1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // MachineScheduler schedules machine instructions after phi elimination. It 10 // preserves LiveIntervals so it can be invoked before register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineScheduler.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachinePassRegistry.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/RegisterClassInfo.h" 36 #include "llvm/CodeGen/RegisterPressure.h" 37 #include "llvm/CodeGen/ScheduleDAG.h" 38 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 39 #include "llvm/CodeGen/ScheduleDAGMutation.h" 40 #include "llvm/CodeGen/ScheduleDFS.h" 41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 42 #include "llvm/CodeGen/SlotIndexes.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSchedule.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/CodeGenTypes/MachineValueType.h" 51 #include "llvm/Config/llvm-config.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/MC/LaneBitmask.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/GraphWriter.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <limits> 66 #include <memory> 67 #include <string> 68 #include <tuple> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "machine-scheduler" 75 76 STATISTIC(NumClustered, "Number of load/store pairs clustered"); 77 78 namespace llvm { 79 80 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 81 cl::desc("Force top-down list scheduling")); 82 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 83 cl::desc("Force bottom-up list scheduling")); 84 namespace MISchedPostRASched { 85 enum Direction { 86 TopDown, 87 BottomUp, 88 Bidirectional, 89 }; 90 } // end namespace MISchedPostRASched 91 cl::opt<MISchedPostRASched::Direction> PostRADirection( 92 "misched-postra-direction", cl::Hidden, 93 cl::desc("Post reg-alloc list scheduling direction"), 94 // Default to top-down because it was implemented first and existing targets 95 // expect that behavior by default. 96 cl::init(MISchedPostRASched::TopDown), 97 cl::values( 98 clEnumValN(MISchedPostRASched::TopDown, "topdown", 99 "Force top-down post reg-alloc list scheduling"), 100 clEnumValN(MISchedPostRASched::BottomUp, "bottomup", 101 "Force bottom-up post reg-alloc list scheduling"), 102 clEnumValN(MISchedPostRASched::Bidirectional, "bidirectional", 103 "Force bidirectional post reg-alloc list scheduling"))); 104 cl::opt<bool> 105 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 106 cl::desc("Print critical path length to stdout")); 107 108 cl::opt<bool> VerifyScheduling( 109 "verify-misched", cl::Hidden, 110 cl::desc("Verify machine instrs before and after machine scheduling")); 111 112 #ifndef NDEBUG 113 cl::opt<bool> ViewMISchedDAGs( 114 "view-misched-dags", cl::Hidden, 115 cl::desc("Pop up a window to show MISched dags after they are processed")); 116 cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden, 117 cl::desc("Print schedule DAGs")); 118 cl::opt<bool> MISchedDumpReservedCycles( 119 "misched-dump-reserved-cycles", cl::Hidden, cl::init(false), 120 cl::desc("Dump resource usage at schedule boundary.")); 121 cl::opt<bool> MischedDetailResourceBooking( 122 "misched-detail-resource-booking", cl::Hidden, cl::init(false), 123 cl::desc("Show details of invoking getNextResoufceCycle.")); 124 #else 125 const bool ViewMISchedDAGs = false; 126 const bool PrintDAGs = false; 127 const bool MischedDetailResourceBooking = false; 128 #ifdef LLVM_ENABLE_DUMP 129 const bool MISchedDumpReservedCycles = false; 130 #endif // LLVM_ENABLE_DUMP 131 #endif // NDEBUG 132 133 } // end namespace llvm 134 135 #ifndef NDEBUG 136 /// In some situations a few uninteresting nodes depend on nearly all other 137 /// nodes in the graph, provide a cutoff to hide them. 138 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 139 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 140 141 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 142 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 143 144 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 145 cl::desc("Only schedule this function")); 146 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 147 cl::desc("Only schedule this MBB#")); 148 #endif // NDEBUG 149 150 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 151 /// size of the ready lists. 152 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 153 cl::desc("Limit ready list to N instructions"), cl::init(256)); 154 155 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 156 cl::desc("Enable register pressure scheduling."), cl::init(true)); 157 158 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 159 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 160 161 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 162 cl::desc("Enable memop clustering."), 163 cl::init(true)); 164 static cl::opt<bool> 165 ForceFastCluster("force-fast-cluster", cl::Hidden, 166 cl::desc("Switch to fast cluster algorithm with the lost " 167 "of some fusion opportunities"), 168 cl::init(false)); 169 static cl::opt<unsigned> 170 FastClusterThreshold("fast-cluster-threshold", cl::Hidden, 171 cl::desc("The threshold for fast cluster"), 172 cl::init(1000)); 173 174 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 175 static cl::opt<bool> MISchedDumpScheduleTrace( 176 "misched-dump-schedule-trace", cl::Hidden, cl::init(false), 177 cl::desc("Dump resource usage at schedule boundary.")); 178 static cl::opt<unsigned> 179 HeaderColWidth("misched-dump-schedule-trace-col-header-width", cl::Hidden, 180 cl::desc("Set width of the columns with " 181 "the resources and schedule units"), 182 cl::init(19)); 183 static cl::opt<unsigned> 184 ColWidth("misched-dump-schedule-trace-col-width", cl::Hidden, 185 cl::desc("Set width of the columns showing resource booking."), 186 cl::init(5)); 187 static cl::opt<bool> MISchedSortResourcesInTrace( 188 "misched-sort-resources-in-trace", cl::Hidden, cl::init(true), 189 cl::desc("Sort the resources printed in the dump trace")); 190 #endif 191 192 static cl::opt<unsigned> 193 MIResourceCutOff("misched-resource-cutoff", cl::Hidden, 194 cl::desc("Number of intervals to track"), cl::init(10)); 195 196 // DAG subtrees must have at least this many nodes. 197 static const unsigned MinSubtreeSize = 8; 198 199 // Pin the vtables to this file. 200 void MachineSchedStrategy::anchor() {} 201 202 void ScheduleDAGMutation::anchor() {} 203 204 //===----------------------------------------------------------------------===// 205 // Machine Instruction Scheduling Pass and Registry 206 //===----------------------------------------------------------------------===// 207 208 MachineSchedContext::MachineSchedContext() { 209 RegClassInfo = new RegisterClassInfo(); 210 } 211 212 MachineSchedContext::~MachineSchedContext() { 213 delete RegClassInfo; 214 } 215 216 namespace { 217 218 /// Base class for a machine scheduler class that can run at any point. 219 class MachineSchedulerBase : public MachineSchedContext, 220 public MachineFunctionPass { 221 public: 222 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 223 224 void print(raw_ostream &O, const Module* = nullptr) const override; 225 226 protected: 227 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 228 }; 229 230 /// MachineScheduler runs after coalescing and before register allocation. 231 class MachineScheduler : public MachineSchedulerBase { 232 public: 233 MachineScheduler(); 234 235 void getAnalysisUsage(AnalysisUsage &AU) const override; 236 237 bool runOnMachineFunction(MachineFunction&) override; 238 239 static char ID; // Class identification, replacement for typeinfo 240 241 protected: 242 ScheduleDAGInstrs *createMachineScheduler(); 243 }; 244 245 /// PostMachineScheduler runs after shortly before code emission. 246 class PostMachineScheduler : public MachineSchedulerBase { 247 public: 248 PostMachineScheduler(); 249 250 void getAnalysisUsage(AnalysisUsage &AU) const override; 251 252 bool runOnMachineFunction(MachineFunction&) override; 253 254 static char ID; // Class identification, replacement for typeinfo 255 256 protected: 257 ScheduleDAGInstrs *createPostMachineScheduler(); 258 }; 259 260 } // end anonymous namespace 261 262 char MachineScheduler::ID = 0; 263 264 char &llvm::MachineSchedulerID = MachineScheduler::ID; 265 266 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 267 "Machine Instruction Scheduler", false, false) 268 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 269 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 270 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 271 INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass) 272 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) 273 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 274 "Machine Instruction Scheduler", false, false) 275 276 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 277 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 278 } 279 280 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 281 AU.setPreservesCFG(); 282 AU.addRequired<MachineDominatorTreeWrapperPass>(); 283 AU.addRequired<MachineLoopInfoWrapperPass>(); 284 AU.addRequired<AAResultsWrapperPass>(); 285 AU.addRequired<TargetPassConfig>(); 286 AU.addRequired<SlotIndexesWrapperPass>(); 287 AU.addPreserved<SlotIndexesWrapperPass>(); 288 AU.addRequired<LiveIntervalsWrapperPass>(); 289 AU.addPreserved<LiveIntervalsWrapperPass>(); 290 MachineFunctionPass::getAnalysisUsage(AU); 291 } 292 293 char PostMachineScheduler::ID = 0; 294 295 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 296 297 INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched", 298 "PostRA Machine Instruction Scheduler", false, false) 299 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 300 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 301 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 302 INITIALIZE_PASS_END(PostMachineScheduler, "postmisched", 303 "PostRA Machine Instruction Scheduler", false, false) 304 305 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 306 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 307 } 308 309 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 310 AU.setPreservesCFG(); 311 AU.addRequired<MachineDominatorTreeWrapperPass>(); 312 AU.addRequired<MachineLoopInfoWrapperPass>(); 313 AU.addRequired<AAResultsWrapperPass>(); 314 AU.addRequired<TargetPassConfig>(); 315 MachineFunctionPass::getAnalysisUsage(AU); 316 } 317 318 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor> 319 MachineSchedRegistry::Registry; 320 321 /// A dummy default scheduler factory indicates whether the scheduler 322 /// is overridden on the command line. 323 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 324 return nullptr; 325 } 326 327 /// MachineSchedOpt allows command line selection of the scheduler. 328 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 329 RegisterPassParser<MachineSchedRegistry>> 330 MachineSchedOpt("misched", 331 cl::init(&useDefaultMachineSched), cl::Hidden, 332 cl::desc("Machine instruction scheduler to use")); 333 334 static MachineSchedRegistry 335 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 336 useDefaultMachineSched); 337 338 static cl::opt<bool> EnableMachineSched( 339 "enable-misched", 340 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 341 cl::Hidden); 342 343 static cl::opt<bool> EnablePostRAMachineSched( 344 "enable-post-misched", 345 cl::desc("Enable the post-ra machine instruction scheduling pass."), 346 cl::init(true), cl::Hidden); 347 348 /// Decrement this iterator until reaching the top or a non-debug instr. 349 static MachineBasicBlock::const_iterator 350 priorNonDebug(MachineBasicBlock::const_iterator I, 351 MachineBasicBlock::const_iterator Beg) { 352 assert(I != Beg && "reached the top of the region, cannot decrement"); 353 while (--I != Beg) { 354 if (!I->isDebugOrPseudoInstr()) 355 break; 356 } 357 return I; 358 } 359 360 /// Non-const version. 361 static MachineBasicBlock::iterator 362 priorNonDebug(MachineBasicBlock::iterator I, 363 MachineBasicBlock::const_iterator Beg) { 364 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 365 .getNonConstIterator(); 366 } 367 368 /// If this iterator is a debug value, increment until reaching the End or a 369 /// non-debug instruction. 370 static MachineBasicBlock::const_iterator 371 nextIfDebug(MachineBasicBlock::const_iterator I, 372 MachineBasicBlock::const_iterator End) { 373 for(; I != End; ++I) { 374 if (!I->isDebugOrPseudoInstr()) 375 break; 376 } 377 return I; 378 } 379 380 /// Non-const version. 381 static MachineBasicBlock::iterator 382 nextIfDebug(MachineBasicBlock::iterator I, 383 MachineBasicBlock::const_iterator End) { 384 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 385 .getNonConstIterator(); 386 } 387 388 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 389 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 390 // Select the scheduler, or set the default. 391 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 392 if (Ctor != useDefaultMachineSched) 393 return Ctor(this); 394 395 // Get the default scheduler set by the target for this function. 396 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 397 if (Scheduler) 398 return Scheduler; 399 400 // Default to GenericScheduler. 401 return createGenericSchedLive(this); 402 } 403 404 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 405 /// the caller. We don't have a command line option to override the postRA 406 /// scheduler. The Target must configure it. 407 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 408 // Get the postRA scheduler set by the target for this function. 409 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 410 if (Scheduler) 411 return Scheduler; 412 413 // Default to GenericScheduler. 414 return createGenericSchedPostRA(this); 415 } 416 417 /// Top-level MachineScheduler pass driver. 418 /// 419 /// Visit blocks in function order. Divide each block into scheduling regions 420 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 421 /// consistent with the DAG builder, which traverses the interior of the 422 /// scheduling regions bottom-up. 423 /// 424 /// This design avoids exposing scheduling boundaries to the DAG builder, 425 /// simplifying the DAG builder's support for "special" target instructions. 426 /// At the same time the design allows target schedulers to operate across 427 /// scheduling boundaries, for example to bundle the boundary instructions 428 /// without reordering them. This creates complexity, because the target 429 /// scheduler must update the RegionBegin and RegionEnd positions cached by 430 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 431 /// design would be to split blocks at scheduling boundaries, but LLVM has a 432 /// general bias against block splitting purely for implementation simplicity. 433 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 434 if (skipFunction(mf.getFunction())) 435 return false; 436 437 if (EnableMachineSched.getNumOccurrences()) { 438 if (!EnableMachineSched) 439 return false; 440 } else if (!mf.getSubtarget().enableMachineScheduler()) 441 return false; 442 443 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 444 445 // Initialize the context of the pass. 446 MF = &mf; 447 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 448 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 449 PassConfig = &getAnalysis<TargetPassConfig>(); 450 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 451 452 LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); 453 454 if (VerifyScheduling) { 455 LLVM_DEBUG(LIS->dump()); 456 MF->verify(this, "Before machine scheduling."); 457 } 458 RegClassInfo->runOnMachineFunction(*MF); 459 460 // Instantiate the selected scheduler for this target, function, and 461 // optimization level. 462 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 463 ScheduleDAGMI::DumpDirection D; 464 if (ForceTopDown) 465 D = ScheduleDAGMI::DumpDirection::TopDown; 466 else if (ForceBottomUp) 467 D = ScheduleDAGMI::DumpDirection::BottomUp; 468 else 469 D = ScheduleDAGMI::DumpDirection::Bidirectional; 470 Scheduler->setDumpDirection(D); 471 scheduleRegions(*Scheduler, false); 472 473 LLVM_DEBUG(LIS->dump()); 474 if (VerifyScheduling) 475 MF->verify(this, "After machine scheduling."); 476 return true; 477 } 478 479 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 480 if (skipFunction(mf.getFunction())) 481 return false; 482 483 if (EnablePostRAMachineSched.getNumOccurrences()) { 484 if (!EnablePostRAMachineSched) 485 return false; 486 } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) { 487 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 488 return false; 489 } 490 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 491 492 // Initialize the context of the pass. 493 MF = &mf; 494 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 495 PassConfig = &getAnalysis<TargetPassConfig>(); 496 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 497 498 if (VerifyScheduling) 499 MF->verify(this, "Before post machine scheduling."); 500 501 // Instantiate the selected scheduler for this target, function, and 502 // optimization level. 503 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 504 ScheduleDAGMI::DumpDirection D; 505 if (PostRADirection == MISchedPostRASched::TopDown) 506 D = ScheduleDAGMI::DumpDirection::TopDown; 507 else if (PostRADirection == MISchedPostRASched::BottomUp) 508 D = ScheduleDAGMI::DumpDirection::BottomUp; 509 else 510 D = ScheduleDAGMI::DumpDirection::Bidirectional; 511 Scheduler->setDumpDirection(D); 512 scheduleRegions(*Scheduler, true); 513 514 if (VerifyScheduling) 515 MF->verify(this, "After post machine scheduling."); 516 return true; 517 } 518 519 /// Return true of the given instruction should not be included in a scheduling 520 /// region. 521 /// 522 /// MachineScheduler does not currently support scheduling across calls. To 523 /// handle calls, the DAG builder needs to be modified to create register 524 /// anti/output dependencies on the registers clobbered by the call's regmask 525 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 526 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 527 /// the boundary, but there would be no benefit to postRA scheduling across 528 /// calls this late anyway. 529 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 530 MachineBasicBlock *MBB, 531 MachineFunction *MF, 532 const TargetInstrInfo *TII) { 533 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 534 } 535 536 /// A region of an MBB for scheduling. 537 namespace { 538 struct SchedRegion { 539 /// RegionBegin is the first instruction in the scheduling region, and 540 /// RegionEnd is either MBB->end() or the scheduling boundary after the 541 /// last instruction in the scheduling region. These iterators cannot refer 542 /// to instructions outside of the identified scheduling region because 543 /// those may be reordered before scheduling this region. 544 MachineBasicBlock::iterator RegionBegin; 545 MachineBasicBlock::iterator RegionEnd; 546 unsigned NumRegionInstrs; 547 548 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 549 unsigned N) : 550 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 551 }; 552 } // end anonymous namespace 553 554 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 555 556 static void 557 getSchedRegions(MachineBasicBlock *MBB, 558 MBBRegionsVector &Regions, 559 bool RegionsTopDown) { 560 MachineFunction *MF = MBB->getParent(); 561 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 562 563 MachineBasicBlock::iterator I = nullptr; 564 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 565 RegionEnd != MBB->begin(); RegionEnd = I) { 566 567 // Avoid decrementing RegionEnd for blocks with no terminator. 568 if (RegionEnd != MBB->end() || 569 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 570 --RegionEnd; 571 } 572 573 // The next region starts above the previous region. Look backward in the 574 // instruction stream until we find the nearest boundary. 575 unsigned NumRegionInstrs = 0; 576 I = RegionEnd; 577 for (;I != MBB->begin(); --I) { 578 MachineInstr &MI = *std::prev(I); 579 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 580 break; 581 if (!MI.isDebugOrPseudoInstr()) { 582 // MBB::size() uses instr_iterator to count. Here we need a bundle to 583 // count as a single instruction. 584 ++NumRegionInstrs; 585 } 586 } 587 588 // It's possible we found a scheduling region that only has debug 589 // instructions. Don't bother scheduling these. 590 if (NumRegionInstrs != 0) 591 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 592 } 593 594 if (RegionsTopDown) 595 std::reverse(Regions.begin(), Regions.end()); 596 } 597 598 /// Main driver for both MachineScheduler and PostMachineScheduler. 599 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 600 bool FixKillFlags) { 601 // Visit all machine basic blocks. 602 // 603 // TODO: Visit blocks in global postorder or postorder within the bottom-up 604 // loop tree. Then we can optionally compute global RegPressure. 605 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 606 MBB != MBBEnd; ++MBB) { 607 608 Scheduler.startBlock(&*MBB); 609 610 #ifndef NDEBUG 611 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 612 continue; 613 if (SchedOnlyBlock.getNumOccurrences() 614 && (int)SchedOnlyBlock != MBB->getNumber()) 615 continue; 616 #endif 617 618 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 619 // points to the scheduling boundary at the bottom of the region. The DAG 620 // does not include RegionEnd, but the region does (i.e. the next 621 // RegionEnd is above the previous RegionBegin). If the current block has 622 // no terminator then RegionEnd == MBB->end() for the bottom region. 623 // 624 // All the regions of MBB are first found and stored in MBBRegions, which 625 // will be processed (MBB) top-down if initialized with true. 626 // 627 // The Scheduler may insert instructions during either schedule() or 628 // exitRegion(), even for empty regions. So the local iterators 'I' and 629 // 'RegionEnd' are invalid across these calls. Instructions must not be 630 // added to other regions than the current one without updating MBBRegions. 631 632 MBBRegionsVector MBBRegions; 633 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 634 for (const SchedRegion &R : MBBRegions) { 635 MachineBasicBlock::iterator I = R.RegionBegin; 636 MachineBasicBlock::iterator RegionEnd = R.RegionEnd; 637 unsigned NumRegionInstrs = R.NumRegionInstrs; 638 639 // Notify the scheduler of the region, even if we may skip scheduling 640 // it. Perhaps it still needs to be bundled. 641 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 642 643 // Skip empty scheduling regions (0 or 1 schedulable instructions). 644 if (I == RegionEnd || I == std::prev(RegionEnd)) { 645 // Close the current region. Bundle the terminator if needed. 646 // This invalidates 'RegionEnd' and 'I'. 647 Scheduler.exitRegion(); 648 continue; 649 } 650 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 651 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) 652 << " " << MBB->getName() << "\n From: " << *I 653 << " To: "; 654 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 655 else dbgs() << "End\n"; 656 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 657 if (DumpCriticalPathLength) { 658 errs() << MF->getName(); 659 errs() << ":%bb. " << MBB->getNumber(); 660 errs() << " " << MBB->getName() << " \n"; 661 } 662 663 // Schedule a region: possibly reorder instructions. 664 // This invalidates the original region iterators. 665 Scheduler.schedule(); 666 667 // Close the current region. 668 Scheduler.exitRegion(); 669 } 670 Scheduler.finishBlock(); 671 // FIXME: Ideally, no further passes should rely on kill flags. However, 672 // thumb2 size reduction is currently an exception, so the PostMIScheduler 673 // needs to do this. 674 if (FixKillFlags) 675 Scheduler.fixupKills(*MBB); 676 } 677 Scheduler.finalizeSchedule(); 678 } 679 680 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 681 // unimplemented 682 } 683 684 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 685 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 686 dbgs() << "Queue " << Name << ": "; 687 for (const SUnit *SU : Queue) 688 dbgs() << SU->NodeNum << " "; 689 dbgs() << "\n"; 690 } 691 #endif 692 693 //===----------------------------------------------------------------------===// 694 // ScheduleDAGMI - Basic machine instruction scheduling. This is 695 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 696 // virtual registers. 697 // ===----------------------------------------------------------------------===/ 698 699 // Provide a vtable anchor. 700 ScheduleDAGMI::~ScheduleDAGMI() = default; 701 702 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 703 /// NumPredsLeft reaches zero, release the successor node. 704 /// 705 /// FIXME: Adjust SuccSU height based on MinLatency. 706 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 707 SUnit *SuccSU = SuccEdge->getSUnit(); 708 709 if (SuccEdge->isWeak()) { 710 --SuccSU->WeakPredsLeft; 711 if (SuccEdge->isCluster()) 712 NextClusterSucc = SuccSU; 713 return; 714 } 715 #ifndef NDEBUG 716 if (SuccSU->NumPredsLeft == 0) { 717 dbgs() << "*** Scheduling failed! ***\n"; 718 dumpNode(*SuccSU); 719 dbgs() << " has been released too many times!\n"; 720 llvm_unreachable(nullptr); 721 } 722 #endif 723 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 724 // CurrCycle may have advanced since then. 725 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 726 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 727 728 --SuccSU->NumPredsLeft; 729 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 730 SchedImpl->releaseTopNode(SuccSU); 731 } 732 733 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 734 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 735 for (SDep &Succ : SU->Succs) 736 releaseSucc(SU, &Succ); 737 } 738 739 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 740 /// NumSuccsLeft reaches zero, release the predecessor node. 741 /// 742 /// FIXME: Adjust PredSU height based on MinLatency. 743 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 744 SUnit *PredSU = PredEdge->getSUnit(); 745 746 if (PredEdge->isWeak()) { 747 --PredSU->WeakSuccsLeft; 748 if (PredEdge->isCluster()) 749 NextClusterPred = PredSU; 750 return; 751 } 752 #ifndef NDEBUG 753 if (PredSU->NumSuccsLeft == 0) { 754 dbgs() << "*** Scheduling failed! ***\n"; 755 dumpNode(*PredSU); 756 dbgs() << " has been released too many times!\n"; 757 llvm_unreachable(nullptr); 758 } 759 #endif 760 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 761 // CurrCycle may have advanced since then. 762 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 763 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 764 765 --PredSU->NumSuccsLeft; 766 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 767 SchedImpl->releaseBottomNode(PredSU); 768 } 769 770 /// releasePredecessors - Call releasePred on each of SU's predecessors. 771 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 772 for (SDep &Pred : SU->Preds) 773 releasePred(SU, &Pred); 774 } 775 776 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 777 ScheduleDAGInstrs::startBlock(bb); 778 SchedImpl->enterMBB(bb); 779 } 780 781 void ScheduleDAGMI::finishBlock() { 782 SchedImpl->leaveMBB(); 783 ScheduleDAGInstrs::finishBlock(); 784 } 785 786 /// enterRegion - Called back from PostMachineScheduler::runOnMachineFunction 787 /// after crossing a scheduling boundary. [begin, end) includes all instructions 788 /// in the region, including the boundary itself and single-instruction regions 789 /// that don't get scheduled. 790 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 791 MachineBasicBlock::iterator begin, 792 MachineBasicBlock::iterator end, 793 unsigned regioninstrs) 794 { 795 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 796 797 SchedImpl->initPolicy(begin, end, regioninstrs); 798 } 799 800 /// This is normally called from the main scheduler loop but may also be invoked 801 /// by the scheduling strategy to perform additional code motion. 802 void ScheduleDAGMI::moveInstruction( 803 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 804 // Advance RegionBegin if the first instruction moves down. 805 if (&*RegionBegin == MI) 806 ++RegionBegin; 807 808 // Update the instruction stream. 809 BB->splice(InsertPos, BB, MI); 810 811 // Update LiveIntervals 812 if (LIS) 813 LIS->handleMove(*MI, /*UpdateFlags=*/true); 814 815 // Recede RegionBegin if an instruction moves above the first. 816 if (RegionBegin == InsertPos) 817 RegionBegin = MI; 818 } 819 820 bool ScheduleDAGMI::checkSchedLimit() { 821 #if LLVM_ENABLE_ABI_BREAKING_CHECKS && !defined(NDEBUG) 822 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 823 CurrentTop = CurrentBottom; 824 return false; 825 } 826 ++NumInstrsScheduled; 827 #endif 828 return true; 829 } 830 831 /// Per-region scheduling driver, called back from 832 /// PostMachineScheduler::runOnMachineFunction. This is a simplified driver 833 /// that does not consider liveness or register pressure. It is useful for 834 /// PostRA scheduling and potentially other custom schedulers. 835 void ScheduleDAGMI::schedule() { 836 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 837 LLVM_DEBUG(SchedImpl->dumpPolicy()); 838 839 // Build the DAG. 840 buildSchedGraph(AA); 841 842 postProcessDAG(); 843 844 SmallVector<SUnit*, 8> TopRoots, BotRoots; 845 findRootsAndBiasEdges(TopRoots, BotRoots); 846 847 LLVM_DEBUG(dump()); 848 if (PrintDAGs) dump(); 849 if (ViewMISchedDAGs) viewGraph(); 850 851 // Initialize the strategy before modifying the DAG. 852 // This may initialize a DFSResult to be used for queue priority. 853 SchedImpl->initialize(this); 854 855 // Initialize ready queues now that the DAG and priority data are finalized. 856 initQueues(TopRoots, BotRoots); 857 858 bool IsTopNode = false; 859 while (true) { 860 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 861 SUnit *SU = SchedImpl->pickNode(IsTopNode); 862 if (!SU) break; 863 864 assert(!SU->isScheduled && "Node already scheduled"); 865 if (!checkSchedLimit()) 866 break; 867 868 MachineInstr *MI = SU->getInstr(); 869 if (IsTopNode) { 870 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 871 if (&*CurrentTop == MI) 872 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 873 else 874 moveInstruction(MI, CurrentTop); 875 } else { 876 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 877 MachineBasicBlock::iterator priorII = 878 priorNonDebug(CurrentBottom, CurrentTop); 879 if (&*priorII == MI) 880 CurrentBottom = priorII; 881 else { 882 if (&*CurrentTop == MI) 883 CurrentTop = nextIfDebug(++CurrentTop, priorII); 884 moveInstruction(MI, CurrentBottom); 885 CurrentBottom = MI; 886 } 887 } 888 // Notify the scheduling strategy before updating the DAG. 889 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 890 // runs, it can then use the accurate ReadyCycle time to determine whether 891 // newly released nodes can move to the readyQ. 892 SchedImpl->schedNode(SU, IsTopNode); 893 894 updateQueues(SU, IsTopNode); 895 } 896 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 897 898 placeDebugValues(); 899 900 LLVM_DEBUG({ 901 dbgs() << "*** Final schedule for " 902 << printMBBReference(*begin()->getParent()) << " ***\n"; 903 dumpSchedule(); 904 dbgs() << '\n'; 905 }); 906 } 907 908 /// Apply each ScheduleDAGMutation step in order. 909 void ScheduleDAGMI::postProcessDAG() { 910 for (auto &m : Mutations) 911 m->apply(this); 912 } 913 914 void ScheduleDAGMI:: 915 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 916 SmallVectorImpl<SUnit*> &BotRoots) { 917 for (SUnit &SU : SUnits) { 918 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 919 920 // Order predecessors so DFSResult follows the critical path. 921 SU.biasCriticalPath(); 922 923 // A SUnit is ready to top schedule if it has no predecessors. 924 if (!SU.NumPredsLeft) 925 TopRoots.push_back(&SU); 926 // A SUnit is ready to bottom schedule if it has no successors. 927 if (!SU.NumSuccsLeft) 928 BotRoots.push_back(&SU); 929 } 930 ExitSU.biasCriticalPath(); 931 } 932 933 /// Identify DAG roots and setup scheduler queues. 934 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 935 ArrayRef<SUnit*> BotRoots) { 936 NextClusterSucc = nullptr; 937 NextClusterPred = nullptr; 938 939 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 940 // 941 // Nodes with unreleased weak edges can still be roots. 942 // Release top roots in forward order. 943 for (SUnit *SU : TopRoots) 944 SchedImpl->releaseTopNode(SU); 945 946 // Release bottom roots in reverse order so the higher priority nodes appear 947 // first. This is more natural and slightly more efficient. 948 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 949 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 950 SchedImpl->releaseBottomNode(*I); 951 } 952 953 releaseSuccessors(&EntrySU); 954 releasePredecessors(&ExitSU); 955 956 SchedImpl->registerRoots(); 957 958 // Advance past initial DebugValues. 959 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 960 CurrentBottom = RegionEnd; 961 } 962 963 /// Update scheduler queues after scheduling an instruction. 964 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 965 // Release dependent instructions for scheduling. 966 if (IsTopNode) 967 releaseSuccessors(SU); 968 else 969 releasePredecessors(SU); 970 971 SU->isScheduled = true; 972 } 973 974 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 975 void ScheduleDAGMI::placeDebugValues() { 976 // If first instruction was a DBG_VALUE then put it back. 977 if (FirstDbgValue) { 978 BB->splice(RegionBegin, BB, FirstDbgValue); 979 RegionBegin = FirstDbgValue; 980 } 981 982 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 983 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 984 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 985 MachineInstr *DbgValue = P.first; 986 MachineBasicBlock::iterator OrigPrevMI = P.second; 987 if (&*RegionBegin == DbgValue) 988 ++RegionBegin; 989 BB->splice(std::next(OrigPrevMI), BB, DbgValue); 990 if (RegionEnd != BB->end() && OrigPrevMI == &*RegionEnd) 991 RegionEnd = DbgValue; 992 } 993 } 994 995 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 996 static const char *scheduleTableLegend = " i: issue\n x: resource booked"; 997 998 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpScheduleTraceTopDown() const { 999 // Bail off when there is no schedule model to query. 1000 if (!SchedModel.hasInstrSchedModel()) 1001 return; 1002 1003 // Nothing to show if there is no or just one instruction. 1004 if (BB->size() < 2) 1005 return; 1006 1007 dbgs() << " * Schedule table (TopDown):\n"; 1008 dbgs() << scheduleTableLegend << "\n"; 1009 const unsigned FirstCycle = getSUnit(&*(std::begin(*this)))->TopReadyCycle; 1010 unsigned LastCycle = getSUnit(&*(std::prev(std::end(*this))))->TopReadyCycle; 1011 for (MachineInstr &MI : *this) { 1012 SUnit *SU = getSUnit(&MI); 1013 if (!SU) 1014 continue; 1015 const MCSchedClassDesc *SC = getSchedClass(SU); 1016 for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC), 1017 PE = SchedModel.getWriteProcResEnd(SC); 1018 PI != PE; ++PI) { 1019 if (SU->TopReadyCycle + PI->ReleaseAtCycle - 1 > LastCycle) 1020 LastCycle = SU->TopReadyCycle + PI->ReleaseAtCycle - 1; 1021 } 1022 } 1023 // Print the header with the cycles 1024 dbgs() << llvm::left_justify("Cycle", HeaderColWidth); 1025 for (unsigned C = FirstCycle; C <= LastCycle; ++C) 1026 dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth); 1027 dbgs() << "|\n"; 1028 1029 for (MachineInstr &MI : *this) { 1030 SUnit *SU = getSUnit(&MI); 1031 if (!SU) { 1032 dbgs() << "Missing SUnit\n"; 1033 continue; 1034 } 1035 std::string NodeName("SU("); 1036 NodeName += std::to_string(SU->NodeNum) + ")"; 1037 dbgs() << llvm::left_justify(NodeName, HeaderColWidth); 1038 unsigned C = FirstCycle; 1039 for (; C <= LastCycle; ++C) { 1040 if (C == SU->TopReadyCycle) 1041 dbgs() << llvm::left_justify("| i", ColWidth); 1042 else 1043 dbgs() << llvm::left_justify("|", ColWidth); 1044 } 1045 dbgs() << "|\n"; 1046 const MCSchedClassDesc *SC = getSchedClass(SU); 1047 1048 SmallVector<MCWriteProcResEntry, 4> ResourcesIt( 1049 make_range(SchedModel.getWriteProcResBegin(SC), 1050 SchedModel.getWriteProcResEnd(SC))); 1051 1052 if (MISchedSortResourcesInTrace) 1053 llvm::stable_sort(ResourcesIt, 1054 [](const MCWriteProcResEntry &LHS, 1055 const MCWriteProcResEntry &RHS) -> bool { 1056 return LHS.AcquireAtCycle < RHS.AcquireAtCycle || 1057 (LHS.AcquireAtCycle == RHS.AcquireAtCycle && 1058 LHS.ReleaseAtCycle < RHS.ReleaseAtCycle); 1059 }); 1060 for (const MCWriteProcResEntry &PI : ResourcesIt) { 1061 C = FirstCycle; 1062 const std::string ResName = 1063 SchedModel.getResourceName(PI.ProcResourceIdx); 1064 dbgs() << llvm::right_justify(ResName + " ", HeaderColWidth); 1065 for (; C < SU->TopReadyCycle + PI.AcquireAtCycle; ++C) { 1066 dbgs() << llvm::left_justify("|", ColWidth); 1067 } 1068 for (unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle; I != E; 1069 ++I, ++C) 1070 dbgs() << llvm::left_justify("| x", ColWidth); 1071 while (C++ <= LastCycle) 1072 dbgs() << llvm::left_justify("|", ColWidth); 1073 // Place end char 1074 dbgs() << "| \n"; 1075 } 1076 } 1077 } 1078 1079 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpScheduleTraceBottomUp() const { 1080 // Bail off when there is no schedule model to query. 1081 if (!SchedModel.hasInstrSchedModel()) 1082 return; 1083 1084 // Nothing to show if there is no or just one instruction. 1085 if (BB->size() < 2) 1086 return; 1087 1088 dbgs() << " * Schedule table (BottomUp):\n"; 1089 dbgs() << scheduleTableLegend << "\n"; 1090 1091 const int FirstCycle = getSUnit(&*(std::begin(*this)))->BotReadyCycle; 1092 int LastCycle = getSUnit(&*(std::prev(std::end(*this))))->BotReadyCycle; 1093 for (MachineInstr &MI : *this) { 1094 SUnit *SU = getSUnit(&MI); 1095 if (!SU) 1096 continue; 1097 const MCSchedClassDesc *SC = getSchedClass(SU); 1098 for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC), 1099 PE = SchedModel.getWriteProcResEnd(SC); 1100 PI != PE; ++PI) { 1101 if ((int)SU->BotReadyCycle - PI->ReleaseAtCycle + 1 < LastCycle) 1102 LastCycle = (int)SU->BotReadyCycle - PI->ReleaseAtCycle + 1; 1103 } 1104 } 1105 // Print the header with the cycles 1106 dbgs() << llvm::left_justify("Cycle", HeaderColWidth); 1107 for (int C = FirstCycle; C >= LastCycle; --C) 1108 dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth); 1109 dbgs() << "|\n"; 1110 1111 for (MachineInstr &MI : *this) { 1112 SUnit *SU = getSUnit(&MI); 1113 if (!SU) { 1114 dbgs() << "Missing SUnit\n"; 1115 continue; 1116 } 1117 std::string NodeName("SU("); 1118 NodeName += std::to_string(SU->NodeNum) + ")"; 1119 dbgs() << llvm::left_justify(NodeName, HeaderColWidth); 1120 int C = FirstCycle; 1121 for (; C >= LastCycle; --C) { 1122 if (C == (int)SU->BotReadyCycle) 1123 dbgs() << llvm::left_justify("| i", ColWidth); 1124 else 1125 dbgs() << llvm::left_justify("|", ColWidth); 1126 } 1127 dbgs() << "|\n"; 1128 const MCSchedClassDesc *SC = getSchedClass(SU); 1129 SmallVector<MCWriteProcResEntry, 4> ResourcesIt( 1130 make_range(SchedModel.getWriteProcResBegin(SC), 1131 SchedModel.getWriteProcResEnd(SC))); 1132 1133 if (MISchedSortResourcesInTrace) 1134 llvm::stable_sort(ResourcesIt, 1135 [](const MCWriteProcResEntry &LHS, 1136 const MCWriteProcResEntry &RHS) -> bool { 1137 return LHS.AcquireAtCycle < RHS.AcquireAtCycle || 1138 (LHS.AcquireAtCycle == RHS.AcquireAtCycle && 1139 LHS.ReleaseAtCycle < RHS.ReleaseAtCycle); 1140 }); 1141 for (const MCWriteProcResEntry &PI : ResourcesIt) { 1142 C = FirstCycle; 1143 const std::string ResName = 1144 SchedModel.getResourceName(PI.ProcResourceIdx); 1145 dbgs() << llvm::right_justify(ResName + " ", HeaderColWidth); 1146 for (; C > ((int)SU->BotReadyCycle - (int)PI.AcquireAtCycle); --C) { 1147 dbgs() << llvm::left_justify("|", ColWidth); 1148 } 1149 for (unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle; I != E; 1150 ++I, --C) 1151 dbgs() << llvm::left_justify("| x", ColWidth); 1152 while (C-- >= LastCycle) 1153 dbgs() << llvm::left_justify("|", ColWidth); 1154 // Place end char 1155 dbgs() << "| \n"; 1156 } 1157 } 1158 } 1159 #endif 1160 1161 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1162 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 1163 if (MISchedDumpScheduleTrace) { 1164 if (DumpDir == DumpDirection::TopDown) 1165 dumpScheduleTraceTopDown(); 1166 else if (DumpDir == DumpDirection::BottomUp) 1167 dumpScheduleTraceBottomUp(); 1168 else if (DumpDir == DumpDirection::Bidirectional) { 1169 dbgs() << "* Schedule table (Bidirectional): not implemented\n"; 1170 } else { 1171 dbgs() << "* Schedule table: DumpDirection not set.\n"; 1172 } 1173 } 1174 1175 for (MachineInstr &MI : *this) { 1176 if (SUnit *SU = getSUnit(&MI)) 1177 dumpNode(*SU); 1178 else 1179 dbgs() << "Missing SUnit\n"; 1180 } 1181 } 1182 #endif 1183 1184 //===----------------------------------------------------------------------===// 1185 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 1186 // preservation. 1187 //===----------------------------------------------------------------------===// 1188 1189 ScheduleDAGMILive::~ScheduleDAGMILive() { 1190 delete DFSResult; 1191 } 1192 1193 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 1194 const MachineInstr &MI = *SU.getInstr(); 1195 for (const MachineOperand &MO : MI.operands()) { 1196 if (!MO.isReg()) 1197 continue; 1198 if (!MO.readsReg()) 1199 continue; 1200 if (TrackLaneMasks && !MO.isUse()) 1201 continue; 1202 1203 Register Reg = MO.getReg(); 1204 if (!Reg.isVirtual()) 1205 continue; 1206 1207 // Ignore re-defs. 1208 if (TrackLaneMasks) { 1209 bool FoundDef = false; 1210 for (const MachineOperand &MO2 : MI.all_defs()) { 1211 if (MO2.getReg() == Reg && !MO2.isDead()) { 1212 FoundDef = true; 1213 break; 1214 } 1215 } 1216 if (FoundDef) 1217 continue; 1218 } 1219 1220 // Record this local VReg use. 1221 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 1222 for (; UI != VRegUses.end(); ++UI) { 1223 if (UI->SU == &SU) 1224 break; 1225 } 1226 if (UI == VRegUses.end()) 1227 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 1228 } 1229 } 1230 1231 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 1232 /// crossing a scheduling boundary. [begin, end) includes all instructions in 1233 /// the region, including the boundary itself and single-instruction regions 1234 /// that don't get scheduled. 1235 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 1236 MachineBasicBlock::iterator begin, 1237 MachineBasicBlock::iterator end, 1238 unsigned regioninstrs) 1239 { 1240 // ScheduleDAGMI initializes SchedImpl's per-region policy. 1241 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 1242 1243 // For convenience remember the end of the liveness region. 1244 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 1245 1246 SUPressureDiffs.clear(); 1247 1248 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 1249 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 1250 1251 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 1252 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 1253 } 1254 1255 // Setup the register pressure trackers for the top scheduled and bottom 1256 // scheduled regions. 1257 void ScheduleDAGMILive::initRegPressure() { 1258 VRegUses.clear(); 1259 VRegUses.setUniverse(MRI.getNumVirtRegs()); 1260 for (SUnit &SU : SUnits) 1261 collectVRegUses(SU); 1262 1263 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1264 ShouldTrackLaneMasks, false); 1265 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1266 ShouldTrackLaneMasks, false); 1267 1268 // Close the RPTracker to finalize live ins. 1269 RPTracker.closeRegion(); 1270 1271 LLVM_DEBUG(RPTracker.dump()); 1272 1273 // Initialize the live ins and live outs. 1274 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1275 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1276 1277 // Close one end of the tracker so we can call 1278 // getMaxUpward/DownwardPressureDelta before advancing across any 1279 // instructions. This converts currently live regs into live ins/outs. 1280 TopRPTracker.closeTop(); 1281 BotRPTracker.closeBottom(); 1282 1283 BotRPTracker.initLiveThru(RPTracker); 1284 if (!BotRPTracker.getLiveThru().empty()) { 1285 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1286 LLVM_DEBUG(dbgs() << "Live Thru: "; 1287 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1288 }; 1289 1290 // For each live out vreg reduce the pressure change associated with other 1291 // uses of the same vreg below the live-out reaching def. 1292 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1293 1294 // Account for liveness generated by the region boundary. 1295 if (LiveRegionEnd != RegionEnd) { 1296 SmallVector<RegisterMaskPair, 8> LiveUses; 1297 BotRPTracker.recede(&LiveUses); 1298 updatePressureDiffs(LiveUses); 1299 } 1300 1301 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; 1302 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1303 dbgs() << "Bottom Pressure:\n"; 1304 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);); 1305 1306 assert((BotRPTracker.getPos() == RegionEnd || 1307 (RegionEnd->isDebugInstr() && 1308 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && 1309 "Can't find the region bottom"); 1310 1311 // Cache the list of excess pressure sets in this region. This will also track 1312 // the max pressure in the scheduled code for these sets. 1313 RegionCriticalPSets.clear(); 1314 const std::vector<unsigned> &RegionPressure = 1315 RPTracker.getPressure().MaxSetPressure; 1316 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1317 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1318 if (RegionPressure[i] > Limit) { 1319 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit 1320 << " Actual " << RegionPressure[i] << "\n"); 1321 RegionCriticalPSets.push_back(PressureChange(i)); 1322 } 1323 } 1324 LLVM_DEBUG(dbgs() << "Excess PSets: "; 1325 for (const PressureChange &RCPS 1326 : RegionCriticalPSets) dbgs() 1327 << TRI->getRegPressureSetName(RCPS.getPSet()) << " "; 1328 dbgs() << "\n"); 1329 } 1330 1331 void ScheduleDAGMILive:: 1332 updateScheduledPressure(const SUnit *SU, 1333 const std::vector<unsigned> &NewMaxPressure) { 1334 const PressureDiff &PDiff = getPressureDiff(SU); 1335 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1336 for (const PressureChange &PC : PDiff) { 1337 if (!PC.isValid()) 1338 break; 1339 unsigned ID = PC.getPSet(); 1340 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1341 ++CritIdx; 1342 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1343 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1344 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1345 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1346 } 1347 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1348 if (NewMaxPressure[ID] >= Limit - 2) { 1349 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1350 << NewMaxPressure[ID] 1351 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") 1352 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID] 1353 << " livethru)\n"); 1354 } 1355 } 1356 } 1357 1358 /// Update the PressureDiff array for liveness after scheduling this 1359 /// instruction. 1360 void ScheduleDAGMILive::updatePressureDiffs( 1361 ArrayRef<RegisterMaskPair> LiveUses) { 1362 for (const RegisterMaskPair &P : LiveUses) { 1363 Register Reg = P.RegUnit; 1364 /// FIXME: Currently assuming single-use physregs. 1365 if (!Reg.isVirtual()) 1366 continue; 1367 1368 if (ShouldTrackLaneMasks) { 1369 // If the register has just become live then other uses won't change 1370 // this fact anymore => decrement pressure. 1371 // If the register has just become dead then other uses make it come 1372 // back to life => increment pressure. 1373 bool Decrement = P.LaneMask.any(); 1374 1375 for (const VReg2SUnit &V2SU 1376 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1377 SUnit &SU = *V2SU.SU; 1378 if (SU.isScheduled || &SU == &ExitSU) 1379 continue; 1380 1381 PressureDiff &PDiff = getPressureDiff(&SU); 1382 PDiff.addPressureChange(Reg, Decrement, &MRI); 1383 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1384 << printReg(Reg, TRI) << ':' 1385 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr(); 1386 dbgs() << " to "; PDiff.dump(*TRI);); 1387 } 1388 } else { 1389 assert(P.LaneMask.any()); 1390 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1391 // This may be called before CurrentBottom has been initialized. However, 1392 // BotRPTracker must have a valid position. We want the value live into the 1393 // instruction or live out of the block, so ask for the previous 1394 // instruction's live-out. 1395 const LiveInterval &LI = LIS->getInterval(Reg); 1396 VNInfo *VNI; 1397 MachineBasicBlock::const_iterator I = 1398 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1399 if (I == BB->end()) 1400 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1401 else { 1402 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1403 VNI = LRQ.valueIn(); 1404 } 1405 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1406 assert(VNI && "No live value at use."); 1407 for (const VReg2SUnit &V2SU 1408 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1409 SUnit *SU = V2SU.SU; 1410 // If this use comes before the reaching def, it cannot be a last use, 1411 // so decrease its pressure change. 1412 if (!SU->isScheduled && SU != &ExitSU) { 1413 LiveQueryResult LRQ = 1414 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1415 if (LRQ.valueIn() == VNI) { 1416 PressureDiff &PDiff = getPressureDiff(SU); 1417 PDiff.addPressureChange(Reg, true, &MRI); 1418 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1419 << *SU->getInstr(); 1420 dbgs() << " to "; PDiff.dump(*TRI);); 1421 } 1422 } 1423 } 1424 } 1425 } 1426 } 1427 1428 void ScheduleDAGMILive::dump() const { 1429 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1430 if (EntrySU.getInstr() != nullptr) 1431 dumpNodeAll(EntrySU); 1432 for (const SUnit &SU : SUnits) { 1433 dumpNodeAll(SU); 1434 if (ShouldTrackPressure) { 1435 dbgs() << " Pressure Diff : "; 1436 getPressureDiff(&SU).dump(*TRI); 1437 } 1438 dbgs() << " Single Issue : "; 1439 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1440 SchedModel.mustEndGroup(SU.getInstr())) 1441 dbgs() << "true;"; 1442 else 1443 dbgs() << "false;"; 1444 dbgs() << '\n'; 1445 } 1446 if (ExitSU.getInstr() != nullptr) 1447 dumpNodeAll(ExitSU); 1448 #endif 1449 } 1450 1451 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1452 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1453 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1454 /// 1455 /// This is a skeletal driver, with all the functionality pushed into helpers, 1456 /// so that it can be easily extended by experimental schedulers. Generally, 1457 /// implementing MachineSchedStrategy should be sufficient to implement a new 1458 /// scheduling algorithm. However, if a scheduler further subclasses 1459 /// ScheduleDAGMILive then it will want to override this virtual method in order 1460 /// to update any specialized state. 1461 void ScheduleDAGMILive::schedule() { 1462 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1463 LLVM_DEBUG(SchedImpl->dumpPolicy()); 1464 buildDAGWithRegPressure(); 1465 1466 postProcessDAG(); 1467 1468 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1469 findRootsAndBiasEdges(TopRoots, BotRoots); 1470 1471 // Initialize the strategy before modifying the DAG. 1472 // This may initialize a DFSResult to be used for queue priority. 1473 SchedImpl->initialize(this); 1474 1475 LLVM_DEBUG(dump()); 1476 if (PrintDAGs) dump(); 1477 if (ViewMISchedDAGs) viewGraph(); 1478 1479 // Initialize ready queues now that the DAG and priority data are finalized. 1480 initQueues(TopRoots, BotRoots); 1481 1482 bool IsTopNode = false; 1483 while (true) { 1484 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1485 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1486 if (!SU) break; 1487 1488 assert(!SU->isScheduled && "Node already scheduled"); 1489 if (!checkSchedLimit()) 1490 break; 1491 1492 scheduleMI(SU, IsTopNode); 1493 1494 if (DFSResult) { 1495 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1496 if (!ScheduledTrees.test(SubtreeID)) { 1497 ScheduledTrees.set(SubtreeID); 1498 DFSResult->scheduleTree(SubtreeID); 1499 SchedImpl->scheduleTree(SubtreeID); 1500 } 1501 } 1502 1503 // Notify the scheduling strategy after updating the DAG. 1504 SchedImpl->schedNode(SU, IsTopNode); 1505 1506 updateQueues(SU, IsTopNode); 1507 } 1508 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1509 1510 placeDebugValues(); 1511 1512 LLVM_DEBUG({ 1513 dbgs() << "*** Final schedule for " 1514 << printMBBReference(*begin()->getParent()) << " ***\n"; 1515 dumpSchedule(); 1516 dbgs() << '\n'; 1517 }); 1518 } 1519 1520 /// Build the DAG and setup three register pressure trackers. 1521 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1522 if (!ShouldTrackPressure) { 1523 RPTracker.reset(); 1524 RegionCriticalPSets.clear(); 1525 buildSchedGraph(AA); 1526 return; 1527 } 1528 1529 // Initialize the register pressure tracker used by buildSchedGraph. 1530 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1531 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1532 1533 // Account for liveness generate by the region boundary. 1534 if (LiveRegionEnd != RegionEnd) 1535 RPTracker.recede(); 1536 1537 // Build the DAG, and compute current register pressure. 1538 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1539 1540 // Initialize top/bottom trackers after computing region pressure. 1541 initRegPressure(); 1542 } 1543 1544 void ScheduleDAGMILive::computeDFSResult() { 1545 if (!DFSResult) 1546 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1547 DFSResult->clear(); 1548 ScheduledTrees.clear(); 1549 DFSResult->resize(SUnits.size()); 1550 DFSResult->compute(SUnits); 1551 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1552 } 1553 1554 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1555 /// only provides the critical path for single block loops. To handle loops that 1556 /// span blocks, we could use the vreg path latencies provided by 1557 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1558 /// available for use in the scheduler. 1559 /// 1560 /// The cyclic path estimation identifies a def-use pair that crosses the back 1561 /// edge and considers the depth and height of the nodes. For example, consider 1562 /// the following instruction sequence where each instruction has unit latency 1563 /// and defines an eponymous virtual register: 1564 /// 1565 /// a->b(a,c)->c(b)->d(c)->exit 1566 /// 1567 /// The cyclic critical path is a two cycles: b->c->b 1568 /// The acyclic critical path is four cycles: a->b->c->d->exit 1569 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1570 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1571 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1572 /// LiveInDepth = depth(b) = len(a->b) = 1 1573 /// 1574 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1575 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1576 /// CyclicCriticalPath = min(2, 2) = 2 1577 /// 1578 /// This could be relevant to PostRA scheduling, but is currently implemented 1579 /// assuming LiveIntervals. 1580 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1581 // This only applies to single block loop. 1582 if (!BB->isSuccessor(BB)) 1583 return 0; 1584 1585 unsigned MaxCyclicLatency = 0; 1586 // Visit each live out vreg def to find def/use pairs that cross iterations. 1587 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1588 Register Reg = P.RegUnit; 1589 if (!Reg.isVirtual()) 1590 continue; 1591 const LiveInterval &LI = LIS->getInterval(Reg); 1592 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1593 if (!DefVNI) 1594 continue; 1595 1596 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1597 const SUnit *DefSU = getSUnit(DefMI); 1598 if (!DefSU) 1599 continue; 1600 1601 unsigned LiveOutHeight = DefSU->getHeight(); 1602 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1603 // Visit all local users of the vreg def. 1604 for (const VReg2SUnit &V2SU 1605 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1606 SUnit *SU = V2SU.SU; 1607 if (SU == &ExitSU) 1608 continue; 1609 1610 // Only consider uses of the phi. 1611 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1612 if (!LRQ.valueIn()->isPHIDef()) 1613 continue; 1614 1615 // Assume that a path spanning two iterations is a cycle, which could 1616 // overestimate in strange cases. This allows cyclic latency to be 1617 // estimated as the minimum slack of the vreg's depth or height. 1618 unsigned CyclicLatency = 0; 1619 if (LiveOutDepth > SU->getDepth()) 1620 CyclicLatency = LiveOutDepth - SU->getDepth(); 1621 1622 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1623 if (LiveInHeight > LiveOutHeight) { 1624 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1625 CyclicLatency = LiveInHeight - LiveOutHeight; 1626 } else 1627 CyclicLatency = 0; 1628 1629 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1630 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1631 if (CyclicLatency > MaxCyclicLatency) 1632 MaxCyclicLatency = CyclicLatency; 1633 } 1634 } 1635 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1636 return MaxCyclicLatency; 1637 } 1638 1639 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1640 /// the Top RP tracker in case the region beginning has changed. 1641 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1642 ArrayRef<SUnit*> BotRoots) { 1643 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1644 if (ShouldTrackPressure) { 1645 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1646 TopRPTracker.setPos(CurrentTop); 1647 } 1648 } 1649 1650 /// Move an instruction and update register pressure. 1651 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1652 // Move the instruction to its new location in the instruction stream. 1653 MachineInstr *MI = SU->getInstr(); 1654 1655 if (IsTopNode) { 1656 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1657 if (&*CurrentTop == MI) 1658 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1659 else { 1660 moveInstruction(MI, CurrentTop); 1661 TopRPTracker.setPos(MI); 1662 } 1663 1664 if (ShouldTrackPressure) { 1665 // Update top scheduled pressure. 1666 RegisterOperands RegOpers; 1667 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, 1668 /*IgnoreDead=*/false); 1669 if (ShouldTrackLaneMasks) { 1670 // Adjust liveness and add missing dead+read-undef flags. 1671 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1672 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1673 } else { 1674 // Adjust for missing dead-def flags. 1675 RegOpers.detectDeadDefs(*MI, *LIS); 1676 } 1677 1678 TopRPTracker.advance(RegOpers); 1679 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1680 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure( 1681 TopRPTracker.getRegSetPressureAtPos(), TRI);); 1682 1683 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1684 } 1685 } else { 1686 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1687 MachineBasicBlock::iterator priorII = 1688 priorNonDebug(CurrentBottom, CurrentTop); 1689 if (&*priorII == MI) 1690 CurrentBottom = priorII; 1691 else { 1692 if (&*CurrentTop == MI) { 1693 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1694 TopRPTracker.setPos(CurrentTop); 1695 } 1696 moveInstruction(MI, CurrentBottom); 1697 CurrentBottom = MI; 1698 BotRPTracker.setPos(CurrentBottom); 1699 } 1700 if (ShouldTrackPressure) { 1701 RegisterOperands RegOpers; 1702 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, 1703 /*IgnoreDead=*/false); 1704 if (ShouldTrackLaneMasks) { 1705 // Adjust liveness and add missing dead+read-undef flags. 1706 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1707 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1708 } else { 1709 // Adjust for missing dead-def flags. 1710 RegOpers.detectDeadDefs(*MI, *LIS); 1711 } 1712 1713 if (BotRPTracker.getPos() != CurrentBottom) 1714 BotRPTracker.recedeSkipDebugValues(); 1715 SmallVector<RegisterMaskPair, 8> LiveUses; 1716 BotRPTracker.recede(RegOpers, &LiveUses); 1717 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1718 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure( 1719 BotRPTracker.getRegSetPressureAtPos(), TRI);); 1720 1721 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1722 updatePressureDiffs(LiveUses); 1723 } 1724 } 1725 } 1726 1727 //===----------------------------------------------------------------------===// 1728 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1729 //===----------------------------------------------------------------------===// 1730 1731 namespace { 1732 1733 /// Post-process the DAG to create cluster edges between neighboring 1734 /// loads or between neighboring stores. 1735 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1736 struct MemOpInfo { 1737 SUnit *SU; 1738 SmallVector<const MachineOperand *, 4> BaseOps; 1739 int64_t Offset; 1740 LocationSize Width; 1741 bool OffsetIsScalable; 1742 1743 MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps, 1744 int64_t Offset, bool OffsetIsScalable, LocationSize Width) 1745 : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset), 1746 Width(Width), OffsetIsScalable(OffsetIsScalable) {} 1747 1748 static bool Compare(const MachineOperand *const &A, 1749 const MachineOperand *const &B) { 1750 if (A->getType() != B->getType()) 1751 return A->getType() < B->getType(); 1752 if (A->isReg()) 1753 return A->getReg() < B->getReg(); 1754 if (A->isFI()) { 1755 const MachineFunction &MF = *A->getParent()->getParent()->getParent(); 1756 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); 1757 bool StackGrowsDown = TFI.getStackGrowthDirection() == 1758 TargetFrameLowering::StackGrowsDown; 1759 return StackGrowsDown ? A->getIndex() > B->getIndex() 1760 : A->getIndex() < B->getIndex(); 1761 } 1762 1763 llvm_unreachable("MemOpClusterMutation only supports register or frame " 1764 "index bases."); 1765 } 1766 1767 bool operator<(const MemOpInfo &RHS) const { 1768 // FIXME: Don't compare everything twice. Maybe use C++20 three way 1769 // comparison instead when it's available. 1770 if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(), 1771 RHS.BaseOps.begin(), RHS.BaseOps.end(), 1772 Compare)) 1773 return true; 1774 if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(), 1775 BaseOps.begin(), BaseOps.end(), Compare)) 1776 return false; 1777 if (Offset != RHS.Offset) 1778 return Offset < RHS.Offset; 1779 return SU->NodeNum < RHS.SU->NodeNum; 1780 } 1781 }; 1782 1783 const TargetInstrInfo *TII; 1784 const TargetRegisterInfo *TRI; 1785 bool IsLoad; 1786 bool ReorderWhileClustering; 1787 1788 public: 1789 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1790 const TargetRegisterInfo *tri, bool IsLoad, 1791 bool ReorderWhileClustering) 1792 : TII(tii), TRI(tri), IsLoad(IsLoad), 1793 ReorderWhileClustering(ReorderWhileClustering) {} 1794 1795 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1796 1797 protected: 1798 void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster, 1799 ScheduleDAGInstrs *DAG); 1800 void collectMemOpRecords(std::vector<SUnit> &SUnits, 1801 SmallVectorImpl<MemOpInfo> &MemOpRecords); 1802 bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG, 1803 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups); 1804 }; 1805 1806 class StoreClusterMutation : public BaseMemOpClusterMutation { 1807 public: 1808 StoreClusterMutation(const TargetInstrInfo *tii, 1809 const TargetRegisterInfo *tri, 1810 bool ReorderWhileClustering) 1811 : BaseMemOpClusterMutation(tii, tri, false, ReorderWhileClustering) {} 1812 }; 1813 1814 class LoadClusterMutation : public BaseMemOpClusterMutation { 1815 public: 1816 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri, 1817 bool ReorderWhileClustering) 1818 : BaseMemOpClusterMutation(tii, tri, true, ReorderWhileClustering) {} 1819 }; 1820 1821 } // end anonymous namespace 1822 1823 namespace llvm { 1824 1825 std::unique_ptr<ScheduleDAGMutation> 1826 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1827 const TargetRegisterInfo *TRI, 1828 bool ReorderWhileClustering) { 1829 return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>( 1830 TII, TRI, ReorderWhileClustering) 1831 : nullptr; 1832 } 1833 1834 std::unique_ptr<ScheduleDAGMutation> 1835 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1836 const TargetRegisterInfo *TRI, 1837 bool ReorderWhileClustering) { 1838 return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>( 1839 TII, TRI, ReorderWhileClustering) 1840 : nullptr; 1841 } 1842 1843 } // end namespace llvm 1844 1845 // Sorting all the loads/stores first, then for each load/store, checking the 1846 // following load/store one by one, until reach the first non-dependent one and 1847 // call target hook to see if they can cluster. 1848 // If FastCluster is enabled, we assume that, all the loads/stores have been 1849 // preprocessed and now, they didn't have dependencies on each other. 1850 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1851 ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster, 1852 ScheduleDAGInstrs *DAG) { 1853 // Keep track of the current cluster length and bytes for each SUnit. 1854 DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo; 1855 1856 // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to 1857 // cluster mem ops collected within `MemOpRecords` array. 1858 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1859 // Decision to cluster mem ops is taken based on target dependent logic 1860 auto MemOpa = MemOpRecords[Idx]; 1861 1862 // Seek for the next load/store to do the cluster. 1863 unsigned NextIdx = Idx + 1; 1864 for (; NextIdx < End; ++NextIdx) 1865 // Skip if MemOpb has been clustered already or has dependency with 1866 // MemOpa. 1867 if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) && 1868 (FastCluster || 1869 (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) && 1870 !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU)))) 1871 break; 1872 if (NextIdx == End) 1873 continue; 1874 1875 auto MemOpb = MemOpRecords[NextIdx]; 1876 unsigned ClusterLength = 2; 1877 unsigned CurrentClusterBytes = MemOpa.Width.getValue().getKnownMinValue() + 1878 MemOpb.Width.getValue().getKnownMinValue(); 1879 if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) { 1880 ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1; 1881 CurrentClusterBytes = SUnit2ClusterInfo[MemOpa.SU->NodeNum].second + 1882 MemOpb.Width.getValue().getKnownMinValue(); 1883 } 1884 1885 if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpa.Offset, 1886 MemOpa.OffsetIsScalable, MemOpb.BaseOps, 1887 MemOpb.Offset, MemOpb.OffsetIsScalable, 1888 ClusterLength, CurrentClusterBytes)) 1889 continue; 1890 1891 SUnit *SUa = MemOpa.SU; 1892 SUnit *SUb = MemOpb.SU; 1893 if (!ReorderWhileClustering && SUa->NodeNum > SUb->NodeNum) 1894 std::swap(SUa, SUb); 1895 1896 // FIXME: Is this check really required? 1897 if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) 1898 continue; 1899 1900 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1901 << SUb->NodeNum << ")\n"); 1902 ++NumClustered; 1903 1904 if (IsLoad) { 1905 // Copy successor edges from SUa to SUb. Interleaving computation 1906 // dependent on SUa can prevent load combining due to register reuse. 1907 // Predecessor edges do not need to be copied from SUb to SUa since 1908 // nearby loads should have effectively the same inputs. 1909 for (const SDep &Succ : SUa->Succs) { 1910 if (Succ.getSUnit() == SUb) 1911 continue; 1912 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum 1913 << ")\n"); 1914 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1915 } 1916 } else { 1917 // Copy predecessor edges from SUb to SUa to avoid the SUnits that 1918 // SUb dependent on scheduled in-between SUb and SUa. Successor edges 1919 // do not need to be copied from SUa to SUb since no one will depend 1920 // on stores. 1921 // Notice that, we don't need to care about the memory dependency as 1922 // we won't try to cluster them if they have any memory dependency. 1923 for (const SDep &Pred : SUb->Preds) { 1924 if (Pred.getSUnit() == SUa) 1925 continue; 1926 LLVM_DEBUG(dbgs() << " Copy Pred SU(" << Pred.getSUnit()->NodeNum 1927 << ")\n"); 1928 DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial)); 1929 } 1930 } 1931 1932 SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength, 1933 CurrentClusterBytes}; 1934 1935 LLVM_DEBUG(dbgs() << " Curr cluster length: " << ClusterLength 1936 << ", Curr cluster bytes: " << CurrentClusterBytes 1937 << "\n"); 1938 } 1939 } 1940 1941 void BaseMemOpClusterMutation::collectMemOpRecords( 1942 std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) { 1943 for (auto &SU : SUnits) { 1944 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1945 (!IsLoad && !SU.getInstr()->mayStore())) 1946 continue; 1947 1948 const MachineInstr &MI = *SU.getInstr(); 1949 SmallVector<const MachineOperand *, 4> BaseOps; 1950 int64_t Offset; 1951 bool OffsetIsScalable; 1952 LocationSize Width = 0; 1953 if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, 1954 OffsetIsScalable, Width, TRI)) { 1955 MemOpRecords.push_back( 1956 MemOpInfo(&SU, BaseOps, Offset, OffsetIsScalable, Width)); 1957 1958 LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: " 1959 << Offset << ", OffsetIsScalable: " << OffsetIsScalable 1960 << ", Width: " << Width << "\n"); 1961 } 1962 #ifndef NDEBUG 1963 for (const auto *Op : BaseOps) 1964 assert(Op); 1965 #endif 1966 } 1967 } 1968 1969 bool BaseMemOpClusterMutation::groupMemOps( 1970 ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG, 1971 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups) { 1972 bool FastCluster = 1973 ForceFastCluster || 1974 MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold; 1975 1976 for (const auto &MemOp : MemOps) { 1977 unsigned ChainPredID = DAG->SUnits.size(); 1978 if (FastCluster) { 1979 for (const SDep &Pred : MemOp.SU->Preds) { 1980 // We only want to cluster the mem ops that have the same ctrl(non-data) 1981 // pred so that they didn't have ctrl dependency for each other. But for 1982 // store instrs, we can still cluster them if the pred is load instr. 1983 if ((Pred.isCtrl() && 1984 (IsLoad || 1985 (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) && 1986 !Pred.isArtificial()) { 1987 ChainPredID = Pred.getSUnit()->NodeNum; 1988 break; 1989 } 1990 } 1991 } else 1992 ChainPredID = 0; 1993 1994 Groups[ChainPredID].push_back(MemOp); 1995 } 1996 return FastCluster; 1997 } 1998 1999 /// Callback from DAG postProcessing to create cluster edges for loads/stores. 2000 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) { 2001 // Collect all the clusterable loads/stores 2002 SmallVector<MemOpInfo, 32> MemOpRecords; 2003 collectMemOpRecords(DAG->SUnits, MemOpRecords); 2004 2005 if (MemOpRecords.size() < 2) 2006 return; 2007 2008 // Put the loads/stores without dependency into the same group with some 2009 // heuristic if the DAG is too complex to avoid compiling time blow up. 2010 // Notice that, some fusion pair could be lost with this. 2011 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> Groups; 2012 bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups); 2013 2014 for (auto &Group : Groups) { 2015 // Sorting the loads/stores, so that, we can stop the cluster as early as 2016 // possible. 2017 llvm::sort(Group.second); 2018 2019 // Trying to cluster all the neighboring loads/stores. 2020 clusterNeighboringMemOps(Group.second, FastCluster, DAG); 2021 } 2022 } 2023 2024 //===----------------------------------------------------------------------===// 2025 // CopyConstrain - DAG post-processing to encourage copy elimination. 2026 //===----------------------------------------------------------------------===// 2027 2028 namespace { 2029 2030 /// Post-process the DAG to create weak edges from all uses of a copy to 2031 /// the one use that defines the copy's source vreg, most likely an induction 2032 /// variable increment. 2033 class CopyConstrain : public ScheduleDAGMutation { 2034 // Transient state. 2035 SlotIndex RegionBeginIdx; 2036 2037 // RegionEndIdx is the slot index of the last non-debug instruction in the 2038 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 2039 SlotIndex RegionEndIdx; 2040 2041 public: 2042 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 2043 2044 void apply(ScheduleDAGInstrs *DAGInstrs) override; 2045 2046 protected: 2047 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 2048 }; 2049 2050 } // end anonymous namespace 2051 2052 namespace llvm { 2053 2054 std::unique_ptr<ScheduleDAGMutation> 2055 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 2056 const TargetRegisterInfo *TRI) { 2057 return std::make_unique<CopyConstrain>(TII, TRI); 2058 } 2059 2060 } // end namespace llvm 2061 2062 /// constrainLocalCopy handles two possibilities: 2063 /// 1) Local src: 2064 /// I0: = dst 2065 /// I1: src = ... 2066 /// I2: = dst 2067 /// I3: dst = src (copy) 2068 /// (create pred->succ edges I0->I1, I2->I1) 2069 /// 2070 /// 2) Local copy: 2071 /// I0: dst = src (copy) 2072 /// I1: = dst 2073 /// I2: src = ... 2074 /// I3: = dst 2075 /// (create pred->succ edges I1->I2, I3->I2) 2076 /// 2077 /// Although the MachineScheduler is currently constrained to single blocks, 2078 /// this algorithm should handle extended blocks. An EBB is a set of 2079 /// contiguously numbered blocks such that the previous block in the EBB is 2080 /// always the single predecessor. 2081 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 2082 LiveIntervals *LIS = DAG->getLIS(); 2083 MachineInstr *Copy = CopySU->getInstr(); 2084 2085 // Check for pure vreg copies. 2086 const MachineOperand &SrcOp = Copy->getOperand(1); 2087 Register SrcReg = SrcOp.getReg(); 2088 if (!SrcReg.isVirtual() || !SrcOp.readsReg()) 2089 return; 2090 2091 const MachineOperand &DstOp = Copy->getOperand(0); 2092 Register DstReg = DstOp.getReg(); 2093 if (!DstReg.isVirtual() || DstOp.isDead()) 2094 return; 2095 2096 // Check if either the dest or source is local. If it's live across a back 2097 // edge, it's not local. Note that if both vregs are live across the back 2098 // edge, we cannot successfully contrain the copy without cyclic scheduling. 2099 // If both the copy's source and dest are local live intervals, then we 2100 // should treat the dest as the global for the purpose of adding 2101 // constraints. This adds edges from source's other uses to the copy. 2102 unsigned LocalReg = SrcReg; 2103 unsigned GlobalReg = DstReg; 2104 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 2105 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 2106 LocalReg = DstReg; 2107 GlobalReg = SrcReg; 2108 LocalLI = &LIS->getInterval(LocalReg); 2109 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 2110 return; 2111 } 2112 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 2113 2114 // Find the global segment after the start of the local LI. 2115 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 2116 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 2117 // local live range. We could create edges from other global uses to the local 2118 // start, but the coalescer should have already eliminated these cases, so 2119 // don't bother dealing with it. 2120 if (GlobalSegment == GlobalLI->end()) 2121 return; 2122 2123 // If GlobalSegment is killed at the LocalLI->start, the call to find() 2124 // returned the next global segment. But if GlobalSegment overlaps with 2125 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI 2126 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 2127 if (GlobalSegment->contains(LocalLI->beginIndex())) 2128 ++GlobalSegment; 2129 2130 if (GlobalSegment == GlobalLI->end()) 2131 return; 2132 2133 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 2134 if (GlobalSegment != GlobalLI->begin()) { 2135 // Two address defs have no hole. 2136 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 2137 GlobalSegment->start)) { 2138 return; 2139 } 2140 // If the prior global segment may be defined by the same two-address 2141 // instruction that also defines LocalLI, then can't make a hole here. 2142 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 2143 LocalLI->beginIndex())) { 2144 return; 2145 } 2146 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 2147 // it would be a disconnected component in the live range. 2148 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 2149 "Disconnected LRG within the scheduling region."); 2150 } 2151 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 2152 if (!GlobalDef) 2153 return; 2154 2155 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 2156 if (!GlobalSU) 2157 return; 2158 2159 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 2160 // constraining the uses of the last local def to precede GlobalDef. 2161 SmallVector<SUnit*,8> LocalUses; 2162 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 2163 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 2164 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 2165 for (const SDep &Succ : LastLocalSU->Succs) { 2166 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 2167 continue; 2168 if (Succ.getSUnit() == GlobalSU) 2169 continue; 2170 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 2171 return; 2172 LocalUses.push_back(Succ.getSUnit()); 2173 } 2174 // Open the top of the GlobalLI hole by constraining any earlier global uses 2175 // to precede the start of LocalLI. 2176 SmallVector<SUnit*,8> GlobalUses; 2177 MachineInstr *FirstLocalDef = 2178 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 2179 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 2180 for (const SDep &Pred : GlobalSU->Preds) { 2181 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 2182 continue; 2183 if (Pred.getSUnit() == FirstLocalSU) 2184 continue; 2185 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 2186 return; 2187 GlobalUses.push_back(Pred.getSUnit()); 2188 } 2189 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 2190 // Add the weak edges. 2191 for (SUnit *LU : LocalUses) { 2192 LLVM_DEBUG(dbgs() << " Local use SU(" << LU->NodeNum << ") -> SU(" 2193 << GlobalSU->NodeNum << ")\n"); 2194 DAG->addEdge(GlobalSU, SDep(LU, SDep::Weak)); 2195 } 2196 for (SUnit *GU : GlobalUses) { 2197 LLVM_DEBUG(dbgs() << " Global use SU(" << GU->NodeNum << ") -> SU(" 2198 << FirstLocalSU->NodeNum << ")\n"); 2199 DAG->addEdge(FirstLocalSU, SDep(GU, SDep::Weak)); 2200 } 2201 } 2202 2203 /// Callback from DAG postProcessing to create weak edges to encourage 2204 /// copy elimination. 2205 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 2206 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 2207 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 2208 2209 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 2210 if (FirstPos == DAG->end()) 2211 return; 2212 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 2213 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 2214 *priorNonDebug(DAG->end(), DAG->begin())); 2215 2216 for (SUnit &SU : DAG->SUnits) { 2217 if (!SU.getInstr()->isCopy()) 2218 continue; 2219 2220 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 2221 } 2222 } 2223 2224 //===----------------------------------------------------------------------===// 2225 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 2226 // and possibly other custom schedulers. 2227 //===----------------------------------------------------------------------===// 2228 2229 static const unsigned InvalidCycle = ~0U; 2230 2231 SchedBoundary::~SchedBoundary() { delete HazardRec; } 2232 2233 /// Given a Count of resource usage and a Latency value, return true if a 2234 /// SchedBoundary becomes resource limited. 2235 /// If we are checking after scheduling a node, we should return true when 2236 /// we just reach the resource limit. 2237 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 2238 unsigned Latency, bool AfterSchedNode) { 2239 int ResCntFactor = (int)(Count - (Latency * LFactor)); 2240 if (AfterSchedNode) 2241 return ResCntFactor >= (int)LFactor; 2242 else 2243 return ResCntFactor > (int)LFactor; 2244 } 2245 2246 void SchedBoundary::reset() { 2247 // A new HazardRec is created for each DAG and owned by SchedBoundary. 2248 // Destroying and reconstructing it is very expensive though. So keep 2249 // invalid, placeholder HazardRecs. 2250 if (HazardRec && HazardRec->isEnabled()) { 2251 delete HazardRec; 2252 HazardRec = nullptr; 2253 } 2254 Available.clear(); 2255 Pending.clear(); 2256 CheckPending = false; 2257 CurrCycle = 0; 2258 CurrMOps = 0; 2259 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2260 ExpectedLatency = 0; 2261 DependentLatency = 0; 2262 RetiredMOps = 0; 2263 MaxExecutedResCount = 0; 2264 ZoneCritResIdx = 0; 2265 IsResourceLimited = false; 2266 ReservedCycles.clear(); 2267 ReservedResourceSegments.clear(); 2268 ReservedCyclesIndex.clear(); 2269 ResourceGroupSubUnitMasks.clear(); 2270 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 2271 // Track the maximum number of stall cycles that could arise either from the 2272 // latency of a DAG edge or the number of cycles that a processor resource is 2273 // reserved (SchedBoundary::ReservedCycles). 2274 MaxObservedStall = 0; 2275 #endif 2276 // Reserve a zero-count for invalid CritResIdx. 2277 ExecutedResCounts.resize(1); 2278 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 2279 } 2280 2281 void SchedRemainder:: 2282 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 2283 reset(); 2284 if (!SchedModel->hasInstrSchedModel()) 2285 return; 2286 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 2287 for (SUnit &SU : DAG->SUnits) { 2288 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 2289 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 2290 * SchedModel->getMicroOpFactor(); 2291 for (TargetSchedModel::ProcResIter 2292 PI = SchedModel->getWriteProcResBegin(SC), 2293 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2294 unsigned PIdx = PI->ProcResourceIdx; 2295 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2296 assert(PI->ReleaseAtCycle >= PI->AcquireAtCycle); 2297 RemainingCounts[PIdx] += 2298 (Factor * (PI->ReleaseAtCycle - PI->AcquireAtCycle)); 2299 } 2300 } 2301 } 2302 2303 void SchedBoundary:: 2304 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 2305 reset(); 2306 DAG = dag; 2307 SchedModel = smodel; 2308 Rem = rem; 2309 if (SchedModel->hasInstrSchedModel()) { 2310 unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); 2311 ReservedCyclesIndex.resize(ResourceCount); 2312 ExecutedResCounts.resize(ResourceCount); 2313 ResourceGroupSubUnitMasks.resize(ResourceCount, APInt(ResourceCount, 0)); 2314 unsigned NumUnits = 0; 2315 2316 for (unsigned i = 0; i < ResourceCount; ++i) { 2317 ReservedCyclesIndex[i] = NumUnits; 2318 NumUnits += SchedModel->getProcResource(i)->NumUnits; 2319 if (isUnbufferedGroup(i)) { 2320 auto SubUnits = SchedModel->getProcResource(i)->SubUnitsIdxBegin; 2321 for (unsigned U = 0, UE = SchedModel->getProcResource(i)->NumUnits; 2322 U != UE; ++U) 2323 ResourceGroupSubUnitMasks[i].setBit(SubUnits[U]); 2324 } 2325 } 2326 2327 ReservedCycles.resize(NumUnits, InvalidCycle); 2328 } 2329 } 2330 2331 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 2332 /// these "soft stalls" differently than the hard stall cycles based on CPU 2333 /// resources and computed by checkHazard(). A fully in-order model 2334 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 2335 /// available for scheduling until they are ready. However, a weaker in-order 2336 /// model may use this for heuristics. For example, if a processor has in-order 2337 /// behavior when reading certain resources, this may come into play. 2338 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 2339 if (!SU->isUnbuffered) 2340 return 0; 2341 2342 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2343 if (ReadyCycle > CurrCycle) 2344 return ReadyCycle - CurrCycle; 2345 return 0; 2346 } 2347 2348 /// Compute the next cycle at which the given processor resource unit 2349 /// can be scheduled. 2350 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx, 2351 unsigned ReleaseAtCycle, 2352 unsigned AcquireAtCycle) { 2353 if (SchedModel && SchedModel->enableIntervals()) { 2354 if (isTop()) 2355 return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromTop( 2356 CurrCycle, AcquireAtCycle, ReleaseAtCycle); 2357 2358 return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromBottom( 2359 CurrCycle, AcquireAtCycle, ReleaseAtCycle); 2360 } 2361 2362 unsigned NextUnreserved = ReservedCycles[InstanceIdx]; 2363 // If this resource has never been used, always return cycle zero. 2364 if (NextUnreserved == InvalidCycle) 2365 return CurrCycle; 2366 // For bottom-up scheduling add the cycles needed for the current operation. 2367 if (!isTop()) 2368 NextUnreserved = std::max(CurrCycle, NextUnreserved + ReleaseAtCycle); 2369 return NextUnreserved; 2370 } 2371 2372 /// Compute the next cycle at which the given processor resource can be 2373 /// scheduled. Returns the next cycle and the index of the processor resource 2374 /// instance in the reserved cycles vector. 2375 std::pair<unsigned, unsigned> 2376 SchedBoundary::getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx, 2377 unsigned ReleaseAtCycle, 2378 unsigned AcquireAtCycle) { 2379 if (MischedDetailResourceBooking) { 2380 LLVM_DEBUG(dbgs() << " Resource booking (@" << CurrCycle << "c): \n"); 2381 LLVM_DEBUG(dumpReservedCycles()); 2382 LLVM_DEBUG(dbgs() << " getNextResourceCycle (@" << CurrCycle << "c): \n"); 2383 } 2384 unsigned MinNextUnreserved = InvalidCycle; 2385 unsigned InstanceIdx = 0; 2386 unsigned StartIndex = ReservedCyclesIndex[PIdx]; 2387 unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits; 2388 assert(NumberOfInstances > 0 && 2389 "Cannot have zero instances of a ProcResource"); 2390 2391 if (isUnbufferedGroup(PIdx)) { 2392 // If any subunits are used by the instruction, report that the 2393 // subunits of the resource group are available at the first cycle 2394 // in which the unit is available, effectively removing the group 2395 // record from hazarding and basing the hazarding decisions on the 2396 // subunit records. Otherwise, choose the first available instance 2397 // from among the subunits. Specifications which assign cycles to 2398 // both the subunits and the group or which use an unbuffered 2399 // group with buffered subunits will appear to schedule 2400 // strangely. In the first case, the additional cycles for the 2401 // group will be ignored. In the second, the group will be 2402 // ignored entirely. 2403 for (const MCWriteProcResEntry &PE : 2404 make_range(SchedModel->getWriteProcResBegin(SC), 2405 SchedModel->getWriteProcResEnd(SC))) 2406 if (ResourceGroupSubUnitMasks[PIdx][PE.ProcResourceIdx]) 2407 return std::make_pair(getNextResourceCycleByInstance( 2408 StartIndex, ReleaseAtCycle, AcquireAtCycle), 2409 StartIndex); 2410 2411 auto SubUnits = SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin; 2412 for (unsigned I = 0, End = NumberOfInstances; I < End; ++I) { 2413 unsigned NextUnreserved, NextInstanceIdx; 2414 std::tie(NextUnreserved, NextInstanceIdx) = 2415 getNextResourceCycle(SC, SubUnits[I], ReleaseAtCycle, AcquireAtCycle); 2416 if (MinNextUnreserved > NextUnreserved) { 2417 InstanceIdx = NextInstanceIdx; 2418 MinNextUnreserved = NextUnreserved; 2419 } 2420 } 2421 return std::make_pair(MinNextUnreserved, InstanceIdx); 2422 } 2423 2424 for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End; 2425 ++I) { 2426 unsigned NextUnreserved = 2427 getNextResourceCycleByInstance(I, ReleaseAtCycle, AcquireAtCycle); 2428 if (MischedDetailResourceBooking) 2429 LLVM_DEBUG(dbgs() << " Instance " << I - StartIndex << " available @" 2430 << NextUnreserved << "c\n"); 2431 if (MinNextUnreserved > NextUnreserved) { 2432 InstanceIdx = I; 2433 MinNextUnreserved = NextUnreserved; 2434 } 2435 } 2436 if (MischedDetailResourceBooking) 2437 LLVM_DEBUG(dbgs() << " selecting " << SchedModel->getResourceName(PIdx) 2438 << "[" << InstanceIdx - StartIndex << "]" 2439 << " available @" << MinNextUnreserved << "c" 2440 << "\n"); 2441 return std::make_pair(MinNextUnreserved, InstanceIdx); 2442 } 2443 2444 /// Does this SU have a hazard within the current instruction group. 2445 /// 2446 /// The scheduler supports two modes of hazard recognition. The first is the 2447 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 2448 /// supports highly complicated in-order reservation tables 2449 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. 2450 /// 2451 /// The second is a streamlined mechanism that checks for hazards based on 2452 /// simple counters that the scheduler itself maintains. It explicitly checks 2453 /// for instruction dispatch limitations, including the number of micro-ops that 2454 /// can dispatch per cycle. 2455 /// 2456 /// TODO: Also check whether the SU must start a new group. 2457 bool SchedBoundary::checkHazard(SUnit *SU) { 2458 if (HazardRec->isEnabled() 2459 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 2460 return true; 2461 } 2462 2463 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 2464 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 2465 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 2466 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 2467 return true; 2468 } 2469 2470 if (CurrMOps > 0 && 2471 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 2472 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 2473 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 2474 << (isTop() ? "begin" : "end") << " group\n"); 2475 return true; 2476 } 2477 2478 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 2479 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2480 for (const MCWriteProcResEntry &PE : 2481 make_range(SchedModel->getWriteProcResBegin(SC), 2482 SchedModel->getWriteProcResEnd(SC))) { 2483 unsigned ResIdx = PE.ProcResourceIdx; 2484 unsigned ReleaseAtCycle = PE.ReleaseAtCycle; 2485 unsigned AcquireAtCycle = PE.AcquireAtCycle; 2486 unsigned NRCycle, InstanceIdx; 2487 std::tie(NRCycle, InstanceIdx) = 2488 getNextResourceCycle(SC, ResIdx, ReleaseAtCycle, AcquireAtCycle); 2489 if (NRCycle > CurrCycle) { 2490 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 2491 MaxObservedStall = std::max(ReleaseAtCycle, MaxObservedStall); 2492 #endif 2493 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 2494 << SchedModel->getResourceName(ResIdx) 2495 << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']' 2496 << "=" << NRCycle << "c\n"); 2497 return true; 2498 } 2499 } 2500 } 2501 return false; 2502 } 2503 2504 // Find the unscheduled node in ReadySUs with the highest latency. 2505 unsigned SchedBoundary:: 2506 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 2507 SUnit *LateSU = nullptr; 2508 unsigned RemLatency = 0; 2509 for (SUnit *SU : ReadySUs) { 2510 unsigned L = getUnscheduledLatency(SU); 2511 if (L > RemLatency) { 2512 RemLatency = L; 2513 LateSU = SU; 2514 } 2515 } 2516 if (LateSU) { 2517 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2518 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2519 } 2520 return RemLatency; 2521 } 2522 2523 // Count resources in this zone and the remaining unscheduled 2524 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2525 // resource index, or zero if the zone is issue limited. 2526 unsigned SchedBoundary:: 2527 getOtherResourceCount(unsigned &OtherCritIdx) { 2528 OtherCritIdx = 0; 2529 if (!SchedModel->hasInstrSchedModel()) 2530 return 0; 2531 2532 unsigned OtherCritCount = Rem->RemIssueCount 2533 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2534 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2535 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2536 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2537 PIdx != PEnd; ++PIdx) { 2538 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2539 if (OtherCount > OtherCritCount) { 2540 OtherCritCount = OtherCount; 2541 OtherCritIdx = PIdx; 2542 } 2543 } 2544 if (OtherCritIdx) { 2545 LLVM_DEBUG( 2546 dbgs() << " " << Available.getName() << " + Remain CritRes: " 2547 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2548 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2549 } 2550 return OtherCritCount; 2551 } 2552 2553 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue, 2554 unsigned Idx) { 2555 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2556 2557 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 2558 // ReadyCycle was been bumped up to the CurrCycle when this node was 2559 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2560 // scheduling, so may now be greater than ReadyCycle. 2561 if (ReadyCycle > CurrCycle) 2562 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2563 #endif 2564 2565 if (ReadyCycle < MinReadyCycle) 2566 MinReadyCycle = ReadyCycle; 2567 2568 // Check for interlocks first. For the purpose of other heuristics, an 2569 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2570 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2571 bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) || 2572 checkHazard(SU) || (Available.size() >= ReadyListLimit); 2573 2574 if (!HazardDetected) { 2575 Available.push(SU); 2576 2577 if (InPQueue) 2578 Pending.remove(Pending.begin() + Idx); 2579 return; 2580 } 2581 2582 if (!InPQueue) 2583 Pending.push(SU); 2584 } 2585 2586 /// Move the boundary of scheduled code by one cycle. 2587 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2588 if (SchedModel->getMicroOpBufferSize() == 0) { 2589 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2590 "MinReadyCycle uninitialized"); 2591 if (MinReadyCycle > NextCycle) 2592 NextCycle = MinReadyCycle; 2593 } 2594 // Update the current micro-ops, which will issue in the next cycle. 2595 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2596 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2597 2598 // Decrement DependentLatency based on the next cycle. 2599 if ((NextCycle - CurrCycle) > DependentLatency) 2600 DependentLatency = 0; 2601 else 2602 DependentLatency -= (NextCycle - CurrCycle); 2603 2604 if (!HazardRec->isEnabled()) { 2605 // Bypass HazardRec virtual calls. 2606 CurrCycle = NextCycle; 2607 } else { 2608 // Bypass getHazardType calls in case of long latency. 2609 for (; CurrCycle != NextCycle; ++CurrCycle) { 2610 if (isTop()) 2611 HazardRec->AdvanceCycle(); 2612 else 2613 HazardRec->RecedeCycle(); 2614 } 2615 } 2616 CheckPending = true; 2617 IsResourceLimited = 2618 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2619 getScheduledLatency(), true); 2620 2621 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() 2622 << '\n'); 2623 } 2624 2625 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2626 ExecutedResCounts[PIdx] += Count; 2627 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2628 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2629 } 2630 2631 /// Add the given processor resource to this scheduled zone. 2632 /// 2633 /// \param ReleaseAtCycle indicates the number of consecutive (non-pipelined) 2634 /// cycles during which this resource is released. 2635 /// 2636 /// \param AcquireAtCycle indicates the number of consecutive (non-pipelined) 2637 /// cycles at which the resource is aquired after issue (assuming no stalls). 2638 /// 2639 /// \return the next cycle at which the instruction may execute without 2640 /// oversubscribing resources. 2641 unsigned SchedBoundary::countResource(const MCSchedClassDesc *SC, unsigned PIdx, 2642 unsigned ReleaseAtCycle, 2643 unsigned NextCycle, 2644 unsigned AcquireAtCycle) { 2645 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2646 unsigned Count = Factor * (ReleaseAtCycle- AcquireAtCycle); 2647 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +" 2648 << ReleaseAtCycle << "x" << Factor << "u\n"); 2649 2650 // Update Executed resources counts. 2651 incExecutedResources(PIdx, Count); 2652 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2653 Rem->RemainingCounts[PIdx] -= Count; 2654 2655 // Check if this resource exceeds the current critical resource. If so, it 2656 // becomes the critical resource. 2657 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2658 ZoneCritResIdx = PIdx; 2659 LLVM_DEBUG(dbgs() << " *** Critical resource " 2660 << SchedModel->getResourceName(PIdx) << ": " 2661 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() 2662 << "c\n"); 2663 } 2664 // For reserved resources, record the highest cycle using the resource. 2665 unsigned NextAvailable, InstanceIdx; 2666 std::tie(NextAvailable, InstanceIdx) = 2667 getNextResourceCycle(SC, PIdx, ReleaseAtCycle, AcquireAtCycle); 2668 if (NextAvailable > CurrCycle) { 2669 LLVM_DEBUG(dbgs() << " Resource conflict: " 2670 << SchedModel->getResourceName(PIdx) 2671 << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']' 2672 << " reserved until @" << NextAvailable << "\n"); 2673 } 2674 return NextAvailable; 2675 } 2676 2677 /// Move the boundary of scheduled code by one SUnit. 2678 void SchedBoundary::bumpNode(SUnit *SU) { 2679 // Update the reservation table. 2680 if (HazardRec->isEnabled()) { 2681 if (!isTop() && SU->isCall) { 2682 // Calls are scheduled with their preceding instructions. For bottom-up 2683 // scheduling, clear the pipeline state before emitting. 2684 HazardRec->Reset(); 2685 } 2686 HazardRec->EmitInstruction(SU); 2687 // Scheduling an instruction may have made pending instructions available. 2688 CheckPending = true; 2689 } 2690 // checkHazard should prevent scheduling multiple instructions per cycle that 2691 // exceed the issue width. 2692 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2693 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2694 assert( 2695 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2696 "Cannot schedule this instruction's MicroOps in the current cycle."); 2697 2698 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2699 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2700 2701 unsigned NextCycle = CurrCycle; 2702 switch (SchedModel->getMicroOpBufferSize()) { 2703 case 0: 2704 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2705 break; 2706 case 1: 2707 if (ReadyCycle > NextCycle) { 2708 NextCycle = ReadyCycle; 2709 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2710 } 2711 break; 2712 default: 2713 // We don't currently model the OOO reorder buffer, so consider all 2714 // scheduled MOps to be "retired". We do loosely model in-order resource 2715 // latency. If this instruction uses an in-order resource, account for any 2716 // likely stall cycles. 2717 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2718 NextCycle = ReadyCycle; 2719 break; 2720 } 2721 RetiredMOps += IncMOps; 2722 2723 // Update resource counts and critical resource. 2724 if (SchedModel->hasInstrSchedModel()) { 2725 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2726 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2727 Rem->RemIssueCount -= DecRemIssue; 2728 if (ZoneCritResIdx) { 2729 // Scale scheduled micro-ops for comparing with the critical resource. 2730 unsigned ScaledMOps = 2731 RetiredMOps * SchedModel->getMicroOpFactor(); 2732 2733 // If scaled micro-ops are now more than the previous critical resource by 2734 // a full cycle, then micro-ops issue becomes critical. 2735 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2736 >= (int)SchedModel->getLatencyFactor()) { 2737 ZoneCritResIdx = 0; 2738 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2739 << ScaledMOps / SchedModel->getLatencyFactor() 2740 << "c\n"); 2741 } 2742 } 2743 for (TargetSchedModel::ProcResIter 2744 PI = SchedModel->getWriteProcResBegin(SC), 2745 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2746 unsigned RCycle = 2747 countResource(SC, PI->ProcResourceIdx, PI->ReleaseAtCycle, NextCycle, 2748 PI->AcquireAtCycle); 2749 if (RCycle > NextCycle) 2750 NextCycle = RCycle; 2751 } 2752 if (SU->hasReservedResource) { 2753 // For reserved resources, record the highest cycle using the resource. 2754 // For top-down scheduling, this is the cycle in which we schedule this 2755 // instruction plus the number of cycles the operations reserves the 2756 // resource. For bottom-up is it simply the instruction's cycle. 2757 for (TargetSchedModel::ProcResIter 2758 PI = SchedModel->getWriteProcResBegin(SC), 2759 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2760 unsigned PIdx = PI->ProcResourceIdx; 2761 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2762 2763 if (SchedModel && SchedModel->enableIntervals()) { 2764 unsigned ReservedUntil, InstanceIdx; 2765 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle( 2766 SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle); 2767 if (isTop()) { 2768 ReservedResourceSegments[InstanceIdx].add( 2769 ResourceSegments::getResourceIntervalTop( 2770 NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle), 2771 MIResourceCutOff); 2772 } else { 2773 ReservedResourceSegments[InstanceIdx].add( 2774 ResourceSegments::getResourceIntervalBottom( 2775 NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle), 2776 MIResourceCutOff); 2777 } 2778 } else { 2779 2780 unsigned ReservedUntil, InstanceIdx; 2781 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle( 2782 SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle); 2783 if (isTop()) { 2784 ReservedCycles[InstanceIdx] = 2785 std::max(ReservedUntil, NextCycle + PI->ReleaseAtCycle); 2786 } else 2787 ReservedCycles[InstanceIdx] = NextCycle; 2788 } 2789 } 2790 } 2791 } 2792 } 2793 // Update ExpectedLatency and DependentLatency. 2794 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2795 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2796 if (SU->getDepth() > TopLatency) { 2797 TopLatency = SU->getDepth(); 2798 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU(" 2799 << SU->NodeNum << ") " << TopLatency << "c\n"); 2800 } 2801 if (SU->getHeight() > BotLatency) { 2802 BotLatency = SU->getHeight(); 2803 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU(" 2804 << SU->NodeNum << ") " << BotLatency << "c\n"); 2805 } 2806 // If we stall for any reason, bump the cycle. 2807 if (NextCycle > CurrCycle) 2808 bumpCycle(NextCycle); 2809 else 2810 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2811 // resource limited. If a stall occurred, bumpCycle does this. 2812 IsResourceLimited = 2813 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2814 getScheduledLatency(), true); 2815 2816 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2817 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2818 // one cycle. Since we commonly reach the max MOps here, opportunistically 2819 // bump the cycle to avoid uselessly checking everything in the readyQ. 2820 CurrMOps += IncMOps; 2821 2822 // Bump the cycle count for issue group constraints. 2823 // This must be done after NextCycle has been adjust for all other stalls. 2824 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2825 // currCycle to X. 2826 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2827 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2828 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin") 2829 << " group\n"); 2830 bumpCycle(++NextCycle); 2831 } 2832 2833 while (CurrMOps >= SchedModel->getIssueWidth()) { 2834 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle " 2835 << CurrCycle << '\n'); 2836 bumpCycle(++NextCycle); 2837 } 2838 LLVM_DEBUG(dumpScheduledState()); 2839 } 2840 2841 /// Release pending ready nodes in to the available queue. This makes them 2842 /// visible to heuristics. 2843 void SchedBoundary::releasePending() { 2844 // If the available queue is empty, it is safe to reset MinReadyCycle. 2845 if (Available.empty()) 2846 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2847 2848 // Check to see if any of the pending instructions are ready to issue. If 2849 // so, add them to the available queue. 2850 for (unsigned I = 0, E = Pending.size(); I < E; ++I) { 2851 SUnit *SU = *(Pending.begin() + I); 2852 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2853 2854 if (ReadyCycle < MinReadyCycle) 2855 MinReadyCycle = ReadyCycle; 2856 2857 if (Available.size() >= ReadyListLimit) 2858 break; 2859 2860 releaseNode(SU, ReadyCycle, true, I); 2861 if (E != Pending.size()) { 2862 --I; 2863 --E; 2864 } 2865 } 2866 CheckPending = false; 2867 } 2868 2869 /// Remove SU from the ready set for this boundary. 2870 void SchedBoundary::removeReady(SUnit *SU) { 2871 if (Available.isInQueue(SU)) 2872 Available.remove(Available.find(SU)); 2873 else { 2874 assert(Pending.isInQueue(SU) && "bad ready count"); 2875 Pending.remove(Pending.find(SU)); 2876 } 2877 } 2878 2879 /// If this queue only has one ready candidate, return it. As a side effect, 2880 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2881 /// one node is ready. If multiple instructions are ready, return NULL. 2882 SUnit *SchedBoundary::pickOnlyChoice() { 2883 if (CheckPending) 2884 releasePending(); 2885 2886 // Defer any ready instrs that now have a hazard. 2887 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2888 if (checkHazard(*I)) { 2889 Pending.push(*I); 2890 I = Available.remove(I); 2891 continue; 2892 } 2893 ++I; 2894 } 2895 for (unsigned i = 0; Available.empty(); ++i) { 2896 // FIXME: Re-enable assert once PR20057 is resolved. 2897 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2898 // "permanent hazard"); 2899 (void)i; 2900 bumpCycle(CurrCycle + 1); 2901 releasePending(); 2902 } 2903 2904 LLVM_DEBUG(Pending.dump()); 2905 LLVM_DEBUG(Available.dump()); 2906 2907 if (Available.size() == 1) 2908 return *Available.begin(); 2909 return nullptr; 2910 } 2911 2912 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2913 2914 /// Dump the content of the \ref ReservedCycles vector for the 2915 /// resources that are used in the basic block. 2916 /// 2917 LLVM_DUMP_METHOD void SchedBoundary::dumpReservedCycles() const { 2918 if (!SchedModel->hasInstrSchedModel()) 2919 return; 2920 2921 unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); 2922 unsigned StartIdx = 0; 2923 2924 for (unsigned ResIdx = 0; ResIdx < ResourceCount; ++ResIdx) { 2925 const unsigned NumUnits = SchedModel->getProcResource(ResIdx)->NumUnits; 2926 std::string ResName = SchedModel->getResourceName(ResIdx); 2927 for (unsigned UnitIdx = 0; UnitIdx < NumUnits; ++UnitIdx) { 2928 dbgs() << ResName << "(" << UnitIdx << ") = "; 2929 if (SchedModel && SchedModel->enableIntervals()) { 2930 if (ReservedResourceSegments.count(StartIdx + UnitIdx)) 2931 dbgs() << ReservedResourceSegments.at(StartIdx + UnitIdx); 2932 else 2933 dbgs() << "{ }\n"; 2934 } else 2935 dbgs() << ReservedCycles[StartIdx + UnitIdx] << "\n"; 2936 } 2937 StartIdx += NumUnits; 2938 } 2939 } 2940 2941 // This is useful information to dump after bumpNode. 2942 // Note that the Queue contents are more useful before pickNodeFromQueue. 2943 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2944 unsigned ResFactor; 2945 unsigned ResCount; 2946 if (ZoneCritResIdx) { 2947 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2948 ResCount = getResourceCount(ZoneCritResIdx); 2949 } else { 2950 ResFactor = SchedModel->getMicroOpFactor(); 2951 ResCount = RetiredMOps * ResFactor; 2952 } 2953 unsigned LFactor = SchedModel->getLatencyFactor(); 2954 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2955 << " Retired: " << RetiredMOps; 2956 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2957 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2958 << ResCount / ResFactor << " " 2959 << SchedModel->getResourceName(ZoneCritResIdx) 2960 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2961 << (IsResourceLimited ? " - Resource" : " - Latency") 2962 << " limited.\n"; 2963 if (MISchedDumpReservedCycles) 2964 dumpReservedCycles(); 2965 } 2966 #endif 2967 2968 //===----------------------------------------------------------------------===// 2969 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2970 //===----------------------------------------------------------------------===// 2971 2972 void GenericSchedulerBase::SchedCandidate:: 2973 initResourceDelta(const ScheduleDAGMI *DAG, 2974 const TargetSchedModel *SchedModel) { 2975 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2976 return; 2977 2978 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2979 for (TargetSchedModel::ProcResIter 2980 PI = SchedModel->getWriteProcResBegin(SC), 2981 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2982 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2983 ResDelta.CritResources += PI->ReleaseAtCycle; 2984 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2985 ResDelta.DemandedResources += PI->ReleaseAtCycle; 2986 } 2987 } 2988 2989 /// Compute remaining latency. We need this both to determine whether the 2990 /// overall schedule has become latency-limited and whether the instructions 2991 /// outside this zone are resource or latency limited. 2992 /// 2993 /// The "dependent" latency is updated incrementally during scheduling as the 2994 /// max height/depth of scheduled nodes minus the cycles since it was 2995 /// scheduled: 2996 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2997 /// 2998 /// The "independent" latency is the max ready queue depth: 2999 /// ILat = max N.depth for N in Available|Pending 3000 /// 3001 /// RemainingLatency is the greater of independent and dependent latency. 3002 /// 3003 /// These computations are expensive, especially in DAGs with many edges, so 3004 /// only do them if necessary. 3005 static unsigned computeRemLatency(SchedBoundary &CurrZone) { 3006 unsigned RemLatency = CurrZone.getDependentLatency(); 3007 RemLatency = std::max(RemLatency, 3008 CurrZone.findMaxLatency(CurrZone.Available.elements())); 3009 RemLatency = std::max(RemLatency, 3010 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 3011 return RemLatency; 3012 } 3013 3014 /// Returns true if the current cycle plus remaning latency is greater than 3015 /// the critical path in the scheduling region. 3016 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy, 3017 SchedBoundary &CurrZone, 3018 bool ComputeRemLatency, 3019 unsigned &RemLatency) const { 3020 // The current cycle is already greater than the critical path, so we are 3021 // already latency limited and don't need to compute the remaining latency. 3022 if (CurrZone.getCurrCycle() > Rem.CriticalPath) 3023 return true; 3024 3025 // If we haven't scheduled anything yet, then we aren't latency limited. 3026 if (CurrZone.getCurrCycle() == 0) 3027 return false; 3028 3029 if (ComputeRemLatency) 3030 RemLatency = computeRemLatency(CurrZone); 3031 3032 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath; 3033 } 3034 3035 /// Set the CandPolicy given a scheduling zone given the current resources and 3036 /// latencies inside and outside the zone. 3037 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 3038 SchedBoundary &CurrZone, 3039 SchedBoundary *OtherZone) { 3040 // Apply preemptive heuristics based on the total latency and resources 3041 // inside and outside this zone. Potential stalls should be considered before 3042 // following this policy. 3043 3044 // Compute the critical resource outside the zone. 3045 unsigned OtherCritIdx = 0; 3046 unsigned OtherCount = 3047 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 3048 3049 bool OtherResLimited = false; 3050 unsigned RemLatency = 0; 3051 bool RemLatencyComputed = false; 3052 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) { 3053 RemLatency = computeRemLatency(CurrZone); 3054 RemLatencyComputed = true; 3055 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 3056 OtherCount, RemLatency, false); 3057 } 3058 3059 // Schedule aggressively for latency in PostRA mode. We don't check for 3060 // acyclic latency during PostRA, and highly out-of-order processors will 3061 // skip PostRA scheduling. 3062 if (!OtherResLimited && 3063 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed, 3064 RemLatency))) { 3065 Policy.ReduceLatency |= true; 3066 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName() 3067 << " RemainingLatency " << RemLatency << " + " 3068 << CurrZone.getCurrCycle() << "c > CritPath " 3069 << Rem.CriticalPath << "\n"); 3070 } 3071 // If the same resource is limiting inside and outside the zone, do nothing. 3072 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 3073 return; 3074 3075 LLVM_DEBUG(if (CurrZone.isResourceLimited()) { 3076 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 3077 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n"; 3078 } if (OtherResLimited) dbgs() 3079 << " RemainingLimit: " 3080 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 3081 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs() 3082 << " Latency limited both directions.\n"); 3083 3084 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 3085 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 3086 3087 if (OtherResLimited) 3088 Policy.DemandResIdx = OtherCritIdx; 3089 } 3090 3091 #ifndef NDEBUG 3092 const char *GenericSchedulerBase::getReasonStr( 3093 GenericSchedulerBase::CandReason Reason) { 3094 switch (Reason) { 3095 case NoCand: return "NOCAND "; 3096 case Only1: return "ONLY1 "; 3097 case PhysReg: return "PHYS-REG "; 3098 case RegExcess: return "REG-EXCESS"; 3099 case RegCritical: return "REG-CRIT "; 3100 case Stall: return "STALL "; 3101 case Cluster: return "CLUSTER "; 3102 case Weak: return "WEAK "; 3103 case RegMax: return "REG-MAX "; 3104 case ResourceReduce: return "RES-REDUCE"; 3105 case ResourceDemand: return "RES-DEMAND"; 3106 case TopDepthReduce: return "TOP-DEPTH "; 3107 case TopPathReduce: return "TOP-PATH "; 3108 case BotHeightReduce:return "BOT-HEIGHT"; 3109 case BotPathReduce: return "BOT-PATH "; 3110 case NextDefUse: return "DEF-USE "; 3111 case NodeOrder: return "ORDER "; 3112 }; 3113 llvm_unreachable("Unknown reason!"); 3114 } 3115 3116 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 3117 PressureChange P; 3118 unsigned ResIdx = 0; 3119 unsigned Latency = 0; 3120 switch (Cand.Reason) { 3121 default: 3122 break; 3123 case RegExcess: 3124 P = Cand.RPDelta.Excess; 3125 break; 3126 case RegCritical: 3127 P = Cand.RPDelta.CriticalMax; 3128 break; 3129 case RegMax: 3130 P = Cand.RPDelta.CurrentMax; 3131 break; 3132 case ResourceReduce: 3133 ResIdx = Cand.Policy.ReduceResIdx; 3134 break; 3135 case ResourceDemand: 3136 ResIdx = Cand.Policy.DemandResIdx; 3137 break; 3138 case TopDepthReduce: 3139 Latency = Cand.SU->getDepth(); 3140 break; 3141 case TopPathReduce: 3142 Latency = Cand.SU->getHeight(); 3143 break; 3144 case BotHeightReduce: 3145 Latency = Cand.SU->getHeight(); 3146 break; 3147 case BotPathReduce: 3148 Latency = Cand.SU->getDepth(); 3149 break; 3150 } 3151 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 3152 if (P.isValid()) 3153 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 3154 << ":" << P.getUnitInc() << " "; 3155 else 3156 dbgs() << " "; 3157 if (ResIdx) 3158 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 3159 else 3160 dbgs() << " "; 3161 if (Latency) 3162 dbgs() << " " << Latency << " cycles "; 3163 else 3164 dbgs() << " "; 3165 dbgs() << '\n'; 3166 } 3167 #endif 3168 3169 namespace llvm { 3170 /// Return true if this heuristic determines order. 3171 /// TODO: Consider refactor return type of these functions as integer or enum, 3172 /// as we may need to differentiate whether TryCand is better than Cand. 3173 bool tryLess(int TryVal, int CandVal, 3174 GenericSchedulerBase::SchedCandidate &TryCand, 3175 GenericSchedulerBase::SchedCandidate &Cand, 3176 GenericSchedulerBase::CandReason Reason) { 3177 if (TryVal < CandVal) { 3178 TryCand.Reason = Reason; 3179 return true; 3180 } 3181 if (TryVal > CandVal) { 3182 if (Cand.Reason > Reason) 3183 Cand.Reason = Reason; 3184 return true; 3185 } 3186 return false; 3187 } 3188 3189 bool tryGreater(int TryVal, int CandVal, 3190 GenericSchedulerBase::SchedCandidate &TryCand, 3191 GenericSchedulerBase::SchedCandidate &Cand, 3192 GenericSchedulerBase::CandReason Reason) { 3193 if (TryVal > CandVal) { 3194 TryCand.Reason = Reason; 3195 return true; 3196 } 3197 if (TryVal < CandVal) { 3198 if (Cand.Reason > Reason) 3199 Cand.Reason = Reason; 3200 return true; 3201 } 3202 return false; 3203 } 3204 3205 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 3206 GenericSchedulerBase::SchedCandidate &Cand, 3207 SchedBoundary &Zone) { 3208 if (Zone.isTop()) { 3209 // Prefer the candidate with the lesser depth, but only if one of them has 3210 // depth greater than the total latency scheduled so far, otherwise either 3211 // of them could be scheduled now with no stall. 3212 if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) > 3213 Zone.getScheduledLatency()) { 3214 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 3215 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 3216 return true; 3217 } 3218 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 3219 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 3220 return true; 3221 } else { 3222 // Prefer the candidate with the lesser height, but only if one of them has 3223 // height greater than the total latency scheduled so far, otherwise either 3224 // of them could be scheduled now with no stall. 3225 if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) > 3226 Zone.getScheduledLatency()) { 3227 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 3228 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 3229 return true; 3230 } 3231 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 3232 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 3233 return true; 3234 } 3235 return false; 3236 } 3237 } // end namespace llvm 3238 3239 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 3240 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 3241 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 3242 } 3243 3244 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 3245 tracePick(Cand.Reason, Cand.AtTop); 3246 } 3247 3248 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 3249 assert(dag->hasVRegLiveness() && 3250 "(PreRA)GenericScheduler needs vreg liveness"); 3251 DAG = static_cast<ScheduleDAGMILive*>(dag); 3252 SchedModel = DAG->getSchedModel(); 3253 TRI = DAG->TRI; 3254 3255 if (RegionPolicy.ComputeDFSResult) 3256 DAG->computeDFSResult(); 3257 3258 Rem.init(DAG, SchedModel); 3259 Top.init(DAG, SchedModel, &Rem); 3260 Bot.init(DAG, SchedModel, &Rem); 3261 3262 // Initialize resource counts. 3263 3264 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 3265 // are disabled, then these HazardRecs will be disabled. 3266 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3267 if (!Top.HazardRec) { 3268 Top.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG); 3269 } 3270 if (!Bot.HazardRec) { 3271 Bot.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG); 3272 } 3273 TopCand.SU = nullptr; 3274 BotCand.SU = nullptr; 3275 } 3276 3277 /// Initialize the per-region scheduling policy. 3278 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 3279 MachineBasicBlock::iterator End, 3280 unsigned NumRegionInstrs) { 3281 const MachineFunction &MF = *Begin->getMF(); 3282 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 3283 3284 // Avoid setting up the register pressure tracker for small regions to save 3285 // compile time. As a rough heuristic, only track pressure when the number of 3286 // schedulable instructions exceeds half the allocatable integer register file 3287 // that is the largest legal integer regiser type. 3288 RegionPolicy.ShouldTrackPressure = true; 3289 for (unsigned VT = MVT::i64; VT > (unsigned)MVT::i1; --VT) { 3290 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 3291 if (TLI->isTypeLegal(LegalIntVT)) { 3292 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 3293 TLI->getRegClassFor(LegalIntVT)); 3294 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 3295 break; 3296 } 3297 } 3298 3299 // For generic targets, we default to bottom-up, because it's simpler and more 3300 // compile-time optimizations have been implemented in that direction. 3301 RegionPolicy.OnlyBottomUp = true; 3302 3303 // Allow the subtarget to override default policy. 3304 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 3305 3306 // After subtarget overrides, apply command line options. 3307 if (!EnableRegPressure) { 3308 RegionPolicy.ShouldTrackPressure = false; 3309 RegionPolicy.ShouldTrackLaneMasks = false; 3310 } 3311 3312 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 3313 // e.g. -misched-bottomup=false allows scheduling in both directions. 3314 assert((!ForceTopDown || !ForceBottomUp) && 3315 "-misched-topdown incompatible with -misched-bottomup"); 3316 if (ForceBottomUp.getNumOccurrences() > 0) { 3317 RegionPolicy.OnlyBottomUp = ForceBottomUp; 3318 if (RegionPolicy.OnlyBottomUp) 3319 RegionPolicy.OnlyTopDown = false; 3320 } 3321 if (ForceTopDown.getNumOccurrences() > 0) { 3322 RegionPolicy.OnlyTopDown = ForceTopDown; 3323 if (RegionPolicy.OnlyTopDown) 3324 RegionPolicy.OnlyBottomUp = false; 3325 } 3326 } 3327 3328 void GenericScheduler::dumpPolicy() const { 3329 // Cannot completely remove virtual function even in release mode. 3330 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3331 dbgs() << "GenericScheduler RegionPolicy: " 3332 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 3333 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 3334 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 3335 << "\n"; 3336 #endif 3337 } 3338 3339 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 3340 /// critical path by more cycles than it takes to drain the instruction buffer. 3341 /// We estimate an upper bounds on in-flight instructions as: 3342 /// 3343 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 3344 /// InFlightIterations = AcyclicPath / CyclesPerIteration 3345 /// InFlightResources = InFlightIterations * LoopResources 3346 /// 3347 /// TODO: Check execution resources in addition to IssueCount. 3348 void GenericScheduler::checkAcyclicLatency() { 3349 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 3350 return; 3351 3352 // Scaled number of cycles per loop iteration. 3353 unsigned IterCount = 3354 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 3355 Rem.RemIssueCount); 3356 // Scaled acyclic critical path. 3357 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 3358 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 3359 unsigned InFlightCount = 3360 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 3361 unsigned BufferLimit = 3362 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 3363 3364 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 3365 3366 LLVM_DEBUG( 3367 dbgs() << "IssueCycles=" 3368 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 3369 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 3370 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount 3371 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 3372 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 3373 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n"); 3374 } 3375 3376 void GenericScheduler::registerRoots() { 3377 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3378 3379 // Some roots may not feed into ExitSU. Check all of them in case. 3380 for (const SUnit *SU : Bot.Available) { 3381 if (SU->getDepth() > Rem.CriticalPath) 3382 Rem.CriticalPath = SU->getDepth(); 3383 } 3384 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 3385 if (DumpCriticalPathLength) { 3386 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 3387 } 3388 3389 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 3390 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 3391 checkAcyclicLatency(); 3392 } 3393 } 3394 3395 namespace llvm { 3396 bool tryPressure(const PressureChange &TryP, 3397 const PressureChange &CandP, 3398 GenericSchedulerBase::SchedCandidate &TryCand, 3399 GenericSchedulerBase::SchedCandidate &Cand, 3400 GenericSchedulerBase::CandReason Reason, 3401 const TargetRegisterInfo *TRI, 3402 const MachineFunction &MF) { 3403 // If one candidate decreases and the other increases, go with it. 3404 // Invalid candidates have UnitInc==0. 3405 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 3406 Reason)) { 3407 return true; 3408 } 3409 // Do not compare the magnitude of pressure changes between top and bottom 3410 // boundary. 3411 if (Cand.AtTop != TryCand.AtTop) 3412 return false; 3413 3414 // If both candidates affect the same set in the same boundary, go with the 3415 // smallest increase. 3416 unsigned TryPSet = TryP.getPSetOrMax(); 3417 unsigned CandPSet = CandP.getPSetOrMax(); 3418 if (TryPSet == CandPSet) { 3419 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 3420 Reason); 3421 } 3422 3423 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 3424 std::numeric_limits<int>::max(); 3425 3426 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 3427 std::numeric_limits<int>::max(); 3428 3429 // If the candidates are decreasing pressure, reverse priority. 3430 if (TryP.getUnitInc() < 0) 3431 std::swap(TryRank, CandRank); 3432 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 3433 } 3434 3435 unsigned getWeakLeft(const SUnit *SU, bool isTop) { 3436 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 3437 } 3438 3439 /// Minimize physical register live ranges. Regalloc wants them adjacent to 3440 /// their physreg def/use. 3441 /// 3442 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 3443 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 3444 /// with the operation that produces or consumes the physreg. We'll do this when 3445 /// regalloc has support for parallel copies. 3446 int biasPhysReg(const SUnit *SU, bool isTop) { 3447 const MachineInstr *MI = SU->getInstr(); 3448 3449 if (MI->isCopy()) { 3450 unsigned ScheduledOper = isTop ? 1 : 0; 3451 unsigned UnscheduledOper = isTop ? 0 : 1; 3452 // If we have already scheduled the physreg produce/consumer, immediately 3453 // schedule the copy. 3454 if (MI->getOperand(ScheduledOper).getReg().isPhysical()) 3455 return 1; 3456 // If the physreg is at the boundary, defer it. Otherwise schedule it 3457 // immediately to free the dependent. We can hoist the copy later. 3458 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 3459 if (MI->getOperand(UnscheduledOper).getReg().isPhysical()) 3460 return AtBoundary ? -1 : 1; 3461 } 3462 3463 if (MI->isMoveImmediate()) { 3464 // If we have a move immediate and all successors have been assigned, bias 3465 // towards scheduling this later. Make sure all register defs are to 3466 // physical registers. 3467 bool DoBias = true; 3468 for (const MachineOperand &Op : MI->defs()) { 3469 if (Op.isReg() && !Op.getReg().isPhysical()) { 3470 DoBias = false; 3471 break; 3472 } 3473 } 3474 3475 if (DoBias) 3476 return isTop ? -1 : 1; 3477 } 3478 3479 return 0; 3480 } 3481 } // end namespace llvm 3482 3483 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 3484 bool AtTop, 3485 const RegPressureTracker &RPTracker, 3486 RegPressureTracker &TempTracker) { 3487 Cand.SU = SU; 3488 Cand.AtTop = AtTop; 3489 if (DAG->isTrackingPressure()) { 3490 if (AtTop) { 3491 TempTracker.getMaxDownwardPressureDelta( 3492 Cand.SU->getInstr(), 3493 Cand.RPDelta, 3494 DAG->getRegionCriticalPSets(), 3495 DAG->getRegPressure().MaxSetPressure); 3496 } else { 3497 if (VerifyScheduling) { 3498 TempTracker.getMaxUpwardPressureDelta( 3499 Cand.SU->getInstr(), 3500 &DAG->getPressureDiff(Cand.SU), 3501 Cand.RPDelta, 3502 DAG->getRegionCriticalPSets(), 3503 DAG->getRegPressure().MaxSetPressure); 3504 } else { 3505 RPTracker.getUpwardPressureDelta( 3506 Cand.SU->getInstr(), 3507 DAG->getPressureDiff(Cand.SU), 3508 Cand.RPDelta, 3509 DAG->getRegionCriticalPSets(), 3510 DAG->getRegPressure().MaxSetPressure); 3511 } 3512 } 3513 } 3514 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs() 3515 << " Try SU(" << Cand.SU->NodeNum << ") " 3516 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":" 3517 << Cand.RPDelta.Excess.getUnitInc() << "\n"); 3518 } 3519 3520 /// Apply a set of heuristics to a new candidate. Heuristics are currently 3521 /// hierarchical. This may be more efficient than a graduated cost model because 3522 /// we don't need to evaluate all aspects of the model for each node in the 3523 /// queue. But it's really done to make the heuristics easier to debug and 3524 /// statistically analyze. 3525 /// 3526 /// \param Cand provides the policy and current best candidate. 3527 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3528 /// \param Zone describes the scheduled zone that we are extending, or nullptr 3529 /// if Cand is from a different zone than TryCand. 3530 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand) 3531 bool GenericScheduler::tryCandidate(SchedCandidate &Cand, 3532 SchedCandidate &TryCand, 3533 SchedBoundary *Zone) const { 3534 // Initialize the candidate if needed. 3535 if (!Cand.isValid()) { 3536 TryCand.Reason = NodeOrder; 3537 return true; 3538 } 3539 3540 // Bias PhysReg Defs and copies to their uses and defined respectively. 3541 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop), 3542 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg)) 3543 return TryCand.Reason != NoCand; 3544 3545 // Avoid exceeding the target's limit. 3546 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 3547 Cand.RPDelta.Excess, 3548 TryCand, Cand, RegExcess, TRI, 3549 DAG->MF)) 3550 return TryCand.Reason != NoCand; 3551 3552 // Avoid increasing the max critical pressure in the scheduled region. 3553 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 3554 Cand.RPDelta.CriticalMax, 3555 TryCand, Cand, RegCritical, TRI, 3556 DAG->MF)) 3557 return TryCand.Reason != NoCand; 3558 3559 // We only compare a subset of features when comparing nodes between 3560 // Top and Bottom boundary. Some properties are simply incomparable, in many 3561 // other instances we should only override the other boundary if something 3562 // is a clear good pick on one boundary. Skip heuristics that are more 3563 // "tie-breaking" in nature. 3564 bool SameBoundary = Zone != nullptr; 3565 if (SameBoundary) { 3566 // For loops that are acyclic path limited, aggressively schedule for 3567 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 3568 // heuristics to take precedence. 3569 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 3570 tryLatency(TryCand, Cand, *Zone)) 3571 return TryCand.Reason != NoCand; 3572 3573 // Prioritize instructions that read unbuffered resources by stall cycles. 3574 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 3575 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3576 return TryCand.Reason != NoCand; 3577 } 3578 3579 // Keep clustered nodes together to encourage downstream peephole 3580 // optimizations which may reduce resource requirements. 3581 // 3582 // This is a best effort to set things up for a post-RA pass. Optimizations 3583 // like generating loads of multiple registers should ideally be done within 3584 // the scheduler pass by combining the loads during DAG postprocessing. 3585 const SUnit *CandNextClusterSU = 3586 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3587 const SUnit *TryCandNextClusterSU = 3588 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3589 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 3590 Cand.SU == CandNextClusterSU, 3591 TryCand, Cand, Cluster)) 3592 return TryCand.Reason != NoCand; 3593 3594 if (SameBoundary) { 3595 // Weak edges are for clustering and other constraints. 3596 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 3597 getWeakLeft(Cand.SU, Cand.AtTop), 3598 TryCand, Cand, Weak)) 3599 return TryCand.Reason != NoCand; 3600 } 3601 3602 // Avoid increasing the max pressure of the entire region. 3603 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 3604 Cand.RPDelta.CurrentMax, 3605 TryCand, Cand, RegMax, TRI, 3606 DAG->MF)) 3607 return TryCand.Reason != NoCand; 3608 3609 if (SameBoundary) { 3610 // Avoid critical resource consumption and balance the schedule. 3611 TryCand.initResourceDelta(DAG, SchedModel); 3612 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3613 TryCand, Cand, ResourceReduce)) 3614 return TryCand.Reason != NoCand; 3615 if (tryGreater(TryCand.ResDelta.DemandedResources, 3616 Cand.ResDelta.DemandedResources, 3617 TryCand, Cand, ResourceDemand)) 3618 return TryCand.Reason != NoCand; 3619 3620 // Avoid serializing long latency dependence chains. 3621 // For acyclic path limited loops, latency was already checked above. 3622 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 3623 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 3624 return TryCand.Reason != NoCand; 3625 3626 // Fall through to original instruction order. 3627 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 3628 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 3629 TryCand.Reason = NodeOrder; 3630 return true; 3631 } 3632 } 3633 3634 return false; 3635 } 3636 3637 /// Pick the best candidate from the queue. 3638 /// 3639 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 3640 /// DAG building. To adjust for the current scheduling location we need to 3641 /// maintain the number of vreg uses remaining to be top-scheduled. 3642 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3643 const CandPolicy &ZonePolicy, 3644 const RegPressureTracker &RPTracker, 3645 SchedCandidate &Cand) { 3646 // getMaxPressureDelta temporarily modifies the tracker. 3647 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3648 3649 ReadyQueue &Q = Zone.Available; 3650 for (SUnit *SU : Q) { 3651 3652 SchedCandidate TryCand(ZonePolicy); 3653 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3654 // Pass SchedBoundary only when comparing nodes from the same boundary. 3655 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3656 if (tryCandidate(Cand, TryCand, ZoneArg)) { 3657 // Initialize resource delta if needed in case future heuristics query it. 3658 if (TryCand.ResDelta == SchedResourceDelta()) 3659 TryCand.initResourceDelta(DAG, SchedModel); 3660 Cand.setBest(TryCand); 3661 LLVM_DEBUG(traceCandidate(Cand)); 3662 } 3663 } 3664 } 3665 3666 /// Pick the best candidate node from either the top or bottom queue. 3667 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3668 // Schedule as far as possible in the direction of no choice. This is most 3669 // efficient, but also provides the best heuristics for CriticalPSets. 3670 if (SUnit *SU = Bot.pickOnlyChoice()) { 3671 IsTopNode = false; 3672 tracePick(Only1, false); 3673 return SU; 3674 } 3675 if (SUnit *SU = Top.pickOnlyChoice()) { 3676 IsTopNode = true; 3677 tracePick(Only1, true); 3678 return SU; 3679 } 3680 // Set the bottom-up policy based on the state of the current bottom zone and 3681 // the instructions outside the zone, including the top zone. 3682 CandPolicy BotPolicy; 3683 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3684 // Set the top-down policy based on the state of the current top zone and 3685 // the instructions outside the zone, including the bottom zone. 3686 CandPolicy TopPolicy; 3687 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3688 3689 // See if BotCand is still valid (because we previously scheduled from Top). 3690 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 3691 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3692 BotCand.Policy != BotPolicy) { 3693 BotCand.reset(CandPolicy()); 3694 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3695 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3696 } else { 3697 LLVM_DEBUG(traceCandidate(BotCand)); 3698 #ifndef NDEBUG 3699 if (VerifyScheduling) { 3700 SchedCandidate TCand; 3701 TCand.reset(CandPolicy()); 3702 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3703 assert(TCand.SU == BotCand.SU && 3704 "Last pick result should correspond to re-picking right now"); 3705 } 3706 #endif 3707 } 3708 3709 // Check if the top Q has a better candidate. 3710 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 3711 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3712 TopCand.Policy != TopPolicy) { 3713 TopCand.reset(CandPolicy()); 3714 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3715 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3716 } else { 3717 LLVM_DEBUG(traceCandidate(TopCand)); 3718 #ifndef NDEBUG 3719 if (VerifyScheduling) { 3720 SchedCandidate TCand; 3721 TCand.reset(CandPolicy()); 3722 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3723 assert(TCand.SU == TopCand.SU && 3724 "Last pick result should correspond to re-picking right now"); 3725 } 3726 #endif 3727 } 3728 3729 // Pick best from BotCand and TopCand. 3730 assert(BotCand.isValid()); 3731 assert(TopCand.isValid()); 3732 SchedCandidate Cand = BotCand; 3733 TopCand.Reason = NoCand; 3734 if (tryCandidate(Cand, TopCand, nullptr)) { 3735 Cand.setBest(TopCand); 3736 LLVM_DEBUG(traceCandidate(Cand)); 3737 } 3738 3739 IsTopNode = Cand.AtTop; 3740 tracePick(Cand); 3741 return Cand.SU; 3742 } 3743 3744 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3745 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3746 if (DAG->top() == DAG->bottom()) { 3747 assert(Top.Available.empty() && Top.Pending.empty() && 3748 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3749 return nullptr; 3750 } 3751 SUnit *SU; 3752 do { 3753 if (RegionPolicy.OnlyTopDown) { 3754 SU = Top.pickOnlyChoice(); 3755 if (!SU) { 3756 CandPolicy NoPolicy; 3757 TopCand.reset(NoPolicy); 3758 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3759 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3760 tracePick(TopCand); 3761 SU = TopCand.SU; 3762 } 3763 IsTopNode = true; 3764 } else if (RegionPolicy.OnlyBottomUp) { 3765 SU = Bot.pickOnlyChoice(); 3766 if (!SU) { 3767 CandPolicy NoPolicy; 3768 BotCand.reset(NoPolicy); 3769 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3770 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3771 tracePick(BotCand); 3772 SU = BotCand.SU; 3773 } 3774 IsTopNode = false; 3775 } else { 3776 SU = pickNodeBidirectional(IsTopNode); 3777 } 3778 } while (SU->isScheduled); 3779 3780 // If IsTopNode, then SU is in Top.Available and must be removed. Otherwise, 3781 // if isTopReady(), then SU is in either Top.Available or Top.Pending. 3782 // If !IsTopNode, then SU is in Bot.Available and must be removed. Otherwise, 3783 // if isBottomReady(), then SU is in either Bot.Available or Bot.Pending. 3784 // 3785 // It is coincidental when !IsTopNode && isTopReady or when IsTopNode && 3786 // isBottomReady. That is, it didn't factor into the decision to choose SU 3787 // because it isTopReady or isBottomReady, respectively. In fact, if the 3788 // RegionPolicy is OnlyTopDown or OnlyBottomUp, then the Bot queues and Top 3789 // queues respectivley contain the original roots and don't get updated when 3790 // picking a node. So if SU isTopReady on a OnlyBottomUp pick, then it was 3791 // because we schduled everything but the top roots. Conversley, if SU 3792 // isBottomReady on OnlyTopDown, then it was because we scheduled everything 3793 // but the bottom roots. If its in a queue even coincidentally, it should be 3794 // removed so it does not get re-picked in a subsequent pickNode call. 3795 if (SU->isTopReady()) 3796 Top.removeReady(SU); 3797 if (SU->isBottomReady()) 3798 Bot.removeReady(SU); 3799 3800 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3801 << *SU->getInstr()); 3802 return SU; 3803 } 3804 3805 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) { 3806 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3807 if (!isTop) 3808 ++InsertPos; 3809 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3810 3811 // Find already scheduled copies with a single physreg dependence and move 3812 // them just above the scheduled instruction. 3813 for (SDep &Dep : Deps) { 3814 if (Dep.getKind() != SDep::Data || 3815 !Register::isPhysicalRegister(Dep.getReg())) 3816 continue; 3817 SUnit *DepSU = Dep.getSUnit(); 3818 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3819 continue; 3820 MachineInstr *Copy = DepSU->getInstr(); 3821 if (!Copy->isCopy() && !Copy->isMoveImmediate()) 3822 continue; 3823 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy "; 3824 DAG->dumpNode(*Dep.getSUnit())); 3825 DAG->moveInstruction(Copy, InsertPos); 3826 } 3827 } 3828 3829 /// Update the scheduler's state after scheduling a node. This is the same node 3830 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3831 /// update it's state based on the current cycle before MachineSchedStrategy 3832 /// does. 3833 /// 3834 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3835 /// them here. See comments in biasPhysReg. 3836 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3837 if (IsTopNode) { 3838 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3839 Top.bumpNode(SU); 3840 if (SU->hasPhysRegUses) 3841 reschedulePhysReg(SU, true); 3842 } else { 3843 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3844 Bot.bumpNode(SU); 3845 if (SU->hasPhysRegDefs) 3846 reschedulePhysReg(SU, false); 3847 } 3848 } 3849 3850 /// Create the standard converging machine scheduler. This will be used as the 3851 /// default scheduler if the target does not set a default. 3852 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3853 ScheduleDAGMILive *DAG = 3854 new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)); 3855 // Register DAG post-processors. 3856 // 3857 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3858 // data and pass it to later mutations. Have a single mutation that gathers 3859 // the interesting nodes in one pass. 3860 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3861 3862 const TargetSubtargetInfo &STI = C->MF->getSubtarget(); 3863 // Add MacroFusion mutation if fusions are not empty. 3864 const auto &MacroFusions = STI.getMacroFusions(); 3865 if (!MacroFusions.empty()) 3866 DAG->addMutation(createMacroFusionDAGMutation(MacroFusions)); 3867 return DAG; 3868 } 3869 3870 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { 3871 return createGenericSchedLive(C); 3872 } 3873 3874 static MachineSchedRegistry 3875 GenericSchedRegistry("converge", "Standard converging scheduler.", 3876 createConvergingSched); 3877 3878 //===----------------------------------------------------------------------===// 3879 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3880 //===----------------------------------------------------------------------===// 3881 3882 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3883 DAG = Dag; 3884 SchedModel = DAG->getSchedModel(); 3885 TRI = DAG->TRI; 3886 3887 Rem.init(DAG, SchedModel); 3888 Top.init(DAG, SchedModel, &Rem); 3889 Bot.init(DAG, SchedModel, &Rem); 3890 3891 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3892 // or are disabled, then these HazardRecs will be disabled. 3893 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3894 if (!Top.HazardRec) { 3895 Top.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG); 3896 } 3897 if (!Bot.HazardRec) { 3898 Bot.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG); 3899 } 3900 } 3901 3902 void PostGenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 3903 MachineBasicBlock::iterator End, 3904 unsigned NumRegionInstrs) { 3905 if (PostRADirection == MISchedPostRASched::TopDown) { 3906 RegionPolicy.OnlyTopDown = true; 3907 RegionPolicy.OnlyBottomUp = false; 3908 } else if (PostRADirection == MISchedPostRASched::BottomUp) { 3909 RegionPolicy.OnlyTopDown = false; 3910 RegionPolicy.OnlyBottomUp = true; 3911 } else if (PostRADirection == MISchedPostRASched::Bidirectional) { 3912 RegionPolicy.OnlyBottomUp = false; 3913 RegionPolicy.OnlyTopDown = false; 3914 } 3915 } 3916 3917 void PostGenericScheduler::registerRoots() { 3918 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3919 3920 // Some roots may not feed into ExitSU. Check all of them in case. 3921 for (const SUnit *SU : Bot.Available) { 3922 if (SU->getDepth() > Rem.CriticalPath) 3923 Rem.CriticalPath = SU->getDepth(); 3924 } 3925 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3926 if (DumpCriticalPathLength) { 3927 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3928 } 3929 } 3930 3931 /// Apply a set of heuristics to a new candidate for PostRA scheduling. 3932 /// 3933 /// \param Cand provides the policy and current best candidate. 3934 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3935 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand) 3936 bool PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3937 SchedCandidate &TryCand) { 3938 // Initialize the candidate if needed. 3939 if (!Cand.isValid()) { 3940 TryCand.Reason = NodeOrder; 3941 return true; 3942 } 3943 3944 // Prioritize instructions that read unbuffered resources by stall cycles. 3945 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3946 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3947 return TryCand.Reason != NoCand; 3948 3949 // Keep clustered nodes together. 3950 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3951 Cand.SU == DAG->getNextClusterSucc(), 3952 TryCand, Cand, Cluster)) 3953 return TryCand.Reason != NoCand; 3954 3955 // Avoid critical resource consumption and balance the schedule. 3956 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3957 TryCand, Cand, ResourceReduce)) 3958 return TryCand.Reason != NoCand; 3959 if (tryGreater(TryCand.ResDelta.DemandedResources, 3960 Cand.ResDelta.DemandedResources, 3961 TryCand, Cand, ResourceDemand)) 3962 return TryCand.Reason != NoCand; 3963 3964 // Avoid serializing long latency dependence chains. 3965 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3966 return TryCand.Reason != NoCand; 3967 } 3968 3969 // Fall through to original instruction order. 3970 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) { 3971 TryCand.Reason = NodeOrder; 3972 return true; 3973 } 3974 3975 return false; 3976 } 3977 3978 void PostGenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3979 SchedCandidate &Cand) { 3980 ReadyQueue &Q = Zone.Available; 3981 for (SUnit *SU : Q) { 3982 SchedCandidate TryCand(Cand.Policy); 3983 TryCand.SU = SU; 3984 TryCand.AtTop = Zone.isTop(); 3985 TryCand.initResourceDelta(DAG, SchedModel); 3986 if (tryCandidate(Cand, TryCand)) { 3987 Cand.setBest(TryCand); 3988 LLVM_DEBUG(traceCandidate(Cand)); 3989 } 3990 } 3991 } 3992 3993 /// Pick the best candidate node from either the top or bottom queue. 3994 SUnit *PostGenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3995 // FIXME: This is similiar to GenericScheduler::pickNodeBidirectional. Factor 3996 // out common parts. 3997 3998 // Schedule as far as possible in the direction of no choice. This is most 3999 // efficient, but also provides the best heuristics for CriticalPSets. 4000 if (SUnit *SU = Bot.pickOnlyChoice()) { 4001 IsTopNode = false; 4002 tracePick(Only1, false); 4003 return SU; 4004 } 4005 if (SUnit *SU = Top.pickOnlyChoice()) { 4006 IsTopNode = true; 4007 tracePick(Only1, true); 4008 return SU; 4009 } 4010 // Set the bottom-up policy based on the state of the current bottom zone and 4011 // the instructions outside the zone, including the top zone. 4012 CandPolicy BotPolicy; 4013 setPolicy(BotPolicy, /*IsPostRA=*/true, Bot, &Top); 4014 // Set the top-down policy based on the state of the current top zone and 4015 // the instructions outside the zone, including the bottom zone. 4016 CandPolicy TopPolicy; 4017 setPolicy(TopPolicy, /*IsPostRA=*/true, Top, &Bot); 4018 4019 // See if BotCand is still valid (because we previously scheduled from Top). 4020 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 4021 if (!BotCand.isValid() || BotCand.SU->isScheduled || 4022 BotCand.Policy != BotPolicy) { 4023 BotCand.reset(CandPolicy()); 4024 pickNodeFromQueue(Bot, BotCand); 4025 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 4026 } else { 4027 LLVM_DEBUG(traceCandidate(BotCand)); 4028 #ifndef NDEBUG 4029 if (VerifyScheduling) { 4030 SchedCandidate TCand; 4031 TCand.reset(CandPolicy()); 4032 pickNodeFromQueue(Bot, BotCand); 4033 assert(TCand.SU == BotCand.SU && 4034 "Last pick result should correspond to re-picking right now"); 4035 } 4036 #endif 4037 } 4038 4039 // Check if the top Q has a better candidate. 4040 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 4041 if (!TopCand.isValid() || TopCand.SU->isScheduled || 4042 TopCand.Policy != TopPolicy) { 4043 TopCand.reset(CandPolicy()); 4044 pickNodeFromQueue(Top, TopCand); 4045 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 4046 } else { 4047 LLVM_DEBUG(traceCandidate(TopCand)); 4048 #ifndef NDEBUG 4049 if (VerifyScheduling) { 4050 SchedCandidate TCand; 4051 TCand.reset(CandPolicy()); 4052 pickNodeFromQueue(Top, TopCand); 4053 assert(TCand.SU == TopCand.SU && 4054 "Last pick result should correspond to re-picking right now"); 4055 } 4056 #endif 4057 } 4058 4059 // Pick best from BotCand and TopCand. 4060 assert(BotCand.isValid()); 4061 assert(TopCand.isValid()); 4062 SchedCandidate Cand = BotCand; 4063 TopCand.Reason = NoCand; 4064 if (tryCandidate(Cand, TopCand)) { 4065 Cand.setBest(TopCand); 4066 LLVM_DEBUG(traceCandidate(Cand)); 4067 } 4068 4069 IsTopNode = Cand.AtTop; 4070 tracePick(Cand); 4071 return Cand.SU; 4072 } 4073 4074 /// Pick the next node to schedule. 4075 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 4076 if (DAG->top() == DAG->bottom()) { 4077 assert(Top.Available.empty() && Top.Pending.empty() && 4078 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 4079 return nullptr; 4080 } 4081 SUnit *SU; 4082 do { 4083 if (RegionPolicy.OnlyBottomUp) { 4084 SU = Bot.pickOnlyChoice(); 4085 if (SU) { 4086 tracePick(Only1, true); 4087 } else { 4088 CandPolicy NoPolicy; 4089 BotCand.reset(NoPolicy); 4090 // Set the bottom-up policy based on the state of the current bottom 4091 // zone and the instructions outside the zone, including the top zone. 4092 setPolicy(BotCand.Policy, /*IsPostRA=*/true, Bot, nullptr); 4093 pickNodeFromQueue(Bot, BotCand); 4094 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 4095 tracePick(BotCand); 4096 SU = BotCand.SU; 4097 } 4098 IsTopNode = false; 4099 } else if (RegionPolicy.OnlyTopDown) { 4100 SU = Top.pickOnlyChoice(); 4101 if (SU) { 4102 tracePick(Only1, true); 4103 } else { 4104 CandPolicy NoPolicy; 4105 TopCand.reset(NoPolicy); 4106 // Set the top-down policy based on the state of the current top zone 4107 // and the instructions outside the zone, including the bottom zone. 4108 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 4109 pickNodeFromQueue(Top, TopCand); 4110 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 4111 tracePick(TopCand); 4112 SU = TopCand.SU; 4113 } 4114 IsTopNode = true; 4115 } else { 4116 SU = pickNodeBidirectional(IsTopNode); 4117 } 4118 } while (SU->isScheduled); 4119 4120 if (SU->isTopReady()) 4121 Top.removeReady(SU); 4122 if (SU->isBottomReady()) 4123 Bot.removeReady(SU); 4124 4125 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 4126 << *SU->getInstr()); 4127 return SU; 4128 } 4129 4130 /// Called after ScheduleDAGMI has scheduled an instruction and updated 4131 /// scheduled/remaining flags in the DAG nodes. 4132 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 4133 if (IsTopNode) { 4134 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 4135 Top.bumpNode(SU); 4136 } else { 4137 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 4138 Bot.bumpNode(SU); 4139 } 4140 } 4141 4142 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 4143 ScheduleDAGMI *DAG = 4144 new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C), 4145 /*RemoveKillFlags=*/true); 4146 const TargetSubtargetInfo &STI = C->MF->getSubtarget(); 4147 // Add MacroFusion mutation if fusions are not empty. 4148 const auto &MacroFusions = STI.getMacroFusions(); 4149 if (!MacroFusions.empty()) 4150 DAG->addMutation(createMacroFusionDAGMutation(MacroFusions)); 4151 return DAG; 4152 } 4153 4154 //===----------------------------------------------------------------------===// 4155 // ILP Scheduler. Currently for experimental analysis of heuristics. 4156 //===----------------------------------------------------------------------===// 4157 4158 namespace { 4159 4160 /// Order nodes by the ILP metric. 4161 struct ILPOrder { 4162 const SchedDFSResult *DFSResult = nullptr; 4163 const BitVector *ScheduledTrees = nullptr; 4164 bool MaximizeILP; 4165 4166 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 4167 4168 /// Apply a less-than relation on node priority. 4169 /// 4170 /// (Return true if A comes after B in the Q.) 4171 bool operator()(const SUnit *A, const SUnit *B) const { 4172 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 4173 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 4174 if (SchedTreeA != SchedTreeB) { 4175 // Unscheduled trees have lower priority. 4176 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 4177 return ScheduledTrees->test(SchedTreeB); 4178 4179 // Trees with shallower connections have lower priority. 4180 if (DFSResult->getSubtreeLevel(SchedTreeA) 4181 != DFSResult->getSubtreeLevel(SchedTreeB)) { 4182 return DFSResult->getSubtreeLevel(SchedTreeA) 4183 < DFSResult->getSubtreeLevel(SchedTreeB); 4184 } 4185 } 4186 if (MaximizeILP) 4187 return DFSResult->getILP(A) < DFSResult->getILP(B); 4188 else 4189 return DFSResult->getILP(A) > DFSResult->getILP(B); 4190 } 4191 }; 4192 4193 /// Schedule based on the ILP metric. 4194 class ILPScheduler : public MachineSchedStrategy { 4195 ScheduleDAGMILive *DAG = nullptr; 4196 ILPOrder Cmp; 4197 4198 std::vector<SUnit*> ReadyQ; 4199 4200 public: 4201 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 4202 4203 void initialize(ScheduleDAGMI *dag) override { 4204 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 4205 DAG = static_cast<ScheduleDAGMILive*>(dag); 4206 DAG->computeDFSResult(); 4207 Cmp.DFSResult = DAG->getDFSResult(); 4208 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 4209 ReadyQ.clear(); 4210 } 4211 4212 void registerRoots() override { 4213 // Restore the heap in ReadyQ with the updated DFS results. 4214 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 4215 } 4216 4217 /// Implement MachineSchedStrategy interface. 4218 /// ----------------------------------------- 4219 4220 /// Callback to select the highest priority node from the ready Q. 4221 SUnit *pickNode(bool &IsTopNode) override { 4222 if (ReadyQ.empty()) return nullptr; 4223 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 4224 SUnit *SU = ReadyQ.back(); 4225 ReadyQ.pop_back(); 4226 IsTopNode = false; 4227 LLVM_DEBUG(dbgs() << "Pick node " 4228 << "SU(" << SU->NodeNum << ") " 4229 << " ILP: " << DAG->getDFSResult()->getILP(SU) 4230 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) 4231 << " @" 4232 << DAG->getDFSResult()->getSubtreeLevel( 4233 DAG->getDFSResult()->getSubtreeID(SU)) 4234 << '\n' 4235 << "Scheduling " << *SU->getInstr()); 4236 return SU; 4237 } 4238 4239 /// Scheduler callback to notify that a new subtree is scheduled. 4240 void scheduleTree(unsigned SubtreeID) override { 4241 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 4242 } 4243 4244 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 4245 /// DFSResults, and resort the priority Q. 4246 void schedNode(SUnit *SU, bool IsTopNode) override { 4247 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 4248 } 4249 4250 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 4251 4252 void releaseBottomNode(SUnit *SU) override { 4253 ReadyQ.push_back(SU); 4254 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 4255 } 4256 }; 4257 4258 } // end anonymous namespace 4259 4260 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 4261 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true)); 4262 } 4263 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 4264 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false)); 4265 } 4266 4267 static MachineSchedRegistry ILPMaxRegistry( 4268 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 4269 static MachineSchedRegistry ILPMinRegistry( 4270 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 4271 4272 //===----------------------------------------------------------------------===// 4273 // Machine Instruction Shuffler for Correctness Testing 4274 //===----------------------------------------------------------------------===// 4275 4276 #ifndef NDEBUG 4277 namespace { 4278 4279 /// Apply a less-than relation on the node order, which corresponds to the 4280 /// instruction order prior to scheduling. IsReverse implements greater-than. 4281 template<bool IsReverse> 4282 struct SUnitOrder { 4283 bool operator()(SUnit *A, SUnit *B) const { 4284 if (IsReverse) 4285 return A->NodeNum > B->NodeNum; 4286 else 4287 return A->NodeNum < B->NodeNum; 4288 } 4289 }; 4290 4291 /// Reorder instructions as much as possible. 4292 class InstructionShuffler : public MachineSchedStrategy { 4293 bool IsAlternating; 4294 bool IsTopDown; 4295 4296 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 4297 // gives nodes with a higher number higher priority causing the latest 4298 // instructions to be scheduled first. 4299 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 4300 TopQ; 4301 4302 // When scheduling bottom-up, use greater-than as the queue priority. 4303 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 4304 BottomQ; 4305 4306 public: 4307 InstructionShuffler(bool alternate, bool topdown) 4308 : IsAlternating(alternate), IsTopDown(topdown) {} 4309 4310 void initialize(ScheduleDAGMI*) override { 4311 TopQ.clear(); 4312 BottomQ.clear(); 4313 } 4314 4315 /// Implement MachineSchedStrategy interface. 4316 /// ----------------------------------------- 4317 4318 SUnit *pickNode(bool &IsTopNode) override { 4319 SUnit *SU; 4320 if (IsTopDown) { 4321 do { 4322 if (TopQ.empty()) return nullptr; 4323 SU = TopQ.top(); 4324 TopQ.pop(); 4325 } while (SU->isScheduled); 4326 IsTopNode = true; 4327 } else { 4328 do { 4329 if (BottomQ.empty()) return nullptr; 4330 SU = BottomQ.top(); 4331 BottomQ.pop(); 4332 } while (SU->isScheduled); 4333 IsTopNode = false; 4334 } 4335 if (IsAlternating) 4336 IsTopDown = !IsTopDown; 4337 return SU; 4338 } 4339 4340 void schedNode(SUnit *SU, bool IsTopNode) override {} 4341 4342 void releaseTopNode(SUnit *SU) override { 4343 TopQ.push(SU); 4344 } 4345 void releaseBottomNode(SUnit *SU) override { 4346 BottomQ.push(SU); 4347 } 4348 }; 4349 4350 } // end anonymous namespace 4351 4352 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 4353 bool Alternate = !ForceTopDown && !ForceBottomUp; 4354 bool TopDown = !ForceBottomUp; 4355 assert((TopDown || !ForceTopDown) && 4356 "-misched-topdown incompatible with -misched-bottomup"); 4357 return new ScheduleDAGMILive( 4358 C, std::make_unique<InstructionShuffler>(Alternate, TopDown)); 4359 } 4360 4361 static MachineSchedRegistry ShufflerRegistry( 4362 "shuffle", "Shuffle machine instructions alternating directions", 4363 createInstructionShuffler); 4364 #endif // !NDEBUG 4365 4366 //===----------------------------------------------------------------------===// 4367 // GraphWriter support for ScheduleDAGMILive. 4368 //===----------------------------------------------------------------------===// 4369 4370 #ifndef NDEBUG 4371 namespace llvm { 4372 4373 template<> struct GraphTraits< 4374 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 4375 4376 template<> 4377 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 4378 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 4379 4380 static std::string getGraphName(const ScheduleDAG *G) { 4381 return std::string(G->MF.getName()); 4382 } 4383 4384 static bool renderGraphFromBottomUp() { 4385 return true; 4386 } 4387 4388 static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) { 4389 if (ViewMISchedCutoff == 0) 4390 return false; 4391 return (Node->Preds.size() > ViewMISchedCutoff 4392 || Node->Succs.size() > ViewMISchedCutoff); 4393 } 4394 4395 /// If you want to override the dot attributes printed for a particular 4396 /// edge, override this method. 4397 static std::string getEdgeAttributes(const SUnit *Node, 4398 SUnitIterator EI, 4399 const ScheduleDAG *Graph) { 4400 if (EI.isArtificialDep()) 4401 return "color=cyan,style=dashed"; 4402 if (EI.isCtrlDep()) 4403 return "color=blue,style=dashed"; 4404 return ""; 4405 } 4406 4407 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 4408 std::string Str; 4409 raw_string_ostream SS(Str); 4410 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 4411 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 4412 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 4413 SS << "SU:" << SU->NodeNum; 4414 if (DFS) 4415 SS << " I:" << DFS->getNumInstrs(SU); 4416 return Str; 4417 } 4418 4419 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 4420 return G->getGraphNodeLabel(SU); 4421 } 4422 4423 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 4424 std::string Str("shape=Mrecord"); 4425 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 4426 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 4427 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 4428 if (DFS) { 4429 Str += ",style=filled,fillcolor=\"#"; 4430 Str += DOT::getColorString(DFS->getSubtreeID(N)); 4431 Str += '"'; 4432 } 4433 return Str; 4434 } 4435 }; 4436 4437 } // end namespace llvm 4438 #endif // NDEBUG 4439 4440 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 4441 /// rendered using 'dot'. 4442 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 4443 #ifndef NDEBUG 4444 ViewGraph(this, Name, false, Title); 4445 #else 4446 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 4447 << "systems with Graphviz or gv!\n"; 4448 #endif // NDEBUG 4449 } 4450 4451 /// Out-of-line implementation with no arguments is handy for gdb. 4452 void ScheduleDAGMI::viewGraph() { 4453 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 4454 } 4455 4456 /// Sort predicate for the intervals stored in an instance of 4457 /// ResourceSegments. Intervals are always disjoint (no intersection 4458 /// for any pairs of intervals), therefore we can sort the totality of 4459 /// the intervals by looking only at the left boundary. 4460 static bool sortIntervals(const ResourceSegments::IntervalTy &A, 4461 const ResourceSegments::IntervalTy &B) { 4462 return A.first < B.first; 4463 } 4464 4465 unsigned ResourceSegments::getFirstAvailableAt( 4466 unsigned CurrCycle, unsigned AcquireAtCycle, unsigned ReleaseAtCycle, 4467 std::function<ResourceSegments::IntervalTy(unsigned, unsigned, unsigned)> 4468 IntervalBuilder) const { 4469 assert(std::is_sorted(std::begin(_Intervals), std::end(_Intervals), 4470 sortIntervals) && 4471 "Cannot execute on an un-sorted set of intervals."); 4472 4473 // Zero resource usage is allowed by TargetSchedule.td but we do not construct 4474 // a ResourceSegment interval for that situation. 4475 if (AcquireAtCycle == ReleaseAtCycle) 4476 return CurrCycle; 4477 4478 unsigned RetCycle = CurrCycle; 4479 ResourceSegments::IntervalTy NewInterval = 4480 IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle); 4481 for (auto &Interval : _Intervals) { 4482 if (!intersects(NewInterval, Interval)) 4483 continue; 4484 4485 // Move the interval right next to the top of the one it 4486 // intersects. 4487 assert(Interval.second > NewInterval.first && 4488 "Invalid intervals configuration."); 4489 RetCycle += (unsigned)Interval.second - (unsigned)NewInterval.first; 4490 NewInterval = IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle); 4491 } 4492 return RetCycle; 4493 } 4494 4495 void ResourceSegments::add(ResourceSegments::IntervalTy A, 4496 const unsigned CutOff) { 4497 assert(A.first <= A.second && "Cannot add negative resource usage"); 4498 assert(CutOff > 0 && "0-size interval history has no use."); 4499 // Zero resource usage is allowed by TargetSchedule.td, in the case that the 4500 // instruction needed the resource to be available but does not use it. 4501 // However, ResourceSegment represents an interval that is closed on the left 4502 // and open on the right. It is impossible to represent an empty interval when 4503 // the left is closed. Do not add it to Intervals. 4504 if (A.first == A.second) 4505 return; 4506 4507 assert(all_of(_Intervals, 4508 [&A](const ResourceSegments::IntervalTy &Interval) -> bool { 4509 return !intersects(A, Interval); 4510 }) && 4511 "A resource is being overwritten"); 4512 _Intervals.push_back(A); 4513 4514 sortAndMerge(); 4515 4516 // Do not keep the full history of the intervals, just the 4517 // latest #CutOff. 4518 while (_Intervals.size() > CutOff) 4519 _Intervals.pop_front(); 4520 } 4521 4522 bool ResourceSegments::intersects(ResourceSegments::IntervalTy A, 4523 ResourceSegments::IntervalTy B) { 4524 assert(A.first <= A.second && "Invalid interval"); 4525 assert(B.first <= B.second && "Invalid interval"); 4526 4527 // Share one boundary. 4528 if ((A.first == B.first) || (A.second == B.second)) 4529 return true; 4530 4531 // full intersersect: [ *** ) B 4532 // [***) A 4533 if ((A.first > B.first) && (A.second < B.second)) 4534 return true; 4535 4536 // right intersect: [ ***) B 4537 // [*** ) A 4538 if ((A.first > B.first) && (A.first < B.second) && (A.second > B.second)) 4539 return true; 4540 4541 // left intersect: [*** ) B 4542 // [ ***) A 4543 if ((A.first < B.first) && (B.first < A.second) && (B.second > B.first)) 4544 return true; 4545 4546 return false; 4547 } 4548 4549 void ResourceSegments::sortAndMerge() { 4550 if (_Intervals.size() <= 1) 4551 return; 4552 4553 // First sort the collection. 4554 _Intervals.sort(sortIntervals); 4555 4556 // can use next because I have at least 2 elements in the list 4557 auto next = std::next(std::begin(_Intervals)); 4558 auto E = std::end(_Intervals); 4559 for (; next != E; ++next) { 4560 if (std::prev(next)->second >= next->first) { 4561 next->first = std::prev(next)->first; 4562 _Intervals.erase(std::prev(next)); 4563 continue; 4564 } 4565 } 4566 } 4567