1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // MachineScheduler schedules machine instructions after phi elimination. It 10 // preserves LiveIntervals so it can be invoked before register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineScheduler.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveInterval.h" 24 #include "llvm/CodeGen/LiveIntervals.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineDominators.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachinePassRegistry.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/Passes.h" 35 #include "llvm/CodeGen/RegisterClassInfo.h" 36 #include "llvm/CodeGen/RegisterPressure.h" 37 #include "llvm/CodeGen/ScheduleDAG.h" 38 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 39 #include "llvm/CodeGen/ScheduleDAGMutation.h" 40 #include "llvm/CodeGen/ScheduleDFS.h" 41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 42 #include "llvm/CodeGen/SlotIndexes.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSchedule.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/Config/llvm-config.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/MC/LaneBitmask.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/GraphWriter.h" 59 #include "llvm/Support/MachineValueType.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <limits> 66 #include <memory> 67 #include <string> 68 #include <tuple> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "machine-scheduler" 75 76 namespace llvm { 77 78 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 79 cl::desc("Force top-down list scheduling")); 80 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 81 cl::desc("Force bottom-up list scheduling")); 82 cl::opt<bool> 83 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 84 cl::desc("Print critical path length to stdout")); 85 86 cl::opt<bool> VerifyScheduling( 87 "verify-misched", cl::Hidden, 88 cl::desc("Verify machine instrs before and after machine scheduling")); 89 90 } // end namespace llvm 91 92 #ifndef NDEBUG 93 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 94 cl::desc("Pop up a window to show MISched dags after they are processed")); 95 96 /// In some situations a few uninteresting nodes depend on nearly all other 97 /// nodes in the graph, provide a cutoff to hide them. 98 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 99 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 100 101 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 102 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 103 104 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 105 cl::desc("Only schedule this function")); 106 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 107 cl::desc("Only schedule this MBB#")); 108 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden, 109 cl::desc("Print schedule DAGs")); 110 #else 111 static const bool ViewMISchedDAGs = false; 112 static const bool PrintDAGs = false; 113 #endif // NDEBUG 114 115 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 116 /// size of the ready lists. 117 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 118 cl::desc("Limit ready list to N instructions"), cl::init(256)); 119 120 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 121 cl::desc("Enable register pressure scheduling."), cl::init(true)); 122 123 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 124 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 125 126 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 127 cl::desc("Enable memop clustering."), 128 cl::init(true)); 129 130 // DAG subtrees must have at least this many nodes. 131 static const unsigned MinSubtreeSize = 8; 132 133 // Pin the vtables to this file. 134 void MachineSchedStrategy::anchor() {} 135 136 void ScheduleDAGMutation::anchor() {} 137 138 //===----------------------------------------------------------------------===// 139 // Machine Instruction Scheduling Pass and Registry 140 //===----------------------------------------------------------------------===// 141 142 MachineSchedContext::MachineSchedContext() { 143 RegClassInfo = new RegisterClassInfo(); 144 } 145 146 MachineSchedContext::~MachineSchedContext() { 147 delete RegClassInfo; 148 } 149 150 namespace { 151 152 /// Base class for a machine scheduler class that can run at any point. 153 class MachineSchedulerBase : public MachineSchedContext, 154 public MachineFunctionPass { 155 public: 156 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 157 158 void print(raw_ostream &O, const Module* = nullptr) const override; 159 160 protected: 161 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 162 }; 163 164 /// MachineScheduler runs after coalescing and before register allocation. 165 class MachineScheduler : public MachineSchedulerBase { 166 public: 167 MachineScheduler(); 168 169 void getAnalysisUsage(AnalysisUsage &AU) const override; 170 171 bool runOnMachineFunction(MachineFunction&) override; 172 173 static char ID; // Class identification, replacement for typeinfo 174 175 protected: 176 ScheduleDAGInstrs *createMachineScheduler(); 177 }; 178 179 /// PostMachineScheduler runs after shortly before code emission. 180 class PostMachineScheduler : public MachineSchedulerBase { 181 public: 182 PostMachineScheduler(); 183 184 void getAnalysisUsage(AnalysisUsage &AU) const override; 185 186 bool runOnMachineFunction(MachineFunction&) override; 187 188 static char ID; // Class identification, replacement for typeinfo 189 190 protected: 191 ScheduleDAGInstrs *createPostMachineScheduler(); 192 }; 193 194 } // end anonymous namespace 195 196 char MachineScheduler::ID = 0; 197 198 char &llvm::MachineSchedulerID = MachineScheduler::ID; 199 200 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 201 "Machine Instruction Scheduler", false, false) 202 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 203 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 204 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 205 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 206 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 207 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 208 "Machine Instruction Scheduler", false, false) 209 210 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 211 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 212 } 213 214 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 215 AU.setPreservesCFG(); 216 AU.addRequired<MachineDominatorTree>(); 217 AU.addRequired<MachineLoopInfo>(); 218 AU.addRequired<AAResultsWrapperPass>(); 219 AU.addRequired<TargetPassConfig>(); 220 AU.addRequired<SlotIndexes>(); 221 AU.addPreserved<SlotIndexes>(); 222 AU.addRequired<LiveIntervals>(); 223 AU.addPreserved<LiveIntervals>(); 224 MachineFunctionPass::getAnalysisUsage(AU); 225 } 226 227 char PostMachineScheduler::ID = 0; 228 229 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 230 231 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 232 "PostRA Machine Instruction Scheduler", false, false) 233 234 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 235 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 236 } 237 238 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 239 AU.setPreservesCFG(); 240 AU.addRequired<MachineDominatorTree>(); 241 AU.addRequired<MachineLoopInfo>(); 242 AU.addRequired<AAResultsWrapperPass>(); 243 AU.addRequired<TargetPassConfig>(); 244 MachineFunctionPass::getAnalysisUsage(AU); 245 } 246 247 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor> 248 MachineSchedRegistry::Registry; 249 250 /// A dummy default scheduler factory indicates whether the scheduler 251 /// is overridden on the command line. 252 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 253 return nullptr; 254 } 255 256 /// MachineSchedOpt allows command line selection of the scheduler. 257 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 258 RegisterPassParser<MachineSchedRegistry>> 259 MachineSchedOpt("misched", 260 cl::init(&useDefaultMachineSched), cl::Hidden, 261 cl::desc("Machine instruction scheduler to use")); 262 263 static MachineSchedRegistry 264 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 265 useDefaultMachineSched); 266 267 static cl::opt<bool> EnableMachineSched( 268 "enable-misched", 269 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 270 cl::Hidden); 271 272 static cl::opt<bool> EnablePostRAMachineSched( 273 "enable-post-misched", 274 cl::desc("Enable the post-ra machine instruction scheduling pass."), 275 cl::init(true), cl::Hidden); 276 277 /// Decrement this iterator until reaching the top or a non-debug instr. 278 static MachineBasicBlock::const_iterator 279 priorNonDebug(MachineBasicBlock::const_iterator I, 280 MachineBasicBlock::const_iterator Beg) { 281 assert(I != Beg && "reached the top of the region, cannot decrement"); 282 while (--I != Beg) { 283 if (!I->isDebugInstr()) 284 break; 285 } 286 return I; 287 } 288 289 /// Non-const version. 290 static MachineBasicBlock::iterator 291 priorNonDebug(MachineBasicBlock::iterator I, 292 MachineBasicBlock::const_iterator Beg) { 293 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 294 .getNonConstIterator(); 295 } 296 297 /// If this iterator is a debug value, increment until reaching the End or a 298 /// non-debug instruction. 299 static MachineBasicBlock::const_iterator 300 nextIfDebug(MachineBasicBlock::const_iterator I, 301 MachineBasicBlock::const_iterator End) { 302 for(; I != End; ++I) { 303 if (!I->isDebugInstr()) 304 break; 305 } 306 return I; 307 } 308 309 /// Non-const version. 310 static MachineBasicBlock::iterator 311 nextIfDebug(MachineBasicBlock::iterator I, 312 MachineBasicBlock::const_iterator End) { 313 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 314 .getNonConstIterator(); 315 } 316 317 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 318 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 319 // Select the scheduler, or set the default. 320 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 321 if (Ctor != useDefaultMachineSched) 322 return Ctor(this); 323 324 // Get the default scheduler set by the target for this function. 325 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 326 if (Scheduler) 327 return Scheduler; 328 329 // Default to GenericScheduler. 330 return createGenericSchedLive(this); 331 } 332 333 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 334 /// the caller. We don't have a command line option to override the postRA 335 /// scheduler. The Target must configure it. 336 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 337 // Get the postRA scheduler set by the target for this function. 338 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 339 if (Scheduler) 340 return Scheduler; 341 342 // Default to GenericScheduler. 343 return createGenericSchedPostRA(this); 344 } 345 346 /// Top-level MachineScheduler pass driver. 347 /// 348 /// Visit blocks in function order. Divide each block into scheduling regions 349 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 350 /// consistent with the DAG builder, which traverses the interior of the 351 /// scheduling regions bottom-up. 352 /// 353 /// This design avoids exposing scheduling boundaries to the DAG builder, 354 /// simplifying the DAG builder's support for "special" target instructions. 355 /// At the same time the design allows target schedulers to operate across 356 /// scheduling boundaries, for example to bundle the boundary instructions 357 /// without reordering them. This creates complexity, because the target 358 /// scheduler must update the RegionBegin and RegionEnd positions cached by 359 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 360 /// design would be to split blocks at scheduling boundaries, but LLVM has a 361 /// general bias against block splitting purely for implementation simplicity. 362 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 363 if (skipFunction(mf.getFunction())) 364 return false; 365 366 if (EnableMachineSched.getNumOccurrences()) { 367 if (!EnableMachineSched) 368 return false; 369 } else if (!mf.getSubtarget().enableMachineScheduler()) 370 return false; 371 372 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 373 374 // Initialize the context of the pass. 375 MF = &mf; 376 MLI = &getAnalysis<MachineLoopInfo>(); 377 MDT = &getAnalysis<MachineDominatorTree>(); 378 PassConfig = &getAnalysis<TargetPassConfig>(); 379 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 380 381 LIS = &getAnalysis<LiveIntervals>(); 382 383 if (VerifyScheduling) { 384 LLVM_DEBUG(LIS->dump()); 385 MF->verify(this, "Before machine scheduling."); 386 } 387 RegClassInfo->runOnMachineFunction(*MF); 388 389 // Instantiate the selected scheduler for this target, function, and 390 // optimization level. 391 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 392 scheduleRegions(*Scheduler, false); 393 394 LLVM_DEBUG(LIS->dump()); 395 if (VerifyScheduling) 396 MF->verify(this, "After machine scheduling."); 397 return true; 398 } 399 400 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 401 if (skipFunction(mf.getFunction())) 402 return false; 403 404 if (EnablePostRAMachineSched.getNumOccurrences()) { 405 if (!EnablePostRAMachineSched) 406 return false; 407 } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) { 408 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 409 return false; 410 } 411 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 412 413 // Initialize the context of the pass. 414 MF = &mf; 415 MLI = &getAnalysis<MachineLoopInfo>(); 416 PassConfig = &getAnalysis<TargetPassConfig>(); 417 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 418 419 if (VerifyScheduling) 420 MF->verify(this, "Before post machine scheduling."); 421 422 // Instantiate the selected scheduler for this target, function, and 423 // optimization level. 424 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 425 scheduleRegions(*Scheduler, true); 426 427 if (VerifyScheduling) 428 MF->verify(this, "After post machine scheduling."); 429 return true; 430 } 431 432 /// Return true of the given instruction should not be included in a scheduling 433 /// region. 434 /// 435 /// MachineScheduler does not currently support scheduling across calls. To 436 /// handle calls, the DAG builder needs to be modified to create register 437 /// anti/output dependencies on the registers clobbered by the call's regmask 438 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 439 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 440 /// the boundary, but there would be no benefit to postRA scheduling across 441 /// calls this late anyway. 442 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 443 MachineBasicBlock *MBB, 444 MachineFunction *MF, 445 const TargetInstrInfo *TII) { 446 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 447 } 448 449 /// A region of an MBB for scheduling. 450 namespace { 451 struct SchedRegion { 452 /// RegionBegin is the first instruction in the scheduling region, and 453 /// RegionEnd is either MBB->end() or the scheduling boundary after the 454 /// last instruction in the scheduling region. These iterators cannot refer 455 /// to instructions outside of the identified scheduling region because 456 /// those may be reordered before scheduling this region. 457 MachineBasicBlock::iterator RegionBegin; 458 MachineBasicBlock::iterator RegionEnd; 459 unsigned NumRegionInstrs; 460 461 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 462 unsigned N) : 463 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 464 }; 465 } // end anonymous namespace 466 467 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 468 469 static void 470 getSchedRegions(MachineBasicBlock *MBB, 471 MBBRegionsVector &Regions, 472 bool RegionsTopDown) { 473 MachineFunction *MF = MBB->getParent(); 474 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 475 476 MachineBasicBlock::iterator I = nullptr; 477 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 478 RegionEnd != MBB->begin(); RegionEnd = I) { 479 480 // Avoid decrementing RegionEnd for blocks with no terminator. 481 if (RegionEnd != MBB->end() || 482 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 483 --RegionEnd; 484 } 485 486 // The next region starts above the previous region. Look backward in the 487 // instruction stream until we find the nearest boundary. 488 unsigned NumRegionInstrs = 0; 489 I = RegionEnd; 490 for (;I != MBB->begin(); --I) { 491 MachineInstr &MI = *std::prev(I); 492 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 493 break; 494 if (!MI.isDebugInstr()) { 495 // MBB::size() uses instr_iterator to count. Here we need a bundle to 496 // count as a single instruction. 497 ++NumRegionInstrs; 498 } 499 } 500 501 // It's possible we found a scheduling region that only has debug 502 // instructions. Don't bother scheduling these. 503 if (NumRegionInstrs != 0) 504 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 505 } 506 507 if (RegionsTopDown) 508 std::reverse(Regions.begin(), Regions.end()); 509 } 510 511 /// Main driver for both MachineScheduler and PostMachineScheduler. 512 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 513 bool FixKillFlags) { 514 // Visit all machine basic blocks. 515 // 516 // TODO: Visit blocks in global postorder or postorder within the bottom-up 517 // loop tree. Then we can optionally compute global RegPressure. 518 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 519 MBB != MBBEnd; ++MBB) { 520 521 Scheduler.startBlock(&*MBB); 522 523 #ifndef NDEBUG 524 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 525 continue; 526 if (SchedOnlyBlock.getNumOccurrences() 527 && (int)SchedOnlyBlock != MBB->getNumber()) 528 continue; 529 #endif 530 531 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 532 // points to the scheduling boundary at the bottom of the region. The DAG 533 // does not include RegionEnd, but the region does (i.e. the next 534 // RegionEnd is above the previous RegionBegin). If the current block has 535 // no terminator then RegionEnd == MBB->end() for the bottom region. 536 // 537 // All the regions of MBB are first found and stored in MBBRegions, which 538 // will be processed (MBB) top-down if initialized with true. 539 // 540 // The Scheduler may insert instructions during either schedule() or 541 // exitRegion(), even for empty regions. So the local iterators 'I' and 542 // 'RegionEnd' are invalid across these calls. Instructions must not be 543 // added to other regions than the current one without updating MBBRegions. 544 545 MBBRegionsVector MBBRegions; 546 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 547 for (MBBRegionsVector::iterator R = MBBRegions.begin(); 548 R != MBBRegions.end(); ++R) { 549 MachineBasicBlock::iterator I = R->RegionBegin; 550 MachineBasicBlock::iterator RegionEnd = R->RegionEnd; 551 unsigned NumRegionInstrs = R->NumRegionInstrs; 552 553 // Notify the scheduler of the region, even if we may skip scheduling 554 // it. Perhaps it still needs to be bundled. 555 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 556 557 // Skip empty scheduling regions (0 or 1 schedulable instructions). 558 if (I == RegionEnd || I == std::prev(RegionEnd)) { 559 // Close the current region. Bundle the terminator if needed. 560 // This invalidates 'RegionEnd' and 'I'. 561 Scheduler.exitRegion(); 562 continue; 563 } 564 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 565 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) 566 << " " << MBB->getName() << "\n From: " << *I 567 << " To: "; 568 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 569 else dbgs() << "End"; 570 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 571 if (DumpCriticalPathLength) { 572 errs() << MF->getName(); 573 errs() << ":%bb. " << MBB->getNumber(); 574 errs() << " " << MBB->getName() << " \n"; 575 } 576 577 // Schedule a region: possibly reorder instructions. 578 // This invalidates the original region iterators. 579 Scheduler.schedule(); 580 581 // Close the current region. 582 Scheduler.exitRegion(); 583 } 584 Scheduler.finishBlock(); 585 // FIXME: Ideally, no further passes should rely on kill flags. However, 586 // thumb2 size reduction is currently an exception, so the PostMIScheduler 587 // needs to do this. 588 if (FixKillFlags) 589 Scheduler.fixupKills(*MBB); 590 } 591 Scheduler.finalizeSchedule(); 592 } 593 594 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 595 // unimplemented 596 } 597 598 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 599 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 600 dbgs() << "Queue " << Name << ": "; 601 for (const SUnit *SU : Queue) 602 dbgs() << SU->NodeNum << " "; 603 dbgs() << "\n"; 604 } 605 #endif 606 607 //===----------------------------------------------------------------------===// 608 // ScheduleDAGMI - Basic machine instruction scheduling. This is 609 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 610 // virtual registers. 611 // ===----------------------------------------------------------------------===/ 612 613 // Provide a vtable anchor. 614 ScheduleDAGMI::~ScheduleDAGMI() = default; 615 616 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 617 /// NumPredsLeft reaches zero, release the successor node. 618 /// 619 /// FIXME: Adjust SuccSU height based on MinLatency. 620 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 621 SUnit *SuccSU = SuccEdge->getSUnit(); 622 623 if (SuccEdge->isWeak()) { 624 --SuccSU->WeakPredsLeft; 625 if (SuccEdge->isCluster()) 626 NextClusterSucc = SuccSU; 627 return; 628 } 629 #ifndef NDEBUG 630 if (SuccSU->NumPredsLeft == 0) { 631 dbgs() << "*** Scheduling failed! ***\n"; 632 dumpNode(*SuccSU); 633 dbgs() << " has been released too many times!\n"; 634 llvm_unreachable(nullptr); 635 } 636 #endif 637 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 638 // CurrCycle may have advanced since then. 639 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 640 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 641 642 --SuccSU->NumPredsLeft; 643 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 644 SchedImpl->releaseTopNode(SuccSU); 645 } 646 647 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 648 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 649 for (SDep &Succ : SU->Succs) 650 releaseSucc(SU, &Succ); 651 } 652 653 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 654 /// NumSuccsLeft reaches zero, release the predecessor node. 655 /// 656 /// FIXME: Adjust PredSU height based on MinLatency. 657 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 658 SUnit *PredSU = PredEdge->getSUnit(); 659 660 if (PredEdge->isWeak()) { 661 --PredSU->WeakSuccsLeft; 662 if (PredEdge->isCluster()) 663 NextClusterPred = PredSU; 664 return; 665 } 666 #ifndef NDEBUG 667 if (PredSU->NumSuccsLeft == 0) { 668 dbgs() << "*** Scheduling failed! ***\n"; 669 dumpNode(*PredSU); 670 dbgs() << " has been released too many times!\n"; 671 llvm_unreachable(nullptr); 672 } 673 #endif 674 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 675 // CurrCycle may have advanced since then. 676 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 677 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 678 679 --PredSU->NumSuccsLeft; 680 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 681 SchedImpl->releaseBottomNode(PredSU); 682 } 683 684 /// releasePredecessors - Call releasePred on each of SU's predecessors. 685 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 686 for (SDep &Pred : SU->Preds) 687 releasePred(SU, &Pred); 688 } 689 690 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 691 ScheduleDAGInstrs::startBlock(bb); 692 SchedImpl->enterMBB(bb); 693 } 694 695 void ScheduleDAGMI::finishBlock() { 696 SchedImpl->leaveMBB(); 697 ScheduleDAGInstrs::finishBlock(); 698 } 699 700 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 701 /// crossing a scheduling boundary. [begin, end) includes all instructions in 702 /// the region, including the boundary itself and single-instruction regions 703 /// that don't get scheduled. 704 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 705 MachineBasicBlock::iterator begin, 706 MachineBasicBlock::iterator end, 707 unsigned regioninstrs) 708 { 709 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 710 711 SchedImpl->initPolicy(begin, end, regioninstrs); 712 } 713 714 /// This is normally called from the main scheduler loop but may also be invoked 715 /// by the scheduling strategy to perform additional code motion. 716 void ScheduleDAGMI::moveInstruction( 717 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 718 // Advance RegionBegin if the first instruction moves down. 719 if (&*RegionBegin == MI) 720 ++RegionBegin; 721 722 // Update the instruction stream. 723 BB->splice(InsertPos, BB, MI); 724 725 // Update LiveIntervals 726 if (LIS) 727 LIS->handleMove(*MI, /*UpdateFlags=*/true); 728 729 // Recede RegionBegin if an instruction moves above the first. 730 if (RegionBegin == InsertPos) 731 RegionBegin = MI; 732 } 733 734 bool ScheduleDAGMI::checkSchedLimit() { 735 #ifndef NDEBUG 736 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 737 CurrentTop = CurrentBottom; 738 return false; 739 } 740 ++NumInstrsScheduled; 741 #endif 742 return true; 743 } 744 745 /// Per-region scheduling driver, called back from 746 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 747 /// does not consider liveness or register pressure. It is useful for PostRA 748 /// scheduling and potentially other custom schedulers. 749 void ScheduleDAGMI::schedule() { 750 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 751 LLVM_DEBUG(SchedImpl->dumpPolicy()); 752 753 // Build the DAG. 754 buildSchedGraph(AA); 755 756 postprocessDAG(); 757 758 SmallVector<SUnit*, 8> TopRoots, BotRoots; 759 findRootsAndBiasEdges(TopRoots, BotRoots); 760 761 LLVM_DEBUG(dump()); 762 if (PrintDAGs) dump(); 763 if (ViewMISchedDAGs) viewGraph(); 764 765 // Initialize the strategy before modifying the DAG. 766 // This may initialize a DFSResult to be used for queue priority. 767 SchedImpl->initialize(this); 768 769 // Initialize ready queues now that the DAG and priority data are finalized. 770 initQueues(TopRoots, BotRoots); 771 772 bool IsTopNode = false; 773 while (true) { 774 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 775 SUnit *SU = SchedImpl->pickNode(IsTopNode); 776 if (!SU) break; 777 778 assert(!SU->isScheduled && "Node already scheduled"); 779 if (!checkSchedLimit()) 780 break; 781 782 MachineInstr *MI = SU->getInstr(); 783 if (IsTopNode) { 784 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 785 if (&*CurrentTop == MI) 786 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 787 else 788 moveInstruction(MI, CurrentTop); 789 } else { 790 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 791 MachineBasicBlock::iterator priorII = 792 priorNonDebug(CurrentBottom, CurrentTop); 793 if (&*priorII == MI) 794 CurrentBottom = priorII; 795 else { 796 if (&*CurrentTop == MI) 797 CurrentTop = nextIfDebug(++CurrentTop, priorII); 798 moveInstruction(MI, CurrentBottom); 799 CurrentBottom = MI; 800 } 801 } 802 // Notify the scheduling strategy before updating the DAG. 803 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 804 // runs, it can then use the accurate ReadyCycle time to determine whether 805 // newly released nodes can move to the readyQ. 806 SchedImpl->schedNode(SU, IsTopNode); 807 808 updateQueues(SU, IsTopNode); 809 } 810 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 811 812 placeDebugValues(); 813 814 LLVM_DEBUG({ 815 dbgs() << "*** Final schedule for " 816 << printMBBReference(*begin()->getParent()) << " ***\n"; 817 dumpSchedule(); 818 dbgs() << '\n'; 819 }); 820 } 821 822 /// Apply each ScheduleDAGMutation step in order. 823 void ScheduleDAGMI::postprocessDAG() { 824 for (auto &m : Mutations) 825 m->apply(this); 826 } 827 828 void ScheduleDAGMI:: 829 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 830 SmallVectorImpl<SUnit*> &BotRoots) { 831 for (SUnit &SU : SUnits) { 832 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 833 834 // Order predecessors so DFSResult follows the critical path. 835 SU.biasCriticalPath(); 836 837 // A SUnit is ready to top schedule if it has no predecessors. 838 if (!SU.NumPredsLeft) 839 TopRoots.push_back(&SU); 840 // A SUnit is ready to bottom schedule if it has no successors. 841 if (!SU.NumSuccsLeft) 842 BotRoots.push_back(&SU); 843 } 844 ExitSU.biasCriticalPath(); 845 } 846 847 /// Identify DAG roots and setup scheduler queues. 848 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 849 ArrayRef<SUnit*> BotRoots) { 850 NextClusterSucc = nullptr; 851 NextClusterPred = nullptr; 852 853 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 854 // 855 // Nodes with unreleased weak edges can still be roots. 856 // Release top roots in forward order. 857 for (SUnit *SU : TopRoots) 858 SchedImpl->releaseTopNode(SU); 859 860 // Release bottom roots in reverse order so the higher priority nodes appear 861 // first. This is more natural and slightly more efficient. 862 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 863 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 864 SchedImpl->releaseBottomNode(*I); 865 } 866 867 releaseSuccessors(&EntrySU); 868 releasePredecessors(&ExitSU); 869 870 SchedImpl->registerRoots(); 871 872 // Advance past initial DebugValues. 873 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 874 CurrentBottom = RegionEnd; 875 } 876 877 /// Update scheduler queues after scheduling an instruction. 878 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 879 // Release dependent instructions for scheduling. 880 if (IsTopNode) 881 releaseSuccessors(SU); 882 else 883 releasePredecessors(SU); 884 885 SU->isScheduled = true; 886 } 887 888 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 889 void ScheduleDAGMI::placeDebugValues() { 890 // If first instruction was a DBG_VALUE then put it back. 891 if (FirstDbgValue) { 892 BB->splice(RegionBegin, BB, FirstDbgValue); 893 RegionBegin = FirstDbgValue; 894 } 895 896 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 897 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 898 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 899 MachineInstr *DbgValue = P.first; 900 MachineBasicBlock::iterator OrigPrevMI = P.second; 901 if (&*RegionBegin == DbgValue) 902 ++RegionBegin; 903 BB->splice(++OrigPrevMI, BB, DbgValue); 904 if (OrigPrevMI == std::prev(RegionEnd)) 905 RegionEnd = DbgValue; 906 } 907 DbgValues.clear(); 908 FirstDbgValue = nullptr; 909 } 910 911 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 912 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 913 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 914 if (SUnit *SU = getSUnit(&(*MI))) 915 dumpNode(*SU); 916 else 917 dbgs() << "Missing SUnit\n"; 918 } 919 } 920 #endif 921 922 //===----------------------------------------------------------------------===// 923 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 924 // preservation. 925 //===----------------------------------------------------------------------===// 926 927 ScheduleDAGMILive::~ScheduleDAGMILive() { 928 delete DFSResult; 929 } 930 931 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 932 const MachineInstr &MI = *SU.getInstr(); 933 for (const MachineOperand &MO : MI.operands()) { 934 if (!MO.isReg()) 935 continue; 936 if (!MO.readsReg()) 937 continue; 938 if (TrackLaneMasks && !MO.isUse()) 939 continue; 940 941 Register Reg = MO.getReg(); 942 if (!Register::isVirtualRegister(Reg)) 943 continue; 944 945 // Ignore re-defs. 946 if (TrackLaneMasks) { 947 bool FoundDef = false; 948 for (const MachineOperand &MO2 : MI.operands()) { 949 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 950 FoundDef = true; 951 break; 952 } 953 } 954 if (FoundDef) 955 continue; 956 } 957 958 // Record this local VReg use. 959 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 960 for (; UI != VRegUses.end(); ++UI) { 961 if (UI->SU == &SU) 962 break; 963 } 964 if (UI == VRegUses.end()) 965 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 966 } 967 } 968 969 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 970 /// crossing a scheduling boundary. [begin, end) includes all instructions in 971 /// the region, including the boundary itself and single-instruction regions 972 /// that don't get scheduled. 973 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 974 MachineBasicBlock::iterator begin, 975 MachineBasicBlock::iterator end, 976 unsigned regioninstrs) 977 { 978 // ScheduleDAGMI initializes SchedImpl's per-region policy. 979 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 980 981 // For convenience remember the end of the liveness region. 982 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 983 984 SUPressureDiffs.clear(); 985 986 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 987 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 988 989 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 990 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 991 } 992 993 // Setup the register pressure trackers for the top scheduled and bottom 994 // scheduled regions. 995 void ScheduleDAGMILive::initRegPressure() { 996 VRegUses.clear(); 997 VRegUses.setUniverse(MRI.getNumVirtRegs()); 998 for (SUnit &SU : SUnits) 999 collectVRegUses(SU); 1000 1001 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1002 ShouldTrackLaneMasks, false); 1003 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1004 ShouldTrackLaneMasks, false); 1005 1006 // Close the RPTracker to finalize live ins. 1007 RPTracker.closeRegion(); 1008 1009 LLVM_DEBUG(RPTracker.dump()); 1010 1011 // Initialize the live ins and live outs. 1012 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1013 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1014 1015 // Close one end of the tracker so we can call 1016 // getMaxUpward/DownwardPressureDelta before advancing across any 1017 // instructions. This converts currently live regs into live ins/outs. 1018 TopRPTracker.closeTop(); 1019 BotRPTracker.closeBottom(); 1020 1021 BotRPTracker.initLiveThru(RPTracker); 1022 if (!BotRPTracker.getLiveThru().empty()) { 1023 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1024 LLVM_DEBUG(dbgs() << "Live Thru: "; 1025 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1026 }; 1027 1028 // For each live out vreg reduce the pressure change associated with other 1029 // uses of the same vreg below the live-out reaching def. 1030 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1031 1032 // Account for liveness generated by the region boundary. 1033 if (LiveRegionEnd != RegionEnd) { 1034 SmallVector<RegisterMaskPair, 8> LiveUses; 1035 BotRPTracker.recede(&LiveUses); 1036 updatePressureDiffs(LiveUses); 1037 } 1038 1039 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; 1040 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1041 dbgs() << "Bottom Pressure:\n"; 1042 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);); 1043 1044 assert((BotRPTracker.getPos() == RegionEnd || 1045 (RegionEnd->isDebugInstr() && 1046 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && 1047 "Can't find the region bottom"); 1048 1049 // Cache the list of excess pressure sets in this region. This will also track 1050 // the max pressure in the scheduled code for these sets. 1051 RegionCriticalPSets.clear(); 1052 const std::vector<unsigned> &RegionPressure = 1053 RPTracker.getPressure().MaxSetPressure; 1054 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1055 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1056 if (RegionPressure[i] > Limit) { 1057 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit 1058 << " Actual " << RegionPressure[i] << "\n"); 1059 RegionCriticalPSets.push_back(PressureChange(i)); 1060 } 1061 } 1062 LLVM_DEBUG(dbgs() << "Excess PSets: "; 1063 for (const PressureChange &RCPS 1064 : RegionCriticalPSets) dbgs() 1065 << TRI->getRegPressureSetName(RCPS.getPSet()) << " "; 1066 dbgs() << "\n"); 1067 } 1068 1069 void ScheduleDAGMILive:: 1070 updateScheduledPressure(const SUnit *SU, 1071 const std::vector<unsigned> &NewMaxPressure) { 1072 const PressureDiff &PDiff = getPressureDiff(SU); 1073 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1074 for (const PressureChange &PC : PDiff) { 1075 if (!PC.isValid()) 1076 break; 1077 unsigned ID = PC.getPSet(); 1078 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1079 ++CritIdx; 1080 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1081 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1082 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1083 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1084 } 1085 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1086 if (NewMaxPressure[ID] >= Limit - 2) { 1087 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1088 << NewMaxPressure[ID] 1089 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") 1090 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID] 1091 << " livethru)\n"); 1092 } 1093 } 1094 } 1095 1096 /// Update the PressureDiff array for liveness after scheduling this 1097 /// instruction. 1098 void ScheduleDAGMILive::updatePressureDiffs( 1099 ArrayRef<RegisterMaskPair> LiveUses) { 1100 for (const RegisterMaskPair &P : LiveUses) { 1101 unsigned Reg = P.RegUnit; 1102 /// FIXME: Currently assuming single-use physregs. 1103 if (!Register::isVirtualRegister(Reg)) 1104 continue; 1105 1106 if (ShouldTrackLaneMasks) { 1107 // If the register has just become live then other uses won't change 1108 // this fact anymore => decrement pressure. 1109 // If the register has just become dead then other uses make it come 1110 // back to life => increment pressure. 1111 bool Decrement = P.LaneMask.any(); 1112 1113 for (const VReg2SUnit &V2SU 1114 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1115 SUnit &SU = *V2SU.SU; 1116 if (SU.isScheduled || &SU == &ExitSU) 1117 continue; 1118 1119 PressureDiff &PDiff = getPressureDiff(&SU); 1120 PDiff.addPressureChange(Reg, Decrement, &MRI); 1121 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1122 << printReg(Reg, TRI) << ':' 1123 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr(); 1124 dbgs() << " to "; PDiff.dump(*TRI);); 1125 } 1126 } else { 1127 assert(P.LaneMask.any()); 1128 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1129 // This may be called before CurrentBottom has been initialized. However, 1130 // BotRPTracker must have a valid position. We want the value live into the 1131 // instruction or live out of the block, so ask for the previous 1132 // instruction's live-out. 1133 const LiveInterval &LI = LIS->getInterval(Reg); 1134 VNInfo *VNI; 1135 MachineBasicBlock::const_iterator I = 1136 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1137 if (I == BB->end()) 1138 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1139 else { 1140 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1141 VNI = LRQ.valueIn(); 1142 } 1143 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1144 assert(VNI && "No live value at use."); 1145 for (const VReg2SUnit &V2SU 1146 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1147 SUnit *SU = V2SU.SU; 1148 // If this use comes before the reaching def, it cannot be a last use, 1149 // so decrease its pressure change. 1150 if (!SU->isScheduled && SU != &ExitSU) { 1151 LiveQueryResult LRQ = 1152 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1153 if (LRQ.valueIn() == VNI) { 1154 PressureDiff &PDiff = getPressureDiff(SU); 1155 PDiff.addPressureChange(Reg, true, &MRI); 1156 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1157 << *SU->getInstr(); 1158 dbgs() << " to "; PDiff.dump(*TRI);); 1159 } 1160 } 1161 } 1162 } 1163 } 1164 } 1165 1166 void ScheduleDAGMILive::dump() const { 1167 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1168 if (EntrySU.getInstr() != nullptr) 1169 dumpNodeAll(EntrySU); 1170 for (const SUnit &SU : SUnits) { 1171 dumpNodeAll(SU); 1172 if (ShouldTrackPressure) { 1173 dbgs() << " Pressure Diff : "; 1174 getPressureDiff(&SU).dump(*TRI); 1175 } 1176 dbgs() << " Single Issue : "; 1177 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1178 SchedModel.mustEndGroup(SU.getInstr())) 1179 dbgs() << "true;"; 1180 else 1181 dbgs() << "false;"; 1182 dbgs() << '\n'; 1183 } 1184 if (ExitSU.getInstr() != nullptr) 1185 dumpNodeAll(ExitSU); 1186 #endif 1187 } 1188 1189 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1190 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1191 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1192 /// 1193 /// This is a skeletal driver, with all the functionality pushed into helpers, 1194 /// so that it can be easily extended by experimental schedulers. Generally, 1195 /// implementing MachineSchedStrategy should be sufficient to implement a new 1196 /// scheduling algorithm. However, if a scheduler further subclasses 1197 /// ScheduleDAGMILive then it will want to override this virtual method in order 1198 /// to update any specialized state. 1199 void ScheduleDAGMILive::schedule() { 1200 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1201 LLVM_DEBUG(SchedImpl->dumpPolicy()); 1202 buildDAGWithRegPressure(); 1203 1204 postprocessDAG(); 1205 1206 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1207 findRootsAndBiasEdges(TopRoots, BotRoots); 1208 1209 // Initialize the strategy before modifying the DAG. 1210 // This may initialize a DFSResult to be used for queue priority. 1211 SchedImpl->initialize(this); 1212 1213 LLVM_DEBUG(dump()); 1214 if (PrintDAGs) dump(); 1215 if (ViewMISchedDAGs) viewGraph(); 1216 1217 // Initialize ready queues now that the DAG and priority data are finalized. 1218 initQueues(TopRoots, BotRoots); 1219 1220 bool IsTopNode = false; 1221 while (true) { 1222 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1223 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1224 if (!SU) break; 1225 1226 assert(!SU->isScheduled && "Node already scheduled"); 1227 if (!checkSchedLimit()) 1228 break; 1229 1230 scheduleMI(SU, IsTopNode); 1231 1232 if (DFSResult) { 1233 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1234 if (!ScheduledTrees.test(SubtreeID)) { 1235 ScheduledTrees.set(SubtreeID); 1236 DFSResult->scheduleTree(SubtreeID); 1237 SchedImpl->scheduleTree(SubtreeID); 1238 } 1239 } 1240 1241 // Notify the scheduling strategy after updating the DAG. 1242 SchedImpl->schedNode(SU, IsTopNode); 1243 1244 updateQueues(SU, IsTopNode); 1245 } 1246 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1247 1248 placeDebugValues(); 1249 1250 LLVM_DEBUG({ 1251 dbgs() << "*** Final schedule for " 1252 << printMBBReference(*begin()->getParent()) << " ***\n"; 1253 dumpSchedule(); 1254 dbgs() << '\n'; 1255 }); 1256 } 1257 1258 /// Build the DAG and setup three register pressure trackers. 1259 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1260 if (!ShouldTrackPressure) { 1261 RPTracker.reset(); 1262 RegionCriticalPSets.clear(); 1263 buildSchedGraph(AA); 1264 return; 1265 } 1266 1267 // Initialize the register pressure tracker used by buildSchedGraph. 1268 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1269 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1270 1271 // Account for liveness generate by the region boundary. 1272 if (LiveRegionEnd != RegionEnd) 1273 RPTracker.recede(); 1274 1275 // Build the DAG, and compute current register pressure. 1276 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1277 1278 // Initialize top/bottom trackers after computing region pressure. 1279 initRegPressure(); 1280 } 1281 1282 void ScheduleDAGMILive::computeDFSResult() { 1283 if (!DFSResult) 1284 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1285 DFSResult->clear(); 1286 ScheduledTrees.clear(); 1287 DFSResult->resize(SUnits.size()); 1288 DFSResult->compute(SUnits); 1289 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1290 } 1291 1292 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1293 /// only provides the critical path for single block loops. To handle loops that 1294 /// span blocks, we could use the vreg path latencies provided by 1295 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1296 /// available for use in the scheduler. 1297 /// 1298 /// The cyclic path estimation identifies a def-use pair that crosses the back 1299 /// edge and considers the depth and height of the nodes. For example, consider 1300 /// the following instruction sequence where each instruction has unit latency 1301 /// and defines an epomymous virtual register: 1302 /// 1303 /// a->b(a,c)->c(b)->d(c)->exit 1304 /// 1305 /// The cyclic critical path is a two cycles: b->c->b 1306 /// The acyclic critical path is four cycles: a->b->c->d->exit 1307 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1308 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1309 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1310 /// LiveInDepth = depth(b) = len(a->b) = 1 1311 /// 1312 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1313 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1314 /// CyclicCriticalPath = min(2, 2) = 2 1315 /// 1316 /// This could be relevant to PostRA scheduling, but is currently implemented 1317 /// assuming LiveIntervals. 1318 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1319 // This only applies to single block loop. 1320 if (!BB->isSuccessor(BB)) 1321 return 0; 1322 1323 unsigned MaxCyclicLatency = 0; 1324 // Visit each live out vreg def to find def/use pairs that cross iterations. 1325 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1326 unsigned Reg = P.RegUnit; 1327 if (!Register::isVirtualRegister(Reg)) 1328 continue; 1329 const LiveInterval &LI = LIS->getInterval(Reg); 1330 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1331 if (!DefVNI) 1332 continue; 1333 1334 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1335 const SUnit *DefSU = getSUnit(DefMI); 1336 if (!DefSU) 1337 continue; 1338 1339 unsigned LiveOutHeight = DefSU->getHeight(); 1340 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1341 // Visit all local users of the vreg def. 1342 for (const VReg2SUnit &V2SU 1343 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1344 SUnit *SU = V2SU.SU; 1345 if (SU == &ExitSU) 1346 continue; 1347 1348 // Only consider uses of the phi. 1349 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1350 if (!LRQ.valueIn()->isPHIDef()) 1351 continue; 1352 1353 // Assume that a path spanning two iterations is a cycle, which could 1354 // overestimate in strange cases. This allows cyclic latency to be 1355 // estimated as the minimum slack of the vreg's depth or height. 1356 unsigned CyclicLatency = 0; 1357 if (LiveOutDepth > SU->getDepth()) 1358 CyclicLatency = LiveOutDepth - SU->getDepth(); 1359 1360 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1361 if (LiveInHeight > LiveOutHeight) { 1362 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1363 CyclicLatency = LiveInHeight - LiveOutHeight; 1364 } else 1365 CyclicLatency = 0; 1366 1367 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1368 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1369 if (CyclicLatency > MaxCyclicLatency) 1370 MaxCyclicLatency = CyclicLatency; 1371 } 1372 } 1373 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1374 return MaxCyclicLatency; 1375 } 1376 1377 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1378 /// the Top RP tracker in case the region beginning has changed. 1379 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1380 ArrayRef<SUnit*> BotRoots) { 1381 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1382 if (ShouldTrackPressure) { 1383 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1384 TopRPTracker.setPos(CurrentTop); 1385 } 1386 } 1387 1388 /// Move an instruction and update register pressure. 1389 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1390 // Move the instruction to its new location in the instruction stream. 1391 MachineInstr *MI = SU->getInstr(); 1392 1393 if (IsTopNode) { 1394 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1395 if (&*CurrentTop == MI) 1396 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1397 else { 1398 moveInstruction(MI, CurrentTop); 1399 TopRPTracker.setPos(MI); 1400 } 1401 1402 if (ShouldTrackPressure) { 1403 // Update top scheduled pressure. 1404 RegisterOperands RegOpers; 1405 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1406 if (ShouldTrackLaneMasks) { 1407 // Adjust liveness and add missing dead+read-undef flags. 1408 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1409 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1410 } else { 1411 // Adjust for missing dead-def flags. 1412 RegOpers.detectDeadDefs(*MI, *LIS); 1413 } 1414 1415 TopRPTracker.advance(RegOpers); 1416 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1417 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure( 1418 TopRPTracker.getRegSetPressureAtPos(), TRI);); 1419 1420 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1421 } 1422 } else { 1423 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1424 MachineBasicBlock::iterator priorII = 1425 priorNonDebug(CurrentBottom, CurrentTop); 1426 if (&*priorII == MI) 1427 CurrentBottom = priorII; 1428 else { 1429 if (&*CurrentTop == MI) { 1430 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1431 TopRPTracker.setPos(CurrentTop); 1432 } 1433 moveInstruction(MI, CurrentBottom); 1434 CurrentBottom = MI; 1435 BotRPTracker.setPos(CurrentBottom); 1436 } 1437 if (ShouldTrackPressure) { 1438 RegisterOperands RegOpers; 1439 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1440 if (ShouldTrackLaneMasks) { 1441 // Adjust liveness and add missing dead+read-undef flags. 1442 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1443 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1444 } else { 1445 // Adjust for missing dead-def flags. 1446 RegOpers.detectDeadDefs(*MI, *LIS); 1447 } 1448 1449 if (BotRPTracker.getPos() != CurrentBottom) 1450 BotRPTracker.recedeSkipDebugValues(); 1451 SmallVector<RegisterMaskPair, 8> LiveUses; 1452 BotRPTracker.recede(RegOpers, &LiveUses); 1453 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1454 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure( 1455 BotRPTracker.getRegSetPressureAtPos(), TRI);); 1456 1457 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1458 updatePressureDiffs(LiveUses); 1459 } 1460 } 1461 } 1462 1463 //===----------------------------------------------------------------------===// 1464 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1465 //===----------------------------------------------------------------------===// 1466 1467 namespace { 1468 1469 /// Post-process the DAG to create cluster edges between neighboring 1470 /// loads or between neighboring stores. 1471 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1472 struct MemOpInfo { 1473 SUnit *SU; 1474 SmallVector<const MachineOperand *, 4> BaseOps; 1475 int64_t Offset; 1476 unsigned Width; 1477 1478 MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps, 1479 int64_t Offset, unsigned Width) 1480 : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset), 1481 Width(Width) {} 1482 1483 static bool Compare(const MachineOperand *const &A, 1484 const MachineOperand *const &B) { 1485 if (A->getType() != B->getType()) 1486 return A->getType() < B->getType(); 1487 if (A->isReg()) 1488 return A->getReg() < B->getReg(); 1489 if (A->isFI()) { 1490 const MachineFunction &MF = *A->getParent()->getParent()->getParent(); 1491 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); 1492 bool StackGrowsDown = TFI.getStackGrowthDirection() == 1493 TargetFrameLowering::StackGrowsDown; 1494 return StackGrowsDown ? A->getIndex() > B->getIndex() 1495 : A->getIndex() < B->getIndex(); 1496 } 1497 1498 llvm_unreachable("MemOpClusterMutation only supports register or frame " 1499 "index bases."); 1500 } 1501 1502 bool operator<(const MemOpInfo &RHS) const { 1503 // FIXME: Don't compare everything twice. Maybe use C++20 three way 1504 // comparison instead when it's available. 1505 if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(), 1506 RHS.BaseOps.begin(), RHS.BaseOps.end(), 1507 Compare)) 1508 return true; 1509 if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(), 1510 BaseOps.begin(), BaseOps.end(), Compare)) 1511 return false; 1512 if (Offset != RHS.Offset) 1513 return Offset < RHS.Offset; 1514 return SU->NodeNum < RHS.SU->NodeNum; 1515 } 1516 }; 1517 1518 const TargetInstrInfo *TII; 1519 const TargetRegisterInfo *TRI; 1520 bool IsLoad; 1521 1522 public: 1523 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1524 const TargetRegisterInfo *tri, bool IsLoad) 1525 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1526 1527 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1528 1529 protected: 1530 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG); 1531 }; 1532 1533 class StoreClusterMutation : public BaseMemOpClusterMutation { 1534 public: 1535 StoreClusterMutation(const TargetInstrInfo *tii, 1536 const TargetRegisterInfo *tri) 1537 : BaseMemOpClusterMutation(tii, tri, false) {} 1538 }; 1539 1540 class LoadClusterMutation : public BaseMemOpClusterMutation { 1541 public: 1542 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1543 : BaseMemOpClusterMutation(tii, tri, true) {} 1544 }; 1545 1546 } // end anonymous namespace 1547 1548 namespace llvm { 1549 1550 std::unique_ptr<ScheduleDAGMutation> 1551 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1552 const TargetRegisterInfo *TRI) { 1553 return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI) 1554 : nullptr; 1555 } 1556 1557 std::unique_ptr<ScheduleDAGMutation> 1558 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1559 const TargetRegisterInfo *TRI) { 1560 return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI) 1561 : nullptr; 1562 } 1563 1564 } // end namespace llvm 1565 1566 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1567 ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG) { 1568 SmallVector<MemOpInfo, 32> MemOpRecords; 1569 for (SUnit *SU : MemOps) { 1570 const MachineInstr &MI = *SU->getInstr(); 1571 SmallVector<const MachineOperand *, 4> BaseOps; 1572 int64_t Offset; 1573 bool OffsetIsScalable; 1574 unsigned Width; 1575 if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, 1576 OffsetIsScalable, Width, TRI)) { 1577 MemOpRecords.push_back(MemOpInfo(SU, BaseOps, Offset, Width)); 1578 1579 LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: " 1580 << Offset << ", OffsetIsScalable: " << OffsetIsScalable 1581 << ", Width: " << Width << "\n"); 1582 } 1583 #ifndef NDEBUG 1584 for (auto *Op : BaseOps) 1585 assert(Op); 1586 #endif 1587 } 1588 if (MemOpRecords.size() < 2) 1589 return; 1590 1591 llvm::sort(MemOpRecords); 1592 1593 // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to 1594 // cluster mem ops collected within `MemOpRecords` array. 1595 unsigned ClusterLength = 1; 1596 unsigned CurrentClusterBytes = MemOpRecords[0].Width; 1597 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1598 // Decision to cluster mem ops is taken based on target dependent logic 1599 auto MemOpa = MemOpRecords[Idx]; 1600 auto MemOpb = MemOpRecords[Idx + 1]; 1601 ++ClusterLength; 1602 CurrentClusterBytes += MemOpb.Width; 1603 if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpb.BaseOps, ClusterLength, 1604 CurrentClusterBytes)) { 1605 // Current mem ops pair could not be clustered, reset cluster length, and 1606 // go to next pair 1607 ClusterLength = 1; 1608 CurrentClusterBytes = MemOpb.Width; 1609 continue; 1610 } 1611 1612 SUnit *SUa = MemOpa.SU; 1613 SUnit *SUb = MemOpb.SU; 1614 if (SUa->NodeNum > SUb->NodeNum) 1615 std::swap(SUa, SUb); 1616 1617 // FIXME: Is this check really required? 1618 if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1619 ClusterLength = 1; 1620 CurrentClusterBytes = MemOpb.Width; 1621 continue; 1622 } 1623 1624 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1625 << SUb->NodeNum << ")\n"); 1626 1627 // Copy successor edges from SUa to SUb. Interleaving computation 1628 // dependent on SUa can prevent load combining due to register reuse. 1629 // Predecessor edges do not need to be copied from SUb to SUa since 1630 // nearby loads should have effectively the same inputs. 1631 for (const SDep &Succ : SUa->Succs) { 1632 if (Succ.getSUnit() == SUb) 1633 continue; 1634 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum 1635 << ")\n"); 1636 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1637 } 1638 1639 LLVM_DEBUG(dbgs() << " Curr cluster length: " << ClusterLength 1640 << ", Curr cluster bytes: " << CurrentClusterBytes 1641 << "\n"); 1642 } 1643 } 1644 1645 /// Callback from DAG postProcessing to create cluster edges for loads. 1646 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) { 1647 // Map DAG NodeNum to a set of dependent MemOps in store chain. 1648 DenseMap<unsigned, SmallVector<SUnit *, 4>> StoreChains; 1649 for (SUnit &SU : DAG->SUnits) { 1650 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1651 (!IsLoad && !SU.getInstr()->mayStore())) 1652 continue; 1653 1654 unsigned ChainPredID = DAG->SUnits.size(); 1655 for (const SDep &Pred : SU.Preds) { 1656 if (Pred.isCtrl() && !Pred.isArtificial()) { 1657 ChainPredID = Pred.getSUnit()->NodeNum; 1658 break; 1659 } 1660 } 1661 // Insert the SU to corresponding store chain. 1662 auto &Chain = StoreChains.FindAndConstruct(ChainPredID).second; 1663 Chain.push_back(&SU); 1664 } 1665 1666 // Iterate over the store chains. 1667 for (auto &SCD : StoreChains) 1668 clusterNeighboringMemOps(SCD.second, DAG); 1669 } 1670 1671 //===----------------------------------------------------------------------===// 1672 // CopyConstrain - DAG post-processing to encourage copy elimination. 1673 //===----------------------------------------------------------------------===// 1674 1675 namespace { 1676 1677 /// Post-process the DAG to create weak edges from all uses of a copy to 1678 /// the one use that defines the copy's source vreg, most likely an induction 1679 /// variable increment. 1680 class CopyConstrain : public ScheduleDAGMutation { 1681 // Transient state. 1682 SlotIndex RegionBeginIdx; 1683 1684 // RegionEndIdx is the slot index of the last non-debug instruction in the 1685 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1686 SlotIndex RegionEndIdx; 1687 1688 public: 1689 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1690 1691 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1692 1693 protected: 1694 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1695 }; 1696 1697 } // end anonymous namespace 1698 1699 namespace llvm { 1700 1701 std::unique_ptr<ScheduleDAGMutation> 1702 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1703 const TargetRegisterInfo *TRI) { 1704 return std::make_unique<CopyConstrain>(TII, TRI); 1705 } 1706 1707 } // end namespace llvm 1708 1709 /// constrainLocalCopy handles two possibilities: 1710 /// 1) Local src: 1711 /// I0: = dst 1712 /// I1: src = ... 1713 /// I2: = dst 1714 /// I3: dst = src (copy) 1715 /// (create pred->succ edges I0->I1, I2->I1) 1716 /// 1717 /// 2) Local copy: 1718 /// I0: dst = src (copy) 1719 /// I1: = dst 1720 /// I2: src = ... 1721 /// I3: = dst 1722 /// (create pred->succ edges I1->I2, I3->I2) 1723 /// 1724 /// Although the MachineScheduler is currently constrained to single blocks, 1725 /// this algorithm should handle extended blocks. An EBB is a set of 1726 /// contiguously numbered blocks such that the previous block in the EBB is 1727 /// always the single predecessor. 1728 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1729 LiveIntervals *LIS = DAG->getLIS(); 1730 MachineInstr *Copy = CopySU->getInstr(); 1731 1732 // Check for pure vreg copies. 1733 const MachineOperand &SrcOp = Copy->getOperand(1); 1734 Register SrcReg = SrcOp.getReg(); 1735 if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1736 return; 1737 1738 const MachineOperand &DstOp = Copy->getOperand(0); 1739 Register DstReg = DstOp.getReg(); 1740 if (!Register::isVirtualRegister(DstReg) || DstOp.isDead()) 1741 return; 1742 1743 // Check if either the dest or source is local. If it's live across a back 1744 // edge, it's not local. Note that if both vregs are live across the back 1745 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1746 // If both the copy's source and dest are local live intervals, then we 1747 // should treat the dest as the global for the purpose of adding 1748 // constraints. This adds edges from source's other uses to the copy. 1749 unsigned LocalReg = SrcReg; 1750 unsigned GlobalReg = DstReg; 1751 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1752 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1753 LocalReg = DstReg; 1754 GlobalReg = SrcReg; 1755 LocalLI = &LIS->getInterval(LocalReg); 1756 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1757 return; 1758 } 1759 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1760 1761 // Find the global segment after the start of the local LI. 1762 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1763 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1764 // local live range. We could create edges from other global uses to the local 1765 // start, but the coalescer should have already eliminated these cases, so 1766 // don't bother dealing with it. 1767 if (GlobalSegment == GlobalLI->end()) 1768 return; 1769 1770 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1771 // returned the next global segment. But if GlobalSegment overlaps with 1772 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI 1773 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1774 if (GlobalSegment->contains(LocalLI->beginIndex())) 1775 ++GlobalSegment; 1776 1777 if (GlobalSegment == GlobalLI->end()) 1778 return; 1779 1780 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1781 if (GlobalSegment != GlobalLI->begin()) { 1782 // Two address defs have no hole. 1783 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1784 GlobalSegment->start)) { 1785 return; 1786 } 1787 // If the prior global segment may be defined by the same two-address 1788 // instruction that also defines LocalLI, then can't make a hole here. 1789 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1790 LocalLI->beginIndex())) { 1791 return; 1792 } 1793 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1794 // it would be a disconnected component in the live range. 1795 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1796 "Disconnected LRG within the scheduling region."); 1797 } 1798 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1799 if (!GlobalDef) 1800 return; 1801 1802 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1803 if (!GlobalSU) 1804 return; 1805 1806 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1807 // constraining the uses of the last local def to precede GlobalDef. 1808 SmallVector<SUnit*,8> LocalUses; 1809 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1810 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1811 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1812 for (const SDep &Succ : LastLocalSU->Succs) { 1813 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 1814 continue; 1815 if (Succ.getSUnit() == GlobalSU) 1816 continue; 1817 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 1818 return; 1819 LocalUses.push_back(Succ.getSUnit()); 1820 } 1821 // Open the top of the GlobalLI hole by constraining any earlier global uses 1822 // to precede the start of LocalLI. 1823 SmallVector<SUnit*,8> GlobalUses; 1824 MachineInstr *FirstLocalDef = 1825 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1826 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1827 for (const SDep &Pred : GlobalSU->Preds) { 1828 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 1829 continue; 1830 if (Pred.getSUnit() == FirstLocalSU) 1831 continue; 1832 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 1833 return; 1834 GlobalUses.push_back(Pred.getSUnit()); 1835 } 1836 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1837 // Add the weak edges. 1838 for (SmallVectorImpl<SUnit*>::const_iterator 1839 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1840 LLVM_DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1841 << GlobalSU->NodeNum << ")\n"); 1842 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1843 } 1844 for (SmallVectorImpl<SUnit*>::const_iterator 1845 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1846 LLVM_DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1847 << FirstLocalSU->NodeNum << ")\n"); 1848 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1849 } 1850 } 1851 1852 /// Callback from DAG postProcessing to create weak edges to encourage 1853 /// copy elimination. 1854 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1855 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1856 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1857 1858 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1859 if (FirstPos == DAG->end()) 1860 return; 1861 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1862 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1863 *priorNonDebug(DAG->end(), DAG->begin())); 1864 1865 for (SUnit &SU : DAG->SUnits) { 1866 if (!SU.getInstr()->isCopy()) 1867 continue; 1868 1869 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 1870 } 1871 } 1872 1873 //===----------------------------------------------------------------------===// 1874 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1875 // and possibly other custom schedulers. 1876 //===----------------------------------------------------------------------===// 1877 1878 static const unsigned InvalidCycle = ~0U; 1879 1880 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1881 1882 /// Given a Count of resource usage and a Latency value, return true if a 1883 /// SchedBoundary becomes resource limited. 1884 /// If we are checking after scheduling a node, we should return true when 1885 /// we just reach the resource limit. 1886 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 1887 unsigned Latency, bool AfterSchedNode) { 1888 int ResCntFactor = (int)(Count - (Latency * LFactor)); 1889 if (AfterSchedNode) 1890 return ResCntFactor >= (int)LFactor; 1891 else 1892 return ResCntFactor > (int)LFactor; 1893 } 1894 1895 void SchedBoundary::reset() { 1896 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1897 // Destroying and reconstructing it is very expensive though. So keep 1898 // invalid, placeholder HazardRecs. 1899 if (HazardRec && HazardRec->isEnabled()) { 1900 delete HazardRec; 1901 HazardRec = nullptr; 1902 } 1903 Available.clear(); 1904 Pending.clear(); 1905 CheckPending = false; 1906 CurrCycle = 0; 1907 CurrMOps = 0; 1908 MinReadyCycle = std::numeric_limits<unsigned>::max(); 1909 ExpectedLatency = 0; 1910 DependentLatency = 0; 1911 RetiredMOps = 0; 1912 MaxExecutedResCount = 0; 1913 ZoneCritResIdx = 0; 1914 IsResourceLimited = false; 1915 ReservedCycles.clear(); 1916 ReservedCyclesIndex.clear(); 1917 #ifndef NDEBUG 1918 // Track the maximum number of stall cycles that could arise either from the 1919 // latency of a DAG edge or the number of cycles that a processor resource is 1920 // reserved (SchedBoundary::ReservedCycles). 1921 MaxObservedStall = 0; 1922 #endif 1923 // Reserve a zero-count for invalid CritResIdx. 1924 ExecutedResCounts.resize(1); 1925 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1926 } 1927 1928 void SchedRemainder:: 1929 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1930 reset(); 1931 if (!SchedModel->hasInstrSchedModel()) 1932 return; 1933 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1934 for (SUnit &SU : DAG->SUnits) { 1935 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 1936 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 1937 * SchedModel->getMicroOpFactor(); 1938 for (TargetSchedModel::ProcResIter 1939 PI = SchedModel->getWriteProcResBegin(SC), 1940 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1941 unsigned PIdx = PI->ProcResourceIdx; 1942 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1943 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1944 } 1945 } 1946 } 1947 1948 void SchedBoundary:: 1949 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1950 reset(); 1951 DAG = dag; 1952 SchedModel = smodel; 1953 Rem = rem; 1954 if (SchedModel->hasInstrSchedModel()) { 1955 unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); 1956 ReservedCyclesIndex.resize(ResourceCount); 1957 ExecutedResCounts.resize(ResourceCount); 1958 unsigned NumUnits = 0; 1959 1960 for (unsigned i = 0; i < ResourceCount; ++i) { 1961 ReservedCyclesIndex[i] = NumUnits; 1962 NumUnits += SchedModel->getProcResource(i)->NumUnits; 1963 } 1964 1965 ReservedCycles.resize(NumUnits, InvalidCycle); 1966 } 1967 } 1968 1969 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1970 /// these "soft stalls" differently than the hard stall cycles based on CPU 1971 /// resources and computed by checkHazard(). A fully in-order model 1972 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1973 /// available for scheduling until they are ready. However, a weaker in-order 1974 /// model may use this for heuristics. For example, if a processor has in-order 1975 /// behavior when reading certain resources, this may come into play. 1976 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1977 if (!SU->isUnbuffered) 1978 return 0; 1979 1980 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1981 if (ReadyCycle > CurrCycle) 1982 return ReadyCycle - CurrCycle; 1983 return 0; 1984 } 1985 1986 /// Compute the next cycle at which the given processor resource unit 1987 /// can be scheduled. 1988 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx, 1989 unsigned Cycles) { 1990 unsigned NextUnreserved = ReservedCycles[InstanceIdx]; 1991 // If this resource has never been used, always return cycle zero. 1992 if (NextUnreserved == InvalidCycle) 1993 return 0; 1994 // For bottom-up scheduling add the cycles needed for the current operation. 1995 if (!isTop()) 1996 NextUnreserved += Cycles; 1997 return NextUnreserved; 1998 } 1999 2000 /// Compute the next cycle at which the given processor resource can be 2001 /// scheduled. Returns the next cycle and the index of the processor resource 2002 /// instance in the reserved cycles vector. 2003 std::pair<unsigned, unsigned> 2004 SchedBoundary::getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 2005 unsigned MinNextUnreserved = InvalidCycle; 2006 unsigned InstanceIdx = 0; 2007 unsigned StartIndex = ReservedCyclesIndex[PIdx]; 2008 unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits; 2009 assert(NumberOfInstances > 0 && 2010 "Cannot have zero instances of a ProcResource"); 2011 2012 for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End; 2013 ++I) { 2014 unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles); 2015 if (MinNextUnreserved > NextUnreserved) { 2016 InstanceIdx = I; 2017 MinNextUnreserved = NextUnreserved; 2018 } 2019 } 2020 return std::make_pair(MinNextUnreserved, InstanceIdx); 2021 } 2022 2023 /// Does this SU have a hazard within the current instruction group. 2024 /// 2025 /// The scheduler supports two modes of hazard recognition. The first is the 2026 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 2027 /// supports highly complicated in-order reservation tables 2028 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. 2029 /// 2030 /// The second is a streamlined mechanism that checks for hazards based on 2031 /// simple counters that the scheduler itself maintains. It explicitly checks 2032 /// for instruction dispatch limitations, including the number of micro-ops that 2033 /// can dispatch per cycle. 2034 /// 2035 /// TODO: Also check whether the SU must start a new group. 2036 bool SchedBoundary::checkHazard(SUnit *SU) { 2037 if (HazardRec->isEnabled() 2038 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 2039 return true; 2040 } 2041 2042 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 2043 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 2044 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 2045 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 2046 return true; 2047 } 2048 2049 if (CurrMOps > 0 && 2050 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 2051 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 2052 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 2053 << (isTop() ? "begin" : "end") << " group\n"); 2054 return true; 2055 } 2056 2057 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 2058 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2059 for (const MCWriteProcResEntry &PE : 2060 make_range(SchedModel->getWriteProcResBegin(SC), 2061 SchedModel->getWriteProcResEnd(SC))) { 2062 unsigned ResIdx = PE.ProcResourceIdx; 2063 unsigned Cycles = PE.Cycles; 2064 unsigned NRCycle, InstanceIdx; 2065 std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(ResIdx, Cycles); 2066 if (NRCycle > CurrCycle) { 2067 #ifndef NDEBUG 2068 MaxObservedStall = std::max(Cycles, MaxObservedStall); 2069 #endif 2070 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 2071 << SchedModel->getResourceName(ResIdx) 2072 << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']' 2073 << "=" << NRCycle << "c\n"); 2074 return true; 2075 } 2076 } 2077 } 2078 return false; 2079 } 2080 2081 // Find the unscheduled node in ReadySUs with the highest latency. 2082 unsigned SchedBoundary:: 2083 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 2084 SUnit *LateSU = nullptr; 2085 unsigned RemLatency = 0; 2086 for (SUnit *SU : ReadySUs) { 2087 unsigned L = getUnscheduledLatency(SU); 2088 if (L > RemLatency) { 2089 RemLatency = L; 2090 LateSU = SU; 2091 } 2092 } 2093 if (LateSU) { 2094 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2095 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2096 } 2097 return RemLatency; 2098 } 2099 2100 // Count resources in this zone and the remaining unscheduled 2101 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2102 // resource index, or zero if the zone is issue limited. 2103 unsigned SchedBoundary:: 2104 getOtherResourceCount(unsigned &OtherCritIdx) { 2105 OtherCritIdx = 0; 2106 if (!SchedModel->hasInstrSchedModel()) 2107 return 0; 2108 2109 unsigned OtherCritCount = Rem->RemIssueCount 2110 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2111 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2112 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2113 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2114 PIdx != PEnd; ++PIdx) { 2115 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2116 if (OtherCount > OtherCritCount) { 2117 OtherCritCount = OtherCount; 2118 OtherCritIdx = PIdx; 2119 } 2120 } 2121 if (OtherCritIdx) { 2122 LLVM_DEBUG( 2123 dbgs() << " " << Available.getName() << " + Remain CritRes: " 2124 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2125 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2126 } 2127 return OtherCritCount; 2128 } 2129 2130 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue, 2131 unsigned Idx) { 2132 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2133 2134 #ifndef NDEBUG 2135 // ReadyCycle was been bumped up to the CurrCycle when this node was 2136 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2137 // scheduling, so may now be greater than ReadyCycle. 2138 if (ReadyCycle > CurrCycle) 2139 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2140 #endif 2141 2142 if (ReadyCycle < MinReadyCycle) 2143 MinReadyCycle = ReadyCycle; 2144 2145 // Check for interlocks first. For the purpose of other heuristics, an 2146 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2147 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2148 bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) || 2149 checkHazard(SU) || (Available.size() >= ReadyListLimit); 2150 2151 if (!HazardDetected) { 2152 Available.push(SU); 2153 2154 if (InPQueue) 2155 Pending.remove(Pending.begin() + Idx); 2156 return; 2157 } 2158 2159 if (!InPQueue) 2160 Pending.push(SU); 2161 } 2162 2163 /// Move the boundary of scheduled code by one cycle. 2164 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2165 if (SchedModel->getMicroOpBufferSize() == 0) { 2166 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2167 "MinReadyCycle uninitialized"); 2168 if (MinReadyCycle > NextCycle) 2169 NextCycle = MinReadyCycle; 2170 } 2171 // Update the current micro-ops, which will issue in the next cycle. 2172 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2173 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2174 2175 // Decrement DependentLatency based on the next cycle. 2176 if ((NextCycle - CurrCycle) > DependentLatency) 2177 DependentLatency = 0; 2178 else 2179 DependentLatency -= (NextCycle - CurrCycle); 2180 2181 if (!HazardRec->isEnabled()) { 2182 // Bypass HazardRec virtual calls. 2183 CurrCycle = NextCycle; 2184 } else { 2185 // Bypass getHazardType calls in case of long latency. 2186 for (; CurrCycle != NextCycle; ++CurrCycle) { 2187 if (isTop()) 2188 HazardRec->AdvanceCycle(); 2189 else 2190 HazardRec->RecedeCycle(); 2191 } 2192 } 2193 CheckPending = true; 2194 IsResourceLimited = 2195 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2196 getScheduledLatency(), true); 2197 2198 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() 2199 << '\n'); 2200 } 2201 2202 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2203 ExecutedResCounts[PIdx] += Count; 2204 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2205 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2206 } 2207 2208 /// Add the given processor resource to this scheduled zone. 2209 /// 2210 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2211 /// during which this resource is consumed. 2212 /// 2213 /// \return the next cycle at which the instruction may execute without 2214 /// oversubscribing resources. 2215 unsigned SchedBoundary:: 2216 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2217 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2218 unsigned Count = Factor * Cycles; 2219 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +" 2220 << Cycles << "x" << Factor << "u\n"); 2221 2222 // Update Executed resources counts. 2223 incExecutedResources(PIdx, Count); 2224 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2225 Rem->RemainingCounts[PIdx] -= Count; 2226 2227 // Check if this resource exceeds the current critical resource. If so, it 2228 // becomes the critical resource. 2229 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2230 ZoneCritResIdx = PIdx; 2231 LLVM_DEBUG(dbgs() << " *** Critical resource " 2232 << SchedModel->getResourceName(PIdx) << ": " 2233 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() 2234 << "c\n"); 2235 } 2236 // For reserved resources, record the highest cycle using the resource. 2237 unsigned NextAvailable, InstanceIdx; 2238 std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(PIdx, Cycles); 2239 if (NextAvailable > CurrCycle) { 2240 LLVM_DEBUG(dbgs() << " Resource conflict: " 2241 << SchedModel->getResourceName(PIdx) 2242 << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']' 2243 << " reserved until @" << NextAvailable << "\n"); 2244 } 2245 return NextAvailable; 2246 } 2247 2248 /// Move the boundary of scheduled code by one SUnit. 2249 void SchedBoundary::bumpNode(SUnit *SU) { 2250 // Update the reservation table. 2251 if (HazardRec->isEnabled()) { 2252 if (!isTop() && SU->isCall) { 2253 // Calls are scheduled with their preceding instructions. For bottom-up 2254 // scheduling, clear the pipeline state before emitting. 2255 HazardRec->Reset(); 2256 } 2257 HazardRec->EmitInstruction(SU); 2258 // Scheduling an instruction may have made pending instructions available. 2259 CheckPending = true; 2260 } 2261 // checkHazard should prevent scheduling multiple instructions per cycle that 2262 // exceed the issue width. 2263 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2264 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2265 assert( 2266 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2267 "Cannot schedule this instruction's MicroOps in the current cycle."); 2268 2269 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2270 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2271 2272 unsigned NextCycle = CurrCycle; 2273 switch (SchedModel->getMicroOpBufferSize()) { 2274 case 0: 2275 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2276 break; 2277 case 1: 2278 if (ReadyCycle > NextCycle) { 2279 NextCycle = ReadyCycle; 2280 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2281 } 2282 break; 2283 default: 2284 // We don't currently model the OOO reorder buffer, so consider all 2285 // scheduled MOps to be "retired". We do loosely model in-order resource 2286 // latency. If this instruction uses an in-order resource, account for any 2287 // likely stall cycles. 2288 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2289 NextCycle = ReadyCycle; 2290 break; 2291 } 2292 RetiredMOps += IncMOps; 2293 2294 // Update resource counts and critical resource. 2295 if (SchedModel->hasInstrSchedModel()) { 2296 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2297 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2298 Rem->RemIssueCount -= DecRemIssue; 2299 if (ZoneCritResIdx) { 2300 // Scale scheduled micro-ops for comparing with the critical resource. 2301 unsigned ScaledMOps = 2302 RetiredMOps * SchedModel->getMicroOpFactor(); 2303 2304 // If scaled micro-ops are now more than the previous critical resource by 2305 // a full cycle, then micro-ops issue becomes critical. 2306 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2307 >= (int)SchedModel->getLatencyFactor()) { 2308 ZoneCritResIdx = 0; 2309 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2310 << ScaledMOps / SchedModel->getLatencyFactor() 2311 << "c\n"); 2312 } 2313 } 2314 for (TargetSchedModel::ProcResIter 2315 PI = SchedModel->getWriteProcResBegin(SC), 2316 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2317 unsigned RCycle = 2318 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2319 if (RCycle > NextCycle) 2320 NextCycle = RCycle; 2321 } 2322 if (SU->hasReservedResource) { 2323 // For reserved resources, record the highest cycle using the resource. 2324 // For top-down scheduling, this is the cycle in which we schedule this 2325 // instruction plus the number of cycles the operations reserves the 2326 // resource. For bottom-up is it simply the instruction's cycle. 2327 for (TargetSchedModel::ProcResIter 2328 PI = SchedModel->getWriteProcResBegin(SC), 2329 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2330 unsigned PIdx = PI->ProcResourceIdx; 2331 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2332 unsigned ReservedUntil, InstanceIdx; 2333 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(PIdx, 0); 2334 if (isTop()) { 2335 ReservedCycles[InstanceIdx] = 2336 std::max(ReservedUntil, NextCycle + PI->Cycles); 2337 } else 2338 ReservedCycles[InstanceIdx] = NextCycle; 2339 } 2340 } 2341 } 2342 } 2343 // Update ExpectedLatency and DependentLatency. 2344 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2345 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2346 if (SU->getDepth() > TopLatency) { 2347 TopLatency = SU->getDepth(); 2348 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU(" 2349 << SU->NodeNum << ") " << TopLatency << "c\n"); 2350 } 2351 if (SU->getHeight() > BotLatency) { 2352 BotLatency = SU->getHeight(); 2353 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU(" 2354 << SU->NodeNum << ") " << BotLatency << "c\n"); 2355 } 2356 // If we stall for any reason, bump the cycle. 2357 if (NextCycle > CurrCycle) 2358 bumpCycle(NextCycle); 2359 else 2360 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2361 // resource limited. If a stall occurred, bumpCycle does this. 2362 IsResourceLimited = 2363 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2364 getScheduledLatency(), true); 2365 2366 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2367 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2368 // one cycle. Since we commonly reach the max MOps here, opportunistically 2369 // bump the cycle to avoid uselessly checking everything in the readyQ. 2370 CurrMOps += IncMOps; 2371 2372 // Bump the cycle count for issue group constraints. 2373 // This must be done after NextCycle has been adjust for all other stalls. 2374 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2375 // currCycle to X. 2376 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2377 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2378 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin") 2379 << " group\n"); 2380 bumpCycle(++NextCycle); 2381 } 2382 2383 while (CurrMOps >= SchedModel->getIssueWidth()) { 2384 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle " 2385 << CurrCycle << '\n'); 2386 bumpCycle(++NextCycle); 2387 } 2388 LLVM_DEBUG(dumpScheduledState()); 2389 } 2390 2391 /// Release pending ready nodes in to the available queue. This makes them 2392 /// visible to heuristics. 2393 void SchedBoundary::releasePending() { 2394 // If the available queue is empty, it is safe to reset MinReadyCycle. 2395 if (Available.empty()) 2396 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2397 2398 // Check to see if any of the pending instructions are ready to issue. If 2399 // so, add them to the available queue. 2400 for (unsigned I = 0, E = Pending.size(); I < E; ++I) { 2401 SUnit *SU = *(Pending.begin() + I); 2402 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2403 2404 if (ReadyCycle < MinReadyCycle) 2405 MinReadyCycle = ReadyCycle; 2406 2407 if (Available.size() >= ReadyListLimit) 2408 break; 2409 2410 releaseNode(SU, ReadyCycle, true, I); 2411 if (E != Pending.size()) { 2412 --I; 2413 --E; 2414 } 2415 } 2416 CheckPending = false; 2417 } 2418 2419 /// Remove SU from the ready set for this boundary. 2420 void SchedBoundary::removeReady(SUnit *SU) { 2421 if (Available.isInQueue(SU)) 2422 Available.remove(Available.find(SU)); 2423 else { 2424 assert(Pending.isInQueue(SU) && "bad ready count"); 2425 Pending.remove(Pending.find(SU)); 2426 } 2427 } 2428 2429 /// If this queue only has one ready candidate, return it. As a side effect, 2430 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2431 /// one node is ready. If multiple instructions are ready, return NULL. 2432 SUnit *SchedBoundary::pickOnlyChoice() { 2433 if (CheckPending) 2434 releasePending(); 2435 2436 // Defer any ready instrs that now have a hazard. 2437 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2438 if (checkHazard(*I)) { 2439 Pending.push(*I); 2440 I = Available.remove(I); 2441 continue; 2442 } 2443 ++I; 2444 } 2445 for (unsigned i = 0; Available.empty(); ++i) { 2446 // FIXME: Re-enable assert once PR20057 is resolved. 2447 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2448 // "permanent hazard"); 2449 (void)i; 2450 bumpCycle(CurrCycle + 1); 2451 releasePending(); 2452 } 2453 2454 LLVM_DEBUG(Pending.dump()); 2455 LLVM_DEBUG(Available.dump()); 2456 2457 if (Available.size() == 1) 2458 return *Available.begin(); 2459 return nullptr; 2460 } 2461 2462 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2463 // This is useful information to dump after bumpNode. 2464 // Note that the Queue contents are more useful before pickNodeFromQueue. 2465 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2466 unsigned ResFactor; 2467 unsigned ResCount; 2468 if (ZoneCritResIdx) { 2469 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2470 ResCount = getResourceCount(ZoneCritResIdx); 2471 } else { 2472 ResFactor = SchedModel->getMicroOpFactor(); 2473 ResCount = RetiredMOps * ResFactor; 2474 } 2475 unsigned LFactor = SchedModel->getLatencyFactor(); 2476 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2477 << " Retired: " << RetiredMOps; 2478 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2479 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2480 << ResCount / ResFactor << " " 2481 << SchedModel->getResourceName(ZoneCritResIdx) 2482 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2483 << (IsResourceLimited ? " - Resource" : " - Latency") 2484 << " limited.\n"; 2485 } 2486 #endif 2487 2488 //===----------------------------------------------------------------------===// 2489 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2490 //===----------------------------------------------------------------------===// 2491 2492 void GenericSchedulerBase::SchedCandidate:: 2493 initResourceDelta(const ScheduleDAGMI *DAG, 2494 const TargetSchedModel *SchedModel) { 2495 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2496 return; 2497 2498 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2499 for (TargetSchedModel::ProcResIter 2500 PI = SchedModel->getWriteProcResBegin(SC), 2501 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2502 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2503 ResDelta.CritResources += PI->Cycles; 2504 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2505 ResDelta.DemandedResources += PI->Cycles; 2506 } 2507 } 2508 2509 /// Compute remaining latency. We need this both to determine whether the 2510 /// overall schedule has become latency-limited and whether the instructions 2511 /// outside this zone are resource or latency limited. 2512 /// 2513 /// The "dependent" latency is updated incrementally during scheduling as the 2514 /// max height/depth of scheduled nodes minus the cycles since it was 2515 /// scheduled: 2516 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2517 /// 2518 /// The "independent" latency is the max ready queue depth: 2519 /// ILat = max N.depth for N in Available|Pending 2520 /// 2521 /// RemainingLatency is the greater of independent and dependent latency. 2522 /// 2523 /// These computations are expensive, especially in DAGs with many edges, so 2524 /// only do them if necessary. 2525 static unsigned computeRemLatency(SchedBoundary &CurrZone) { 2526 unsigned RemLatency = CurrZone.getDependentLatency(); 2527 RemLatency = std::max(RemLatency, 2528 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2529 RemLatency = std::max(RemLatency, 2530 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2531 return RemLatency; 2532 } 2533 2534 /// Returns true if the current cycle plus remaning latency is greater than 2535 /// the critical path in the scheduling region. 2536 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy, 2537 SchedBoundary &CurrZone, 2538 bool ComputeRemLatency, 2539 unsigned &RemLatency) const { 2540 // The current cycle is already greater than the critical path, so we are 2541 // already latency limited and don't need to compute the remaining latency. 2542 if (CurrZone.getCurrCycle() > Rem.CriticalPath) 2543 return true; 2544 2545 // If we haven't scheduled anything yet, then we aren't latency limited. 2546 if (CurrZone.getCurrCycle() == 0) 2547 return false; 2548 2549 if (ComputeRemLatency) 2550 RemLatency = computeRemLatency(CurrZone); 2551 2552 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath; 2553 } 2554 2555 /// Set the CandPolicy given a scheduling zone given the current resources and 2556 /// latencies inside and outside the zone. 2557 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2558 SchedBoundary &CurrZone, 2559 SchedBoundary *OtherZone) { 2560 // Apply preemptive heuristics based on the total latency and resources 2561 // inside and outside this zone. Potential stalls should be considered before 2562 // following this policy. 2563 2564 // Compute the critical resource outside the zone. 2565 unsigned OtherCritIdx = 0; 2566 unsigned OtherCount = 2567 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2568 2569 bool OtherResLimited = false; 2570 unsigned RemLatency = 0; 2571 bool RemLatencyComputed = false; 2572 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) { 2573 RemLatency = computeRemLatency(CurrZone); 2574 RemLatencyComputed = true; 2575 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 2576 OtherCount, RemLatency, false); 2577 } 2578 2579 // Schedule aggressively for latency in PostRA mode. We don't check for 2580 // acyclic latency during PostRA, and highly out-of-order processors will 2581 // skip PostRA scheduling. 2582 if (!OtherResLimited && 2583 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed, 2584 RemLatency))) { 2585 Policy.ReduceLatency |= true; 2586 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName() 2587 << " RemainingLatency " << RemLatency << " + " 2588 << CurrZone.getCurrCycle() << "c > CritPath " 2589 << Rem.CriticalPath << "\n"); 2590 } 2591 // If the same resource is limiting inside and outside the zone, do nothing. 2592 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2593 return; 2594 2595 LLVM_DEBUG(if (CurrZone.isResourceLimited()) { 2596 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2597 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n"; 2598 } if (OtherResLimited) dbgs() 2599 << " RemainingLimit: " 2600 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2601 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs() 2602 << " Latency limited both directions.\n"); 2603 2604 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2605 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2606 2607 if (OtherResLimited) 2608 Policy.DemandResIdx = OtherCritIdx; 2609 } 2610 2611 #ifndef NDEBUG 2612 const char *GenericSchedulerBase::getReasonStr( 2613 GenericSchedulerBase::CandReason Reason) { 2614 switch (Reason) { 2615 case NoCand: return "NOCAND "; 2616 case Only1: return "ONLY1 "; 2617 case PhysReg: return "PHYS-REG "; 2618 case RegExcess: return "REG-EXCESS"; 2619 case RegCritical: return "REG-CRIT "; 2620 case Stall: return "STALL "; 2621 case Cluster: return "CLUSTER "; 2622 case Weak: return "WEAK "; 2623 case RegMax: return "REG-MAX "; 2624 case ResourceReduce: return "RES-REDUCE"; 2625 case ResourceDemand: return "RES-DEMAND"; 2626 case TopDepthReduce: return "TOP-DEPTH "; 2627 case TopPathReduce: return "TOP-PATH "; 2628 case BotHeightReduce:return "BOT-HEIGHT"; 2629 case BotPathReduce: return "BOT-PATH "; 2630 case NextDefUse: return "DEF-USE "; 2631 case NodeOrder: return "ORDER "; 2632 }; 2633 llvm_unreachable("Unknown reason!"); 2634 } 2635 2636 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2637 PressureChange P; 2638 unsigned ResIdx = 0; 2639 unsigned Latency = 0; 2640 switch (Cand.Reason) { 2641 default: 2642 break; 2643 case RegExcess: 2644 P = Cand.RPDelta.Excess; 2645 break; 2646 case RegCritical: 2647 P = Cand.RPDelta.CriticalMax; 2648 break; 2649 case RegMax: 2650 P = Cand.RPDelta.CurrentMax; 2651 break; 2652 case ResourceReduce: 2653 ResIdx = Cand.Policy.ReduceResIdx; 2654 break; 2655 case ResourceDemand: 2656 ResIdx = Cand.Policy.DemandResIdx; 2657 break; 2658 case TopDepthReduce: 2659 Latency = Cand.SU->getDepth(); 2660 break; 2661 case TopPathReduce: 2662 Latency = Cand.SU->getHeight(); 2663 break; 2664 case BotHeightReduce: 2665 Latency = Cand.SU->getHeight(); 2666 break; 2667 case BotPathReduce: 2668 Latency = Cand.SU->getDepth(); 2669 break; 2670 } 2671 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2672 if (P.isValid()) 2673 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2674 << ":" << P.getUnitInc() << " "; 2675 else 2676 dbgs() << " "; 2677 if (ResIdx) 2678 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2679 else 2680 dbgs() << " "; 2681 if (Latency) 2682 dbgs() << " " << Latency << " cycles "; 2683 else 2684 dbgs() << " "; 2685 dbgs() << '\n'; 2686 } 2687 #endif 2688 2689 namespace llvm { 2690 /// Return true if this heuristic determines order. 2691 bool tryLess(int TryVal, int CandVal, 2692 GenericSchedulerBase::SchedCandidate &TryCand, 2693 GenericSchedulerBase::SchedCandidate &Cand, 2694 GenericSchedulerBase::CandReason Reason) { 2695 if (TryVal < CandVal) { 2696 TryCand.Reason = Reason; 2697 return true; 2698 } 2699 if (TryVal > CandVal) { 2700 if (Cand.Reason > Reason) 2701 Cand.Reason = Reason; 2702 return true; 2703 } 2704 return false; 2705 } 2706 2707 bool tryGreater(int TryVal, int CandVal, 2708 GenericSchedulerBase::SchedCandidate &TryCand, 2709 GenericSchedulerBase::SchedCandidate &Cand, 2710 GenericSchedulerBase::CandReason Reason) { 2711 if (TryVal > CandVal) { 2712 TryCand.Reason = Reason; 2713 return true; 2714 } 2715 if (TryVal < CandVal) { 2716 if (Cand.Reason > Reason) 2717 Cand.Reason = Reason; 2718 return true; 2719 } 2720 return false; 2721 } 2722 2723 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2724 GenericSchedulerBase::SchedCandidate &Cand, 2725 SchedBoundary &Zone) { 2726 if (Zone.isTop()) { 2727 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2728 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2729 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2730 return true; 2731 } 2732 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2733 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2734 return true; 2735 } else { 2736 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2737 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2738 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2739 return true; 2740 } 2741 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2742 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2743 return true; 2744 } 2745 return false; 2746 } 2747 } // end namespace llvm 2748 2749 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2750 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2751 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2752 } 2753 2754 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2755 tracePick(Cand.Reason, Cand.AtTop); 2756 } 2757 2758 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2759 assert(dag->hasVRegLiveness() && 2760 "(PreRA)GenericScheduler needs vreg liveness"); 2761 DAG = static_cast<ScheduleDAGMILive*>(dag); 2762 SchedModel = DAG->getSchedModel(); 2763 TRI = DAG->TRI; 2764 2765 if (RegionPolicy.ComputeDFSResult) 2766 DAG->computeDFSResult(); 2767 2768 Rem.init(DAG, SchedModel); 2769 Top.init(DAG, SchedModel, &Rem); 2770 Bot.init(DAG, SchedModel, &Rem); 2771 2772 // Initialize resource counts. 2773 2774 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2775 // are disabled, then these HazardRecs will be disabled. 2776 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2777 if (!Top.HazardRec) { 2778 Top.HazardRec = 2779 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2780 Itin, DAG); 2781 } 2782 if (!Bot.HazardRec) { 2783 Bot.HazardRec = 2784 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2785 Itin, DAG); 2786 } 2787 TopCand.SU = nullptr; 2788 BotCand.SU = nullptr; 2789 } 2790 2791 /// Initialize the per-region scheduling policy. 2792 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2793 MachineBasicBlock::iterator End, 2794 unsigned NumRegionInstrs) { 2795 const MachineFunction &MF = *Begin->getMF(); 2796 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2797 2798 // Avoid setting up the register pressure tracker for small regions to save 2799 // compile time. As a rough heuristic, only track pressure when the number of 2800 // schedulable instructions exceeds half the integer register file. 2801 RegionPolicy.ShouldTrackPressure = true; 2802 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2803 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2804 if (TLI->isTypeLegal(LegalIntVT)) { 2805 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2806 TLI->getRegClassFor(LegalIntVT)); 2807 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2808 } 2809 } 2810 2811 // For generic targets, we default to bottom-up, because it's simpler and more 2812 // compile-time optimizations have been implemented in that direction. 2813 RegionPolicy.OnlyBottomUp = true; 2814 2815 // Allow the subtarget to override default policy. 2816 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2817 2818 // After subtarget overrides, apply command line options. 2819 if (!EnableRegPressure) { 2820 RegionPolicy.ShouldTrackPressure = false; 2821 RegionPolicy.ShouldTrackLaneMasks = false; 2822 } 2823 2824 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2825 // e.g. -misched-bottomup=false allows scheduling in both directions. 2826 assert((!ForceTopDown || !ForceBottomUp) && 2827 "-misched-topdown incompatible with -misched-bottomup"); 2828 if (ForceBottomUp.getNumOccurrences() > 0) { 2829 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2830 if (RegionPolicy.OnlyBottomUp) 2831 RegionPolicy.OnlyTopDown = false; 2832 } 2833 if (ForceTopDown.getNumOccurrences() > 0) { 2834 RegionPolicy.OnlyTopDown = ForceTopDown; 2835 if (RegionPolicy.OnlyTopDown) 2836 RegionPolicy.OnlyBottomUp = false; 2837 } 2838 } 2839 2840 void GenericScheduler::dumpPolicy() const { 2841 // Cannot completely remove virtual function even in release mode. 2842 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2843 dbgs() << "GenericScheduler RegionPolicy: " 2844 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2845 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2846 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2847 << "\n"; 2848 #endif 2849 } 2850 2851 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2852 /// critical path by more cycles than it takes to drain the instruction buffer. 2853 /// We estimate an upper bounds on in-flight instructions as: 2854 /// 2855 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2856 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2857 /// InFlightResources = InFlightIterations * LoopResources 2858 /// 2859 /// TODO: Check execution resources in addition to IssueCount. 2860 void GenericScheduler::checkAcyclicLatency() { 2861 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2862 return; 2863 2864 // Scaled number of cycles per loop iteration. 2865 unsigned IterCount = 2866 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2867 Rem.RemIssueCount); 2868 // Scaled acyclic critical path. 2869 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2870 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2871 unsigned InFlightCount = 2872 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2873 unsigned BufferLimit = 2874 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2875 2876 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2877 2878 LLVM_DEBUG( 2879 dbgs() << "IssueCycles=" 2880 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2881 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2882 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount 2883 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2884 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2885 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2886 } 2887 2888 void GenericScheduler::registerRoots() { 2889 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2890 2891 // Some roots may not feed into ExitSU. Check all of them in case. 2892 for (const SUnit *SU : Bot.Available) { 2893 if (SU->getDepth() > Rem.CriticalPath) 2894 Rem.CriticalPath = SU->getDepth(); 2895 } 2896 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2897 if (DumpCriticalPathLength) { 2898 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2899 } 2900 2901 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 2902 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2903 checkAcyclicLatency(); 2904 } 2905 } 2906 2907 namespace llvm { 2908 bool tryPressure(const PressureChange &TryP, 2909 const PressureChange &CandP, 2910 GenericSchedulerBase::SchedCandidate &TryCand, 2911 GenericSchedulerBase::SchedCandidate &Cand, 2912 GenericSchedulerBase::CandReason Reason, 2913 const TargetRegisterInfo *TRI, 2914 const MachineFunction &MF) { 2915 // If one candidate decreases and the other increases, go with it. 2916 // Invalid candidates have UnitInc==0. 2917 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2918 Reason)) { 2919 return true; 2920 } 2921 // Do not compare the magnitude of pressure changes between top and bottom 2922 // boundary. 2923 if (Cand.AtTop != TryCand.AtTop) 2924 return false; 2925 2926 // If both candidates affect the same set in the same boundary, go with the 2927 // smallest increase. 2928 unsigned TryPSet = TryP.getPSetOrMax(); 2929 unsigned CandPSet = CandP.getPSetOrMax(); 2930 if (TryPSet == CandPSet) { 2931 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2932 Reason); 2933 } 2934 2935 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2936 std::numeric_limits<int>::max(); 2937 2938 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2939 std::numeric_limits<int>::max(); 2940 2941 // If the candidates are decreasing pressure, reverse priority. 2942 if (TryP.getUnitInc() < 0) 2943 std::swap(TryRank, CandRank); 2944 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2945 } 2946 2947 unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2948 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2949 } 2950 2951 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2952 /// their physreg def/use. 2953 /// 2954 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2955 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2956 /// with the operation that produces or consumes the physreg. We'll do this when 2957 /// regalloc has support for parallel copies. 2958 int biasPhysReg(const SUnit *SU, bool isTop) { 2959 const MachineInstr *MI = SU->getInstr(); 2960 2961 if (MI->isCopy()) { 2962 unsigned ScheduledOper = isTop ? 1 : 0; 2963 unsigned UnscheduledOper = isTop ? 0 : 1; 2964 // If we have already scheduled the physreg produce/consumer, immediately 2965 // schedule the copy. 2966 if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg())) 2967 return 1; 2968 // If the physreg is at the boundary, defer it. Otherwise schedule it 2969 // immediately to free the dependent. We can hoist the copy later. 2970 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2971 if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg())) 2972 return AtBoundary ? -1 : 1; 2973 } 2974 2975 if (MI->isMoveImmediate()) { 2976 // If we have a move immediate and all successors have been assigned, bias 2977 // towards scheduling this later. Make sure all register defs are to 2978 // physical registers. 2979 bool DoBias = true; 2980 for (const MachineOperand &Op : MI->defs()) { 2981 if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) { 2982 DoBias = false; 2983 break; 2984 } 2985 } 2986 2987 if (DoBias) 2988 return isTop ? -1 : 1; 2989 } 2990 2991 return 0; 2992 } 2993 } // end namespace llvm 2994 2995 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2996 bool AtTop, 2997 const RegPressureTracker &RPTracker, 2998 RegPressureTracker &TempTracker) { 2999 Cand.SU = SU; 3000 Cand.AtTop = AtTop; 3001 if (DAG->isTrackingPressure()) { 3002 if (AtTop) { 3003 TempTracker.getMaxDownwardPressureDelta( 3004 Cand.SU->getInstr(), 3005 Cand.RPDelta, 3006 DAG->getRegionCriticalPSets(), 3007 DAG->getRegPressure().MaxSetPressure); 3008 } else { 3009 if (VerifyScheduling) { 3010 TempTracker.getMaxUpwardPressureDelta( 3011 Cand.SU->getInstr(), 3012 &DAG->getPressureDiff(Cand.SU), 3013 Cand.RPDelta, 3014 DAG->getRegionCriticalPSets(), 3015 DAG->getRegPressure().MaxSetPressure); 3016 } else { 3017 RPTracker.getUpwardPressureDelta( 3018 Cand.SU->getInstr(), 3019 DAG->getPressureDiff(Cand.SU), 3020 Cand.RPDelta, 3021 DAG->getRegionCriticalPSets(), 3022 DAG->getRegPressure().MaxSetPressure); 3023 } 3024 } 3025 } 3026 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs() 3027 << " Try SU(" << Cand.SU->NodeNum << ") " 3028 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":" 3029 << Cand.RPDelta.Excess.getUnitInc() << "\n"); 3030 } 3031 3032 /// Apply a set of heuristics to a new candidate. Heuristics are currently 3033 /// hierarchical. This may be more efficient than a graduated cost model because 3034 /// we don't need to evaluate all aspects of the model for each node in the 3035 /// queue. But it's really done to make the heuristics easier to debug and 3036 /// statistically analyze. 3037 /// 3038 /// \param Cand provides the policy and current best candidate. 3039 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3040 /// \param Zone describes the scheduled zone that we are extending, or nullptr 3041 // if Cand is from a different zone than TryCand. 3042 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 3043 SchedCandidate &TryCand, 3044 SchedBoundary *Zone) const { 3045 // Initialize the candidate if needed. 3046 if (!Cand.isValid()) { 3047 TryCand.Reason = NodeOrder; 3048 return; 3049 } 3050 3051 // Bias PhysReg Defs and copies to their uses and defined respectively. 3052 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop), 3053 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg)) 3054 return; 3055 3056 // Avoid exceeding the target's limit. 3057 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 3058 Cand.RPDelta.Excess, 3059 TryCand, Cand, RegExcess, TRI, 3060 DAG->MF)) 3061 return; 3062 3063 // Avoid increasing the max critical pressure in the scheduled region. 3064 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 3065 Cand.RPDelta.CriticalMax, 3066 TryCand, Cand, RegCritical, TRI, 3067 DAG->MF)) 3068 return; 3069 3070 // We only compare a subset of features when comparing nodes between 3071 // Top and Bottom boundary. Some properties are simply incomparable, in many 3072 // other instances we should only override the other boundary if something 3073 // is a clear good pick on one boundary. Skip heuristics that are more 3074 // "tie-breaking" in nature. 3075 bool SameBoundary = Zone != nullptr; 3076 if (SameBoundary) { 3077 // For loops that are acyclic path limited, aggressively schedule for 3078 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 3079 // heuristics to take precedence. 3080 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 3081 tryLatency(TryCand, Cand, *Zone)) 3082 return; 3083 3084 // Prioritize instructions that read unbuffered resources by stall cycles. 3085 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 3086 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3087 return; 3088 } 3089 3090 // Keep clustered nodes together to encourage downstream peephole 3091 // optimizations which may reduce resource requirements. 3092 // 3093 // This is a best effort to set things up for a post-RA pass. Optimizations 3094 // like generating loads of multiple registers should ideally be done within 3095 // the scheduler pass by combining the loads during DAG postprocessing. 3096 const SUnit *CandNextClusterSU = 3097 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3098 const SUnit *TryCandNextClusterSU = 3099 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3100 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 3101 Cand.SU == CandNextClusterSU, 3102 TryCand, Cand, Cluster)) 3103 return; 3104 3105 if (SameBoundary) { 3106 // Weak edges are for clustering and other constraints. 3107 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 3108 getWeakLeft(Cand.SU, Cand.AtTop), 3109 TryCand, Cand, Weak)) 3110 return; 3111 } 3112 3113 // Avoid increasing the max pressure of the entire region. 3114 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 3115 Cand.RPDelta.CurrentMax, 3116 TryCand, Cand, RegMax, TRI, 3117 DAG->MF)) 3118 return; 3119 3120 if (SameBoundary) { 3121 // Avoid critical resource consumption and balance the schedule. 3122 TryCand.initResourceDelta(DAG, SchedModel); 3123 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3124 TryCand, Cand, ResourceReduce)) 3125 return; 3126 if (tryGreater(TryCand.ResDelta.DemandedResources, 3127 Cand.ResDelta.DemandedResources, 3128 TryCand, Cand, ResourceDemand)) 3129 return; 3130 3131 // Avoid serializing long latency dependence chains. 3132 // For acyclic path limited loops, latency was already checked above. 3133 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 3134 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 3135 return; 3136 3137 // Fall through to original instruction order. 3138 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 3139 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 3140 TryCand.Reason = NodeOrder; 3141 } 3142 } 3143 } 3144 3145 /// Pick the best candidate from the queue. 3146 /// 3147 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 3148 /// DAG building. To adjust for the current scheduling location we need to 3149 /// maintain the number of vreg uses remaining to be top-scheduled. 3150 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3151 const CandPolicy &ZonePolicy, 3152 const RegPressureTracker &RPTracker, 3153 SchedCandidate &Cand) { 3154 // getMaxPressureDelta temporarily modifies the tracker. 3155 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3156 3157 ReadyQueue &Q = Zone.Available; 3158 for (SUnit *SU : Q) { 3159 3160 SchedCandidate TryCand(ZonePolicy); 3161 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3162 // Pass SchedBoundary only when comparing nodes from the same boundary. 3163 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3164 tryCandidate(Cand, TryCand, ZoneArg); 3165 if (TryCand.Reason != NoCand) { 3166 // Initialize resource delta if needed in case future heuristics query it. 3167 if (TryCand.ResDelta == SchedResourceDelta()) 3168 TryCand.initResourceDelta(DAG, SchedModel); 3169 Cand.setBest(TryCand); 3170 LLVM_DEBUG(traceCandidate(Cand)); 3171 } 3172 } 3173 } 3174 3175 /// Pick the best candidate node from either the top or bottom queue. 3176 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3177 // Schedule as far as possible in the direction of no choice. This is most 3178 // efficient, but also provides the best heuristics for CriticalPSets. 3179 if (SUnit *SU = Bot.pickOnlyChoice()) { 3180 IsTopNode = false; 3181 tracePick(Only1, false); 3182 return SU; 3183 } 3184 if (SUnit *SU = Top.pickOnlyChoice()) { 3185 IsTopNode = true; 3186 tracePick(Only1, true); 3187 return SU; 3188 } 3189 // Set the bottom-up policy based on the state of the current bottom zone and 3190 // the instructions outside the zone, including the top zone. 3191 CandPolicy BotPolicy; 3192 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3193 // Set the top-down policy based on the state of the current top zone and 3194 // the instructions outside the zone, including the bottom zone. 3195 CandPolicy TopPolicy; 3196 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3197 3198 // See if BotCand is still valid (because we previously scheduled from Top). 3199 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 3200 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3201 BotCand.Policy != BotPolicy) { 3202 BotCand.reset(CandPolicy()); 3203 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3204 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3205 } else { 3206 LLVM_DEBUG(traceCandidate(BotCand)); 3207 #ifndef NDEBUG 3208 if (VerifyScheduling) { 3209 SchedCandidate TCand; 3210 TCand.reset(CandPolicy()); 3211 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3212 assert(TCand.SU == BotCand.SU && 3213 "Last pick result should correspond to re-picking right now"); 3214 } 3215 #endif 3216 } 3217 3218 // Check if the top Q has a better candidate. 3219 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 3220 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3221 TopCand.Policy != TopPolicy) { 3222 TopCand.reset(CandPolicy()); 3223 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3224 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3225 } else { 3226 LLVM_DEBUG(traceCandidate(TopCand)); 3227 #ifndef NDEBUG 3228 if (VerifyScheduling) { 3229 SchedCandidate TCand; 3230 TCand.reset(CandPolicy()); 3231 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3232 assert(TCand.SU == TopCand.SU && 3233 "Last pick result should correspond to re-picking right now"); 3234 } 3235 #endif 3236 } 3237 3238 // Pick best from BotCand and TopCand. 3239 assert(BotCand.isValid()); 3240 assert(TopCand.isValid()); 3241 SchedCandidate Cand = BotCand; 3242 TopCand.Reason = NoCand; 3243 tryCandidate(Cand, TopCand, nullptr); 3244 if (TopCand.Reason != NoCand) { 3245 Cand.setBest(TopCand); 3246 LLVM_DEBUG(traceCandidate(Cand)); 3247 } 3248 3249 IsTopNode = Cand.AtTop; 3250 tracePick(Cand); 3251 return Cand.SU; 3252 } 3253 3254 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3255 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3256 if (DAG->top() == DAG->bottom()) { 3257 assert(Top.Available.empty() && Top.Pending.empty() && 3258 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3259 return nullptr; 3260 } 3261 SUnit *SU; 3262 do { 3263 if (RegionPolicy.OnlyTopDown) { 3264 SU = Top.pickOnlyChoice(); 3265 if (!SU) { 3266 CandPolicy NoPolicy; 3267 TopCand.reset(NoPolicy); 3268 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3269 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3270 tracePick(TopCand); 3271 SU = TopCand.SU; 3272 } 3273 IsTopNode = true; 3274 } else if (RegionPolicy.OnlyBottomUp) { 3275 SU = Bot.pickOnlyChoice(); 3276 if (!SU) { 3277 CandPolicy NoPolicy; 3278 BotCand.reset(NoPolicy); 3279 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3280 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3281 tracePick(BotCand); 3282 SU = BotCand.SU; 3283 } 3284 IsTopNode = false; 3285 } else { 3286 SU = pickNodeBidirectional(IsTopNode); 3287 } 3288 } while (SU->isScheduled); 3289 3290 if (SU->isTopReady()) 3291 Top.removeReady(SU); 3292 if (SU->isBottomReady()) 3293 Bot.removeReady(SU); 3294 3295 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3296 << *SU->getInstr()); 3297 return SU; 3298 } 3299 3300 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) { 3301 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3302 if (!isTop) 3303 ++InsertPos; 3304 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3305 3306 // Find already scheduled copies with a single physreg dependence and move 3307 // them just above the scheduled instruction. 3308 for (SDep &Dep : Deps) { 3309 if (Dep.getKind() != SDep::Data || 3310 !Register::isPhysicalRegister(Dep.getReg())) 3311 continue; 3312 SUnit *DepSU = Dep.getSUnit(); 3313 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3314 continue; 3315 MachineInstr *Copy = DepSU->getInstr(); 3316 if (!Copy->isCopy() && !Copy->isMoveImmediate()) 3317 continue; 3318 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy "; 3319 DAG->dumpNode(*Dep.getSUnit())); 3320 DAG->moveInstruction(Copy, InsertPos); 3321 } 3322 } 3323 3324 /// Update the scheduler's state after scheduling a node. This is the same node 3325 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3326 /// update it's state based on the current cycle before MachineSchedStrategy 3327 /// does. 3328 /// 3329 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3330 /// them here. See comments in biasPhysReg. 3331 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3332 if (IsTopNode) { 3333 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3334 Top.bumpNode(SU); 3335 if (SU->hasPhysRegUses) 3336 reschedulePhysReg(SU, true); 3337 } else { 3338 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3339 Bot.bumpNode(SU); 3340 if (SU->hasPhysRegDefs) 3341 reschedulePhysReg(SU, false); 3342 } 3343 } 3344 3345 /// Create the standard converging machine scheduler. This will be used as the 3346 /// default scheduler if the target does not set a default. 3347 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3348 ScheduleDAGMILive *DAG = 3349 new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)); 3350 // Register DAG post-processors. 3351 // 3352 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3353 // data and pass it to later mutations. Have a single mutation that gathers 3354 // the interesting nodes in one pass. 3355 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3356 return DAG; 3357 } 3358 3359 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) { 3360 return createGenericSchedLive(C); 3361 } 3362 3363 static MachineSchedRegistry 3364 GenericSchedRegistry("converge", "Standard converging scheduler.", 3365 createConveringSched); 3366 3367 //===----------------------------------------------------------------------===// 3368 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3369 //===----------------------------------------------------------------------===// 3370 3371 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3372 DAG = Dag; 3373 SchedModel = DAG->getSchedModel(); 3374 TRI = DAG->TRI; 3375 3376 Rem.init(DAG, SchedModel); 3377 Top.init(DAG, SchedModel, &Rem); 3378 BotRoots.clear(); 3379 3380 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3381 // or are disabled, then these HazardRecs will be disabled. 3382 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3383 if (!Top.HazardRec) { 3384 Top.HazardRec = 3385 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3386 Itin, DAG); 3387 } 3388 } 3389 3390 void PostGenericScheduler::registerRoots() { 3391 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3392 3393 // Some roots may not feed into ExitSU. Check all of them in case. 3394 for (const SUnit *SU : BotRoots) { 3395 if (SU->getDepth() > Rem.CriticalPath) 3396 Rem.CriticalPath = SU->getDepth(); 3397 } 3398 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3399 if (DumpCriticalPathLength) { 3400 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3401 } 3402 } 3403 3404 /// Apply a set of heuristics to a new candidate for PostRA scheduling. 3405 /// 3406 /// \param Cand provides the policy and current best candidate. 3407 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3408 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3409 SchedCandidate &TryCand) { 3410 // Initialize the candidate if needed. 3411 if (!Cand.isValid()) { 3412 TryCand.Reason = NodeOrder; 3413 return; 3414 } 3415 3416 // Prioritize instructions that read unbuffered resources by stall cycles. 3417 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3418 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3419 return; 3420 3421 // Keep clustered nodes together. 3422 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3423 Cand.SU == DAG->getNextClusterSucc(), 3424 TryCand, Cand, Cluster)) 3425 return; 3426 3427 // Avoid critical resource consumption and balance the schedule. 3428 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3429 TryCand, Cand, ResourceReduce)) 3430 return; 3431 if (tryGreater(TryCand.ResDelta.DemandedResources, 3432 Cand.ResDelta.DemandedResources, 3433 TryCand, Cand, ResourceDemand)) 3434 return; 3435 3436 // Avoid serializing long latency dependence chains. 3437 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3438 return; 3439 } 3440 3441 // Fall through to original instruction order. 3442 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3443 TryCand.Reason = NodeOrder; 3444 } 3445 3446 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3447 ReadyQueue &Q = Top.Available; 3448 for (SUnit *SU : Q) { 3449 SchedCandidate TryCand(Cand.Policy); 3450 TryCand.SU = SU; 3451 TryCand.AtTop = true; 3452 TryCand.initResourceDelta(DAG, SchedModel); 3453 tryCandidate(Cand, TryCand); 3454 if (TryCand.Reason != NoCand) { 3455 Cand.setBest(TryCand); 3456 LLVM_DEBUG(traceCandidate(Cand)); 3457 } 3458 } 3459 } 3460 3461 /// Pick the next node to schedule. 3462 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3463 if (DAG->top() == DAG->bottom()) { 3464 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3465 return nullptr; 3466 } 3467 SUnit *SU; 3468 do { 3469 SU = Top.pickOnlyChoice(); 3470 if (SU) { 3471 tracePick(Only1, true); 3472 } else { 3473 CandPolicy NoPolicy; 3474 SchedCandidate TopCand(NoPolicy); 3475 // Set the top-down policy based on the state of the current top zone and 3476 // the instructions outside the zone, including the bottom zone. 3477 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3478 pickNodeFromQueue(TopCand); 3479 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3480 tracePick(TopCand); 3481 SU = TopCand.SU; 3482 } 3483 } while (SU->isScheduled); 3484 3485 IsTopNode = true; 3486 Top.removeReady(SU); 3487 3488 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3489 << *SU->getInstr()); 3490 return SU; 3491 } 3492 3493 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3494 /// scheduled/remaining flags in the DAG nodes. 3495 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3496 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3497 Top.bumpNode(SU); 3498 } 3499 3500 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3501 return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C), 3502 /*RemoveKillFlags=*/true); 3503 } 3504 3505 //===----------------------------------------------------------------------===// 3506 // ILP Scheduler. Currently for experimental analysis of heuristics. 3507 //===----------------------------------------------------------------------===// 3508 3509 namespace { 3510 3511 /// Order nodes by the ILP metric. 3512 struct ILPOrder { 3513 const SchedDFSResult *DFSResult = nullptr; 3514 const BitVector *ScheduledTrees = nullptr; 3515 bool MaximizeILP; 3516 3517 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3518 3519 /// Apply a less-than relation on node priority. 3520 /// 3521 /// (Return true if A comes after B in the Q.) 3522 bool operator()(const SUnit *A, const SUnit *B) const { 3523 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3524 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3525 if (SchedTreeA != SchedTreeB) { 3526 // Unscheduled trees have lower priority. 3527 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3528 return ScheduledTrees->test(SchedTreeB); 3529 3530 // Trees with shallower connections have have lower priority. 3531 if (DFSResult->getSubtreeLevel(SchedTreeA) 3532 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3533 return DFSResult->getSubtreeLevel(SchedTreeA) 3534 < DFSResult->getSubtreeLevel(SchedTreeB); 3535 } 3536 } 3537 if (MaximizeILP) 3538 return DFSResult->getILP(A) < DFSResult->getILP(B); 3539 else 3540 return DFSResult->getILP(A) > DFSResult->getILP(B); 3541 } 3542 }; 3543 3544 /// Schedule based on the ILP metric. 3545 class ILPScheduler : public MachineSchedStrategy { 3546 ScheduleDAGMILive *DAG = nullptr; 3547 ILPOrder Cmp; 3548 3549 std::vector<SUnit*> ReadyQ; 3550 3551 public: 3552 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3553 3554 void initialize(ScheduleDAGMI *dag) override { 3555 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3556 DAG = static_cast<ScheduleDAGMILive*>(dag); 3557 DAG->computeDFSResult(); 3558 Cmp.DFSResult = DAG->getDFSResult(); 3559 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3560 ReadyQ.clear(); 3561 } 3562 3563 void registerRoots() override { 3564 // Restore the heap in ReadyQ with the updated DFS results. 3565 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3566 } 3567 3568 /// Implement MachineSchedStrategy interface. 3569 /// ----------------------------------------- 3570 3571 /// Callback to select the highest priority node from the ready Q. 3572 SUnit *pickNode(bool &IsTopNode) override { 3573 if (ReadyQ.empty()) return nullptr; 3574 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3575 SUnit *SU = ReadyQ.back(); 3576 ReadyQ.pop_back(); 3577 IsTopNode = false; 3578 LLVM_DEBUG(dbgs() << "Pick node " 3579 << "SU(" << SU->NodeNum << ") " 3580 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3581 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) 3582 << " @" 3583 << DAG->getDFSResult()->getSubtreeLevel( 3584 DAG->getDFSResult()->getSubtreeID(SU)) 3585 << '\n' 3586 << "Scheduling " << *SU->getInstr()); 3587 return SU; 3588 } 3589 3590 /// Scheduler callback to notify that a new subtree is scheduled. 3591 void scheduleTree(unsigned SubtreeID) override { 3592 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3593 } 3594 3595 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3596 /// DFSResults, and resort the priority Q. 3597 void schedNode(SUnit *SU, bool IsTopNode) override { 3598 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3599 } 3600 3601 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3602 3603 void releaseBottomNode(SUnit *SU) override { 3604 ReadyQ.push_back(SU); 3605 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3606 } 3607 }; 3608 3609 } // end anonymous namespace 3610 3611 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3612 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true)); 3613 } 3614 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3615 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false)); 3616 } 3617 3618 static MachineSchedRegistry ILPMaxRegistry( 3619 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3620 static MachineSchedRegistry ILPMinRegistry( 3621 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3622 3623 //===----------------------------------------------------------------------===// 3624 // Machine Instruction Shuffler for Correctness Testing 3625 //===----------------------------------------------------------------------===// 3626 3627 #ifndef NDEBUG 3628 namespace { 3629 3630 /// Apply a less-than relation on the node order, which corresponds to the 3631 /// instruction order prior to scheduling. IsReverse implements greater-than. 3632 template<bool IsReverse> 3633 struct SUnitOrder { 3634 bool operator()(SUnit *A, SUnit *B) const { 3635 if (IsReverse) 3636 return A->NodeNum > B->NodeNum; 3637 else 3638 return A->NodeNum < B->NodeNum; 3639 } 3640 }; 3641 3642 /// Reorder instructions as much as possible. 3643 class InstructionShuffler : public MachineSchedStrategy { 3644 bool IsAlternating; 3645 bool IsTopDown; 3646 3647 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3648 // gives nodes with a higher number higher priority causing the latest 3649 // instructions to be scheduled first. 3650 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3651 TopQ; 3652 3653 // When scheduling bottom-up, use greater-than as the queue priority. 3654 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3655 BottomQ; 3656 3657 public: 3658 InstructionShuffler(bool alternate, bool topdown) 3659 : IsAlternating(alternate), IsTopDown(topdown) {} 3660 3661 void initialize(ScheduleDAGMI*) override { 3662 TopQ.clear(); 3663 BottomQ.clear(); 3664 } 3665 3666 /// Implement MachineSchedStrategy interface. 3667 /// ----------------------------------------- 3668 3669 SUnit *pickNode(bool &IsTopNode) override { 3670 SUnit *SU; 3671 if (IsTopDown) { 3672 do { 3673 if (TopQ.empty()) return nullptr; 3674 SU = TopQ.top(); 3675 TopQ.pop(); 3676 } while (SU->isScheduled); 3677 IsTopNode = true; 3678 } else { 3679 do { 3680 if (BottomQ.empty()) return nullptr; 3681 SU = BottomQ.top(); 3682 BottomQ.pop(); 3683 } while (SU->isScheduled); 3684 IsTopNode = false; 3685 } 3686 if (IsAlternating) 3687 IsTopDown = !IsTopDown; 3688 return SU; 3689 } 3690 3691 void schedNode(SUnit *SU, bool IsTopNode) override {} 3692 3693 void releaseTopNode(SUnit *SU) override { 3694 TopQ.push(SU); 3695 } 3696 void releaseBottomNode(SUnit *SU) override { 3697 BottomQ.push(SU); 3698 } 3699 }; 3700 3701 } // end anonymous namespace 3702 3703 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3704 bool Alternate = !ForceTopDown && !ForceBottomUp; 3705 bool TopDown = !ForceBottomUp; 3706 assert((TopDown || !ForceTopDown) && 3707 "-misched-topdown incompatible with -misched-bottomup"); 3708 return new ScheduleDAGMILive( 3709 C, std::make_unique<InstructionShuffler>(Alternate, TopDown)); 3710 } 3711 3712 static MachineSchedRegistry ShufflerRegistry( 3713 "shuffle", "Shuffle machine instructions alternating directions", 3714 createInstructionShuffler); 3715 #endif // !NDEBUG 3716 3717 //===----------------------------------------------------------------------===// 3718 // GraphWriter support for ScheduleDAGMILive. 3719 //===----------------------------------------------------------------------===// 3720 3721 #ifndef NDEBUG 3722 namespace llvm { 3723 3724 template<> struct GraphTraits< 3725 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3726 3727 template<> 3728 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3729 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3730 3731 static std::string getGraphName(const ScheduleDAG *G) { 3732 return std::string(G->MF.getName()); 3733 } 3734 3735 static bool renderGraphFromBottomUp() { 3736 return true; 3737 } 3738 3739 static bool isNodeHidden(const SUnit *Node) { 3740 if (ViewMISchedCutoff == 0) 3741 return false; 3742 return (Node->Preds.size() > ViewMISchedCutoff 3743 || Node->Succs.size() > ViewMISchedCutoff); 3744 } 3745 3746 /// If you want to override the dot attributes printed for a particular 3747 /// edge, override this method. 3748 static std::string getEdgeAttributes(const SUnit *Node, 3749 SUnitIterator EI, 3750 const ScheduleDAG *Graph) { 3751 if (EI.isArtificialDep()) 3752 return "color=cyan,style=dashed"; 3753 if (EI.isCtrlDep()) 3754 return "color=blue,style=dashed"; 3755 return ""; 3756 } 3757 3758 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3759 std::string Str; 3760 raw_string_ostream SS(Str); 3761 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3762 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3763 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3764 SS << "SU:" << SU->NodeNum; 3765 if (DFS) 3766 SS << " I:" << DFS->getNumInstrs(SU); 3767 return SS.str(); 3768 } 3769 3770 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3771 return G->getGraphNodeLabel(SU); 3772 } 3773 3774 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3775 std::string Str("shape=Mrecord"); 3776 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3777 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3778 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3779 if (DFS) { 3780 Str += ",style=filled,fillcolor=\"#"; 3781 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3782 Str += '"'; 3783 } 3784 return Str; 3785 } 3786 }; 3787 3788 } // end namespace llvm 3789 #endif // NDEBUG 3790 3791 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3792 /// rendered using 'dot'. 3793 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3794 #ifndef NDEBUG 3795 ViewGraph(this, Name, false, Title); 3796 #else 3797 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3798 << "systems with Graphviz or gv!\n"; 3799 #endif // NDEBUG 3800 } 3801 3802 /// Out-of-line implementation with no arguments is handy for gdb. 3803 void ScheduleDAGMI::viewGraph() { 3804 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3805 } 3806