1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/PointerIntPair.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/CFG.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 32 #include "llvm/CodeGen/MachineCycleAnalysis.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachinePostDominators.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/RegisterClassInfo.h" 42 #include "llvm/CodeGen/RegisterPressure.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/MC/MCRegisterInfo.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/BranchProbability.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <cstdint> 59 #include <map> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "machine-sink" 66 67 static cl::opt<bool> 68 SplitEdges("machine-sink-split", 69 cl::desc("Split critical edges during machine sinking"), 70 cl::init(true), cl::Hidden); 71 72 static cl::opt<bool> 73 UseBlockFreqInfo("machine-sink-bfi", 74 cl::desc("Use block frequency info to find successors to sink"), 75 cl::init(true), cl::Hidden); 76 77 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 78 "machine-sink-split-probability-threshold", 79 cl::desc( 80 "Percentage threshold for splitting single-instruction critical edge. " 81 "If the branch threshold is higher than this threshold, we allow " 82 "speculative execution of up to 1 instruction to avoid branching to " 83 "splitted critical edge"), 84 cl::init(40), cl::Hidden); 85 86 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( 87 "machine-sink-load-instrs-threshold", 88 cl::desc("Do not try to find alias store for a load if there is a in-path " 89 "block whose instruction number is higher than this threshold."), 90 cl::init(2000), cl::Hidden); 91 92 static cl::opt<unsigned> SinkLoadBlocksThreshold( 93 "machine-sink-load-blocks-threshold", 94 cl::desc("Do not try to find alias store for a load if the block number in " 95 "the straight line is higher than this threshold."), 96 cl::init(20), cl::Hidden); 97 98 static cl::opt<bool> 99 SinkInstsIntoCycle("sink-insts-to-avoid-spills", 100 cl::desc("Sink instructions into cycles to avoid " 101 "register spills"), 102 cl::init(false), cl::Hidden); 103 104 static cl::opt<unsigned> SinkIntoCycleLimit( 105 "machine-sink-cycle-limit", 106 cl::desc("The maximum number of instructions considered for cycle sinking."), 107 cl::init(50), cl::Hidden); 108 109 STATISTIC(NumSunk, "Number of machine instructions sunk"); 110 STATISTIC(NumCycleSunk, "Number of machine instructions sunk into a cycle"); 111 STATISTIC(NumSplit, "Number of critical edges split"); 112 STATISTIC(NumCoalesces, "Number of copies coalesced"); 113 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 114 115 namespace { 116 117 class MachineSinking : public MachineFunctionPass { 118 const TargetInstrInfo *TII = nullptr; 119 const TargetRegisterInfo *TRI = nullptr; 120 MachineRegisterInfo *MRI = nullptr; // Machine register information 121 MachineDominatorTree *DT = nullptr; // Machine dominator tree 122 MachinePostDominatorTree *PDT = nullptr; // Machine post dominator tree 123 MachineCycleInfo *CI = nullptr; 124 MachineBlockFrequencyInfo *MBFI = nullptr; 125 const MachineBranchProbabilityInfo *MBPI = nullptr; 126 AliasAnalysis *AA = nullptr; 127 RegisterClassInfo RegClassInfo; 128 129 // Remember which edges have been considered for breaking. 130 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 131 CEBCandidates; 132 // Remember which edges we are about to split. 133 // This is different from CEBCandidates since those edges 134 // will be split. 135 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 136 137 DenseSet<Register> RegsToClearKillFlags; 138 139 using AllSuccsCache = 140 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 141 142 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 143 /// post-dominated by another DBG_VALUE of the same variable location. 144 /// This is necessary to detect sequences such as: 145 /// %0 = someinst 146 /// DBG_VALUE %0, !123, !DIExpression() 147 /// %1 = anotherinst 148 /// DBG_VALUE %1, !123, !DIExpression() 149 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 150 /// would re-order assignments. 151 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 152 153 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 154 /// debug instructions to sink. 155 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 156 157 /// Record of debug variables that have had their locations set in the 158 /// current block. 159 DenseSet<DebugVariable> SeenDbgVars; 160 161 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 162 HasStoreCache; 163 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 164 std::vector<MachineInstr *>> 165 StoreInstrCache; 166 167 /// Cached BB's register pressure. 168 std::map<MachineBasicBlock *, std::vector<unsigned>> CachedRegisterPressure; 169 170 public: 171 static char ID; // Pass identification 172 173 MachineSinking() : MachineFunctionPass(ID) { 174 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 175 } 176 177 bool runOnMachineFunction(MachineFunction &MF) override; 178 179 void getAnalysisUsage(AnalysisUsage &AU) const override { 180 MachineFunctionPass::getAnalysisUsage(AU); 181 AU.addRequired<AAResultsWrapperPass>(); 182 AU.addRequired<MachineDominatorTree>(); 183 AU.addRequired<MachinePostDominatorTree>(); 184 AU.addRequired<MachineCycleInfoWrapperPass>(); 185 AU.addRequired<MachineBranchProbabilityInfo>(); 186 AU.addPreserved<MachineCycleInfoWrapperPass>(); 187 AU.addPreserved<MachineLoopInfo>(); 188 if (UseBlockFreqInfo) 189 AU.addRequired<MachineBlockFrequencyInfo>(); 190 } 191 192 void releaseMemory() override { 193 CEBCandidates.clear(); 194 } 195 196 private: 197 bool ProcessBlock(MachineBasicBlock &MBB); 198 void ProcessDbgInst(MachineInstr &MI); 199 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 200 MachineBasicBlock *From, 201 MachineBasicBlock *To); 202 203 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 204 MachineInstr &MI); 205 206 /// Postpone the splitting of the given critical 207 /// edge (\p From, \p To). 208 /// 209 /// We do not split the edges on the fly. Indeed, this invalidates 210 /// the dominance information and thus triggers a lot of updates 211 /// of that information underneath. 212 /// Instead, we postpone all the splits after each iteration of 213 /// the main loop. That way, the information is at least valid 214 /// for the lifetime of an iteration. 215 /// 216 /// \return True if the edge is marked as toSplit, false otherwise. 217 /// False can be returned if, for instance, this is not profitable. 218 bool PostponeSplitCriticalEdge(MachineInstr &MI, 219 MachineBasicBlock *From, 220 MachineBasicBlock *To, 221 bool BreakPHIEdge); 222 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 223 AllSuccsCache &AllSuccessors); 224 225 /// If we sink a COPY inst, some debug users of it's destination may no 226 /// longer be dominated by the COPY, and will eventually be dropped. 227 /// This is easily rectified by forwarding the non-dominated debug uses 228 /// to the copy source. 229 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 230 MachineBasicBlock *TargetBlock); 231 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 232 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 233 bool &LocalUse) const; 234 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 235 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 236 237 void FindCycleSinkCandidates(MachineCycle *Cycle, MachineBasicBlock *BB, 238 SmallVectorImpl<MachineInstr *> &Candidates); 239 bool SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I); 240 241 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 242 MachineBasicBlock *MBB, 243 MachineBasicBlock *SuccToSinkTo, 244 AllSuccsCache &AllSuccessors); 245 246 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 247 MachineBasicBlock *MBB); 248 249 SmallVector<MachineBasicBlock *, 4> & 250 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 251 AllSuccsCache &AllSuccessors) const; 252 253 std::vector<unsigned> &getBBRegisterPressure(MachineBasicBlock &MBB); 254 }; 255 256 } // end anonymous namespace 257 258 char MachineSinking::ID = 0; 259 260 char &llvm::MachineSinkingID = MachineSinking::ID; 261 262 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 263 "Machine code sinking", false, false) 264 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 265 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 266 INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass) 267 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 268 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 269 "Machine code sinking", false, false) 270 271 /// Return true if a target defined block prologue instruction interferes 272 /// with a sink candidate. 273 static bool blockPrologueInterferes(const MachineBasicBlock *BB, 274 MachineBasicBlock::const_iterator End, 275 const MachineInstr &MI, 276 const TargetRegisterInfo *TRI, 277 const TargetInstrInfo *TII, 278 const MachineRegisterInfo *MRI) { 279 for (MachineBasicBlock::const_iterator PI = BB->getFirstNonPHI(); PI != End; 280 ++PI) { 281 // Only check target defined prologue instructions 282 if (!TII->isBasicBlockPrologue(*PI)) 283 continue; 284 for (auto &MO : MI.operands()) { 285 if (!MO.isReg()) 286 continue; 287 Register Reg = MO.getReg(); 288 if (!Reg) 289 continue; 290 if (MO.isUse()) { 291 if (Reg.isPhysical() && MRI && MRI->isConstantPhysReg(Reg)) 292 continue; 293 if (PI->modifiesRegister(Reg, TRI)) 294 return true; 295 } else { 296 if (PI->readsRegister(Reg, TRI)) 297 return true; 298 // Check for interference with non-dead defs 299 auto *DefOp = PI->findRegisterDefOperand(Reg, false, true, TRI); 300 if (DefOp && !DefOp->isDead()) 301 return true; 302 } 303 } 304 } 305 306 return false; 307 } 308 309 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 310 MachineBasicBlock *MBB) { 311 if (!MI.isCopy()) 312 return false; 313 314 Register SrcReg = MI.getOperand(1).getReg(); 315 Register DstReg = MI.getOperand(0).getReg(); 316 if (!SrcReg.isVirtual() || !DstReg.isVirtual() || 317 !MRI->hasOneNonDBGUse(SrcReg)) 318 return false; 319 320 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 321 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 322 if (SRC != DRC) 323 return false; 324 325 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 326 if (DefMI->isCopyLike()) 327 return false; 328 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 329 LLVM_DEBUG(dbgs() << "*** to: " << MI); 330 MRI->replaceRegWith(DstReg, SrcReg); 331 MI.eraseFromParent(); 332 333 // Conservatively, clear any kill flags, since it's possible that they are no 334 // longer correct. 335 MRI->clearKillFlags(SrcReg); 336 337 ++NumCoalesces; 338 return true; 339 } 340 341 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 342 /// occur in blocks dominated by the specified block. If any use is in the 343 /// definition block, then return false since it is never legal to move def 344 /// after uses. 345 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 346 MachineBasicBlock *MBB, 347 MachineBasicBlock *DefMBB, 348 bool &BreakPHIEdge, 349 bool &LocalUse) const { 350 assert(Reg.isVirtual() && "Only makes sense for vregs"); 351 352 // Ignore debug uses because debug info doesn't affect the code. 353 if (MRI->use_nodbg_empty(Reg)) 354 return true; 355 356 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 357 // into and they are all PHI nodes. In this case, machine-sink must break 358 // the critical edge first. e.g. 359 // 360 // %bb.1: 361 // Predecessors according to CFG: %bb.0 362 // ... 363 // %def = DEC64_32r %x, implicit-def dead %eflags 364 // ... 365 // JE_4 <%bb.37>, implicit %eflags 366 // Successors according to CFG: %bb.37 %bb.2 367 // 368 // %bb.2: 369 // %p = PHI %y, %bb.0, %def, %bb.1 370 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 371 MachineInstr *UseInst = MO.getParent(); 372 unsigned OpNo = MO.getOperandNo(); 373 MachineBasicBlock *UseBlock = UseInst->getParent(); 374 return UseBlock == MBB && UseInst->isPHI() && 375 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 376 })) { 377 BreakPHIEdge = true; 378 return true; 379 } 380 381 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 382 // Determine the block of the use. 383 MachineInstr *UseInst = MO.getParent(); 384 unsigned OpNo = &MO - &UseInst->getOperand(0); 385 MachineBasicBlock *UseBlock = UseInst->getParent(); 386 if (UseInst->isPHI()) { 387 // PHI nodes use the operand in the predecessor block, not the block with 388 // the PHI. 389 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 390 } else if (UseBlock == DefMBB) { 391 LocalUse = true; 392 return false; 393 } 394 395 // Check that it dominates. 396 if (!DT->dominates(MBB, UseBlock)) 397 return false; 398 } 399 400 return true; 401 } 402 403 /// Return true if this machine instruction loads from global offset table or 404 /// constant pool. 405 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 406 assert(MI.mayLoad() && "Expected MI that loads!"); 407 408 // If we lost memory operands, conservatively assume that the instruction 409 // reads from everything.. 410 if (MI.memoperands_empty()) 411 return true; 412 413 for (MachineMemOperand *MemOp : MI.memoperands()) 414 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 415 if (PSV->isGOT() || PSV->isConstantPool()) 416 return true; 417 418 return false; 419 } 420 421 void MachineSinking::FindCycleSinkCandidates( 422 MachineCycle *Cycle, MachineBasicBlock *BB, 423 SmallVectorImpl<MachineInstr *> &Candidates) { 424 for (auto &MI : *BB) { 425 LLVM_DEBUG(dbgs() << "CycleSink: Analysing candidate: " << MI); 426 if (!TII->shouldSink(MI)) { 427 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not a candidate for this " 428 "target\n"); 429 continue; 430 } 431 if (!isCycleInvariant(Cycle, MI)) { 432 LLVM_DEBUG(dbgs() << "CycleSink: Instruction is not cycle invariant\n"); 433 continue; 434 } 435 bool DontMoveAcrossStore = true; 436 if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) { 437 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not safe to move.\n"); 438 continue; 439 } 440 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { 441 LLVM_DEBUG(dbgs() << "CycleSink: Dont sink GOT or constant pool loads\n"); 442 continue; 443 } 444 if (MI.isConvergent()) 445 continue; 446 447 const MachineOperand &MO = MI.getOperand(0); 448 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 449 continue; 450 if (!MRI->hasOneDef(MO.getReg())) 451 continue; 452 453 LLVM_DEBUG(dbgs() << "CycleSink: Instruction added as candidate.\n"); 454 Candidates.push_back(&MI); 455 } 456 } 457 458 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 459 if (skipFunction(MF.getFunction())) 460 return false; 461 462 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 463 464 TII = MF.getSubtarget().getInstrInfo(); 465 TRI = MF.getSubtarget().getRegisterInfo(); 466 MRI = &MF.getRegInfo(); 467 DT = &getAnalysis<MachineDominatorTree>(); 468 PDT = &getAnalysis<MachinePostDominatorTree>(); 469 CI = &getAnalysis<MachineCycleInfoWrapperPass>().getCycleInfo(); 470 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 471 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 472 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 473 RegClassInfo.runOnMachineFunction(MF); 474 475 bool EverMadeChange = false; 476 477 while (true) { 478 bool MadeChange = false; 479 480 // Process all basic blocks. 481 CEBCandidates.clear(); 482 ToSplit.clear(); 483 for (auto &MBB: MF) 484 MadeChange |= ProcessBlock(MBB); 485 486 // If we have anything we marked as toSplit, split it now. 487 for (const auto &Pair : ToSplit) { 488 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 489 if (NewSucc != nullptr) { 490 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 491 << printMBBReference(*Pair.first) << " -- " 492 << printMBBReference(*NewSucc) << " -- " 493 << printMBBReference(*Pair.second) << '\n'); 494 if (MBFI) 495 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 496 497 MadeChange = true; 498 ++NumSplit; 499 } else 500 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 501 } 502 // If this iteration over the code changed anything, keep iterating. 503 if (!MadeChange) break; 504 EverMadeChange = true; 505 } 506 507 if (SinkInstsIntoCycle) { 508 SmallVector<MachineCycle *, 8> Cycles(CI->toplevel_begin(), 509 CI->toplevel_end()); 510 for (auto *Cycle : Cycles) { 511 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 512 if (!Preheader) { 513 LLVM_DEBUG(dbgs() << "CycleSink: Can't find preheader\n"); 514 continue; 515 } 516 SmallVector<MachineInstr *, 8> Candidates; 517 FindCycleSinkCandidates(Cycle, Preheader, Candidates); 518 519 // Walk the candidates in reverse order so that we start with the use 520 // of a def-use chain, if there is any. 521 // TODO: Sort the candidates using a cost-model. 522 unsigned i = 0; 523 for (MachineInstr *I : llvm::reverse(Candidates)) { 524 if (i++ == SinkIntoCycleLimit) { 525 LLVM_DEBUG(dbgs() << "CycleSink: Limit reached of instructions to " 526 "be analysed."); 527 break; 528 } 529 530 if (!SinkIntoCycle(Cycle, *I)) 531 break; 532 EverMadeChange = true; 533 ++NumCycleSunk; 534 } 535 } 536 } 537 538 HasStoreCache.clear(); 539 StoreInstrCache.clear(); 540 541 // Now clear any kill flags for recorded registers. 542 for (auto I : RegsToClearKillFlags) 543 MRI->clearKillFlags(I); 544 RegsToClearKillFlags.clear(); 545 546 return EverMadeChange; 547 } 548 549 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 550 // Can't sink anything out of a block that has less than two successors. 551 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 552 553 // Don't bother sinking code out of unreachable blocks. In addition to being 554 // unprofitable, it can also lead to infinite looping, because in an 555 // unreachable cycle there may be nowhere to stop. 556 if (!DT->isReachableFromEntry(&MBB)) return false; 557 558 bool MadeChange = false; 559 560 // Cache all successors, sorted by frequency info and cycle depth. 561 AllSuccsCache AllSuccessors; 562 563 // Walk the basic block bottom-up. Remember if we saw a store. 564 MachineBasicBlock::iterator I = MBB.end(); 565 --I; 566 bool ProcessedBegin, SawStore = false; 567 do { 568 MachineInstr &MI = *I; // The instruction to sink. 569 570 // Predecrement I (if it's not begin) so that it isn't invalidated by 571 // sinking. 572 ProcessedBegin = I == MBB.begin(); 573 if (!ProcessedBegin) 574 --I; 575 576 if (MI.isDebugOrPseudoInstr()) { 577 if (MI.isDebugValue()) 578 ProcessDbgInst(MI); 579 continue; 580 } 581 582 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 583 if (Joined) { 584 MadeChange = true; 585 continue; 586 } 587 588 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 589 ++NumSunk; 590 MadeChange = true; 591 } 592 593 // If we just processed the first instruction in the block, we're done. 594 } while (!ProcessedBegin); 595 596 SeenDbgUsers.clear(); 597 SeenDbgVars.clear(); 598 // recalculate the bb register pressure after sinking one BB. 599 CachedRegisterPressure.clear(); 600 601 return MadeChange; 602 } 603 604 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 605 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 606 // we know what to sink if the vreg def sinks. 607 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 608 609 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 610 MI.getDebugLoc()->getInlinedAt()); 611 bool SeenBefore = SeenDbgVars.contains(Var); 612 613 for (MachineOperand &MO : MI.debug_operands()) { 614 if (MO.isReg() && MO.getReg().isVirtual()) 615 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 616 } 617 618 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 619 SeenDbgVars.insert(Var); 620 } 621 622 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 623 MachineBasicBlock *From, 624 MachineBasicBlock *To) { 625 // FIXME: Need much better heuristics. 626 627 // If the pass has already considered breaking this edge (during this pass 628 // through the function), then let's go ahead and break it. This means 629 // sinking multiple "cheap" instructions into the same block. 630 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 631 return true; 632 633 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 634 return true; 635 636 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 637 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 638 return true; 639 640 // MI is cheap, we probably don't want to break the critical edge for it. 641 // However, if this would allow some definitions of its source operands 642 // to be sunk then it's probably worth it. 643 for (const MachineOperand &MO : MI.all_uses()) { 644 Register Reg = MO.getReg(); 645 if (Reg == 0) 646 continue; 647 648 // We don't move live definitions of physical registers, 649 // so sinking their uses won't enable any opportunities. 650 if (Reg.isPhysical()) 651 continue; 652 653 // If this instruction is the only user of a virtual register, 654 // check if breaking the edge will enable sinking 655 // both this instruction and the defining instruction. 656 if (MRI->hasOneNonDBGUse(Reg)) { 657 // If the definition resides in same MBB, 658 // claim it's likely we can sink these together. 659 // If definition resides elsewhere, we aren't 660 // blocking it from being sunk so don't break the edge. 661 MachineInstr *DefMI = MRI->getVRegDef(Reg); 662 if (DefMI->getParent() == MI.getParent()) 663 return true; 664 } 665 } 666 667 return false; 668 } 669 670 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 671 MachineBasicBlock *FromBB, 672 MachineBasicBlock *ToBB, 673 bool BreakPHIEdge) { 674 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 675 return false; 676 677 // Avoid breaking back edge. From == To means backedge for single BB cycle. 678 if (!SplitEdges || FromBB == ToBB) 679 return false; 680 681 MachineCycle *FromCycle = CI->getCycle(FromBB); 682 MachineCycle *ToCycle = CI->getCycle(ToBB); 683 684 // Check for backedges of more "complex" cycles. 685 if (FromCycle == ToCycle && FromCycle && 686 (!FromCycle->isReducible() || FromCycle->getHeader() == ToBB)) 687 return false; 688 689 // It's not always legal to break critical edges and sink the computation 690 // to the edge. 691 // 692 // %bb.1: 693 // v1024 694 // Beq %bb.3 695 // <fallthrough> 696 // %bb.2: 697 // ... no uses of v1024 698 // <fallthrough> 699 // %bb.3: 700 // ... 701 // = v1024 702 // 703 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 704 // 705 // %bb.1: 706 // ... 707 // Bne %bb.2 708 // %bb.4: 709 // v1024 = 710 // B %bb.3 711 // %bb.2: 712 // ... no uses of v1024 713 // <fallthrough> 714 // %bb.3: 715 // ... 716 // = v1024 717 // 718 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 719 // flow. We need to ensure the new basic block where the computation is 720 // sunk to dominates all the uses. 721 // It's only legal to break critical edge and sink the computation to the 722 // new block if all the predecessors of "To", except for "From", are 723 // not dominated by "From". Given SSA property, this means these 724 // predecessors are dominated by "To". 725 // 726 // There is no need to do this check if all the uses are PHI nodes. PHI 727 // sources are only defined on the specific predecessor edges. 728 if (!BreakPHIEdge) { 729 for (MachineBasicBlock *Pred : ToBB->predecessors()) 730 if (Pred != FromBB && !DT->dominates(ToBB, Pred)) 731 return false; 732 } 733 734 ToSplit.insert(std::make_pair(FromBB, ToBB)); 735 736 return true; 737 } 738 739 std::vector<unsigned> & 740 MachineSinking::getBBRegisterPressure(MachineBasicBlock &MBB) { 741 // Currently to save compiling time, MBB's register pressure will not change 742 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 743 // register pressure is changed after sinking any instructions into it. 744 // FIXME: need a accurate and cheap register pressure estiminate model here. 745 auto RP = CachedRegisterPressure.find(&MBB); 746 if (RP != CachedRegisterPressure.end()) 747 return RP->second; 748 749 RegionPressure Pressure; 750 RegPressureTracker RPTracker(Pressure); 751 752 // Initialize the register pressure tracker. 753 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 754 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 755 756 for (MachineBasicBlock::iterator MII = MBB.instr_end(), 757 MIE = MBB.instr_begin(); 758 MII != MIE; --MII) { 759 MachineInstr &MI = *std::prev(MII); 760 if (MI.isDebugInstr() || MI.isPseudoProbe()) 761 continue; 762 RegisterOperands RegOpers; 763 RegOpers.collect(MI, *TRI, *MRI, false, false); 764 RPTracker.recedeSkipDebugValues(); 765 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 766 RPTracker.recede(RegOpers); 767 } 768 769 RPTracker.closeRegion(); 770 auto It = CachedRegisterPressure.insert( 771 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 772 return It.first->second; 773 } 774 775 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 776 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 777 MachineBasicBlock *MBB, 778 MachineBasicBlock *SuccToSinkTo, 779 AllSuccsCache &AllSuccessors) { 780 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 781 782 if (MBB == SuccToSinkTo) 783 return false; 784 785 // It is profitable if SuccToSinkTo does not post dominate current block. 786 if (!PDT->dominates(SuccToSinkTo, MBB)) 787 return true; 788 789 // It is profitable to sink an instruction from a deeper cycle to a shallower 790 // cycle, even if the latter post-dominates the former (PR21115). 791 if (CI->getCycleDepth(MBB) > CI->getCycleDepth(SuccToSinkTo)) 792 return true; 793 794 // Check if only use in post dominated block is PHI instruction. 795 bool NonPHIUse = false; 796 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 797 MachineBasicBlock *UseBlock = UseInst.getParent(); 798 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 799 NonPHIUse = true; 800 } 801 if (!NonPHIUse) 802 return true; 803 804 // If SuccToSinkTo post dominates then also it may be profitable if MI 805 // can further profitably sinked into another block in next round. 806 bool BreakPHIEdge = false; 807 // FIXME - If finding successor is compile time expensive then cache results. 808 if (MachineBasicBlock *MBB2 = 809 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 810 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 811 812 MachineCycle *MCycle = CI->getCycle(MBB); 813 814 // If the instruction is not inside a cycle, it is not profitable to sink MI to 815 // a post dominate block SuccToSinkTo. 816 if (!MCycle) 817 return false; 818 819 auto isRegisterPressureSetExceedLimit = [&](const TargetRegisterClass *RC) { 820 unsigned Weight = TRI->getRegClassWeight(RC).RegWeight; 821 const int *PS = TRI->getRegClassPressureSets(RC); 822 // Get register pressure for block SuccToSinkTo. 823 std::vector<unsigned> BBRegisterPressure = 824 getBBRegisterPressure(*SuccToSinkTo); 825 for (; *PS != -1; PS++) 826 // check if any register pressure set exceeds limit in block SuccToSinkTo 827 // after sinking. 828 if (Weight + BBRegisterPressure[*PS] >= 829 TRI->getRegPressureSetLimit(*MBB->getParent(), *PS)) 830 return true; 831 return false; 832 }; 833 834 // If this instruction is inside a Cycle and sinking this instruction can make 835 // more registers live range shorten, it is still prifitable. 836 for (const MachineOperand &MO : MI.operands()) { 837 // Ignore non-register operands. 838 if (!MO.isReg()) 839 continue; 840 Register Reg = MO.getReg(); 841 if (Reg == 0) 842 continue; 843 844 if (Reg.isPhysical()) { 845 // Don't handle non-constant and non-ignorable physical register uses. 846 if (MO.isUse() && !MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 847 return false; 848 continue; 849 } 850 851 // Users for the defs are all dominated by SuccToSinkTo. 852 if (MO.isDef()) { 853 // This def register's live range is shortened after sinking. 854 bool LocalUse = false; 855 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 856 LocalUse)) 857 return false; 858 } else { 859 MachineInstr *DefMI = MRI->getVRegDef(Reg); 860 if (!DefMI) 861 continue; 862 MachineCycle *Cycle = CI->getCycle(DefMI->getParent()); 863 // DefMI is defined outside of cycle. There should be no live range 864 // impact for this operand. Defination outside of cycle means: 865 // 1: defination is outside of cycle. 866 // 2: defination is in this cycle, but it is a PHI in the cycle header. 867 if (Cycle != MCycle || (DefMI->isPHI() && Cycle && Cycle->isReducible() && 868 Cycle->getHeader() == DefMI->getParent())) 869 continue; 870 // The DefMI is defined inside the cycle. 871 // If sinking this operand makes some register pressure set exceed limit, 872 // it is not profitable. 873 if (isRegisterPressureSetExceedLimit(MRI->getRegClass(Reg))) { 874 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 875 return false; 876 } 877 } 878 } 879 880 // If MI is in cycle and all its operands are alive across the whole cycle or 881 // if no operand sinking make register pressure set exceed limit, it is 882 // profitable to sink MI. 883 return true; 884 } 885 886 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 887 /// computing it if it was not already cached. 888 SmallVector<MachineBasicBlock *, 4> & 889 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 890 AllSuccsCache &AllSuccessors) const { 891 // Do we have the sorted successors in cache ? 892 auto Succs = AllSuccessors.find(MBB); 893 if (Succs != AllSuccessors.end()) 894 return Succs->second; 895 896 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); 897 898 // Handle cases where sinking can happen but where the sink point isn't a 899 // successor. For example: 900 // 901 // x = computation 902 // if () {} else {} 903 // use x 904 // 905 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 906 // DomTree children of MBB that have MBB as immediate dominator are added. 907 if (DTChild->getIDom()->getBlock() == MI.getParent() && 908 // Skip MBBs already added to the AllSuccs vector above. 909 !MBB->isSuccessor(DTChild->getBlock())) 910 AllSuccs.push_back(DTChild->getBlock()); 911 } 912 913 // Sort Successors according to their cycle depth or block frequency info. 914 llvm::stable_sort( 915 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 916 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 917 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 918 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 919 return HasBlockFreq ? LHSFreq < RHSFreq 920 : CI->getCycleDepth(L) < CI->getCycleDepth(R); 921 }); 922 923 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 924 925 return it.first->second; 926 } 927 928 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 929 MachineBasicBlock * 930 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 931 bool &BreakPHIEdge, 932 AllSuccsCache &AllSuccessors) { 933 assert (MBB && "Invalid MachineBasicBlock!"); 934 935 // loop over all the operands of the specified instruction. If there is 936 // anything we can't handle, bail out. 937 938 // SuccToSinkTo - This is the successor to sink this instruction to, once we 939 // decide. 940 MachineBasicBlock *SuccToSinkTo = nullptr; 941 for (const MachineOperand &MO : MI.operands()) { 942 if (!MO.isReg()) continue; // Ignore non-register operands. 943 944 Register Reg = MO.getReg(); 945 if (Reg == 0) continue; 946 947 if (Reg.isPhysical()) { 948 if (MO.isUse()) { 949 // If the physreg has no defs anywhere, it's just an ambient register 950 // and we can freely move its uses. Alternatively, if it's allocatable, 951 // it could get allocated to something with a def during allocation. 952 if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 953 return nullptr; 954 } else if (!MO.isDead()) { 955 // A def that isn't dead. We can't move it. 956 return nullptr; 957 } 958 } else { 959 // Virtual register uses are always safe to sink. 960 if (MO.isUse()) continue; 961 962 // If it's not safe to move defs of the register class, then abort. 963 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 964 return nullptr; 965 966 // Virtual register defs can only be sunk if all their uses are in blocks 967 // dominated by one of the successors. 968 if (SuccToSinkTo) { 969 // If a previous operand picked a block to sink to, then this operand 970 // must be sinkable to the same block. 971 bool LocalUse = false; 972 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 973 BreakPHIEdge, LocalUse)) 974 return nullptr; 975 976 continue; 977 } 978 979 // Otherwise, we should look at all the successors and decide which one 980 // we should sink to. If we have reliable block frequency information 981 // (frequency != 0) available, give successors with smaller frequencies 982 // higher priority, otherwise prioritize smaller cycle depths. 983 for (MachineBasicBlock *SuccBlock : 984 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 985 bool LocalUse = false; 986 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 987 BreakPHIEdge, LocalUse)) { 988 SuccToSinkTo = SuccBlock; 989 break; 990 } 991 if (LocalUse) 992 // Def is used locally, it's never safe to move this def. 993 return nullptr; 994 } 995 996 // If we couldn't find a block to sink to, ignore this instruction. 997 if (!SuccToSinkTo) 998 return nullptr; 999 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 1000 return nullptr; 1001 } 1002 } 1003 1004 // It is not possible to sink an instruction into its own block. This can 1005 // happen with cycles. 1006 if (MBB == SuccToSinkTo) 1007 return nullptr; 1008 1009 if (!SuccToSinkTo) 1010 return nullptr; 1011 1012 // It's not safe to sink instructions to EH landing pad. Control flow into 1013 // landing pad is implicitly defined. 1014 if (SuccToSinkTo->isEHPad()) 1015 return nullptr; 1016 1017 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 1018 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 1019 // the source block (which this code does not yet do). So for now, forbid 1020 // doing so. 1021 if (SuccToSinkTo->isInlineAsmBrIndirectTarget()) 1022 return nullptr; 1023 1024 MachineBasicBlock::const_iterator InsertPos = 1025 SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin()); 1026 if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) 1027 return nullptr; 1028 1029 return SuccToSinkTo; 1030 } 1031 1032 /// Return true if MI is likely to be usable as a memory operation by the 1033 /// implicit null check optimization. 1034 /// 1035 /// This is a "best effort" heuristic, and should not be relied upon for 1036 /// correctness. This returning true does not guarantee that the implicit null 1037 /// check optimization is legal over MI, and this returning false does not 1038 /// guarantee MI cannot possibly be used to do a null check. 1039 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 1040 const TargetInstrInfo *TII, 1041 const TargetRegisterInfo *TRI) { 1042 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 1043 1044 auto *MBB = MI.getParent(); 1045 if (MBB->pred_size() != 1) 1046 return false; 1047 1048 auto *PredMBB = *MBB->pred_begin(); 1049 auto *PredBB = PredMBB->getBasicBlock(); 1050 1051 // Frontends that don't use implicit null checks have no reason to emit 1052 // branches with make.implicit metadata, and this function should always 1053 // return false for them. 1054 if (!PredBB || 1055 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 1056 return false; 1057 1058 const MachineOperand *BaseOp; 1059 int64_t Offset; 1060 bool OffsetIsScalable; 1061 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 1062 return false; 1063 1064 if (!BaseOp->isReg()) 1065 return false; 1066 1067 if (!(MI.mayLoad() && !MI.isPredicable())) 1068 return false; 1069 1070 MachineBranchPredicate MBP; 1071 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 1072 return false; 1073 1074 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 1075 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 1076 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 1077 MBP.LHS.getReg() == BaseOp->getReg(); 1078 } 1079 1080 /// If the sunk instruction is a copy, try to forward the copy instead of 1081 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 1082 /// there's any subregister weirdness involved. Returns true if copy 1083 /// propagation occurred. 1084 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI, 1085 Register Reg) { 1086 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 1087 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 1088 1089 // Copy DBG_VALUE operand and set the original to undef. We then check to 1090 // see whether this is something that can be copy-forwarded. If it isn't, 1091 // continue around the loop. 1092 1093 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 1094 auto CopyOperands = TII.isCopyInstr(SinkInst); 1095 if (!CopyOperands) 1096 return false; 1097 SrcMO = CopyOperands->Source; 1098 DstMO = CopyOperands->Destination; 1099 1100 // Check validity of forwarding this copy. 1101 bool PostRA = MRI.getNumVirtRegs() == 0; 1102 1103 // Trying to forward between physical and virtual registers is too hard. 1104 if (Reg.isVirtual() != SrcMO->getReg().isVirtual()) 1105 return false; 1106 1107 // Only try virtual register copy-forwarding before regalloc, and physical 1108 // register copy-forwarding after regalloc. 1109 bool arePhysRegs = !Reg.isVirtual(); 1110 if (arePhysRegs != PostRA) 1111 return false; 1112 1113 // Pre-regalloc, only forward if all subregisters agree (or there are no 1114 // subregs at all). More analysis might recover some forwardable copies. 1115 if (!PostRA) 1116 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) 1117 if (DbgMO.getSubReg() != SrcMO->getSubReg() || 1118 DbgMO.getSubReg() != DstMO->getSubReg()) 1119 return false; 1120 1121 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 1122 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 1123 // matches the copy destination. 1124 if (PostRA && Reg != DstMO->getReg()) 1125 return false; 1126 1127 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) { 1128 DbgMO.setReg(SrcMO->getReg()); 1129 DbgMO.setSubReg(SrcMO->getSubReg()); 1130 } 1131 return true; 1132 } 1133 1134 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>; 1135 /// Sink an instruction and its associated debug instructions. 1136 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 1137 MachineBasicBlock::iterator InsertPos, 1138 ArrayRef<MIRegs> DbgValuesToSink) { 1139 // If we cannot find a location to use (merge with), then we erase the debug 1140 // location to prevent debug-info driven tools from potentially reporting 1141 // wrong location information. 1142 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 1143 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 1144 InsertPos->getDebugLoc())); 1145 else 1146 MI.setDebugLoc(DebugLoc()); 1147 1148 // Move the instruction. 1149 MachineBasicBlock *ParentBlock = MI.getParent(); 1150 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 1151 ++MachineBasicBlock::iterator(MI)); 1152 1153 // Sink a copy of debug users to the insert position. Mark the original 1154 // DBG_VALUE location as 'undef', indicating that any earlier variable 1155 // location should be terminated as we've optimised away the value at this 1156 // point. 1157 for (const auto &DbgValueToSink : DbgValuesToSink) { 1158 MachineInstr *DbgMI = DbgValueToSink.first; 1159 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI); 1160 SuccToSinkTo.insert(InsertPos, NewDbgMI); 1161 1162 bool PropagatedAllSunkOps = true; 1163 for (unsigned Reg : DbgValueToSink.second) { 1164 if (DbgMI->hasDebugOperandForReg(Reg)) { 1165 if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) { 1166 PropagatedAllSunkOps = false; 1167 break; 1168 } 1169 } 1170 } 1171 if (!PropagatedAllSunkOps) 1172 DbgMI->setDebugValueUndef(); 1173 } 1174 } 1175 1176 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1177 /// and To. 1178 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1179 MachineBasicBlock *To, MachineInstr &MI) { 1180 // Make sure From and To are in straight line which means From dominates To 1181 // and To post dominates From. 1182 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1183 return true; 1184 1185 auto BlockPair = std::make_pair(From, To); 1186 1187 // Does these two blocks pair be queried before and have a definite cached 1188 // result? 1189 if (HasStoreCache.find(BlockPair) != HasStoreCache.end()) 1190 return HasStoreCache[BlockPair]; 1191 1192 if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end()) 1193 return llvm::any_of(StoreInstrCache[BlockPair], [&](MachineInstr *I) { 1194 return I->mayAlias(AA, MI, false); 1195 }); 1196 1197 bool SawStore = false; 1198 bool HasAliasedStore = false; 1199 DenseSet<MachineBasicBlock *> HandledBlocks; 1200 DenseSet<MachineBasicBlock *> HandledDomBlocks; 1201 // Go through all reachable blocks from From. 1202 for (MachineBasicBlock *BB : depth_first(From)) { 1203 // We insert the instruction at the start of block To, so no need to worry 1204 // about stores inside To. 1205 // Store in block From should be already considered when just enter function 1206 // SinkInstruction. 1207 if (BB == To || BB == From) 1208 continue; 1209 1210 // We already handle this BB in previous iteration. 1211 if (HandledBlocks.count(BB)) 1212 continue; 1213 1214 HandledBlocks.insert(BB); 1215 // To post dominates BB, it must be a path from block From. 1216 if (PDT->dominates(To, BB)) { 1217 if (!HandledDomBlocks.count(BB)) 1218 HandledDomBlocks.insert(BB); 1219 1220 // If this BB is too big or the block number in straight line between From 1221 // and To is too big, stop searching to save compiling time. 1222 if (BB->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold) || 1223 HandledDomBlocks.size() > SinkLoadBlocksThreshold) { 1224 for (auto *DomBB : HandledDomBlocks) { 1225 if (DomBB != BB && DT->dominates(DomBB, BB)) 1226 HasStoreCache[std::make_pair(DomBB, To)] = true; 1227 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1228 HasStoreCache[std::make_pair(From, DomBB)] = true; 1229 } 1230 HasStoreCache[BlockPair] = true; 1231 return true; 1232 } 1233 1234 for (MachineInstr &I : *BB) { 1235 // Treat as alias conservatively for a call or an ordered memory 1236 // operation. 1237 if (I.isCall() || I.hasOrderedMemoryRef()) { 1238 for (auto *DomBB : HandledDomBlocks) { 1239 if (DomBB != BB && DT->dominates(DomBB, BB)) 1240 HasStoreCache[std::make_pair(DomBB, To)] = true; 1241 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1242 HasStoreCache[std::make_pair(From, DomBB)] = true; 1243 } 1244 HasStoreCache[BlockPair] = true; 1245 return true; 1246 } 1247 1248 if (I.mayStore()) { 1249 SawStore = true; 1250 // We still have chance to sink MI if all stores between are not 1251 // aliased to MI. 1252 // Cache all store instructions, so that we don't need to go through 1253 // all From reachable blocks for next load instruction. 1254 if (I.mayAlias(AA, MI, false)) 1255 HasAliasedStore = true; 1256 StoreInstrCache[BlockPair].push_back(&I); 1257 } 1258 } 1259 } 1260 } 1261 // If there is no store at all, cache the result. 1262 if (!SawStore) 1263 HasStoreCache[BlockPair] = false; 1264 return HasAliasedStore; 1265 } 1266 1267 /// Sink instructions into cycles if profitable. This especially tries to 1268 /// prevent register spills caused by register pressure if there is little to no 1269 /// overhead moving instructions into cycles. 1270 bool MachineSinking::SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I) { 1271 LLVM_DEBUG(dbgs() << "CycleSink: Finding sink block for: " << I); 1272 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 1273 assert(Preheader && "Cycle sink needs a preheader block"); 1274 MachineBasicBlock *SinkBlock = nullptr; 1275 bool CanSink = true; 1276 const MachineOperand &MO = I.getOperand(0); 1277 1278 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 1279 LLVM_DEBUG(dbgs() << "CycleSink: Analysing use: " << MI); 1280 if (!Cycle->contains(MI.getParent())) { 1281 LLVM_DEBUG(dbgs() << "CycleSink: Use not in cycle, can't sink.\n"); 1282 CanSink = false; 1283 break; 1284 } 1285 1286 // FIXME: Come up with a proper cost model that estimates whether sinking 1287 // the instruction (and thus possibly executing it on every cycle 1288 // iteration) is more expensive than a register. 1289 // For now assumes that copies are cheap and thus almost always worth it. 1290 if (!MI.isCopy()) { 1291 LLVM_DEBUG(dbgs() << "CycleSink: Use is not a copy\n"); 1292 CanSink = false; 1293 break; 1294 } 1295 if (!SinkBlock) { 1296 SinkBlock = MI.getParent(); 1297 LLVM_DEBUG(dbgs() << "CycleSink: Setting sink block to: " 1298 << printMBBReference(*SinkBlock) << "\n"); 1299 continue; 1300 } 1301 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent()); 1302 if (!SinkBlock) { 1303 LLVM_DEBUG(dbgs() << "CycleSink: Can't find nearest dominator\n"); 1304 CanSink = false; 1305 break; 1306 } 1307 LLVM_DEBUG(dbgs() << "CycleSink: Setting nearest common dom block: " << 1308 printMBBReference(*SinkBlock) << "\n"); 1309 } 1310 1311 if (!CanSink) { 1312 LLVM_DEBUG(dbgs() << "CycleSink: Can't sink instruction.\n"); 1313 return false; 1314 } 1315 if (!SinkBlock) { 1316 LLVM_DEBUG(dbgs() << "CycleSink: Not sinking, can't find sink block.\n"); 1317 return false; 1318 } 1319 if (SinkBlock == Preheader) { 1320 LLVM_DEBUG( 1321 dbgs() << "CycleSink: Not sinking, sink block is the preheader\n"); 1322 return false; 1323 } 1324 if (SinkBlock->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold)) { 1325 LLVM_DEBUG( 1326 dbgs() << "CycleSink: Not Sinking, block too large to analyse.\n"); 1327 return false; 1328 } 1329 1330 LLVM_DEBUG(dbgs() << "CycleSink: Sinking instruction!\n"); 1331 SinkBlock->splice(SinkBlock->SkipPHIsAndLabels(SinkBlock->begin()), Preheader, 1332 I); 1333 1334 // Conservatively clear any kill flags on uses of sunk instruction 1335 for (MachineOperand &MO : I.operands()) { 1336 if (MO.isReg() && MO.readsReg()) 1337 RegsToClearKillFlags.insert(MO.getReg()); 1338 } 1339 1340 // The instruction is moved from its basic block, so do not retain the 1341 // debug information. 1342 assert(!I.isDebugInstr() && "Should not sink debug inst"); 1343 I.setDebugLoc(DebugLoc()); 1344 return true; 1345 } 1346 1347 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1348 /// instruction out of its current block into a successor. 1349 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1350 AllSuccsCache &AllSuccessors) { 1351 // Don't sink instructions that the target prefers not to sink. 1352 if (!TII->shouldSink(MI)) 1353 return false; 1354 1355 // Check if it's safe to move the instruction. 1356 if (!MI.isSafeToMove(AA, SawStore)) 1357 return false; 1358 1359 // Convergent operations may not be made control-dependent on additional 1360 // values. 1361 if (MI.isConvergent()) 1362 return false; 1363 1364 // Don't break implicit null checks. This is a performance heuristic, and not 1365 // required for correctness. 1366 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1367 return false; 1368 1369 // FIXME: This should include support for sinking instructions within the 1370 // block they are currently in to shorten the live ranges. We often get 1371 // instructions sunk into the top of a large block, but it would be better to 1372 // also sink them down before their first use in the block. This xform has to 1373 // be careful not to *increase* register pressure though, e.g. sinking 1374 // "x = y + z" down if it kills y and z would increase the live ranges of y 1375 // and z and only shrink the live range of x. 1376 1377 bool BreakPHIEdge = false; 1378 MachineBasicBlock *ParentBlock = MI.getParent(); 1379 MachineBasicBlock *SuccToSinkTo = 1380 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1381 1382 // If there are no outputs, it must have side-effects. 1383 if (!SuccToSinkTo) 1384 return false; 1385 1386 // If the instruction to move defines a dead physical register which is live 1387 // when leaving the basic block, don't move it because it could turn into a 1388 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 1389 for (const MachineOperand &MO : MI.all_defs()) { 1390 Register Reg = MO.getReg(); 1391 if (Reg == 0 || !Reg.isPhysical()) 1392 continue; 1393 if (SuccToSinkTo->isLiveIn(Reg)) 1394 return false; 1395 } 1396 1397 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1398 1399 // If the block has multiple predecessors, this is a critical edge. 1400 // Decide if we can sink along it or need to break the edge. 1401 if (SuccToSinkTo->pred_size() > 1) { 1402 // We cannot sink a load across a critical edge - there may be stores in 1403 // other code paths. 1404 bool TryBreak = false; 1405 bool Store = 1406 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1407 if (!MI.isSafeToMove(AA, Store)) { 1408 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1409 TryBreak = true; 1410 } 1411 1412 // We don't want to sink across a critical edge if we don't dominate the 1413 // successor. We could be introducing calculations to new code paths. 1414 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1415 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1416 TryBreak = true; 1417 } 1418 1419 // Don't sink instructions into a cycle. 1420 if (!TryBreak && CI->getCycle(SuccToSinkTo) && 1421 (!CI->getCycle(SuccToSinkTo)->isReducible() || 1422 CI->getCycle(SuccToSinkTo)->getHeader() == SuccToSinkTo)) { 1423 LLVM_DEBUG(dbgs() << " *** NOTE: cycle header found\n"); 1424 TryBreak = true; 1425 } 1426 1427 // Otherwise we are OK with sinking along a critical edge. 1428 if (!TryBreak) 1429 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1430 else { 1431 // Mark this edge as to be split. 1432 // If the edge can actually be split, the next iteration of the main loop 1433 // will sink MI in the newly created block. 1434 bool Status = 1435 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1436 if (!Status) 1437 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1438 "break critical edge\n"); 1439 // The instruction will not be sunk this time. 1440 return false; 1441 } 1442 } 1443 1444 if (BreakPHIEdge) { 1445 // BreakPHIEdge is true if all the uses are in the successor MBB being 1446 // sunken into and they are all PHI nodes. In this case, machine-sink must 1447 // break the critical edge first. 1448 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 1449 SuccToSinkTo, BreakPHIEdge); 1450 if (!Status) 1451 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1452 "break critical edge\n"); 1453 // The instruction will not be sunk this time. 1454 return false; 1455 } 1456 1457 // Determine where to insert into. Skip phi nodes. 1458 MachineBasicBlock::iterator InsertPos = 1459 SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin()); 1460 if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) { 1461 LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n"); 1462 return false; 1463 } 1464 1465 // Collect debug users of any vreg that this inst defines. 1466 SmallVector<MIRegs, 4> DbgUsersToSink; 1467 for (auto &MO : MI.all_defs()) { 1468 if (!MO.getReg().isVirtual()) 1469 continue; 1470 if (!SeenDbgUsers.count(MO.getReg())) 1471 continue; 1472 1473 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1474 auto &Users = SeenDbgUsers[MO.getReg()]; 1475 for (auto &User : Users) { 1476 MachineInstr *DbgMI = User.getPointer(); 1477 if (User.getInt()) { 1478 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1479 // it, it can't be recovered. Set it undef. 1480 if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg())) 1481 DbgMI->setDebugValueUndef(); 1482 } else { 1483 DbgUsersToSink.push_back( 1484 {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())}); 1485 } 1486 } 1487 } 1488 1489 // After sinking, some debug users may not be dominated any more. If possible, 1490 // copy-propagate their operands. As it's expensive, don't do this if there's 1491 // no debuginfo in the program. 1492 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1493 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1494 1495 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1496 1497 // Conservatively, clear any kill flags, since it's possible that they are no 1498 // longer correct. 1499 // Note that we have to clear the kill flags for any register this instruction 1500 // uses as we may sink over another instruction which currently kills the 1501 // used registers. 1502 for (MachineOperand &MO : MI.all_uses()) 1503 RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags. 1504 1505 return true; 1506 } 1507 1508 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1509 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1510 assert(MI.isCopy()); 1511 assert(MI.getOperand(1).isReg()); 1512 1513 // Enumerate all users of vreg operands that are def'd. Skip those that will 1514 // be sunk. For the rest, if they are not dominated by the block we will sink 1515 // MI into, propagate the copy source to them. 1516 SmallVector<MachineInstr *, 4> DbgDefUsers; 1517 SmallVector<Register, 4> DbgUseRegs; 1518 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1519 for (auto &MO : MI.all_defs()) { 1520 if (!MO.getReg().isVirtual()) 1521 continue; 1522 DbgUseRegs.push_back(MO.getReg()); 1523 for (auto &User : MRI.use_instructions(MO.getReg())) { 1524 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1525 continue; 1526 1527 // If is in same block, will either sink or be use-before-def. 1528 if (User.getParent() == MI.getParent()) 1529 continue; 1530 1531 assert(User.hasDebugOperandForReg(MO.getReg()) && 1532 "DBG_VALUE user of vreg, but has no operand for it?"); 1533 DbgDefUsers.push_back(&User); 1534 } 1535 } 1536 1537 // Point the users of this copy that are no longer dominated, at the source 1538 // of the copy. 1539 for (auto *User : DbgDefUsers) { 1540 for (auto &Reg : DbgUseRegs) { 1541 for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) { 1542 DbgOp.setReg(MI.getOperand(1).getReg()); 1543 DbgOp.setSubReg(MI.getOperand(1).getSubReg()); 1544 } 1545 } 1546 } 1547 } 1548 1549 //===----------------------------------------------------------------------===// 1550 // This pass is not intended to be a replacement or a complete alternative 1551 // for the pre-ra machine sink pass. It is only designed to sink COPY 1552 // instructions which should be handled after RA. 1553 // 1554 // This pass sinks COPY instructions into a successor block, if the COPY is not 1555 // used in the current block and the COPY is live-in to a single successor 1556 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1557 // copy on paths where their results aren't needed. This also exposes 1558 // additional opportunites for dead copy elimination and shrink wrapping. 1559 // 1560 // These copies were either not handled by or are inserted after the MachineSink 1561 // pass. As an example of the former case, the MachineSink pass cannot sink 1562 // COPY instructions with allocatable source registers; for AArch64 these type 1563 // of copy instructions are frequently used to move function parameters (PhyReg) 1564 // into virtual registers in the entry block. 1565 // 1566 // For the machine IR below, this pass will sink %w19 in the entry into its 1567 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1568 // %bb.0: 1569 // %wzr = SUBSWri %w1, 1 1570 // %w19 = COPY %w0 1571 // Bcc 11, %bb.2 1572 // %bb.1: 1573 // Live Ins: %w19 1574 // BL @fun 1575 // %w0 = ADDWrr %w0, %w19 1576 // RET %w0 1577 // %bb.2: 1578 // %w0 = COPY %wzr 1579 // RET %w0 1580 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1581 // able to see %bb.0 as a candidate. 1582 //===----------------------------------------------------------------------===// 1583 namespace { 1584 1585 class PostRAMachineSinking : public MachineFunctionPass { 1586 public: 1587 bool runOnMachineFunction(MachineFunction &MF) override; 1588 1589 static char ID; 1590 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1591 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1592 1593 void getAnalysisUsage(AnalysisUsage &AU) const override { 1594 AU.setPreservesCFG(); 1595 MachineFunctionPass::getAnalysisUsage(AU); 1596 } 1597 1598 MachineFunctionProperties getRequiredProperties() const override { 1599 return MachineFunctionProperties().set( 1600 MachineFunctionProperties::Property::NoVRegs); 1601 } 1602 1603 private: 1604 /// Track which register units have been modified and used. 1605 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1606 1607 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1608 /// entry in this map for each unit it touches. The DBG_VALUE's entry 1609 /// consists of a pointer to the instruction itself, and a vector of registers 1610 /// referred to by the instruction that overlap the key register unit. 1611 DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs; 1612 1613 /// Sink Copy instructions unused in the same block close to their uses in 1614 /// successors. 1615 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1616 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1617 }; 1618 } // namespace 1619 1620 char PostRAMachineSinking::ID = 0; 1621 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1622 1623 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1624 "PostRA Machine Sink", false, false) 1625 1626 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1627 const TargetRegisterInfo *TRI) { 1628 LiveRegUnits LiveInRegUnits(*TRI); 1629 LiveInRegUnits.addLiveIns(MBB); 1630 return !LiveInRegUnits.available(Reg); 1631 } 1632 1633 static MachineBasicBlock * 1634 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1635 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1636 unsigned Reg, const TargetRegisterInfo *TRI) { 1637 // Try to find a single sinkable successor in which Reg is live-in. 1638 MachineBasicBlock *BB = nullptr; 1639 for (auto *SI : SinkableBBs) { 1640 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1641 // If BB is set here, Reg is live-in to at least two sinkable successors, 1642 // so quit. 1643 if (BB) 1644 return nullptr; 1645 BB = SI; 1646 } 1647 } 1648 // Reg is not live-in to any sinkable successors. 1649 if (!BB) 1650 return nullptr; 1651 1652 // Check if any register aliased with Reg is live-in in other successors. 1653 for (auto *SI : CurBB.successors()) { 1654 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1655 return nullptr; 1656 } 1657 return BB; 1658 } 1659 1660 static MachineBasicBlock * 1661 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1662 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1663 ArrayRef<unsigned> DefedRegsInCopy, 1664 const TargetRegisterInfo *TRI) { 1665 MachineBasicBlock *SingleBB = nullptr; 1666 for (auto DefReg : DefedRegsInCopy) { 1667 MachineBasicBlock *BB = 1668 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1669 if (!BB || (SingleBB && SingleBB != BB)) 1670 return nullptr; 1671 SingleBB = BB; 1672 } 1673 return SingleBB; 1674 } 1675 1676 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1677 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1678 LiveRegUnits &UsedRegUnits, 1679 const TargetRegisterInfo *TRI) { 1680 for (auto U : UsedOpsInCopy) { 1681 MachineOperand &MO = MI->getOperand(U); 1682 Register SrcReg = MO.getReg(); 1683 if (!UsedRegUnits.available(SrcReg)) { 1684 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1685 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1686 if (UI.killsRegister(SrcReg, TRI)) { 1687 UI.clearRegisterKills(SrcReg, TRI); 1688 MO.setIsKill(true); 1689 break; 1690 } 1691 } 1692 } 1693 } 1694 } 1695 1696 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1697 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1698 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1699 MachineFunction &MF = *SuccBB->getParent(); 1700 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1701 for (unsigned DefReg : DefedRegsInCopy) 1702 for (MCPhysReg S : TRI->subregs_inclusive(DefReg)) 1703 SuccBB->removeLiveIn(S); 1704 for (auto U : UsedOpsInCopy) { 1705 Register SrcReg = MI->getOperand(U).getReg(); 1706 LaneBitmask Mask; 1707 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) { 1708 Mask |= (*S).second; 1709 } 1710 SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll()); 1711 } 1712 SuccBB->sortUniqueLiveIns(); 1713 } 1714 1715 static bool hasRegisterDependency(MachineInstr *MI, 1716 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1717 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1718 LiveRegUnits &ModifiedRegUnits, 1719 LiveRegUnits &UsedRegUnits) { 1720 bool HasRegDependency = false; 1721 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1722 MachineOperand &MO = MI->getOperand(i); 1723 if (!MO.isReg()) 1724 continue; 1725 Register Reg = MO.getReg(); 1726 if (!Reg) 1727 continue; 1728 if (MO.isDef()) { 1729 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1730 HasRegDependency = true; 1731 break; 1732 } 1733 DefedRegsInCopy.push_back(Reg); 1734 1735 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1736 // For example, we can ignore modifications in reg with undef. However, 1737 // it's not perfectly clear if skipping the internal read is safe in all 1738 // other targets. 1739 } else if (MO.isUse()) { 1740 if (!ModifiedRegUnits.available(Reg)) { 1741 HasRegDependency = true; 1742 break; 1743 } 1744 UsedOpsInCopy.push_back(i); 1745 } 1746 } 1747 return HasRegDependency; 1748 } 1749 1750 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1751 MachineFunction &MF, 1752 const TargetRegisterInfo *TRI, 1753 const TargetInstrInfo *TII) { 1754 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1755 // FIXME: For now, we sink only to a successor which has a single predecessor 1756 // so that we can directly sink COPY instructions to the successor without 1757 // adding any new block or branch instruction. 1758 for (MachineBasicBlock *SI : CurBB.successors()) 1759 if (!SI->livein_empty() && SI->pred_size() == 1) 1760 SinkableBBs.insert(SI); 1761 1762 if (SinkableBBs.empty()) 1763 return false; 1764 1765 bool Changed = false; 1766 1767 // Track which registers have been modified and used between the end of the 1768 // block and the current instruction. 1769 ModifiedRegUnits.clear(); 1770 UsedRegUnits.clear(); 1771 SeenDbgInstrs.clear(); 1772 1773 for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) { 1774 // Track the operand index for use in Copy. 1775 SmallVector<unsigned, 2> UsedOpsInCopy; 1776 // Track the register number defed in Copy. 1777 SmallVector<unsigned, 2> DefedRegsInCopy; 1778 1779 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 1780 // for DBG_VALUEs later, record them when they're encountered. 1781 if (MI.isDebugValue() && !MI.isDebugRef()) { 1782 SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits; 1783 bool IsValid = true; 1784 for (MachineOperand &MO : MI.debug_operands()) { 1785 if (MO.isReg() && MO.getReg().isPhysical()) { 1786 // Bail if we can already tell the sink would be rejected, rather 1787 // than needlessly accumulating lots of DBG_VALUEs. 1788 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 1789 ModifiedRegUnits, UsedRegUnits)) { 1790 IsValid = false; 1791 break; 1792 } 1793 1794 // Record debug use of each reg unit. 1795 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) 1796 MIUnits[Unit].push_back(MO.getReg()); 1797 } 1798 } 1799 if (IsValid) { 1800 for (auto &RegOps : MIUnits) 1801 SeenDbgInstrs[RegOps.first].emplace_back(&MI, 1802 std::move(RegOps.second)); 1803 } 1804 continue; 1805 } 1806 1807 if (MI.isDebugOrPseudoInstr()) 1808 continue; 1809 1810 // Do not move any instruction across function call. 1811 if (MI.isCall()) 1812 return false; 1813 1814 if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) { 1815 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1816 TRI); 1817 continue; 1818 } 1819 1820 // Don't sink the COPY if it would violate a register dependency. 1821 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 1822 ModifiedRegUnits, UsedRegUnits)) { 1823 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1824 TRI); 1825 continue; 1826 } 1827 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 1828 "Unexpect SrcReg or DefReg"); 1829 MachineBasicBlock *SuccBB = 1830 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 1831 // Don't sink if we cannot find a single sinkable successor in which Reg 1832 // is live-in. 1833 if (!SuccBB) { 1834 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1835 TRI); 1836 continue; 1837 } 1838 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 1839 "Unexpected predecessor"); 1840 1841 // Collect DBG_VALUEs that must sink with this copy. We've previously 1842 // recorded which reg units that DBG_VALUEs read, if this instruction 1843 // writes any of those units then the corresponding DBG_VALUEs must sink. 1844 MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap; 1845 for (auto &MO : MI.all_defs()) { 1846 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) { 1847 for (const auto &MIRegs : SeenDbgInstrs.lookup(Unit)) { 1848 auto &Regs = DbgValsToSinkMap[MIRegs.first]; 1849 for (unsigned Reg : MIRegs.second) 1850 Regs.push_back(Reg); 1851 } 1852 } 1853 } 1854 auto DbgValsToSink = DbgValsToSinkMap.takeVector(); 1855 1856 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccBB); 1857 1858 MachineBasicBlock::iterator InsertPos = 1859 SuccBB->SkipPHIsAndLabels(SuccBB->begin()); 1860 if (blockPrologueInterferes(SuccBB, InsertPos, MI, TRI, TII, nullptr)) { 1861 LLVM_DEBUG( 1862 dbgs() << " *** Not sinking: prologue interference\n"); 1863 continue; 1864 } 1865 1866 // Clear the kill flag if SrcReg is killed between MI and the end of the 1867 // block. 1868 clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 1869 performSink(MI, *SuccBB, InsertPos, DbgValsToSink); 1870 updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 1871 1872 Changed = true; 1873 ++NumPostRACopySink; 1874 } 1875 return Changed; 1876 } 1877 1878 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 1879 if (skipFunction(MF.getFunction())) 1880 return false; 1881 1882 bool Changed = false; 1883 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1884 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1885 1886 ModifiedRegUnits.init(*TRI); 1887 UsedRegUnits.init(*TRI); 1888 for (auto &BB : MF) 1889 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 1890 1891 return Changed; 1892 } 1893