1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // MachineScheduler schedules machine instructions after phi elimination. It 10 // preserves LiveIntervals so it can be invoked before register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineScheduler.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveInterval.h" 24 #include "llvm/CodeGen/LiveIntervals.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineDominators.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachinePassRegistry.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/Passes.h" 35 #include "llvm/CodeGen/RegisterClassInfo.h" 36 #include "llvm/CodeGen/RegisterPressure.h" 37 #include "llvm/CodeGen/ScheduleDAG.h" 38 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 39 #include "llvm/CodeGen/ScheduleDAGMutation.h" 40 #include "llvm/CodeGen/ScheduleDFS.h" 41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 42 #include "llvm/CodeGen/SlotIndexes.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSchedule.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/Config/llvm-config.h" 51 #include "llvm/MC/LaneBitmask.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/GraphWriter.h" 58 #include "llvm/Support/MachineValueType.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <iterator> 64 #include <limits> 65 #include <memory> 66 #include <string> 67 #include <tuple> 68 #include <utility> 69 #include <vector> 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "machine-scheduler" 74 75 namespace llvm { 76 77 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 78 cl::desc("Force top-down list scheduling")); 79 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 80 cl::desc("Force bottom-up list scheduling")); 81 cl::opt<bool> 82 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 83 cl::desc("Print critical path length to stdout")); 84 85 } // end namespace llvm 86 87 #ifndef NDEBUG 88 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 89 cl::desc("Pop up a window to show MISched dags after they are processed")); 90 91 /// In some situations a few uninteresting nodes depend on nearly all other 92 /// nodes in the graph, provide a cutoff to hide them. 93 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 94 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 95 96 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 97 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 98 99 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 100 cl::desc("Only schedule this function")); 101 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 102 cl::desc("Only schedule this MBB#")); 103 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden, 104 cl::desc("Print schedule DAGs")); 105 #else 106 static const bool ViewMISchedDAGs = false; 107 static const bool PrintDAGs = false; 108 #endif // NDEBUG 109 110 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 111 /// size of the ready lists. 112 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 113 cl::desc("Limit ready list to N instructions"), cl::init(256)); 114 115 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 116 cl::desc("Enable register pressure scheduling."), cl::init(true)); 117 118 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 119 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 120 121 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 122 cl::desc("Enable memop clustering."), 123 cl::init(true)); 124 125 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 126 cl::desc("Verify machine instrs before and after machine scheduling")); 127 128 // DAG subtrees must have at least this many nodes. 129 static const unsigned MinSubtreeSize = 8; 130 131 // Pin the vtables to this file. 132 void MachineSchedStrategy::anchor() {} 133 134 void ScheduleDAGMutation::anchor() {} 135 136 //===----------------------------------------------------------------------===// 137 // Machine Instruction Scheduling Pass and Registry 138 //===----------------------------------------------------------------------===// 139 140 MachineSchedContext::MachineSchedContext() { 141 RegClassInfo = new RegisterClassInfo(); 142 } 143 144 MachineSchedContext::~MachineSchedContext() { 145 delete RegClassInfo; 146 } 147 148 namespace { 149 150 /// Base class for a machine scheduler class that can run at any point. 151 class MachineSchedulerBase : public MachineSchedContext, 152 public MachineFunctionPass { 153 public: 154 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 155 156 void print(raw_ostream &O, const Module* = nullptr) const override; 157 158 protected: 159 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 160 }; 161 162 /// MachineScheduler runs after coalescing and before register allocation. 163 class MachineScheduler : public MachineSchedulerBase { 164 public: 165 MachineScheduler(); 166 167 void getAnalysisUsage(AnalysisUsage &AU) const override; 168 169 bool runOnMachineFunction(MachineFunction&) override; 170 171 static char ID; // Class identification, replacement for typeinfo 172 173 protected: 174 ScheduleDAGInstrs *createMachineScheduler(); 175 }; 176 177 /// PostMachineScheduler runs after shortly before code emission. 178 class PostMachineScheduler : public MachineSchedulerBase { 179 public: 180 PostMachineScheduler(); 181 182 void getAnalysisUsage(AnalysisUsage &AU) const override; 183 184 bool runOnMachineFunction(MachineFunction&) override; 185 186 static char ID; // Class identification, replacement for typeinfo 187 188 protected: 189 ScheduleDAGInstrs *createPostMachineScheduler(); 190 }; 191 192 } // end anonymous namespace 193 194 char MachineScheduler::ID = 0; 195 196 char &llvm::MachineSchedulerID = MachineScheduler::ID; 197 198 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 199 "Machine Instruction Scheduler", false, false) 200 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 201 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 202 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 203 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 204 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 205 "Machine Instruction Scheduler", false, false) 206 207 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 208 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 209 } 210 211 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 212 AU.setPreservesCFG(); 213 AU.addRequiredID(MachineDominatorsID); 214 AU.addRequired<MachineLoopInfo>(); 215 AU.addRequired<AAResultsWrapperPass>(); 216 AU.addRequired<TargetPassConfig>(); 217 AU.addRequired<SlotIndexes>(); 218 AU.addPreserved<SlotIndexes>(); 219 AU.addRequired<LiveIntervals>(); 220 AU.addPreserved<LiveIntervals>(); 221 MachineFunctionPass::getAnalysisUsage(AU); 222 } 223 224 char PostMachineScheduler::ID = 0; 225 226 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 227 228 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 229 "PostRA Machine Instruction Scheduler", false, false) 230 231 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 232 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 233 } 234 235 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 236 AU.setPreservesCFG(); 237 AU.addRequiredID(MachineDominatorsID); 238 AU.addRequired<MachineLoopInfo>(); 239 AU.addRequired<TargetPassConfig>(); 240 MachineFunctionPass::getAnalysisUsage(AU); 241 } 242 243 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor> 244 MachineSchedRegistry::Registry; 245 246 /// A dummy default scheduler factory indicates whether the scheduler 247 /// is overridden on the command line. 248 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 249 return nullptr; 250 } 251 252 /// MachineSchedOpt allows command line selection of the scheduler. 253 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 254 RegisterPassParser<MachineSchedRegistry>> 255 MachineSchedOpt("misched", 256 cl::init(&useDefaultMachineSched), cl::Hidden, 257 cl::desc("Machine instruction scheduler to use")); 258 259 static MachineSchedRegistry 260 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 261 useDefaultMachineSched); 262 263 static cl::opt<bool> EnableMachineSched( 264 "enable-misched", 265 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 266 cl::Hidden); 267 268 static cl::opt<bool> EnablePostRAMachineSched( 269 "enable-post-misched", 270 cl::desc("Enable the post-ra machine instruction scheduling pass."), 271 cl::init(true), cl::Hidden); 272 273 /// Decrement this iterator until reaching the top or a non-debug instr. 274 static MachineBasicBlock::const_iterator 275 priorNonDebug(MachineBasicBlock::const_iterator I, 276 MachineBasicBlock::const_iterator Beg) { 277 assert(I != Beg && "reached the top of the region, cannot decrement"); 278 while (--I != Beg) { 279 if (!I->isDebugInstr()) 280 break; 281 } 282 return I; 283 } 284 285 /// Non-const version. 286 static MachineBasicBlock::iterator 287 priorNonDebug(MachineBasicBlock::iterator I, 288 MachineBasicBlock::const_iterator Beg) { 289 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 290 .getNonConstIterator(); 291 } 292 293 /// If this iterator is a debug value, increment until reaching the End or a 294 /// non-debug instruction. 295 static MachineBasicBlock::const_iterator 296 nextIfDebug(MachineBasicBlock::const_iterator I, 297 MachineBasicBlock::const_iterator End) { 298 for(; I != End; ++I) { 299 if (!I->isDebugInstr()) 300 break; 301 } 302 return I; 303 } 304 305 /// Non-const version. 306 static MachineBasicBlock::iterator 307 nextIfDebug(MachineBasicBlock::iterator I, 308 MachineBasicBlock::const_iterator End) { 309 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 310 .getNonConstIterator(); 311 } 312 313 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 314 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 315 // Select the scheduler, or set the default. 316 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 317 if (Ctor != useDefaultMachineSched) 318 return Ctor(this); 319 320 // Get the default scheduler set by the target for this function. 321 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 322 if (Scheduler) 323 return Scheduler; 324 325 // Default to GenericScheduler. 326 return createGenericSchedLive(this); 327 } 328 329 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 330 /// the caller. We don't have a command line option to override the postRA 331 /// scheduler. The Target must configure it. 332 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 333 // Get the postRA scheduler set by the target for this function. 334 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 335 if (Scheduler) 336 return Scheduler; 337 338 // Default to GenericScheduler. 339 return createGenericSchedPostRA(this); 340 } 341 342 /// Top-level MachineScheduler pass driver. 343 /// 344 /// Visit blocks in function order. Divide each block into scheduling regions 345 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 346 /// consistent with the DAG builder, which traverses the interior of the 347 /// scheduling regions bottom-up. 348 /// 349 /// This design avoids exposing scheduling boundaries to the DAG builder, 350 /// simplifying the DAG builder's support for "special" target instructions. 351 /// At the same time the design allows target schedulers to operate across 352 /// scheduling boundaries, for example to bundle the boundary instructions 353 /// without reordering them. This creates complexity, because the target 354 /// scheduler must update the RegionBegin and RegionEnd positions cached by 355 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 356 /// design would be to split blocks at scheduling boundaries, but LLVM has a 357 /// general bias against block splitting purely for implementation simplicity. 358 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 359 if (skipFunction(mf.getFunction())) 360 return false; 361 362 if (EnableMachineSched.getNumOccurrences()) { 363 if (!EnableMachineSched) 364 return false; 365 } else if (!mf.getSubtarget().enableMachineScheduler()) 366 return false; 367 368 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 369 370 // Initialize the context of the pass. 371 MF = &mf; 372 MLI = &getAnalysis<MachineLoopInfo>(); 373 MDT = &getAnalysis<MachineDominatorTree>(); 374 PassConfig = &getAnalysis<TargetPassConfig>(); 375 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 376 377 LIS = &getAnalysis<LiveIntervals>(); 378 379 if (VerifyScheduling) { 380 LLVM_DEBUG(LIS->dump()); 381 MF->verify(this, "Before machine scheduling."); 382 } 383 RegClassInfo->runOnMachineFunction(*MF); 384 385 // Instantiate the selected scheduler for this target, function, and 386 // optimization level. 387 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 388 scheduleRegions(*Scheduler, false); 389 390 LLVM_DEBUG(LIS->dump()); 391 if (VerifyScheduling) 392 MF->verify(this, "After machine scheduling."); 393 return true; 394 } 395 396 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 397 if (skipFunction(mf.getFunction())) 398 return false; 399 400 if (EnablePostRAMachineSched.getNumOccurrences()) { 401 if (!EnablePostRAMachineSched) 402 return false; 403 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 404 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 405 return false; 406 } 407 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 408 409 // Initialize the context of the pass. 410 MF = &mf; 411 MLI = &getAnalysis<MachineLoopInfo>(); 412 PassConfig = &getAnalysis<TargetPassConfig>(); 413 414 if (VerifyScheduling) 415 MF->verify(this, "Before post machine scheduling."); 416 417 // Instantiate the selected scheduler for this target, function, and 418 // optimization level. 419 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 420 scheduleRegions(*Scheduler, true); 421 422 if (VerifyScheduling) 423 MF->verify(this, "After post machine scheduling."); 424 return true; 425 } 426 427 /// Return true of the given instruction should not be included in a scheduling 428 /// region. 429 /// 430 /// MachineScheduler does not currently support scheduling across calls. To 431 /// handle calls, the DAG builder needs to be modified to create register 432 /// anti/output dependencies on the registers clobbered by the call's regmask 433 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 434 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 435 /// the boundary, but there would be no benefit to postRA scheduling across 436 /// calls this late anyway. 437 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 438 MachineBasicBlock *MBB, 439 MachineFunction *MF, 440 const TargetInstrInfo *TII) { 441 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 442 } 443 444 /// A region of an MBB for scheduling. 445 namespace { 446 struct SchedRegion { 447 /// RegionBegin is the first instruction in the scheduling region, and 448 /// RegionEnd is either MBB->end() or the scheduling boundary after the 449 /// last instruction in the scheduling region. These iterators cannot refer 450 /// to instructions outside of the identified scheduling region because 451 /// those may be reordered before scheduling this region. 452 MachineBasicBlock::iterator RegionBegin; 453 MachineBasicBlock::iterator RegionEnd; 454 unsigned NumRegionInstrs; 455 456 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 457 unsigned N) : 458 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 459 }; 460 } // end anonymous namespace 461 462 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 463 464 static void 465 getSchedRegions(MachineBasicBlock *MBB, 466 MBBRegionsVector &Regions, 467 bool RegionsTopDown) { 468 MachineFunction *MF = MBB->getParent(); 469 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 470 471 MachineBasicBlock::iterator I = nullptr; 472 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 473 RegionEnd != MBB->begin(); RegionEnd = I) { 474 475 // Avoid decrementing RegionEnd for blocks with no terminator. 476 if (RegionEnd != MBB->end() || 477 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 478 --RegionEnd; 479 } 480 481 // The next region starts above the previous region. Look backward in the 482 // instruction stream until we find the nearest boundary. 483 unsigned NumRegionInstrs = 0; 484 I = RegionEnd; 485 for (;I != MBB->begin(); --I) { 486 MachineInstr &MI = *std::prev(I); 487 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 488 break; 489 if (!MI.isDebugInstr()) { 490 // MBB::size() uses instr_iterator to count. Here we need a bundle to 491 // count as a single instruction. 492 ++NumRegionInstrs; 493 } 494 } 495 496 // It's possible we found a scheduling region that only has debug 497 // instructions. Don't bother scheduling these. 498 if (NumRegionInstrs != 0) 499 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 500 } 501 502 if (RegionsTopDown) 503 std::reverse(Regions.begin(), Regions.end()); 504 } 505 506 /// Main driver for both MachineScheduler and PostMachineScheduler. 507 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 508 bool FixKillFlags) { 509 // Visit all machine basic blocks. 510 // 511 // TODO: Visit blocks in global postorder or postorder within the bottom-up 512 // loop tree. Then we can optionally compute global RegPressure. 513 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 514 MBB != MBBEnd; ++MBB) { 515 516 Scheduler.startBlock(&*MBB); 517 518 #ifndef NDEBUG 519 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 520 continue; 521 if (SchedOnlyBlock.getNumOccurrences() 522 && (int)SchedOnlyBlock != MBB->getNumber()) 523 continue; 524 #endif 525 526 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 527 // points to the scheduling boundary at the bottom of the region. The DAG 528 // does not include RegionEnd, but the region does (i.e. the next 529 // RegionEnd is above the previous RegionBegin). If the current block has 530 // no terminator then RegionEnd == MBB->end() for the bottom region. 531 // 532 // All the regions of MBB are first found and stored in MBBRegions, which 533 // will be processed (MBB) top-down if initialized with true. 534 // 535 // The Scheduler may insert instructions during either schedule() or 536 // exitRegion(), even for empty regions. So the local iterators 'I' and 537 // 'RegionEnd' are invalid across these calls. Instructions must not be 538 // added to other regions than the current one without updating MBBRegions. 539 540 MBBRegionsVector MBBRegions; 541 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 542 for (MBBRegionsVector::iterator R = MBBRegions.begin(); 543 R != MBBRegions.end(); ++R) { 544 MachineBasicBlock::iterator I = R->RegionBegin; 545 MachineBasicBlock::iterator RegionEnd = R->RegionEnd; 546 unsigned NumRegionInstrs = R->NumRegionInstrs; 547 548 // Notify the scheduler of the region, even if we may skip scheduling 549 // it. Perhaps it still needs to be bundled. 550 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 551 552 // Skip empty scheduling regions (0 or 1 schedulable instructions). 553 if (I == RegionEnd || I == std::prev(RegionEnd)) { 554 // Close the current region. Bundle the terminator if needed. 555 // This invalidates 'RegionEnd' and 'I'. 556 Scheduler.exitRegion(); 557 continue; 558 } 559 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 560 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) 561 << " " << MBB->getName() << "\n From: " << *I 562 << " To: "; 563 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 564 else dbgs() << "End"; 565 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 566 if (DumpCriticalPathLength) { 567 errs() << MF->getName(); 568 errs() << ":%bb. " << MBB->getNumber(); 569 errs() << " " << MBB->getName() << " \n"; 570 } 571 572 // Schedule a region: possibly reorder instructions. 573 // This invalidates the original region iterators. 574 Scheduler.schedule(); 575 576 // Close the current region. 577 Scheduler.exitRegion(); 578 } 579 Scheduler.finishBlock(); 580 // FIXME: Ideally, no further passes should rely on kill flags. However, 581 // thumb2 size reduction is currently an exception, so the PostMIScheduler 582 // needs to do this. 583 if (FixKillFlags) 584 Scheduler.fixupKills(*MBB); 585 } 586 Scheduler.finalizeSchedule(); 587 } 588 589 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 590 // unimplemented 591 } 592 593 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 594 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 595 dbgs() << "Queue " << Name << ": "; 596 for (const SUnit *SU : Queue) 597 dbgs() << SU->NodeNum << " "; 598 dbgs() << "\n"; 599 } 600 #endif 601 602 //===----------------------------------------------------------------------===// 603 // ScheduleDAGMI - Basic machine instruction scheduling. This is 604 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 605 // virtual registers. 606 // ===----------------------------------------------------------------------===/ 607 608 // Provide a vtable anchor. 609 ScheduleDAGMI::~ScheduleDAGMI() = default; 610 611 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 612 /// NumPredsLeft reaches zero, release the successor node. 613 /// 614 /// FIXME: Adjust SuccSU height based on MinLatency. 615 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 616 SUnit *SuccSU = SuccEdge->getSUnit(); 617 618 if (SuccEdge->isWeak()) { 619 --SuccSU->WeakPredsLeft; 620 if (SuccEdge->isCluster()) 621 NextClusterSucc = SuccSU; 622 return; 623 } 624 #ifndef NDEBUG 625 if (SuccSU->NumPredsLeft == 0) { 626 dbgs() << "*** Scheduling failed! ***\n"; 627 dumpNode(*SuccSU); 628 dbgs() << " has been released too many times!\n"; 629 llvm_unreachable(nullptr); 630 } 631 #endif 632 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 633 // CurrCycle may have advanced since then. 634 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 635 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 636 637 --SuccSU->NumPredsLeft; 638 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 639 SchedImpl->releaseTopNode(SuccSU); 640 } 641 642 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 643 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 644 for (SDep &Succ : SU->Succs) 645 releaseSucc(SU, &Succ); 646 } 647 648 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 649 /// NumSuccsLeft reaches zero, release the predecessor node. 650 /// 651 /// FIXME: Adjust PredSU height based on MinLatency. 652 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 653 SUnit *PredSU = PredEdge->getSUnit(); 654 655 if (PredEdge->isWeak()) { 656 --PredSU->WeakSuccsLeft; 657 if (PredEdge->isCluster()) 658 NextClusterPred = PredSU; 659 return; 660 } 661 #ifndef NDEBUG 662 if (PredSU->NumSuccsLeft == 0) { 663 dbgs() << "*** Scheduling failed! ***\n"; 664 dumpNode(*PredSU); 665 dbgs() << " has been released too many times!\n"; 666 llvm_unreachable(nullptr); 667 } 668 #endif 669 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 670 // CurrCycle may have advanced since then. 671 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 672 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 673 674 --PredSU->NumSuccsLeft; 675 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 676 SchedImpl->releaseBottomNode(PredSU); 677 } 678 679 /// releasePredecessors - Call releasePred on each of SU's predecessors. 680 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 681 for (SDep &Pred : SU->Preds) 682 releasePred(SU, &Pred); 683 } 684 685 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 686 ScheduleDAGInstrs::startBlock(bb); 687 SchedImpl->enterMBB(bb); 688 } 689 690 void ScheduleDAGMI::finishBlock() { 691 SchedImpl->leaveMBB(); 692 ScheduleDAGInstrs::finishBlock(); 693 } 694 695 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 696 /// crossing a scheduling boundary. [begin, end) includes all instructions in 697 /// the region, including the boundary itself and single-instruction regions 698 /// that don't get scheduled. 699 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 700 MachineBasicBlock::iterator begin, 701 MachineBasicBlock::iterator end, 702 unsigned regioninstrs) 703 { 704 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 705 706 SchedImpl->initPolicy(begin, end, regioninstrs); 707 } 708 709 /// This is normally called from the main scheduler loop but may also be invoked 710 /// by the scheduling strategy to perform additional code motion. 711 void ScheduleDAGMI::moveInstruction( 712 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 713 // Advance RegionBegin if the first instruction moves down. 714 if (&*RegionBegin == MI) 715 ++RegionBegin; 716 717 // Update the instruction stream. 718 BB->splice(InsertPos, BB, MI); 719 720 // Update LiveIntervals 721 if (LIS) 722 LIS->handleMove(*MI, /*UpdateFlags=*/true); 723 724 // Recede RegionBegin if an instruction moves above the first. 725 if (RegionBegin == InsertPos) 726 RegionBegin = MI; 727 } 728 729 bool ScheduleDAGMI::checkSchedLimit() { 730 #ifndef NDEBUG 731 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 732 CurrentTop = CurrentBottom; 733 return false; 734 } 735 ++NumInstrsScheduled; 736 #endif 737 return true; 738 } 739 740 /// Per-region scheduling driver, called back from 741 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 742 /// does not consider liveness or register pressure. It is useful for PostRA 743 /// scheduling and potentially other custom schedulers. 744 void ScheduleDAGMI::schedule() { 745 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 746 LLVM_DEBUG(SchedImpl->dumpPolicy()); 747 748 // Build the DAG. 749 buildSchedGraph(AA); 750 751 postprocessDAG(); 752 753 SmallVector<SUnit*, 8> TopRoots, BotRoots; 754 findRootsAndBiasEdges(TopRoots, BotRoots); 755 756 LLVM_DEBUG(dump()); 757 if (PrintDAGs) dump(); 758 if (ViewMISchedDAGs) viewGraph(); 759 760 // Initialize the strategy before modifying the DAG. 761 // This may initialize a DFSResult to be used for queue priority. 762 SchedImpl->initialize(this); 763 764 // Initialize ready queues now that the DAG and priority data are finalized. 765 initQueues(TopRoots, BotRoots); 766 767 bool IsTopNode = false; 768 while (true) { 769 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 770 SUnit *SU = SchedImpl->pickNode(IsTopNode); 771 if (!SU) break; 772 773 assert(!SU->isScheduled && "Node already scheduled"); 774 if (!checkSchedLimit()) 775 break; 776 777 MachineInstr *MI = SU->getInstr(); 778 if (IsTopNode) { 779 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 780 if (&*CurrentTop == MI) 781 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 782 else 783 moveInstruction(MI, CurrentTop); 784 } else { 785 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 786 MachineBasicBlock::iterator priorII = 787 priorNonDebug(CurrentBottom, CurrentTop); 788 if (&*priorII == MI) 789 CurrentBottom = priorII; 790 else { 791 if (&*CurrentTop == MI) 792 CurrentTop = nextIfDebug(++CurrentTop, priorII); 793 moveInstruction(MI, CurrentBottom); 794 CurrentBottom = MI; 795 } 796 } 797 // Notify the scheduling strategy before updating the DAG. 798 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 799 // runs, it can then use the accurate ReadyCycle time to determine whether 800 // newly released nodes can move to the readyQ. 801 SchedImpl->schedNode(SU, IsTopNode); 802 803 updateQueues(SU, IsTopNode); 804 } 805 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 806 807 placeDebugValues(); 808 809 LLVM_DEBUG({ 810 dbgs() << "*** Final schedule for " 811 << printMBBReference(*begin()->getParent()) << " ***\n"; 812 dumpSchedule(); 813 dbgs() << '\n'; 814 }); 815 } 816 817 /// Apply each ScheduleDAGMutation step in order. 818 void ScheduleDAGMI::postprocessDAG() { 819 for (auto &m : Mutations) 820 m->apply(this); 821 } 822 823 void ScheduleDAGMI:: 824 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 825 SmallVectorImpl<SUnit*> &BotRoots) { 826 for (SUnit &SU : SUnits) { 827 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 828 829 // Order predecessors so DFSResult follows the critical path. 830 SU.biasCriticalPath(); 831 832 // A SUnit is ready to top schedule if it has no predecessors. 833 if (!SU.NumPredsLeft) 834 TopRoots.push_back(&SU); 835 // A SUnit is ready to bottom schedule if it has no successors. 836 if (!SU.NumSuccsLeft) 837 BotRoots.push_back(&SU); 838 } 839 ExitSU.biasCriticalPath(); 840 } 841 842 /// Identify DAG roots and setup scheduler queues. 843 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 844 ArrayRef<SUnit*> BotRoots) { 845 NextClusterSucc = nullptr; 846 NextClusterPred = nullptr; 847 848 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 849 // 850 // Nodes with unreleased weak edges can still be roots. 851 // Release top roots in forward order. 852 for (SUnit *SU : TopRoots) 853 SchedImpl->releaseTopNode(SU); 854 855 // Release bottom roots in reverse order so the higher priority nodes appear 856 // first. This is more natural and slightly more efficient. 857 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 858 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 859 SchedImpl->releaseBottomNode(*I); 860 } 861 862 releaseSuccessors(&EntrySU); 863 releasePredecessors(&ExitSU); 864 865 SchedImpl->registerRoots(); 866 867 // Advance past initial DebugValues. 868 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 869 CurrentBottom = RegionEnd; 870 } 871 872 /// Update scheduler queues after scheduling an instruction. 873 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 874 // Release dependent instructions for scheduling. 875 if (IsTopNode) 876 releaseSuccessors(SU); 877 else 878 releasePredecessors(SU); 879 880 SU->isScheduled = true; 881 } 882 883 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 884 void ScheduleDAGMI::placeDebugValues() { 885 // If first instruction was a DBG_VALUE then put it back. 886 if (FirstDbgValue) { 887 BB->splice(RegionBegin, BB, FirstDbgValue); 888 RegionBegin = FirstDbgValue; 889 } 890 891 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 892 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 893 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 894 MachineInstr *DbgValue = P.first; 895 MachineBasicBlock::iterator OrigPrevMI = P.second; 896 if (&*RegionBegin == DbgValue) 897 ++RegionBegin; 898 BB->splice(++OrigPrevMI, BB, DbgValue); 899 if (OrigPrevMI == std::prev(RegionEnd)) 900 RegionEnd = DbgValue; 901 } 902 DbgValues.clear(); 903 FirstDbgValue = nullptr; 904 } 905 906 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 907 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 908 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 909 if (SUnit *SU = getSUnit(&(*MI))) 910 dumpNode(*SU); 911 else 912 dbgs() << "Missing SUnit\n"; 913 } 914 } 915 #endif 916 917 //===----------------------------------------------------------------------===// 918 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 919 // preservation. 920 //===----------------------------------------------------------------------===// 921 922 ScheduleDAGMILive::~ScheduleDAGMILive() { 923 delete DFSResult; 924 } 925 926 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 927 const MachineInstr &MI = *SU.getInstr(); 928 for (const MachineOperand &MO : MI.operands()) { 929 if (!MO.isReg()) 930 continue; 931 if (!MO.readsReg()) 932 continue; 933 if (TrackLaneMasks && !MO.isUse()) 934 continue; 935 936 unsigned Reg = MO.getReg(); 937 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 938 continue; 939 940 // Ignore re-defs. 941 if (TrackLaneMasks) { 942 bool FoundDef = false; 943 for (const MachineOperand &MO2 : MI.operands()) { 944 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 945 FoundDef = true; 946 break; 947 } 948 } 949 if (FoundDef) 950 continue; 951 } 952 953 // Record this local VReg use. 954 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 955 for (; UI != VRegUses.end(); ++UI) { 956 if (UI->SU == &SU) 957 break; 958 } 959 if (UI == VRegUses.end()) 960 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 961 } 962 } 963 964 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 965 /// crossing a scheduling boundary. [begin, end) includes all instructions in 966 /// the region, including the boundary itself and single-instruction regions 967 /// that don't get scheduled. 968 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 969 MachineBasicBlock::iterator begin, 970 MachineBasicBlock::iterator end, 971 unsigned regioninstrs) 972 { 973 // ScheduleDAGMI initializes SchedImpl's per-region policy. 974 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 975 976 // For convenience remember the end of the liveness region. 977 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 978 979 SUPressureDiffs.clear(); 980 981 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 982 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 983 984 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 985 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 986 } 987 988 // Setup the register pressure trackers for the top scheduled top and bottom 989 // scheduled regions. 990 void ScheduleDAGMILive::initRegPressure() { 991 VRegUses.clear(); 992 VRegUses.setUniverse(MRI.getNumVirtRegs()); 993 for (SUnit &SU : SUnits) 994 collectVRegUses(SU); 995 996 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 997 ShouldTrackLaneMasks, false); 998 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 999 ShouldTrackLaneMasks, false); 1000 1001 // Close the RPTracker to finalize live ins. 1002 RPTracker.closeRegion(); 1003 1004 LLVM_DEBUG(RPTracker.dump()); 1005 1006 // Initialize the live ins and live outs. 1007 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1008 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1009 1010 // Close one end of the tracker so we can call 1011 // getMaxUpward/DownwardPressureDelta before advancing across any 1012 // instructions. This converts currently live regs into live ins/outs. 1013 TopRPTracker.closeTop(); 1014 BotRPTracker.closeBottom(); 1015 1016 BotRPTracker.initLiveThru(RPTracker); 1017 if (!BotRPTracker.getLiveThru().empty()) { 1018 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1019 LLVM_DEBUG(dbgs() << "Live Thru: "; 1020 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1021 }; 1022 1023 // For each live out vreg reduce the pressure change associated with other 1024 // uses of the same vreg below the live-out reaching def. 1025 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1026 1027 // Account for liveness generated by the region boundary. 1028 if (LiveRegionEnd != RegionEnd) { 1029 SmallVector<RegisterMaskPair, 8> LiveUses; 1030 BotRPTracker.recede(&LiveUses); 1031 updatePressureDiffs(LiveUses); 1032 } 1033 1034 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; 1035 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1036 dbgs() << "Bottom Pressure:\n"; 1037 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);); 1038 1039 assert((BotRPTracker.getPos() == RegionEnd || 1040 (RegionEnd->isDebugInstr() && 1041 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && 1042 "Can't find the region bottom"); 1043 1044 // Cache the list of excess pressure sets in this region. This will also track 1045 // the max pressure in the scheduled code for these sets. 1046 RegionCriticalPSets.clear(); 1047 const std::vector<unsigned> &RegionPressure = 1048 RPTracker.getPressure().MaxSetPressure; 1049 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1050 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1051 if (RegionPressure[i] > Limit) { 1052 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit 1053 << " Actual " << RegionPressure[i] << "\n"); 1054 RegionCriticalPSets.push_back(PressureChange(i)); 1055 } 1056 } 1057 LLVM_DEBUG(dbgs() << "Excess PSets: "; 1058 for (const PressureChange &RCPS 1059 : RegionCriticalPSets) dbgs() 1060 << TRI->getRegPressureSetName(RCPS.getPSet()) << " "; 1061 dbgs() << "\n"); 1062 } 1063 1064 void ScheduleDAGMILive:: 1065 updateScheduledPressure(const SUnit *SU, 1066 const std::vector<unsigned> &NewMaxPressure) { 1067 const PressureDiff &PDiff = getPressureDiff(SU); 1068 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1069 for (const PressureChange &PC : PDiff) { 1070 if (!PC.isValid()) 1071 break; 1072 unsigned ID = PC.getPSet(); 1073 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1074 ++CritIdx; 1075 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1076 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1077 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1078 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1079 } 1080 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1081 if (NewMaxPressure[ID] >= Limit - 2) { 1082 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1083 << NewMaxPressure[ID] 1084 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") 1085 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID] 1086 << " livethru)\n"); 1087 } 1088 } 1089 } 1090 1091 /// Update the PressureDiff array for liveness after scheduling this 1092 /// instruction. 1093 void ScheduleDAGMILive::updatePressureDiffs( 1094 ArrayRef<RegisterMaskPair> LiveUses) { 1095 for (const RegisterMaskPair &P : LiveUses) { 1096 unsigned Reg = P.RegUnit; 1097 /// FIXME: Currently assuming single-use physregs. 1098 if (!TRI->isVirtualRegister(Reg)) 1099 continue; 1100 1101 if (ShouldTrackLaneMasks) { 1102 // If the register has just become live then other uses won't change 1103 // this fact anymore => decrement pressure. 1104 // If the register has just become dead then other uses make it come 1105 // back to life => increment pressure. 1106 bool Decrement = P.LaneMask.any(); 1107 1108 for (const VReg2SUnit &V2SU 1109 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1110 SUnit &SU = *V2SU.SU; 1111 if (SU.isScheduled || &SU == &ExitSU) 1112 continue; 1113 1114 PressureDiff &PDiff = getPressureDiff(&SU); 1115 PDiff.addPressureChange(Reg, Decrement, &MRI); 1116 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1117 << printReg(Reg, TRI) << ':' 1118 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr(); 1119 dbgs() << " to "; PDiff.dump(*TRI);); 1120 } 1121 } else { 1122 assert(P.LaneMask.any()); 1123 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1124 // This may be called before CurrentBottom has been initialized. However, 1125 // BotRPTracker must have a valid position. We want the value live into the 1126 // instruction or live out of the block, so ask for the previous 1127 // instruction's live-out. 1128 const LiveInterval &LI = LIS->getInterval(Reg); 1129 VNInfo *VNI; 1130 MachineBasicBlock::const_iterator I = 1131 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1132 if (I == BB->end()) 1133 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1134 else { 1135 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1136 VNI = LRQ.valueIn(); 1137 } 1138 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1139 assert(VNI && "No live value at use."); 1140 for (const VReg2SUnit &V2SU 1141 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1142 SUnit *SU = V2SU.SU; 1143 // If this use comes before the reaching def, it cannot be a last use, 1144 // so decrease its pressure change. 1145 if (!SU->isScheduled && SU != &ExitSU) { 1146 LiveQueryResult LRQ = 1147 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1148 if (LRQ.valueIn() == VNI) { 1149 PressureDiff &PDiff = getPressureDiff(SU); 1150 PDiff.addPressureChange(Reg, true, &MRI); 1151 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1152 << *SU->getInstr(); 1153 dbgs() << " to "; PDiff.dump(*TRI);); 1154 } 1155 } 1156 } 1157 } 1158 } 1159 } 1160 1161 void ScheduleDAGMILive::dump() const { 1162 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1163 if (EntrySU.getInstr() != nullptr) 1164 dumpNodeAll(EntrySU); 1165 for (const SUnit &SU : SUnits) { 1166 dumpNodeAll(SU); 1167 if (ShouldTrackPressure) { 1168 dbgs() << " Pressure Diff : "; 1169 getPressureDiff(&SU).dump(*TRI); 1170 } 1171 dbgs() << " Single Issue : "; 1172 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1173 SchedModel.mustEndGroup(SU.getInstr())) 1174 dbgs() << "true;"; 1175 else 1176 dbgs() << "false;"; 1177 dbgs() << '\n'; 1178 } 1179 if (ExitSU.getInstr() != nullptr) 1180 dumpNodeAll(ExitSU); 1181 #endif 1182 } 1183 1184 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1185 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1186 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1187 /// 1188 /// This is a skeletal driver, with all the functionality pushed into helpers, 1189 /// so that it can be easily extended by experimental schedulers. Generally, 1190 /// implementing MachineSchedStrategy should be sufficient to implement a new 1191 /// scheduling algorithm. However, if a scheduler further subclasses 1192 /// ScheduleDAGMILive then it will want to override this virtual method in order 1193 /// to update any specialized state. 1194 void ScheduleDAGMILive::schedule() { 1195 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1196 LLVM_DEBUG(SchedImpl->dumpPolicy()); 1197 buildDAGWithRegPressure(); 1198 1199 postprocessDAG(); 1200 1201 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1202 findRootsAndBiasEdges(TopRoots, BotRoots); 1203 1204 // Initialize the strategy before modifying the DAG. 1205 // This may initialize a DFSResult to be used for queue priority. 1206 SchedImpl->initialize(this); 1207 1208 LLVM_DEBUG(dump()); 1209 if (PrintDAGs) dump(); 1210 if (ViewMISchedDAGs) viewGraph(); 1211 1212 // Initialize ready queues now that the DAG and priority data are finalized. 1213 initQueues(TopRoots, BotRoots); 1214 1215 bool IsTopNode = false; 1216 while (true) { 1217 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1218 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1219 if (!SU) break; 1220 1221 assert(!SU->isScheduled && "Node already scheduled"); 1222 if (!checkSchedLimit()) 1223 break; 1224 1225 scheduleMI(SU, IsTopNode); 1226 1227 if (DFSResult) { 1228 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1229 if (!ScheduledTrees.test(SubtreeID)) { 1230 ScheduledTrees.set(SubtreeID); 1231 DFSResult->scheduleTree(SubtreeID); 1232 SchedImpl->scheduleTree(SubtreeID); 1233 } 1234 } 1235 1236 // Notify the scheduling strategy after updating the DAG. 1237 SchedImpl->schedNode(SU, IsTopNode); 1238 1239 updateQueues(SU, IsTopNode); 1240 } 1241 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1242 1243 placeDebugValues(); 1244 1245 LLVM_DEBUG({ 1246 dbgs() << "*** Final schedule for " 1247 << printMBBReference(*begin()->getParent()) << " ***\n"; 1248 dumpSchedule(); 1249 dbgs() << '\n'; 1250 }); 1251 } 1252 1253 /// Build the DAG and setup three register pressure trackers. 1254 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1255 if (!ShouldTrackPressure) { 1256 RPTracker.reset(); 1257 RegionCriticalPSets.clear(); 1258 buildSchedGraph(AA); 1259 return; 1260 } 1261 1262 // Initialize the register pressure tracker used by buildSchedGraph. 1263 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1264 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1265 1266 // Account for liveness generate by the region boundary. 1267 if (LiveRegionEnd != RegionEnd) 1268 RPTracker.recede(); 1269 1270 // Build the DAG, and compute current register pressure. 1271 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1272 1273 // Initialize top/bottom trackers after computing region pressure. 1274 initRegPressure(); 1275 } 1276 1277 void ScheduleDAGMILive::computeDFSResult() { 1278 if (!DFSResult) 1279 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1280 DFSResult->clear(); 1281 ScheduledTrees.clear(); 1282 DFSResult->resize(SUnits.size()); 1283 DFSResult->compute(SUnits); 1284 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1285 } 1286 1287 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1288 /// only provides the critical path for single block loops. To handle loops that 1289 /// span blocks, we could use the vreg path latencies provided by 1290 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1291 /// available for use in the scheduler. 1292 /// 1293 /// The cyclic path estimation identifies a def-use pair that crosses the back 1294 /// edge and considers the depth and height of the nodes. For example, consider 1295 /// the following instruction sequence where each instruction has unit latency 1296 /// and defines an epomymous virtual register: 1297 /// 1298 /// a->b(a,c)->c(b)->d(c)->exit 1299 /// 1300 /// The cyclic critical path is a two cycles: b->c->b 1301 /// The acyclic critical path is four cycles: a->b->c->d->exit 1302 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1303 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1304 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1305 /// LiveInDepth = depth(b) = len(a->b) = 1 1306 /// 1307 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1308 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1309 /// CyclicCriticalPath = min(2, 2) = 2 1310 /// 1311 /// This could be relevant to PostRA scheduling, but is currently implemented 1312 /// assuming LiveIntervals. 1313 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1314 // This only applies to single block loop. 1315 if (!BB->isSuccessor(BB)) 1316 return 0; 1317 1318 unsigned MaxCyclicLatency = 0; 1319 // Visit each live out vreg def to find def/use pairs that cross iterations. 1320 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1321 unsigned Reg = P.RegUnit; 1322 if (!TRI->isVirtualRegister(Reg)) 1323 continue; 1324 const LiveInterval &LI = LIS->getInterval(Reg); 1325 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1326 if (!DefVNI) 1327 continue; 1328 1329 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1330 const SUnit *DefSU = getSUnit(DefMI); 1331 if (!DefSU) 1332 continue; 1333 1334 unsigned LiveOutHeight = DefSU->getHeight(); 1335 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1336 // Visit all local users of the vreg def. 1337 for (const VReg2SUnit &V2SU 1338 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1339 SUnit *SU = V2SU.SU; 1340 if (SU == &ExitSU) 1341 continue; 1342 1343 // Only consider uses of the phi. 1344 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1345 if (!LRQ.valueIn()->isPHIDef()) 1346 continue; 1347 1348 // Assume that a path spanning two iterations is a cycle, which could 1349 // overestimate in strange cases. This allows cyclic latency to be 1350 // estimated as the minimum slack of the vreg's depth or height. 1351 unsigned CyclicLatency = 0; 1352 if (LiveOutDepth > SU->getDepth()) 1353 CyclicLatency = LiveOutDepth - SU->getDepth(); 1354 1355 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1356 if (LiveInHeight > LiveOutHeight) { 1357 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1358 CyclicLatency = LiveInHeight - LiveOutHeight; 1359 } else 1360 CyclicLatency = 0; 1361 1362 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1363 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1364 if (CyclicLatency > MaxCyclicLatency) 1365 MaxCyclicLatency = CyclicLatency; 1366 } 1367 } 1368 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1369 return MaxCyclicLatency; 1370 } 1371 1372 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1373 /// the Top RP tracker in case the region beginning has changed. 1374 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1375 ArrayRef<SUnit*> BotRoots) { 1376 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1377 if (ShouldTrackPressure) { 1378 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1379 TopRPTracker.setPos(CurrentTop); 1380 } 1381 } 1382 1383 /// Move an instruction and update register pressure. 1384 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1385 // Move the instruction to its new location in the instruction stream. 1386 MachineInstr *MI = SU->getInstr(); 1387 1388 if (IsTopNode) { 1389 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1390 if (&*CurrentTop == MI) 1391 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1392 else { 1393 moveInstruction(MI, CurrentTop); 1394 TopRPTracker.setPos(MI); 1395 } 1396 1397 if (ShouldTrackPressure) { 1398 // Update top scheduled pressure. 1399 RegisterOperands RegOpers; 1400 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1401 if (ShouldTrackLaneMasks) { 1402 // Adjust liveness and add missing dead+read-undef flags. 1403 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1404 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1405 } else { 1406 // Adjust for missing dead-def flags. 1407 RegOpers.detectDeadDefs(*MI, *LIS); 1408 } 1409 1410 TopRPTracker.advance(RegOpers); 1411 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1412 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure( 1413 TopRPTracker.getRegSetPressureAtPos(), TRI);); 1414 1415 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1416 } 1417 } else { 1418 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1419 MachineBasicBlock::iterator priorII = 1420 priorNonDebug(CurrentBottom, CurrentTop); 1421 if (&*priorII == MI) 1422 CurrentBottom = priorII; 1423 else { 1424 if (&*CurrentTop == MI) { 1425 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1426 TopRPTracker.setPos(CurrentTop); 1427 } 1428 moveInstruction(MI, CurrentBottom); 1429 CurrentBottom = MI; 1430 BotRPTracker.setPos(CurrentBottom); 1431 } 1432 if (ShouldTrackPressure) { 1433 RegisterOperands RegOpers; 1434 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1435 if (ShouldTrackLaneMasks) { 1436 // Adjust liveness and add missing dead+read-undef flags. 1437 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1438 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1439 } else { 1440 // Adjust for missing dead-def flags. 1441 RegOpers.detectDeadDefs(*MI, *LIS); 1442 } 1443 1444 if (BotRPTracker.getPos() != CurrentBottom) 1445 BotRPTracker.recedeSkipDebugValues(); 1446 SmallVector<RegisterMaskPair, 8> LiveUses; 1447 BotRPTracker.recede(RegOpers, &LiveUses); 1448 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1449 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure( 1450 BotRPTracker.getRegSetPressureAtPos(), TRI);); 1451 1452 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1453 updatePressureDiffs(LiveUses); 1454 } 1455 } 1456 } 1457 1458 //===----------------------------------------------------------------------===// 1459 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1460 //===----------------------------------------------------------------------===// 1461 1462 namespace { 1463 1464 /// Post-process the DAG to create cluster edges between neighboring 1465 /// loads or between neighboring stores. 1466 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1467 struct MemOpInfo { 1468 SUnit *SU; 1469 const MachineOperand *BaseOp; 1470 int64_t Offset; 1471 1472 MemOpInfo(SUnit *su, const MachineOperand *Op, int64_t ofs) 1473 : SU(su), BaseOp(Op), Offset(ofs) {} 1474 1475 bool operator<(const MemOpInfo &RHS) const { 1476 if (BaseOp->getType() != RHS.BaseOp->getType()) 1477 return BaseOp->getType() < RHS.BaseOp->getType(); 1478 1479 if (BaseOp->isReg()) 1480 return std::make_tuple(BaseOp->getReg(), Offset, SU->NodeNum) < 1481 std::make_tuple(RHS.BaseOp->getReg(), RHS.Offset, 1482 RHS.SU->NodeNum); 1483 if (BaseOp->isFI()) { 1484 const MachineFunction &MF = 1485 *BaseOp->getParent()->getParent()->getParent(); 1486 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); 1487 bool StackGrowsDown = TFI.getStackGrowthDirection() == 1488 TargetFrameLowering::StackGrowsDown; 1489 // Can't use tuple comparison here since we might need to use a 1490 // different order when the stack grows down. 1491 if (BaseOp->getIndex() != RHS.BaseOp->getIndex()) 1492 return StackGrowsDown ? BaseOp->getIndex() > RHS.BaseOp->getIndex() 1493 : BaseOp->getIndex() < RHS.BaseOp->getIndex(); 1494 1495 if (Offset != RHS.Offset) 1496 return StackGrowsDown ? Offset > RHS.Offset : Offset < RHS.Offset; 1497 1498 return SU->NodeNum < RHS.SU->NodeNum; 1499 } 1500 1501 llvm_unreachable("MemOpClusterMutation only supports register or frame " 1502 "index bases."); 1503 } 1504 }; 1505 1506 const TargetInstrInfo *TII; 1507 const TargetRegisterInfo *TRI; 1508 bool IsLoad; 1509 1510 public: 1511 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1512 const TargetRegisterInfo *tri, bool IsLoad) 1513 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1514 1515 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1516 1517 protected: 1518 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG); 1519 }; 1520 1521 class StoreClusterMutation : public BaseMemOpClusterMutation { 1522 public: 1523 StoreClusterMutation(const TargetInstrInfo *tii, 1524 const TargetRegisterInfo *tri) 1525 : BaseMemOpClusterMutation(tii, tri, false) {} 1526 }; 1527 1528 class LoadClusterMutation : public BaseMemOpClusterMutation { 1529 public: 1530 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1531 : BaseMemOpClusterMutation(tii, tri, true) {} 1532 }; 1533 1534 } // end anonymous namespace 1535 1536 namespace llvm { 1537 1538 std::unique_ptr<ScheduleDAGMutation> 1539 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1540 const TargetRegisterInfo *TRI) { 1541 return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI) 1542 : nullptr; 1543 } 1544 1545 std::unique_ptr<ScheduleDAGMutation> 1546 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1547 const TargetRegisterInfo *TRI) { 1548 return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI) 1549 : nullptr; 1550 } 1551 1552 } // end namespace llvm 1553 1554 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1555 ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG) { 1556 SmallVector<MemOpInfo, 32> MemOpRecords; 1557 for (SUnit *SU : MemOps) { 1558 const MachineOperand *BaseOp; 1559 int64_t Offset; 1560 if (TII->getMemOperandWithOffset(*SU->getInstr(), BaseOp, Offset, TRI)) 1561 MemOpRecords.push_back(MemOpInfo(SU, BaseOp, Offset)); 1562 } 1563 if (MemOpRecords.size() < 2) 1564 return; 1565 1566 llvm::sort(MemOpRecords); 1567 unsigned ClusterLength = 1; 1568 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1569 SUnit *SUa = MemOpRecords[Idx].SU; 1570 SUnit *SUb = MemOpRecords[Idx+1].SU; 1571 if (TII->shouldClusterMemOps(*MemOpRecords[Idx].BaseOp, 1572 *MemOpRecords[Idx + 1].BaseOp, 1573 ClusterLength) && 1574 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1575 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1576 << SUb->NodeNum << ")\n"); 1577 // Copy successor edges from SUa to SUb. Interleaving computation 1578 // dependent on SUa can prevent load combining due to register reuse. 1579 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1580 // loads should have effectively the same inputs. 1581 for (const SDep &Succ : SUa->Succs) { 1582 if (Succ.getSUnit() == SUb) 1583 continue; 1584 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum 1585 << ")\n"); 1586 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1587 } 1588 ++ClusterLength; 1589 } else 1590 ClusterLength = 1; 1591 } 1592 } 1593 1594 /// Callback from DAG postProcessing to create cluster edges for loads. 1595 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) { 1596 // Map DAG NodeNum to store chain ID. 1597 DenseMap<unsigned, unsigned> StoreChainIDs; 1598 // Map each store chain to a set of dependent MemOps. 1599 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1600 for (SUnit &SU : DAG->SUnits) { 1601 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1602 (!IsLoad && !SU.getInstr()->mayStore())) 1603 continue; 1604 1605 unsigned ChainPredID = DAG->SUnits.size(); 1606 for (const SDep &Pred : SU.Preds) { 1607 if (Pred.isCtrl()) { 1608 ChainPredID = Pred.getSUnit()->NodeNum; 1609 break; 1610 } 1611 } 1612 // Check if this chain-like pred has been seen 1613 // before. ChainPredID==MaxNodeID at the top of the schedule. 1614 unsigned NumChains = StoreChainDependents.size(); 1615 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1616 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1617 if (Result.second) 1618 StoreChainDependents.resize(NumChains + 1); 1619 StoreChainDependents[Result.first->second].push_back(&SU); 1620 } 1621 1622 // Iterate over the store chains. 1623 for (auto &SCD : StoreChainDependents) 1624 clusterNeighboringMemOps(SCD, DAG); 1625 } 1626 1627 //===----------------------------------------------------------------------===// 1628 // CopyConstrain - DAG post-processing to encourage copy elimination. 1629 //===----------------------------------------------------------------------===// 1630 1631 namespace { 1632 1633 /// Post-process the DAG to create weak edges from all uses of a copy to 1634 /// the one use that defines the copy's source vreg, most likely an induction 1635 /// variable increment. 1636 class CopyConstrain : public ScheduleDAGMutation { 1637 // Transient state. 1638 SlotIndex RegionBeginIdx; 1639 1640 // RegionEndIdx is the slot index of the last non-debug instruction in the 1641 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1642 SlotIndex RegionEndIdx; 1643 1644 public: 1645 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1646 1647 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1648 1649 protected: 1650 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1651 }; 1652 1653 } // end anonymous namespace 1654 1655 namespace llvm { 1656 1657 std::unique_ptr<ScheduleDAGMutation> 1658 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1659 const TargetRegisterInfo *TRI) { 1660 return llvm::make_unique<CopyConstrain>(TII, TRI); 1661 } 1662 1663 } // end namespace llvm 1664 1665 /// constrainLocalCopy handles two possibilities: 1666 /// 1) Local src: 1667 /// I0: = dst 1668 /// I1: src = ... 1669 /// I2: = dst 1670 /// I3: dst = src (copy) 1671 /// (create pred->succ edges I0->I1, I2->I1) 1672 /// 1673 /// 2) Local copy: 1674 /// I0: dst = src (copy) 1675 /// I1: = dst 1676 /// I2: src = ... 1677 /// I3: = dst 1678 /// (create pred->succ edges I1->I2, I3->I2) 1679 /// 1680 /// Although the MachineScheduler is currently constrained to single blocks, 1681 /// this algorithm should handle extended blocks. An EBB is a set of 1682 /// contiguously numbered blocks such that the previous block in the EBB is 1683 /// always the single predecessor. 1684 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1685 LiveIntervals *LIS = DAG->getLIS(); 1686 MachineInstr *Copy = CopySU->getInstr(); 1687 1688 // Check for pure vreg copies. 1689 const MachineOperand &SrcOp = Copy->getOperand(1); 1690 unsigned SrcReg = SrcOp.getReg(); 1691 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1692 return; 1693 1694 const MachineOperand &DstOp = Copy->getOperand(0); 1695 unsigned DstReg = DstOp.getReg(); 1696 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1697 return; 1698 1699 // Check if either the dest or source is local. If it's live across a back 1700 // edge, it's not local. Note that if both vregs are live across the back 1701 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1702 // If both the copy's source and dest are local live intervals, then we 1703 // should treat the dest as the global for the purpose of adding 1704 // constraints. This adds edges from source's other uses to the copy. 1705 unsigned LocalReg = SrcReg; 1706 unsigned GlobalReg = DstReg; 1707 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1708 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1709 LocalReg = DstReg; 1710 GlobalReg = SrcReg; 1711 LocalLI = &LIS->getInterval(LocalReg); 1712 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1713 return; 1714 } 1715 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1716 1717 // Find the global segment after the start of the local LI. 1718 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1719 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1720 // local live range. We could create edges from other global uses to the local 1721 // start, but the coalescer should have already eliminated these cases, so 1722 // don't bother dealing with it. 1723 if (GlobalSegment == GlobalLI->end()) 1724 return; 1725 1726 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1727 // returned the next global segment. But if GlobalSegment overlaps with 1728 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI 1729 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1730 if (GlobalSegment->contains(LocalLI->beginIndex())) 1731 ++GlobalSegment; 1732 1733 if (GlobalSegment == GlobalLI->end()) 1734 return; 1735 1736 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1737 if (GlobalSegment != GlobalLI->begin()) { 1738 // Two address defs have no hole. 1739 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1740 GlobalSegment->start)) { 1741 return; 1742 } 1743 // If the prior global segment may be defined by the same two-address 1744 // instruction that also defines LocalLI, then can't make a hole here. 1745 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1746 LocalLI->beginIndex())) { 1747 return; 1748 } 1749 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1750 // it would be a disconnected component in the live range. 1751 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1752 "Disconnected LRG within the scheduling region."); 1753 } 1754 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1755 if (!GlobalDef) 1756 return; 1757 1758 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1759 if (!GlobalSU) 1760 return; 1761 1762 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1763 // constraining the uses of the last local def to precede GlobalDef. 1764 SmallVector<SUnit*,8> LocalUses; 1765 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1766 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1767 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1768 for (const SDep &Succ : LastLocalSU->Succs) { 1769 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 1770 continue; 1771 if (Succ.getSUnit() == GlobalSU) 1772 continue; 1773 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 1774 return; 1775 LocalUses.push_back(Succ.getSUnit()); 1776 } 1777 // Open the top of the GlobalLI hole by constraining any earlier global uses 1778 // to precede the start of LocalLI. 1779 SmallVector<SUnit*,8> GlobalUses; 1780 MachineInstr *FirstLocalDef = 1781 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1782 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1783 for (const SDep &Pred : GlobalSU->Preds) { 1784 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 1785 continue; 1786 if (Pred.getSUnit() == FirstLocalSU) 1787 continue; 1788 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 1789 return; 1790 GlobalUses.push_back(Pred.getSUnit()); 1791 } 1792 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1793 // Add the weak edges. 1794 for (SmallVectorImpl<SUnit*>::const_iterator 1795 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1796 LLVM_DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1797 << GlobalSU->NodeNum << ")\n"); 1798 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1799 } 1800 for (SmallVectorImpl<SUnit*>::const_iterator 1801 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1802 LLVM_DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1803 << FirstLocalSU->NodeNum << ")\n"); 1804 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1805 } 1806 } 1807 1808 /// Callback from DAG postProcessing to create weak edges to encourage 1809 /// copy elimination. 1810 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1811 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1812 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1813 1814 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1815 if (FirstPos == DAG->end()) 1816 return; 1817 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1818 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1819 *priorNonDebug(DAG->end(), DAG->begin())); 1820 1821 for (SUnit &SU : DAG->SUnits) { 1822 if (!SU.getInstr()->isCopy()) 1823 continue; 1824 1825 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 1826 } 1827 } 1828 1829 //===----------------------------------------------------------------------===// 1830 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1831 // and possibly other custom schedulers. 1832 //===----------------------------------------------------------------------===// 1833 1834 static const unsigned InvalidCycle = ~0U; 1835 1836 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1837 1838 /// Given a Count of resource usage and a Latency value, return true if a 1839 /// SchedBoundary becomes resource limited. 1840 /// If we are checking after scheduling a node, we should return true when 1841 /// we just reach the resource limit. 1842 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 1843 unsigned Latency, bool AfterSchedNode) { 1844 int ResCntFactor = (int)(Count - (Latency * LFactor)); 1845 if (AfterSchedNode) 1846 return ResCntFactor >= (int)LFactor; 1847 else 1848 return ResCntFactor > (int)LFactor; 1849 } 1850 1851 void SchedBoundary::reset() { 1852 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1853 // Destroying and reconstructing it is very expensive though. So keep 1854 // invalid, placeholder HazardRecs. 1855 if (HazardRec && HazardRec->isEnabled()) { 1856 delete HazardRec; 1857 HazardRec = nullptr; 1858 } 1859 Available.clear(); 1860 Pending.clear(); 1861 CheckPending = false; 1862 CurrCycle = 0; 1863 CurrMOps = 0; 1864 MinReadyCycle = std::numeric_limits<unsigned>::max(); 1865 ExpectedLatency = 0; 1866 DependentLatency = 0; 1867 RetiredMOps = 0; 1868 MaxExecutedResCount = 0; 1869 ZoneCritResIdx = 0; 1870 IsResourceLimited = false; 1871 ReservedCycles.clear(); 1872 ReservedCyclesIndex.clear(); 1873 #ifndef NDEBUG 1874 // Track the maximum number of stall cycles that could arise either from the 1875 // latency of a DAG edge or the number of cycles that a processor resource is 1876 // reserved (SchedBoundary::ReservedCycles). 1877 MaxObservedStall = 0; 1878 #endif 1879 // Reserve a zero-count for invalid CritResIdx. 1880 ExecutedResCounts.resize(1); 1881 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1882 } 1883 1884 void SchedRemainder:: 1885 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1886 reset(); 1887 if (!SchedModel->hasInstrSchedModel()) 1888 return; 1889 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1890 for (SUnit &SU : DAG->SUnits) { 1891 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 1892 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 1893 * SchedModel->getMicroOpFactor(); 1894 for (TargetSchedModel::ProcResIter 1895 PI = SchedModel->getWriteProcResBegin(SC), 1896 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1897 unsigned PIdx = PI->ProcResourceIdx; 1898 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1899 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1900 } 1901 } 1902 } 1903 1904 void SchedBoundary:: 1905 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1906 reset(); 1907 DAG = dag; 1908 SchedModel = smodel; 1909 Rem = rem; 1910 if (SchedModel->hasInstrSchedModel()) { 1911 unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); 1912 ReservedCyclesIndex.resize(ResourceCount); 1913 ExecutedResCounts.resize(ResourceCount); 1914 unsigned NumUnits = 0; 1915 1916 for (unsigned i = 0; i < ResourceCount; ++i) { 1917 ReservedCyclesIndex[i] = NumUnits; 1918 NumUnits += SchedModel->getProcResource(i)->NumUnits; 1919 } 1920 1921 ReservedCycles.resize(NumUnits, InvalidCycle); 1922 } 1923 } 1924 1925 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1926 /// these "soft stalls" differently than the hard stall cycles based on CPU 1927 /// resources and computed by checkHazard(). A fully in-order model 1928 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1929 /// available for scheduling until they are ready. However, a weaker in-order 1930 /// model may use this for heuristics. For example, if a processor has in-order 1931 /// behavior when reading certain resources, this may come into play. 1932 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1933 if (!SU->isUnbuffered) 1934 return 0; 1935 1936 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1937 if (ReadyCycle > CurrCycle) 1938 return ReadyCycle - CurrCycle; 1939 return 0; 1940 } 1941 1942 /// Compute the next cycle at which the given processor resource unit 1943 /// can be scheduled. 1944 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx, 1945 unsigned Cycles) { 1946 unsigned NextUnreserved = ReservedCycles[InstanceIdx]; 1947 // If this resource has never been used, always return cycle zero. 1948 if (NextUnreserved == InvalidCycle) 1949 return 0; 1950 // For bottom-up scheduling add the cycles needed for the current operation. 1951 if (!isTop()) 1952 NextUnreserved += Cycles; 1953 return NextUnreserved; 1954 } 1955 1956 /// Compute the next cycle at which the given processor resource can be 1957 /// scheduled. Returns the next cycle and the index of the processor resource 1958 /// instance in the reserved cycles vector. 1959 std::pair<unsigned, unsigned> 1960 SchedBoundary::getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1961 unsigned MinNextUnreserved = InvalidCycle; 1962 unsigned InstanceIdx = 0; 1963 unsigned StartIndex = ReservedCyclesIndex[PIdx]; 1964 unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits; 1965 assert(NumberOfInstances > 0 && 1966 "Cannot have zero instances of a ProcResource"); 1967 1968 for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End; 1969 ++I) { 1970 unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles); 1971 if (MinNextUnreserved > NextUnreserved) { 1972 InstanceIdx = I; 1973 MinNextUnreserved = NextUnreserved; 1974 } 1975 } 1976 return std::make_pair(MinNextUnreserved, InstanceIdx); 1977 } 1978 1979 /// Does this SU have a hazard within the current instruction group. 1980 /// 1981 /// The scheduler supports two modes of hazard recognition. The first is the 1982 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1983 /// supports highly complicated in-order reservation tables 1984 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. 1985 /// 1986 /// The second is a streamlined mechanism that checks for hazards based on 1987 /// simple counters that the scheduler itself maintains. It explicitly checks 1988 /// for instruction dispatch limitations, including the number of micro-ops that 1989 /// can dispatch per cycle. 1990 /// 1991 /// TODO: Also check whether the SU must start a new group. 1992 bool SchedBoundary::checkHazard(SUnit *SU) { 1993 if (HazardRec->isEnabled() 1994 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1995 return true; 1996 } 1997 1998 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1999 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 2000 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 2001 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 2002 return true; 2003 } 2004 2005 if (CurrMOps > 0 && 2006 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 2007 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 2008 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 2009 << (isTop() ? "begin" : "end") << " group\n"); 2010 return true; 2011 } 2012 2013 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 2014 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2015 for (const MCWriteProcResEntry &PE : 2016 make_range(SchedModel->getWriteProcResBegin(SC), 2017 SchedModel->getWriteProcResEnd(SC))) { 2018 unsigned ResIdx = PE.ProcResourceIdx; 2019 unsigned Cycles = PE.Cycles; 2020 unsigned NRCycle, InstanceIdx; 2021 std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(ResIdx, Cycles); 2022 if (NRCycle > CurrCycle) { 2023 #ifndef NDEBUG 2024 MaxObservedStall = std::max(Cycles, MaxObservedStall); 2025 #endif 2026 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 2027 << SchedModel->getResourceName(ResIdx) 2028 << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']' 2029 << "=" << NRCycle << "c\n"); 2030 return true; 2031 } 2032 } 2033 } 2034 return false; 2035 } 2036 2037 // Find the unscheduled node in ReadySUs with the highest latency. 2038 unsigned SchedBoundary:: 2039 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 2040 SUnit *LateSU = nullptr; 2041 unsigned RemLatency = 0; 2042 for (SUnit *SU : ReadySUs) { 2043 unsigned L = getUnscheduledLatency(SU); 2044 if (L > RemLatency) { 2045 RemLatency = L; 2046 LateSU = SU; 2047 } 2048 } 2049 if (LateSU) { 2050 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2051 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2052 } 2053 return RemLatency; 2054 } 2055 2056 // Count resources in this zone and the remaining unscheduled 2057 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2058 // resource index, or zero if the zone is issue limited. 2059 unsigned SchedBoundary:: 2060 getOtherResourceCount(unsigned &OtherCritIdx) { 2061 OtherCritIdx = 0; 2062 if (!SchedModel->hasInstrSchedModel()) 2063 return 0; 2064 2065 unsigned OtherCritCount = Rem->RemIssueCount 2066 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2067 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2068 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2069 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2070 PIdx != PEnd; ++PIdx) { 2071 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2072 if (OtherCount > OtherCritCount) { 2073 OtherCritCount = OtherCount; 2074 OtherCritIdx = PIdx; 2075 } 2076 } 2077 if (OtherCritIdx) { 2078 LLVM_DEBUG( 2079 dbgs() << " " << Available.getName() << " + Remain CritRes: " 2080 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2081 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2082 } 2083 return OtherCritCount; 2084 } 2085 2086 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 2087 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2088 2089 #ifndef NDEBUG 2090 // ReadyCycle was been bumped up to the CurrCycle when this node was 2091 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2092 // scheduling, so may now be greater than ReadyCycle. 2093 if (ReadyCycle > CurrCycle) 2094 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2095 #endif 2096 2097 if (ReadyCycle < MinReadyCycle) 2098 MinReadyCycle = ReadyCycle; 2099 2100 // Check for interlocks first. For the purpose of other heuristics, an 2101 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2102 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2103 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 2104 Available.size() >= ReadyListLimit) 2105 Pending.push(SU); 2106 else 2107 Available.push(SU); 2108 } 2109 2110 /// Move the boundary of scheduled code by one cycle. 2111 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2112 if (SchedModel->getMicroOpBufferSize() == 0) { 2113 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2114 "MinReadyCycle uninitialized"); 2115 if (MinReadyCycle > NextCycle) 2116 NextCycle = MinReadyCycle; 2117 } 2118 // Update the current micro-ops, which will issue in the next cycle. 2119 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2120 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2121 2122 // Decrement DependentLatency based on the next cycle. 2123 if ((NextCycle - CurrCycle) > DependentLatency) 2124 DependentLatency = 0; 2125 else 2126 DependentLatency -= (NextCycle - CurrCycle); 2127 2128 if (!HazardRec->isEnabled()) { 2129 // Bypass HazardRec virtual calls. 2130 CurrCycle = NextCycle; 2131 } else { 2132 // Bypass getHazardType calls in case of long latency. 2133 for (; CurrCycle != NextCycle; ++CurrCycle) { 2134 if (isTop()) 2135 HazardRec->AdvanceCycle(); 2136 else 2137 HazardRec->RecedeCycle(); 2138 } 2139 } 2140 CheckPending = true; 2141 IsResourceLimited = 2142 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2143 getScheduledLatency(), true); 2144 2145 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() 2146 << '\n'); 2147 } 2148 2149 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2150 ExecutedResCounts[PIdx] += Count; 2151 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2152 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2153 } 2154 2155 /// Add the given processor resource to this scheduled zone. 2156 /// 2157 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2158 /// during which this resource is consumed. 2159 /// 2160 /// \return the next cycle at which the instruction may execute without 2161 /// oversubscribing resources. 2162 unsigned SchedBoundary:: 2163 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2164 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2165 unsigned Count = Factor * Cycles; 2166 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +" 2167 << Cycles << "x" << Factor << "u\n"); 2168 2169 // Update Executed resources counts. 2170 incExecutedResources(PIdx, Count); 2171 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2172 Rem->RemainingCounts[PIdx] -= Count; 2173 2174 // Check if this resource exceeds the current critical resource. If so, it 2175 // becomes the critical resource. 2176 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2177 ZoneCritResIdx = PIdx; 2178 LLVM_DEBUG(dbgs() << " *** Critical resource " 2179 << SchedModel->getResourceName(PIdx) << ": " 2180 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() 2181 << "c\n"); 2182 } 2183 // For reserved resources, record the highest cycle using the resource. 2184 unsigned NextAvailable, InstanceIdx; 2185 std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(PIdx, Cycles); 2186 if (NextAvailable > CurrCycle) { 2187 LLVM_DEBUG(dbgs() << " Resource conflict: " 2188 << SchedModel->getResourceName(PIdx) 2189 << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']' 2190 << " reserved until @" << NextAvailable << "\n"); 2191 } 2192 return NextAvailable; 2193 } 2194 2195 /// Move the boundary of scheduled code by one SUnit. 2196 void SchedBoundary::bumpNode(SUnit *SU) { 2197 // Update the reservation table. 2198 if (HazardRec->isEnabled()) { 2199 if (!isTop() && SU->isCall) { 2200 // Calls are scheduled with their preceding instructions. For bottom-up 2201 // scheduling, clear the pipeline state before emitting. 2202 HazardRec->Reset(); 2203 } 2204 HazardRec->EmitInstruction(SU); 2205 // Scheduling an instruction may have made pending instructions available. 2206 CheckPending = true; 2207 } 2208 // checkHazard should prevent scheduling multiple instructions per cycle that 2209 // exceed the issue width. 2210 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2211 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2212 assert( 2213 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2214 "Cannot schedule this instruction's MicroOps in the current cycle."); 2215 2216 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2217 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2218 2219 unsigned NextCycle = CurrCycle; 2220 switch (SchedModel->getMicroOpBufferSize()) { 2221 case 0: 2222 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2223 break; 2224 case 1: 2225 if (ReadyCycle > NextCycle) { 2226 NextCycle = ReadyCycle; 2227 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2228 } 2229 break; 2230 default: 2231 // We don't currently model the OOO reorder buffer, so consider all 2232 // scheduled MOps to be "retired". We do loosely model in-order resource 2233 // latency. If this instruction uses an in-order resource, account for any 2234 // likely stall cycles. 2235 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2236 NextCycle = ReadyCycle; 2237 break; 2238 } 2239 RetiredMOps += IncMOps; 2240 2241 // Update resource counts and critical resource. 2242 if (SchedModel->hasInstrSchedModel()) { 2243 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2244 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2245 Rem->RemIssueCount -= DecRemIssue; 2246 if (ZoneCritResIdx) { 2247 // Scale scheduled micro-ops for comparing with the critical resource. 2248 unsigned ScaledMOps = 2249 RetiredMOps * SchedModel->getMicroOpFactor(); 2250 2251 // If scaled micro-ops are now more than the previous critical resource by 2252 // a full cycle, then micro-ops issue becomes critical. 2253 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2254 >= (int)SchedModel->getLatencyFactor()) { 2255 ZoneCritResIdx = 0; 2256 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2257 << ScaledMOps / SchedModel->getLatencyFactor() 2258 << "c\n"); 2259 } 2260 } 2261 for (TargetSchedModel::ProcResIter 2262 PI = SchedModel->getWriteProcResBegin(SC), 2263 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2264 unsigned RCycle = 2265 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2266 if (RCycle > NextCycle) 2267 NextCycle = RCycle; 2268 } 2269 if (SU->hasReservedResource) { 2270 // For reserved resources, record the highest cycle using the resource. 2271 // For top-down scheduling, this is the cycle in which we schedule this 2272 // instruction plus the number of cycles the operations reserves the 2273 // resource. For bottom-up is it simply the instruction's cycle. 2274 for (TargetSchedModel::ProcResIter 2275 PI = SchedModel->getWriteProcResBegin(SC), 2276 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2277 unsigned PIdx = PI->ProcResourceIdx; 2278 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2279 unsigned ReservedUntil, InstanceIdx; 2280 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(PIdx, 0); 2281 if (isTop()) { 2282 ReservedCycles[InstanceIdx] = 2283 std::max(ReservedUntil, NextCycle + PI->Cycles); 2284 } else 2285 ReservedCycles[InstanceIdx] = NextCycle; 2286 } 2287 } 2288 } 2289 } 2290 // Update ExpectedLatency and DependentLatency. 2291 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2292 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2293 if (SU->getDepth() > TopLatency) { 2294 TopLatency = SU->getDepth(); 2295 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU(" 2296 << SU->NodeNum << ") " << TopLatency << "c\n"); 2297 } 2298 if (SU->getHeight() > BotLatency) { 2299 BotLatency = SU->getHeight(); 2300 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU(" 2301 << SU->NodeNum << ") " << BotLatency << "c\n"); 2302 } 2303 // If we stall for any reason, bump the cycle. 2304 if (NextCycle > CurrCycle) 2305 bumpCycle(NextCycle); 2306 else 2307 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2308 // resource limited. If a stall occurred, bumpCycle does this. 2309 IsResourceLimited = 2310 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2311 getScheduledLatency(), true); 2312 2313 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2314 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2315 // one cycle. Since we commonly reach the max MOps here, opportunistically 2316 // bump the cycle to avoid uselessly checking everything in the readyQ. 2317 CurrMOps += IncMOps; 2318 2319 // Bump the cycle count for issue group constraints. 2320 // This must be done after NextCycle has been adjust for all other stalls. 2321 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2322 // currCycle to X. 2323 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2324 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2325 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin") 2326 << " group\n"); 2327 bumpCycle(++NextCycle); 2328 } 2329 2330 while (CurrMOps >= SchedModel->getIssueWidth()) { 2331 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle " 2332 << CurrCycle << '\n'); 2333 bumpCycle(++NextCycle); 2334 } 2335 LLVM_DEBUG(dumpScheduledState()); 2336 } 2337 2338 /// Release pending ready nodes in to the available queue. This makes them 2339 /// visible to heuristics. 2340 void SchedBoundary::releasePending() { 2341 // If the available queue is empty, it is safe to reset MinReadyCycle. 2342 if (Available.empty()) 2343 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2344 2345 // Check to see if any of the pending instructions are ready to issue. If 2346 // so, add them to the available queue. 2347 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2348 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2349 SUnit *SU = *(Pending.begin()+i); 2350 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2351 2352 if (ReadyCycle < MinReadyCycle) 2353 MinReadyCycle = ReadyCycle; 2354 2355 if (!IsBuffered && ReadyCycle > CurrCycle) 2356 continue; 2357 2358 if (checkHazard(SU)) 2359 continue; 2360 2361 if (Available.size() >= ReadyListLimit) 2362 break; 2363 2364 Available.push(SU); 2365 Pending.remove(Pending.begin()+i); 2366 --i; --e; 2367 } 2368 CheckPending = false; 2369 } 2370 2371 /// Remove SU from the ready set for this boundary. 2372 void SchedBoundary::removeReady(SUnit *SU) { 2373 if (Available.isInQueue(SU)) 2374 Available.remove(Available.find(SU)); 2375 else { 2376 assert(Pending.isInQueue(SU) && "bad ready count"); 2377 Pending.remove(Pending.find(SU)); 2378 } 2379 } 2380 2381 /// If this queue only has one ready candidate, return it. As a side effect, 2382 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2383 /// one node is ready. If multiple instructions are ready, return NULL. 2384 SUnit *SchedBoundary::pickOnlyChoice() { 2385 if (CheckPending) 2386 releasePending(); 2387 2388 if (CurrMOps > 0) { 2389 // Defer any ready instrs that now have a hazard. 2390 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2391 if (checkHazard(*I)) { 2392 Pending.push(*I); 2393 I = Available.remove(I); 2394 continue; 2395 } 2396 ++I; 2397 } 2398 } 2399 for (unsigned i = 0; Available.empty(); ++i) { 2400 // FIXME: Re-enable assert once PR20057 is resolved. 2401 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2402 // "permanent hazard"); 2403 (void)i; 2404 bumpCycle(CurrCycle + 1); 2405 releasePending(); 2406 } 2407 2408 LLVM_DEBUG(Pending.dump()); 2409 LLVM_DEBUG(Available.dump()); 2410 2411 if (Available.size() == 1) 2412 return *Available.begin(); 2413 return nullptr; 2414 } 2415 2416 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2417 // This is useful information to dump after bumpNode. 2418 // Note that the Queue contents are more useful before pickNodeFromQueue. 2419 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2420 unsigned ResFactor; 2421 unsigned ResCount; 2422 if (ZoneCritResIdx) { 2423 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2424 ResCount = getResourceCount(ZoneCritResIdx); 2425 } else { 2426 ResFactor = SchedModel->getMicroOpFactor(); 2427 ResCount = RetiredMOps * ResFactor; 2428 } 2429 unsigned LFactor = SchedModel->getLatencyFactor(); 2430 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2431 << " Retired: " << RetiredMOps; 2432 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2433 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2434 << ResCount / ResFactor << " " 2435 << SchedModel->getResourceName(ZoneCritResIdx) 2436 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2437 << (IsResourceLimited ? " - Resource" : " - Latency") 2438 << " limited.\n"; 2439 } 2440 #endif 2441 2442 //===----------------------------------------------------------------------===// 2443 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2444 //===----------------------------------------------------------------------===// 2445 2446 void GenericSchedulerBase::SchedCandidate:: 2447 initResourceDelta(const ScheduleDAGMI *DAG, 2448 const TargetSchedModel *SchedModel) { 2449 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2450 return; 2451 2452 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2453 for (TargetSchedModel::ProcResIter 2454 PI = SchedModel->getWriteProcResBegin(SC), 2455 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2456 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2457 ResDelta.CritResources += PI->Cycles; 2458 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2459 ResDelta.DemandedResources += PI->Cycles; 2460 } 2461 } 2462 2463 /// Compute remaining latency. We need this both to determine whether the 2464 /// overall schedule has become latency-limited and whether the instructions 2465 /// outside this zone are resource or latency limited. 2466 /// 2467 /// The "dependent" latency is updated incrementally during scheduling as the 2468 /// max height/depth of scheduled nodes minus the cycles since it was 2469 /// scheduled: 2470 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2471 /// 2472 /// The "independent" latency is the max ready queue depth: 2473 /// ILat = max N.depth for N in Available|Pending 2474 /// 2475 /// RemainingLatency is the greater of independent and dependent latency. 2476 /// 2477 /// These computations are expensive, especially in DAGs with many edges, so 2478 /// only do them if necessary. 2479 static unsigned computeRemLatency(SchedBoundary &CurrZone) { 2480 unsigned RemLatency = CurrZone.getDependentLatency(); 2481 RemLatency = std::max(RemLatency, 2482 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2483 RemLatency = std::max(RemLatency, 2484 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2485 return RemLatency; 2486 } 2487 2488 /// Returns true if the current cycle plus remaning latency is greater than 2489 /// the critical path in the scheduling region. 2490 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy, 2491 SchedBoundary &CurrZone, 2492 bool ComputeRemLatency, 2493 unsigned &RemLatency) const { 2494 // The current cycle is already greater than the critical path, so we are 2495 // already latency limited and don't need to compute the remaining latency. 2496 if (CurrZone.getCurrCycle() > Rem.CriticalPath) 2497 return true; 2498 2499 // If we haven't scheduled anything yet, then we aren't latency limited. 2500 if (CurrZone.getCurrCycle() == 0) 2501 return false; 2502 2503 if (ComputeRemLatency) 2504 RemLatency = computeRemLatency(CurrZone); 2505 2506 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath; 2507 } 2508 2509 /// Set the CandPolicy given a scheduling zone given the current resources and 2510 /// latencies inside and outside the zone. 2511 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2512 SchedBoundary &CurrZone, 2513 SchedBoundary *OtherZone) { 2514 // Apply preemptive heuristics based on the total latency and resources 2515 // inside and outside this zone. Potential stalls should be considered before 2516 // following this policy. 2517 2518 // Compute the critical resource outside the zone. 2519 unsigned OtherCritIdx = 0; 2520 unsigned OtherCount = 2521 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2522 2523 bool OtherResLimited = false; 2524 unsigned RemLatency = 0; 2525 bool RemLatencyComputed = false; 2526 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) { 2527 RemLatency = computeRemLatency(CurrZone); 2528 RemLatencyComputed = true; 2529 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 2530 OtherCount, RemLatency, false); 2531 } 2532 2533 // Schedule aggressively for latency in PostRA mode. We don't check for 2534 // acyclic latency during PostRA, and highly out-of-order processors will 2535 // skip PostRA scheduling. 2536 if (!OtherResLimited && 2537 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed, 2538 RemLatency))) { 2539 Policy.ReduceLatency |= true; 2540 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName() 2541 << " RemainingLatency " << RemLatency << " + " 2542 << CurrZone.getCurrCycle() << "c > CritPath " 2543 << Rem.CriticalPath << "\n"); 2544 } 2545 // If the same resource is limiting inside and outside the zone, do nothing. 2546 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2547 return; 2548 2549 LLVM_DEBUG(if (CurrZone.isResourceLimited()) { 2550 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2551 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n"; 2552 } if (OtherResLimited) dbgs() 2553 << " RemainingLimit: " 2554 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2555 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs() 2556 << " Latency limited both directions.\n"); 2557 2558 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2559 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2560 2561 if (OtherResLimited) 2562 Policy.DemandResIdx = OtherCritIdx; 2563 } 2564 2565 #ifndef NDEBUG 2566 const char *GenericSchedulerBase::getReasonStr( 2567 GenericSchedulerBase::CandReason Reason) { 2568 switch (Reason) { 2569 case NoCand: return "NOCAND "; 2570 case Only1: return "ONLY1 "; 2571 case PhysReg: return "PHYS-REG "; 2572 case RegExcess: return "REG-EXCESS"; 2573 case RegCritical: return "REG-CRIT "; 2574 case Stall: return "STALL "; 2575 case Cluster: return "CLUSTER "; 2576 case Weak: return "WEAK "; 2577 case RegMax: return "REG-MAX "; 2578 case ResourceReduce: return "RES-REDUCE"; 2579 case ResourceDemand: return "RES-DEMAND"; 2580 case TopDepthReduce: return "TOP-DEPTH "; 2581 case TopPathReduce: return "TOP-PATH "; 2582 case BotHeightReduce:return "BOT-HEIGHT"; 2583 case BotPathReduce: return "BOT-PATH "; 2584 case NextDefUse: return "DEF-USE "; 2585 case NodeOrder: return "ORDER "; 2586 }; 2587 llvm_unreachable("Unknown reason!"); 2588 } 2589 2590 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2591 PressureChange P; 2592 unsigned ResIdx = 0; 2593 unsigned Latency = 0; 2594 switch (Cand.Reason) { 2595 default: 2596 break; 2597 case RegExcess: 2598 P = Cand.RPDelta.Excess; 2599 break; 2600 case RegCritical: 2601 P = Cand.RPDelta.CriticalMax; 2602 break; 2603 case RegMax: 2604 P = Cand.RPDelta.CurrentMax; 2605 break; 2606 case ResourceReduce: 2607 ResIdx = Cand.Policy.ReduceResIdx; 2608 break; 2609 case ResourceDemand: 2610 ResIdx = Cand.Policy.DemandResIdx; 2611 break; 2612 case TopDepthReduce: 2613 Latency = Cand.SU->getDepth(); 2614 break; 2615 case TopPathReduce: 2616 Latency = Cand.SU->getHeight(); 2617 break; 2618 case BotHeightReduce: 2619 Latency = Cand.SU->getHeight(); 2620 break; 2621 case BotPathReduce: 2622 Latency = Cand.SU->getDepth(); 2623 break; 2624 } 2625 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2626 if (P.isValid()) 2627 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2628 << ":" << P.getUnitInc() << " "; 2629 else 2630 dbgs() << " "; 2631 if (ResIdx) 2632 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2633 else 2634 dbgs() << " "; 2635 if (Latency) 2636 dbgs() << " " << Latency << " cycles "; 2637 else 2638 dbgs() << " "; 2639 dbgs() << '\n'; 2640 } 2641 #endif 2642 2643 namespace llvm { 2644 /// Return true if this heuristic determines order. 2645 bool tryLess(int TryVal, int CandVal, 2646 GenericSchedulerBase::SchedCandidate &TryCand, 2647 GenericSchedulerBase::SchedCandidate &Cand, 2648 GenericSchedulerBase::CandReason Reason) { 2649 if (TryVal < CandVal) { 2650 TryCand.Reason = Reason; 2651 return true; 2652 } 2653 if (TryVal > CandVal) { 2654 if (Cand.Reason > Reason) 2655 Cand.Reason = Reason; 2656 return true; 2657 } 2658 return false; 2659 } 2660 2661 bool tryGreater(int TryVal, int CandVal, 2662 GenericSchedulerBase::SchedCandidate &TryCand, 2663 GenericSchedulerBase::SchedCandidate &Cand, 2664 GenericSchedulerBase::CandReason Reason) { 2665 if (TryVal > CandVal) { 2666 TryCand.Reason = Reason; 2667 return true; 2668 } 2669 if (TryVal < CandVal) { 2670 if (Cand.Reason > Reason) 2671 Cand.Reason = Reason; 2672 return true; 2673 } 2674 return false; 2675 } 2676 2677 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2678 GenericSchedulerBase::SchedCandidate &Cand, 2679 SchedBoundary &Zone) { 2680 if (Zone.isTop()) { 2681 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2682 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2683 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2684 return true; 2685 } 2686 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2687 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2688 return true; 2689 } else { 2690 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2691 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2692 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2693 return true; 2694 } 2695 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2696 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2697 return true; 2698 } 2699 return false; 2700 } 2701 } // end namespace llvm 2702 2703 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2704 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2705 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2706 } 2707 2708 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2709 tracePick(Cand.Reason, Cand.AtTop); 2710 } 2711 2712 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2713 assert(dag->hasVRegLiveness() && 2714 "(PreRA)GenericScheduler needs vreg liveness"); 2715 DAG = static_cast<ScheduleDAGMILive*>(dag); 2716 SchedModel = DAG->getSchedModel(); 2717 TRI = DAG->TRI; 2718 2719 Rem.init(DAG, SchedModel); 2720 Top.init(DAG, SchedModel, &Rem); 2721 Bot.init(DAG, SchedModel, &Rem); 2722 2723 // Initialize resource counts. 2724 2725 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2726 // are disabled, then these HazardRecs will be disabled. 2727 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2728 if (!Top.HazardRec) { 2729 Top.HazardRec = 2730 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2731 Itin, DAG); 2732 } 2733 if (!Bot.HazardRec) { 2734 Bot.HazardRec = 2735 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2736 Itin, DAG); 2737 } 2738 TopCand.SU = nullptr; 2739 BotCand.SU = nullptr; 2740 } 2741 2742 /// Initialize the per-region scheduling policy. 2743 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2744 MachineBasicBlock::iterator End, 2745 unsigned NumRegionInstrs) { 2746 const MachineFunction &MF = *Begin->getMF(); 2747 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2748 2749 // Avoid setting up the register pressure tracker for small regions to save 2750 // compile time. As a rough heuristic, only track pressure when the number of 2751 // schedulable instructions exceeds half the integer register file. 2752 RegionPolicy.ShouldTrackPressure = true; 2753 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2754 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2755 if (TLI->isTypeLegal(LegalIntVT)) { 2756 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2757 TLI->getRegClassFor(LegalIntVT)); 2758 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2759 } 2760 } 2761 2762 // For generic targets, we default to bottom-up, because it's simpler and more 2763 // compile-time optimizations have been implemented in that direction. 2764 RegionPolicy.OnlyBottomUp = true; 2765 2766 // Allow the subtarget to override default policy. 2767 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2768 2769 // After subtarget overrides, apply command line options. 2770 if (!EnableRegPressure) { 2771 RegionPolicy.ShouldTrackPressure = false; 2772 RegionPolicy.ShouldTrackLaneMasks = false; 2773 } 2774 2775 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2776 // e.g. -misched-bottomup=false allows scheduling in both directions. 2777 assert((!ForceTopDown || !ForceBottomUp) && 2778 "-misched-topdown incompatible with -misched-bottomup"); 2779 if (ForceBottomUp.getNumOccurrences() > 0) { 2780 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2781 if (RegionPolicy.OnlyBottomUp) 2782 RegionPolicy.OnlyTopDown = false; 2783 } 2784 if (ForceTopDown.getNumOccurrences() > 0) { 2785 RegionPolicy.OnlyTopDown = ForceTopDown; 2786 if (RegionPolicy.OnlyTopDown) 2787 RegionPolicy.OnlyBottomUp = false; 2788 } 2789 } 2790 2791 void GenericScheduler::dumpPolicy() const { 2792 // Cannot completely remove virtual function even in release mode. 2793 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2794 dbgs() << "GenericScheduler RegionPolicy: " 2795 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2796 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2797 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2798 << "\n"; 2799 #endif 2800 } 2801 2802 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2803 /// critical path by more cycles than it takes to drain the instruction buffer. 2804 /// We estimate an upper bounds on in-flight instructions as: 2805 /// 2806 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2807 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2808 /// InFlightResources = InFlightIterations * LoopResources 2809 /// 2810 /// TODO: Check execution resources in addition to IssueCount. 2811 void GenericScheduler::checkAcyclicLatency() { 2812 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2813 return; 2814 2815 // Scaled number of cycles per loop iteration. 2816 unsigned IterCount = 2817 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2818 Rem.RemIssueCount); 2819 // Scaled acyclic critical path. 2820 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2821 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2822 unsigned InFlightCount = 2823 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2824 unsigned BufferLimit = 2825 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2826 2827 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2828 2829 LLVM_DEBUG( 2830 dbgs() << "IssueCycles=" 2831 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2832 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2833 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount 2834 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2835 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2836 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2837 } 2838 2839 void GenericScheduler::registerRoots() { 2840 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2841 2842 // Some roots may not feed into ExitSU. Check all of them in case. 2843 for (const SUnit *SU : Bot.Available) { 2844 if (SU->getDepth() > Rem.CriticalPath) 2845 Rem.CriticalPath = SU->getDepth(); 2846 } 2847 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2848 if (DumpCriticalPathLength) { 2849 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2850 } 2851 2852 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 2853 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2854 checkAcyclicLatency(); 2855 } 2856 } 2857 2858 namespace llvm { 2859 bool tryPressure(const PressureChange &TryP, 2860 const PressureChange &CandP, 2861 GenericSchedulerBase::SchedCandidate &TryCand, 2862 GenericSchedulerBase::SchedCandidate &Cand, 2863 GenericSchedulerBase::CandReason Reason, 2864 const TargetRegisterInfo *TRI, 2865 const MachineFunction &MF) { 2866 // If one candidate decreases and the other increases, go with it. 2867 // Invalid candidates have UnitInc==0. 2868 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2869 Reason)) { 2870 return true; 2871 } 2872 // Do not compare the magnitude of pressure changes between top and bottom 2873 // boundary. 2874 if (Cand.AtTop != TryCand.AtTop) 2875 return false; 2876 2877 // If both candidates affect the same set in the same boundary, go with the 2878 // smallest increase. 2879 unsigned TryPSet = TryP.getPSetOrMax(); 2880 unsigned CandPSet = CandP.getPSetOrMax(); 2881 if (TryPSet == CandPSet) { 2882 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2883 Reason); 2884 } 2885 2886 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2887 std::numeric_limits<int>::max(); 2888 2889 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2890 std::numeric_limits<int>::max(); 2891 2892 // If the candidates are decreasing pressure, reverse priority. 2893 if (TryP.getUnitInc() < 0) 2894 std::swap(TryRank, CandRank); 2895 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2896 } 2897 2898 unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2899 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2900 } 2901 2902 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2903 /// their physreg def/use. 2904 /// 2905 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2906 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2907 /// with the operation that produces or consumes the physreg. We'll do this when 2908 /// regalloc has support for parallel copies. 2909 int biasPhysReg(const SUnit *SU, bool isTop) { 2910 const MachineInstr *MI = SU->getInstr(); 2911 2912 if (MI->isCopy()) { 2913 unsigned ScheduledOper = isTop ? 1 : 0; 2914 unsigned UnscheduledOper = isTop ? 0 : 1; 2915 // If we have already scheduled the physreg produce/consumer, immediately 2916 // schedule the copy. 2917 if (TargetRegisterInfo::isPhysicalRegister( 2918 MI->getOperand(ScheduledOper).getReg())) 2919 return 1; 2920 // If the physreg is at the boundary, defer it. Otherwise schedule it 2921 // immediately to free the dependent. We can hoist the copy later. 2922 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2923 if (TargetRegisterInfo::isPhysicalRegister( 2924 MI->getOperand(UnscheduledOper).getReg())) 2925 return AtBoundary ? -1 : 1; 2926 } 2927 2928 if (MI->isMoveImmediate()) { 2929 // If we have a move immediate and all successors have been assigned, bias 2930 // towards scheduling this later. Make sure all register defs are to 2931 // physical registers. 2932 bool DoBias = true; 2933 for (const MachineOperand &Op : MI->defs()) { 2934 if (Op.isReg() && !TargetRegisterInfo::isPhysicalRegister(Op.getReg())) { 2935 DoBias = false; 2936 break; 2937 } 2938 } 2939 2940 if (DoBias) 2941 return isTop ? -1 : 1; 2942 } 2943 2944 return 0; 2945 } 2946 } // end namespace llvm 2947 2948 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2949 bool AtTop, 2950 const RegPressureTracker &RPTracker, 2951 RegPressureTracker &TempTracker) { 2952 Cand.SU = SU; 2953 Cand.AtTop = AtTop; 2954 if (DAG->isTrackingPressure()) { 2955 if (AtTop) { 2956 TempTracker.getMaxDownwardPressureDelta( 2957 Cand.SU->getInstr(), 2958 Cand.RPDelta, 2959 DAG->getRegionCriticalPSets(), 2960 DAG->getRegPressure().MaxSetPressure); 2961 } else { 2962 if (VerifyScheduling) { 2963 TempTracker.getMaxUpwardPressureDelta( 2964 Cand.SU->getInstr(), 2965 &DAG->getPressureDiff(Cand.SU), 2966 Cand.RPDelta, 2967 DAG->getRegionCriticalPSets(), 2968 DAG->getRegPressure().MaxSetPressure); 2969 } else { 2970 RPTracker.getUpwardPressureDelta( 2971 Cand.SU->getInstr(), 2972 DAG->getPressureDiff(Cand.SU), 2973 Cand.RPDelta, 2974 DAG->getRegionCriticalPSets(), 2975 DAG->getRegPressure().MaxSetPressure); 2976 } 2977 } 2978 } 2979 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs() 2980 << " Try SU(" << Cand.SU->NodeNum << ") " 2981 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":" 2982 << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2983 } 2984 2985 /// Apply a set of heuristics to a new candidate. Heuristics are currently 2986 /// hierarchical. This may be more efficient than a graduated cost model because 2987 /// we don't need to evaluate all aspects of the model for each node in the 2988 /// queue. But it's really done to make the heuristics easier to debug and 2989 /// statistically analyze. 2990 /// 2991 /// \param Cand provides the policy and current best candidate. 2992 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2993 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2994 // if Cand is from a different zone than TryCand. 2995 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2996 SchedCandidate &TryCand, 2997 SchedBoundary *Zone) const { 2998 // Initialize the candidate if needed. 2999 if (!Cand.isValid()) { 3000 TryCand.Reason = NodeOrder; 3001 return; 3002 } 3003 3004 // Bias PhysReg Defs and copies to their uses and defined respectively. 3005 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop), 3006 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg)) 3007 return; 3008 3009 // Avoid exceeding the target's limit. 3010 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 3011 Cand.RPDelta.Excess, 3012 TryCand, Cand, RegExcess, TRI, 3013 DAG->MF)) 3014 return; 3015 3016 // Avoid increasing the max critical pressure in the scheduled region. 3017 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 3018 Cand.RPDelta.CriticalMax, 3019 TryCand, Cand, RegCritical, TRI, 3020 DAG->MF)) 3021 return; 3022 3023 // We only compare a subset of features when comparing nodes between 3024 // Top and Bottom boundary. Some properties are simply incomparable, in many 3025 // other instances we should only override the other boundary if something 3026 // is a clear good pick on one boundary. Skip heuristics that are more 3027 // "tie-breaking" in nature. 3028 bool SameBoundary = Zone != nullptr; 3029 if (SameBoundary) { 3030 // For loops that are acyclic path limited, aggressively schedule for 3031 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 3032 // heuristics to take precedence. 3033 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 3034 tryLatency(TryCand, Cand, *Zone)) 3035 return; 3036 3037 // Prioritize instructions that read unbuffered resources by stall cycles. 3038 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 3039 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3040 return; 3041 } 3042 3043 // Keep clustered nodes together to encourage downstream peephole 3044 // optimizations which may reduce resource requirements. 3045 // 3046 // This is a best effort to set things up for a post-RA pass. Optimizations 3047 // like generating loads of multiple registers should ideally be done within 3048 // the scheduler pass by combining the loads during DAG postprocessing. 3049 const SUnit *CandNextClusterSU = 3050 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3051 const SUnit *TryCandNextClusterSU = 3052 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3053 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 3054 Cand.SU == CandNextClusterSU, 3055 TryCand, Cand, Cluster)) 3056 return; 3057 3058 if (SameBoundary) { 3059 // Weak edges are for clustering and other constraints. 3060 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 3061 getWeakLeft(Cand.SU, Cand.AtTop), 3062 TryCand, Cand, Weak)) 3063 return; 3064 } 3065 3066 // Avoid increasing the max pressure of the entire region. 3067 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 3068 Cand.RPDelta.CurrentMax, 3069 TryCand, Cand, RegMax, TRI, 3070 DAG->MF)) 3071 return; 3072 3073 if (SameBoundary) { 3074 // Avoid critical resource consumption and balance the schedule. 3075 TryCand.initResourceDelta(DAG, SchedModel); 3076 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3077 TryCand, Cand, ResourceReduce)) 3078 return; 3079 if (tryGreater(TryCand.ResDelta.DemandedResources, 3080 Cand.ResDelta.DemandedResources, 3081 TryCand, Cand, ResourceDemand)) 3082 return; 3083 3084 // Avoid serializing long latency dependence chains. 3085 // For acyclic path limited loops, latency was already checked above. 3086 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 3087 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 3088 return; 3089 3090 // Fall through to original instruction order. 3091 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 3092 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 3093 TryCand.Reason = NodeOrder; 3094 } 3095 } 3096 } 3097 3098 /// Pick the best candidate from the queue. 3099 /// 3100 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 3101 /// DAG building. To adjust for the current scheduling location we need to 3102 /// maintain the number of vreg uses remaining to be top-scheduled. 3103 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3104 const CandPolicy &ZonePolicy, 3105 const RegPressureTracker &RPTracker, 3106 SchedCandidate &Cand) { 3107 // getMaxPressureDelta temporarily modifies the tracker. 3108 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3109 3110 ReadyQueue &Q = Zone.Available; 3111 for (SUnit *SU : Q) { 3112 3113 SchedCandidate TryCand(ZonePolicy); 3114 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3115 // Pass SchedBoundary only when comparing nodes from the same boundary. 3116 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3117 tryCandidate(Cand, TryCand, ZoneArg); 3118 if (TryCand.Reason != NoCand) { 3119 // Initialize resource delta if needed in case future heuristics query it. 3120 if (TryCand.ResDelta == SchedResourceDelta()) 3121 TryCand.initResourceDelta(DAG, SchedModel); 3122 Cand.setBest(TryCand); 3123 LLVM_DEBUG(traceCandidate(Cand)); 3124 } 3125 } 3126 } 3127 3128 /// Pick the best candidate node from either the top or bottom queue. 3129 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3130 // Schedule as far as possible in the direction of no choice. This is most 3131 // efficient, but also provides the best heuristics for CriticalPSets. 3132 if (SUnit *SU = Bot.pickOnlyChoice()) { 3133 IsTopNode = false; 3134 tracePick(Only1, false); 3135 return SU; 3136 } 3137 if (SUnit *SU = Top.pickOnlyChoice()) { 3138 IsTopNode = true; 3139 tracePick(Only1, true); 3140 return SU; 3141 } 3142 // Set the bottom-up policy based on the state of the current bottom zone and 3143 // the instructions outside the zone, including the top zone. 3144 CandPolicy BotPolicy; 3145 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3146 // Set the top-down policy based on the state of the current top zone and 3147 // the instructions outside the zone, including the bottom zone. 3148 CandPolicy TopPolicy; 3149 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3150 3151 // See if BotCand is still valid (because we previously scheduled from Top). 3152 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 3153 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3154 BotCand.Policy != BotPolicy) { 3155 BotCand.reset(CandPolicy()); 3156 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3157 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3158 } else { 3159 LLVM_DEBUG(traceCandidate(BotCand)); 3160 #ifndef NDEBUG 3161 if (VerifyScheduling) { 3162 SchedCandidate TCand; 3163 TCand.reset(CandPolicy()); 3164 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3165 assert(TCand.SU == BotCand.SU && 3166 "Last pick result should correspond to re-picking right now"); 3167 } 3168 #endif 3169 } 3170 3171 // Check if the top Q has a better candidate. 3172 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 3173 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3174 TopCand.Policy != TopPolicy) { 3175 TopCand.reset(CandPolicy()); 3176 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3177 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3178 } else { 3179 LLVM_DEBUG(traceCandidate(TopCand)); 3180 #ifndef NDEBUG 3181 if (VerifyScheduling) { 3182 SchedCandidate TCand; 3183 TCand.reset(CandPolicy()); 3184 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3185 assert(TCand.SU == TopCand.SU && 3186 "Last pick result should correspond to re-picking right now"); 3187 } 3188 #endif 3189 } 3190 3191 // Pick best from BotCand and TopCand. 3192 assert(BotCand.isValid()); 3193 assert(TopCand.isValid()); 3194 SchedCandidate Cand = BotCand; 3195 TopCand.Reason = NoCand; 3196 tryCandidate(Cand, TopCand, nullptr); 3197 if (TopCand.Reason != NoCand) { 3198 Cand.setBest(TopCand); 3199 LLVM_DEBUG(traceCandidate(Cand)); 3200 } 3201 3202 IsTopNode = Cand.AtTop; 3203 tracePick(Cand); 3204 return Cand.SU; 3205 } 3206 3207 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3208 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3209 if (DAG->top() == DAG->bottom()) { 3210 assert(Top.Available.empty() && Top.Pending.empty() && 3211 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3212 return nullptr; 3213 } 3214 SUnit *SU; 3215 do { 3216 if (RegionPolicy.OnlyTopDown) { 3217 SU = Top.pickOnlyChoice(); 3218 if (!SU) { 3219 CandPolicy NoPolicy; 3220 TopCand.reset(NoPolicy); 3221 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3222 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3223 tracePick(TopCand); 3224 SU = TopCand.SU; 3225 } 3226 IsTopNode = true; 3227 } else if (RegionPolicy.OnlyBottomUp) { 3228 SU = Bot.pickOnlyChoice(); 3229 if (!SU) { 3230 CandPolicy NoPolicy; 3231 BotCand.reset(NoPolicy); 3232 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3233 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3234 tracePick(BotCand); 3235 SU = BotCand.SU; 3236 } 3237 IsTopNode = false; 3238 } else { 3239 SU = pickNodeBidirectional(IsTopNode); 3240 } 3241 } while (SU->isScheduled); 3242 3243 if (SU->isTopReady()) 3244 Top.removeReady(SU); 3245 if (SU->isBottomReady()) 3246 Bot.removeReady(SU); 3247 3248 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3249 << *SU->getInstr()); 3250 return SU; 3251 } 3252 3253 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) { 3254 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3255 if (!isTop) 3256 ++InsertPos; 3257 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3258 3259 // Find already scheduled copies with a single physreg dependence and move 3260 // them just above the scheduled instruction. 3261 for (SDep &Dep : Deps) { 3262 if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg())) 3263 continue; 3264 SUnit *DepSU = Dep.getSUnit(); 3265 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3266 continue; 3267 MachineInstr *Copy = DepSU->getInstr(); 3268 if (!Copy->isCopy() && !Copy->isMoveImmediate()) 3269 continue; 3270 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy "; 3271 DAG->dumpNode(*Dep.getSUnit())); 3272 DAG->moveInstruction(Copy, InsertPos); 3273 } 3274 } 3275 3276 /// Update the scheduler's state after scheduling a node. This is the same node 3277 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3278 /// update it's state based on the current cycle before MachineSchedStrategy 3279 /// does. 3280 /// 3281 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3282 /// them here. See comments in biasPhysReg. 3283 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3284 if (IsTopNode) { 3285 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3286 Top.bumpNode(SU); 3287 if (SU->hasPhysRegUses) 3288 reschedulePhysReg(SU, true); 3289 } else { 3290 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3291 Bot.bumpNode(SU); 3292 if (SU->hasPhysRegDefs) 3293 reschedulePhysReg(SU, false); 3294 } 3295 } 3296 3297 /// Create the standard converging machine scheduler. This will be used as the 3298 /// default scheduler if the target does not set a default. 3299 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3300 ScheduleDAGMILive *DAG = 3301 new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C)); 3302 // Register DAG post-processors. 3303 // 3304 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3305 // data and pass it to later mutations. Have a single mutation that gathers 3306 // the interesting nodes in one pass. 3307 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3308 return DAG; 3309 } 3310 3311 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) { 3312 return createGenericSchedLive(C); 3313 } 3314 3315 static MachineSchedRegistry 3316 GenericSchedRegistry("converge", "Standard converging scheduler.", 3317 createConveringSched); 3318 3319 //===----------------------------------------------------------------------===// 3320 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3321 //===----------------------------------------------------------------------===// 3322 3323 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3324 DAG = Dag; 3325 SchedModel = DAG->getSchedModel(); 3326 TRI = DAG->TRI; 3327 3328 Rem.init(DAG, SchedModel); 3329 Top.init(DAG, SchedModel, &Rem); 3330 BotRoots.clear(); 3331 3332 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3333 // or are disabled, then these HazardRecs will be disabled. 3334 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3335 if (!Top.HazardRec) { 3336 Top.HazardRec = 3337 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3338 Itin, DAG); 3339 } 3340 } 3341 3342 void PostGenericScheduler::registerRoots() { 3343 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3344 3345 // Some roots may not feed into ExitSU. Check all of them in case. 3346 for (const SUnit *SU : BotRoots) { 3347 if (SU->getDepth() > Rem.CriticalPath) 3348 Rem.CriticalPath = SU->getDepth(); 3349 } 3350 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3351 if (DumpCriticalPathLength) { 3352 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3353 } 3354 } 3355 3356 /// Apply a set of heuristics to a new candidate for PostRA scheduling. 3357 /// 3358 /// \param Cand provides the policy and current best candidate. 3359 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3360 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3361 SchedCandidate &TryCand) { 3362 // Initialize the candidate if needed. 3363 if (!Cand.isValid()) { 3364 TryCand.Reason = NodeOrder; 3365 return; 3366 } 3367 3368 // Prioritize instructions that read unbuffered resources by stall cycles. 3369 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3370 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3371 return; 3372 3373 // Keep clustered nodes together. 3374 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3375 Cand.SU == DAG->getNextClusterSucc(), 3376 TryCand, Cand, Cluster)) 3377 return; 3378 3379 // Avoid critical resource consumption and balance the schedule. 3380 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3381 TryCand, Cand, ResourceReduce)) 3382 return; 3383 if (tryGreater(TryCand.ResDelta.DemandedResources, 3384 Cand.ResDelta.DemandedResources, 3385 TryCand, Cand, ResourceDemand)) 3386 return; 3387 3388 // Avoid serializing long latency dependence chains. 3389 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3390 return; 3391 } 3392 3393 // Fall through to original instruction order. 3394 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3395 TryCand.Reason = NodeOrder; 3396 } 3397 3398 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3399 ReadyQueue &Q = Top.Available; 3400 for (SUnit *SU : Q) { 3401 SchedCandidate TryCand(Cand.Policy); 3402 TryCand.SU = SU; 3403 TryCand.AtTop = true; 3404 TryCand.initResourceDelta(DAG, SchedModel); 3405 tryCandidate(Cand, TryCand); 3406 if (TryCand.Reason != NoCand) { 3407 Cand.setBest(TryCand); 3408 LLVM_DEBUG(traceCandidate(Cand)); 3409 } 3410 } 3411 } 3412 3413 /// Pick the next node to schedule. 3414 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3415 if (DAG->top() == DAG->bottom()) { 3416 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3417 return nullptr; 3418 } 3419 SUnit *SU; 3420 do { 3421 SU = Top.pickOnlyChoice(); 3422 if (SU) { 3423 tracePick(Only1, true); 3424 } else { 3425 CandPolicy NoPolicy; 3426 SchedCandidate TopCand(NoPolicy); 3427 // Set the top-down policy based on the state of the current top zone and 3428 // the instructions outside the zone, including the bottom zone. 3429 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3430 pickNodeFromQueue(TopCand); 3431 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3432 tracePick(TopCand); 3433 SU = TopCand.SU; 3434 } 3435 } while (SU->isScheduled); 3436 3437 IsTopNode = true; 3438 Top.removeReady(SU); 3439 3440 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3441 << *SU->getInstr()); 3442 return SU; 3443 } 3444 3445 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3446 /// scheduled/remaining flags in the DAG nodes. 3447 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3448 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3449 Top.bumpNode(SU); 3450 } 3451 3452 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3453 return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C), 3454 /*RemoveKillFlags=*/true); 3455 } 3456 3457 //===----------------------------------------------------------------------===// 3458 // ILP Scheduler. Currently for experimental analysis of heuristics. 3459 //===----------------------------------------------------------------------===// 3460 3461 namespace { 3462 3463 /// Order nodes by the ILP metric. 3464 struct ILPOrder { 3465 const SchedDFSResult *DFSResult = nullptr; 3466 const BitVector *ScheduledTrees = nullptr; 3467 bool MaximizeILP; 3468 3469 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3470 3471 /// Apply a less-than relation on node priority. 3472 /// 3473 /// (Return true if A comes after B in the Q.) 3474 bool operator()(const SUnit *A, const SUnit *B) const { 3475 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3476 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3477 if (SchedTreeA != SchedTreeB) { 3478 // Unscheduled trees have lower priority. 3479 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3480 return ScheduledTrees->test(SchedTreeB); 3481 3482 // Trees with shallower connections have have lower priority. 3483 if (DFSResult->getSubtreeLevel(SchedTreeA) 3484 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3485 return DFSResult->getSubtreeLevel(SchedTreeA) 3486 < DFSResult->getSubtreeLevel(SchedTreeB); 3487 } 3488 } 3489 if (MaximizeILP) 3490 return DFSResult->getILP(A) < DFSResult->getILP(B); 3491 else 3492 return DFSResult->getILP(A) > DFSResult->getILP(B); 3493 } 3494 }; 3495 3496 /// Schedule based on the ILP metric. 3497 class ILPScheduler : public MachineSchedStrategy { 3498 ScheduleDAGMILive *DAG = nullptr; 3499 ILPOrder Cmp; 3500 3501 std::vector<SUnit*> ReadyQ; 3502 3503 public: 3504 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3505 3506 void initialize(ScheduleDAGMI *dag) override { 3507 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3508 DAG = static_cast<ScheduleDAGMILive*>(dag); 3509 DAG->computeDFSResult(); 3510 Cmp.DFSResult = DAG->getDFSResult(); 3511 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3512 ReadyQ.clear(); 3513 } 3514 3515 void registerRoots() override { 3516 // Restore the heap in ReadyQ with the updated DFS results. 3517 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3518 } 3519 3520 /// Implement MachineSchedStrategy interface. 3521 /// ----------------------------------------- 3522 3523 /// Callback to select the highest priority node from the ready Q. 3524 SUnit *pickNode(bool &IsTopNode) override { 3525 if (ReadyQ.empty()) return nullptr; 3526 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3527 SUnit *SU = ReadyQ.back(); 3528 ReadyQ.pop_back(); 3529 IsTopNode = false; 3530 LLVM_DEBUG(dbgs() << "Pick node " 3531 << "SU(" << SU->NodeNum << ") " 3532 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3533 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) 3534 << " @" 3535 << DAG->getDFSResult()->getSubtreeLevel( 3536 DAG->getDFSResult()->getSubtreeID(SU)) 3537 << '\n' 3538 << "Scheduling " << *SU->getInstr()); 3539 return SU; 3540 } 3541 3542 /// Scheduler callback to notify that a new subtree is scheduled. 3543 void scheduleTree(unsigned SubtreeID) override { 3544 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3545 } 3546 3547 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3548 /// DFSResults, and resort the priority Q. 3549 void schedNode(SUnit *SU, bool IsTopNode) override { 3550 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3551 } 3552 3553 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3554 3555 void releaseBottomNode(SUnit *SU) override { 3556 ReadyQ.push_back(SU); 3557 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3558 } 3559 }; 3560 3561 } // end anonymous namespace 3562 3563 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3564 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true)); 3565 } 3566 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3567 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false)); 3568 } 3569 3570 static MachineSchedRegistry ILPMaxRegistry( 3571 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3572 static MachineSchedRegistry ILPMinRegistry( 3573 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3574 3575 //===----------------------------------------------------------------------===// 3576 // Machine Instruction Shuffler for Correctness Testing 3577 //===----------------------------------------------------------------------===// 3578 3579 #ifndef NDEBUG 3580 namespace { 3581 3582 /// Apply a less-than relation on the node order, which corresponds to the 3583 /// instruction order prior to scheduling. IsReverse implements greater-than. 3584 template<bool IsReverse> 3585 struct SUnitOrder { 3586 bool operator()(SUnit *A, SUnit *B) const { 3587 if (IsReverse) 3588 return A->NodeNum > B->NodeNum; 3589 else 3590 return A->NodeNum < B->NodeNum; 3591 } 3592 }; 3593 3594 /// Reorder instructions as much as possible. 3595 class InstructionShuffler : public MachineSchedStrategy { 3596 bool IsAlternating; 3597 bool IsTopDown; 3598 3599 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3600 // gives nodes with a higher number higher priority causing the latest 3601 // instructions to be scheduled first. 3602 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3603 TopQ; 3604 3605 // When scheduling bottom-up, use greater-than as the queue priority. 3606 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3607 BottomQ; 3608 3609 public: 3610 InstructionShuffler(bool alternate, bool topdown) 3611 : IsAlternating(alternate), IsTopDown(topdown) {} 3612 3613 void initialize(ScheduleDAGMI*) override { 3614 TopQ.clear(); 3615 BottomQ.clear(); 3616 } 3617 3618 /// Implement MachineSchedStrategy interface. 3619 /// ----------------------------------------- 3620 3621 SUnit *pickNode(bool &IsTopNode) override { 3622 SUnit *SU; 3623 if (IsTopDown) { 3624 do { 3625 if (TopQ.empty()) return nullptr; 3626 SU = TopQ.top(); 3627 TopQ.pop(); 3628 } while (SU->isScheduled); 3629 IsTopNode = true; 3630 } else { 3631 do { 3632 if (BottomQ.empty()) return nullptr; 3633 SU = BottomQ.top(); 3634 BottomQ.pop(); 3635 } while (SU->isScheduled); 3636 IsTopNode = false; 3637 } 3638 if (IsAlternating) 3639 IsTopDown = !IsTopDown; 3640 return SU; 3641 } 3642 3643 void schedNode(SUnit *SU, bool IsTopNode) override {} 3644 3645 void releaseTopNode(SUnit *SU) override { 3646 TopQ.push(SU); 3647 } 3648 void releaseBottomNode(SUnit *SU) override { 3649 BottomQ.push(SU); 3650 } 3651 }; 3652 3653 } // end anonymous namespace 3654 3655 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3656 bool Alternate = !ForceTopDown && !ForceBottomUp; 3657 bool TopDown = !ForceBottomUp; 3658 assert((TopDown || !ForceTopDown) && 3659 "-misched-topdown incompatible with -misched-bottomup"); 3660 return new ScheduleDAGMILive( 3661 C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown)); 3662 } 3663 3664 static MachineSchedRegistry ShufflerRegistry( 3665 "shuffle", "Shuffle machine instructions alternating directions", 3666 createInstructionShuffler); 3667 #endif // !NDEBUG 3668 3669 //===----------------------------------------------------------------------===// 3670 // GraphWriter support for ScheduleDAGMILive. 3671 //===----------------------------------------------------------------------===// 3672 3673 #ifndef NDEBUG 3674 namespace llvm { 3675 3676 template<> struct GraphTraits< 3677 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3678 3679 template<> 3680 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3681 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3682 3683 static std::string getGraphName(const ScheduleDAG *G) { 3684 return G->MF.getName(); 3685 } 3686 3687 static bool renderGraphFromBottomUp() { 3688 return true; 3689 } 3690 3691 static bool isNodeHidden(const SUnit *Node) { 3692 if (ViewMISchedCutoff == 0) 3693 return false; 3694 return (Node->Preds.size() > ViewMISchedCutoff 3695 || Node->Succs.size() > ViewMISchedCutoff); 3696 } 3697 3698 /// If you want to override the dot attributes printed for a particular 3699 /// edge, override this method. 3700 static std::string getEdgeAttributes(const SUnit *Node, 3701 SUnitIterator EI, 3702 const ScheduleDAG *Graph) { 3703 if (EI.isArtificialDep()) 3704 return "color=cyan,style=dashed"; 3705 if (EI.isCtrlDep()) 3706 return "color=blue,style=dashed"; 3707 return ""; 3708 } 3709 3710 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3711 std::string Str; 3712 raw_string_ostream SS(Str); 3713 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3714 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3715 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3716 SS << "SU:" << SU->NodeNum; 3717 if (DFS) 3718 SS << " I:" << DFS->getNumInstrs(SU); 3719 return SS.str(); 3720 } 3721 3722 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3723 return G->getGraphNodeLabel(SU); 3724 } 3725 3726 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3727 std::string Str("shape=Mrecord"); 3728 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3729 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3730 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3731 if (DFS) { 3732 Str += ",style=filled,fillcolor=\"#"; 3733 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3734 Str += '"'; 3735 } 3736 return Str; 3737 } 3738 }; 3739 3740 } // end namespace llvm 3741 #endif // NDEBUG 3742 3743 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3744 /// rendered using 'dot'. 3745 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3746 #ifndef NDEBUG 3747 ViewGraph(this, Name, false, Title); 3748 #else 3749 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3750 << "systems with Graphviz or gv!\n"; 3751 #endif // NDEBUG 3752 } 3753 3754 /// Out-of-line implementation with no arguments is handy for gdb. 3755 void ScheduleDAGMI::viewGraph() { 3756 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3757 } 3758