1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // MachineScheduler schedules machine instructions after phi elimination. It 10 // preserves LiveIntervals so it can be invoked before register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineScheduler.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachinePassRegistry.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/RegisterPressure.h" 38 #include "llvm/CodeGen/ScheduleDAG.h" 39 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 40 #include "llvm/CodeGen/ScheduleDAGMutation.h" 41 #include "llvm/CodeGen/ScheduleDFS.h" 42 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 43 #include "llvm/CodeGen/SlotIndexes.h" 44 #include "llvm/CodeGen/TargetFrameLowering.h" 45 #include "llvm/CodeGen/TargetInstrInfo.h" 46 #include "llvm/CodeGen/TargetLowering.h" 47 #include "llvm/CodeGen/TargetPassConfig.h" 48 #include "llvm/CodeGen/TargetRegisterInfo.h" 49 #include "llvm/CodeGen/TargetSchedule.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/Config/llvm-config.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/MC/LaneBitmask.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/GraphWriter.h" 60 #include "llvm/Support/MachineValueType.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <iterator> 66 #include <limits> 67 #include <memory> 68 #include <string> 69 #include <tuple> 70 #include <utility> 71 #include <vector> 72 73 using namespace llvm; 74 75 #define DEBUG_TYPE "machine-scheduler" 76 77 STATISTIC(NumClustered, "Number of load/store pairs clustered"); 78 79 namespace llvm { 80 81 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 82 cl::desc("Force top-down list scheduling")); 83 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 84 cl::desc("Force bottom-up list scheduling")); 85 cl::opt<bool> 86 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 87 cl::desc("Print critical path length to stdout")); 88 89 cl::opt<bool> VerifyScheduling( 90 "verify-misched", cl::Hidden, 91 cl::desc("Verify machine instrs before and after machine scheduling")); 92 93 } // end namespace llvm 94 95 #ifndef NDEBUG 96 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 97 cl::desc("Pop up a window to show MISched dags after they are processed")); 98 99 /// In some situations a few uninteresting nodes depend on nearly all other 100 /// nodes in the graph, provide a cutoff to hide them. 101 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 102 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 103 104 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 105 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 106 107 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 108 cl::desc("Only schedule this function")); 109 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 110 cl::desc("Only schedule this MBB#")); 111 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden, 112 cl::desc("Print schedule DAGs")); 113 #else 114 static const bool ViewMISchedDAGs = false; 115 static const bool PrintDAGs = false; 116 #endif // NDEBUG 117 118 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 119 /// size of the ready lists. 120 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 121 cl::desc("Limit ready list to N instructions"), cl::init(256)); 122 123 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 124 cl::desc("Enable register pressure scheduling."), cl::init(true)); 125 126 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 127 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 128 129 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 130 cl::desc("Enable memop clustering."), 131 cl::init(true)); 132 static cl::opt<bool> 133 ForceFastCluster("force-fast-cluster", cl::Hidden, 134 cl::desc("Switch to fast cluster algorithm with the lost " 135 "of some fusion opportunities"), 136 cl::init(false)); 137 static cl::opt<unsigned> 138 FastClusterThreshold("fast-cluster-threshold", cl::Hidden, 139 cl::desc("The threshold for fast cluster"), 140 cl::init(1000)); 141 142 // DAG subtrees must have at least this many nodes. 143 static const unsigned MinSubtreeSize = 8; 144 145 // Pin the vtables to this file. 146 void MachineSchedStrategy::anchor() {} 147 148 void ScheduleDAGMutation::anchor() {} 149 150 //===----------------------------------------------------------------------===// 151 // Machine Instruction Scheduling Pass and Registry 152 //===----------------------------------------------------------------------===// 153 154 MachineSchedContext::MachineSchedContext() { 155 RegClassInfo = new RegisterClassInfo(); 156 } 157 158 MachineSchedContext::~MachineSchedContext() { 159 delete RegClassInfo; 160 } 161 162 namespace { 163 164 /// Base class for a machine scheduler class that can run at any point. 165 class MachineSchedulerBase : public MachineSchedContext, 166 public MachineFunctionPass { 167 public: 168 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 169 170 void print(raw_ostream &O, const Module* = nullptr) const override; 171 172 protected: 173 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 174 }; 175 176 /// MachineScheduler runs after coalescing and before register allocation. 177 class MachineScheduler : public MachineSchedulerBase { 178 public: 179 MachineScheduler(); 180 181 void getAnalysisUsage(AnalysisUsage &AU) const override; 182 183 bool runOnMachineFunction(MachineFunction&) override; 184 185 static char ID; // Class identification, replacement for typeinfo 186 187 protected: 188 ScheduleDAGInstrs *createMachineScheduler(); 189 }; 190 191 /// PostMachineScheduler runs after shortly before code emission. 192 class PostMachineScheduler : public MachineSchedulerBase { 193 public: 194 PostMachineScheduler(); 195 196 void getAnalysisUsage(AnalysisUsage &AU) const override; 197 198 bool runOnMachineFunction(MachineFunction&) override; 199 200 static char ID; // Class identification, replacement for typeinfo 201 202 protected: 203 ScheduleDAGInstrs *createPostMachineScheduler(); 204 }; 205 206 } // end anonymous namespace 207 208 char MachineScheduler::ID = 0; 209 210 char &llvm::MachineSchedulerID = MachineScheduler::ID; 211 212 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 213 "Machine Instruction Scheduler", false, false) 214 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 215 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 216 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 217 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 218 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 219 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 220 "Machine Instruction Scheduler", false, false) 221 222 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 223 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 224 } 225 226 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 227 AU.setPreservesCFG(); 228 AU.addRequired<MachineDominatorTree>(); 229 AU.addRequired<MachineLoopInfo>(); 230 AU.addRequired<AAResultsWrapperPass>(); 231 AU.addRequired<TargetPassConfig>(); 232 AU.addRequired<SlotIndexes>(); 233 AU.addPreserved<SlotIndexes>(); 234 AU.addRequired<LiveIntervals>(); 235 AU.addPreserved<LiveIntervals>(); 236 MachineFunctionPass::getAnalysisUsage(AU); 237 } 238 239 char PostMachineScheduler::ID = 0; 240 241 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 242 243 INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched", 244 "PostRA Machine Instruction Scheduler", false, false) 245 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 246 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 247 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 248 INITIALIZE_PASS_END(PostMachineScheduler, "postmisched", 249 "PostRA Machine Instruction Scheduler", false, false) 250 251 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 252 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 253 } 254 255 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 256 AU.setPreservesCFG(); 257 AU.addRequired<MachineDominatorTree>(); 258 AU.addRequired<MachineLoopInfo>(); 259 AU.addRequired<AAResultsWrapperPass>(); 260 AU.addRequired<TargetPassConfig>(); 261 MachineFunctionPass::getAnalysisUsage(AU); 262 } 263 264 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor> 265 MachineSchedRegistry::Registry; 266 267 /// A dummy default scheduler factory indicates whether the scheduler 268 /// is overridden on the command line. 269 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 270 return nullptr; 271 } 272 273 /// MachineSchedOpt allows command line selection of the scheduler. 274 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 275 RegisterPassParser<MachineSchedRegistry>> 276 MachineSchedOpt("misched", 277 cl::init(&useDefaultMachineSched), cl::Hidden, 278 cl::desc("Machine instruction scheduler to use")); 279 280 static MachineSchedRegistry 281 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 282 useDefaultMachineSched); 283 284 static cl::opt<bool> EnableMachineSched( 285 "enable-misched", 286 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 287 cl::Hidden); 288 289 static cl::opt<bool> EnablePostRAMachineSched( 290 "enable-post-misched", 291 cl::desc("Enable the post-ra machine instruction scheduling pass."), 292 cl::init(true), cl::Hidden); 293 294 /// Decrement this iterator until reaching the top or a non-debug instr. 295 static MachineBasicBlock::const_iterator 296 priorNonDebug(MachineBasicBlock::const_iterator I, 297 MachineBasicBlock::const_iterator Beg) { 298 assert(I != Beg && "reached the top of the region, cannot decrement"); 299 while (--I != Beg) { 300 if (!I->isDebugInstr()) 301 break; 302 } 303 return I; 304 } 305 306 /// Non-const version. 307 static MachineBasicBlock::iterator 308 priorNonDebug(MachineBasicBlock::iterator I, 309 MachineBasicBlock::const_iterator Beg) { 310 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 311 .getNonConstIterator(); 312 } 313 314 /// If this iterator is a debug value, increment until reaching the End or a 315 /// non-debug instruction. 316 static MachineBasicBlock::const_iterator 317 nextIfDebug(MachineBasicBlock::const_iterator I, 318 MachineBasicBlock::const_iterator End) { 319 for(; I != End; ++I) { 320 if (!I->isDebugInstr()) 321 break; 322 } 323 return I; 324 } 325 326 /// Non-const version. 327 static MachineBasicBlock::iterator 328 nextIfDebug(MachineBasicBlock::iterator I, 329 MachineBasicBlock::const_iterator End) { 330 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 331 .getNonConstIterator(); 332 } 333 334 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 335 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 336 // Select the scheduler, or set the default. 337 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 338 if (Ctor != useDefaultMachineSched) 339 return Ctor(this); 340 341 // Get the default scheduler set by the target for this function. 342 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 343 if (Scheduler) 344 return Scheduler; 345 346 // Default to GenericScheduler. 347 return createGenericSchedLive(this); 348 } 349 350 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 351 /// the caller. We don't have a command line option to override the postRA 352 /// scheduler. The Target must configure it. 353 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 354 // Get the postRA scheduler set by the target for this function. 355 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 356 if (Scheduler) 357 return Scheduler; 358 359 // Default to GenericScheduler. 360 return createGenericSchedPostRA(this); 361 } 362 363 /// Top-level MachineScheduler pass driver. 364 /// 365 /// Visit blocks in function order. Divide each block into scheduling regions 366 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 367 /// consistent with the DAG builder, which traverses the interior of the 368 /// scheduling regions bottom-up. 369 /// 370 /// This design avoids exposing scheduling boundaries to the DAG builder, 371 /// simplifying the DAG builder's support for "special" target instructions. 372 /// At the same time the design allows target schedulers to operate across 373 /// scheduling boundaries, for example to bundle the boundary instructions 374 /// without reordering them. This creates complexity, because the target 375 /// scheduler must update the RegionBegin and RegionEnd positions cached by 376 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 377 /// design would be to split blocks at scheduling boundaries, but LLVM has a 378 /// general bias against block splitting purely for implementation simplicity. 379 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 380 if (skipFunction(mf.getFunction())) 381 return false; 382 383 if (EnableMachineSched.getNumOccurrences()) { 384 if (!EnableMachineSched) 385 return false; 386 } else if (!mf.getSubtarget().enableMachineScheduler()) 387 return false; 388 389 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 390 391 // Initialize the context of the pass. 392 MF = &mf; 393 MLI = &getAnalysis<MachineLoopInfo>(); 394 MDT = &getAnalysis<MachineDominatorTree>(); 395 PassConfig = &getAnalysis<TargetPassConfig>(); 396 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 397 398 LIS = &getAnalysis<LiveIntervals>(); 399 400 if (VerifyScheduling) { 401 LLVM_DEBUG(LIS->dump()); 402 MF->verify(this, "Before machine scheduling."); 403 } 404 RegClassInfo->runOnMachineFunction(*MF); 405 406 // Instantiate the selected scheduler for this target, function, and 407 // optimization level. 408 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 409 scheduleRegions(*Scheduler, false); 410 411 LLVM_DEBUG(LIS->dump()); 412 if (VerifyScheduling) 413 MF->verify(this, "After machine scheduling."); 414 return true; 415 } 416 417 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 418 if (skipFunction(mf.getFunction())) 419 return false; 420 421 if (EnablePostRAMachineSched.getNumOccurrences()) { 422 if (!EnablePostRAMachineSched) 423 return false; 424 } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) { 425 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 426 return false; 427 } 428 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 429 430 // Initialize the context of the pass. 431 MF = &mf; 432 MLI = &getAnalysis<MachineLoopInfo>(); 433 PassConfig = &getAnalysis<TargetPassConfig>(); 434 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 435 436 if (VerifyScheduling) 437 MF->verify(this, "Before post machine scheduling."); 438 439 // Instantiate the selected scheduler for this target, function, and 440 // optimization level. 441 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 442 scheduleRegions(*Scheduler, true); 443 444 if (VerifyScheduling) 445 MF->verify(this, "After post machine scheduling."); 446 return true; 447 } 448 449 /// Return true of the given instruction should not be included in a scheduling 450 /// region. 451 /// 452 /// MachineScheduler does not currently support scheduling across calls. To 453 /// handle calls, the DAG builder needs to be modified to create register 454 /// anti/output dependencies on the registers clobbered by the call's regmask 455 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 456 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 457 /// the boundary, but there would be no benefit to postRA scheduling across 458 /// calls this late anyway. 459 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 460 MachineBasicBlock *MBB, 461 MachineFunction *MF, 462 const TargetInstrInfo *TII) { 463 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 464 } 465 466 /// A region of an MBB for scheduling. 467 namespace { 468 struct SchedRegion { 469 /// RegionBegin is the first instruction in the scheduling region, and 470 /// RegionEnd is either MBB->end() or the scheduling boundary after the 471 /// last instruction in the scheduling region. These iterators cannot refer 472 /// to instructions outside of the identified scheduling region because 473 /// those may be reordered before scheduling this region. 474 MachineBasicBlock::iterator RegionBegin; 475 MachineBasicBlock::iterator RegionEnd; 476 unsigned NumRegionInstrs; 477 478 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 479 unsigned N) : 480 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 481 }; 482 } // end anonymous namespace 483 484 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 485 486 static void 487 getSchedRegions(MachineBasicBlock *MBB, 488 MBBRegionsVector &Regions, 489 bool RegionsTopDown) { 490 MachineFunction *MF = MBB->getParent(); 491 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 492 493 MachineBasicBlock::iterator I = nullptr; 494 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 495 RegionEnd != MBB->begin(); RegionEnd = I) { 496 497 // Avoid decrementing RegionEnd for blocks with no terminator. 498 if (RegionEnd != MBB->end() || 499 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 500 --RegionEnd; 501 } 502 503 // The next region starts above the previous region. Look backward in the 504 // instruction stream until we find the nearest boundary. 505 unsigned NumRegionInstrs = 0; 506 I = RegionEnd; 507 for (;I != MBB->begin(); --I) { 508 MachineInstr &MI = *std::prev(I); 509 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 510 break; 511 if (!MI.isDebugInstr()) { 512 // MBB::size() uses instr_iterator to count. Here we need a bundle to 513 // count as a single instruction. 514 ++NumRegionInstrs; 515 } 516 } 517 518 // It's possible we found a scheduling region that only has debug 519 // instructions. Don't bother scheduling these. 520 if (NumRegionInstrs != 0) 521 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 522 } 523 524 if (RegionsTopDown) 525 std::reverse(Regions.begin(), Regions.end()); 526 } 527 528 /// Main driver for both MachineScheduler and PostMachineScheduler. 529 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 530 bool FixKillFlags) { 531 // Visit all machine basic blocks. 532 // 533 // TODO: Visit blocks in global postorder or postorder within the bottom-up 534 // loop tree. Then we can optionally compute global RegPressure. 535 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 536 MBB != MBBEnd; ++MBB) { 537 538 Scheduler.startBlock(&*MBB); 539 540 #ifndef NDEBUG 541 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 542 continue; 543 if (SchedOnlyBlock.getNumOccurrences() 544 && (int)SchedOnlyBlock != MBB->getNumber()) 545 continue; 546 #endif 547 548 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 549 // points to the scheduling boundary at the bottom of the region. The DAG 550 // does not include RegionEnd, but the region does (i.e. the next 551 // RegionEnd is above the previous RegionBegin). If the current block has 552 // no terminator then RegionEnd == MBB->end() for the bottom region. 553 // 554 // All the regions of MBB are first found and stored in MBBRegions, which 555 // will be processed (MBB) top-down if initialized with true. 556 // 557 // The Scheduler may insert instructions during either schedule() or 558 // exitRegion(), even for empty regions. So the local iterators 'I' and 559 // 'RegionEnd' are invalid across these calls. Instructions must not be 560 // added to other regions than the current one without updating MBBRegions. 561 562 MBBRegionsVector MBBRegions; 563 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 564 for (MBBRegionsVector::iterator R = MBBRegions.begin(); 565 R != MBBRegions.end(); ++R) { 566 MachineBasicBlock::iterator I = R->RegionBegin; 567 MachineBasicBlock::iterator RegionEnd = R->RegionEnd; 568 unsigned NumRegionInstrs = R->NumRegionInstrs; 569 570 // Notify the scheduler of the region, even if we may skip scheduling 571 // it. Perhaps it still needs to be bundled. 572 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 573 574 // Skip empty scheduling regions (0 or 1 schedulable instructions). 575 if (I == RegionEnd || I == std::prev(RegionEnd)) { 576 // Close the current region. Bundle the terminator if needed. 577 // This invalidates 'RegionEnd' and 'I'. 578 Scheduler.exitRegion(); 579 continue; 580 } 581 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 582 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) 583 << " " << MBB->getName() << "\n From: " << *I 584 << " To: "; 585 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 586 else dbgs() << "End"; 587 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 588 if (DumpCriticalPathLength) { 589 errs() << MF->getName(); 590 errs() << ":%bb. " << MBB->getNumber(); 591 errs() << " " << MBB->getName() << " \n"; 592 } 593 594 // Schedule a region: possibly reorder instructions. 595 // This invalidates the original region iterators. 596 Scheduler.schedule(); 597 598 // Close the current region. 599 Scheduler.exitRegion(); 600 } 601 Scheduler.finishBlock(); 602 // FIXME: Ideally, no further passes should rely on kill flags. However, 603 // thumb2 size reduction is currently an exception, so the PostMIScheduler 604 // needs to do this. 605 if (FixKillFlags) 606 Scheduler.fixupKills(*MBB); 607 } 608 Scheduler.finalizeSchedule(); 609 } 610 611 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 612 // unimplemented 613 } 614 615 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 616 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 617 dbgs() << "Queue " << Name << ": "; 618 for (const SUnit *SU : Queue) 619 dbgs() << SU->NodeNum << " "; 620 dbgs() << "\n"; 621 } 622 #endif 623 624 //===----------------------------------------------------------------------===// 625 // ScheduleDAGMI - Basic machine instruction scheduling. This is 626 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 627 // virtual registers. 628 // ===----------------------------------------------------------------------===/ 629 630 // Provide a vtable anchor. 631 ScheduleDAGMI::~ScheduleDAGMI() = default; 632 633 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 634 /// NumPredsLeft reaches zero, release the successor node. 635 /// 636 /// FIXME: Adjust SuccSU height based on MinLatency. 637 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 638 SUnit *SuccSU = SuccEdge->getSUnit(); 639 640 if (SuccEdge->isWeak()) { 641 --SuccSU->WeakPredsLeft; 642 if (SuccEdge->isCluster()) 643 NextClusterSucc = SuccSU; 644 return; 645 } 646 #ifndef NDEBUG 647 if (SuccSU->NumPredsLeft == 0) { 648 dbgs() << "*** Scheduling failed! ***\n"; 649 dumpNode(*SuccSU); 650 dbgs() << " has been released too many times!\n"; 651 llvm_unreachable(nullptr); 652 } 653 #endif 654 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 655 // CurrCycle may have advanced since then. 656 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 657 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 658 659 --SuccSU->NumPredsLeft; 660 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 661 SchedImpl->releaseTopNode(SuccSU); 662 } 663 664 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 665 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 666 for (SDep &Succ : SU->Succs) 667 releaseSucc(SU, &Succ); 668 } 669 670 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 671 /// NumSuccsLeft reaches zero, release the predecessor node. 672 /// 673 /// FIXME: Adjust PredSU height based on MinLatency. 674 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 675 SUnit *PredSU = PredEdge->getSUnit(); 676 677 if (PredEdge->isWeak()) { 678 --PredSU->WeakSuccsLeft; 679 if (PredEdge->isCluster()) 680 NextClusterPred = PredSU; 681 return; 682 } 683 #ifndef NDEBUG 684 if (PredSU->NumSuccsLeft == 0) { 685 dbgs() << "*** Scheduling failed! ***\n"; 686 dumpNode(*PredSU); 687 dbgs() << " has been released too many times!\n"; 688 llvm_unreachable(nullptr); 689 } 690 #endif 691 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 692 // CurrCycle may have advanced since then. 693 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 694 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 695 696 --PredSU->NumSuccsLeft; 697 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 698 SchedImpl->releaseBottomNode(PredSU); 699 } 700 701 /// releasePredecessors - Call releasePred on each of SU's predecessors. 702 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 703 for (SDep &Pred : SU->Preds) 704 releasePred(SU, &Pred); 705 } 706 707 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 708 ScheduleDAGInstrs::startBlock(bb); 709 SchedImpl->enterMBB(bb); 710 } 711 712 void ScheduleDAGMI::finishBlock() { 713 SchedImpl->leaveMBB(); 714 ScheduleDAGInstrs::finishBlock(); 715 } 716 717 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 718 /// crossing a scheduling boundary. [begin, end) includes all instructions in 719 /// the region, including the boundary itself and single-instruction regions 720 /// that don't get scheduled. 721 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 722 MachineBasicBlock::iterator begin, 723 MachineBasicBlock::iterator end, 724 unsigned regioninstrs) 725 { 726 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 727 728 SchedImpl->initPolicy(begin, end, regioninstrs); 729 } 730 731 /// This is normally called from the main scheduler loop but may also be invoked 732 /// by the scheduling strategy to perform additional code motion. 733 void ScheduleDAGMI::moveInstruction( 734 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 735 // Advance RegionBegin if the first instruction moves down. 736 if (&*RegionBegin == MI) 737 ++RegionBegin; 738 739 // Update the instruction stream. 740 BB->splice(InsertPos, BB, MI); 741 742 // Update LiveIntervals 743 if (LIS) 744 LIS->handleMove(*MI, /*UpdateFlags=*/true); 745 746 // Recede RegionBegin if an instruction moves above the first. 747 if (RegionBegin == InsertPos) 748 RegionBegin = MI; 749 } 750 751 bool ScheduleDAGMI::checkSchedLimit() { 752 #ifndef NDEBUG 753 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 754 CurrentTop = CurrentBottom; 755 return false; 756 } 757 ++NumInstrsScheduled; 758 #endif 759 return true; 760 } 761 762 /// Per-region scheduling driver, called back from 763 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 764 /// does not consider liveness or register pressure. It is useful for PostRA 765 /// scheduling and potentially other custom schedulers. 766 void ScheduleDAGMI::schedule() { 767 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 768 LLVM_DEBUG(SchedImpl->dumpPolicy()); 769 770 // Build the DAG. 771 buildSchedGraph(AA); 772 773 postprocessDAG(); 774 775 SmallVector<SUnit*, 8> TopRoots, BotRoots; 776 findRootsAndBiasEdges(TopRoots, BotRoots); 777 778 LLVM_DEBUG(dump()); 779 if (PrintDAGs) dump(); 780 if (ViewMISchedDAGs) viewGraph(); 781 782 // Initialize the strategy before modifying the DAG. 783 // This may initialize a DFSResult to be used for queue priority. 784 SchedImpl->initialize(this); 785 786 // Initialize ready queues now that the DAG and priority data are finalized. 787 initQueues(TopRoots, BotRoots); 788 789 bool IsTopNode = false; 790 while (true) { 791 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 792 SUnit *SU = SchedImpl->pickNode(IsTopNode); 793 if (!SU) break; 794 795 assert(!SU->isScheduled && "Node already scheduled"); 796 if (!checkSchedLimit()) 797 break; 798 799 MachineInstr *MI = SU->getInstr(); 800 if (IsTopNode) { 801 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 802 if (&*CurrentTop == MI) 803 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 804 else 805 moveInstruction(MI, CurrentTop); 806 } else { 807 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 808 MachineBasicBlock::iterator priorII = 809 priorNonDebug(CurrentBottom, CurrentTop); 810 if (&*priorII == MI) 811 CurrentBottom = priorII; 812 else { 813 if (&*CurrentTop == MI) 814 CurrentTop = nextIfDebug(++CurrentTop, priorII); 815 moveInstruction(MI, CurrentBottom); 816 CurrentBottom = MI; 817 } 818 } 819 // Notify the scheduling strategy before updating the DAG. 820 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 821 // runs, it can then use the accurate ReadyCycle time to determine whether 822 // newly released nodes can move to the readyQ. 823 SchedImpl->schedNode(SU, IsTopNode); 824 825 updateQueues(SU, IsTopNode); 826 } 827 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 828 829 placeDebugValues(); 830 831 LLVM_DEBUG({ 832 dbgs() << "*** Final schedule for " 833 << printMBBReference(*begin()->getParent()) << " ***\n"; 834 dumpSchedule(); 835 dbgs() << '\n'; 836 }); 837 } 838 839 /// Apply each ScheduleDAGMutation step in order. 840 void ScheduleDAGMI::postprocessDAG() { 841 for (auto &m : Mutations) 842 m->apply(this); 843 } 844 845 void ScheduleDAGMI:: 846 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 847 SmallVectorImpl<SUnit*> &BotRoots) { 848 for (SUnit &SU : SUnits) { 849 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 850 851 // Order predecessors so DFSResult follows the critical path. 852 SU.biasCriticalPath(); 853 854 // A SUnit is ready to top schedule if it has no predecessors. 855 if (!SU.NumPredsLeft) 856 TopRoots.push_back(&SU); 857 // A SUnit is ready to bottom schedule if it has no successors. 858 if (!SU.NumSuccsLeft) 859 BotRoots.push_back(&SU); 860 } 861 ExitSU.biasCriticalPath(); 862 } 863 864 /// Identify DAG roots and setup scheduler queues. 865 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 866 ArrayRef<SUnit*> BotRoots) { 867 NextClusterSucc = nullptr; 868 NextClusterPred = nullptr; 869 870 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 871 // 872 // Nodes with unreleased weak edges can still be roots. 873 // Release top roots in forward order. 874 for (SUnit *SU : TopRoots) 875 SchedImpl->releaseTopNode(SU); 876 877 // Release bottom roots in reverse order so the higher priority nodes appear 878 // first. This is more natural and slightly more efficient. 879 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 880 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 881 SchedImpl->releaseBottomNode(*I); 882 } 883 884 releaseSuccessors(&EntrySU); 885 releasePredecessors(&ExitSU); 886 887 SchedImpl->registerRoots(); 888 889 // Advance past initial DebugValues. 890 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 891 CurrentBottom = RegionEnd; 892 } 893 894 /// Update scheduler queues after scheduling an instruction. 895 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 896 // Release dependent instructions for scheduling. 897 if (IsTopNode) 898 releaseSuccessors(SU); 899 else 900 releasePredecessors(SU); 901 902 SU->isScheduled = true; 903 } 904 905 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 906 void ScheduleDAGMI::placeDebugValues() { 907 // If first instruction was a DBG_VALUE then put it back. 908 if (FirstDbgValue) { 909 BB->splice(RegionBegin, BB, FirstDbgValue); 910 RegionBegin = FirstDbgValue; 911 } 912 913 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 914 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 915 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 916 MachineInstr *DbgValue = P.first; 917 MachineBasicBlock::iterator OrigPrevMI = P.second; 918 if (&*RegionBegin == DbgValue) 919 ++RegionBegin; 920 BB->splice(++OrigPrevMI, BB, DbgValue); 921 if (OrigPrevMI == std::prev(RegionEnd)) 922 RegionEnd = DbgValue; 923 } 924 DbgValues.clear(); 925 FirstDbgValue = nullptr; 926 } 927 928 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 929 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 930 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 931 if (SUnit *SU = getSUnit(&(*MI))) 932 dumpNode(*SU); 933 else 934 dbgs() << "Missing SUnit\n"; 935 } 936 } 937 #endif 938 939 //===----------------------------------------------------------------------===// 940 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 941 // preservation. 942 //===----------------------------------------------------------------------===// 943 944 ScheduleDAGMILive::~ScheduleDAGMILive() { 945 delete DFSResult; 946 } 947 948 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 949 const MachineInstr &MI = *SU.getInstr(); 950 for (const MachineOperand &MO : MI.operands()) { 951 if (!MO.isReg()) 952 continue; 953 if (!MO.readsReg()) 954 continue; 955 if (TrackLaneMasks && !MO.isUse()) 956 continue; 957 958 Register Reg = MO.getReg(); 959 if (!Register::isVirtualRegister(Reg)) 960 continue; 961 962 // Ignore re-defs. 963 if (TrackLaneMasks) { 964 bool FoundDef = false; 965 for (const MachineOperand &MO2 : MI.operands()) { 966 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 967 FoundDef = true; 968 break; 969 } 970 } 971 if (FoundDef) 972 continue; 973 } 974 975 // Record this local VReg use. 976 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 977 for (; UI != VRegUses.end(); ++UI) { 978 if (UI->SU == &SU) 979 break; 980 } 981 if (UI == VRegUses.end()) 982 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 983 } 984 } 985 986 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 987 /// crossing a scheduling boundary. [begin, end) includes all instructions in 988 /// the region, including the boundary itself and single-instruction regions 989 /// that don't get scheduled. 990 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 991 MachineBasicBlock::iterator begin, 992 MachineBasicBlock::iterator end, 993 unsigned regioninstrs) 994 { 995 // ScheduleDAGMI initializes SchedImpl's per-region policy. 996 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 997 998 // For convenience remember the end of the liveness region. 999 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 1000 1001 SUPressureDiffs.clear(); 1002 1003 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 1004 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 1005 1006 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 1007 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 1008 } 1009 1010 // Setup the register pressure trackers for the top scheduled and bottom 1011 // scheduled regions. 1012 void ScheduleDAGMILive::initRegPressure() { 1013 VRegUses.clear(); 1014 VRegUses.setUniverse(MRI.getNumVirtRegs()); 1015 for (SUnit &SU : SUnits) 1016 collectVRegUses(SU); 1017 1018 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1019 ShouldTrackLaneMasks, false); 1020 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1021 ShouldTrackLaneMasks, false); 1022 1023 // Close the RPTracker to finalize live ins. 1024 RPTracker.closeRegion(); 1025 1026 LLVM_DEBUG(RPTracker.dump()); 1027 1028 // Initialize the live ins and live outs. 1029 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1030 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1031 1032 // Close one end of the tracker so we can call 1033 // getMaxUpward/DownwardPressureDelta before advancing across any 1034 // instructions. This converts currently live regs into live ins/outs. 1035 TopRPTracker.closeTop(); 1036 BotRPTracker.closeBottom(); 1037 1038 BotRPTracker.initLiveThru(RPTracker); 1039 if (!BotRPTracker.getLiveThru().empty()) { 1040 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1041 LLVM_DEBUG(dbgs() << "Live Thru: "; 1042 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1043 }; 1044 1045 // For each live out vreg reduce the pressure change associated with other 1046 // uses of the same vreg below the live-out reaching def. 1047 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1048 1049 // Account for liveness generated by the region boundary. 1050 if (LiveRegionEnd != RegionEnd) { 1051 SmallVector<RegisterMaskPair, 8> LiveUses; 1052 BotRPTracker.recede(&LiveUses); 1053 updatePressureDiffs(LiveUses); 1054 } 1055 1056 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; 1057 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1058 dbgs() << "Bottom Pressure:\n"; 1059 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);); 1060 1061 assert((BotRPTracker.getPos() == RegionEnd || 1062 (RegionEnd->isDebugInstr() && 1063 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && 1064 "Can't find the region bottom"); 1065 1066 // Cache the list of excess pressure sets in this region. This will also track 1067 // the max pressure in the scheduled code for these sets. 1068 RegionCriticalPSets.clear(); 1069 const std::vector<unsigned> &RegionPressure = 1070 RPTracker.getPressure().MaxSetPressure; 1071 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1072 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1073 if (RegionPressure[i] > Limit) { 1074 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit 1075 << " Actual " << RegionPressure[i] << "\n"); 1076 RegionCriticalPSets.push_back(PressureChange(i)); 1077 } 1078 } 1079 LLVM_DEBUG(dbgs() << "Excess PSets: "; 1080 for (const PressureChange &RCPS 1081 : RegionCriticalPSets) dbgs() 1082 << TRI->getRegPressureSetName(RCPS.getPSet()) << " "; 1083 dbgs() << "\n"); 1084 } 1085 1086 void ScheduleDAGMILive:: 1087 updateScheduledPressure(const SUnit *SU, 1088 const std::vector<unsigned> &NewMaxPressure) { 1089 const PressureDiff &PDiff = getPressureDiff(SU); 1090 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1091 for (const PressureChange &PC : PDiff) { 1092 if (!PC.isValid()) 1093 break; 1094 unsigned ID = PC.getPSet(); 1095 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1096 ++CritIdx; 1097 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1098 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1099 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1100 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1101 } 1102 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1103 if (NewMaxPressure[ID] >= Limit - 2) { 1104 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1105 << NewMaxPressure[ID] 1106 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") 1107 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID] 1108 << " livethru)\n"); 1109 } 1110 } 1111 } 1112 1113 /// Update the PressureDiff array for liveness after scheduling this 1114 /// instruction. 1115 void ScheduleDAGMILive::updatePressureDiffs( 1116 ArrayRef<RegisterMaskPair> LiveUses) { 1117 for (const RegisterMaskPair &P : LiveUses) { 1118 Register Reg = P.RegUnit; 1119 /// FIXME: Currently assuming single-use physregs. 1120 if (!Register::isVirtualRegister(Reg)) 1121 continue; 1122 1123 if (ShouldTrackLaneMasks) { 1124 // If the register has just become live then other uses won't change 1125 // this fact anymore => decrement pressure. 1126 // If the register has just become dead then other uses make it come 1127 // back to life => increment pressure. 1128 bool Decrement = P.LaneMask.any(); 1129 1130 for (const VReg2SUnit &V2SU 1131 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1132 SUnit &SU = *V2SU.SU; 1133 if (SU.isScheduled || &SU == &ExitSU) 1134 continue; 1135 1136 PressureDiff &PDiff = getPressureDiff(&SU); 1137 PDiff.addPressureChange(Reg, Decrement, &MRI); 1138 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1139 << printReg(Reg, TRI) << ':' 1140 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr(); 1141 dbgs() << " to "; PDiff.dump(*TRI);); 1142 } 1143 } else { 1144 assert(P.LaneMask.any()); 1145 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1146 // This may be called before CurrentBottom has been initialized. However, 1147 // BotRPTracker must have a valid position. We want the value live into the 1148 // instruction or live out of the block, so ask for the previous 1149 // instruction's live-out. 1150 const LiveInterval &LI = LIS->getInterval(Reg); 1151 VNInfo *VNI; 1152 MachineBasicBlock::const_iterator I = 1153 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1154 if (I == BB->end()) 1155 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1156 else { 1157 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1158 VNI = LRQ.valueIn(); 1159 } 1160 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1161 assert(VNI && "No live value at use."); 1162 for (const VReg2SUnit &V2SU 1163 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1164 SUnit *SU = V2SU.SU; 1165 // If this use comes before the reaching def, it cannot be a last use, 1166 // so decrease its pressure change. 1167 if (!SU->isScheduled && SU != &ExitSU) { 1168 LiveQueryResult LRQ = 1169 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1170 if (LRQ.valueIn() == VNI) { 1171 PressureDiff &PDiff = getPressureDiff(SU); 1172 PDiff.addPressureChange(Reg, true, &MRI); 1173 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1174 << *SU->getInstr(); 1175 dbgs() << " to "; PDiff.dump(*TRI);); 1176 } 1177 } 1178 } 1179 } 1180 } 1181 } 1182 1183 void ScheduleDAGMILive::dump() const { 1184 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1185 if (EntrySU.getInstr() != nullptr) 1186 dumpNodeAll(EntrySU); 1187 for (const SUnit &SU : SUnits) { 1188 dumpNodeAll(SU); 1189 if (ShouldTrackPressure) { 1190 dbgs() << " Pressure Diff : "; 1191 getPressureDiff(&SU).dump(*TRI); 1192 } 1193 dbgs() << " Single Issue : "; 1194 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1195 SchedModel.mustEndGroup(SU.getInstr())) 1196 dbgs() << "true;"; 1197 else 1198 dbgs() << "false;"; 1199 dbgs() << '\n'; 1200 } 1201 if (ExitSU.getInstr() != nullptr) 1202 dumpNodeAll(ExitSU); 1203 #endif 1204 } 1205 1206 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1207 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1208 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1209 /// 1210 /// This is a skeletal driver, with all the functionality pushed into helpers, 1211 /// so that it can be easily extended by experimental schedulers. Generally, 1212 /// implementing MachineSchedStrategy should be sufficient to implement a new 1213 /// scheduling algorithm. However, if a scheduler further subclasses 1214 /// ScheduleDAGMILive then it will want to override this virtual method in order 1215 /// to update any specialized state. 1216 void ScheduleDAGMILive::schedule() { 1217 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1218 LLVM_DEBUG(SchedImpl->dumpPolicy()); 1219 buildDAGWithRegPressure(); 1220 1221 postprocessDAG(); 1222 1223 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1224 findRootsAndBiasEdges(TopRoots, BotRoots); 1225 1226 // Initialize the strategy before modifying the DAG. 1227 // This may initialize a DFSResult to be used for queue priority. 1228 SchedImpl->initialize(this); 1229 1230 LLVM_DEBUG(dump()); 1231 if (PrintDAGs) dump(); 1232 if (ViewMISchedDAGs) viewGraph(); 1233 1234 // Initialize ready queues now that the DAG and priority data are finalized. 1235 initQueues(TopRoots, BotRoots); 1236 1237 bool IsTopNode = false; 1238 while (true) { 1239 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1240 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1241 if (!SU) break; 1242 1243 assert(!SU->isScheduled && "Node already scheduled"); 1244 if (!checkSchedLimit()) 1245 break; 1246 1247 scheduleMI(SU, IsTopNode); 1248 1249 if (DFSResult) { 1250 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1251 if (!ScheduledTrees.test(SubtreeID)) { 1252 ScheduledTrees.set(SubtreeID); 1253 DFSResult->scheduleTree(SubtreeID); 1254 SchedImpl->scheduleTree(SubtreeID); 1255 } 1256 } 1257 1258 // Notify the scheduling strategy after updating the DAG. 1259 SchedImpl->schedNode(SU, IsTopNode); 1260 1261 updateQueues(SU, IsTopNode); 1262 } 1263 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1264 1265 placeDebugValues(); 1266 1267 LLVM_DEBUG({ 1268 dbgs() << "*** Final schedule for " 1269 << printMBBReference(*begin()->getParent()) << " ***\n"; 1270 dumpSchedule(); 1271 dbgs() << '\n'; 1272 }); 1273 } 1274 1275 /// Build the DAG and setup three register pressure trackers. 1276 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1277 if (!ShouldTrackPressure) { 1278 RPTracker.reset(); 1279 RegionCriticalPSets.clear(); 1280 buildSchedGraph(AA); 1281 return; 1282 } 1283 1284 // Initialize the register pressure tracker used by buildSchedGraph. 1285 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1286 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1287 1288 // Account for liveness generate by the region boundary. 1289 if (LiveRegionEnd != RegionEnd) 1290 RPTracker.recede(); 1291 1292 // Build the DAG, and compute current register pressure. 1293 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1294 1295 // Initialize top/bottom trackers after computing region pressure. 1296 initRegPressure(); 1297 } 1298 1299 void ScheduleDAGMILive::computeDFSResult() { 1300 if (!DFSResult) 1301 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1302 DFSResult->clear(); 1303 ScheduledTrees.clear(); 1304 DFSResult->resize(SUnits.size()); 1305 DFSResult->compute(SUnits); 1306 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1307 } 1308 1309 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1310 /// only provides the critical path for single block loops. To handle loops that 1311 /// span blocks, we could use the vreg path latencies provided by 1312 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1313 /// available for use in the scheduler. 1314 /// 1315 /// The cyclic path estimation identifies a def-use pair that crosses the back 1316 /// edge and considers the depth and height of the nodes. For example, consider 1317 /// the following instruction sequence where each instruction has unit latency 1318 /// and defines an eponymous virtual register: 1319 /// 1320 /// a->b(a,c)->c(b)->d(c)->exit 1321 /// 1322 /// The cyclic critical path is a two cycles: b->c->b 1323 /// The acyclic critical path is four cycles: a->b->c->d->exit 1324 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1325 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1326 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1327 /// LiveInDepth = depth(b) = len(a->b) = 1 1328 /// 1329 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1330 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1331 /// CyclicCriticalPath = min(2, 2) = 2 1332 /// 1333 /// This could be relevant to PostRA scheduling, but is currently implemented 1334 /// assuming LiveIntervals. 1335 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1336 // This only applies to single block loop. 1337 if (!BB->isSuccessor(BB)) 1338 return 0; 1339 1340 unsigned MaxCyclicLatency = 0; 1341 // Visit each live out vreg def to find def/use pairs that cross iterations. 1342 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1343 Register Reg = P.RegUnit; 1344 if (!Register::isVirtualRegister(Reg)) 1345 continue; 1346 const LiveInterval &LI = LIS->getInterval(Reg); 1347 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1348 if (!DefVNI) 1349 continue; 1350 1351 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1352 const SUnit *DefSU = getSUnit(DefMI); 1353 if (!DefSU) 1354 continue; 1355 1356 unsigned LiveOutHeight = DefSU->getHeight(); 1357 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1358 // Visit all local users of the vreg def. 1359 for (const VReg2SUnit &V2SU 1360 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1361 SUnit *SU = V2SU.SU; 1362 if (SU == &ExitSU) 1363 continue; 1364 1365 // Only consider uses of the phi. 1366 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1367 if (!LRQ.valueIn()->isPHIDef()) 1368 continue; 1369 1370 // Assume that a path spanning two iterations is a cycle, which could 1371 // overestimate in strange cases. This allows cyclic latency to be 1372 // estimated as the minimum slack of the vreg's depth or height. 1373 unsigned CyclicLatency = 0; 1374 if (LiveOutDepth > SU->getDepth()) 1375 CyclicLatency = LiveOutDepth - SU->getDepth(); 1376 1377 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1378 if (LiveInHeight > LiveOutHeight) { 1379 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1380 CyclicLatency = LiveInHeight - LiveOutHeight; 1381 } else 1382 CyclicLatency = 0; 1383 1384 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1385 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1386 if (CyclicLatency > MaxCyclicLatency) 1387 MaxCyclicLatency = CyclicLatency; 1388 } 1389 } 1390 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1391 return MaxCyclicLatency; 1392 } 1393 1394 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1395 /// the Top RP tracker in case the region beginning has changed. 1396 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1397 ArrayRef<SUnit*> BotRoots) { 1398 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1399 if (ShouldTrackPressure) { 1400 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1401 TopRPTracker.setPos(CurrentTop); 1402 } 1403 } 1404 1405 /// Move an instruction and update register pressure. 1406 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1407 // Move the instruction to its new location in the instruction stream. 1408 MachineInstr *MI = SU->getInstr(); 1409 1410 if (IsTopNode) { 1411 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1412 if (&*CurrentTop == MI) 1413 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1414 else { 1415 moveInstruction(MI, CurrentTop); 1416 TopRPTracker.setPos(MI); 1417 } 1418 1419 if (ShouldTrackPressure) { 1420 // Update top scheduled pressure. 1421 RegisterOperands RegOpers; 1422 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1423 if (ShouldTrackLaneMasks) { 1424 // Adjust liveness and add missing dead+read-undef flags. 1425 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1426 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1427 } else { 1428 // Adjust for missing dead-def flags. 1429 RegOpers.detectDeadDefs(*MI, *LIS); 1430 } 1431 1432 TopRPTracker.advance(RegOpers); 1433 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1434 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure( 1435 TopRPTracker.getRegSetPressureAtPos(), TRI);); 1436 1437 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1438 } 1439 } else { 1440 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1441 MachineBasicBlock::iterator priorII = 1442 priorNonDebug(CurrentBottom, CurrentTop); 1443 if (&*priorII == MI) 1444 CurrentBottom = priorII; 1445 else { 1446 if (&*CurrentTop == MI) { 1447 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1448 TopRPTracker.setPos(CurrentTop); 1449 } 1450 moveInstruction(MI, CurrentBottom); 1451 CurrentBottom = MI; 1452 BotRPTracker.setPos(CurrentBottom); 1453 } 1454 if (ShouldTrackPressure) { 1455 RegisterOperands RegOpers; 1456 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1457 if (ShouldTrackLaneMasks) { 1458 // Adjust liveness and add missing dead+read-undef flags. 1459 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1460 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1461 } else { 1462 // Adjust for missing dead-def flags. 1463 RegOpers.detectDeadDefs(*MI, *LIS); 1464 } 1465 1466 if (BotRPTracker.getPos() != CurrentBottom) 1467 BotRPTracker.recedeSkipDebugValues(); 1468 SmallVector<RegisterMaskPair, 8> LiveUses; 1469 BotRPTracker.recede(RegOpers, &LiveUses); 1470 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1471 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure( 1472 BotRPTracker.getRegSetPressureAtPos(), TRI);); 1473 1474 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1475 updatePressureDiffs(LiveUses); 1476 } 1477 } 1478 } 1479 1480 //===----------------------------------------------------------------------===// 1481 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1482 //===----------------------------------------------------------------------===// 1483 1484 namespace { 1485 1486 /// Post-process the DAG to create cluster edges between neighboring 1487 /// loads or between neighboring stores. 1488 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1489 struct MemOpInfo { 1490 SUnit *SU; 1491 SmallVector<const MachineOperand *, 4> BaseOps; 1492 int64_t Offset; 1493 unsigned Width; 1494 1495 MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps, 1496 int64_t Offset, unsigned Width) 1497 : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset), 1498 Width(Width) {} 1499 1500 static bool Compare(const MachineOperand *const &A, 1501 const MachineOperand *const &B) { 1502 if (A->getType() != B->getType()) 1503 return A->getType() < B->getType(); 1504 if (A->isReg()) 1505 return A->getReg() < B->getReg(); 1506 if (A->isFI()) { 1507 const MachineFunction &MF = *A->getParent()->getParent()->getParent(); 1508 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); 1509 bool StackGrowsDown = TFI.getStackGrowthDirection() == 1510 TargetFrameLowering::StackGrowsDown; 1511 return StackGrowsDown ? A->getIndex() > B->getIndex() 1512 : A->getIndex() < B->getIndex(); 1513 } 1514 1515 llvm_unreachable("MemOpClusterMutation only supports register or frame " 1516 "index bases."); 1517 } 1518 1519 bool operator<(const MemOpInfo &RHS) const { 1520 // FIXME: Don't compare everything twice. Maybe use C++20 three way 1521 // comparison instead when it's available. 1522 if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(), 1523 RHS.BaseOps.begin(), RHS.BaseOps.end(), 1524 Compare)) 1525 return true; 1526 if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(), 1527 BaseOps.begin(), BaseOps.end(), Compare)) 1528 return false; 1529 if (Offset != RHS.Offset) 1530 return Offset < RHS.Offset; 1531 return SU->NodeNum < RHS.SU->NodeNum; 1532 } 1533 }; 1534 1535 const TargetInstrInfo *TII; 1536 const TargetRegisterInfo *TRI; 1537 bool IsLoad; 1538 1539 public: 1540 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1541 const TargetRegisterInfo *tri, bool IsLoad) 1542 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1543 1544 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1545 1546 protected: 1547 void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster, 1548 ScheduleDAGInstrs *DAG); 1549 void collectMemOpRecords(std::vector<SUnit> &SUnits, 1550 SmallVectorImpl<MemOpInfo> &MemOpRecords); 1551 bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG, 1552 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups); 1553 }; 1554 1555 class StoreClusterMutation : public BaseMemOpClusterMutation { 1556 public: 1557 StoreClusterMutation(const TargetInstrInfo *tii, 1558 const TargetRegisterInfo *tri) 1559 : BaseMemOpClusterMutation(tii, tri, false) {} 1560 }; 1561 1562 class LoadClusterMutation : public BaseMemOpClusterMutation { 1563 public: 1564 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1565 : BaseMemOpClusterMutation(tii, tri, true) {} 1566 }; 1567 1568 } // end anonymous namespace 1569 1570 namespace llvm { 1571 1572 std::unique_ptr<ScheduleDAGMutation> 1573 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1574 const TargetRegisterInfo *TRI) { 1575 return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI) 1576 : nullptr; 1577 } 1578 1579 std::unique_ptr<ScheduleDAGMutation> 1580 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1581 const TargetRegisterInfo *TRI) { 1582 return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI) 1583 : nullptr; 1584 } 1585 1586 } // end namespace llvm 1587 1588 // Sorting all the loads/stores first, then for each load/store, checking the 1589 // following load/store one by one, until reach the first non-dependent one and 1590 // call target hook to see if they can cluster. 1591 // If FastCluster is enabled, we assume that, all the loads/stores have been 1592 // preprocessed and now, they didn't have dependencies on each other. 1593 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1594 ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster, 1595 ScheduleDAGInstrs *DAG) { 1596 // Keep track of the current cluster length and bytes for each SUnit. 1597 DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo; 1598 1599 // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to 1600 // cluster mem ops collected within `MemOpRecords` array. 1601 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1602 // Decision to cluster mem ops is taken based on target dependent logic 1603 auto MemOpa = MemOpRecords[Idx]; 1604 1605 // Seek for the next load/store to do the cluster. 1606 unsigned NextIdx = Idx + 1; 1607 for (; NextIdx < End; ++NextIdx) 1608 // Skip if MemOpb has been clustered already or has dependency with 1609 // MemOpa. 1610 if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) && 1611 (FastCluster || 1612 (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) && 1613 !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU)))) 1614 break; 1615 if (NextIdx == End) 1616 continue; 1617 1618 auto MemOpb = MemOpRecords[NextIdx]; 1619 unsigned ClusterLength = 2; 1620 unsigned CurrentClusterBytes = MemOpa.Width + MemOpb.Width; 1621 if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) { 1622 ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1; 1623 CurrentClusterBytes = 1624 SUnit2ClusterInfo[MemOpa.SU->NodeNum].second + MemOpb.Width; 1625 } 1626 1627 if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpb.BaseOps, ClusterLength, 1628 CurrentClusterBytes)) 1629 continue; 1630 1631 SUnit *SUa = MemOpa.SU; 1632 SUnit *SUb = MemOpb.SU; 1633 if (SUa->NodeNum > SUb->NodeNum) 1634 std::swap(SUa, SUb); 1635 1636 // FIXME: Is this check really required? 1637 if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) 1638 continue; 1639 1640 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1641 << SUb->NodeNum << ")\n"); 1642 ++NumClustered; 1643 1644 if (IsLoad) { 1645 // Copy successor edges from SUa to SUb. Interleaving computation 1646 // dependent on SUa can prevent load combining due to register reuse. 1647 // Predecessor edges do not need to be copied from SUb to SUa since 1648 // nearby loads should have effectively the same inputs. 1649 for (const SDep &Succ : SUa->Succs) { 1650 if (Succ.getSUnit() == SUb) 1651 continue; 1652 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum 1653 << ")\n"); 1654 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1655 } 1656 } else { 1657 // Copy predecessor edges from SUb to SUa to avoid the SUnits that 1658 // SUb dependent on scheduled in-between SUb and SUa. Successor edges 1659 // do not need to be copied from SUa to SUb since no one will depend 1660 // on stores. 1661 // Notice that, we don't need to care about the memory dependency as 1662 // we won't try to cluster them if they have any memory dependency. 1663 for (const SDep &Pred : SUb->Preds) { 1664 if (Pred.getSUnit() == SUa) 1665 continue; 1666 LLVM_DEBUG(dbgs() << " Copy Pred SU(" << Pred.getSUnit()->NodeNum 1667 << ")\n"); 1668 DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial)); 1669 } 1670 } 1671 1672 SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength, 1673 CurrentClusterBytes}; 1674 1675 LLVM_DEBUG(dbgs() << " Curr cluster length: " << ClusterLength 1676 << ", Curr cluster bytes: " << CurrentClusterBytes 1677 << "\n"); 1678 } 1679 } 1680 1681 void BaseMemOpClusterMutation::collectMemOpRecords( 1682 std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) { 1683 for (auto &SU : SUnits) { 1684 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1685 (!IsLoad && !SU.getInstr()->mayStore())) 1686 continue; 1687 1688 const MachineInstr &MI = *SU.getInstr(); 1689 SmallVector<const MachineOperand *, 4> BaseOps; 1690 int64_t Offset; 1691 bool OffsetIsScalable; 1692 unsigned Width; 1693 if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, 1694 OffsetIsScalable, Width, TRI)) { 1695 MemOpRecords.push_back(MemOpInfo(&SU, BaseOps, Offset, Width)); 1696 1697 LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: " 1698 << Offset << ", OffsetIsScalable: " << OffsetIsScalable 1699 << ", Width: " << Width << "\n"); 1700 } 1701 #ifndef NDEBUG 1702 for (auto *Op : BaseOps) 1703 assert(Op); 1704 #endif 1705 } 1706 } 1707 1708 bool BaseMemOpClusterMutation::groupMemOps( 1709 ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG, 1710 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups) { 1711 bool FastCluster = 1712 ForceFastCluster || 1713 MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold; 1714 1715 for (const auto &MemOp : MemOps) { 1716 unsigned ChainPredID = DAG->SUnits.size(); 1717 if (FastCluster) { 1718 for (const SDep &Pred : MemOp.SU->Preds) { 1719 // We only want to cluster the mem ops that have the same ctrl(non-data) 1720 // pred so that they didn't have ctrl dependency for each other. But for 1721 // store instrs, we can still cluster them if the pred is load instr. 1722 if ((Pred.isCtrl() && 1723 (IsLoad || 1724 (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) && 1725 !Pred.isArtificial()) { 1726 ChainPredID = Pred.getSUnit()->NodeNum; 1727 break; 1728 } 1729 } 1730 } else 1731 ChainPredID = 0; 1732 1733 Groups[ChainPredID].push_back(MemOp); 1734 } 1735 return FastCluster; 1736 } 1737 1738 /// Callback from DAG postProcessing to create cluster edges for loads/stores. 1739 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) { 1740 // Collect all the clusterable loads/stores 1741 SmallVector<MemOpInfo, 32> MemOpRecords; 1742 collectMemOpRecords(DAG->SUnits, MemOpRecords); 1743 1744 if (MemOpRecords.size() < 2) 1745 return; 1746 1747 // Put the loads/stores without dependency into the same group with some 1748 // heuristic if the DAG is too complex to avoid compiling time blow up. 1749 // Notice that, some fusion pair could be lost with this. 1750 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> Groups; 1751 bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups); 1752 1753 for (auto &Group : Groups) { 1754 // Sorting the loads/stores, so that, we can stop the cluster as early as 1755 // possible. 1756 llvm::sort(Group.second); 1757 1758 // Trying to cluster all the neighboring loads/stores. 1759 clusterNeighboringMemOps(Group.second, FastCluster, DAG); 1760 } 1761 } 1762 1763 //===----------------------------------------------------------------------===// 1764 // CopyConstrain - DAG post-processing to encourage copy elimination. 1765 //===----------------------------------------------------------------------===// 1766 1767 namespace { 1768 1769 /// Post-process the DAG to create weak edges from all uses of a copy to 1770 /// the one use that defines the copy's source vreg, most likely an induction 1771 /// variable increment. 1772 class CopyConstrain : public ScheduleDAGMutation { 1773 // Transient state. 1774 SlotIndex RegionBeginIdx; 1775 1776 // RegionEndIdx is the slot index of the last non-debug instruction in the 1777 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1778 SlotIndex RegionEndIdx; 1779 1780 public: 1781 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1782 1783 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1784 1785 protected: 1786 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1787 }; 1788 1789 } // end anonymous namespace 1790 1791 namespace llvm { 1792 1793 std::unique_ptr<ScheduleDAGMutation> 1794 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1795 const TargetRegisterInfo *TRI) { 1796 return std::make_unique<CopyConstrain>(TII, TRI); 1797 } 1798 1799 } // end namespace llvm 1800 1801 /// constrainLocalCopy handles two possibilities: 1802 /// 1) Local src: 1803 /// I0: = dst 1804 /// I1: src = ... 1805 /// I2: = dst 1806 /// I3: dst = src (copy) 1807 /// (create pred->succ edges I0->I1, I2->I1) 1808 /// 1809 /// 2) Local copy: 1810 /// I0: dst = src (copy) 1811 /// I1: = dst 1812 /// I2: src = ... 1813 /// I3: = dst 1814 /// (create pred->succ edges I1->I2, I3->I2) 1815 /// 1816 /// Although the MachineScheduler is currently constrained to single blocks, 1817 /// this algorithm should handle extended blocks. An EBB is a set of 1818 /// contiguously numbered blocks such that the previous block in the EBB is 1819 /// always the single predecessor. 1820 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1821 LiveIntervals *LIS = DAG->getLIS(); 1822 MachineInstr *Copy = CopySU->getInstr(); 1823 1824 // Check for pure vreg copies. 1825 const MachineOperand &SrcOp = Copy->getOperand(1); 1826 Register SrcReg = SrcOp.getReg(); 1827 if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1828 return; 1829 1830 const MachineOperand &DstOp = Copy->getOperand(0); 1831 Register DstReg = DstOp.getReg(); 1832 if (!Register::isVirtualRegister(DstReg) || DstOp.isDead()) 1833 return; 1834 1835 // Check if either the dest or source is local. If it's live across a back 1836 // edge, it's not local. Note that if both vregs are live across the back 1837 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1838 // If both the copy's source and dest are local live intervals, then we 1839 // should treat the dest as the global for the purpose of adding 1840 // constraints. This adds edges from source's other uses to the copy. 1841 unsigned LocalReg = SrcReg; 1842 unsigned GlobalReg = DstReg; 1843 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1844 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1845 LocalReg = DstReg; 1846 GlobalReg = SrcReg; 1847 LocalLI = &LIS->getInterval(LocalReg); 1848 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1849 return; 1850 } 1851 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1852 1853 // Find the global segment after the start of the local LI. 1854 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1855 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1856 // local live range. We could create edges from other global uses to the local 1857 // start, but the coalescer should have already eliminated these cases, so 1858 // don't bother dealing with it. 1859 if (GlobalSegment == GlobalLI->end()) 1860 return; 1861 1862 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1863 // returned the next global segment. But if GlobalSegment overlaps with 1864 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI 1865 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1866 if (GlobalSegment->contains(LocalLI->beginIndex())) 1867 ++GlobalSegment; 1868 1869 if (GlobalSegment == GlobalLI->end()) 1870 return; 1871 1872 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1873 if (GlobalSegment != GlobalLI->begin()) { 1874 // Two address defs have no hole. 1875 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1876 GlobalSegment->start)) { 1877 return; 1878 } 1879 // If the prior global segment may be defined by the same two-address 1880 // instruction that also defines LocalLI, then can't make a hole here. 1881 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1882 LocalLI->beginIndex())) { 1883 return; 1884 } 1885 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1886 // it would be a disconnected component in the live range. 1887 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1888 "Disconnected LRG within the scheduling region."); 1889 } 1890 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1891 if (!GlobalDef) 1892 return; 1893 1894 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1895 if (!GlobalSU) 1896 return; 1897 1898 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1899 // constraining the uses of the last local def to precede GlobalDef. 1900 SmallVector<SUnit*,8> LocalUses; 1901 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1902 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1903 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1904 for (const SDep &Succ : LastLocalSU->Succs) { 1905 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 1906 continue; 1907 if (Succ.getSUnit() == GlobalSU) 1908 continue; 1909 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 1910 return; 1911 LocalUses.push_back(Succ.getSUnit()); 1912 } 1913 // Open the top of the GlobalLI hole by constraining any earlier global uses 1914 // to precede the start of LocalLI. 1915 SmallVector<SUnit*,8> GlobalUses; 1916 MachineInstr *FirstLocalDef = 1917 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1918 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1919 for (const SDep &Pred : GlobalSU->Preds) { 1920 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 1921 continue; 1922 if (Pred.getSUnit() == FirstLocalSU) 1923 continue; 1924 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 1925 return; 1926 GlobalUses.push_back(Pred.getSUnit()); 1927 } 1928 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1929 // Add the weak edges. 1930 for (SmallVectorImpl<SUnit*>::const_iterator 1931 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1932 LLVM_DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1933 << GlobalSU->NodeNum << ")\n"); 1934 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1935 } 1936 for (SmallVectorImpl<SUnit*>::const_iterator 1937 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1938 LLVM_DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1939 << FirstLocalSU->NodeNum << ")\n"); 1940 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1941 } 1942 } 1943 1944 /// Callback from DAG postProcessing to create weak edges to encourage 1945 /// copy elimination. 1946 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1947 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1948 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1949 1950 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1951 if (FirstPos == DAG->end()) 1952 return; 1953 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1954 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1955 *priorNonDebug(DAG->end(), DAG->begin())); 1956 1957 for (SUnit &SU : DAG->SUnits) { 1958 if (!SU.getInstr()->isCopy()) 1959 continue; 1960 1961 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 1962 } 1963 } 1964 1965 //===----------------------------------------------------------------------===// 1966 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1967 // and possibly other custom schedulers. 1968 //===----------------------------------------------------------------------===// 1969 1970 static const unsigned InvalidCycle = ~0U; 1971 1972 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1973 1974 /// Given a Count of resource usage and a Latency value, return true if a 1975 /// SchedBoundary becomes resource limited. 1976 /// If we are checking after scheduling a node, we should return true when 1977 /// we just reach the resource limit. 1978 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 1979 unsigned Latency, bool AfterSchedNode) { 1980 int ResCntFactor = (int)(Count - (Latency * LFactor)); 1981 if (AfterSchedNode) 1982 return ResCntFactor >= (int)LFactor; 1983 else 1984 return ResCntFactor > (int)LFactor; 1985 } 1986 1987 void SchedBoundary::reset() { 1988 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1989 // Destroying and reconstructing it is very expensive though. So keep 1990 // invalid, placeholder HazardRecs. 1991 if (HazardRec && HazardRec->isEnabled()) { 1992 delete HazardRec; 1993 HazardRec = nullptr; 1994 } 1995 Available.clear(); 1996 Pending.clear(); 1997 CheckPending = false; 1998 CurrCycle = 0; 1999 CurrMOps = 0; 2000 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2001 ExpectedLatency = 0; 2002 DependentLatency = 0; 2003 RetiredMOps = 0; 2004 MaxExecutedResCount = 0; 2005 ZoneCritResIdx = 0; 2006 IsResourceLimited = false; 2007 ReservedCycles.clear(); 2008 ReservedCyclesIndex.clear(); 2009 #ifndef NDEBUG 2010 // Track the maximum number of stall cycles that could arise either from the 2011 // latency of a DAG edge or the number of cycles that a processor resource is 2012 // reserved (SchedBoundary::ReservedCycles). 2013 MaxObservedStall = 0; 2014 #endif 2015 // Reserve a zero-count for invalid CritResIdx. 2016 ExecutedResCounts.resize(1); 2017 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 2018 } 2019 2020 void SchedRemainder:: 2021 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 2022 reset(); 2023 if (!SchedModel->hasInstrSchedModel()) 2024 return; 2025 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 2026 for (SUnit &SU : DAG->SUnits) { 2027 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 2028 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 2029 * SchedModel->getMicroOpFactor(); 2030 for (TargetSchedModel::ProcResIter 2031 PI = SchedModel->getWriteProcResBegin(SC), 2032 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2033 unsigned PIdx = PI->ProcResourceIdx; 2034 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2035 RemainingCounts[PIdx] += (Factor * PI->Cycles); 2036 } 2037 } 2038 } 2039 2040 void SchedBoundary:: 2041 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 2042 reset(); 2043 DAG = dag; 2044 SchedModel = smodel; 2045 Rem = rem; 2046 if (SchedModel->hasInstrSchedModel()) { 2047 unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); 2048 ReservedCyclesIndex.resize(ResourceCount); 2049 ExecutedResCounts.resize(ResourceCount); 2050 unsigned NumUnits = 0; 2051 2052 for (unsigned i = 0; i < ResourceCount; ++i) { 2053 ReservedCyclesIndex[i] = NumUnits; 2054 NumUnits += SchedModel->getProcResource(i)->NumUnits; 2055 } 2056 2057 ReservedCycles.resize(NumUnits, InvalidCycle); 2058 } 2059 } 2060 2061 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 2062 /// these "soft stalls" differently than the hard stall cycles based on CPU 2063 /// resources and computed by checkHazard(). A fully in-order model 2064 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 2065 /// available for scheduling until they are ready. However, a weaker in-order 2066 /// model may use this for heuristics. For example, if a processor has in-order 2067 /// behavior when reading certain resources, this may come into play. 2068 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 2069 if (!SU->isUnbuffered) 2070 return 0; 2071 2072 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2073 if (ReadyCycle > CurrCycle) 2074 return ReadyCycle - CurrCycle; 2075 return 0; 2076 } 2077 2078 /// Compute the next cycle at which the given processor resource unit 2079 /// can be scheduled. 2080 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx, 2081 unsigned Cycles) { 2082 unsigned NextUnreserved = ReservedCycles[InstanceIdx]; 2083 // If this resource has never been used, always return cycle zero. 2084 if (NextUnreserved == InvalidCycle) 2085 return 0; 2086 // For bottom-up scheduling add the cycles needed for the current operation. 2087 if (!isTop()) 2088 NextUnreserved += Cycles; 2089 return NextUnreserved; 2090 } 2091 2092 /// Compute the next cycle at which the given processor resource can be 2093 /// scheduled. Returns the next cycle and the index of the processor resource 2094 /// instance in the reserved cycles vector. 2095 std::pair<unsigned, unsigned> 2096 SchedBoundary::getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 2097 unsigned MinNextUnreserved = InvalidCycle; 2098 unsigned InstanceIdx = 0; 2099 unsigned StartIndex = ReservedCyclesIndex[PIdx]; 2100 unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits; 2101 assert(NumberOfInstances > 0 && 2102 "Cannot have zero instances of a ProcResource"); 2103 2104 for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End; 2105 ++I) { 2106 unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles); 2107 if (MinNextUnreserved > NextUnreserved) { 2108 InstanceIdx = I; 2109 MinNextUnreserved = NextUnreserved; 2110 } 2111 } 2112 return std::make_pair(MinNextUnreserved, InstanceIdx); 2113 } 2114 2115 /// Does this SU have a hazard within the current instruction group. 2116 /// 2117 /// The scheduler supports two modes of hazard recognition. The first is the 2118 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 2119 /// supports highly complicated in-order reservation tables 2120 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. 2121 /// 2122 /// The second is a streamlined mechanism that checks for hazards based on 2123 /// simple counters that the scheduler itself maintains. It explicitly checks 2124 /// for instruction dispatch limitations, including the number of micro-ops that 2125 /// can dispatch per cycle. 2126 /// 2127 /// TODO: Also check whether the SU must start a new group. 2128 bool SchedBoundary::checkHazard(SUnit *SU) { 2129 if (HazardRec->isEnabled() 2130 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 2131 return true; 2132 } 2133 2134 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 2135 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 2136 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 2137 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 2138 return true; 2139 } 2140 2141 if (CurrMOps > 0 && 2142 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 2143 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 2144 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 2145 << (isTop() ? "begin" : "end") << " group\n"); 2146 return true; 2147 } 2148 2149 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 2150 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2151 for (const MCWriteProcResEntry &PE : 2152 make_range(SchedModel->getWriteProcResBegin(SC), 2153 SchedModel->getWriteProcResEnd(SC))) { 2154 unsigned ResIdx = PE.ProcResourceIdx; 2155 unsigned Cycles = PE.Cycles; 2156 unsigned NRCycle, InstanceIdx; 2157 std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(ResIdx, Cycles); 2158 if (NRCycle > CurrCycle) { 2159 #ifndef NDEBUG 2160 MaxObservedStall = std::max(Cycles, MaxObservedStall); 2161 #endif 2162 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 2163 << SchedModel->getResourceName(ResIdx) 2164 << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']' 2165 << "=" << NRCycle << "c\n"); 2166 return true; 2167 } 2168 } 2169 } 2170 return false; 2171 } 2172 2173 // Find the unscheduled node in ReadySUs with the highest latency. 2174 unsigned SchedBoundary:: 2175 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 2176 SUnit *LateSU = nullptr; 2177 unsigned RemLatency = 0; 2178 for (SUnit *SU : ReadySUs) { 2179 unsigned L = getUnscheduledLatency(SU); 2180 if (L > RemLatency) { 2181 RemLatency = L; 2182 LateSU = SU; 2183 } 2184 } 2185 if (LateSU) { 2186 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2187 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2188 } 2189 return RemLatency; 2190 } 2191 2192 // Count resources in this zone and the remaining unscheduled 2193 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2194 // resource index, or zero if the zone is issue limited. 2195 unsigned SchedBoundary:: 2196 getOtherResourceCount(unsigned &OtherCritIdx) { 2197 OtherCritIdx = 0; 2198 if (!SchedModel->hasInstrSchedModel()) 2199 return 0; 2200 2201 unsigned OtherCritCount = Rem->RemIssueCount 2202 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2203 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2204 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2205 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2206 PIdx != PEnd; ++PIdx) { 2207 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2208 if (OtherCount > OtherCritCount) { 2209 OtherCritCount = OtherCount; 2210 OtherCritIdx = PIdx; 2211 } 2212 } 2213 if (OtherCritIdx) { 2214 LLVM_DEBUG( 2215 dbgs() << " " << Available.getName() << " + Remain CritRes: " 2216 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2217 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2218 } 2219 return OtherCritCount; 2220 } 2221 2222 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue, 2223 unsigned Idx) { 2224 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2225 2226 #ifndef NDEBUG 2227 // ReadyCycle was been bumped up to the CurrCycle when this node was 2228 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2229 // scheduling, so may now be greater than ReadyCycle. 2230 if (ReadyCycle > CurrCycle) 2231 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2232 #endif 2233 2234 if (ReadyCycle < MinReadyCycle) 2235 MinReadyCycle = ReadyCycle; 2236 2237 // Check for interlocks first. For the purpose of other heuristics, an 2238 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2239 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2240 bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) || 2241 checkHazard(SU) || (Available.size() >= ReadyListLimit); 2242 2243 if (!HazardDetected) { 2244 Available.push(SU); 2245 2246 if (InPQueue) 2247 Pending.remove(Pending.begin() + Idx); 2248 return; 2249 } 2250 2251 if (!InPQueue) 2252 Pending.push(SU); 2253 } 2254 2255 /// Move the boundary of scheduled code by one cycle. 2256 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2257 if (SchedModel->getMicroOpBufferSize() == 0) { 2258 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2259 "MinReadyCycle uninitialized"); 2260 if (MinReadyCycle > NextCycle) 2261 NextCycle = MinReadyCycle; 2262 } 2263 // Update the current micro-ops, which will issue in the next cycle. 2264 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2265 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2266 2267 // Decrement DependentLatency based on the next cycle. 2268 if ((NextCycle - CurrCycle) > DependentLatency) 2269 DependentLatency = 0; 2270 else 2271 DependentLatency -= (NextCycle - CurrCycle); 2272 2273 if (!HazardRec->isEnabled()) { 2274 // Bypass HazardRec virtual calls. 2275 CurrCycle = NextCycle; 2276 } else { 2277 // Bypass getHazardType calls in case of long latency. 2278 for (; CurrCycle != NextCycle; ++CurrCycle) { 2279 if (isTop()) 2280 HazardRec->AdvanceCycle(); 2281 else 2282 HazardRec->RecedeCycle(); 2283 } 2284 } 2285 CheckPending = true; 2286 IsResourceLimited = 2287 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2288 getScheduledLatency(), true); 2289 2290 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() 2291 << '\n'); 2292 } 2293 2294 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2295 ExecutedResCounts[PIdx] += Count; 2296 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2297 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2298 } 2299 2300 /// Add the given processor resource to this scheduled zone. 2301 /// 2302 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2303 /// during which this resource is consumed. 2304 /// 2305 /// \return the next cycle at which the instruction may execute without 2306 /// oversubscribing resources. 2307 unsigned SchedBoundary:: 2308 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2309 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2310 unsigned Count = Factor * Cycles; 2311 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +" 2312 << Cycles << "x" << Factor << "u\n"); 2313 2314 // Update Executed resources counts. 2315 incExecutedResources(PIdx, Count); 2316 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2317 Rem->RemainingCounts[PIdx] -= Count; 2318 2319 // Check if this resource exceeds the current critical resource. If so, it 2320 // becomes the critical resource. 2321 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2322 ZoneCritResIdx = PIdx; 2323 LLVM_DEBUG(dbgs() << " *** Critical resource " 2324 << SchedModel->getResourceName(PIdx) << ": " 2325 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() 2326 << "c\n"); 2327 } 2328 // For reserved resources, record the highest cycle using the resource. 2329 unsigned NextAvailable, InstanceIdx; 2330 std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(PIdx, Cycles); 2331 if (NextAvailable > CurrCycle) { 2332 LLVM_DEBUG(dbgs() << " Resource conflict: " 2333 << SchedModel->getResourceName(PIdx) 2334 << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']' 2335 << " reserved until @" << NextAvailable << "\n"); 2336 } 2337 return NextAvailable; 2338 } 2339 2340 /// Move the boundary of scheduled code by one SUnit. 2341 void SchedBoundary::bumpNode(SUnit *SU) { 2342 // Update the reservation table. 2343 if (HazardRec->isEnabled()) { 2344 if (!isTop() && SU->isCall) { 2345 // Calls are scheduled with their preceding instructions. For bottom-up 2346 // scheduling, clear the pipeline state before emitting. 2347 HazardRec->Reset(); 2348 } 2349 HazardRec->EmitInstruction(SU); 2350 // Scheduling an instruction may have made pending instructions available. 2351 CheckPending = true; 2352 } 2353 // checkHazard should prevent scheduling multiple instructions per cycle that 2354 // exceed the issue width. 2355 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2356 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2357 assert( 2358 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2359 "Cannot schedule this instruction's MicroOps in the current cycle."); 2360 2361 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2362 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2363 2364 unsigned NextCycle = CurrCycle; 2365 switch (SchedModel->getMicroOpBufferSize()) { 2366 case 0: 2367 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2368 break; 2369 case 1: 2370 if (ReadyCycle > NextCycle) { 2371 NextCycle = ReadyCycle; 2372 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2373 } 2374 break; 2375 default: 2376 // We don't currently model the OOO reorder buffer, so consider all 2377 // scheduled MOps to be "retired". We do loosely model in-order resource 2378 // latency. If this instruction uses an in-order resource, account for any 2379 // likely stall cycles. 2380 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2381 NextCycle = ReadyCycle; 2382 break; 2383 } 2384 RetiredMOps += IncMOps; 2385 2386 // Update resource counts and critical resource. 2387 if (SchedModel->hasInstrSchedModel()) { 2388 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2389 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2390 Rem->RemIssueCount -= DecRemIssue; 2391 if (ZoneCritResIdx) { 2392 // Scale scheduled micro-ops for comparing with the critical resource. 2393 unsigned ScaledMOps = 2394 RetiredMOps * SchedModel->getMicroOpFactor(); 2395 2396 // If scaled micro-ops are now more than the previous critical resource by 2397 // a full cycle, then micro-ops issue becomes critical. 2398 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2399 >= (int)SchedModel->getLatencyFactor()) { 2400 ZoneCritResIdx = 0; 2401 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2402 << ScaledMOps / SchedModel->getLatencyFactor() 2403 << "c\n"); 2404 } 2405 } 2406 for (TargetSchedModel::ProcResIter 2407 PI = SchedModel->getWriteProcResBegin(SC), 2408 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2409 unsigned RCycle = 2410 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2411 if (RCycle > NextCycle) 2412 NextCycle = RCycle; 2413 } 2414 if (SU->hasReservedResource) { 2415 // For reserved resources, record the highest cycle using the resource. 2416 // For top-down scheduling, this is the cycle in which we schedule this 2417 // instruction plus the number of cycles the operations reserves the 2418 // resource. For bottom-up is it simply the instruction's cycle. 2419 for (TargetSchedModel::ProcResIter 2420 PI = SchedModel->getWriteProcResBegin(SC), 2421 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2422 unsigned PIdx = PI->ProcResourceIdx; 2423 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2424 unsigned ReservedUntil, InstanceIdx; 2425 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(PIdx, 0); 2426 if (isTop()) { 2427 ReservedCycles[InstanceIdx] = 2428 std::max(ReservedUntil, NextCycle + PI->Cycles); 2429 } else 2430 ReservedCycles[InstanceIdx] = NextCycle; 2431 } 2432 } 2433 } 2434 } 2435 // Update ExpectedLatency and DependentLatency. 2436 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2437 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2438 if (SU->getDepth() > TopLatency) { 2439 TopLatency = SU->getDepth(); 2440 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU(" 2441 << SU->NodeNum << ") " << TopLatency << "c\n"); 2442 } 2443 if (SU->getHeight() > BotLatency) { 2444 BotLatency = SU->getHeight(); 2445 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU(" 2446 << SU->NodeNum << ") " << BotLatency << "c\n"); 2447 } 2448 // If we stall for any reason, bump the cycle. 2449 if (NextCycle > CurrCycle) 2450 bumpCycle(NextCycle); 2451 else 2452 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2453 // resource limited. If a stall occurred, bumpCycle does this. 2454 IsResourceLimited = 2455 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2456 getScheduledLatency(), true); 2457 2458 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2459 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2460 // one cycle. Since we commonly reach the max MOps here, opportunistically 2461 // bump the cycle to avoid uselessly checking everything in the readyQ. 2462 CurrMOps += IncMOps; 2463 2464 // Bump the cycle count for issue group constraints. 2465 // This must be done after NextCycle has been adjust for all other stalls. 2466 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2467 // currCycle to X. 2468 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2469 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2470 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin") 2471 << " group\n"); 2472 bumpCycle(++NextCycle); 2473 } 2474 2475 while (CurrMOps >= SchedModel->getIssueWidth()) { 2476 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle " 2477 << CurrCycle << '\n'); 2478 bumpCycle(++NextCycle); 2479 } 2480 LLVM_DEBUG(dumpScheduledState()); 2481 } 2482 2483 /// Release pending ready nodes in to the available queue. This makes them 2484 /// visible to heuristics. 2485 void SchedBoundary::releasePending() { 2486 // If the available queue is empty, it is safe to reset MinReadyCycle. 2487 if (Available.empty()) 2488 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2489 2490 // Check to see if any of the pending instructions are ready to issue. If 2491 // so, add them to the available queue. 2492 for (unsigned I = 0, E = Pending.size(); I < E; ++I) { 2493 SUnit *SU = *(Pending.begin() + I); 2494 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2495 2496 if (ReadyCycle < MinReadyCycle) 2497 MinReadyCycle = ReadyCycle; 2498 2499 if (Available.size() >= ReadyListLimit) 2500 break; 2501 2502 releaseNode(SU, ReadyCycle, true, I); 2503 if (E != Pending.size()) { 2504 --I; 2505 --E; 2506 } 2507 } 2508 CheckPending = false; 2509 } 2510 2511 /// Remove SU from the ready set for this boundary. 2512 void SchedBoundary::removeReady(SUnit *SU) { 2513 if (Available.isInQueue(SU)) 2514 Available.remove(Available.find(SU)); 2515 else { 2516 assert(Pending.isInQueue(SU) && "bad ready count"); 2517 Pending.remove(Pending.find(SU)); 2518 } 2519 } 2520 2521 /// If this queue only has one ready candidate, return it. As a side effect, 2522 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2523 /// one node is ready. If multiple instructions are ready, return NULL. 2524 SUnit *SchedBoundary::pickOnlyChoice() { 2525 if (CheckPending) 2526 releasePending(); 2527 2528 // Defer any ready instrs that now have a hazard. 2529 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2530 if (checkHazard(*I)) { 2531 Pending.push(*I); 2532 I = Available.remove(I); 2533 continue; 2534 } 2535 ++I; 2536 } 2537 for (unsigned i = 0; Available.empty(); ++i) { 2538 // FIXME: Re-enable assert once PR20057 is resolved. 2539 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2540 // "permanent hazard"); 2541 (void)i; 2542 bumpCycle(CurrCycle + 1); 2543 releasePending(); 2544 } 2545 2546 LLVM_DEBUG(Pending.dump()); 2547 LLVM_DEBUG(Available.dump()); 2548 2549 if (Available.size() == 1) 2550 return *Available.begin(); 2551 return nullptr; 2552 } 2553 2554 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2555 // This is useful information to dump after bumpNode. 2556 // Note that the Queue contents are more useful before pickNodeFromQueue. 2557 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2558 unsigned ResFactor; 2559 unsigned ResCount; 2560 if (ZoneCritResIdx) { 2561 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2562 ResCount = getResourceCount(ZoneCritResIdx); 2563 } else { 2564 ResFactor = SchedModel->getMicroOpFactor(); 2565 ResCount = RetiredMOps * ResFactor; 2566 } 2567 unsigned LFactor = SchedModel->getLatencyFactor(); 2568 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2569 << " Retired: " << RetiredMOps; 2570 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2571 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2572 << ResCount / ResFactor << " " 2573 << SchedModel->getResourceName(ZoneCritResIdx) 2574 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2575 << (IsResourceLimited ? " - Resource" : " - Latency") 2576 << " limited.\n"; 2577 } 2578 #endif 2579 2580 //===----------------------------------------------------------------------===// 2581 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2582 //===----------------------------------------------------------------------===// 2583 2584 void GenericSchedulerBase::SchedCandidate:: 2585 initResourceDelta(const ScheduleDAGMI *DAG, 2586 const TargetSchedModel *SchedModel) { 2587 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2588 return; 2589 2590 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2591 for (TargetSchedModel::ProcResIter 2592 PI = SchedModel->getWriteProcResBegin(SC), 2593 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2594 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2595 ResDelta.CritResources += PI->Cycles; 2596 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2597 ResDelta.DemandedResources += PI->Cycles; 2598 } 2599 } 2600 2601 /// Compute remaining latency. We need this both to determine whether the 2602 /// overall schedule has become latency-limited and whether the instructions 2603 /// outside this zone are resource or latency limited. 2604 /// 2605 /// The "dependent" latency is updated incrementally during scheduling as the 2606 /// max height/depth of scheduled nodes minus the cycles since it was 2607 /// scheduled: 2608 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2609 /// 2610 /// The "independent" latency is the max ready queue depth: 2611 /// ILat = max N.depth for N in Available|Pending 2612 /// 2613 /// RemainingLatency is the greater of independent and dependent latency. 2614 /// 2615 /// These computations are expensive, especially in DAGs with many edges, so 2616 /// only do them if necessary. 2617 static unsigned computeRemLatency(SchedBoundary &CurrZone) { 2618 unsigned RemLatency = CurrZone.getDependentLatency(); 2619 RemLatency = std::max(RemLatency, 2620 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2621 RemLatency = std::max(RemLatency, 2622 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2623 return RemLatency; 2624 } 2625 2626 /// Returns true if the current cycle plus remaning latency is greater than 2627 /// the critical path in the scheduling region. 2628 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy, 2629 SchedBoundary &CurrZone, 2630 bool ComputeRemLatency, 2631 unsigned &RemLatency) const { 2632 // The current cycle is already greater than the critical path, so we are 2633 // already latency limited and don't need to compute the remaining latency. 2634 if (CurrZone.getCurrCycle() > Rem.CriticalPath) 2635 return true; 2636 2637 // If we haven't scheduled anything yet, then we aren't latency limited. 2638 if (CurrZone.getCurrCycle() == 0) 2639 return false; 2640 2641 if (ComputeRemLatency) 2642 RemLatency = computeRemLatency(CurrZone); 2643 2644 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath; 2645 } 2646 2647 /// Set the CandPolicy given a scheduling zone given the current resources and 2648 /// latencies inside and outside the zone. 2649 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2650 SchedBoundary &CurrZone, 2651 SchedBoundary *OtherZone) { 2652 // Apply preemptive heuristics based on the total latency and resources 2653 // inside and outside this zone. Potential stalls should be considered before 2654 // following this policy. 2655 2656 // Compute the critical resource outside the zone. 2657 unsigned OtherCritIdx = 0; 2658 unsigned OtherCount = 2659 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2660 2661 bool OtherResLimited = false; 2662 unsigned RemLatency = 0; 2663 bool RemLatencyComputed = false; 2664 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) { 2665 RemLatency = computeRemLatency(CurrZone); 2666 RemLatencyComputed = true; 2667 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 2668 OtherCount, RemLatency, false); 2669 } 2670 2671 // Schedule aggressively for latency in PostRA mode. We don't check for 2672 // acyclic latency during PostRA, and highly out-of-order processors will 2673 // skip PostRA scheduling. 2674 if (!OtherResLimited && 2675 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed, 2676 RemLatency))) { 2677 Policy.ReduceLatency |= true; 2678 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName() 2679 << " RemainingLatency " << RemLatency << " + " 2680 << CurrZone.getCurrCycle() << "c > CritPath " 2681 << Rem.CriticalPath << "\n"); 2682 } 2683 // If the same resource is limiting inside and outside the zone, do nothing. 2684 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2685 return; 2686 2687 LLVM_DEBUG(if (CurrZone.isResourceLimited()) { 2688 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2689 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n"; 2690 } if (OtherResLimited) dbgs() 2691 << " RemainingLimit: " 2692 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2693 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs() 2694 << " Latency limited both directions.\n"); 2695 2696 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2697 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2698 2699 if (OtherResLimited) 2700 Policy.DemandResIdx = OtherCritIdx; 2701 } 2702 2703 #ifndef NDEBUG 2704 const char *GenericSchedulerBase::getReasonStr( 2705 GenericSchedulerBase::CandReason Reason) { 2706 switch (Reason) { 2707 case NoCand: return "NOCAND "; 2708 case Only1: return "ONLY1 "; 2709 case PhysReg: return "PHYS-REG "; 2710 case RegExcess: return "REG-EXCESS"; 2711 case RegCritical: return "REG-CRIT "; 2712 case Stall: return "STALL "; 2713 case Cluster: return "CLUSTER "; 2714 case Weak: return "WEAK "; 2715 case RegMax: return "REG-MAX "; 2716 case ResourceReduce: return "RES-REDUCE"; 2717 case ResourceDemand: return "RES-DEMAND"; 2718 case TopDepthReduce: return "TOP-DEPTH "; 2719 case TopPathReduce: return "TOP-PATH "; 2720 case BotHeightReduce:return "BOT-HEIGHT"; 2721 case BotPathReduce: return "BOT-PATH "; 2722 case NextDefUse: return "DEF-USE "; 2723 case NodeOrder: return "ORDER "; 2724 }; 2725 llvm_unreachable("Unknown reason!"); 2726 } 2727 2728 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2729 PressureChange P; 2730 unsigned ResIdx = 0; 2731 unsigned Latency = 0; 2732 switch (Cand.Reason) { 2733 default: 2734 break; 2735 case RegExcess: 2736 P = Cand.RPDelta.Excess; 2737 break; 2738 case RegCritical: 2739 P = Cand.RPDelta.CriticalMax; 2740 break; 2741 case RegMax: 2742 P = Cand.RPDelta.CurrentMax; 2743 break; 2744 case ResourceReduce: 2745 ResIdx = Cand.Policy.ReduceResIdx; 2746 break; 2747 case ResourceDemand: 2748 ResIdx = Cand.Policy.DemandResIdx; 2749 break; 2750 case TopDepthReduce: 2751 Latency = Cand.SU->getDepth(); 2752 break; 2753 case TopPathReduce: 2754 Latency = Cand.SU->getHeight(); 2755 break; 2756 case BotHeightReduce: 2757 Latency = Cand.SU->getHeight(); 2758 break; 2759 case BotPathReduce: 2760 Latency = Cand.SU->getDepth(); 2761 break; 2762 } 2763 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2764 if (P.isValid()) 2765 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2766 << ":" << P.getUnitInc() << " "; 2767 else 2768 dbgs() << " "; 2769 if (ResIdx) 2770 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2771 else 2772 dbgs() << " "; 2773 if (Latency) 2774 dbgs() << " " << Latency << " cycles "; 2775 else 2776 dbgs() << " "; 2777 dbgs() << '\n'; 2778 } 2779 #endif 2780 2781 namespace llvm { 2782 /// Return true if this heuristic determines order. 2783 bool tryLess(int TryVal, int CandVal, 2784 GenericSchedulerBase::SchedCandidate &TryCand, 2785 GenericSchedulerBase::SchedCandidate &Cand, 2786 GenericSchedulerBase::CandReason Reason) { 2787 if (TryVal < CandVal) { 2788 TryCand.Reason = Reason; 2789 return true; 2790 } 2791 if (TryVal > CandVal) { 2792 if (Cand.Reason > Reason) 2793 Cand.Reason = Reason; 2794 return true; 2795 } 2796 return false; 2797 } 2798 2799 bool tryGreater(int TryVal, int CandVal, 2800 GenericSchedulerBase::SchedCandidate &TryCand, 2801 GenericSchedulerBase::SchedCandidate &Cand, 2802 GenericSchedulerBase::CandReason Reason) { 2803 if (TryVal > CandVal) { 2804 TryCand.Reason = Reason; 2805 return true; 2806 } 2807 if (TryVal < CandVal) { 2808 if (Cand.Reason > Reason) 2809 Cand.Reason = Reason; 2810 return true; 2811 } 2812 return false; 2813 } 2814 2815 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2816 GenericSchedulerBase::SchedCandidate &Cand, 2817 SchedBoundary &Zone) { 2818 if (Zone.isTop()) { 2819 // Prefer the candidate with the lesser depth, but only if one of them has 2820 // depth greater than the total latency scheduled so far, otherwise either 2821 // of them could be scheduled now with no stall. 2822 if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) > 2823 Zone.getScheduledLatency()) { 2824 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2825 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2826 return true; 2827 } 2828 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2829 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2830 return true; 2831 } else { 2832 // Prefer the candidate with the lesser height, but only if one of them has 2833 // height greater than the total latency scheduled so far, otherwise either 2834 // of them could be scheduled now with no stall. 2835 if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) > 2836 Zone.getScheduledLatency()) { 2837 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2838 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2839 return true; 2840 } 2841 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2842 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2843 return true; 2844 } 2845 return false; 2846 } 2847 } // end namespace llvm 2848 2849 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2850 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2851 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2852 } 2853 2854 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2855 tracePick(Cand.Reason, Cand.AtTop); 2856 } 2857 2858 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2859 assert(dag->hasVRegLiveness() && 2860 "(PreRA)GenericScheduler needs vreg liveness"); 2861 DAG = static_cast<ScheduleDAGMILive*>(dag); 2862 SchedModel = DAG->getSchedModel(); 2863 TRI = DAG->TRI; 2864 2865 if (RegionPolicy.ComputeDFSResult) 2866 DAG->computeDFSResult(); 2867 2868 Rem.init(DAG, SchedModel); 2869 Top.init(DAG, SchedModel, &Rem); 2870 Bot.init(DAG, SchedModel, &Rem); 2871 2872 // Initialize resource counts. 2873 2874 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2875 // are disabled, then these HazardRecs will be disabled. 2876 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2877 if (!Top.HazardRec) { 2878 Top.HazardRec = 2879 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2880 Itin, DAG); 2881 } 2882 if (!Bot.HazardRec) { 2883 Bot.HazardRec = 2884 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2885 Itin, DAG); 2886 } 2887 TopCand.SU = nullptr; 2888 BotCand.SU = nullptr; 2889 } 2890 2891 /// Initialize the per-region scheduling policy. 2892 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2893 MachineBasicBlock::iterator End, 2894 unsigned NumRegionInstrs) { 2895 const MachineFunction &MF = *Begin->getMF(); 2896 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2897 2898 // Avoid setting up the register pressure tracker for small regions to save 2899 // compile time. As a rough heuristic, only track pressure when the number of 2900 // schedulable instructions exceeds half the integer register file. 2901 RegionPolicy.ShouldTrackPressure = true; 2902 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2903 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2904 if (TLI->isTypeLegal(LegalIntVT)) { 2905 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2906 TLI->getRegClassFor(LegalIntVT)); 2907 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2908 } 2909 } 2910 2911 // For generic targets, we default to bottom-up, because it's simpler and more 2912 // compile-time optimizations have been implemented in that direction. 2913 RegionPolicy.OnlyBottomUp = true; 2914 2915 // Allow the subtarget to override default policy. 2916 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2917 2918 // After subtarget overrides, apply command line options. 2919 if (!EnableRegPressure) { 2920 RegionPolicy.ShouldTrackPressure = false; 2921 RegionPolicy.ShouldTrackLaneMasks = false; 2922 } 2923 2924 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2925 // e.g. -misched-bottomup=false allows scheduling in both directions. 2926 assert((!ForceTopDown || !ForceBottomUp) && 2927 "-misched-topdown incompatible with -misched-bottomup"); 2928 if (ForceBottomUp.getNumOccurrences() > 0) { 2929 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2930 if (RegionPolicy.OnlyBottomUp) 2931 RegionPolicy.OnlyTopDown = false; 2932 } 2933 if (ForceTopDown.getNumOccurrences() > 0) { 2934 RegionPolicy.OnlyTopDown = ForceTopDown; 2935 if (RegionPolicy.OnlyTopDown) 2936 RegionPolicy.OnlyBottomUp = false; 2937 } 2938 } 2939 2940 void GenericScheduler::dumpPolicy() const { 2941 // Cannot completely remove virtual function even in release mode. 2942 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2943 dbgs() << "GenericScheduler RegionPolicy: " 2944 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2945 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2946 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2947 << "\n"; 2948 #endif 2949 } 2950 2951 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2952 /// critical path by more cycles than it takes to drain the instruction buffer. 2953 /// We estimate an upper bounds on in-flight instructions as: 2954 /// 2955 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2956 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2957 /// InFlightResources = InFlightIterations * LoopResources 2958 /// 2959 /// TODO: Check execution resources in addition to IssueCount. 2960 void GenericScheduler::checkAcyclicLatency() { 2961 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2962 return; 2963 2964 // Scaled number of cycles per loop iteration. 2965 unsigned IterCount = 2966 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2967 Rem.RemIssueCount); 2968 // Scaled acyclic critical path. 2969 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2970 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2971 unsigned InFlightCount = 2972 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2973 unsigned BufferLimit = 2974 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2975 2976 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2977 2978 LLVM_DEBUG( 2979 dbgs() << "IssueCycles=" 2980 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2981 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2982 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount 2983 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2984 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2985 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2986 } 2987 2988 void GenericScheduler::registerRoots() { 2989 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2990 2991 // Some roots may not feed into ExitSU. Check all of them in case. 2992 for (const SUnit *SU : Bot.Available) { 2993 if (SU->getDepth() > Rem.CriticalPath) 2994 Rem.CriticalPath = SU->getDepth(); 2995 } 2996 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2997 if (DumpCriticalPathLength) { 2998 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2999 } 3000 3001 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 3002 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 3003 checkAcyclicLatency(); 3004 } 3005 } 3006 3007 namespace llvm { 3008 bool tryPressure(const PressureChange &TryP, 3009 const PressureChange &CandP, 3010 GenericSchedulerBase::SchedCandidate &TryCand, 3011 GenericSchedulerBase::SchedCandidate &Cand, 3012 GenericSchedulerBase::CandReason Reason, 3013 const TargetRegisterInfo *TRI, 3014 const MachineFunction &MF) { 3015 // If one candidate decreases and the other increases, go with it. 3016 // Invalid candidates have UnitInc==0. 3017 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 3018 Reason)) { 3019 return true; 3020 } 3021 // Do not compare the magnitude of pressure changes between top and bottom 3022 // boundary. 3023 if (Cand.AtTop != TryCand.AtTop) 3024 return false; 3025 3026 // If both candidates affect the same set in the same boundary, go with the 3027 // smallest increase. 3028 unsigned TryPSet = TryP.getPSetOrMax(); 3029 unsigned CandPSet = CandP.getPSetOrMax(); 3030 if (TryPSet == CandPSet) { 3031 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 3032 Reason); 3033 } 3034 3035 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 3036 std::numeric_limits<int>::max(); 3037 3038 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 3039 std::numeric_limits<int>::max(); 3040 3041 // If the candidates are decreasing pressure, reverse priority. 3042 if (TryP.getUnitInc() < 0) 3043 std::swap(TryRank, CandRank); 3044 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 3045 } 3046 3047 unsigned getWeakLeft(const SUnit *SU, bool isTop) { 3048 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 3049 } 3050 3051 /// Minimize physical register live ranges. Regalloc wants them adjacent to 3052 /// their physreg def/use. 3053 /// 3054 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 3055 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 3056 /// with the operation that produces or consumes the physreg. We'll do this when 3057 /// regalloc has support for parallel copies. 3058 int biasPhysReg(const SUnit *SU, bool isTop) { 3059 const MachineInstr *MI = SU->getInstr(); 3060 3061 if (MI->isCopy()) { 3062 unsigned ScheduledOper = isTop ? 1 : 0; 3063 unsigned UnscheduledOper = isTop ? 0 : 1; 3064 // If we have already scheduled the physreg produce/consumer, immediately 3065 // schedule the copy. 3066 if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg())) 3067 return 1; 3068 // If the physreg is at the boundary, defer it. Otherwise schedule it 3069 // immediately to free the dependent. We can hoist the copy later. 3070 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 3071 if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg())) 3072 return AtBoundary ? -1 : 1; 3073 } 3074 3075 if (MI->isMoveImmediate()) { 3076 // If we have a move immediate and all successors have been assigned, bias 3077 // towards scheduling this later. Make sure all register defs are to 3078 // physical registers. 3079 bool DoBias = true; 3080 for (const MachineOperand &Op : MI->defs()) { 3081 if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) { 3082 DoBias = false; 3083 break; 3084 } 3085 } 3086 3087 if (DoBias) 3088 return isTop ? -1 : 1; 3089 } 3090 3091 return 0; 3092 } 3093 } // end namespace llvm 3094 3095 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 3096 bool AtTop, 3097 const RegPressureTracker &RPTracker, 3098 RegPressureTracker &TempTracker) { 3099 Cand.SU = SU; 3100 Cand.AtTop = AtTop; 3101 if (DAG->isTrackingPressure()) { 3102 if (AtTop) { 3103 TempTracker.getMaxDownwardPressureDelta( 3104 Cand.SU->getInstr(), 3105 Cand.RPDelta, 3106 DAG->getRegionCriticalPSets(), 3107 DAG->getRegPressure().MaxSetPressure); 3108 } else { 3109 if (VerifyScheduling) { 3110 TempTracker.getMaxUpwardPressureDelta( 3111 Cand.SU->getInstr(), 3112 &DAG->getPressureDiff(Cand.SU), 3113 Cand.RPDelta, 3114 DAG->getRegionCriticalPSets(), 3115 DAG->getRegPressure().MaxSetPressure); 3116 } else { 3117 RPTracker.getUpwardPressureDelta( 3118 Cand.SU->getInstr(), 3119 DAG->getPressureDiff(Cand.SU), 3120 Cand.RPDelta, 3121 DAG->getRegionCriticalPSets(), 3122 DAG->getRegPressure().MaxSetPressure); 3123 } 3124 } 3125 } 3126 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs() 3127 << " Try SU(" << Cand.SU->NodeNum << ") " 3128 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":" 3129 << Cand.RPDelta.Excess.getUnitInc() << "\n"); 3130 } 3131 3132 /// Apply a set of heuristics to a new candidate. Heuristics are currently 3133 /// hierarchical. This may be more efficient than a graduated cost model because 3134 /// we don't need to evaluate all aspects of the model for each node in the 3135 /// queue. But it's really done to make the heuristics easier to debug and 3136 /// statistically analyze. 3137 /// 3138 /// \param Cand provides the policy and current best candidate. 3139 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3140 /// \param Zone describes the scheduled zone that we are extending, or nullptr 3141 // if Cand is from a different zone than TryCand. 3142 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 3143 SchedCandidate &TryCand, 3144 SchedBoundary *Zone) const { 3145 // Initialize the candidate if needed. 3146 if (!Cand.isValid()) { 3147 TryCand.Reason = NodeOrder; 3148 return; 3149 } 3150 3151 // Bias PhysReg Defs and copies to their uses and defined respectively. 3152 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop), 3153 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg)) 3154 return; 3155 3156 // Avoid exceeding the target's limit. 3157 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 3158 Cand.RPDelta.Excess, 3159 TryCand, Cand, RegExcess, TRI, 3160 DAG->MF)) 3161 return; 3162 3163 // Avoid increasing the max critical pressure in the scheduled region. 3164 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 3165 Cand.RPDelta.CriticalMax, 3166 TryCand, Cand, RegCritical, TRI, 3167 DAG->MF)) 3168 return; 3169 3170 // We only compare a subset of features when comparing nodes between 3171 // Top and Bottom boundary. Some properties are simply incomparable, in many 3172 // other instances we should only override the other boundary if something 3173 // is a clear good pick on one boundary. Skip heuristics that are more 3174 // "tie-breaking" in nature. 3175 bool SameBoundary = Zone != nullptr; 3176 if (SameBoundary) { 3177 // For loops that are acyclic path limited, aggressively schedule for 3178 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 3179 // heuristics to take precedence. 3180 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 3181 tryLatency(TryCand, Cand, *Zone)) 3182 return; 3183 3184 // Prioritize instructions that read unbuffered resources by stall cycles. 3185 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 3186 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3187 return; 3188 } 3189 3190 // Keep clustered nodes together to encourage downstream peephole 3191 // optimizations which may reduce resource requirements. 3192 // 3193 // This is a best effort to set things up for a post-RA pass. Optimizations 3194 // like generating loads of multiple registers should ideally be done within 3195 // the scheduler pass by combining the loads during DAG postprocessing. 3196 const SUnit *CandNextClusterSU = 3197 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3198 const SUnit *TryCandNextClusterSU = 3199 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3200 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 3201 Cand.SU == CandNextClusterSU, 3202 TryCand, Cand, Cluster)) 3203 return; 3204 3205 if (SameBoundary) { 3206 // Weak edges are for clustering and other constraints. 3207 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 3208 getWeakLeft(Cand.SU, Cand.AtTop), 3209 TryCand, Cand, Weak)) 3210 return; 3211 } 3212 3213 // Avoid increasing the max pressure of the entire region. 3214 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 3215 Cand.RPDelta.CurrentMax, 3216 TryCand, Cand, RegMax, TRI, 3217 DAG->MF)) 3218 return; 3219 3220 if (SameBoundary) { 3221 // Avoid critical resource consumption and balance the schedule. 3222 TryCand.initResourceDelta(DAG, SchedModel); 3223 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3224 TryCand, Cand, ResourceReduce)) 3225 return; 3226 if (tryGreater(TryCand.ResDelta.DemandedResources, 3227 Cand.ResDelta.DemandedResources, 3228 TryCand, Cand, ResourceDemand)) 3229 return; 3230 3231 // Avoid serializing long latency dependence chains. 3232 // For acyclic path limited loops, latency was already checked above. 3233 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 3234 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 3235 return; 3236 3237 // Fall through to original instruction order. 3238 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 3239 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 3240 TryCand.Reason = NodeOrder; 3241 } 3242 } 3243 } 3244 3245 /// Pick the best candidate from the queue. 3246 /// 3247 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 3248 /// DAG building. To adjust for the current scheduling location we need to 3249 /// maintain the number of vreg uses remaining to be top-scheduled. 3250 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3251 const CandPolicy &ZonePolicy, 3252 const RegPressureTracker &RPTracker, 3253 SchedCandidate &Cand) { 3254 // getMaxPressureDelta temporarily modifies the tracker. 3255 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3256 3257 ReadyQueue &Q = Zone.Available; 3258 for (SUnit *SU : Q) { 3259 3260 SchedCandidate TryCand(ZonePolicy); 3261 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3262 // Pass SchedBoundary only when comparing nodes from the same boundary. 3263 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3264 tryCandidate(Cand, TryCand, ZoneArg); 3265 if (TryCand.Reason != NoCand) { 3266 // Initialize resource delta if needed in case future heuristics query it. 3267 if (TryCand.ResDelta == SchedResourceDelta()) 3268 TryCand.initResourceDelta(DAG, SchedModel); 3269 Cand.setBest(TryCand); 3270 LLVM_DEBUG(traceCandidate(Cand)); 3271 } 3272 } 3273 } 3274 3275 /// Pick the best candidate node from either the top or bottom queue. 3276 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3277 // Schedule as far as possible in the direction of no choice. This is most 3278 // efficient, but also provides the best heuristics for CriticalPSets. 3279 if (SUnit *SU = Bot.pickOnlyChoice()) { 3280 IsTopNode = false; 3281 tracePick(Only1, false); 3282 return SU; 3283 } 3284 if (SUnit *SU = Top.pickOnlyChoice()) { 3285 IsTopNode = true; 3286 tracePick(Only1, true); 3287 return SU; 3288 } 3289 // Set the bottom-up policy based on the state of the current bottom zone and 3290 // the instructions outside the zone, including the top zone. 3291 CandPolicy BotPolicy; 3292 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3293 // Set the top-down policy based on the state of the current top zone and 3294 // the instructions outside the zone, including the bottom zone. 3295 CandPolicy TopPolicy; 3296 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3297 3298 // See if BotCand is still valid (because we previously scheduled from Top). 3299 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 3300 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3301 BotCand.Policy != BotPolicy) { 3302 BotCand.reset(CandPolicy()); 3303 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3304 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3305 } else { 3306 LLVM_DEBUG(traceCandidate(BotCand)); 3307 #ifndef NDEBUG 3308 if (VerifyScheduling) { 3309 SchedCandidate TCand; 3310 TCand.reset(CandPolicy()); 3311 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3312 assert(TCand.SU == BotCand.SU && 3313 "Last pick result should correspond to re-picking right now"); 3314 } 3315 #endif 3316 } 3317 3318 // Check if the top Q has a better candidate. 3319 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 3320 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3321 TopCand.Policy != TopPolicy) { 3322 TopCand.reset(CandPolicy()); 3323 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3324 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3325 } else { 3326 LLVM_DEBUG(traceCandidate(TopCand)); 3327 #ifndef NDEBUG 3328 if (VerifyScheduling) { 3329 SchedCandidate TCand; 3330 TCand.reset(CandPolicy()); 3331 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3332 assert(TCand.SU == TopCand.SU && 3333 "Last pick result should correspond to re-picking right now"); 3334 } 3335 #endif 3336 } 3337 3338 // Pick best from BotCand and TopCand. 3339 assert(BotCand.isValid()); 3340 assert(TopCand.isValid()); 3341 SchedCandidate Cand = BotCand; 3342 TopCand.Reason = NoCand; 3343 tryCandidate(Cand, TopCand, nullptr); 3344 if (TopCand.Reason != NoCand) { 3345 Cand.setBest(TopCand); 3346 LLVM_DEBUG(traceCandidate(Cand)); 3347 } 3348 3349 IsTopNode = Cand.AtTop; 3350 tracePick(Cand); 3351 return Cand.SU; 3352 } 3353 3354 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3355 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3356 if (DAG->top() == DAG->bottom()) { 3357 assert(Top.Available.empty() && Top.Pending.empty() && 3358 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3359 return nullptr; 3360 } 3361 SUnit *SU; 3362 do { 3363 if (RegionPolicy.OnlyTopDown) { 3364 SU = Top.pickOnlyChoice(); 3365 if (!SU) { 3366 CandPolicy NoPolicy; 3367 TopCand.reset(NoPolicy); 3368 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3369 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3370 tracePick(TopCand); 3371 SU = TopCand.SU; 3372 } 3373 IsTopNode = true; 3374 } else if (RegionPolicy.OnlyBottomUp) { 3375 SU = Bot.pickOnlyChoice(); 3376 if (!SU) { 3377 CandPolicy NoPolicy; 3378 BotCand.reset(NoPolicy); 3379 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3380 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3381 tracePick(BotCand); 3382 SU = BotCand.SU; 3383 } 3384 IsTopNode = false; 3385 } else { 3386 SU = pickNodeBidirectional(IsTopNode); 3387 } 3388 } while (SU->isScheduled); 3389 3390 if (SU->isTopReady()) 3391 Top.removeReady(SU); 3392 if (SU->isBottomReady()) 3393 Bot.removeReady(SU); 3394 3395 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3396 << *SU->getInstr()); 3397 return SU; 3398 } 3399 3400 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) { 3401 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3402 if (!isTop) 3403 ++InsertPos; 3404 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3405 3406 // Find already scheduled copies with a single physreg dependence and move 3407 // them just above the scheduled instruction. 3408 for (SDep &Dep : Deps) { 3409 if (Dep.getKind() != SDep::Data || 3410 !Register::isPhysicalRegister(Dep.getReg())) 3411 continue; 3412 SUnit *DepSU = Dep.getSUnit(); 3413 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3414 continue; 3415 MachineInstr *Copy = DepSU->getInstr(); 3416 if (!Copy->isCopy() && !Copy->isMoveImmediate()) 3417 continue; 3418 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy "; 3419 DAG->dumpNode(*Dep.getSUnit())); 3420 DAG->moveInstruction(Copy, InsertPos); 3421 } 3422 } 3423 3424 /// Update the scheduler's state after scheduling a node. This is the same node 3425 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3426 /// update it's state based on the current cycle before MachineSchedStrategy 3427 /// does. 3428 /// 3429 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3430 /// them here. See comments in biasPhysReg. 3431 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3432 if (IsTopNode) { 3433 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3434 Top.bumpNode(SU); 3435 if (SU->hasPhysRegUses) 3436 reschedulePhysReg(SU, true); 3437 } else { 3438 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3439 Bot.bumpNode(SU); 3440 if (SU->hasPhysRegDefs) 3441 reschedulePhysReg(SU, false); 3442 } 3443 } 3444 3445 /// Create the standard converging machine scheduler. This will be used as the 3446 /// default scheduler if the target does not set a default. 3447 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3448 ScheduleDAGMILive *DAG = 3449 new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)); 3450 // Register DAG post-processors. 3451 // 3452 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3453 // data and pass it to later mutations. Have a single mutation that gathers 3454 // the interesting nodes in one pass. 3455 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3456 return DAG; 3457 } 3458 3459 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { 3460 return createGenericSchedLive(C); 3461 } 3462 3463 static MachineSchedRegistry 3464 GenericSchedRegistry("converge", "Standard converging scheduler.", 3465 createConvergingSched); 3466 3467 //===----------------------------------------------------------------------===// 3468 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3469 //===----------------------------------------------------------------------===// 3470 3471 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3472 DAG = Dag; 3473 SchedModel = DAG->getSchedModel(); 3474 TRI = DAG->TRI; 3475 3476 Rem.init(DAG, SchedModel); 3477 Top.init(DAG, SchedModel, &Rem); 3478 BotRoots.clear(); 3479 3480 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3481 // or are disabled, then these HazardRecs will be disabled. 3482 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3483 if (!Top.HazardRec) { 3484 Top.HazardRec = 3485 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3486 Itin, DAG); 3487 } 3488 } 3489 3490 void PostGenericScheduler::registerRoots() { 3491 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3492 3493 // Some roots may not feed into ExitSU. Check all of them in case. 3494 for (const SUnit *SU : BotRoots) { 3495 if (SU->getDepth() > Rem.CriticalPath) 3496 Rem.CriticalPath = SU->getDepth(); 3497 } 3498 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3499 if (DumpCriticalPathLength) { 3500 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3501 } 3502 } 3503 3504 /// Apply a set of heuristics to a new candidate for PostRA scheduling. 3505 /// 3506 /// \param Cand provides the policy and current best candidate. 3507 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3508 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3509 SchedCandidate &TryCand) { 3510 // Initialize the candidate if needed. 3511 if (!Cand.isValid()) { 3512 TryCand.Reason = NodeOrder; 3513 return; 3514 } 3515 3516 // Prioritize instructions that read unbuffered resources by stall cycles. 3517 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3518 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3519 return; 3520 3521 // Keep clustered nodes together. 3522 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3523 Cand.SU == DAG->getNextClusterSucc(), 3524 TryCand, Cand, Cluster)) 3525 return; 3526 3527 // Avoid critical resource consumption and balance the schedule. 3528 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3529 TryCand, Cand, ResourceReduce)) 3530 return; 3531 if (tryGreater(TryCand.ResDelta.DemandedResources, 3532 Cand.ResDelta.DemandedResources, 3533 TryCand, Cand, ResourceDemand)) 3534 return; 3535 3536 // Avoid serializing long latency dependence chains. 3537 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3538 return; 3539 } 3540 3541 // Fall through to original instruction order. 3542 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3543 TryCand.Reason = NodeOrder; 3544 } 3545 3546 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3547 ReadyQueue &Q = Top.Available; 3548 for (SUnit *SU : Q) { 3549 SchedCandidate TryCand(Cand.Policy); 3550 TryCand.SU = SU; 3551 TryCand.AtTop = true; 3552 TryCand.initResourceDelta(DAG, SchedModel); 3553 tryCandidate(Cand, TryCand); 3554 if (TryCand.Reason != NoCand) { 3555 Cand.setBest(TryCand); 3556 LLVM_DEBUG(traceCandidate(Cand)); 3557 } 3558 } 3559 } 3560 3561 /// Pick the next node to schedule. 3562 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3563 if (DAG->top() == DAG->bottom()) { 3564 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3565 return nullptr; 3566 } 3567 SUnit *SU; 3568 do { 3569 SU = Top.pickOnlyChoice(); 3570 if (SU) { 3571 tracePick(Only1, true); 3572 } else { 3573 CandPolicy NoPolicy; 3574 SchedCandidate TopCand(NoPolicy); 3575 // Set the top-down policy based on the state of the current top zone and 3576 // the instructions outside the zone, including the bottom zone. 3577 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3578 pickNodeFromQueue(TopCand); 3579 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3580 tracePick(TopCand); 3581 SU = TopCand.SU; 3582 } 3583 } while (SU->isScheduled); 3584 3585 IsTopNode = true; 3586 Top.removeReady(SU); 3587 3588 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3589 << *SU->getInstr()); 3590 return SU; 3591 } 3592 3593 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3594 /// scheduled/remaining flags in the DAG nodes. 3595 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3596 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3597 Top.bumpNode(SU); 3598 } 3599 3600 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3601 return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C), 3602 /*RemoveKillFlags=*/true); 3603 } 3604 3605 //===----------------------------------------------------------------------===// 3606 // ILP Scheduler. Currently for experimental analysis of heuristics. 3607 //===----------------------------------------------------------------------===// 3608 3609 namespace { 3610 3611 /// Order nodes by the ILP metric. 3612 struct ILPOrder { 3613 const SchedDFSResult *DFSResult = nullptr; 3614 const BitVector *ScheduledTrees = nullptr; 3615 bool MaximizeILP; 3616 3617 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3618 3619 /// Apply a less-than relation on node priority. 3620 /// 3621 /// (Return true if A comes after B in the Q.) 3622 bool operator()(const SUnit *A, const SUnit *B) const { 3623 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3624 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3625 if (SchedTreeA != SchedTreeB) { 3626 // Unscheduled trees have lower priority. 3627 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3628 return ScheduledTrees->test(SchedTreeB); 3629 3630 // Trees with shallower connections have have lower priority. 3631 if (DFSResult->getSubtreeLevel(SchedTreeA) 3632 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3633 return DFSResult->getSubtreeLevel(SchedTreeA) 3634 < DFSResult->getSubtreeLevel(SchedTreeB); 3635 } 3636 } 3637 if (MaximizeILP) 3638 return DFSResult->getILP(A) < DFSResult->getILP(B); 3639 else 3640 return DFSResult->getILP(A) > DFSResult->getILP(B); 3641 } 3642 }; 3643 3644 /// Schedule based on the ILP metric. 3645 class ILPScheduler : public MachineSchedStrategy { 3646 ScheduleDAGMILive *DAG = nullptr; 3647 ILPOrder Cmp; 3648 3649 std::vector<SUnit*> ReadyQ; 3650 3651 public: 3652 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3653 3654 void initialize(ScheduleDAGMI *dag) override { 3655 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3656 DAG = static_cast<ScheduleDAGMILive*>(dag); 3657 DAG->computeDFSResult(); 3658 Cmp.DFSResult = DAG->getDFSResult(); 3659 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3660 ReadyQ.clear(); 3661 } 3662 3663 void registerRoots() override { 3664 // Restore the heap in ReadyQ with the updated DFS results. 3665 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3666 } 3667 3668 /// Implement MachineSchedStrategy interface. 3669 /// ----------------------------------------- 3670 3671 /// Callback to select the highest priority node from the ready Q. 3672 SUnit *pickNode(bool &IsTopNode) override { 3673 if (ReadyQ.empty()) return nullptr; 3674 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3675 SUnit *SU = ReadyQ.back(); 3676 ReadyQ.pop_back(); 3677 IsTopNode = false; 3678 LLVM_DEBUG(dbgs() << "Pick node " 3679 << "SU(" << SU->NodeNum << ") " 3680 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3681 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) 3682 << " @" 3683 << DAG->getDFSResult()->getSubtreeLevel( 3684 DAG->getDFSResult()->getSubtreeID(SU)) 3685 << '\n' 3686 << "Scheduling " << *SU->getInstr()); 3687 return SU; 3688 } 3689 3690 /// Scheduler callback to notify that a new subtree is scheduled. 3691 void scheduleTree(unsigned SubtreeID) override { 3692 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3693 } 3694 3695 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3696 /// DFSResults, and resort the priority Q. 3697 void schedNode(SUnit *SU, bool IsTopNode) override { 3698 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3699 } 3700 3701 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3702 3703 void releaseBottomNode(SUnit *SU) override { 3704 ReadyQ.push_back(SU); 3705 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3706 } 3707 }; 3708 3709 } // end anonymous namespace 3710 3711 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3712 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true)); 3713 } 3714 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3715 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false)); 3716 } 3717 3718 static MachineSchedRegistry ILPMaxRegistry( 3719 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3720 static MachineSchedRegistry ILPMinRegistry( 3721 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3722 3723 //===----------------------------------------------------------------------===// 3724 // Machine Instruction Shuffler for Correctness Testing 3725 //===----------------------------------------------------------------------===// 3726 3727 #ifndef NDEBUG 3728 namespace { 3729 3730 /// Apply a less-than relation on the node order, which corresponds to the 3731 /// instruction order prior to scheduling. IsReverse implements greater-than. 3732 template<bool IsReverse> 3733 struct SUnitOrder { 3734 bool operator()(SUnit *A, SUnit *B) const { 3735 if (IsReverse) 3736 return A->NodeNum > B->NodeNum; 3737 else 3738 return A->NodeNum < B->NodeNum; 3739 } 3740 }; 3741 3742 /// Reorder instructions as much as possible. 3743 class InstructionShuffler : public MachineSchedStrategy { 3744 bool IsAlternating; 3745 bool IsTopDown; 3746 3747 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3748 // gives nodes with a higher number higher priority causing the latest 3749 // instructions to be scheduled first. 3750 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3751 TopQ; 3752 3753 // When scheduling bottom-up, use greater-than as the queue priority. 3754 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3755 BottomQ; 3756 3757 public: 3758 InstructionShuffler(bool alternate, bool topdown) 3759 : IsAlternating(alternate), IsTopDown(topdown) {} 3760 3761 void initialize(ScheduleDAGMI*) override { 3762 TopQ.clear(); 3763 BottomQ.clear(); 3764 } 3765 3766 /// Implement MachineSchedStrategy interface. 3767 /// ----------------------------------------- 3768 3769 SUnit *pickNode(bool &IsTopNode) override { 3770 SUnit *SU; 3771 if (IsTopDown) { 3772 do { 3773 if (TopQ.empty()) return nullptr; 3774 SU = TopQ.top(); 3775 TopQ.pop(); 3776 } while (SU->isScheduled); 3777 IsTopNode = true; 3778 } else { 3779 do { 3780 if (BottomQ.empty()) return nullptr; 3781 SU = BottomQ.top(); 3782 BottomQ.pop(); 3783 } while (SU->isScheduled); 3784 IsTopNode = false; 3785 } 3786 if (IsAlternating) 3787 IsTopDown = !IsTopDown; 3788 return SU; 3789 } 3790 3791 void schedNode(SUnit *SU, bool IsTopNode) override {} 3792 3793 void releaseTopNode(SUnit *SU) override { 3794 TopQ.push(SU); 3795 } 3796 void releaseBottomNode(SUnit *SU) override { 3797 BottomQ.push(SU); 3798 } 3799 }; 3800 3801 } // end anonymous namespace 3802 3803 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3804 bool Alternate = !ForceTopDown && !ForceBottomUp; 3805 bool TopDown = !ForceBottomUp; 3806 assert((TopDown || !ForceTopDown) && 3807 "-misched-topdown incompatible with -misched-bottomup"); 3808 return new ScheduleDAGMILive( 3809 C, std::make_unique<InstructionShuffler>(Alternate, TopDown)); 3810 } 3811 3812 static MachineSchedRegistry ShufflerRegistry( 3813 "shuffle", "Shuffle machine instructions alternating directions", 3814 createInstructionShuffler); 3815 #endif // !NDEBUG 3816 3817 //===----------------------------------------------------------------------===// 3818 // GraphWriter support for ScheduleDAGMILive. 3819 //===----------------------------------------------------------------------===// 3820 3821 #ifndef NDEBUG 3822 namespace llvm { 3823 3824 template<> struct GraphTraits< 3825 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3826 3827 template<> 3828 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3829 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3830 3831 static std::string getGraphName(const ScheduleDAG *G) { 3832 return std::string(G->MF.getName()); 3833 } 3834 3835 static bool renderGraphFromBottomUp() { 3836 return true; 3837 } 3838 3839 static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) { 3840 if (ViewMISchedCutoff == 0) 3841 return false; 3842 return (Node->Preds.size() > ViewMISchedCutoff 3843 || Node->Succs.size() > ViewMISchedCutoff); 3844 } 3845 3846 /// If you want to override the dot attributes printed for a particular 3847 /// edge, override this method. 3848 static std::string getEdgeAttributes(const SUnit *Node, 3849 SUnitIterator EI, 3850 const ScheduleDAG *Graph) { 3851 if (EI.isArtificialDep()) 3852 return "color=cyan,style=dashed"; 3853 if (EI.isCtrlDep()) 3854 return "color=blue,style=dashed"; 3855 return ""; 3856 } 3857 3858 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3859 std::string Str; 3860 raw_string_ostream SS(Str); 3861 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3862 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3863 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3864 SS << "SU:" << SU->NodeNum; 3865 if (DFS) 3866 SS << " I:" << DFS->getNumInstrs(SU); 3867 return SS.str(); 3868 } 3869 3870 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3871 return G->getGraphNodeLabel(SU); 3872 } 3873 3874 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3875 std::string Str("shape=Mrecord"); 3876 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3877 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3878 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3879 if (DFS) { 3880 Str += ",style=filled,fillcolor=\"#"; 3881 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3882 Str += '"'; 3883 } 3884 return Str; 3885 } 3886 }; 3887 3888 } // end namespace llvm 3889 #endif // NDEBUG 3890 3891 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3892 /// rendered using 'dot'. 3893 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3894 #ifndef NDEBUG 3895 ViewGraph(this, Name, false, Title); 3896 #else 3897 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3898 << "systems with Graphviz or gv!\n"; 3899 #endif // NDEBUG 3900 } 3901 3902 /// Out-of-line implementation with no arguments is handy for gdb. 3903 void ScheduleDAGMI::viewGraph() { 3904 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3905 } 3906