: 676 // v1024 = 677 // B %bb.3 678 // %bb.2: 679 // ... no uses of v1024 680 // <fallthrough> 681 // %bb.3: 682 // ... 683 // = v1024 684 // 685 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 686 // flow. We need to ensure the new basic block where the computation is 687 // sunk to dominates all the uses. 688 // It's only legal to break critical edge and sink the computation to the 689 // new block if all the predecessors of "To", except for "From", are 690 // not dominated by "From". Given SSA property, this means these 691 // predecessors are dominated by "To". 692 // 693 // There is no need to do this check if all the uses are PHI nodes. PHI 694 // sources are only defined on the specific predecessor edges. 695 if (!BreakPHIEdge) { 696 for (MachineBasicBlock *Pred : ToBB->predecessors()) 697 if (Pred != FromBB && !DT->dominates(ToBB, Pred)) 698 return false; 699 } 700 701 ToSplit.insert(std::make_pair(FromBB, ToBB)); 702 703 return true; 704 } 705 706 std::vector<unsigned> & 707 MachineSinking::getBBRegisterPressure(MachineBasicBlock &MBB) { 708 // Currently to save compiling time, MBB's register pressure will not change 709 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 710 // register pressure is changed after sinking any instructions into it. 711 // FIXME: need a accurate and cheap register pressure estiminate model here. 712 auto RP = CachedRegisterPressure.find(&MBB); 713 if (RP != CachedRegisterPressure.end()) 714 return RP->second; 715 716 RegionPressure Pressure; 717 RegPressureTracker RPTracker(Pressure); 718 719 // Initialize the register pressure tracker. 720 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 721 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 722 723 for (MachineBasicBlock::iterator MII = MBB.instr_end(), 724 MIE = MBB.instr_begin(); 725 MII != MIE; --MII) { 726 MachineInstr &MI = *std::prev(MII); 727 if (MI.isDebugInstr() || MI.isPseudoProbe()) 728 continue; 729 RegisterOperands RegOpers; 730 RegOpers.collect(MI, *TRI, *MRI, false, false); 731 RPTracker.recedeSkipDebugValues(); 732 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 733 RPTracker.recede(RegOpers); 734 } 735 736 RPTracker.closeRegion(); 737 auto It = CachedRegisterPressure.insert( 738 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 739 return It.first->second; 740 } 741 742 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 743 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 744 MachineBasicBlock *MBB, 745 MachineBasicBlock *SuccToSinkTo, 746 AllSuccsCache &AllSuccessors) { 747 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 748 749 if (MBB == SuccToSinkTo) 750 return false; 751 752 // It is profitable if SuccToSinkTo does not post dominate current block. 753 if (!PDT->dominates(SuccToSinkTo, MBB)) 754 return true; 755 756 // It is profitable to sink an instruction from a deeper loop to a shallower 757 // loop, even if the latter post-dominates the former (PR21115). 758 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 759 return true; 760 761 // Check if only use in post dominated block is PHI instruction. 762 bool NonPHIUse = false; 763 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 764 MachineBasicBlock *UseBlock = UseInst.getParent(); 765 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 766 NonPHIUse = true; 767 } 768 if (!NonPHIUse) 769 return true; 770 771 // If SuccToSinkTo post dominates then also it may be profitable if MI 772 // can further profitably sinked into another block in next round. 773 bool BreakPHIEdge = false; 774 // FIXME - If finding successor is compile time expensive then cache results. 775 if (MachineBasicBlock *MBB2 = 776 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 777 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 778 779 MachineLoop *ML = LI->getLoopFor(MBB); 780 781 // If the instruction is not inside a loop, it is not profitable to sink MI to 782 // a post dominate block SuccToSinkTo. 783 if (!ML) 784 return false; 785 786 auto isRegisterPressureSetExceedLimit = [&](const TargetRegisterClass *RC) { 787 unsigned Weight = TRI->getRegClassWeight(RC).RegWeight; 788 const int *PS = TRI->getRegClassPressureSets(RC); 789 // Get register pressure for block SuccToSinkTo. 790 std::vector<unsigned> BBRegisterPressure = 791 getBBRegisterPressure(*SuccToSinkTo); 792 for (; *PS != -1; PS++) 793 // check if any register pressure set exceeds limit in block SuccToSinkTo 794 // after sinking. 795 if (Weight + BBRegisterPressure[*PS] >= 796 TRI->getRegPressureSetLimit(*MBB->getParent(), *PS)) 797 return true; 798 return false; 799 }; 800 801 // If this instruction is inside a loop and sinking this instruction can make 802 // more registers live range shorten, it is still prifitable. 803 for (const MachineOperand &MO : MI.operands()) { 804 // Ignore non-register operands. 805 if (!MO.isReg()) 806 continue; 807 Register Reg = MO.getReg(); 808 if (Reg == 0) 809 continue; 810 811 if (Register::isPhysicalRegister(Reg)) { 812 if (MO.isUse() && 813 (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO))) 814 continue; 815 816 // Don't handle non-constant and non-ignorable physical register. 817 return false; 818 } 819 820 // Users for the defs are all dominated by SuccToSinkTo. 821 if (MO.isDef()) { 822 // This def register's live range is shortened after sinking. 823 bool LocalUse = false; 824 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 825 LocalUse)) 826 return false; 827 } else { 828 MachineInstr *DefMI = MRI->getVRegDef(Reg); 829 // DefMI is defined outside of loop. There should be no live range 830 // impact for this operand. Defination outside of loop means: 831 // 1: defination is outside of loop. 832 // 2: defination is in this loop, but it is a PHI in the loop header. 833 if (LI->getLoopFor(DefMI->getParent()) != ML || 834 (DefMI->isPHI() && LI->isLoopHeader(DefMI->getParent()))) 835 continue; 836 // The DefMI is defined inside the loop. 837 // If sinking this operand makes some register pressure set exceed limit, 838 // it is not profitable. 839 if (isRegisterPressureSetExceedLimit(MRI->getRegClass(Reg))) { 840 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 841 return false; 842 } 843 } 844 } 845 846 // If MI is in loop and all its operands are alive across the whole loop or if 847 // no operand sinking make register pressure set exceed limit, it is 848 // profitable to sink MI. 849 return true; 850 } 851 852 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 853 /// computing it if it was not already cached. 854 SmallVector<MachineBasicBlock *, 4> & 855 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 856 AllSuccsCache &AllSuccessors) const { 857 // Do we have the sorted successors in cache ? 858 auto Succs = AllSuccessors.find(MBB); 859 if (Succs != AllSuccessors.end()) 860 return Succs->second; 861 862 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); 863 864 // Handle cases where sinking can happen but where the sink point isn't a 865 // successor. For example: 866 // 867 // x = computation 868 // if () {} else {} 869 // use x 870 // 871 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 872 // DomTree children of MBB that have MBB as immediate dominator are added. 873 if (DTChild->getIDom()->getBlock() == MI.getParent() && 874 // Skip MBBs already added to the AllSuccs vector above. 875 !MBB->isSuccessor(DTChild->getBlock())) 876 AllSuccs.push_back(DTChild->getBlock()); 877 } 878 879 // Sort Successors according to their loop depth or block frequency info. 880 llvm::stable_sort( 881 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 882 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 883 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 884 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 885 return HasBlockFreq ? LHSFreq < RHSFreq 886 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 887 }); 888 889 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 890 891 return it.first->second; 892 } 893 894 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 895 MachineBasicBlock * 896 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 897 bool &BreakPHIEdge, 898 AllSuccsCache &AllSuccessors) { 899 assert (MBB && "Invalid MachineBasicBlock!"); 900 901 // Loop over all the operands of the specified instruction. If there is 902 // anything we can't handle, bail out. 903 904 // SuccToSinkTo - This is the successor to sink this instruction to, once we 905 // decide. 906 MachineBasicBlock *SuccToSinkTo = nullptr; 907 for (const MachineOperand &MO : MI.operands()) { 908 if (!MO.isReg()) continue; // Ignore non-register operands. 909 910 Register Reg = MO.getReg(); 911 if (Reg == 0) continue; 912 913 if (Register::isPhysicalRegister(Reg)) { 914 if (MO.isUse()) { 915 // If the physreg has no defs anywhere, it's just an ambient register 916 // and we can freely move its uses. Alternatively, if it's allocatable, 917 // it could get allocated to something with a def during allocation. 918 if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 919 return nullptr; 920 } else if (!MO.isDead()) { 921 // A def that isn't dead. We can't move it. 922 return nullptr; 923 } 924 } else { 925 // Virtual register uses are always safe to sink. 926 if (MO.isUse()) continue; 927 928 // If it's not safe to move defs of the register class, then abort. 929 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 930 return nullptr; 931 932 // Virtual register defs can only be sunk if all their uses are in blocks 933 // dominated by one of the successors. 934 if (SuccToSinkTo) { 935 // If a previous operand picked a block to sink to, then this operand 936 // must be sinkable to the same block. 937 bool LocalUse = false; 938 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 939 BreakPHIEdge, LocalUse)) 940 return nullptr; 941 942 continue; 943 } 944 945 // Otherwise, we should look at all the successors and decide which one 946 // we should sink to. If we have reliable block frequency information 947 // (frequency != 0) available, give successors with smaller frequencies 948 // higher priority, otherwise prioritize smaller loop depths. 949 for (MachineBasicBlock *SuccBlock : 950 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 951 bool LocalUse = false; 952 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 953 BreakPHIEdge, LocalUse)) { 954 SuccToSinkTo = SuccBlock; 955 break; 956 } 957 if (LocalUse) 958 // Def is used locally, it's never safe to move this def. 959 return nullptr; 960 } 961 962 // If we couldn't find a block to sink to, ignore this instruction. 963 if (!SuccToSinkTo) 964 return nullptr; 965 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 966 return nullptr; 967 } 968 } 969 970 // It is not possible to sink an instruction into its own block. This can 971 // happen with loops. 972 if (MBB == SuccToSinkTo) 973 return nullptr; 974 975 // It's not safe to sink instructions to EH landing pad. Control flow into 976 // landing pad is implicitly defined. 977 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 978 return nullptr; 979 980 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 981 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 982 // the source block (which this code does not yet do). So for now, forbid 983 // doing so. 984 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 985 return nullptr; 986 987 return SuccToSinkTo; 988 } 989 990 /// Return true if MI is likely to be usable as a memory operation by the 991 /// implicit null check optimization. 992 /// 993 /// This is a "best effort" heuristic, and should not be relied upon for 994 /// correctness. This returning true does not guarantee that the implicit null 995 /// check optimization is legal over MI, and this returning false does not 996 /// guarantee MI cannot possibly be used to do a null check. 997 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 998 const TargetInstrInfo *TII, 999 const TargetRegisterInfo *TRI) { 1000 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 1001 1002 auto *MBB = MI.getParent(); 1003 if (MBB->pred_size() != 1) 1004 return false; 1005 1006 auto *PredMBB = *MBB->pred_begin(); 1007 auto *PredBB = PredMBB->getBasicBlock(); 1008 1009 // Frontends that don't use implicit null checks have no reason to emit 1010 // branches with make.implicit metadata, and this function should always 1011 // return false for them. 1012 if (!PredBB || 1013 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 1014 return false; 1015 1016 const MachineOperand *BaseOp; 1017 int64_t Offset; 1018 bool OffsetIsScalable; 1019 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 1020 return false; 1021 1022 if (!BaseOp->isReg()) 1023 return false; 1024 1025 if (!(MI.mayLoad() && !MI.isPredicable())) 1026 return false; 1027 1028 MachineBranchPredicate MBP; 1029 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 1030 return false; 1031 1032 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 1033 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 1034 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 1035 MBP.LHS.getReg() == BaseOp->getReg(); 1036 } 1037 1038 /// If the sunk instruction is a copy, try to forward the copy instead of 1039 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 1040 /// there's any subregister weirdness involved. Returns true if copy 1041 /// propagation occurred. 1042 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI, 1043 Register Reg) { 1044 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 1045 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 1046 1047 // Copy DBG_VALUE operand and set the original to undef. We then check to 1048 // see whether this is something that can be copy-forwarded. If it isn't, 1049 // continue around the loop. 1050 1051 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 1052 auto CopyOperands = TII.isCopyInstr(SinkInst); 1053 if (!CopyOperands) 1054 return false; 1055 SrcMO = CopyOperands->Source; 1056 DstMO = CopyOperands->Destination; 1057 1058 // Check validity of forwarding this copy. 1059 bool PostRA = MRI.getNumVirtRegs() == 0; 1060 1061 // Trying to forward between physical and virtual registers is too hard. 1062 if (Reg.isVirtual() != SrcMO->getReg().isVirtual()) 1063 return false; 1064 1065 // Only try virtual register copy-forwarding before regalloc, and physical 1066 // register copy-forwarding after regalloc. 1067 bool arePhysRegs = !Reg.isVirtual(); 1068 if (arePhysRegs != PostRA) 1069 return false; 1070 1071 // Pre-regalloc, only forward if all subregisters agree (or there are no 1072 // subregs at all). More analysis might recover some forwardable copies. 1073 if (!PostRA) 1074 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) 1075 if (DbgMO.getSubReg() != SrcMO->getSubReg() || 1076 DbgMO.getSubReg() != DstMO->getSubReg()) 1077 return false; 1078 1079 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 1080 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 1081 // matches the copy destination. 1082 if (PostRA && Reg != DstMO->getReg()) 1083 return false; 1084 1085 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) { 1086 DbgMO.setReg(SrcMO->getReg()); 1087 DbgMO.setSubReg(SrcMO->getSubReg()); 1088 } 1089 return true; 1090 } 1091 1092 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>; 1093 /// Sink an instruction and its associated debug instructions. 1094 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 1095 MachineBasicBlock::iterator InsertPos, 1096 SmallVectorImpl<MIRegs> &DbgValuesToSink) { 1097 1098 // If we cannot find a location to use (merge with), then we erase the debug 1099 // location to prevent debug-info driven tools from potentially reporting 1100 // wrong location information. 1101 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 1102 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 1103 InsertPos->getDebugLoc())); 1104 else 1105 MI.setDebugLoc(DebugLoc()); 1106 1107 // Move the instruction. 1108 MachineBasicBlock *ParentBlock = MI.getParent(); 1109 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 1110 ++MachineBasicBlock::iterator(MI)); 1111 1112 // Sink a copy of debug users to the insert position. Mark the original 1113 // DBG_VALUE location as 'undef', indicating that any earlier variable 1114 // location should be terminated as we've optimised away the value at this 1115 // point. 1116 for (auto DbgValueToSink : DbgValuesToSink) { 1117 MachineInstr *DbgMI = DbgValueToSink.first; 1118 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI); 1119 SuccToSinkTo.insert(InsertPos, NewDbgMI); 1120 1121 bool PropagatedAllSunkOps = true; 1122 for (unsigned Reg : DbgValueToSink.second) { 1123 if (DbgMI->hasDebugOperandForReg(Reg)) { 1124 if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) { 1125 PropagatedAllSunkOps = false; 1126 break; 1127 } 1128 } 1129 } 1130 if (!PropagatedAllSunkOps) 1131 DbgMI->setDebugValueUndef(); 1132 } 1133 } 1134 1135 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1136 /// and To. 1137 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1138 MachineBasicBlock *To, MachineInstr &MI) { 1139 // Make sure From and To are in straight line which means From dominates To 1140 // and To post dominates From. 1141 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1142 return true; 1143 1144 auto BlockPair = std::make_pair(From, To); 1145 1146 // Does these two blocks pair be queried before and have a definite cached 1147 // result? 1148 if (HasStoreCache.find(BlockPair) != HasStoreCache.end()) 1149 return HasStoreCache[BlockPair]; 1150 1151 if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end()) 1152 return llvm::any_of(StoreInstrCache[BlockPair], [&](MachineInstr *I) { 1153 return I->mayAlias(AA, MI, false); 1154 }); 1155 1156 bool SawStore = false; 1157 bool HasAliasedStore = false; 1158 DenseSet<MachineBasicBlock *> HandledBlocks; 1159 DenseSet<MachineBasicBlock *> HandledDomBlocks; 1160 // Go through all reachable blocks from From. 1161 for (MachineBasicBlock *BB : depth_first(From)) { 1162 // We insert the instruction at the start of block To, so no need to worry 1163 // about stores inside To. 1164 // Store in block From should be already considered when just enter function 1165 // SinkInstruction. 1166 if (BB == To || BB == From) 1167 continue; 1168 1169 // We already handle this BB in previous iteration. 1170 if (HandledBlocks.count(BB)) 1171 continue; 1172 1173 HandledBlocks.insert(BB); 1174 // To post dominates BB, it must be a path from block From. 1175 if (PDT->dominates(To, BB)) { 1176 if (!HandledDomBlocks.count(BB)) 1177 HandledDomBlocks.insert(BB); 1178 1179 // If this BB is too big or the block number in straight line between From 1180 // and To is too big, stop searching to save compiling time. 1181 if (BB->size() > SinkLoadInstsPerBlockThreshold || 1182 HandledDomBlocks.size() > SinkLoadBlocksThreshold) { 1183 for (auto *DomBB : HandledDomBlocks) { 1184 if (DomBB != BB && DT->dominates(DomBB, BB)) 1185 HasStoreCache[std::make_pair(DomBB, To)] = true; 1186 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1187 HasStoreCache[std::make_pair(From, DomBB)] = true; 1188 } 1189 HasStoreCache[BlockPair] = true; 1190 return true; 1191 } 1192 1193 for (MachineInstr &I : *BB) { 1194 // Treat as alias conservatively for a call or an ordered memory 1195 // operation. 1196 if (I.isCall() || I.hasOrderedMemoryRef()) { 1197 for (auto *DomBB : HandledDomBlocks) { 1198 if (DomBB != BB && DT->dominates(DomBB, BB)) 1199 HasStoreCache[std::make_pair(DomBB, To)] = true; 1200 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1201 HasStoreCache[std::make_pair(From, DomBB)] = true; 1202 } 1203 HasStoreCache[BlockPair] = true; 1204 return true; 1205 } 1206 1207 if (I.mayStore()) { 1208 SawStore = true; 1209 // We still have chance to sink MI if all stores between are not 1210 // aliased to MI. 1211 // Cache all store instructions, so that we don't need to go through 1212 // all From reachable blocks for next load instruction. 1213 if (I.mayAlias(AA, MI, false)) 1214 HasAliasedStore = true; 1215 StoreInstrCache[BlockPair].push_back(&I); 1216 } 1217 } 1218 } 1219 } 1220 // If there is no store at all, cache the result. 1221 if (!SawStore) 1222 HasStoreCache[BlockPair] = false; 1223 return HasAliasedStore; 1224 } 1225 1226 /// Sink instructions into loops if profitable. This especially tries to prevent 1227 /// register spills caused by register pressure if there is little to no 1228 /// overhead moving instructions into loops. 1229 bool MachineSinking::SinkIntoLoop(MachineLoop *L, MachineInstr &I) { 1230 LLVM_DEBUG(dbgs() << "LoopSink: Finding sink block for: " << I); 1231 MachineBasicBlock *Preheader = L->getLoopPreheader(); 1232 assert(Preheader && "Loop sink needs a preheader block"); 1233 MachineBasicBlock *SinkBlock = nullptr; 1234 bool CanSink = true; 1235 const MachineOperand &MO = I.getOperand(0); 1236 1237 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 1238 LLVM_DEBUG(dbgs() << "LoopSink: Analysing use: " << MI); 1239 if (!L->contains(&MI)) { 1240 LLVM_DEBUG(dbgs() << "LoopSink: Use not in loop, can't sink.\n"); 1241 CanSink = false; 1242 break; 1243 } 1244 1245 // FIXME: Come up with a proper cost model that estimates whether sinking 1246 // the instruction (and thus possibly executing it on every loop 1247 // iteration) is more expensive than a register. 1248 // For now assumes that copies are cheap and thus almost always worth it. 1249 if (!MI.isCopy()) { 1250 LLVM_DEBUG(dbgs() << "LoopSink: Use is not a copy\n"); 1251 CanSink = false; 1252 break; 1253 } 1254 if (!SinkBlock) { 1255 SinkBlock = MI.getParent(); 1256 LLVM_DEBUG(dbgs() << "LoopSink: Setting sink block to: " 1257 << printMBBReference(*SinkBlock) << "\n"); 1258 continue; 1259 } 1260 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent()); 1261 if (!SinkBlock) { 1262 LLVM_DEBUG(dbgs() << "LoopSink: Can't find nearest dominator\n"); 1263 CanSink = false; 1264 break; 1265 } 1266 LLVM_DEBUG(dbgs() << "LoopSink: Setting nearest common dom block: " << 1267 printMBBReference(*SinkBlock) << "\n"); 1268 } 1269 1270 if (!CanSink) { 1271 LLVM_DEBUG(dbgs() << "LoopSink: Can't sink instruction.\n"); 1272 return false; 1273 } 1274 if (!SinkBlock) { 1275 LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, can't find sink block.\n"); 1276 return false; 1277 } 1278 if (SinkBlock == Preheader) { 1279 LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, sink block is the preheader\n"); 1280 return false; 1281 } 1282 if (SinkBlock->size() > SinkLoadInstsPerBlockThreshold) { 1283 LLVM_DEBUG(dbgs() << "LoopSink: Not Sinking, block too large to analyse.\n"); 1284 return false; 1285 } 1286 1287 LLVM_DEBUG(dbgs() << "LoopSink: Sinking instruction!\n"); 1288 SinkBlock->splice(SinkBlock->getFirstNonPHI(), Preheader, I); 1289 1290 // The instruction is moved from its basic block, so do not retain the 1291 // debug information. 1292 assert(!I.isDebugInstr() && "Should not sink debug inst"); 1293 I.setDebugLoc(DebugLoc()); 1294 return true; 1295 } 1296 1297 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1298 /// instruction out of its current block into a successor. 1299 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1300 AllSuccsCache &AllSuccessors) { 1301 // Don't sink instructions that the target prefers not to sink. 1302 if (!TII->shouldSink(MI)) 1303 return false; 1304 1305 // Check if it's safe to move the instruction. 1306 if (!MI.isSafeToMove(AA, SawStore)) 1307 return false; 1308 1309 // Convergent operations may not be made control-dependent on additional 1310 // values. 1311 if (MI.isConvergent()) 1312 return false; 1313 1314 // Don't break implicit null checks. This is a performance heuristic, and not 1315 // required for correctness. 1316 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1317 return false; 1318 1319 // FIXME: This should include support for sinking instructions within the 1320 // block they are currently in to shorten the live ranges. We often get 1321 // instructions sunk into the top of a large block, but it would be better to 1322 // also sink them down before their first use in the block. This xform has to 1323 // be careful not to *increase* register pressure though, e.g. sinking 1324 // "x = y + z" down if it kills y and z would increase the live ranges of y 1325 // and z and only shrink the live range of x. 1326 1327 bool BreakPHIEdge = false; 1328 MachineBasicBlock *ParentBlock = MI.getParent(); 1329 MachineBasicBlock *SuccToSinkTo = 1330 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1331 1332 // If there are no outputs, it must have side-effects. 1333 if (!SuccToSinkTo) 1334 return false; 1335 1336 // If the instruction to move defines a dead physical register which is live 1337 // when leaving the basic block, don't move it because it could turn into a 1338 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 1339 for (const MachineOperand &MO : MI.operands()) { 1340 if (!MO.isReg() || MO.isUse()) 1341 continue; 1342 Register Reg = MO.getReg(); 1343 if (Reg == 0 || !Register::isPhysicalRegister(Reg)) 1344 continue; 1345 if (SuccToSinkTo->isLiveIn(Reg)) 1346 return false; 1347 } 1348 1349 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1350 1351 // If the block has multiple predecessors, this is a critical edge. 1352 // Decide if we can sink along it or need to break the edge. 1353 if (SuccToSinkTo->pred_size() > 1) { 1354 // We cannot sink a load across a critical edge - there may be stores in 1355 // other code paths. 1356 bool TryBreak = false; 1357 bool Store = 1358 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1359 if (!MI.isSafeToMove(AA, Store)) { 1360 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1361 TryBreak = true; 1362 } 1363 1364 // We don't want to sink across a critical edge if we don't dominate the 1365 // successor. We could be introducing calculations to new code paths. 1366 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1367 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1368 TryBreak = true; 1369 } 1370 1371 // Don't sink instructions into a loop. 1372 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 1373 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 1374 TryBreak = true; 1375 } 1376 1377 // Otherwise we are OK with sinking along a critical edge. 1378 if (!TryBreak) 1379 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1380 else { 1381 // Mark this edge as to be split. 1382 // If the edge can actually be split, the next iteration of the main loop 1383 // will sink MI in the newly created block. 1384 bool Status = 1385 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1386 if (!Status) 1387 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1388 "break critical edge\n"); 1389 // The instruction will not be sunk this time. 1390 return false; 1391 } 1392 } 1393 1394 if (BreakPHIEdge) { 1395 // BreakPHIEdge is true if all the uses are in the successor MBB being 1396 // sunken into and they are all PHI nodes. In this case, machine-sink must 1397 // break the critical edge first. 1398 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 1399 SuccToSinkTo, BreakPHIEdge); 1400 if (!Status) 1401 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1402 "break critical edge\n"); 1403 // The instruction will not be sunk this time. 1404 return false; 1405 } 1406 1407 // Determine where to insert into. Skip phi nodes. 1408 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 1409 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 1410 ++InsertPos; 1411 1412 // Collect debug users of any vreg that this inst defines. 1413 SmallVector<MIRegs, 4> DbgUsersToSink; 1414 for (auto &MO : MI.operands()) { 1415 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1416 continue; 1417 if (!SeenDbgUsers.count(MO.getReg())) 1418 continue; 1419 1420 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1421 auto &Users = SeenDbgUsers[MO.getReg()]; 1422 for (auto &User : Users) { 1423 MachineInstr *DbgMI = User.getPointer(); 1424 if (User.getInt()) { 1425 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1426 // it, it can't be recovered. Set it undef. 1427 if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg())) 1428 DbgMI->setDebugValueUndef(); 1429 } else { 1430 DbgUsersToSink.push_back( 1431 {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())}); 1432 } 1433 } 1434 } 1435 1436 // After sinking, some debug users may not be dominated any more. If possible, 1437 // copy-propagate their operands. As it's expensive, don't do this if there's 1438 // no debuginfo in the program. 1439 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1440 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1441 1442 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1443 1444 // Conservatively, clear any kill flags, since it's possible that they are no 1445 // longer correct. 1446 // Note that we have to clear the kill flags for any register this instruction 1447 // uses as we may sink over another instruction which currently kills the 1448 // used registers. 1449 for (MachineOperand &MO : MI.operands()) { 1450 if (MO.isReg() && MO.isUse()) 1451 RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags. 1452 } 1453 1454 return true; 1455 } 1456 1457 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1458 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1459 assert(MI.isCopy()); 1460 assert(MI.getOperand(1).isReg()); 1461 1462 // Enumerate all users of vreg operands that are def'd. Skip those that will 1463 // be sunk. For the rest, if they are not dominated by the block we will sink 1464 // MI into, propagate the copy source to them. 1465 SmallVector<MachineInstr *, 4> DbgDefUsers; 1466 SmallVector<Register, 4> DbgUseRegs; 1467 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1468 for (auto &MO : MI.operands()) { 1469 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1470 continue; 1471 DbgUseRegs.push_back(MO.getReg()); 1472 for (auto &User : MRI.use_instructions(MO.getReg())) { 1473 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1474 continue; 1475 1476 // If is in same block, will either sink or be use-before-def. 1477 if (User.getParent() == MI.getParent()) 1478 continue; 1479 1480 assert(User.hasDebugOperandForReg(MO.getReg()) && 1481 "DBG_VALUE user of vreg, but has no operand for it?"); 1482 DbgDefUsers.push_back(&User); 1483 } 1484 } 1485 1486 // Point the users of this copy that are no longer dominated, at the source 1487 // of the copy. 1488 for (auto *User : DbgDefUsers) { 1489 for (auto &Reg : DbgUseRegs) { 1490 for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) { 1491 DbgOp.setReg(MI.getOperand(1).getReg()); 1492 DbgOp.setSubReg(MI.getOperand(1).getSubReg()); 1493 } 1494 } 1495 } 1496 } 1497 1498 //===----------------------------------------------------------------------===// 1499 // This pass is not intended to be a replacement or a complete alternative 1500 // for the pre-ra machine sink pass. It is only designed to sink COPY 1501 // instructions which should be handled after RA. 1502 // 1503 // This pass sinks COPY instructions into a successor block, if the COPY is not 1504 // used in the current block and the COPY is live-in to a single successor 1505 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1506 // copy on paths where their results aren't needed. This also exposes 1507 // additional opportunites for dead copy elimination and shrink wrapping. 1508 // 1509 // These copies were either not handled by or are inserted after the MachineSink 1510 // pass. As an example of the former case, the MachineSink pass cannot sink 1511 // COPY instructions with allocatable source registers; for AArch64 these type 1512 // of copy instructions are frequently used to move function parameters (PhyReg) 1513 // into virtual registers in the entry block. 1514 // 1515 // For the machine IR below, this pass will sink %w19 in the entry into its 1516 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1517 // %bb.0: 1518 // %wzr = SUBSWri %w1, 1 1519 // %w19 = COPY %w0 1520 // Bcc 11, %bb.2 1521 // %bb.1: 1522 // Live Ins: %w19 1523 // BL @fun 1524 // %w0 = ADDWrr %w0, %w19 1525 // RET %w0 1526 // %bb.2: 1527 // %w0 = COPY %wzr 1528 // RET %w0 1529 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1530 // able to see %bb.0 as a candidate. 1531 //===----------------------------------------------------------------------===// 1532 namespace { 1533 1534 class PostRAMachineSinking : public MachineFunctionPass { 1535 public: 1536 bool runOnMachineFunction(MachineFunction &MF) override; 1537 1538 static char ID; 1539 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1540 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1541 1542 void getAnalysisUsage(AnalysisUsage &AU) const override { 1543 AU.setPreservesCFG(); 1544 MachineFunctionPass::getAnalysisUsage(AU); 1545 } 1546 1547 MachineFunctionProperties getRequiredProperties() const override { 1548 return MachineFunctionProperties().set( 1549 MachineFunctionProperties::Property::NoVRegs); 1550 } 1551 1552 private: 1553 /// Track which register units have been modified and used. 1554 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1555 1556 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1557 /// entry in this map for each unit it touches. The DBG_VALUE's entry 1558 /// consists of a pointer to the instruction itself, and a vector of registers 1559 /// referred to by the instruction that overlap the key register unit. 1560 DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs; 1561 1562 /// Sink Copy instructions unused in the same block close to their uses in 1563 /// successors. 1564 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1565 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1566 }; 1567 } // namespace 1568 1569 char PostRAMachineSinking::ID = 0; 1570 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1571 1572 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1573 "PostRA Machine Sink", false, false) 1574 1575 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1576 const TargetRegisterInfo *TRI) { 1577 LiveRegUnits LiveInRegUnits(*TRI); 1578 LiveInRegUnits.addLiveIns(MBB); 1579 return !LiveInRegUnits.available(Reg); 1580 } 1581 1582 static MachineBasicBlock * 1583 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1584 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1585 unsigned Reg, const TargetRegisterInfo *TRI) { 1586 // Try to find a single sinkable successor in which Reg is live-in. 1587 MachineBasicBlock *BB = nullptr; 1588 for (auto *SI : SinkableBBs) { 1589 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1590 // If BB is set here, Reg is live-in to at least two sinkable successors, 1591 // so quit. 1592 if (BB) 1593 return nullptr; 1594 BB = SI; 1595 } 1596 } 1597 // Reg is not live-in to any sinkable successors. 1598 if (!BB) 1599 return nullptr; 1600 1601 // Check if any register aliased with Reg is live-in in other successors. 1602 for (auto *SI : CurBB.successors()) { 1603 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1604 return nullptr; 1605 } 1606 return BB; 1607 } 1608 1609 static MachineBasicBlock * 1610 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1611 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1612 ArrayRef<unsigned> DefedRegsInCopy, 1613 const TargetRegisterInfo *TRI) { 1614 MachineBasicBlock *SingleBB = nullptr; 1615 for (auto DefReg : DefedRegsInCopy) { 1616 MachineBasicBlock *BB = 1617 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1618 if (!BB || (SingleBB && SingleBB != BB)) 1619 return nullptr; 1620 SingleBB = BB; 1621 } 1622 return SingleBB; 1623 } 1624 1625 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1626 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1627 LiveRegUnits &UsedRegUnits, 1628 const TargetRegisterInfo *TRI) { 1629 for (auto U : UsedOpsInCopy) { 1630 MachineOperand &MO = MI->getOperand(U); 1631 Register SrcReg = MO.getReg(); 1632 if (!UsedRegUnits.available(SrcReg)) { 1633 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1634 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1635 if (UI.killsRegister(SrcReg, TRI)) { 1636 UI.clearRegisterKills(SrcReg, TRI); 1637 MO.setIsKill(true); 1638 break; 1639 } 1640 } 1641 } 1642 } 1643 } 1644 1645 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1646 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1647 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1648 MachineFunction &MF = *SuccBB->getParent(); 1649 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1650 for (unsigned DefReg : DefedRegsInCopy) 1651 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S) 1652 SuccBB->removeLiveIn(*S); 1653 for (auto U : UsedOpsInCopy) { 1654 Register SrcReg = MI->getOperand(U).getReg(); 1655 LaneBitmask Mask; 1656 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) { 1657 Mask |= (*S).second; 1658 } 1659 SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll()); 1660 } 1661 SuccBB->sortUniqueLiveIns(); 1662 } 1663 1664 static bool hasRegisterDependency(MachineInstr *MI, 1665 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1666 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1667 LiveRegUnits &ModifiedRegUnits, 1668 LiveRegUnits &UsedRegUnits) { 1669 bool HasRegDependency = false; 1670 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1671 MachineOperand &MO = MI->getOperand(i); 1672 if (!MO.isReg()) 1673 continue; 1674 Register Reg = MO.getReg(); 1675 if (!Reg) 1676 continue; 1677 if (MO.isDef()) { 1678 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1679 HasRegDependency = true; 1680 break; 1681 } 1682 DefedRegsInCopy.push_back(Reg); 1683 1684 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1685 // For example, we can ignore modifications in reg with undef. However, 1686 // it's not perfectly clear if skipping the internal read is safe in all 1687 // other targets. 1688 } else if (MO.isUse()) { 1689 if (!ModifiedRegUnits.available(Reg)) { 1690 HasRegDependency = true; 1691 break; 1692 } 1693 UsedOpsInCopy.push_back(i); 1694 } 1695 } 1696 return HasRegDependency; 1697 } 1698 1699 static SmallSet<MCRegister, 4> getRegUnits(MCRegister Reg, 1700 const TargetRegisterInfo *TRI) { 1701 SmallSet<MCRegister, 4> RegUnits; 1702 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI) 1703 RegUnits.insert(*RI); 1704 return RegUnits; 1705 } 1706 1707 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1708 MachineFunction &MF, 1709 const TargetRegisterInfo *TRI, 1710 const TargetInstrInfo *TII) { 1711 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1712 // FIXME: For now, we sink only to a successor which has a single predecessor 1713 // so that we can directly sink COPY instructions to the successor without 1714 // adding any new block or branch instruction. 1715 for (MachineBasicBlock *SI : CurBB.successors()) 1716 if (!SI->livein_empty() && SI->pred_size() == 1) 1717 SinkableBBs.insert(SI); 1718 1719 if (SinkableBBs.empty()) 1720 return false; 1721 1722 bool Changed = false; 1723 1724 // Track which registers have been modified and used between the end of the 1725 // block and the current instruction. 1726 ModifiedRegUnits.clear(); 1727 UsedRegUnits.clear(); 1728 SeenDbgInstrs.clear(); 1729 1730 for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) { 1731 // Track the operand index for use in Copy. 1732 SmallVector<unsigned, 2> UsedOpsInCopy; 1733 // Track the register number defed in Copy. 1734 SmallVector<unsigned, 2> DefedRegsInCopy; 1735 1736 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 1737 // for DBG_VALUEs later, record them when they're encountered. 1738 if (MI.isDebugValue()) { 1739 SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits; 1740 bool IsValid = true; 1741 for (MachineOperand &MO : MI.debug_operands()) { 1742 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) { 1743 // Bail if we can already tell the sink would be rejected, rather 1744 // than needlessly accumulating lots of DBG_VALUEs. 1745 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 1746 ModifiedRegUnits, UsedRegUnits)) { 1747 IsValid = false; 1748 break; 1749 } 1750 1751 // Record debug use of each reg unit. 1752 SmallSet<MCRegister, 4> RegUnits = getRegUnits(MO.getReg(), TRI); 1753 for (MCRegister Reg : RegUnits) 1754 MIUnits[Reg].push_back(MO.getReg()); 1755 } 1756 } 1757 if (IsValid) { 1758 for (auto RegOps : MIUnits) 1759 SeenDbgInstrs[RegOps.first].push_back({&MI, RegOps.second}); 1760 } 1761 continue; 1762 } 1763 1764 if (MI.isDebugOrPseudoInstr()) 1765 continue; 1766 1767 // Do not move any instruction across function call. 1768 if (MI.isCall()) 1769 return false; 1770 1771 if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) { 1772 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1773 TRI); 1774 continue; 1775 } 1776 1777 // Don't sink the COPY if it would violate a register dependency. 1778 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 1779 ModifiedRegUnits, UsedRegUnits)) { 1780 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1781 TRI); 1782 continue; 1783 } 1784 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 1785 "Unexpect SrcReg or DefReg"); 1786 MachineBasicBlock *SuccBB = 1787 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 1788 // Don't sink if we cannot find a single sinkable successor in which Reg 1789 // is live-in. 1790 if (!SuccBB) { 1791 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1792 TRI); 1793 continue; 1794 } 1795 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 1796 "Unexpected predecessor"); 1797 1798 // Collect DBG_VALUEs that must sink with this copy. We've previously 1799 // recorded which reg units that DBG_VALUEs read, if this instruction 1800 // writes any of those units then the corresponding DBG_VALUEs must sink. 1801 MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap; 1802 for (auto &MO : MI.operands()) { 1803 if (!MO.isReg() || !MO.isDef()) 1804 continue; 1805 1806 SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI); 1807 for (MCRegister Reg : Units) { 1808 for (auto MIRegs : SeenDbgInstrs.lookup(Reg)) { 1809 auto &Regs = DbgValsToSinkMap[MIRegs.first]; 1810 for (unsigned Reg : MIRegs.second) 1811 Regs.push_back(Reg); 1812 } 1813 } 1814 } 1815 SmallVector<MIRegs, 4> DbgValsToSink(DbgValsToSinkMap.begin(), 1816 DbgValsToSinkMap.end()); 1817 1818 // Clear the kill flag if SrcReg is killed between MI and the end of the 1819 // block. 1820 clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 1821 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI(); 1822 performSink(MI, *SuccBB, InsertPos, DbgValsToSink); 1823 updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 1824 1825 Changed = true; 1826 ++NumPostRACopySink; 1827 } 1828 return Changed; 1829 } 1830 1831 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 1832 if (skipFunction(MF.getFunction())) 1833 return false; 1834 1835 bool Changed = false; 1836 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1837 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1838 1839 ModifiedRegUnits.init(*TRI); 1840 UsedRegUnits.init(*TRI); 1841 for (auto &BB : MF) 1842 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 1843 1844 return Changed; 1845 } 1846