xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision bc5304a006238115291e7568583632889dffbab9)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachineScheduler schedules machine instructions after phi elimination. It
10 // preserves LiveIntervals so it can be invoked before register allocation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineScheduler.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePassRegistry.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/RegisterPressure.h"
38 #include "llvm/CodeGen/ScheduleDAG.h"
39 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
40 #include "llvm/CodeGen/ScheduleDAGMutation.h"
41 #include "llvm/CodeGen/ScheduleDFS.h"
42 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
43 #include "llvm/CodeGen/SlotIndexes.h"
44 #include "llvm/CodeGen/TargetFrameLowering.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSchedule.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/Config/llvm-config.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/MC/LaneBitmask.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/GraphWriter.h"
60 #include "llvm/Support/MachineValueType.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <iterator>
66 #include <limits>
67 #include <memory>
68 #include <string>
69 #include <tuple>
70 #include <utility>
71 #include <vector>
72 
73 using namespace llvm;
74 
75 #define DEBUG_TYPE "machine-scheduler"
76 
77 STATISTIC(NumClustered, "Number of load/store pairs clustered");
78 
79 namespace llvm {
80 
81 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
82                            cl::desc("Force top-down list scheduling"));
83 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
84                             cl::desc("Force bottom-up list scheduling"));
85 cl::opt<bool>
86 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
87                        cl::desc("Print critical path length to stdout"));
88 
89 cl::opt<bool> VerifyScheduling(
90     "verify-misched", cl::Hidden,
91     cl::desc("Verify machine instrs before and after machine scheduling"));
92 
93 } // end namespace llvm
94 
95 #ifndef NDEBUG
96 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
97   cl::desc("Pop up a window to show MISched dags after they are processed"));
98 
99 /// In some situations a few uninteresting nodes depend on nearly all other
100 /// nodes in the graph, provide a cutoff to hide them.
101 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
102   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
103 
104 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
105   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
106 
107 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
108   cl::desc("Only schedule this function"));
109 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
110                                         cl::desc("Only schedule this MBB#"));
111 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
112                               cl::desc("Print schedule DAGs"));
113 #else
114 static const bool ViewMISchedDAGs = false;
115 static const bool PrintDAGs = false;
116 #endif // NDEBUG
117 
118 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
119 /// size of the ready lists.
120 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
121   cl::desc("Limit ready list to N instructions"), cl::init(256));
122 
123 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
124   cl::desc("Enable register pressure scheduling."), cl::init(true));
125 
126 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
127   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
128 
129 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
130                                         cl::desc("Enable memop clustering."),
131                                         cl::init(true));
132 static cl::opt<bool>
133     ForceFastCluster("force-fast-cluster", cl::Hidden,
134                      cl::desc("Switch to fast cluster algorithm with the lost "
135                               "of some fusion opportunities"),
136                      cl::init(false));
137 static cl::opt<unsigned>
138     FastClusterThreshold("fast-cluster-threshold", cl::Hidden,
139                          cl::desc("The threshold for fast cluster"),
140                          cl::init(1000));
141 
142 // DAG subtrees must have at least this many nodes.
143 static const unsigned MinSubtreeSize = 8;
144 
145 // Pin the vtables to this file.
146 void MachineSchedStrategy::anchor() {}
147 
148 void ScheduleDAGMutation::anchor() {}
149 
150 //===----------------------------------------------------------------------===//
151 // Machine Instruction Scheduling Pass and Registry
152 //===----------------------------------------------------------------------===//
153 
154 MachineSchedContext::MachineSchedContext() {
155   RegClassInfo = new RegisterClassInfo();
156 }
157 
158 MachineSchedContext::~MachineSchedContext() {
159   delete RegClassInfo;
160 }
161 
162 namespace {
163 
164 /// Base class for a machine scheduler class that can run at any point.
165 class MachineSchedulerBase : public MachineSchedContext,
166                              public MachineFunctionPass {
167 public:
168   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
169 
170   void print(raw_ostream &O, const Module* = nullptr) const override;
171 
172 protected:
173   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
174 };
175 
176 /// MachineScheduler runs after coalescing and before register allocation.
177 class MachineScheduler : public MachineSchedulerBase {
178 public:
179   MachineScheduler();
180 
181   void getAnalysisUsage(AnalysisUsage &AU) const override;
182 
183   bool runOnMachineFunction(MachineFunction&) override;
184 
185   static char ID; // Class identification, replacement for typeinfo
186 
187 protected:
188   ScheduleDAGInstrs *createMachineScheduler();
189 };
190 
191 /// PostMachineScheduler runs after shortly before code emission.
192 class PostMachineScheduler : public MachineSchedulerBase {
193 public:
194   PostMachineScheduler();
195 
196   void getAnalysisUsage(AnalysisUsage &AU) const override;
197 
198   bool runOnMachineFunction(MachineFunction&) override;
199 
200   static char ID; // Class identification, replacement for typeinfo
201 
202 protected:
203   ScheduleDAGInstrs *createPostMachineScheduler();
204 };
205 
206 } // end anonymous namespace
207 
208 char MachineScheduler::ID = 0;
209 
210 char &llvm::MachineSchedulerID = MachineScheduler::ID;
211 
212 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
213                       "Machine Instruction Scheduler", false, false)
214 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
215 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
216 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
217 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
218 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
219 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
220                     "Machine Instruction Scheduler", false, false)
221 
222 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
223   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
224 }
225 
226 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
227   AU.setPreservesCFG();
228   AU.addRequired<MachineDominatorTree>();
229   AU.addRequired<MachineLoopInfo>();
230   AU.addRequired<AAResultsWrapperPass>();
231   AU.addRequired<TargetPassConfig>();
232   AU.addRequired<SlotIndexes>();
233   AU.addPreserved<SlotIndexes>();
234   AU.addRequired<LiveIntervals>();
235   AU.addPreserved<LiveIntervals>();
236   MachineFunctionPass::getAnalysisUsage(AU);
237 }
238 
239 char PostMachineScheduler::ID = 0;
240 
241 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
242 
243 INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched",
244                       "PostRA Machine Instruction Scheduler", false, false)
245 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
246 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
247 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
248 INITIALIZE_PASS_END(PostMachineScheduler, "postmisched",
249                     "PostRA Machine Instruction Scheduler", false, false)
250 
251 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
252   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
253 }
254 
255 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
256   AU.setPreservesCFG();
257   AU.addRequired<MachineDominatorTree>();
258   AU.addRequired<MachineLoopInfo>();
259   AU.addRequired<AAResultsWrapperPass>();
260   AU.addRequired<TargetPassConfig>();
261   MachineFunctionPass::getAnalysisUsage(AU);
262 }
263 
264 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
265     MachineSchedRegistry::Registry;
266 
267 /// A dummy default scheduler factory indicates whether the scheduler
268 /// is overridden on the command line.
269 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
270   return nullptr;
271 }
272 
273 /// MachineSchedOpt allows command line selection of the scheduler.
274 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
275                RegisterPassParser<MachineSchedRegistry>>
276 MachineSchedOpt("misched",
277                 cl::init(&useDefaultMachineSched), cl::Hidden,
278                 cl::desc("Machine instruction scheduler to use"));
279 
280 static MachineSchedRegistry
281 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
282                      useDefaultMachineSched);
283 
284 static cl::opt<bool> EnableMachineSched(
285     "enable-misched",
286     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
287     cl::Hidden);
288 
289 static cl::opt<bool> EnablePostRAMachineSched(
290     "enable-post-misched",
291     cl::desc("Enable the post-ra machine instruction scheduling pass."),
292     cl::init(true), cl::Hidden);
293 
294 /// Decrement this iterator until reaching the top or a non-debug instr.
295 static MachineBasicBlock::const_iterator
296 priorNonDebug(MachineBasicBlock::const_iterator I,
297               MachineBasicBlock::const_iterator Beg) {
298   assert(I != Beg && "reached the top of the region, cannot decrement");
299   while (--I != Beg) {
300     if (!I->isDebugInstr())
301       break;
302   }
303   return I;
304 }
305 
306 /// Non-const version.
307 static MachineBasicBlock::iterator
308 priorNonDebug(MachineBasicBlock::iterator I,
309               MachineBasicBlock::const_iterator Beg) {
310   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
311       .getNonConstIterator();
312 }
313 
314 /// If this iterator is a debug value, increment until reaching the End or a
315 /// non-debug instruction.
316 static MachineBasicBlock::const_iterator
317 nextIfDebug(MachineBasicBlock::const_iterator I,
318             MachineBasicBlock::const_iterator End) {
319   for(; I != End; ++I) {
320     if (!I->isDebugInstr())
321       break;
322   }
323   return I;
324 }
325 
326 /// Non-const version.
327 static MachineBasicBlock::iterator
328 nextIfDebug(MachineBasicBlock::iterator I,
329             MachineBasicBlock::const_iterator End) {
330   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
331       .getNonConstIterator();
332 }
333 
334 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
335 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
336   // Select the scheduler, or set the default.
337   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
338   if (Ctor != useDefaultMachineSched)
339     return Ctor(this);
340 
341   // Get the default scheduler set by the target for this function.
342   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
343   if (Scheduler)
344     return Scheduler;
345 
346   // Default to GenericScheduler.
347   return createGenericSchedLive(this);
348 }
349 
350 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
351 /// the caller. We don't have a command line option to override the postRA
352 /// scheduler. The Target must configure it.
353 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
354   // Get the postRA scheduler set by the target for this function.
355   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
356   if (Scheduler)
357     return Scheduler;
358 
359   // Default to GenericScheduler.
360   return createGenericSchedPostRA(this);
361 }
362 
363 /// Top-level MachineScheduler pass driver.
364 ///
365 /// Visit blocks in function order. Divide each block into scheduling regions
366 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
367 /// consistent with the DAG builder, which traverses the interior of the
368 /// scheduling regions bottom-up.
369 ///
370 /// This design avoids exposing scheduling boundaries to the DAG builder,
371 /// simplifying the DAG builder's support for "special" target instructions.
372 /// At the same time the design allows target schedulers to operate across
373 /// scheduling boundaries, for example to bundle the boundary instructions
374 /// without reordering them. This creates complexity, because the target
375 /// scheduler must update the RegionBegin and RegionEnd positions cached by
376 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
377 /// design would be to split blocks at scheduling boundaries, but LLVM has a
378 /// general bias against block splitting purely for implementation simplicity.
379 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
380   if (skipFunction(mf.getFunction()))
381     return false;
382 
383   if (EnableMachineSched.getNumOccurrences()) {
384     if (!EnableMachineSched)
385       return false;
386   } else if (!mf.getSubtarget().enableMachineScheduler())
387     return false;
388 
389   LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
390 
391   // Initialize the context of the pass.
392   MF = &mf;
393   MLI = &getAnalysis<MachineLoopInfo>();
394   MDT = &getAnalysis<MachineDominatorTree>();
395   PassConfig = &getAnalysis<TargetPassConfig>();
396   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
397 
398   LIS = &getAnalysis<LiveIntervals>();
399 
400   if (VerifyScheduling) {
401     LLVM_DEBUG(LIS->dump());
402     MF->verify(this, "Before machine scheduling.");
403   }
404   RegClassInfo->runOnMachineFunction(*MF);
405 
406   // Instantiate the selected scheduler for this target, function, and
407   // optimization level.
408   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
409   scheduleRegions(*Scheduler, false);
410 
411   LLVM_DEBUG(LIS->dump());
412   if (VerifyScheduling)
413     MF->verify(this, "After machine scheduling.");
414   return true;
415 }
416 
417 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
418   if (skipFunction(mf.getFunction()))
419     return false;
420 
421   if (EnablePostRAMachineSched.getNumOccurrences()) {
422     if (!EnablePostRAMachineSched)
423       return false;
424   } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) {
425     LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
426     return false;
427   }
428   LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
429 
430   // Initialize the context of the pass.
431   MF = &mf;
432   MLI = &getAnalysis<MachineLoopInfo>();
433   PassConfig = &getAnalysis<TargetPassConfig>();
434   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
435 
436   if (VerifyScheduling)
437     MF->verify(this, "Before post machine scheduling.");
438 
439   // Instantiate the selected scheduler for this target, function, and
440   // optimization level.
441   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
442   scheduleRegions(*Scheduler, true);
443 
444   if (VerifyScheduling)
445     MF->verify(this, "After post machine scheduling.");
446   return true;
447 }
448 
449 /// Return true of the given instruction should not be included in a scheduling
450 /// region.
451 ///
452 /// MachineScheduler does not currently support scheduling across calls. To
453 /// handle calls, the DAG builder needs to be modified to create register
454 /// anti/output dependencies on the registers clobbered by the call's regmask
455 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
456 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
457 /// the boundary, but there would be no benefit to postRA scheduling across
458 /// calls this late anyway.
459 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
460                             MachineBasicBlock *MBB,
461                             MachineFunction *MF,
462                             const TargetInstrInfo *TII) {
463   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
464 }
465 
466 /// A region of an MBB for scheduling.
467 namespace {
468 struct SchedRegion {
469   /// RegionBegin is the first instruction in the scheduling region, and
470   /// RegionEnd is either MBB->end() or the scheduling boundary after the
471   /// last instruction in the scheduling region. These iterators cannot refer
472   /// to instructions outside of the identified scheduling region because
473   /// those may be reordered before scheduling this region.
474   MachineBasicBlock::iterator RegionBegin;
475   MachineBasicBlock::iterator RegionEnd;
476   unsigned NumRegionInstrs;
477 
478   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
479               unsigned N) :
480     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
481 };
482 } // end anonymous namespace
483 
484 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
485 
486 static void
487 getSchedRegions(MachineBasicBlock *MBB,
488                 MBBRegionsVector &Regions,
489                 bool RegionsTopDown) {
490   MachineFunction *MF = MBB->getParent();
491   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
492 
493   MachineBasicBlock::iterator I = nullptr;
494   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
495       RegionEnd != MBB->begin(); RegionEnd = I) {
496 
497     // Avoid decrementing RegionEnd for blocks with no terminator.
498     if (RegionEnd != MBB->end() ||
499         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
500       --RegionEnd;
501     }
502 
503     // The next region starts above the previous region. Look backward in the
504     // instruction stream until we find the nearest boundary.
505     unsigned NumRegionInstrs = 0;
506     I = RegionEnd;
507     for (;I != MBB->begin(); --I) {
508       MachineInstr &MI = *std::prev(I);
509       if (isSchedBoundary(&MI, &*MBB, MF, TII))
510         break;
511       if (!MI.isDebugInstr()) {
512         // MBB::size() uses instr_iterator to count. Here we need a bundle to
513         // count as a single instruction.
514         ++NumRegionInstrs;
515       }
516     }
517 
518     // It's possible we found a scheduling region that only has debug
519     // instructions. Don't bother scheduling these.
520     if (NumRegionInstrs != 0)
521       Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
522   }
523 
524   if (RegionsTopDown)
525     std::reverse(Regions.begin(), Regions.end());
526 }
527 
528 /// Main driver for both MachineScheduler and PostMachineScheduler.
529 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
530                                            bool FixKillFlags) {
531   // Visit all machine basic blocks.
532   //
533   // TODO: Visit blocks in global postorder or postorder within the bottom-up
534   // loop tree. Then we can optionally compute global RegPressure.
535   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
536        MBB != MBBEnd; ++MBB) {
537 
538     Scheduler.startBlock(&*MBB);
539 
540 #ifndef NDEBUG
541     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
542       continue;
543     if (SchedOnlyBlock.getNumOccurrences()
544         && (int)SchedOnlyBlock != MBB->getNumber())
545       continue;
546 #endif
547 
548     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
549     // points to the scheduling boundary at the bottom of the region. The DAG
550     // does not include RegionEnd, but the region does (i.e. the next
551     // RegionEnd is above the previous RegionBegin). If the current block has
552     // no terminator then RegionEnd == MBB->end() for the bottom region.
553     //
554     // All the regions of MBB are first found and stored in MBBRegions, which
555     // will be processed (MBB) top-down if initialized with true.
556     //
557     // The Scheduler may insert instructions during either schedule() or
558     // exitRegion(), even for empty regions. So the local iterators 'I' and
559     // 'RegionEnd' are invalid across these calls. Instructions must not be
560     // added to other regions than the current one without updating MBBRegions.
561 
562     MBBRegionsVector MBBRegions;
563     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
564     for (MBBRegionsVector::iterator R = MBBRegions.begin();
565          R != MBBRegions.end(); ++R) {
566       MachineBasicBlock::iterator I = R->RegionBegin;
567       MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
568       unsigned NumRegionInstrs = R->NumRegionInstrs;
569 
570       // Notify the scheduler of the region, even if we may skip scheduling
571       // it. Perhaps it still needs to be bundled.
572       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
573 
574       // Skip empty scheduling regions (0 or 1 schedulable instructions).
575       if (I == RegionEnd || I == std::prev(RegionEnd)) {
576         // Close the current region. Bundle the terminator if needed.
577         // This invalidates 'RegionEnd' and 'I'.
578         Scheduler.exitRegion();
579         continue;
580       }
581       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
582       LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
583                         << " " << MBB->getName() << "\n  From: " << *I
584                         << "    To: ";
585                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
586                  else dbgs() << "End";
587                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
588       if (DumpCriticalPathLength) {
589         errs() << MF->getName();
590         errs() << ":%bb. " << MBB->getNumber();
591         errs() << " " << MBB->getName() << " \n";
592       }
593 
594       // Schedule a region: possibly reorder instructions.
595       // This invalidates the original region iterators.
596       Scheduler.schedule();
597 
598       // Close the current region.
599       Scheduler.exitRegion();
600     }
601     Scheduler.finishBlock();
602     // FIXME: Ideally, no further passes should rely on kill flags. However,
603     // thumb2 size reduction is currently an exception, so the PostMIScheduler
604     // needs to do this.
605     if (FixKillFlags)
606       Scheduler.fixupKills(*MBB);
607   }
608   Scheduler.finalizeSchedule();
609 }
610 
611 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
612   // unimplemented
613 }
614 
615 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
616 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
617   dbgs() << "Queue " << Name << ": ";
618   for (const SUnit *SU : Queue)
619     dbgs() << SU->NodeNum << " ";
620   dbgs() << "\n";
621 }
622 #endif
623 
624 //===----------------------------------------------------------------------===//
625 // ScheduleDAGMI - Basic machine instruction scheduling. This is
626 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
627 // virtual registers.
628 // ===----------------------------------------------------------------------===/
629 
630 // Provide a vtable anchor.
631 ScheduleDAGMI::~ScheduleDAGMI() = default;
632 
633 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
634 /// NumPredsLeft reaches zero, release the successor node.
635 ///
636 /// FIXME: Adjust SuccSU height based on MinLatency.
637 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
638   SUnit *SuccSU = SuccEdge->getSUnit();
639 
640   if (SuccEdge->isWeak()) {
641     --SuccSU->WeakPredsLeft;
642     if (SuccEdge->isCluster())
643       NextClusterSucc = SuccSU;
644     return;
645   }
646 #ifndef NDEBUG
647   if (SuccSU->NumPredsLeft == 0) {
648     dbgs() << "*** Scheduling failed! ***\n";
649     dumpNode(*SuccSU);
650     dbgs() << " has been released too many times!\n";
651     llvm_unreachable(nullptr);
652   }
653 #endif
654   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
655   // CurrCycle may have advanced since then.
656   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
657     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
658 
659   --SuccSU->NumPredsLeft;
660   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
661     SchedImpl->releaseTopNode(SuccSU);
662 }
663 
664 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
665 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
666   for (SDep &Succ : SU->Succs)
667     releaseSucc(SU, &Succ);
668 }
669 
670 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
671 /// NumSuccsLeft reaches zero, release the predecessor node.
672 ///
673 /// FIXME: Adjust PredSU height based on MinLatency.
674 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
675   SUnit *PredSU = PredEdge->getSUnit();
676 
677   if (PredEdge->isWeak()) {
678     --PredSU->WeakSuccsLeft;
679     if (PredEdge->isCluster())
680       NextClusterPred = PredSU;
681     return;
682   }
683 #ifndef NDEBUG
684   if (PredSU->NumSuccsLeft == 0) {
685     dbgs() << "*** Scheduling failed! ***\n";
686     dumpNode(*PredSU);
687     dbgs() << " has been released too many times!\n";
688     llvm_unreachable(nullptr);
689   }
690 #endif
691   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
692   // CurrCycle may have advanced since then.
693   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
694     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
695 
696   --PredSU->NumSuccsLeft;
697   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
698     SchedImpl->releaseBottomNode(PredSU);
699 }
700 
701 /// releasePredecessors - Call releasePred on each of SU's predecessors.
702 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
703   for (SDep &Pred : SU->Preds)
704     releasePred(SU, &Pred);
705 }
706 
707 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
708   ScheduleDAGInstrs::startBlock(bb);
709   SchedImpl->enterMBB(bb);
710 }
711 
712 void ScheduleDAGMI::finishBlock() {
713   SchedImpl->leaveMBB();
714   ScheduleDAGInstrs::finishBlock();
715 }
716 
717 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
718 /// crossing a scheduling boundary. [begin, end) includes all instructions in
719 /// the region, including the boundary itself and single-instruction regions
720 /// that don't get scheduled.
721 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
722                                      MachineBasicBlock::iterator begin,
723                                      MachineBasicBlock::iterator end,
724                                      unsigned regioninstrs)
725 {
726   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
727 
728   SchedImpl->initPolicy(begin, end, regioninstrs);
729 }
730 
731 /// This is normally called from the main scheduler loop but may also be invoked
732 /// by the scheduling strategy to perform additional code motion.
733 void ScheduleDAGMI::moveInstruction(
734   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
735   // Advance RegionBegin if the first instruction moves down.
736   if (&*RegionBegin == MI)
737     ++RegionBegin;
738 
739   // Update the instruction stream.
740   BB->splice(InsertPos, BB, MI);
741 
742   // Update LiveIntervals
743   if (LIS)
744     LIS->handleMove(*MI, /*UpdateFlags=*/true);
745 
746   // Recede RegionBegin if an instruction moves above the first.
747   if (RegionBegin == InsertPos)
748     RegionBegin = MI;
749 }
750 
751 bool ScheduleDAGMI::checkSchedLimit() {
752 #ifndef NDEBUG
753   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
754     CurrentTop = CurrentBottom;
755     return false;
756   }
757   ++NumInstrsScheduled;
758 #endif
759   return true;
760 }
761 
762 /// Per-region scheduling driver, called back from
763 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
764 /// does not consider liveness or register pressure. It is useful for PostRA
765 /// scheduling and potentially other custom schedulers.
766 void ScheduleDAGMI::schedule() {
767   LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
768   LLVM_DEBUG(SchedImpl->dumpPolicy());
769 
770   // Build the DAG.
771   buildSchedGraph(AA);
772 
773   postprocessDAG();
774 
775   SmallVector<SUnit*, 8> TopRoots, BotRoots;
776   findRootsAndBiasEdges(TopRoots, BotRoots);
777 
778   LLVM_DEBUG(dump());
779   if (PrintDAGs) dump();
780   if (ViewMISchedDAGs) viewGraph();
781 
782   // Initialize the strategy before modifying the DAG.
783   // This may initialize a DFSResult to be used for queue priority.
784   SchedImpl->initialize(this);
785 
786   // Initialize ready queues now that the DAG and priority data are finalized.
787   initQueues(TopRoots, BotRoots);
788 
789   bool IsTopNode = false;
790   while (true) {
791     LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
792     SUnit *SU = SchedImpl->pickNode(IsTopNode);
793     if (!SU) break;
794 
795     assert(!SU->isScheduled && "Node already scheduled");
796     if (!checkSchedLimit())
797       break;
798 
799     MachineInstr *MI = SU->getInstr();
800     if (IsTopNode) {
801       assert(SU->isTopReady() && "node still has unscheduled dependencies");
802       if (&*CurrentTop == MI)
803         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
804       else
805         moveInstruction(MI, CurrentTop);
806     } else {
807       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
808       MachineBasicBlock::iterator priorII =
809         priorNonDebug(CurrentBottom, CurrentTop);
810       if (&*priorII == MI)
811         CurrentBottom = priorII;
812       else {
813         if (&*CurrentTop == MI)
814           CurrentTop = nextIfDebug(++CurrentTop, priorII);
815         moveInstruction(MI, CurrentBottom);
816         CurrentBottom = MI;
817       }
818     }
819     // Notify the scheduling strategy before updating the DAG.
820     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
821     // runs, it can then use the accurate ReadyCycle time to determine whether
822     // newly released nodes can move to the readyQ.
823     SchedImpl->schedNode(SU, IsTopNode);
824 
825     updateQueues(SU, IsTopNode);
826   }
827   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
828 
829   placeDebugValues();
830 
831   LLVM_DEBUG({
832     dbgs() << "*** Final schedule for "
833            << printMBBReference(*begin()->getParent()) << " ***\n";
834     dumpSchedule();
835     dbgs() << '\n';
836   });
837 }
838 
839 /// Apply each ScheduleDAGMutation step in order.
840 void ScheduleDAGMI::postprocessDAG() {
841   for (auto &m : Mutations)
842     m->apply(this);
843 }
844 
845 void ScheduleDAGMI::
846 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
847                       SmallVectorImpl<SUnit*> &BotRoots) {
848   for (SUnit &SU : SUnits) {
849     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
850 
851     // Order predecessors so DFSResult follows the critical path.
852     SU.biasCriticalPath();
853 
854     // A SUnit is ready to top schedule if it has no predecessors.
855     if (!SU.NumPredsLeft)
856       TopRoots.push_back(&SU);
857     // A SUnit is ready to bottom schedule if it has no successors.
858     if (!SU.NumSuccsLeft)
859       BotRoots.push_back(&SU);
860   }
861   ExitSU.biasCriticalPath();
862 }
863 
864 /// Identify DAG roots and setup scheduler queues.
865 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
866                                ArrayRef<SUnit*> BotRoots) {
867   NextClusterSucc = nullptr;
868   NextClusterPred = nullptr;
869 
870   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
871   //
872   // Nodes with unreleased weak edges can still be roots.
873   // Release top roots in forward order.
874   for (SUnit *SU : TopRoots)
875     SchedImpl->releaseTopNode(SU);
876 
877   // Release bottom roots in reverse order so the higher priority nodes appear
878   // first. This is more natural and slightly more efficient.
879   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
880          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
881     SchedImpl->releaseBottomNode(*I);
882   }
883 
884   releaseSuccessors(&EntrySU);
885   releasePredecessors(&ExitSU);
886 
887   SchedImpl->registerRoots();
888 
889   // Advance past initial DebugValues.
890   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
891   CurrentBottom = RegionEnd;
892 }
893 
894 /// Update scheduler queues after scheduling an instruction.
895 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
896   // Release dependent instructions for scheduling.
897   if (IsTopNode)
898     releaseSuccessors(SU);
899   else
900     releasePredecessors(SU);
901 
902   SU->isScheduled = true;
903 }
904 
905 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
906 void ScheduleDAGMI::placeDebugValues() {
907   // If first instruction was a DBG_VALUE then put it back.
908   if (FirstDbgValue) {
909     BB->splice(RegionBegin, BB, FirstDbgValue);
910     RegionBegin = FirstDbgValue;
911   }
912 
913   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
914          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
915     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
916     MachineInstr *DbgValue = P.first;
917     MachineBasicBlock::iterator OrigPrevMI = P.second;
918     if (&*RegionBegin == DbgValue)
919       ++RegionBegin;
920     BB->splice(++OrigPrevMI, BB, DbgValue);
921     if (OrigPrevMI == std::prev(RegionEnd))
922       RegionEnd = DbgValue;
923   }
924   DbgValues.clear();
925   FirstDbgValue = nullptr;
926 }
927 
928 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
929 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
930   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
931     if (SUnit *SU = getSUnit(&(*MI)))
932       dumpNode(*SU);
933     else
934       dbgs() << "Missing SUnit\n";
935   }
936 }
937 #endif
938 
939 //===----------------------------------------------------------------------===//
940 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
941 // preservation.
942 //===----------------------------------------------------------------------===//
943 
944 ScheduleDAGMILive::~ScheduleDAGMILive() {
945   delete DFSResult;
946 }
947 
948 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
949   const MachineInstr &MI = *SU.getInstr();
950   for (const MachineOperand &MO : MI.operands()) {
951     if (!MO.isReg())
952       continue;
953     if (!MO.readsReg())
954       continue;
955     if (TrackLaneMasks && !MO.isUse())
956       continue;
957 
958     Register Reg = MO.getReg();
959     if (!Register::isVirtualRegister(Reg))
960       continue;
961 
962     // Ignore re-defs.
963     if (TrackLaneMasks) {
964       bool FoundDef = false;
965       for (const MachineOperand &MO2 : MI.operands()) {
966         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
967           FoundDef = true;
968           break;
969         }
970       }
971       if (FoundDef)
972         continue;
973     }
974 
975     // Record this local VReg use.
976     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
977     for (; UI != VRegUses.end(); ++UI) {
978       if (UI->SU == &SU)
979         break;
980     }
981     if (UI == VRegUses.end())
982       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
983   }
984 }
985 
986 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
987 /// crossing a scheduling boundary. [begin, end) includes all instructions in
988 /// the region, including the boundary itself and single-instruction regions
989 /// that don't get scheduled.
990 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
991                                 MachineBasicBlock::iterator begin,
992                                 MachineBasicBlock::iterator end,
993                                 unsigned regioninstrs)
994 {
995   // ScheduleDAGMI initializes SchedImpl's per-region policy.
996   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
997 
998   // For convenience remember the end of the liveness region.
999   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
1000 
1001   SUPressureDiffs.clear();
1002 
1003   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
1004   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
1005 
1006   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
1007          "ShouldTrackLaneMasks requires ShouldTrackPressure");
1008 }
1009 
1010 // Setup the register pressure trackers for the top scheduled and bottom
1011 // scheduled regions.
1012 void ScheduleDAGMILive::initRegPressure() {
1013   VRegUses.clear();
1014   VRegUses.setUniverse(MRI.getNumVirtRegs());
1015   for (SUnit &SU : SUnits)
1016     collectVRegUses(SU);
1017 
1018   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1019                     ShouldTrackLaneMasks, false);
1020   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1021                     ShouldTrackLaneMasks, false);
1022 
1023   // Close the RPTracker to finalize live ins.
1024   RPTracker.closeRegion();
1025 
1026   LLVM_DEBUG(RPTracker.dump());
1027 
1028   // Initialize the live ins and live outs.
1029   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1030   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1031 
1032   // Close one end of the tracker so we can call
1033   // getMaxUpward/DownwardPressureDelta before advancing across any
1034   // instructions. This converts currently live regs into live ins/outs.
1035   TopRPTracker.closeTop();
1036   BotRPTracker.closeBottom();
1037 
1038   BotRPTracker.initLiveThru(RPTracker);
1039   if (!BotRPTracker.getLiveThru().empty()) {
1040     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1041     LLVM_DEBUG(dbgs() << "Live Thru: ";
1042                dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1043   };
1044 
1045   // For each live out vreg reduce the pressure change associated with other
1046   // uses of the same vreg below the live-out reaching def.
1047   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1048 
1049   // Account for liveness generated by the region boundary.
1050   if (LiveRegionEnd != RegionEnd) {
1051     SmallVector<RegisterMaskPair, 8> LiveUses;
1052     BotRPTracker.recede(&LiveUses);
1053     updatePressureDiffs(LiveUses);
1054   }
1055 
1056   LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1057              dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1058              dbgs() << "Bottom Pressure:\n";
1059              dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1060 
1061   assert((BotRPTracker.getPos() == RegionEnd ||
1062           (RegionEnd->isDebugInstr() &&
1063            BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1064          "Can't find the region bottom");
1065 
1066   // Cache the list of excess pressure sets in this region. This will also track
1067   // the max pressure in the scheduled code for these sets.
1068   RegionCriticalPSets.clear();
1069   const std::vector<unsigned> &RegionPressure =
1070     RPTracker.getPressure().MaxSetPressure;
1071   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1072     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1073     if (RegionPressure[i] > Limit) {
1074       LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1075                         << " Actual " << RegionPressure[i] << "\n");
1076       RegionCriticalPSets.push_back(PressureChange(i));
1077     }
1078   }
1079   LLVM_DEBUG(dbgs() << "Excess PSets: ";
1080              for (const PressureChange &RCPS
1081                   : RegionCriticalPSets) dbgs()
1082              << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1083              dbgs() << "\n");
1084 }
1085 
1086 void ScheduleDAGMILive::
1087 updateScheduledPressure(const SUnit *SU,
1088                         const std::vector<unsigned> &NewMaxPressure) {
1089   const PressureDiff &PDiff = getPressureDiff(SU);
1090   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1091   for (const PressureChange &PC : PDiff) {
1092     if (!PC.isValid())
1093       break;
1094     unsigned ID = PC.getPSet();
1095     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1096       ++CritIdx;
1097     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1098       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1099           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1100         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1101     }
1102     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1103     if (NewMaxPressure[ID] >= Limit - 2) {
1104       LLVM_DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1105                         << NewMaxPressure[ID]
1106                         << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1107                         << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1108                         << " livethru)\n");
1109     }
1110   }
1111 }
1112 
1113 /// Update the PressureDiff array for liveness after scheduling this
1114 /// instruction.
1115 void ScheduleDAGMILive::updatePressureDiffs(
1116     ArrayRef<RegisterMaskPair> LiveUses) {
1117   for (const RegisterMaskPair &P : LiveUses) {
1118     Register Reg = P.RegUnit;
1119     /// FIXME: Currently assuming single-use physregs.
1120     if (!Register::isVirtualRegister(Reg))
1121       continue;
1122 
1123     if (ShouldTrackLaneMasks) {
1124       // If the register has just become live then other uses won't change
1125       // this fact anymore => decrement pressure.
1126       // If the register has just become dead then other uses make it come
1127       // back to life => increment pressure.
1128       bool Decrement = P.LaneMask.any();
1129 
1130       for (const VReg2SUnit &V2SU
1131            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1132         SUnit &SU = *V2SU.SU;
1133         if (SU.isScheduled || &SU == &ExitSU)
1134           continue;
1135 
1136         PressureDiff &PDiff = getPressureDiff(&SU);
1137         PDiff.addPressureChange(Reg, Decrement, &MRI);
1138         LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1139                           << printReg(Reg, TRI) << ':'
1140                           << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1141                    dbgs() << "              to "; PDiff.dump(*TRI););
1142       }
1143     } else {
1144       assert(P.LaneMask.any());
1145       LLVM_DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1146       // This may be called before CurrentBottom has been initialized. However,
1147       // BotRPTracker must have a valid position. We want the value live into the
1148       // instruction or live out of the block, so ask for the previous
1149       // instruction's live-out.
1150       const LiveInterval &LI = LIS->getInterval(Reg);
1151       VNInfo *VNI;
1152       MachineBasicBlock::const_iterator I =
1153         nextIfDebug(BotRPTracker.getPos(), BB->end());
1154       if (I == BB->end())
1155         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1156       else {
1157         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1158         VNI = LRQ.valueIn();
1159       }
1160       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1161       assert(VNI && "No live value at use.");
1162       for (const VReg2SUnit &V2SU
1163            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1164         SUnit *SU = V2SU.SU;
1165         // If this use comes before the reaching def, it cannot be a last use,
1166         // so decrease its pressure change.
1167         if (!SU->isScheduled && SU != &ExitSU) {
1168           LiveQueryResult LRQ =
1169               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1170           if (LRQ.valueIn() == VNI) {
1171             PressureDiff &PDiff = getPressureDiff(SU);
1172             PDiff.addPressureChange(Reg, true, &MRI);
1173             LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1174                               << *SU->getInstr();
1175                        dbgs() << "              to "; PDiff.dump(*TRI););
1176           }
1177         }
1178       }
1179     }
1180   }
1181 }
1182 
1183 void ScheduleDAGMILive::dump() const {
1184 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1185   if (EntrySU.getInstr() != nullptr)
1186     dumpNodeAll(EntrySU);
1187   for (const SUnit &SU : SUnits) {
1188     dumpNodeAll(SU);
1189     if (ShouldTrackPressure) {
1190       dbgs() << "  Pressure Diff      : ";
1191       getPressureDiff(&SU).dump(*TRI);
1192     }
1193     dbgs() << "  Single Issue       : ";
1194     if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1195         SchedModel.mustEndGroup(SU.getInstr()))
1196       dbgs() << "true;";
1197     else
1198       dbgs() << "false;";
1199     dbgs() << '\n';
1200   }
1201   if (ExitSU.getInstr() != nullptr)
1202     dumpNodeAll(ExitSU);
1203 #endif
1204 }
1205 
1206 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1207 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1208 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1209 ///
1210 /// This is a skeletal driver, with all the functionality pushed into helpers,
1211 /// so that it can be easily extended by experimental schedulers. Generally,
1212 /// implementing MachineSchedStrategy should be sufficient to implement a new
1213 /// scheduling algorithm. However, if a scheduler further subclasses
1214 /// ScheduleDAGMILive then it will want to override this virtual method in order
1215 /// to update any specialized state.
1216 void ScheduleDAGMILive::schedule() {
1217   LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1218   LLVM_DEBUG(SchedImpl->dumpPolicy());
1219   buildDAGWithRegPressure();
1220 
1221   postprocessDAG();
1222 
1223   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1224   findRootsAndBiasEdges(TopRoots, BotRoots);
1225 
1226   // Initialize the strategy before modifying the DAG.
1227   // This may initialize a DFSResult to be used for queue priority.
1228   SchedImpl->initialize(this);
1229 
1230   LLVM_DEBUG(dump());
1231   if (PrintDAGs) dump();
1232   if (ViewMISchedDAGs) viewGraph();
1233 
1234   // Initialize ready queues now that the DAG and priority data are finalized.
1235   initQueues(TopRoots, BotRoots);
1236 
1237   bool IsTopNode = false;
1238   while (true) {
1239     LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1240     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1241     if (!SU) break;
1242 
1243     assert(!SU->isScheduled && "Node already scheduled");
1244     if (!checkSchedLimit())
1245       break;
1246 
1247     scheduleMI(SU, IsTopNode);
1248 
1249     if (DFSResult) {
1250       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1251       if (!ScheduledTrees.test(SubtreeID)) {
1252         ScheduledTrees.set(SubtreeID);
1253         DFSResult->scheduleTree(SubtreeID);
1254         SchedImpl->scheduleTree(SubtreeID);
1255       }
1256     }
1257 
1258     // Notify the scheduling strategy after updating the DAG.
1259     SchedImpl->schedNode(SU, IsTopNode);
1260 
1261     updateQueues(SU, IsTopNode);
1262   }
1263   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1264 
1265   placeDebugValues();
1266 
1267   LLVM_DEBUG({
1268     dbgs() << "*** Final schedule for "
1269            << printMBBReference(*begin()->getParent()) << " ***\n";
1270     dumpSchedule();
1271     dbgs() << '\n';
1272   });
1273 }
1274 
1275 /// Build the DAG and setup three register pressure trackers.
1276 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1277   if (!ShouldTrackPressure) {
1278     RPTracker.reset();
1279     RegionCriticalPSets.clear();
1280     buildSchedGraph(AA);
1281     return;
1282   }
1283 
1284   // Initialize the register pressure tracker used by buildSchedGraph.
1285   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1286                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1287 
1288   // Account for liveness generate by the region boundary.
1289   if (LiveRegionEnd != RegionEnd)
1290     RPTracker.recede();
1291 
1292   // Build the DAG, and compute current register pressure.
1293   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1294 
1295   // Initialize top/bottom trackers after computing region pressure.
1296   initRegPressure();
1297 }
1298 
1299 void ScheduleDAGMILive::computeDFSResult() {
1300   if (!DFSResult)
1301     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1302   DFSResult->clear();
1303   ScheduledTrees.clear();
1304   DFSResult->resize(SUnits.size());
1305   DFSResult->compute(SUnits);
1306   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1307 }
1308 
1309 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1310 /// only provides the critical path for single block loops. To handle loops that
1311 /// span blocks, we could use the vreg path latencies provided by
1312 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1313 /// available for use in the scheduler.
1314 ///
1315 /// The cyclic path estimation identifies a def-use pair that crosses the back
1316 /// edge and considers the depth and height of the nodes. For example, consider
1317 /// the following instruction sequence where each instruction has unit latency
1318 /// and defines an eponymous virtual register:
1319 ///
1320 /// a->b(a,c)->c(b)->d(c)->exit
1321 ///
1322 /// The cyclic critical path is a two cycles: b->c->b
1323 /// The acyclic critical path is four cycles: a->b->c->d->exit
1324 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1325 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1326 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1327 /// LiveInDepth = depth(b) = len(a->b) = 1
1328 ///
1329 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1330 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1331 /// CyclicCriticalPath = min(2, 2) = 2
1332 ///
1333 /// This could be relevant to PostRA scheduling, but is currently implemented
1334 /// assuming LiveIntervals.
1335 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1336   // This only applies to single block loop.
1337   if (!BB->isSuccessor(BB))
1338     return 0;
1339 
1340   unsigned MaxCyclicLatency = 0;
1341   // Visit each live out vreg def to find def/use pairs that cross iterations.
1342   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1343     Register Reg = P.RegUnit;
1344     if (!Register::isVirtualRegister(Reg))
1345       continue;
1346     const LiveInterval &LI = LIS->getInterval(Reg);
1347     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1348     if (!DefVNI)
1349       continue;
1350 
1351     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1352     const SUnit *DefSU = getSUnit(DefMI);
1353     if (!DefSU)
1354       continue;
1355 
1356     unsigned LiveOutHeight = DefSU->getHeight();
1357     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1358     // Visit all local users of the vreg def.
1359     for (const VReg2SUnit &V2SU
1360          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1361       SUnit *SU = V2SU.SU;
1362       if (SU == &ExitSU)
1363         continue;
1364 
1365       // Only consider uses of the phi.
1366       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1367       if (!LRQ.valueIn()->isPHIDef())
1368         continue;
1369 
1370       // Assume that a path spanning two iterations is a cycle, which could
1371       // overestimate in strange cases. This allows cyclic latency to be
1372       // estimated as the minimum slack of the vreg's depth or height.
1373       unsigned CyclicLatency = 0;
1374       if (LiveOutDepth > SU->getDepth())
1375         CyclicLatency = LiveOutDepth - SU->getDepth();
1376 
1377       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1378       if (LiveInHeight > LiveOutHeight) {
1379         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1380           CyclicLatency = LiveInHeight - LiveOutHeight;
1381       } else
1382         CyclicLatency = 0;
1383 
1384       LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1385                         << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1386       if (CyclicLatency > MaxCyclicLatency)
1387         MaxCyclicLatency = CyclicLatency;
1388     }
1389   }
1390   LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1391   return MaxCyclicLatency;
1392 }
1393 
1394 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1395 /// the Top RP tracker in case the region beginning has changed.
1396 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1397                                    ArrayRef<SUnit*> BotRoots) {
1398   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1399   if (ShouldTrackPressure) {
1400     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1401     TopRPTracker.setPos(CurrentTop);
1402   }
1403 }
1404 
1405 /// Move an instruction and update register pressure.
1406 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1407   // Move the instruction to its new location in the instruction stream.
1408   MachineInstr *MI = SU->getInstr();
1409 
1410   if (IsTopNode) {
1411     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1412     if (&*CurrentTop == MI)
1413       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1414     else {
1415       moveInstruction(MI, CurrentTop);
1416       TopRPTracker.setPos(MI);
1417     }
1418 
1419     if (ShouldTrackPressure) {
1420       // Update top scheduled pressure.
1421       RegisterOperands RegOpers;
1422       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1423       if (ShouldTrackLaneMasks) {
1424         // Adjust liveness and add missing dead+read-undef flags.
1425         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1426         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1427       } else {
1428         // Adjust for missing dead-def flags.
1429         RegOpers.detectDeadDefs(*MI, *LIS);
1430       }
1431 
1432       TopRPTracker.advance(RegOpers);
1433       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1434       LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1435                      TopRPTracker.getRegSetPressureAtPos(), TRI););
1436 
1437       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1438     }
1439   } else {
1440     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1441     MachineBasicBlock::iterator priorII =
1442       priorNonDebug(CurrentBottom, CurrentTop);
1443     if (&*priorII == MI)
1444       CurrentBottom = priorII;
1445     else {
1446       if (&*CurrentTop == MI) {
1447         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1448         TopRPTracker.setPos(CurrentTop);
1449       }
1450       moveInstruction(MI, CurrentBottom);
1451       CurrentBottom = MI;
1452       BotRPTracker.setPos(CurrentBottom);
1453     }
1454     if (ShouldTrackPressure) {
1455       RegisterOperands RegOpers;
1456       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1457       if (ShouldTrackLaneMasks) {
1458         // Adjust liveness and add missing dead+read-undef flags.
1459         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1460         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1461       } else {
1462         // Adjust for missing dead-def flags.
1463         RegOpers.detectDeadDefs(*MI, *LIS);
1464       }
1465 
1466       if (BotRPTracker.getPos() != CurrentBottom)
1467         BotRPTracker.recedeSkipDebugValues();
1468       SmallVector<RegisterMaskPair, 8> LiveUses;
1469       BotRPTracker.recede(RegOpers, &LiveUses);
1470       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1471       LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1472                      BotRPTracker.getRegSetPressureAtPos(), TRI););
1473 
1474       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1475       updatePressureDiffs(LiveUses);
1476     }
1477   }
1478 }
1479 
1480 //===----------------------------------------------------------------------===//
1481 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1482 //===----------------------------------------------------------------------===//
1483 
1484 namespace {
1485 
1486 /// Post-process the DAG to create cluster edges between neighboring
1487 /// loads or between neighboring stores.
1488 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1489   struct MemOpInfo {
1490     SUnit *SU;
1491     SmallVector<const MachineOperand *, 4> BaseOps;
1492     int64_t Offset;
1493     unsigned Width;
1494 
1495     MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps,
1496               int64_t Offset, unsigned Width)
1497         : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset),
1498           Width(Width) {}
1499 
1500     static bool Compare(const MachineOperand *const &A,
1501                         const MachineOperand *const &B) {
1502       if (A->getType() != B->getType())
1503         return A->getType() < B->getType();
1504       if (A->isReg())
1505         return A->getReg() < B->getReg();
1506       if (A->isFI()) {
1507         const MachineFunction &MF = *A->getParent()->getParent()->getParent();
1508         const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
1509         bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1510                               TargetFrameLowering::StackGrowsDown;
1511         return StackGrowsDown ? A->getIndex() > B->getIndex()
1512                               : A->getIndex() < B->getIndex();
1513       }
1514 
1515       llvm_unreachable("MemOpClusterMutation only supports register or frame "
1516                        "index bases.");
1517     }
1518 
1519     bool operator<(const MemOpInfo &RHS) const {
1520       // FIXME: Don't compare everything twice. Maybe use C++20 three way
1521       // comparison instead when it's available.
1522       if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(),
1523                                        RHS.BaseOps.begin(), RHS.BaseOps.end(),
1524                                        Compare))
1525         return true;
1526       if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(),
1527                                        BaseOps.begin(), BaseOps.end(), Compare))
1528         return false;
1529       if (Offset != RHS.Offset)
1530         return Offset < RHS.Offset;
1531       return SU->NodeNum < RHS.SU->NodeNum;
1532     }
1533   };
1534 
1535   const TargetInstrInfo *TII;
1536   const TargetRegisterInfo *TRI;
1537   bool IsLoad;
1538 
1539 public:
1540   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1541                            const TargetRegisterInfo *tri, bool IsLoad)
1542       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1543 
1544   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1545 
1546 protected:
1547   void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster,
1548                                 ScheduleDAGInstrs *DAG);
1549   void collectMemOpRecords(std::vector<SUnit> &SUnits,
1550                            SmallVectorImpl<MemOpInfo> &MemOpRecords);
1551   bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1552                    DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups);
1553 };
1554 
1555 class StoreClusterMutation : public BaseMemOpClusterMutation {
1556 public:
1557   StoreClusterMutation(const TargetInstrInfo *tii,
1558                        const TargetRegisterInfo *tri)
1559       : BaseMemOpClusterMutation(tii, tri, false) {}
1560 };
1561 
1562 class LoadClusterMutation : public BaseMemOpClusterMutation {
1563 public:
1564   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1565       : BaseMemOpClusterMutation(tii, tri, true) {}
1566 };
1567 
1568 } // end anonymous namespace
1569 
1570 namespace llvm {
1571 
1572 std::unique_ptr<ScheduleDAGMutation>
1573 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1574                              const TargetRegisterInfo *TRI) {
1575   return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI)
1576                             : nullptr;
1577 }
1578 
1579 std::unique_ptr<ScheduleDAGMutation>
1580 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1581                               const TargetRegisterInfo *TRI) {
1582   return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI)
1583                             : nullptr;
1584 }
1585 
1586 } // end namespace llvm
1587 
1588 // Sorting all the loads/stores first, then for each load/store, checking the
1589 // following load/store one by one, until reach the first non-dependent one and
1590 // call target hook to see if they can cluster.
1591 // If FastCluster is enabled, we assume that, all the loads/stores have been
1592 // preprocessed and now, they didn't have dependencies on each other.
1593 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1594     ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster,
1595     ScheduleDAGInstrs *DAG) {
1596   // Keep track of the current cluster length and bytes for each SUnit.
1597   DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo;
1598 
1599   // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to
1600   // cluster mem ops collected within `MemOpRecords` array.
1601   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1602     // Decision to cluster mem ops is taken based on target dependent logic
1603     auto MemOpa = MemOpRecords[Idx];
1604 
1605     // Seek for the next load/store to do the cluster.
1606     unsigned NextIdx = Idx + 1;
1607     for (; NextIdx < End; ++NextIdx)
1608       // Skip if MemOpb has been clustered already or has dependency with
1609       // MemOpa.
1610       if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) &&
1611           (FastCluster ||
1612            (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) &&
1613             !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU))))
1614         break;
1615     if (NextIdx == End)
1616       continue;
1617 
1618     auto MemOpb = MemOpRecords[NextIdx];
1619     unsigned ClusterLength = 2;
1620     unsigned CurrentClusterBytes = MemOpa.Width + MemOpb.Width;
1621     if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) {
1622       ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1;
1623       CurrentClusterBytes =
1624           SUnit2ClusterInfo[MemOpa.SU->NodeNum].second + MemOpb.Width;
1625     }
1626 
1627     if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpb.BaseOps, ClusterLength,
1628                                   CurrentClusterBytes))
1629       continue;
1630 
1631     SUnit *SUa = MemOpa.SU;
1632     SUnit *SUb = MemOpb.SU;
1633     if (SUa->NodeNum > SUb->NodeNum)
1634       std::swap(SUa, SUb);
1635 
1636     // FIXME: Is this check really required?
1637     if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster)))
1638       continue;
1639 
1640     LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1641                       << SUb->NodeNum << ")\n");
1642     ++NumClustered;
1643 
1644     if (IsLoad) {
1645       // Copy successor edges from SUa to SUb. Interleaving computation
1646       // dependent on SUa can prevent load combining due to register reuse.
1647       // Predecessor edges do not need to be copied from SUb to SUa since
1648       // nearby loads should have effectively the same inputs.
1649       for (const SDep &Succ : SUa->Succs) {
1650         if (Succ.getSUnit() == SUb)
1651           continue;
1652         LLVM_DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum
1653                           << ")\n");
1654         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1655       }
1656     } else {
1657       // Copy predecessor edges from SUb to SUa to avoid the SUnits that
1658       // SUb dependent on scheduled in-between SUb and SUa. Successor edges
1659       // do not need to be copied from SUa to SUb since no one will depend
1660       // on stores.
1661       // Notice that, we don't need to care about the memory dependency as
1662       // we won't try to cluster them if they have any memory dependency.
1663       for (const SDep &Pred : SUb->Preds) {
1664         if (Pred.getSUnit() == SUa)
1665           continue;
1666         LLVM_DEBUG(dbgs() << "  Copy Pred SU(" << Pred.getSUnit()->NodeNum
1667                           << ")\n");
1668         DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial));
1669       }
1670     }
1671 
1672     SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength,
1673                                              CurrentClusterBytes};
1674 
1675     LLVM_DEBUG(dbgs() << "  Curr cluster length: " << ClusterLength
1676                       << ", Curr cluster bytes: " << CurrentClusterBytes
1677                       << "\n");
1678   }
1679 }
1680 
1681 void BaseMemOpClusterMutation::collectMemOpRecords(
1682     std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) {
1683   for (auto &SU : SUnits) {
1684     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1685         (!IsLoad && !SU.getInstr()->mayStore()))
1686       continue;
1687 
1688     const MachineInstr &MI = *SU.getInstr();
1689     SmallVector<const MachineOperand *, 4> BaseOps;
1690     int64_t Offset;
1691     bool OffsetIsScalable;
1692     unsigned Width;
1693     if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset,
1694                                            OffsetIsScalable, Width, TRI)) {
1695       MemOpRecords.push_back(MemOpInfo(&SU, BaseOps, Offset, Width));
1696 
1697       LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: "
1698                         << Offset << ", OffsetIsScalable: " << OffsetIsScalable
1699                         << ", Width: " << Width << "\n");
1700     }
1701 #ifndef NDEBUG
1702     for (auto *Op : BaseOps)
1703       assert(Op);
1704 #endif
1705   }
1706 }
1707 
1708 bool BaseMemOpClusterMutation::groupMemOps(
1709     ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1710     DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups) {
1711   bool FastCluster =
1712       ForceFastCluster ||
1713       MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold;
1714 
1715   for (const auto &MemOp : MemOps) {
1716     unsigned ChainPredID = DAG->SUnits.size();
1717     if (FastCluster) {
1718       for (const SDep &Pred : MemOp.SU->Preds) {
1719         // We only want to cluster the mem ops that have the same ctrl(non-data)
1720         // pred so that they didn't have ctrl dependency for each other. But for
1721         // store instrs, we can still cluster them if the pred is load instr.
1722         if ((Pred.isCtrl() &&
1723              (IsLoad ||
1724               (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) &&
1725             !Pred.isArtificial()) {
1726           ChainPredID = Pred.getSUnit()->NodeNum;
1727           break;
1728         }
1729       }
1730     } else
1731       ChainPredID = 0;
1732 
1733     Groups[ChainPredID].push_back(MemOp);
1734   }
1735   return FastCluster;
1736 }
1737 
1738 /// Callback from DAG postProcessing to create cluster edges for loads/stores.
1739 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
1740   // Collect all the clusterable loads/stores
1741   SmallVector<MemOpInfo, 32> MemOpRecords;
1742   collectMemOpRecords(DAG->SUnits, MemOpRecords);
1743 
1744   if (MemOpRecords.size() < 2)
1745     return;
1746 
1747   // Put the loads/stores without dependency into the same group with some
1748   // heuristic if the DAG is too complex to avoid compiling time blow up.
1749   // Notice that, some fusion pair could be lost with this.
1750   DenseMap<unsigned, SmallVector<MemOpInfo, 32>> Groups;
1751   bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups);
1752 
1753   for (auto &Group : Groups) {
1754     // Sorting the loads/stores, so that, we can stop the cluster as early as
1755     // possible.
1756     llvm::sort(Group.second);
1757 
1758     // Trying to cluster all the neighboring loads/stores.
1759     clusterNeighboringMemOps(Group.second, FastCluster, DAG);
1760   }
1761 }
1762 
1763 //===----------------------------------------------------------------------===//
1764 // CopyConstrain - DAG post-processing to encourage copy elimination.
1765 //===----------------------------------------------------------------------===//
1766 
1767 namespace {
1768 
1769 /// Post-process the DAG to create weak edges from all uses of a copy to
1770 /// the one use that defines the copy's source vreg, most likely an induction
1771 /// variable increment.
1772 class CopyConstrain : public ScheduleDAGMutation {
1773   // Transient state.
1774   SlotIndex RegionBeginIdx;
1775 
1776   // RegionEndIdx is the slot index of the last non-debug instruction in the
1777   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1778   SlotIndex RegionEndIdx;
1779 
1780 public:
1781   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1782 
1783   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1784 
1785 protected:
1786   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1787 };
1788 
1789 } // end anonymous namespace
1790 
1791 namespace llvm {
1792 
1793 std::unique_ptr<ScheduleDAGMutation>
1794 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1795                                const TargetRegisterInfo *TRI) {
1796   return std::make_unique<CopyConstrain>(TII, TRI);
1797 }
1798 
1799 } // end namespace llvm
1800 
1801 /// constrainLocalCopy handles two possibilities:
1802 /// 1) Local src:
1803 /// I0:     = dst
1804 /// I1: src = ...
1805 /// I2:     = dst
1806 /// I3: dst = src (copy)
1807 /// (create pred->succ edges I0->I1, I2->I1)
1808 ///
1809 /// 2) Local copy:
1810 /// I0: dst = src (copy)
1811 /// I1:     = dst
1812 /// I2: src = ...
1813 /// I3:     = dst
1814 /// (create pred->succ edges I1->I2, I3->I2)
1815 ///
1816 /// Although the MachineScheduler is currently constrained to single blocks,
1817 /// this algorithm should handle extended blocks. An EBB is a set of
1818 /// contiguously numbered blocks such that the previous block in the EBB is
1819 /// always the single predecessor.
1820 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1821   LiveIntervals *LIS = DAG->getLIS();
1822   MachineInstr *Copy = CopySU->getInstr();
1823 
1824   // Check for pure vreg copies.
1825   const MachineOperand &SrcOp = Copy->getOperand(1);
1826   Register SrcReg = SrcOp.getReg();
1827   if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1828     return;
1829 
1830   const MachineOperand &DstOp = Copy->getOperand(0);
1831   Register DstReg = DstOp.getReg();
1832   if (!Register::isVirtualRegister(DstReg) || DstOp.isDead())
1833     return;
1834 
1835   // Check if either the dest or source is local. If it's live across a back
1836   // edge, it's not local. Note that if both vregs are live across the back
1837   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1838   // If both the copy's source and dest are local live intervals, then we
1839   // should treat the dest as the global for the purpose of adding
1840   // constraints. This adds edges from source's other uses to the copy.
1841   unsigned LocalReg = SrcReg;
1842   unsigned GlobalReg = DstReg;
1843   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1844   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1845     LocalReg = DstReg;
1846     GlobalReg = SrcReg;
1847     LocalLI = &LIS->getInterval(LocalReg);
1848     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1849       return;
1850   }
1851   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1852 
1853   // Find the global segment after the start of the local LI.
1854   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1855   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1856   // local live range. We could create edges from other global uses to the local
1857   // start, but the coalescer should have already eliminated these cases, so
1858   // don't bother dealing with it.
1859   if (GlobalSegment == GlobalLI->end())
1860     return;
1861 
1862   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1863   // returned the next global segment. But if GlobalSegment overlaps with
1864   // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
1865   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1866   if (GlobalSegment->contains(LocalLI->beginIndex()))
1867     ++GlobalSegment;
1868 
1869   if (GlobalSegment == GlobalLI->end())
1870     return;
1871 
1872   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1873   if (GlobalSegment != GlobalLI->begin()) {
1874     // Two address defs have no hole.
1875     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1876                                GlobalSegment->start)) {
1877       return;
1878     }
1879     // If the prior global segment may be defined by the same two-address
1880     // instruction that also defines LocalLI, then can't make a hole here.
1881     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1882                                LocalLI->beginIndex())) {
1883       return;
1884     }
1885     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1886     // it would be a disconnected component in the live range.
1887     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1888            "Disconnected LRG within the scheduling region.");
1889   }
1890   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1891   if (!GlobalDef)
1892     return;
1893 
1894   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1895   if (!GlobalSU)
1896     return;
1897 
1898   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1899   // constraining the uses of the last local def to precede GlobalDef.
1900   SmallVector<SUnit*,8> LocalUses;
1901   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1902   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1903   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1904   for (const SDep &Succ : LastLocalSU->Succs) {
1905     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1906       continue;
1907     if (Succ.getSUnit() == GlobalSU)
1908       continue;
1909     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1910       return;
1911     LocalUses.push_back(Succ.getSUnit());
1912   }
1913   // Open the top of the GlobalLI hole by constraining any earlier global uses
1914   // to precede the start of LocalLI.
1915   SmallVector<SUnit*,8> GlobalUses;
1916   MachineInstr *FirstLocalDef =
1917     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1918   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1919   for (const SDep &Pred : GlobalSU->Preds) {
1920     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1921       continue;
1922     if (Pred.getSUnit() == FirstLocalSU)
1923       continue;
1924     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1925       return;
1926     GlobalUses.push_back(Pred.getSUnit());
1927   }
1928   LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1929   // Add the weak edges.
1930   for (SmallVectorImpl<SUnit*>::const_iterator
1931          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1932     LLVM_DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1933                       << GlobalSU->NodeNum << ")\n");
1934     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1935   }
1936   for (SmallVectorImpl<SUnit*>::const_iterator
1937          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1938     LLVM_DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1939                       << FirstLocalSU->NodeNum << ")\n");
1940     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1941   }
1942 }
1943 
1944 /// Callback from DAG postProcessing to create weak edges to encourage
1945 /// copy elimination.
1946 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1947   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1948   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1949 
1950   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1951   if (FirstPos == DAG->end())
1952     return;
1953   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1954   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1955       *priorNonDebug(DAG->end(), DAG->begin()));
1956 
1957   for (SUnit &SU : DAG->SUnits) {
1958     if (!SU.getInstr()->isCopy())
1959       continue;
1960 
1961     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1962   }
1963 }
1964 
1965 //===----------------------------------------------------------------------===//
1966 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1967 // and possibly other custom schedulers.
1968 //===----------------------------------------------------------------------===//
1969 
1970 static const unsigned InvalidCycle = ~0U;
1971 
1972 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1973 
1974 /// Given a Count of resource usage and a Latency value, return true if a
1975 /// SchedBoundary becomes resource limited.
1976 /// If we are checking after scheduling a node, we should return true when
1977 /// we just reach the resource limit.
1978 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1979                                unsigned Latency, bool AfterSchedNode) {
1980   int ResCntFactor = (int)(Count - (Latency * LFactor));
1981   if (AfterSchedNode)
1982     return ResCntFactor >= (int)LFactor;
1983   else
1984     return ResCntFactor > (int)LFactor;
1985 }
1986 
1987 void SchedBoundary::reset() {
1988   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1989   // Destroying and reconstructing it is very expensive though. So keep
1990   // invalid, placeholder HazardRecs.
1991   if (HazardRec && HazardRec->isEnabled()) {
1992     delete HazardRec;
1993     HazardRec = nullptr;
1994   }
1995   Available.clear();
1996   Pending.clear();
1997   CheckPending = false;
1998   CurrCycle = 0;
1999   CurrMOps = 0;
2000   MinReadyCycle = std::numeric_limits<unsigned>::max();
2001   ExpectedLatency = 0;
2002   DependentLatency = 0;
2003   RetiredMOps = 0;
2004   MaxExecutedResCount = 0;
2005   ZoneCritResIdx = 0;
2006   IsResourceLimited = false;
2007   ReservedCycles.clear();
2008   ReservedCyclesIndex.clear();
2009 #ifndef NDEBUG
2010   // Track the maximum number of stall cycles that could arise either from the
2011   // latency of a DAG edge or the number of cycles that a processor resource is
2012   // reserved (SchedBoundary::ReservedCycles).
2013   MaxObservedStall = 0;
2014 #endif
2015   // Reserve a zero-count for invalid CritResIdx.
2016   ExecutedResCounts.resize(1);
2017   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
2018 }
2019 
2020 void SchedRemainder::
2021 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
2022   reset();
2023   if (!SchedModel->hasInstrSchedModel())
2024     return;
2025   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
2026   for (SUnit &SU : DAG->SUnits) {
2027     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
2028     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
2029       * SchedModel->getMicroOpFactor();
2030     for (TargetSchedModel::ProcResIter
2031            PI = SchedModel->getWriteProcResBegin(SC),
2032            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2033       unsigned PIdx = PI->ProcResourceIdx;
2034       unsigned Factor = SchedModel->getResourceFactor(PIdx);
2035       RemainingCounts[PIdx] += (Factor * PI->Cycles);
2036     }
2037   }
2038 }
2039 
2040 void SchedBoundary::
2041 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
2042   reset();
2043   DAG = dag;
2044   SchedModel = smodel;
2045   Rem = rem;
2046   if (SchedModel->hasInstrSchedModel()) {
2047     unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
2048     ReservedCyclesIndex.resize(ResourceCount);
2049     ExecutedResCounts.resize(ResourceCount);
2050     unsigned NumUnits = 0;
2051 
2052     for (unsigned i = 0; i < ResourceCount; ++i) {
2053       ReservedCyclesIndex[i] = NumUnits;
2054       NumUnits += SchedModel->getProcResource(i)->NumUnits;
2055     }
2056 
2057     ReservedCycles.resize(NumUnits, InvalidCycle);
2058   }
2059 }
2060 
2061 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
2062 /// these "soft stalls" differently than the hard stall cycles based on CPU
2063 /// resources and computed by checkHazard(). A fully in-order model
2064 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
2065 /// available for scheduling until they are ready. However, a weaker in-order
2066 /// model may use this for heuristics. For example, if a processor has in-order
2067 /// behavior when reading certain resources, this may come into play.
2068 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
2069   if (!SU->isUnbuffered)
2070     return 0;
2071 
2072   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2073   if (ReadyCycle > CurrCycle)
2074     return ReadyCycle - CurrCycle;
2075   return 0;
2076 }
2077 
2078 /// Compute the next cycle at which the given processor resource unit
2079 /// can be scheduled.
2080 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx,
2081                                                        unsigned Cycles) {
2082   unsigned NextUnreserved = ReservedCycles[InstanceIdx];
2083   // If this resource has never been used, always return cycle zero.
2084   if (NextUnreserved == InvalidCycle)
2085     return 0;
2086   // For bottom-up scheduling add the cycles needed for the current operation.
2087   if (!isTop())
2088     NextUnreserved += Cycles;
2089   return NextUnreserved;
2090 }
2091 
2092 /// Compute the next cycle at which the given processor resource can be
2093 /// scheduled.  Returns the next cycle and the index of the processor resource
2094 /// instance in the reserved cycles vector.
2095 std::pair<unsigned, unsigned>
2096 SchedBoundary::getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
2097   unsigned MinNextUnreserved = InvalidCycle;
2098   unsigned InstanceIdx = 0;
2099   unsigned StartIndex = ReservedCyclesIndex[PIdx];
2100   unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
2101   assert(NumberOfInstances > 0 &&
2102          "Cannot have zero instances of a ProcResource");
2103 
2104   for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
2105        ++I) {
2106     unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles);
2107     if (MinNextUnreserved > NextUnreserved) {
2108       InstanceIdx = I;
2109       MinNextUnreserved = NextUnreserved;
2110     }
2111   }
2112   return std::make_pair(MinNextUnreserved, InstanceIdx);
2113 }
2114 
2115 /// Does this SU have a hazard within the current instruction group.
2116 ///
2117 /// The scheduler supports two modes of hazard recognition. The first is the
2118 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
2119 /// supports highly complicated in-order reservation tables
2120 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
2121 ///
2122 /// The second is a streamlined mechanism that checks for hazards based on
2123 /// simple counters that the scheduler itself maintains. It explicitly checks
2124 /// for instruction dispatch limitations, including the number of micro-ops that
2125 /// can dispatch per cycle.
2126 ///
2127 /// TODO: Also check whether the SU must start a new group.
2128 bool SchedBoundary::checkHazard(SUnit *SU) {
2129   if (HazardRec->isEnabled()
2130       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
2131     return true;
2132   }
2133 
2134   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
2135   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
2136     LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
2137                       << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
2138     return true;
2139   }
2140 
2141   if (CurrMOps > 0 &&
2142       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
2143        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
2144     LLVM_DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
2145                       << (isTop() ? "begin" : "end") << " group\n");
2146     return true;
2147   }
2148 
2149   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
2150     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2151     for (const MCWriteProcResEntry &PE :
2152           make_range(SchedModel->getWriteProcResBegin(SC),
2153                      SchedModel->getWriteProcResEnd(SC))) {
2154       unsigned ResIdx = PE.ProcResourceIdx;
2155       unsigned Cycles = PE.Cycles;
2156       unsigned NRCycle, InstanceIdx;
2157       std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(ResIdx, Cycles);
2158       if (NRCycle > CurrCycle) {
2159 #ifndef NDEBUG
2160         MaxObservedStall = std::max(Cycles, MaxObservedStall);
2161 #endif
2162         LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
2163                           << SchedModel->getResourceName(ResIdx)
2164                           << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx]  << ']'
2165                           << "=" << NRCycle << "c\n");
2166         return true;
2167       }
2168     }
2169   }
2170   return false;
2171 }
2172 
2173 // Find the unscheduled node in ReadySUs with the highest latency.
2174 unsigned SchedBoundary::
2175 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
2176   SUnit *LateSU = nullptr;
2177   unsigned RemLatency = 0;
2178   for (SUnit *SU : ReadySUs) {
2179     unsigned L = getUnscheduledLatency(SU);
2180     if (L > RemLatency) {
2181       RemLatency = L;
2182       LateSU = SU;
2183     }
2184   }
2185   if (LateSU) {
2186     LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2187                       << LateSU->NodeNum << ") " << RemLatency << "c\n");
2188   }
2189   return RemLatency;
2190 }
2191 
2192 // Count resources in this zone and the remaining unscheduled
2193 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2194 // resource index, or zero if the zone is issue limited.
2195 unsigned SchedBoundary::
2196 getOtherResourceCount(unsigned &OtherCritIdx) {
2197   OtherCritIdx = 0;
2198   if (!SchedModel->hasInstrSchedModel())
2199     return 0;
2200 
2201   unsigned OtherCritCount = Rem->RemIssueCount
2202     + (RetiredMOps * SchedModel->getMicroOpFactor());
2203   LLVM_DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2204                     << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2205   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2206        PIdx != PEnd; ++PIdx) {
2207     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2208     if (OtherCount > OtherCritCount) {
2209       OtherCritCount = OtherCount;
2210       OtherCritIdx = PIdx;
2211     }
2212   }
2213   if (OtherCritIdx) {
2214     LLVM_DEBUG(
2215         dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2216                << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2217                << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2218   }
2219   return OtherCritCount;
2220 }
2221 
2222 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue,
2223                                 unsigned Idx) {
2224   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2225 
2226 #ifndef NDEBUG
2227   // ReadyCycle was been bumped up to the CurrCycle when this node was
2228   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2229   // scheduling, so may now be greater than ReadyCycle.
2230   if (ReadyCycle > CurrCycle)
2231     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2232 #endif
2233 
2234   if (ReadyCycle < MinReadyCycle)
2235     MinReadyCycle = ReadyCycle;
2236 
2237   // Check for interlocks first. For the purpose of other heuristics, an
2238   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2239   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2240   bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) ||
2241                         checkHazard(SU) || (Available.size() >= ReadyListLimit);
2242 
2243   if (!HazardDetected) {
2244     Available.push(SU);
2245 
2246     if (InPQueue)
2247       Pending.remove(Pending.begin() + Idx);
2248     return;
2249   }
2250 
2251   if (!InPQueue)
2252     Pending.push(SU);
2253 }
2254 
2255 /// Move the boundary of scheduled code by one cycle.
2256 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2257   if (SchedModel->getMicroOpBufferSize() == 0) {
2258     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2259            "MinReadyCycle uninitialized");
2260     if (MinReadyCycle > NextCycle)
2261       NextCycle = MinReadyCycle;
2262   }
2263   // Update the current micro-ops, which will issue in the next cycle.
2264   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2265   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2266 
2267   // Decrement DependentLatency based on the next cycle.
2268   if ((NextCycle - CurrCycle) > DependentLatency)
2269     DependentLatency = 0;
2270   else
2271     DependentLatency -= (NextCycle - CurrCycle);
2272 
2273   if (!HazardRec->isEnabled()) {
2274     // Bypass HazardRec virtual calls.
2275     CurrCycle = NextCycle;
2276   } else {
2277     // Bypass getHazardType calls in case of long latency.
2278     for (; CurrCycle != NextCycle; ++CurrCycle) {
2279       if (isTop())
2280         HazardRec->AdvanceCycle();
2281       else
2282         HazardRec->RecedeCycle();
2283     }
2284   }
2285   CheckPending = true;
2286   IsResourceLimited =
2287       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2288                          getScheduledLatency(), true);
2289 
2290   LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2291                     << '\n');
2292 }
2293 
2294 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2295   ExecutedResCounts[PIdx] += Count;
2296   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2297     MaxExecutedResCount = ExecutedResCounts[PIdx];
2298 }
2299 
2300 /// Add the given processor resource to this scheduled zone.
2301 ///
2302 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2303 /// during which this resource is consumed.
2304 ///
2305 /// \return the next cycle at which the instruction may execute without
2306 /// oversubscribing resources.
2307 unsigned SchedBoundary::
2308 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2309   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2310   unsigned Count = Factor * Cycles;
2311   LLVM_DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) << " +"
2312                     << Cycles << "x" << Factor << "u\n");
2313 
2314   // Update Executed resources counts.
2315   incExecutedResources(PIdx, Count);
2316   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2317   Rem->RemainingCounts[PIdx] -= Count;
2318 
2319   // Check if this resource exceeds the current critical resource. If so, it
2320   // becomes the critical resource.
2321   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2322     ZoneCritResIdx = PIdx;
2323     LLVM_DEBUG(dbgs() << "  *** Critical resource "
2324                       << SchedModel->getResourceName(PIdx) << ": "
2325                       << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2326                       << "c\n");
2327   }
2328   // For reserved resources, record the highest cycle using the resource.
2329   unsigned NextAvailable, InstanceIdx;
2330   std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(PIdx, Cycles);
2331   if (NextAvailable > CurrCycle) {
2332     LLVM_DEBUG(dbgs() << "  Resource conflict: "
2333                       << SchedModel->getResourceName(PIdx)
2334                       << '[' << InstanceIdx - ReservedCyclesIndex[PIdx]  << ']'
2335                       << " reserved until @" << NextAvailable << "\n");
2336   }
2337   return NextAvailable;
2338 }
2339 
2340 /// Move the boundary of scheduled code by one SUnit.
2341 void SchedBoundary::bumpNode(SUnit *SU) {
2342   // Update the reservation table.
2343   if (HazardRec->isEnabled()) {
2344     if (!isTop() && SU->isCall) {
2345       // Calls are scheduled with their preceding instructions. For bottom-up
2346       // scheduling, clear the pipeline state before emitting.
2347       HazardRec->Reset();
2348     }
2349     HazardRec->EmitInstruction(SU);
2350     // Scheduling an instruction may have made pending instructions available.
2351     CheckPending = true;
2352   }
2353   // checkHazard should prevent scheduling multiple instructions per cycle that
2354   // exceed the issue width.
2355   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2356   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2357   assert(
2358       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2359       "Cannot schedule this instruction's MicroOps in the current cycle.");
2360 
2361   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2362   LLVM_DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2363 
2364   unsigned NextCycle = CurrCycle;
2365   switch (SchedModel->getMicroOpBufferSize()) {
2366   case 0:
2367     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2368     break;
2369   case 1:
2370     if (ReadyCycle > NextCycle) {
2371       NextCycle = ReadyCycle;
2372       LLVM_DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2373     }
2374     break;
2375   default:
2376     // We don't currently model the OOO reorder buffer, so consider all
2377     // scheduled MOps to be "retired". We do loosely model in-order resource
2378     // latency. If this instruction uses an in-order resource, account for any
2379     // likely stall cycles.
2380     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2381       NextCycle = ReadyCycle;
2382     break;
2383   }
2384   RetiredMOps += IncMOps;
2385 
2386   // Update resource counts and critical resource.
2387   if (SchedModel->hasInstrSchedModel()) {
2388     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2389     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2390     Rem->RemIssueCount -= DecRemIssue;
2391     if (ZoneCritResIdx) {
2392       // Scale scheduled micro-ops for comparing with the critical resource.
2393       unsigned ScaledMOps =
2394         RetiredMOps * SchedModel->getMicroOpFactor();
2395 
2396       // If scaled micro-ops are now more than the previous critical resource by
2397       // a full cycle, then micro-ops issue becomes critical.
2398       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2399           >= (int)SchedModel->getLatencyFactor()) {
2400         ZoneCritResIdx = 0;
2401         LLVM_DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2402                           << ScaledMOps / SchedModel->getLatencyFactor()
2403                           << "c\n");
2404       }
2405     }
2406     for (TargetSchedModel::ProcResIter
2407            PI = SchedModel->getWriteProcResBegin(SC),
2408            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2409       unsigned RCycle =
2410         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2411       if (RCycle > NextCycle)
2412         NextCycle = RCycle;
2413     }
2414     if (SU->hasReservedResource) {
2415       // For reserved resources, record the highest cycle using the resource.
2416       // For top-down scheduling, this is the cycle in which we schedule this
2417       // instruction plus the number of cycles the operations reserves the
2418       // resource. For bottom-up is it simply the instruction's cycle.
2419       for (TargetSchedModel::ProcResIter
2420              PI = SchedModel->getWriteProcResBegin(SC),
2421              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2422         unsigned PIdx = PI->ProcResourceIdx;
2423         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2424           unsigned ReservedUntil, InstanceIdx;
2425           std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(PIdx, 0);
2426           if (isTop()) {
2427             ReservedCycles[InstanceIdx] =
2428                 std::max(ReservedUntil, NextCycle + PI->Cycles);
2429           } else
2430             ReservedCycles[InstanceIdx] = NextCycle;
2431         }
2432       }
2433     }
2434   }
2435   // Update ExpectedLatency and DependentLatency.
2436   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2437   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2438   if (SU->getDepth() > TopLatency) {
2439     TopLatency = SU->getDepth();
2440     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " TopLatency SU("
2441                       << SU->NodeNum << ") " << TopLatency << "c\n");
2442   }
2443   if (SU->getHeight() > BotLatency) {
2444     BotLatency = SU->getHeight();
2445     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " BotLatency SU("
2446                       << SU->NodeNum << ") " << BotLatency << "c\n");
2447   }
2448   // If we stall for any reason, bump the cycle.
2449   if (NextCycle > CurrCycle)
2450     bumpCycle(NextCycle);
2451   else
2452     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2453     // resource limited. If a stall occurred, bumpCycle does this.
2454     IsResourceLimited =
2455         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2456                            getScheduledLatency(), true);
2457 
2458   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2459   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2460   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2461   // bump the cycle to avoid uselessly checking everything in the readyQ.
2462   CurrMOps += IncMOps;
2463 
2464   // Bump the cycle count for issue group constraints.
2465   // This must be done after NextCycle has been adjust for all other stalls.
2466   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2467   // currCycle to X.
2468   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2469       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2470     LLVM_DEBUG(dbgs() << "  Bump cycle to " << (isTop() ? "end" : "begin")
2471                       << " group\n");
2472     bumpCycle(++NextCycle);
2473   }
2474 
2475   while (CurrMOps >= SchedModel->getIssueWidth()) {
2476     LLVM_DEBUG(dbgs() << "  *** Max MOps " << CurrMOps << " at cycle "
2477                       << CurrCycle << '\n');
2478     bumpCycle(++NextCycle);
2479   }
2480   LLVM_DEBUG(dumpScheduledState());
2481 }
2482 
2483 /// Release pending ready nodes in to the available queue. This makes them
2484 /// visible to heuristics.
2485 void SchedBoundary::releasePending() {
2486   // If the available queue is empty, it is safe to reset MinReadyCycle.
2487   if (Available.empty())
2488     MinReadyCycle = std::numeric_limits<unsigned>::max();
2489 
2490   // Check to see if any of the pending instructions are ready to issue.  If
2491   // so, add them to the available queue.
2492   for (unsigned I = 0, E = Pending.size(); I < E; ++I) {
2493     SUnit *SU = *(Pending.begin() + I);
2494     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2495 
2496     if (ReadyCycle < MinReadyCycle)
2497       MinReadyCycle = ReadyCycle;
2498 
2499     if (Available.size() >= ReadyListLimit)
2500       break;
2501 
2502     releaseNode(SU, ReadyCycle, true, I);
2503     if (E != Pending.size()) {
2504       --I;
2505       --E;
2506     }
2507   }
2508   CheckPending = false;
2509 }
2510 
2511 /// Remove SU from the ready set for this boundary.
2512 void SchedBoundary::removeReady(SUnit *SU) {
2513   if (Available.isInQueue(SU))
2514     Available.remove(Available.find(SU));
2515   else {
2516     assert(Pending.isInQueue(SU) && "bad ready count");
2517     Pending.remove(Pending.find(SU));
2518   }
2519 }
2520 
2521 /// If this queue only has one ready candidate, return it. As a side effect,
2522 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2523 /// one node is ready. If multiple instructions are ready, return NULL.
2524 SUnit *SchedBoundary::pickOnlyChoice() {
2525   if (CheckPending)
2526     releasePending();
2527 
2528   // Defer any ready instrs that now have a hazard.
2529   for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2530     if (checkHazard(*I)) {
2531       Pending.push(*I);
2532       I = Available.remove(I);
2533       continue;
2534     }
2535     ++I;
2536   }
2537   for (unsigned i = 0; Available.empty(); ++i) {
2538 //  FIXME: Re-enable assert once PR20057 is resolved.
2539 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2540 //           "permanent hazard");
2541     (void)i;
2542     bumpCycle(CurrCycle + 1);
2543     releasePending();
2544   }
2545 
2546   LLVM_DEBUG(Pending.dump());
2547   LLVM_DEBUG(Available.dump());
2548 
2549   if (Available.size() == 1)
2550     return *Available.begin();
2551   return nullptr;
2552 }
2553 
2554 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2555 // This is useful information to dump after bumpNode.
2556 // Note that the Queue contents are more useful before pickNodeFromQueue.
2557 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2558   unsigned ResFactor;
2559   unsigned ResCount;
2560   if (ZoneCritResIdx) {
2561     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2562     ResCount = getResourceCount(ZoneCritResIdx);
2563   } else {
2564     ResFactor = SchedModel->getMicroOpFactor();
2565     ResCount = RetiredMOps * ResFactor;
2566   }
2567   unsigned LFactor = SchedModel->getLatencyFactor();
2568   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2569          << "  Retired: " << RetiredMOps;
2570   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2571   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2572          << ResCount / ResFactor << " "
2573          << SchedModel->getResourceName(ZoneCritResIdx)
2574          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2575          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2576          << " limited.\n";
2577 }
2578 #endif
2579 
2580 //===----------------------------------------------------------------------===//
2581 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2582 //===----------------------------------------------------------------------===//
2583 
2584 void GenericSchedulerBase::SchedCandidate::
2585 initResourceDelta(const ScheduleDAGMI *DAG,
2586                   const TargetSchedModel *SchedModel) {
2587   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2588     return;
2589 
2590   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2591   for (TargetSchedModel::ProcResIter
2592          PI = SchedModel->getWriteProcResBegin(SC),
2593          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2594     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2595       ResDelta.CritResources += PI->Cycles;
2596     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2597       ResDelta.DemandedResources += PI->Cycles;
2598   }
2599 }
2600 
2601 /// Compute remaining latency. We need this both to determine whether the
2602 /// overall schedule has become latency-limited and whether the instructions
2603 /// outside this zone are resource or latency limited.
2604 ///
2605 /// The "dependent" latency is updated incrementally during scheduling as the
2606 /// max height/depth of scheduled nodes minus the cycles since it was
2607 /// scheduled:
2608 ///   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2609 ///
2610 /// The "independent" latency is the max ready queue depth:
2611 ///   ILat = max N.depth for N in Available|Pending
2612 ///
2613 /// RemainingLatency is the greater of independent and dependent latency.
2614 ///
2615 /// These computations are expensive, especially in DAGs with many edges, so
2616 /// only do them if necessary.
2617 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2618   unsigned RemLatency = CurrZone.getDependentLatency();
2619   RemLatency = std::max(RemLatency,
2620                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2621   RemLatency = std::max(RemLatency,
2622                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2623   return RemLatency;
2624 }
2625 
2626 /// Returns true if the current cycle plus remaning latency is greater than
2627 /// the critical path in the scheduling region.
2628 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2629                                                SchedBoundary &CurrZone,
2630                                                bool ComputeRemLatency,
2631                                                unsigned &RemLatency) const {
2632   // The current cycle is already greater than the critical path, so we are
2633   // already latency limited and don't need to compute the remaining latency.
2634   if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2635     return true;
2636 
2637   // If we haven't scheduled anything yet, then we aren't latency limited.
2638   if (CurrZone.getCurrCycle() == 0)
2639     return false;
2640 
2641   if (ComputeRemLatency)
2642     RemLatency = computeRemLatency(CurrZone);
2643 
2644   return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2645 }
2646 
2647 /// Set the CandPolicy given a scheduling zone given the current resources and
2648 /// latencies inside and outside the zone.
2649 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2650                                      SchedBoundary &CurrZone,
2651                                      SchedBoundary *OtherZone) {
2652   // Apply preemptive heuristics based on the total latency and resources
2653   // inside and outside this zone. Potential stalls should be considered before
2654   // following this policy.
2655 
2656   // Compute the critical resource outside the zone.
2657   unsigned OtherCritIdx = 0;
2658   unsigned OtherCount =
2659     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2660 
2661   bool OtherResLimited = false;
2662   unsigned RemLatency = 0;
2663   bool RemLatencyComputed = false;
2664   if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
2665     RemLatency = computeRemLatency(CurrZone);
2666     RemLatencyComputed = true;
2667     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2668                                          OtherCount, RemLatency, false);
2669   }
2670 
2671   // Schedule aggressively for latency in PostRA mode. We don't check for
2672   // acyclic latency during PostRA, and highly out-of-order processors will
2673   // skip PostRA scheduling.
2674   if (!OtherResLimited &&
2675       (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
2676                                        RemLatency))) {
2677     Policy.ReduceLatency |= true;
2678     LLVM_DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2679                       << " RemainingLatency " << RemLatency << " + "
2680                       << CurrZone.getCurrCycle() << "c > CritPath "
2681                       << Rem.CriticalPath << "\n");
2682   }
2683   // If the same resource is limiting inside and outside the zone, do nothing.
2684   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2685     return;
2686 
2687   LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
2688     dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2689            << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
2690   } if (OtherResLimited) dbgs()
2691                  << "  RemainingLimit: "
2692                  << SchedModel->getResourceName(OtherCritIdx) << "\n";
2693              if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
2694              << "  Latency limited both directions.\n");
2695 
2696   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2697     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2698 
2699   if (OtherResLimited)
2700     Policy.DemandResIdx = OtherCritIdx;
2701 }
2702 
2703 #ifndef NDEBUG
2704 const char *GenericSchedulerBase::getReasonStr(
2705   GenericSchedulerBase::CandReason Reason) {
2706   switch (Reason) {
2707   case NoCand:         return "NOCAND    ";
2708   case Only1:          return "ONLY1     ";
2709   case PhysReg:        return "PHYS-REG  ";
2710   case RegExcess:      return "REG-EXCESS";
2711   case RegCritical:    return "REG-CRIT  ";
2712   case Stall:          return "STALL     ";
2713   case Cluster:        return "CLUSTER   ";
2714   case Weak:           return "WEAK      ";
2715   case RegMax:         return "REG-MAX   ";
2716   case ResourceReduce: return "RES-REDUCE";
2717   case ResourceDemand: return "RES-DEMAND";
2718   case TopDepthReduce: return "TOP-DEPTH ";
2719   case TopPathReduce:  return "TOP-PATH  ";
2720   case BotHeightReduce:return "BOT-HEIGHT";
2721   case BotPathReduce:  return "BOT-PATH  ";
2722   case NextDefUse:     return "DEF-USE   ";
2723   case NodeOrder:      return "ORDER     ";
2724   };
2725   llvm_unreachable("Unknown reason!");
2726 }
2727 
2728 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2729   PressureChange P;
2730   unsigned ResIdx = 0;
2731   unsigned Latency = 0;
2732   switch (Cand.Reason) {
2733   default:
2734     break;
2735   case RegExcess:
2736     P = Cand.RPDelta.Excess;
2737     break;
2738   case RegCritical:
2739     P = Cand.RPDelta.CriticalMax;
2740     break;
2741   case RegMax:
2742     P = Cand.RPDelta.CurrentMax;
2743     break;
2744   case ResourceReduce:
2745     ResIdx = Cand.Policy.ReduceResIdx;
2746     break;
2747   case ResourceDemand:
2748     ResIdx = Cand.Policy.DemandResIdx;
2749     break;
2750   case TopDepthReduce:
2751     Latency = Cand.SU->getDepth();
2752     break;
2753   case TopPathReduce:
2754     Latency = Cand.SU->getHeight();
2755     break;
2756   case BotHeightReduce:
2757     Latency = Cand.SU->getHeight();
2758     break;
2759   case BotPathReduce:
2760     Latency = Cand.SU->getDepth();
2761     break;
2762   }
2763   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2764   if (P.isValid())
2765     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2766            << ":" << P.getUnitInc() << " ";
2767   else
2768     dbgs() << "      ";
2769   if (ResIdx)
2770     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2771   else
2772     dbgs() << "         ";
2773   if (Latency)
2774     dbgs() << " " << Latency << " cycles ";
2775   else
2776     dbgs() << "          ";
2777   dbgs() << '\n';
2778 }
2779 #endif
2780 
2781 namespace llvm {
2782 /// Return true if this heuristic determines order.
2783 bool tryLess(int TryVal, int CandVal,
2784              GenericSchedulerBase::SchedCandidate &TryCand,
2785              GenericSchedulerBase::SchedCandidate &Cand,
2786              GenericSchedulerBase::CandReason Reason) {
2787   if (TryVal < CandVal) {
2788     TryCand.Reason = Reason;
2789     return true;
2790   }
2791   if (TryVal > CandVal) {
2792     if (Cand.Reason > Reason)
2793       Cand.Reason = Reason;
2794     return true;
2795   }
2796   return false;
2797 }
2798 
2799 bool tryGreater(int TryVal, int CandVal,
2800                 GenericSchedulerBase::SchedCandidate &TryCand,
2801                 GenericSchedulerBase::SchedCandidate &Cand,
2802                 GenericSchedulerBase::CandReason Reason) {
2803   if (TryVal > CandVal) {
2804     TryCand.Reason = Reason;
2805     return true;
2806   }
2807   if (TryVal < CandVal) {
2808     if (Cand.Reason > Reason)
2809       Cand.Reason = Reason;
2810     return true;
2811   }
2812   return false;
2813 }
2814 
2815 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2816                 GenericSchedulerBase::SchedCandidate &Cand,
2817                 SchedBoundary &Zone) {
2818   if (Zone.isTop()) {
2819     // Prefer the candidate with the lesser depth, but only if one of them has
2820     // depth greater than the total latency scheduled so far, otherwise either
2821     // of them could be scheduled now with no stall.
2822     if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) >
2823         Zone.getScheduledLatency()) {
2824       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2825                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2826         return true;
2827     }
2828     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2829                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2830       return true;
2831   } else {
2832     // Prefer the candidate with the lesser height, but only if one of them has
2833     // height greater than the total latency scheduled so far, otherwise either
2834     // of them could be scheduled now with no stall.
2835     if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) >
2836         Zone.getScheduledLatency()) {
2837       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2838                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2839         return true;
2840     }
2841     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2842                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2843       return true;
2844   }
2845   return false;
2846 }
2847 } // end namespace llvm
2848 
2849 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2850   LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2851                     << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2852 }
2853 
2854 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2855   tracePick(Cand.Reason, Cand.AtTop);
2856 }
2857 
2858 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2859   assert(dag->hasVRegLiveness() &&
2860          "(PreRA)GenericScheduler needs vreg liveness");
2861   DAG = static_cast<ScheduleDAGMILive*>(dag);
2862   SchedModel = DAG->getSchedModel();
2863   TRI = DAG->TRI;
2864 
2865   if (RegionPolicy.ComputeDFSResult)
2866     DAG->computeDFSResult();
2867 
2868   Rem.init(DAG, SchedModel);
2869   Top.init(DAG, SchedModel, &Rem);
2870   Bot.init(DAG, SchedModel, &Rem);
2871 
2872   // Initialize resource counts.
2873 
2874   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2875   // are disabled, then these HazardRecs will be disabled.
2876   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2877   if (!Top.HazardRec) {
2878     Top.HazardRec =
2879         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2880             Itin, DAG);
2881   }
2882   if (!Bot.HazardRec) {
2883     Bot.HazardRec =
2884         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2885             Itin, DAG);
2886   }
2887   TopCand.SU = nullptr;
2888   BotCand.SU = nullptr;
2889 }
2890 
2891 /// Initialize the per-region scheduling policy.
2892 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2893                                   MachineBasicBlock::iterator End,
2894                                   unsigned NumRegionInstrs) {
2895   const MachineFunction &MF = *Begin->getMF();
2896   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2897 
2898   // Avoid setting up the register pressure tracker for small regions to save
2899   // compile time. As a rough heuristic, only track pressure when the number of
2900   // schedulable instructions exceeds half the integer register file.
2901   RegionPolicy.ShouldTrackPressure = true;
2902   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2903     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2904     if (TLI->isTypeLegal(LegalIntVT)) {
2905       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2906         TLI->getRegClassFor(LegalIntVT));
2907       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2908     }
2909   }
2910 
2911   // For generic targets, we default to bottom-up, because it's simpler and more
2912   // compile-time optimizations have been implemented in that direction.
2913   RegionPolicy.OnlyBottomUp = true;
2914 
2915   // Allow the subtarget to override default policy.
2916   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2917 
2918   // After subtarget overrides, apply command line options.
2919   if (!EnableRegPressure) {
2920     RegionPolicy.ShouldTrackPressure = false;
2921     RegionPolicy.ShouldTrackLaneMasks = false;
2922   }
2923 
2924   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2925   // e.g. -misched-bottomup=false allows scheduling in both directions.
2926   assert((!ForceTopDown || !ForceBottomUp) &&
2927          "-misched-topdown incompatible with -misched-bottomup");
2928   if (ForceBottomUp.getNumOccurrences() > 0) {
2929     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2930     if (RegionPolicy.OnlyBottomUp)
2931       RegionPolicy.OnlyTopDown = false;
2932   }
2933   if (ForceTopDown.getNumOccurrences() > 0) {
2934     RegionPolicy.OnlyTopDown = ForceTopDown;
2935     if (RegionPolicy.OnlyTopDown)
2936       RegionPolicy.OnlyBottomUp = false;
2937   }
2938 }
2939 
2940 void GenericScheduler::dumpPolicy() const {
2941   // Cannot completely remove virtual function even in release mode.
2942 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2943   dbgs() << "GenericScheduler RegionPolicy: "
2944          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2945          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2946          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2947          << "\n";
2948 #endif
2949 }
2950 
2951 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2952 /// critical path by more cycles than it takes to drain the instruction buffer.
2953 /// We estimate an upper bounds on in-flight instructions as:
2954 ///
2955 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2956 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2957 /// InFlightResources = InFlightIterations * LoopResources
2958 ///
2959 /// TODO: Check execution resources in addition to IssueCount.
2960 void GenericScheduler::checkAcyclicLatency() {
2961   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2962     return;
2963 
2964   // Scaled number of cycles per loop iteration.
2965   unsigned IterCount =
2966     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2967              Rem.RemIssueCount);
2968   // Scaled acyclic critical path.
2969   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2970   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2971   unsigned InFlightCount =
2972     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2973   unsigned BufferLimit =
2974     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2975 
2976   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2977 
2978   LLVM_DEBUG(
2979       dbgs() << "IssueCycles="
2980              << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2981              << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2982              << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
2983              << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2984              << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2985       if (Rem.IsAcyclicLatencyLimited) dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2986 }
2987 
2988 void GenericScheduler::registerRoots() {
2989   Rem.CriticalPath = DAG->ExitSU.getDepth();
2990 
2991   // Some roots may not feed into ExitSU. Check all of them in case.
2992   for (const SUnit *SU : Bot.Available) {
2993     if (SU->getDepth() > Rem.CriticalPath)
2994       Rem.CriticalPath = SU->getDepth();
2995   }
2996   LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2997   if (DumpCriticalPathLength) {
2998     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2999   }
3000 
3001   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
3002     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
3003     checkAcyclicLatency();
3004   }
3005 }
3006 
3007 namespace llvm {
3008 bool tryPressure(const PressureChange &TryP,
3009                  const PressureChange &CandP,
3010                  GenericSchedulerBase::SchedCandidate &TryCand,
3011                  GenericSchedulerBase::SchedCandidate &Cand,
3012                  GenericSchedulerBase::CandReason Reason,
3013                  const TargetRegisterInfo *TRI,
3014                  const MachineFunction &MF) {
3015   // If one candidate decreases and the other increases, go with it.
3016   // Invalid candidates have UnitInc==0.
3017   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
3018                  Reason)) {
3019     return true;
3020   }
3021   // Do not compare the magnitude of pressure changes between top and bottom
3022   // boundary.
3023   if (Cand.AtTop != TryCand.AtTop)
3024     return false;
3025 
3026   // If both candidates affect the same set in the same boundary, go with the
3027   // smallest increase.
3028   unsigned TryPSet = TryP.getPSetOrMax();
3029   unsigned CandPSet = CandP.getPSetOrMax();
3030   if (TryPSet == CandPSet) {
3031     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
3032                    Reason);
3033   }
3034 
3035   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
3036                                  std::numeric_limits<int>::max();
3037 
3038   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
3039                                    std::numeric_limits<int>::max();
3040 
3041   // If the candidates are decreasing pressure, reverse priority.
3042   if (TryP.getUnitInc() < 0)
3043     std::swap(TryRank, CandRank);
3044   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
3045 }
3046 
3047 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
3048   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
3049 }
3050 
3051 /// Minimize physical register live ranges. Regalloc wants them adjacent to
3052 /// their physreg def/use.
3053 ///
3054 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
3055 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
3056 /// with the operation that produces or consumes the physreg. We'll do this when
3057 /// regalloc has support for parallel copies.
3058 int biasPhysReg(const SUnit *SU, bool isTop) {
3059   const MachineInstr *MI = SU->getInstr();
3060 
3061   if (MI->isCopy()) {
3062     unsigned ScheduledOper = isTop ? 1 : 0;
3063     unsigned UnscheduledOper = isTop ? 0 : 1;
3064     // If we have already scheduled the physreg produce/consumer, immediately
3065     // schedule the copy.
3066     if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg()))
3067       return 1;
3068     // If the physreg is at the boundary, defer it. Otherwise schedule it
3069     // immediately to free the dependent. We can hoist the copy later.
3070     bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
3071     if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg()))
3072       return AtBoundary ? -1 : 1;
3073   }
3074 
3075   if (MI->isMoveImmediate()) {
3076     // If we have a move immediate and all successors have been assigned, bias
3077     // towards scheduling this later. Make sure all register defs are to
3078     // physical registers.
3079     bool DoBias = true;
3080     for (const MachineOperand &Op : MI->defs()) {
3081       if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) {
3082         DoBias = false;
3083         break;
3084       }
3085     }
3086 
3087     if (DoBias)
3088       return isTop ? -1 : 1;
3089   }
3090 
3091   return 0;
3092 }
3093 } // end namespace llvm
3094 
3095 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
3096                                      bool AtTop,
3097                                      const RegPressureTracker &RPTracker,
3098                                      RegPressureTracker &TempTracker) {
3099   Cand.SU = SU;
3100   Cand.AtTop = AtTop;
3101   if (DAG->isTrackingPressure()) {
3102     if (AtTop) {
3103       TempTracker.getMaxDownwardPressureDelta(
3104         Cand.SU->getInstr(),
3105         Cand.RPDelta,
3106         DAG->getRegionCriticalPSets(),
3107         DAG->getRegPressure().MaxSetPressure);
3108     } else {
3109       if (VerifyScheduling) {
3110         TempTracker.getMaxUpwardPressureDelta(
3111           Cand.SU->getInstr(),
3112           &DAG->getPressureDiff(Cand.SU),
3113           Cand.RPDelta,
3114           DAG->getRegionCriticalPSets(),
3115           DAG->getRegPressure().MaxSetPressure);
3116       } else {
3117         RPTracker.getUpwardPressureDelta(
3118           Cand.SU->getInstr(),
3119           DAG->getPressureDiff(Cand.SU),
3120           Cand.RPDelta,
3121           DAG->getRegionCriticalPSets(),
3122           DAG->getRegPressure().MaxSetPressure);
3123       }
3124     }
3125   }
3126   LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
3127              << "  Try  SU(" << Cand.SU->NodeNum << ") "
3128              << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
3129              << Cand.RPDelta.Excess.getUnitInc() << "\n");
3130 }
3131 
3132 /// Apply a set of heuristics to a new candidate. Heuristics are currently
3133 /// hierarchical. This may be more efficient than a graduated cost model because
3134 /// we don't need to evaluate all aspects of the model for each node in the
3135 /// queue. But it's really done to make the heuristics easier to debug and
3136 /// statistically analyze.
3137 ///
3138 /// \param Cand provides the policy and current best candidate.
3139 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3140 /// \param Zone describes the scheduled zone that we are extending, or nullptr
3141 //              if Cand is from a different zone than TryCand.
3142 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
3143                                     SchedCandidate &TryCand,
3144                                     SchedBoundary *Zone) const {
3145   // Initialize the candidate if needed.
3146   if (!Cand.isValid()) {
3147     TryCand.Reason = NodeOrder;
3148     return;
3149   }
3150 
3151   // Bias PhysReg Defs and copies to their uses and defined respectively.
3152   if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
3153                  biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
3154     return;
3155 
3156   // Avoid exceeding the target's limit.
3157   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
3158                                                Cand.RPDelta.Excess,
3159                                                TryCand, Cand, RegExcess, TRI,
3160                                                DAG->MF))
3161     return;
3162 
3163   // Avoid increasing the max critical pressure in the scheduled region.
3164   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
3165                                                Cand.RPDelta.CriticalMax,
3166                                                TryCand, Cand, RegCritical, TRI,
3167                                                DAG->MF))
3168     return;
3169 
3170   // We only compare a subset of features when comparing nodes between
3171   // Top and Bottom boundary. Some properties are simply incomparable, in many
3172   // other instances we should only override the other boundary if something
3173   // is a clear good pick on one boundary. Skip heuristics that are more
3174   // "tie-breaking" in nature.
3175   bool SameBoundary = Zone != nullptr;
3176   if (SameBoundary) {
3177     // For loops that are acyclic path limited, aggressively schedule for
3178     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
3179     // heuristics to take precedence.
3180     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
3181         tryLatency(TryCand, Cand, *Zone))
3182       return;
3183 
3184     // Prioritize instructions that read unbuffered resources by stall cycles.
3185     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
3186                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3187       return;
3188   }
3189 
3190   // Keep clustered nodes together to encourage downstream peephole
3191   // optimizations which may reduce resource requirements.
3192   //
3193   // This is a best effort to set things up for a post-RA pass. Optimizations
3194   // like generating loads of multiple registers should ideally be done within
3195   // the scheduler pass by combining the loads during DAG postprocessing.
3196   const SUnit *CandNextClusterSU =
3197     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3198   const SUnit *TryCandNextClusterSU =
3199     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3200   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3201                  Cand.SU == CandNextClusterSU,
3202                  TryCand, Cand, Cluster))
3203     return;
3204 
3205   if (SameBoundary) {
3206     // Weak edges are for clustering and other constraints.
3207     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3208                 getWeakLeft(Cand.SU, Cand.AtTop),
3209                 TryCand, Cand, Weak))
3210       return;
3211   }
3212 
3213   // Avoid increasing the max pressure of the entire region.
3214   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3215                                                Cand.RPDelta.CurrentMax,
3216                                                TryCand, Cand, RegMax, TRI,
3217                                                DAG->MF))
3218     return;
3219 
3220   if (SameBoundary) {
3221     // Avoid critical resource consumption and balance the schedule.
3222     TryCand.initResourceDelta(DAG, SchedModel);
3223     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3224                 TryCand, Cand, ResourceReduce))
3225       return;
3226     if (tryGreater(TryCand.ResDelta.DemandedResources,
3227                    Cand.ResDelta.DemandedResources,
3228                    TryCand, Cand, ResourceDemand))
3229       return;
3230 
3231     // Avoid serializing long latency dependence chains.
3232     // For acyclic path limited loops, latency was already checked above.
3233     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3234         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3235       return;
3236 
3237     // Fall through to original instruction order.
3238     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3239         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3240       TryCand.Reason = NodeOrder;
3241     }
3242   }
3243 }
3244 
3245 /// Pick the best candidate from the queue.
3246 ///
3247 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3248 /// DAG building. To adjust for the current scheduling location we need to
3249 /// maintain the number of vreg uses remaining to be top-scheduled.
3250 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3251                                          const CandPolicy &ZonePolicy,
3252                                          const RegPressureTracker &RPTracker,
3253                                          SchedCandidate &Cand) {
3254   // getMaxPressureDelta temporarily modifies the tracker.
3255   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3256 
3257   ReadyQueue &Q = Zone.Available;
3258   for (SUnit *SU : Q) {
3259 
3260     SchedCandidate TryCand(ZonePolicy);
3261     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3262     // Pass SchedBoundary only when comparing nodes from the same boundary.
3263     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3264     tryCandidate(Cand, TryCand, ZoneArg);
3265     if (TryCand.Reason != NoCand) {
3266       // Initialize resource delta if needed in case future heuristics query it.
3267       if (TryCand.ResDelta == SchedResourceDelta())
3268         TryCand.initResourceDelta(DAG, SchedModel);
3269       Cand.setBest(TryCand);
3270       LLVM_DEBUG(traceCandidate(Cand));
3271     }
3272   }
3273 }
3274 
3275 /// Pick the best candidate node from either the top or bottom queue.
3276 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3277   // Schedule as far as possible in the direction of no choice. This is most
3278   // efficient, but also provides the best heuristics for CriticalPSets.
3279   if (SUnit *SU = Bot.pickOnlyChoice()) {
3280     IsTopNode = false;
3281     tracePick(Only1, false);
3282     return SU;
3283   }
3284   if (SUnit *SU = Top.pickOnlyChoice()) {
3285     IsTopNode = true;
3286     tracePick(Only1, true);
3287     return SU;
3288   }
3289   // Set the bottom-up policy based on the state of the current bottom zone and
3290   // the instructions outside the zone, including the top zone.
3291   CandPolicy BotPolicy;
3292   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3293   // Set the top-down policy based on the state of the current top zone and
3294   // the instructions outside the zone, including the bottom zone.
3295   CandPolicy TopPolicy;
3296   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3297 
3298   // See if BotCand is still valid (because we previously scheduled from Top).
3299   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3300   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3301       BotCand.Policy != BotPolicy) {
3302     BotCand.reset(CandPolicy());
3303     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3304     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3305   } else {
3306     LLVM_DEBUG(traceCandidate(BotCand));
3307 #ifndef NDEBUG
3308     if (VerifyScheduling) {
3309       SchedCandidate TCand;
3310       TCand.reset(CandPolicy());
3311       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3312       assert(TCand.SU == BotCand.SU &&
3313              "Last pick result should correspond to re-picking right now");
3314     }
3315 #endif
3316   }
3317 
3318   // Check if the top Q has a better candidate.
3319   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3320   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3321       TopCand.Policy != TopPolicy) {
3322     TopCand.reset(CandPolicy());
3323     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3324     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3325   } else {
3326     LLVM_DEBUG(traceCandidate(TopCand));
3327 #ifndef NDEBUG
3328     if (VerifyScheduling) {
3329       SchedCandidate TCand;
3330       TCand.reset(CandPolicy());
3331       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3332       assert(TCand.SU == TopCand.SU &&
3333            "Last pick result should correspond to re-picking right now");
3334     }
3335 #endif
3336   }
3337 
3338   // Pick best from BotCand and TopCand.
3339   assert(BotCand.isValid());
3340   assert(TopCand.isValid());
3341   SchedCandidate Cand = BotCand;
3342   TopCand.Reason = NoCand;
3343   tryCandidate(Cand, TopCand, nullptr);
3344   if (TopCand.Reason != NoCand) {
3345     Cand.setBest(TopCand);
3346     LLVM_DEBUG(traceCandidate(Cand));
3347   }
3348 
3349   IsTopNode = Cand.AtTop;
3350   tracePick(Cand);
3351   return Cand.SU;
3352 }
3353 
3354 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3355 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3356   if (DAG->top() == DAG->bottom()) {
3357     assert(Top.Available.empty() && Top.Pending.empty() &&
3358            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3359     return nullptr;
3360   }
3361   SUnit *SU;
3362   do {
3363     if (RegionPolicy.OnlyTopDown) {
3364       SU = Top.pickOnlyChoice();
3365       if (!SU) {
3366         CandPolicy NoPolicy;
3367         TopCand.reset(NoPolicy);
3368         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3369         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3370         tracePick(TopCand);
3371         SU = TopCand.SU;
3372       }
3373       IsTopNode = true;
3374     } else if (RegionPolicy.OnlyBottomUp) {
3375       SU = Bot.pickOnlyChoice();
3376       if (!SU) {
3377         CandPolicy NoPolicy;
3378         BotCand.reset(NoPolicy);
3379         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3380         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3381         tracePick(BotCand);
3382         SU = BotCand.SU;
3383       }
3384       IsTopNode = false;
3385     } else {
3386       SU = pickNodeBidirectional(IsTopNode);
3387     }
3388   } while (SU->isScheduled);
3389 
3390   if (SU->isTopReady())
3391     Top.removeReady(SU);
3392   if (SU->isBottomReady())
3393     Bot.removeReady(SU);
3394 
3395   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3396                     << *SU->getInstr());
3397   return SU;
3398 }
3399 
3400 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3401   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3402   if (!isTop)
3403     ++InsertPos;
3404   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3405 
3406   // Find already scheduled copies with a single physreg dependence and move
3407   // them just above the scheduled instruction.
3408   for (SDep &Dep : Deps) {
3409     if (Dep.getKind() != SDep::Data ||
3410         !Register::isPhysicalRegister(Dep.getReg()))
3411       continue;
3412     SUnit *DepSU = Dep.getSUnit();
3413     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3414       continue;
3415     MachineInstr *Copy = DepSU->getInstr();
3416     if (!Copy->isCopy() && !Copy->isMoveImmediate())
3417       continue;
3418     LLVM_DEBUG(dbgs() << "  Rescheduling physreg copy ";
3419                DAG->dumpNode(*Dep.getSUnit()));
3420     DAG->moveInstruction(Copy, InsertPos);
3421   }
3422 }
3423 
3424 /// Update the scheduler's state after scheduling a node. This is the same node
3425 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3426 /// update it's state based on the current cycle before MachineSchedStrategy
3427 /// does.
3428 ///
3429 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3430 /// them here. See comments in biasPhysReg.
3431 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3432   if (IsTopNode) {
3433     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3434     Top.bumpNode(SU);
3435     if (SU->hasPhysRegUses)
3436       reschedulePhysReg(SU, true);
3437   } else {
3438     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3439     Bot.bumpNode(SU);
3440     if (SU->hasPhysRegDefs)
3441       reschedulePhysReg(SU, false);
3442   }
3443 }
3444 
3445 /// Create the standard converging machine scheduler. This will be used as the
3446 /// default scheduler if the target does not set a default.
3447 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3448   ScheduleDAGMILive *DAG =
3449       new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C));
3450   // Register DAG post-processors.
3451   //
3452   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3453   // data and pass it to later mutations. Have a single mutation that gathers
3454   // the interesting nodes in one pass.
3455   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3456   return DAG;
3457 }
3458 
3459 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
3460   return createGenericSchedLive(C);
3461 }
3462 
3463 static MachineSchedRegistry
3464 GenericSchedRegistry("converge", "Standard converging scheduler.",
3465                      createConvergingSched);
3466 
3467 //===----------------------------------------------------------------------===//
3468 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3469 //===----------------------------------------------------------------------===//
3470 
3471 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3472   DAG = Dag;
3473   SchedModel = DAG->getSchedModel();
3474   TRI = DAG->TRI;
3475 
3476   Rem.init(DAG, SchedModel);
3477   Top.init(DAG, SchedModel, &Rem);
3478   BotRoots.clear();
3479 
3480   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3481   // or are disabled, then these HazardRecs will be disabled.
3482   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3483   if (!Top.HazardRec) {
3484     Top.HazardRec =
3485         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3486             Itin, DAG);
3487   }
3488 }
3489 
3490 void PostGenericScheduler::registerRoots() {
3491   Rem.CriticalPath = DAG->ExitSU.getDepth();
3492 
3493   // Some roots may not feed into ExitSU. Check all of them in case.
3494   for (const SUnit *SU : BotRoots) {
3495     if (SU->getDepth() > Rem.CriticalPath)
3496       Rem.CriticalPath = SU->getDepth();
3497   }
3498   LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3499   if (DumpCriticalPathLength) {
3500     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3501   }
3502 }
3503 
3504 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3505 ///
3506 /// \param Cand provides the policy and current best candidate.
3507 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3508 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3509                                         SchedCandidate &TryCand) {
3510   // Initialize the candidate if needed.
3511   if (!Cand.isValid()) {
3512     TryCand.Reason = NodeOrder;
3513     return;
3514   }
3515 
3516   // Prioritize instructions that read unbuffered resources by stall cycles.
3517   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3518               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3519     return;
3520 
3521   // Keep clustered nodes together.
3522   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3523                  Cand.SU == DAG->getNextClusterSucc(),
3524                  TryCand, Cand, Cluster))
3525     return;
3526 
3527   // Avoid critical resource consumption and balance the schedule.
3528   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3529               TryCand, Cand, ResourceReduce))
3530     return;
3531   if (tryGreater(TryCand.ResDelta.DemandedResources,
3532                  Cand.ResDelta.DemandedResources,
3533                  TryCand, Cand, ResourceDemand))
3534     return;
3535 
3536   // Avoid serializing long latency dependence chains.
3537   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3538     return;
3539   }
3540 
3541   // Fall through to original instruction order.
3542   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3543     TryCand.Reason = NodeOrder;
3544 }
3545 
3546 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3547   ReadyQueue &Q = Top.Available;
3548   for (SUnit *SU : Q) {
3549     SchedCandidate TryCand(Cand.Policy);
3550     TryCand.SU = SU;
3551     TryCand.AtTop = true;
3552     TryCand.initResourceDelta(DAG, SchedModel);
3553     tryCandidate(Cand, TryCand);
3554     if (TryCand.Reason != NoCand) {
3555       Cand.setBest(TryCand);
3556       LLVM_DEBUG(traceCandidate(Cand));
3557     }
3558   }
3559 }
3560 
3561 /// Pick the next node to schedule.
3562 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3563   if (DAG->top() == DAG->bottom()) {
3564     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3565     return nullptr;
3566   }
3567   SUnit *SU;
3568   do {
3569     SU = Top.pickOnlyChoice();
3570     if (SU) {
3571       tracePick(Only1, true);
3572     } else {
3573       CandPolicy NoPolicy;
3574       SchedCandidate TopCand(NoPolicy);
3575       // Set the top-down policy based on the state of the current top zone and
3576       // the instructions outside the zone, including the bottom zone.
3577       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3578       pickNodeFromQueue(TopCand);
3579       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3580       tracePick(TopCand);
3581       SU = TopCand.SU;
3582     }
3583   } while (SU->isScheduled);
3584 
3585   IsTopNode = true;
3586   Top.removeReady(SU);
3587 
3588   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3589                     << *SU->getInstr());
3590   return SU;
3591 }
3592 
3593 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3594 /// scheduled/remaining flags in the DAG nodes.
3595 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3596   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3597   Top.bumpNode(SU);
3598 }
3599 
3600 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3601   return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C),
3602                            /*RemoveKillFlags=*/true);
3603 }
3604 
3605 //===----------------------------------------------------------------------===//
3606 // ILP Scheduler. Currently for experimental analysis of heuristics.
3607 //===----------------------------------------------------------------------===//
3608 
3609 namespace {
3610 
3611 /// Order nodes by the ILP metric.
3612 struct ILPOrder {
3613   const SchedDFSResult *DFSResult = nullptr;
3614   const BitVector *ScheduledTrees = nullptr;
3615   bool MaximizeILP;
3616 
3617   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3618 
3619   /// Apply a less-than relation on node priority.
3620   ///
3621   /// (Return true if A comes after B in the Q.)
3622   bool operator()(const SUnit *A, const SUnit *B) const {
3623     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3624     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3625     if (SchedTreeA != SchedTreeB) {
3626       // Unscheduled trees have lower priority.
3627       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3628         return ScheduledTrees->test(SchedTreeB);
3629 
3630       // Trees with shallower connections have have lower priority.
3631       if (DFSResult->getSubtreeLevel(SchedTreeA)
3632           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3633         return DFSResult->getSubtreeLevel(SchedTreeA)
3634           < DFSResult->getSubtreeLevel(SchedTreeB);
3635       }
3636     }
3637     if (MaximizeILP)
3638       return DFSResult->getILP(A) < DFSResult->getILP(B);
3639     else
3640       return DFSResult->getILP(A) > DFSResult->getILP(B);
3641   }
3642 };
3643 
3644 /// Schedule based on the ILP metric.
3645 class ILPScheduler : public MachineSchedStrategy {
3646   ScheduleDAGMILive *DAG = nullptr;
3647   ILPOrder Cmp;
3648 
3649   std::vector<SUnit*> ReadyQ;
3650 
3651 public:
3652   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3653 
3654   void initialize(ScheduleDAGMI *dag) override {
3655     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3656     DAG = static_cast<ScheduleDAGMILive*>(dag);
3657     DAG->computeDFSResult();
3658     Cmp.DFSResult = DAG->getDFSResult();
3659     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3660     ReadyQ.clear();
3661   }
3662 
3663   void registerRoots() override {
3664     // Restore the heap in ReadyQ with the updated DFS results.
3665     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3666   }
3667 
3668   /// Implement MachineSchedStrategy interface.
3669   /// -----------------------------------------
3670 
3671   /// Callback to select the highest priority node from the ready Q.
3672   SUnit *pickNode(bool &IsTopNode) override {
3673     if (ReadyQ.empty()) return nullptr;
3674     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3675     SUnit *SU = ReadyQ.back();
3676     ReadyQ.pop_back();
3677     IsTopNode = false;
3678     LLVM_DEBUG(dbgs() << "Pick node "
3679                       << "SU(" << SU->NodeNum << ") "
3680                       << " ILP: " << DAG->getDFSResult()->getILP(SU)
3681                       << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
3682                       << " @"
3683                       << DAG->getDFSResult()->getSubtreeLevel(
3684                              DAG->getDFSResult()->getSubtreeID(SU))
3685                       << '\n'
3686                       << "Scheduling " << *SU->getInstr());
3687     return SU;
3688   }
3689 
3690   /// Scheduler callback to notify that a new subtree is scheduled.
3691   void scheduleTree(unsigned SubtreeID) override {
3692     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3693   }
3694 
3695   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3696   /// DFSResults, and resort the priority Q.
3697   void schedNode(SUnit *SU, bool IsTopNode) override {
3698     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3699   }
3700 
3701   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3702 
3703   void releaseBottomNode(SUnit *SU) override {
3704     ReadyQ.push_back(SU);
3705     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3706   }
3707 };
3708 
3709 } // end anonymous namespace
3710 
3711 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3712   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true));
3713 }
3714 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3715   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false));
3716 }
3717 
3718 static MachineSchedRegistry ILPMaxRegistry(
3719   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3720 static MachineSchedRegistry ILPMinRegistry(
3721   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3722 
3723 //===----------------------------------------------------------------------===//
3724 // Machine Instruction Shuffler for Correctness Testing
3725 //===----------------------------------------------------------------------===//
3726 
3727 #ifndef NDEBUG
3728 namespace {
3729 
3730 /// Apply a less-than relation on the node order, which corresponds to the
3731 /// instruction order prior to scheduling. IsReverse implements greater-than.
3732 template<bool IsReverse>
3733 struct SUnitOrder {
3734   bool operator()(SUnit *A, SUnit *B) const {
3735     if (IsReverse)
3736       return A->NodeNum > B->NodeNum;
3737     else
3738       return A->NodeNum < B->NodeNum;
3739   }
3740 };
3741 
3742 /// Reorder instructions as much as possible.
3743 class InstructionShuffler : public MachineSchedStrategy {
3744   bool IsAlternating;
3745   bool IsTopDown;
3746 
3747   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3748   // gives nodes with a higher number higher priority causing the latest
3749   // instructions to be scheduled first.
3750   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3751     TopQ;
3752 
3753   // When scheduling bottom-up, use greater-than as the queue priority.
3754   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3755     BottomQ;
3756 
3757 public:
3758   InstructionShuffler(bool alternate, bool topdown)
3759     : IsAlternating(alternate), IsTopDown(topdown) {}
3760 
3761   void initialize(ScheduleDAGMI*) override {
3762     TopQ.clear();
3763     BottomQ.clear();
3764   }
3765 
3766   /// Implement MachineSchedStrategy interface.
3767   /// -----------------------------------------
3768 
3769   SUnit *pickNode(bool &IsTopNode) override {
3770     SUnit *SU;
3771     if (IsTopDown) {
3772       do {
3773         if (TopQ.empty()) return nullptr;
3774         SU = TopQ.top();
3775         TopQ.pop();
3776       } while (SU->isScheduled);
3777       IsTopNode = true;
3778     } else {
3779       do {
3780         if (BottomQ.empty()) return nullptr;
3781         SU = BottomQ.top();
3782         BottomQ.pop();
3783       } while (SU->isScheduled);
3784       IsTopNode = false;
3785     }
3786     if (IsAlternating)
3787       IsTopDown = !IsTopDown;
3788     return SU;
3789   }
3790 
3791   void schedNode(SUnit *SU, bool IsTopNode) override {}
3792 
3793   void releaseTopNode(SUnit *SU) override {
3794     TopQ.push(SU);
3795   }
3796   void releaseBottomNode(SUnit *SU) override {
3797     BottomQ.push(SU);
3798   }
3799 };
3800 
3801 } // end anonymous namespace
3802 
3803 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3804   bool Alternate = !ForceTopDown && !ForceBottomUp;
3805   bool TopDown = !ForceBottomUp;
3806   assert((TopDown || !ForceTopDown) &&
3807          "-misched-topdown incompatible with -misched-bottomup");
3808   return new ScheduleDAGMILive(
3809       C, std::make_unique<InstructionShuffler>(Alternate, TopDown));
3810 }
3811 
3812 static MachineSchedRegistry ShufflerRegistry(
3813   "shuffle", "Shuffle machine instructions alternating directions",
3814   createInstructionShuffler);
3815 #endif // !NDEBUG
3816 
3817 //===----------------------------------------------------------------------===//
3818 // GraphWriter support for ScheduleDAGMILive.
3819 //===----------------------------------------------------------------------===//
3820 
3821 #ifndef NDEBUG
3822 namespace llvm {
3823 
3824 template<> struct GraphTraits<
3825   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3826 
3827 template<>
3828 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3829   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3830 
3831   static std::string getGraphName(const ScheduleDAG *G) {
3832     return std::string(G->MF.getName());
3833   }
3834 
3835   static bool renderGraphFromBottomUp() {
3836     return true;
3837   }
3838 
3839   static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) {
3840     if (ViewMISchedCutoff == 0)
3841       return false;
3842     return (Node->Preds.size() > ViewMISchedCutoff
3843          || Node->Succs.size() > ViewMISchedCutoff);
3844   }
3845 
3846   /// If you want to override the dot attributes printed for a particular
3847   /// edge, override this method.
3848   static std::string getEdgeAttributes(const SUnit *Node,
3849                                        SUnitIterator EI,
3850                                        const ScheduleDAG *Graph) {
3851     if (EI.isArtificialDep())
3852       return "color=cyan,style=dashed";
3853     if (EI.isCtrlDep())
3854       return "color=blue,style=dashed";
3855     return "";
3856   }
3857 
3858   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3859     std::string Str;
3860     raw_string_ostream SS(Str);
3861     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3862     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3863       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3864     SS << "SU:" << SU->NodeNum;
3865     if (DFS)
3866       SS << " I:" << DFS->getNumInstrs(SU);
3867     return SS.str();
3868   }
3869 
3870   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3871     return G->getGraphNodeLabel(SU);
3872   }
3873 
3874   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3875     std::string Str("shape=Mrecord");
3876     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3877     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3878       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3879     if (DFS) {
3880       Str += ",style=filled,fillcolor=\"#";
3881       Str += DOT::getColorString(DFS->getSubtreeID(N));
3882       Str += '"';
3883     }
3884     return Str;
3885   }
3886 };
3887 
3888 } // end namespace llvm
3889 #endif // NDEBUG
3890 
3891 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3892 /// rendered using 'dot'.
3893 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3894 #ifndef NDEBUG
3895   ViewGraph(this, Name, false, Title);
3896 #else
3897   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3898          << "systems with Graphviz or gv!\n";
3899 #endif  // NDEBUG
3900 }
3901 
3902 /// Out-of-line implementation with no arguments is handy for gdb.
3903 void ScheduleDAGMI::viewGraph() {
3904   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3905 }
3906