xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision 96190b4fef3b4a0cc3ca0606b0c4e3e69a5e6717)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachineScheduler schedules machine instructions after phi elimination. It
10 // preserves LiveIntervals so it can be invoked before register allocation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineScheduler.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePassRegistry.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/MachineValueType.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/RegisterPressure.h"
38 #include "llvm/CodeGen/ScheduleDAG.h"
39 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
40 #include "llvm/CodeGen/ScheduleDAGMutation.h"
41 #include "llvm/CodeGen/ScheduleDFS.h"
42 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
43 #include "llvm/CodeGen/SlotIndexes.h"
44 #include "llvm/CodeGen/TargetFrameLowering.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSchedule.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/Config/llvm-config.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/MC/LaneBitmask.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/GraphWriter.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <limits>
66 #include <memory>
67 #include <string>
68 #include <tuple>
69 #include <utility>
70 #include <vector>
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "machine-scheduler"
75 
76 STATISTIC(NumClustered, "Number of load/store pairs clustered");
77 
78 namespace llvm {
79 
80 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
81                            cl::desc("Force top-down list scheduling"));
82 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
83                             cl::desc("Force bottom-up list scheduling"));
84 cl::opt<bool>
85 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
86                        cl::desc("Print critical path length to stdout"));
87 
88 cl::opt<bool> VerifyScheduling(
89     "verify-misched", cl::Hidden,
90     cl::desc("Verify machine instrs before and after machine scheduling"));
91 
92 #ifndef NDEBUG
93 cl::opt<bool> ViewMISchedDAGs(
94     "view-misched-dags", cl::Hidden,
95     cl::desc("Pop up a window to show MISched dags after they are processed"));
96 cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
97                         cl::desc("Print schedule DAGs"));
98 cl::opt<bool> MISchedDumpReservedCycles(
99     "misched-dump-reserved-cycles", cl::Hidden, cl::init(false),
100     cl::desc("Dump resource usage at schedule boundary."));
101 cl::opt<bool> MischedDetailResourceBooking(
102     "misched-detail-resource-booking", cl::Hidden, cl::init(false),
103     cl::desc("Show details of invoking getNextResoufceCycle."));
104 #else
105 const bool ViewMISchedDAGs = false;
106 const bool PrintDAGs = false;
107 const bool MischedDetailResourceBooking = false;
108 #ifdef LLVM_ENABLE_DUMP
109 const bool MISchedDumpReservedCycles = false;
110 #endif // LLVM_ENABLE_DUMP
111 #endif // NDEBUG
112 
113 } // end namespace llvm
114 
115 #ifndef NDEBUG
116 /// In some situations a few uninteresting nodes depend on nearly all other
117 /// nodes in the graph, provide a cutoff to hide them.
118 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
119   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
120 
121 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
122   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
123 
124 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
125   cl::desc("Only schedule this function"));
126 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
127                                         cl::desc("Only schedule this MBB#"));
128 #endif // NDEBUG
129 
130 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
131 /// size of the ready lists.
132 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
133   cl::desc("Limit ready list to N instructions"), cl::init(256));
134 
135 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
136   cl::desc("Enable register pressure scheduling."), cl::init(true));
137 
138 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
139   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
140 
141 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
142                                         cl::desc("Enable memop clustering."),
143                                         cl::init(true));
144 static cl::opt<bool>
145     ForceFastCluster("force-fast-cluster", cl::Hidden,
146                      cl::desc("Switch to fast cluster algorithm with the lost "
147                               "of some fusion opportunities"),
148                      cl::init(false));
149 static cl::opt<unsigned>
150     FastClusterThreshold("fast-cluster-threshold", cl::Hidden,
151                          cl::desc("The threshold for fast cluster"),
152                          cl::init(1000));
153 
154 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
155 static cl::opt<bool> MISchedDumpScheduleTrace(
156     "misched-dump-schedule-trace", cl::Hidden, cl::init(false),
157     cl::desc("Dump resource usage at schedule boundary."));
158 static cl::opt<unsigned>
159     HeaderColWidth("misched-dump-schedule-trace-col-header-width", cl::Hidden,
160                    cl::desc("Set width of the columns with "
161                             "the resources and schedule units"),
162                    cl::init(19));
163 static cl::opt<unsigned>
164     ColWidth("misched-dump-schedule-trace-col-width", cl::Hidden,
165              cl::desc("Set width of the columns showing resource booking."),
166              cl::init(5));
167 static cl::opt<bool> MISchedSortResourcesInTrace(
168     "misched-sort-resources-in-trace", cl::Hidden, cl::init(true),
169     cl::desc("Sort the resources printed in the dump trace"));
170 #endif
171 
172 static cl::opt<unsigned>
173     MIResourceCutOff("misched-resource-cutoff", cl::Hidden,
174                      cl::desc("Number of intervals to track"), cl::init(10));
175 
176 // DAG subtrees must have at least this many nodes.
177 static const unsigned MinSubtreeSize = 8;
178 
179 // Pin the vtables to this file.
180 void MachineSchedStrategy::anchor() {}
181 
182 void ScheduleDAGMutation::anchor() {}
183 
184 //===----------------------------------------------------------------------===//
185 // Machine Instruction Scheduling Pass and Registry
186 //===----------------------------------------------------------------------===//
187 
188 MachineSchedContext::MachineSchedContext() {
189   RegClassInfo = new RegisterClassInfo();
190 }
191 
192 MachineSchedContext::~MachineSchedContext() {
193   delete RegClassInfo;
194 }
195 
196 namespace {
197 
198 /// Base class for a machine scheduler class that can run at any point.
199 class MachineSchedulerBase : public MachineSchedContext,
200                              public MachineFunctionPass {
201 public:
202   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
203 
204   void print(raw_ostream &O, const Module* = nullptr) const override;
205 
206 protected:
207   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
208 };
209 
210 /// MachineScheduler runs after coalescing and before register allocation.
211 class MachineScheduler : public MachineSchedulerBase {
212 public:
213   MachineScheduler();
214 
215   void getAnalysisUsage(AnalysisUsage &AU) const override;
216 
217   bool runOnMachineFunction(MachineFunction&) override;
218 
219   static char ID; // Class identification, replacement for typeinfo
220 
221 protected:
222   ScheduleDAGInstrs *createMachineScheduler();
223 };
224 
225 /// PostMachineScheduler runs after shortly before code emission.
226 class PostMachineScheduler : public MachineSchedulerBase {
227 public:
228   PostMachineScheduler();
229 
230   void getAnalysisUsage(AnalysisUsage &AU) const override;
231 
232   bool runOnMachineFunction(MachineFunction&) override;
233 
234   static char ID; // Class identification, replacement for typeinfo
235 
236 protected:
237   ScheduleDAGInstrs *createPostMachineScheduler();
238 };
239 
240 } // end anonymous namespace
241 
242 char MachineScheduler::ID = 0;
243 
244 char &llvm::MachineSchedulerID = MachineScheduler::ID;
245 
246 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
247                       "Machine Instruction Scheduler", false, false)
248 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
249 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
250 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
251 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
252 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
253 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
254                     "Machine Instruction Scheduler", false, false)
255 
256 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
257   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
258 }
259 
260 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
261   AU.setPreservesCFG();
262   AU.addRequired<MachineDominatorTree>();
263   AU.addRequired<MachineLoopInfo>();
264   AU.addRequired<AAResultsWrapperPass>();
265   AU.addRequired<TargetPassConfig>();
266   AU.addRequired<SlotIndexes>();
267   AU.addPreserved<SlotIndexes>();
268   AU.addRequired<LiveIntervals>();
269   AU.addPreserved<LiveIntervals>();
270   MachineFunctionPass::getAnalysisUsage(AU);
271 }
272 
273 char PostMachineScheduler::ID = 0;
274 
275 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
276 
277 INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched",
278                       "PostRA Machine Instruction Scheduler", false, false)
279 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
280 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
281 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
282 INITIALIZE_PASS_END(PostMachineScheduler, "postmisched",
283                     "PostRA Machine Instruction Scheduler", false, false)
284 
285 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
286   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
287 }
288 
289 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
290   AU.setPreservesCFG();
291   AU.addRequired<MachineDominatorTree>();
292   AU.addRequired<MachineLoopInfo>();
293   AU.addRequired<AAResultsWrapperPass>();
294   AU.addRequired<TargetPassConfig>();
295   MachineFunctionPass::getAnalysisUsage(AU);
296 }
297 
298 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
299     MachineSchedRegistry::Registry;
300 
301 /// A dummy default scheduler factory indicates whether the scheduler
302 /// is overridden on the command line.
303 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
304   return nullptr;
305 }
306 
307 /// MachineSchedOpt allows command line selection of the scheduler.
308 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
309                RegisterPassParser<MachineSchedRegistry>>
310 MachineSchedOpt("misched",
311                 cl::init(&useDefaultMachineSched), cl::Hidden,
312                 cl::desc("Machine instruction scheduler to use"));
313 
314 static MachineSchedRegistry
315 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
316                      useDefaultMachineSched);
317 
318 static cl::opt<bool> EnableMachineSched(
319     "enable-misched",
320     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
321     cl::Hidden);
322 
323 static cl::opt<bool> EnablePostRAMachineSched(
324     "enable-post-misched",
325     cl::desc("Enable the post-ra machine instruction scheduling pass."),
326     cl::init(true), cl::Hidden);
327 
328 /// Decrement this iterator until reaching the top or a non-debug instr.
329 static MachineBasicBlock::const_iterator
330 priorNonDebug(MachineBasicBlock::const_iterator I,
331               MachineBasicBlock::const_iterator Beg) {
332   assert(I != Beg && "reached the top of the region, cannot decrement");
333   while (--I != Beg) {
334     if (!I->isDebugOrPseudoInstr())
335       break;
336   }
337   return I;
338 }
339 
340 /// Non-const version.
341 static MachineBasicBlock::iterator
342 priorNonDebug(MachineBasicBlock::iterator I,
343               MachineBasicBlock::const_iterator Beg) {
344   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
345       .getNonConstIterator();
346 }
347 
348 /// If this iterator is a debug value, increment until reaching the End or a
349 /// non-debug instruction.
350 static MachineBasicBlock::const_iterator
351 nextIfDebug(MachineBasicBlock::const_iterator I,
352             MachineBasicBlock::const_iterator End) {
353   for(; I != End; ++I) {
354     if (!I->isDebugOrPseudoInstr())
355       break;
356   }
357   return I;
358 }
359 
360 /// Non-const version.
361 static MachineBasicBlock::iterator
362 nextIfDebug(MachineBasicBlock::iterator I,
363             MachineBasicBlock::const_iterator End) {
364   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
365       .getNonConstIterator();
366 }
367 
368 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
369 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
370   // Select the scheduler, or set the default.
371   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
372   if (Ctor != useDefaultMachineSched)
373     return Ctor(this);
374 
375   // Get the default scheduler set by the target for this function.
376   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
377   if (Scheduler)
378     return Scheduler;
379 
380   // Default to GenericScheduler.
381   return createGenericSchedLive(this);
382 }
383 
384 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
385 /// the caller. We don't have a command line option to override the postRA
386 /// scheduler. The Target must configure it.
387 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
388   // Get the postRA scheduler set by the target for this function.
389   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
390   if (Scheduler)
391     return Scheduler;
392 
393   // Default to GenericScheduler.
394   return createGenericSchedPostRA(this);
395 }
396 
397 /// Top-level MachineScheduler pass driver.
398 ///
399 /// Visit blocks in function order. Divide each block into scheduling regions
400 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
401 /// consistent with the DAG builder, which traverses the interior of the
402 /// scheduling regions bottom-up.
403 ///
404 /// This design avoids exposing scheduling boundaries to the DAG builder,
405 /// simplifying the DAG builder's support for "special" target instructions.
406 /// At the same time the design allows target schedulers to operate across
407 /// scheduling boundaries, for example to bundle the boundary instructions
408 /// without reordering them. This creates complexity, because the target
409 /// scheduler must update the RegionBegin and RegionEnd positions cached by
410 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
411 /// design would be to split blocks at scheduling boundaries, but LLVM has a
412 /// general bias against block splitting purely for implementation simplicity.
413 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
414   if (skipFunction(mf.getFunction()))
415     return false;
416 
417   if (EnableMachineSched.getNumOccurrences()) {
418     if (!EnableMachineSched)
419       return false;
420   } else if (!mf.getSubtarget().enableMachineScheduler())
421     return false;
422 
423   LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
424 
425   // Initialize the context of the pass.
426   MF = &mf;
427   MLI = &getAnalysis<MachineLoopInfo>();
428   MDT = &getAnalysis<MachineDominatorTree>();
429   PassConfig = &getAnalysis<TargetPassConfig>();
430   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
431 
432   LIS = &getAnalysis<LiveIntervals>();
433 
434   if (VerifyScheduling) {
435     LLVM_DEBUG(LIS->dump());
436     MF->verify(this, "Before machine scheduling.");
437   }
438   RegClassInfo->runOnMachineFunction(*MF);
439 
440   // Instantiate the selected scheduler for this target, function, and
441   // optimization level.
442   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
443   scheduleRegions(*Scheduler, false);
444 
445   LLVM_DEBUG(LIS->dump());
446   if (VerifyScheduling)
447     MF->verify(this, "After machine scheduling.");
448   return true;
449 }
450 
451 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
452   if (skipFunction(mf.getFunction()))
453     return false;
454 
455   if (EnablePostRAMachineSched.getNumOccurrences()) {
456     if (!EnablePostRAMachineSched)
457       return false;
458   } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) {
459     LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
460     return false;
461   }
462   LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
463 
464   // Initialize the context of the pass.
465   MF = &mf;
466   MLI = &getAnalysis<MachineLoopInfo>();
467   PassConfig = &getAnalysis<TargetPassConfig>();
468   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
469 
470   if (VerifyScheduling)
471     MF->verify(this, "Before post machine scheduling.");
472 
473   // Instantiate the selected scheduler for this target, function, and
474   // optimization level.
475   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
476   scheduleRegions(*Scheduler, true);
477 
478   if (VerifyScheduling)
479     MF->verify(this, "After post machine scheduling.");
480   return true;
481 }
482 
483 /// Return true of the given instruction should not be included in a scheduling
484 /// region.
485 ///
486 /// MachineScheduler does not currently support scheduling across calls. To
487 /// handle calls, the DAG builder needs to be modified to create register
488 /// anti/output dependencies on the registers clobbered by the call's regmask
489 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
490 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
491 /// the boundary, but there would be no benefit to postRA scheduling across
492 /// calls this late anyway.
493 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
494                             MachineBasicBlock *MBB,
495                             MachineFunction *MF,
496                             const TargetInstrInfo *TII) {
497   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
498 }
499 
500 /// A region of an MBB for scheduling.
501 namespace {
502 struct SchedRegion {
503   /// RegionBegin is the first instruction in the scheduling region, and
504   /// RegionEnd is either MBB->end() or the scheduling boundary after the
505   /// last instruction in the scheduling region. These iterators cannot refer
506   /// to instructions outside of the identified scheduling region because
507   /// those may be reordered before scheduling this region.
508   MachineBasicBlock::iterator RegionBegin;
509   MachineBasicBlock::iterator RegionEnd;
510   unsigned NumRegionInstrs;
511 
512   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
513               unsigned N) :
514     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
515 };
516 } // end anonymous namespace
517 
518 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
519 
520 static void
521 getSchedRegions(MachineBasicBlock *MBB,
522                 MBBRegionsVector &Regions,
523                 bool RegionsTopDown) {
524   MachineFunction *MF = MBB->getParent();
525   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
526 
527   MachineBasicBlock::iterator I = nullptr;
528   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
529       RegionEnd != MBB->begin(); RegionEnd = I) {
530 
531     // Avoid decrementing RegionEnd for blocks with no terminator.
532     if (RegionEnd != MBB->end() ||
533         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
534       --RegionEnd;
535     }
536 
537     // The next region starts above the previous region. Look backward in the
538     // instruction stream until we find the nearest boundary.
539     unsigned NumRegionInstrs = 0;
540     I = RegionEnd;
541     for (;I != MBB->begin(); --I) {
542       MachineInstr &MI = *std::prev(I);
543       if (isSchedBoundary(&MI, &*MBB, MF, TII))
544         break;
545       if (!MI.isDebugOrPseudoInstr()) {
546         // MBB::size() uses instr_iterator to count. Here we need a bundle to
547         // count as a single instruction.
548         ++NumRegionInstrs;
549       }
550     }
551 
552     // It's possible we found a scheduling region that only has debug
553     // instructions. Don't bother scheduling these.
554     if (NumRegionInstrs != 0)
555       Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
556   }
557 
558   if (RegionsTopDown)
559     std::reverse(Regions.begin(), Regions.end());
560 }
561 
562 /// Main driver for both MachineScheduler and PostMachineScheduler.
563 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
564                                            bool FixKillFlags) {
565   // Visit all machine basic blocks.
566   //
567   // TODO: Visit blocks in global postorder or postorder within the bottom-up
568   // loop tree. Then we can optionally compute global RegPressure.
569   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
570        MBB != MBBEnd; ++MBB) {
571 
572     Scheduler.startBlock(&*MBB);
573 
574 #ifndef NDEBUG
575     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
576       continue;
577     if (SchedOnlyBlock.getNumOccurrences()
578         && (int)SchedOnlyBlock != MBB->getNumber())
579       continue;
580 #endif
581 
582     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
583     // points to the scheduling boundary at the bottom of the region. The DAG
584     // does not include RegionEnd, but the region does (i.e. the next
585     // RegionEnd is above the previous RegionBegin). If the current block has
586     // no terminator then RegionEnd == MBB->end() for the bottom region.
587     //
588     // All the regions of MBB are first found and stored in MBBRegions, which
589     // will be processed (MBB) top-down if initialized with true.
590     //
591     // The Scheduler may insert instructions during either schedule() or
592     // exitRegion(), even for empty regions. So the local iterators 'I' and
593     // 'RegionEnd' are invalid across these calls. Instructions must not be
594     // added to other regions than the current one without updating MBBRegions.
595 
596     MBBRegionsVector MBBRegions;
597     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
598     for (const SchedRegion &R : MBBRegions) {
599       MachineBasicBlock::iterator I = R.RegionBegin;
600       MachineBasicBlock::iterator RegionEnd = R.RegionEnd;
601       unsigned NumRegionInstrs = R.NumRegionInstrs;
602 
603       // Notify the scheduler of the region, even if we may skip scheduling
604       // it. Perhaps it still needs to be bundled.
605       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
606 
607       // Skip empty scheduling regions (0 or 1 schedulable instructions).
608       if (I == RegionEnd || I == std::prev(RegionEnd)) {
609         // Close the current region. Bundle the terminator if needed.
610         // This invalidates 'RegionEnd' and 'I'.
611         Scheduler.exitRegion();
612         continue;
613       }
614       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
615       LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
616                         << " " << MBB->getName() << "\n  From: " << *I
617                         << "    To: ";
618                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
619                  else dbgs() << "End\n";
620                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
621       if (DumpCriticalPathLength) {
622         errs() << MF->getName();
623         errs() << ":%bb. " << MBB->getNumber();
624         errs() << " " << MBB->getName() << " \n";
625       }
626 
627       // Schedule a region: possibly reorder instructions.
628       // This invalidates the original region iterators.
629       Scheduler.schedule();
630 
631       // Close the current region.
632       Scheduler.exitRegion();
633     }
634     Scheduler.finishBlock();
635     // FIXME: Ideally, no further passes should rely on kill flags. However,
636     // thumb2 size reduction is currently an exception, so the PostMIScheduler
637     // needs to do this.
638     if (FixKillFlags)
639       Scheduler.fixupKills(*MBB);
640   }
641   Scheduler.finalizeSchedule();
642 }
643 
644 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
645   // unimplemented
646 }
647 
648 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
649 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
650   dbgs() << "Queue " << Name << ": ";
651   for (const SUnit *SU : Queue)
652     dbgs() << SU->NodeNum << " ";
653   dbgs() << "\n";
654 }
655 #endif
656 
657 //===----------------------------------------------------------------------===//
658 // ScheduleDAGMI - Basic machine instruction scheduling. This is
659 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
660 // virtual registers.
661 // ===----------------------------------------------------------------------===/
662 
663 // Provide a vtable anchor.
664 ScheduleDAGMI::~ScheduleDAGMI() = default;
665 
666 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
667 /// NumPredsLeft reaches zero, release the successor node.
668 ///
669 /// FIXME: Adjust SuccSU height based on MinLatency.
670 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
671   SUnit *SuccSU = SuccEdge->getSUnit();
672 
673   if (SuccEdge->isWeak()) {
674     --SuccSU->WeakPredsLeft;
675     if (SuccEdge->isCluster())
676       NextClusterSucc = SuccSU;
677     return;
678   }
679 #ifndef NDEBUG
680   if (SuccSU->NumPredsLeft == 0) {
681     dbgs() << "*** Scheduling failed! ***\n";
682     dumpNode(*SuccSU);
683     dbgs() << " has been released too many times!\n";
684     llvm_unreachable(nullptr);
685   }
686 #endif
687   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
688   // CurrCycle may have advanced since then.
689   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
690     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
691 
692   --SuccSU->NumPredsLeft;
693   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
694     SchedImpl->releaseTopNode(SuccSU);
695 }
696 
697 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
698 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
699   for (SDep &Succ : SU->Succs)
700     releaseSucc(SU, &Succ);
701 }
702 
703 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
704 /// NumSuccsLeft reaches zero, release the predecessor node.
705 ///
706 /// FIXME: Adjust PredSU height based on MinLatency.
707 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
708   SUnit *PredSU = PredEdge->getSUnit();
709 
710   if (PredEdge->isWeak()) {
711     --PredSU->WeakSuccsLeft;
712     if (PredEdge->isCluster())
713       NextClusterPred = PredSU;
714     return;
715   }
716 #ifndef NDEBUG
717   if (PredSU->NumSuccsLeft == 0) {
718     dbgs() << "*** Scheduling failed! ***\n";
719     dumpNode(*PredSU);
720     dbgs() << " has been released too many times!\n";
721     llvm_unreachable(nullptr);
722   }
723 #endif
724   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
725   // CurrCycle may have advanced since then.
726   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
727     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
728 
729   --PredSU->NumSuccsLeft;
730   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
731     SchedImpl->releaseBottomNode(PredSU);
732 }
733 
734 /// releasePredecessors - Call releasePred on each of SU's predecessors.
735 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
736   for (SDep &Pred : SU->Preds)
737     releasePred(SU, &Pred);
738 }
739 
740 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
741   ScheduleDAGInstrs::startBlock(bb);
742   SchedImpl->enterMBB(bb);
743 }
744 
745 void ScheduleDAGMI::finishBlock() {
746   SchedImpl->leaveMBB();
747   ScheduleDAGInstrs::finishBlock();
748 }
749 
750 /// enterRegion - Called back from PostMachineScheduler::runOnMachineFunction
751 /// after crossing a scheduling boundary. [begin, end) includes all instructions
752 /// in the region, including the boundary itself and single-instruction regions
753 /// that don't get scheduled.
754 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
755                                      MachineBasicBlock::iterator begin,
756                                      MachineBasicBlock::iterator end,
757                                      unsigned regioninstrs)
758 {
759   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
760 
761   SchedImpl->initPolicy(begin, end, regioninstrs);
762 }
763 
764 /// This is normally called from the main scheduler loop but may also be invoked
765 /// by the scheduling strategy to perform additional code motion.
766 void ScheduleDAGMI::moveInstruction(
767   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
768   // Advance RegionBegin if the first instruction moves down.
769   if (&*RegionBegin == MI)
770     ++RegionBegin;
771 
772   // Update the instruction stream.
773   BB->splice(InsertPos, BB, MI);
774 
775   // Update LiveIntervals
776   if (LIS)
777     LIS->handleMove(*MI, /*UpdateFlags=*/true);
778 
779   // Recede RegionBegin if an instruction moves above the first.
780   if (RegionBegin == InsertPos)
781     RegionBegin = MI;
782 }
783 
784 bool ScheduleDAGMI::checkSchedLimit() {
785 #if LLVM_ENABLE_ABI_BREAKING_CHECKS && !defined(NDEBUG)
786   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
787     CurrentTop = CurrentBottom;
788     return false;
789   }
790   ++NumInstrsScheduled;
791 #endif
792   return true;
793 }
794 
795 /// Per-region scheduling driver, called back from
796 /// PostMachineScheduler::runOnMachineFunction. This is a simplified driver
797 /// that does not consider liveness or register pressure. It is useful for
798 /// PostRA scheduling and potentially other custom schedulers.
799 void ScheduleDAGMI::schedule() {
800   LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
801   LLVM_DEBUG(SchedImpl->dumpPolicy());
802 
803   // Build the DAG.
804   buildSchedGraph(AA);
805 
806   postProcessDAG();
807 
808   SmallVector<SUnit*, 8> TopRoots, BotRoots;
809   findRootsAndBiasEdges(TopRoots, BotRoots);
810 
811   LLVM_DEBUG(dump());
812   if (PrintDAGs) dump();
813   if (ViewMISchedDAGs) viewGraph();
814 
815   // Initialize the strategy before modifying the DAG.
816   // This may initialize a DFSResult to be used for queue priority.
817   SchedImpl->initialize(this);
818 
819   // Initialize ready queues now that the DAG and priority data are finalized.
820   initQueues(TopRoots, BotRoots);
821 
822   bool IsTopNode = false;
823   while (true) {
824     LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
825     SUnit *SU = SchedImpl->pickNode(IsTopNode);
826     if (!SU) break;
827 
828     assert(!SU->isScheduled && "Node already scheduled");
829     if (!checkSchedLimit())
830       break;
831 
832     MachineInstr *MI = SU->getInstr();
833     if (IsTopNode) {
834       assert(SU->isTopReady() && "node still has unscheduled dependencies");
835       if (&*CurrentTop == MI)
836         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
837       else
838         moveInstruction(MI, CurrentTop);
839     } else {
840       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
841       MachineBasicBlock::iterator priorII =
842         priorNonDebug(CurrentBottom, CurrentTop);
843       if (&*priorII == MI)
844         CurrentBottom = priorII;
845       else {
846         if (&*CurrentTop == MI)
847           CurrentTop = nextIfDebug(++CurrentTop, priorII);
848         moveInstruction(MI, CurrentBottom);
849         CurrentBottom = MI;
850       }
851     }
852     // Notify the scheduling strategy before updating the DAG.
853     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
854     // runs, it can then use the accurate ReadyCycle time to determine whether
855     // newly released nodes can move to the readyQ.
856     SchedImpl->schedNode(SU, IsTopNode);
857 
858     updateQueues(SU, IsTopNode);
859   }
860   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
861 
862   placeDebugValues();
863 
864   LLVM_DEBUG({
865     dbgs() << "*** Final schedule for "
866            << printMBBReference(*begin()->getParent()) << " ***\n";
867     dumpSchedule();
868     dbgs() << '\n';
869   });
870 }
871 
872 /// Apply each ScheduleDAGMutation step in order.
873 void ScheduleDAGMI::postProcessDAG() {
874   for (auto &m : Mutations)
875     m->apply(this);
876 }
877 
878 void ScheduleDAGMI::
879 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
880                       SmallVectorImpl<SUnit*> &BotRoots) {
881   for (SUnit &SU : SUnits) {
882     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
883 
884     // Order predecessors so DFSResult follows the critical path.
885     SU.biasCriticalPath();
886 
887     // A SUnit is ready to top schedule if it has no predecessors.
888     if (!SU.NumPredsLeft)
889       TopRoots.push_back(&SU);
890     // A SUnit is ready to bottom schedule if it has no successors.
891     if (!SU.NumSuccsLeft)
892       BotRoots.push_back(&SU);
893   }
894   ExitSU.biasCriticalPath();
895 }
896 
897 /// Identify DAG roots and setup scheduler queues.
898 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
899                                ArrayRef<SUnit*> BotRoots) {
900   NextClusterSucc = nullptr;
901   NextClusterPred = nullptr;
902 
903   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
904   //
905   // Nodes with unreleased weak edges can still be roots.
906   // Release top roots in forward order.
907   for (SUnit *SU : TopRoots)
908     SchedImpl->releaseTopNode(SU);
909 
910   // Release bottom roots in reverse order so the higher priority nodes appear
911   // first. This is more natural and slightly more efficient.
912   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
913          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
914     SchedImpl->releaseBottomNode(*I);
915   }
916 
917   releaseSuccessors(&EntrySU);
918   releasePredecessors(&ExitSU);
919 
920   SchedImpl->registerRoots();
921 
922   // Advance past initial DebugValues.
923   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
924   CurrentBottom = RegionEnd;
925 }
926 
927 /// Update scheduler queues after scheduling an instruction.
928 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
929   // Release dependent instructions for scheduling.
930   if (IsTopNode)
931     releaseSuccessors(SU);
932   else
933     releasePredecessors(SU);
934 
935   SU->isScheduled = true;
936 }
937 
938 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
939 void ScheduleDAGMI::placeDebugValues() {
940   // If first instruction was a DBG_VALUE then put it back.
941   if (FirstDbgValue) {
942     BB->splice(RegionBegin, BB, FirstDbgValue);
943     RegionBegin = FirstDbgValue;
944   }
945 
946   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
947          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
948     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
949     MachineInstr *DbgValue = P.first;
950     MachineBasicBlock::iterator OrigPrevMI = P.second;
951     if (&*RegionBegin == DbgValue)
952       ++RegionBegin;
953     BB->splice(std::next(OrigPrevMI), BB, DbgValue);
954     if (RegionEnd != BB->end() && OrigPrevMI == &*RegionEnd)
955       RegionEnd = DbgValue;
956   }
957 }
958 
959 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
960 static const char *scheduleTableLegend = "  i: issue\n  x: resource booked";
961 
962 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpScheduleTraceTopDown() const {
963   // Bail off when there is no schedule model to query.
964   if (!SchedModel.hasInstrSchedModel())
965     return;
966 
967   //  Nothing to show if there is no or just one instruction.
968   if (BB->size() < 2)
969     return;
970 
971   dbgs() << " * Schedule table (TopDown):\n";
972   dbgs() << scheduleTableLegend << "\n";
973   const unsigned FirstCycle = getSUnit(&*(std::begin(*this)))->TopReadyCycle;
974   unsigned LastCycle = getSUnit(&*(std::prev(std::end(*this))))->TopReadyCycle;
975   for (MachineInstr &MI : *this) {
976     SUnit *SU = getSUnit(&MI);
977     if (!SU)
978       continue;
979     const MCSchedClassDesc *SC = getSchedClass(SU);
980     for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC),
981                                        PE = SchedModel.getWriteProcResEnd(SC);
982          PI != PE; ++PI) {
983       if (SU->TopReadyCycle + PI->ReleaseAtCycle - 1 > LastCycle)
984         LastCycle = SU->TopReadyCycle + PI->ReleaseAtCycle - 1;
985     }
986   }
987   // Print the header with the cycles
988   dbgs() << llvm::left_justify("Cycle", HeaderColWidth);
989   for (unsigned C = FirstCycle; C <= LastCycle; ++C)
990     dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth);
991   dbgs() << "|\n";
992 
993   for (MachineInstr &MI : *this) {
994     SUnit *SU = getSUnit(&MI);
995     if (!SU) {
996       dbgs() << "Missing SUnit\n";
997       continue;
998     }
999     std::string NodeName("SU(");
1000     NodeName += std::to_string(SU->NodeNum) + ")";
1001     dbgs() << llvm::left_justify(NodeName, HeaderColWidth);
1002     unsigned C = FirstCycle;
1003     for (; C <= LastCycle; ++C) {
1004       if (C == SU->TopReadyCycle)
1005         dbgs() << llvm::left_justify("| i", ColWidth);
1006       else
1007         dbgs() << llvm::left_justify("|", ColWidth);
1008     }
1009     dbgs() << "|\n";
1010     const MCSchedClassDesc *SC = getSchedClass(SU);
1011 
1012     SmallVector<MCWriteProcResEntry, 4> ResourcesIt(
1013         make_range(SchedModel.getWriteProcResBegin(SC),
1014                    SchedModel.getWriteProcResEnd(SC)));
1015 
1016     if (MISchedSortResourcesInTrace)
1017       llvm::stable_sort(ResourcesIt,
1018                         [](const MCWriteProcResEntry &LHS,
1019                            const MCWriteProcResEntry &RHS) -> bool {
1020                           return LHS.AcquireAtCycle < RHS.AcquireAtCycle ||
1021                                  (LHS.AcquireAtCycle == RHS.AcquireAtCycle &&
1022                                   LHS.ReleaseAtCycle < RHS.ReleaseAtCycle);
1023                         });
1024     for (const MCWriteProcResEntry &PI : ResourcesIt) {
1025       C = FirstCycle;
1026       const std::string ResName =
1027           SchedModel.getResourceName(PI.ProcResourceIdx);
1028       dbgs() << llvm::right_justify(ResName + " ", HeaderColWidth);
1029       for (; C < SU->TopReadyCycle + PI.AcquireAtCycle; ++C) {
1030         dbgs() << llvm::left_justify("|", ColWidth);
1031       }
1032       for (unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle; I != E;
1033            ++I, ++C)
1034         dbgs() << llvm::left_justify("| x", ColWidth);
1035       while (C++ <= LastCycle)
1036         dbgs() << llvm::left_justify("|", ColWidth);
1037       // Place end char
1038       dbgs() << "| \n";
1039     }
1040   }
1041 }
1042 
1043 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpScheduleTraceBottomUp() const {
1044   // Bail off when there is no schedule model to query.
1045   if (!SchedModel.hasInstrSchedModel())
1046     return;
1047 
1048   //  Nothing to show if there is no or just one instruction.
1049   if (BB->size() < 2)
1050     return;
1051 
1052   dbgs() << " * Schedule table (BottomUp):\n";
1053   dbgs() << scheduleTableLegend << "\n";
1054 
1055   const int FirstCycle = getSUnit(&*(std::begin(*this)))->BotReadyCycle;
1056   int LastCycle = getSUnit(&*(std::prev(std::end(*this))))->BotReadyCycle;
1057   for (MachineInstr &MI : *this) {
1058     SUnit *SU = getSUnit(&MI);
1059     if (!SU)
1060       continue;
1061     const MCSchedClassDesc *SC = getSchedClass(SU);
1062     for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC),
1063                                        PE = SchedModel.getWriteProcResEnd(SC);
1064          PI != PE; ++PI) {
1065       if ((int)SU->BotReadyCycle - PI->ReleaseAtCycle + 1 < LastCycle)
1066         LastCycle = (int)SU->BotReadyCycle - PI->ReleaseAtCycle + 1;
1067     }
1068   }
1069   // Print the header with the cycles
1070   dbgs() << llvm::left_justify("Cycle", HeaderColWidth);
1071   for (int C = FirstCycle; C >= LastCycle; --C)
1072     dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth);
1073   dbgs() << "|\n";
1074 
1075   for (MachineInstr &MI : *this) {
1076     SUnit *SU = getSUnit(&MI);
1077     if (!SU) {
1078       dbgs() << "Missing SUnit\n";
1079       continue;
1080     }
1081     std::string NodeName("SU(");
1082     NodeName += std::to_string(SU->NodeNum) + ")";
1083     dbgs() << llvm::left_justify(NodeName, HeaderColWidth);
1084     int C = FirstCycle;
1085     for (; C >= LastCycle; --C) {
1086       if (C == (int)SU->BotReadyCycle)
1087         dbgs() << llvm::left_justify("| i", ColWidth);
1088       else
1089         dbgs() << llvm::left_justify("|", ColWidth);
1090     }
1091     dbgs() << "|\n";
1092     const MCSchedClassDesc *SC = getSchedClass(SU);
1093     SmallVector<MCWriteProcResEntry, 4> ResourcesIt(
1094         make_range(SchedModel.getWriteProcResBegin(SC),
1095                    SchedModel.getWriteProcResEnd(SC)));
1096 
1097     if (MISchedSortResourcesInTrace)
1098       llvm::stable_sort(ResourcesIt,
1099                         [](const MCWriteProcResEntry &LHS,
1100                            const MCWriteProcResEntry &RHS) -> bool {
1101                           return LHS.AcquireAtCycle < RHS.AcquireAtCycle ||
1102                                  (LHS.AcquireAtCycle == RHS.AcquireAtCycle &&
1103                                   LHS.ReleaseAtCycle < RHS.ReleaseAtCycle);
1104                         });
1105     for (const MCWriteProcResEntry &PI : ResourcesIt) {
1106       C = FirstCycle;
1107       const std::string ResName =
1108           SchedModel.getResourceName(PI.ProcResourceIdx);
1109       dbgs() << llvm::right_justify(ResName + " ", HeaderColWidth);
1110       for (; C > ((int)SU->BotReadyCycle - (int)PI.AcquireAtCycle); --C) {
1111         dbgs() << llvm::left_justify("|", ColWidth);
1112       }
1113       for (unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle; I != E;
1114            ++I, --C)
1115         dbgs() << llvm::left_justify("| x", ColWidth);
1116       while (C-- >= LastCycle)
1117         dbgs() << llvm::left_justify("|", ColWidth);
1118       // Place end char
1119       dbgs() << "| \n";
1120     }
1121   }
1122 }
1123 #endif
1124 
1125 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1126 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
1127   if (MISchedDumpScheduleTrace) {
1128     if (ForceTopDown)
1129       dumpScheduleTraceTopDown();
1130     else if (ForceBottomUp)
1131       dumpScheduleTraceBottomUp();
1132     else {
1133       dbgs() << "* Schedule table (Bidirectional): not implemented\n";
1134     }
1135   }
1136 
1137   for (MachineInstr &MI : *this) {
1138     if (SUnit *SU = getSUnit(&MI))
1139       dumpNode(*SU);
1140     else
1141       dbgs() << "Missing SUnit\n";
1142   }
1143 }
1144 #endif
1145 
1146 //===----------------------------------------------------------------------===//
1147 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
1148 // preservation.
1149 //===----------------------------------------------------------------------===//
1150 
1151 ScheduleDAGMILive::~ScheduleDAGMILive() {
1152   delete DFSResult;
1153 }
1154 
1155 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
1156   const MachineInstr &MI = *SU.getInstr();
1157   for (const MachineOperand &MO : MI.operands()) {
1158     if (!MO.isReg())
1159       continue;
1160     if (!MO.readsReg())
1161       continue;
1162     if (TrackLaneMasks && !MO.isUse())
1163       continue;
1164 
1165     Register Reg = MO.getReg();
1166     if (!Reg.isVirtual())
1167       continue;
1168 
1169     // Ignore re-defs.
1170     if (TrackLaneMasks) {
1171       bool FoundDef = false;
1172       for (const MachineOperand &MO2 : MI.all_defs()) {
1173         if (MO2.getReg() == Reg && !MO2.isDead()) {
1174           FoundDef = true;
1175           break;
1176         }
1177       }
1178       if (FoundDef)
1179         continue;
1180     }
1181 
1182     // Record this local VReg use.
1183     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
1184     for (; UI != VRegUses.end(); ++UI) {
1185       if (UI->SU == &SU)
1186         break;
1187     }
1188     if (UI == VRegUses.end())
1189       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
1190   }
1191 }
1192 
1193 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
1194 /// crossing a scheduling boundary. [begin, end) includes all instructions in
1195 /// the region, including the boundary itself and single-instruction regions
1196 /// that don't get scheduled.
1197 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
1198                                 MachineBasicBlock::iterator begin,
1199                                 MachineBasicBlock::iterator end,
1200                                 unsigned regioninstrs)
1201 {
1202   // ScheduleDAGMI initializes SchedImpl's per-region policy.
1203   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
1204 
1205   // For convenience remember the end of the liveness region.
1206   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
1207 
1208   SUPressureDiffs.clear();
1209 
1210   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
1211   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
1212 
1213   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
1214          "ShouldTrackLaneMasks requires ShouldTrackPressure");
1215 }
1216 
1217 // Setup the register pressure trackers for the top scheduled and bottom
1218 // scheduled regions.
1219 void ScheduleDAGMILive::initRegPressure() {
1220   VRegUses.clear();
1221   VRegUses.setUniverse(MRI.getNumVirtRegs());
1222   for (SUnit &SU : SUnits)
1223     collectVRegUses(SU);
1224 
1225   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1226                     ShouldTrackLaneMasks, false);
1227   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1228                     ShouldTrackLaneMasks, false);
1229 
1230   // Close the RPTracker to finalize live ins.
1231   RPTracker.closeRegion();
1232 
1233   LLVM_DEBUG(RPTracker.dump());
1234 
1235   // Initialize the live ins and live outs.
1236   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1237   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1238 
1239   // Close one end of the tracker so we can call
1240   // getMaxUpward/DownwardPressureDelta before advancing across any
1241   // instructions. This converts currently live regs into live ins/outs.
1242   TopRPTracker.closeTop();
1243   BotRPTracker.closeBottom();
1244 
1245   BotRPTracker.initLiveThru(RPTracker);
1246   if (!BotRPTracker.getLiveThru().empty()) {
1247     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1248     LLVM_DEBUG(dbgs() << "Live Thru: ";
1249                dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1250   };
1251 
1252   // For each live out vreg reduce the pressure change associated with other
1253   // uses of the same vreg below the live-out reaching def.
1254   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1255 
1256   // Account for liveness generated by the region boundary.
1257   if (LiveRegionEnd != RegionEnd) {
1258     SmallVector<RegisterMaskPair, 8> LiveUses;
1259     BotRPTracker.recede(&LiveUses);
1260     updatePressureDiffs(LiveUses);
1261   }
1262 
1263   LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1264              dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1265              dbgs() << "Bottom Pressure:\n";
1266              dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1267 
1268   assert((BotRPTracker.getPos() == RegionEnd ||
1269           (RegionEnd->isDebugInstr() &&
1270            BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1271          "Can't find the region bottom");
1272 
1273   // Cache the list of excess pressure sets in this region. This will also track
1274   // the max pressure in the scheduled code for these sets.
1275   RegionCriticalPSets.clear();
1276   const std::vector<unsigned> &RegionPressure =
1277     RPTracker.getPressure().MaxSetPressure;
1278   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1279     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1280     if (RegionPressure[i] > Limit) {
1281       LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1282                         << " Actual " << RegionPressure[i] << "\n");
1283       RegionCriticalPSets.push_back(PressureChange(i));
1284     }
1285   }
1286   LLVM_DEBUG(dbgs() << "Excess PSets: ";
1287              for (const PressureChange &RCPS
1288                   : RegionCriticalPSets) dbgs()
1289              << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1290              dbgs() << "\n");
1291 }
1292 
1293 void ScheduleDAGMILive::
1294 updateScheduledPressure(const SUnit *SU,
1295                         const std::vector<unsigned> &NewMaxPressure) {
1296   const PressureDiff &PDiff = getPressureDiff(SU);
1297   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1298   for (const PressureChange &PC : PDiff) {
1299     if (!PC.isValid())
1300       break;
1301     unsigned ID = PC.getPSet();
1302     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1303       ++CritIdx;
1304     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1305       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1306           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1307         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1308     }
1309     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1310     if (NewMaxPressure[ID] >= Limit - 2) {
1311       LLVM_DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1312                         << NewMaxPressure[ID]
1313                         << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1314                         << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1315                         << " livethru)\n");
1316     }
1317   }
1318 }
1319 
1320 /// Update the PressureDiff array for liveness after scheduling this
1321 /// instruction.
1322 void ScheduleDAGMILive::updatePressureDiffs(
1323     ArrayRef<RegisterMaskPair> LiveUses) {
1324   for (const RegisterMaskPair &P : LiveUses) {
1325     Register Reg = P.RegUnit;
1326     /// FIXME: Currently assuming single-use physregs.
1327     if (!Reg.isVirtual())
1328       continue;
1329 
1330     if (ShouldTrackLaneMasks) {
1331       // If the register has just become live then other uses won't change
1332       // this fact anymore => decrement pressure.
1333       // If the register has just become dead then other uses make it come
1334       // back to life => increment pressure.
1335       bool Decrement = P.LaneMask.any();
1336 
1337       for (const VReg2SUnit &V2SU
1338            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1339         SUnit &SU = *V2SU.SU;
1340         if (SU.isScheduled || &SU == &ExitSU)
1341           continue;
1342 
1343         PressureDiff &PDiff = getPressureDiff(&SU);
1344         PDiff.addPressureChange(Reg, Decrement, &MRI);
1345         LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1346                           << printReg(Reg, TRI) << ':'
1347                           << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1348                    dbgs() << "              to "; PDiff.dump(*TRI););
1349       }
1350     } else {
1351       assert(P.LaneMask.any());
1352       LLVM_DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1353       // This may be called before CurrentBottom has been initialized. However,
1354       // BotRPTracker must have a valid position. We want the value live into the
1355       // instruction or live out of the block, so ask for the previous
1356       // instruction's live-out.
1357       const LiveInterval &LI = LIS->getInterval(Reg);
1358       VNInfo *VNI;
1359       MachineBasicBlock::const_iterator I =
1360         nextIfDebug(BotRPTracker.getPos(), BB->end());
1361       if (I == BB->end())
1362         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1363       else {
1364         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1365         VNI = LRQ.valueIn();
1366       }
1367       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1368       assert(VNI && "No live value at use.");
1369       for (const VReg2SUnit &V2SU
1370            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1371         SUnit *SU = V2SU.SU;
1372         // If this use comes before the reaching def, it cannot be a last use,
1373         // so decrease its pressure change.
1374         if (!SU->isScheduled && SU != &ExitSU) {
1375           LiveQueryResult LRQ =
1376               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1377           if (LRQ.valueIn() == VNI) {
1378             PressureDiff &PDiff = getPressureDiff(SU);
1379             PDiff.addPressureChange(Reg, true, &MRI);
1380             LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1381                               << *SU->getInstr();
1382                        dbgs() << "              to "; PDiff.dump(*TRI););
1383           }
1384         }
1385       }
1386     }
1387   }
1388 }
1389 
1390 void ScheduleDAGMILive::dump() const {
1391 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1392   if (EntrySU.getInstr() != nullptr)
1393     dumpNodeAll(EntrySU);
1394   for (const SUnit &SU : SUnits) {
1395     dumpNodeAll(SU);
1396     if (ShouldTrackPressure) {
1397       dbgs() << "  Pressure Diff      : ";
1398       getPressureDiff(&SU).dump(*TRI);
1399     }
1400     dbgs() << "  Single Issue       : ";
1401     if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1402         SchedModel.mustEndGroup(SU.getInstr()))
1403       dbgs() << "true;";
1404     else
1405       dbgs() << "false;";
1406     dbgs() << '\n';
1407   }
1408   if (ExitSU.getInstr() != nullptr)
1409     dumpNodeAll(ExitSU);
1410 #endif
1411 }
1412 
1413 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1414 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1415 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1416 ///
1417 /// This is a skeletal driver, with all the functionality pushed into helpers,
1418 /// so that it can be easily extended by experimental schedulers. Generally,
1419 /// implementing MachineSchedStrategy should be sufficient to implement a new
1420 /// scheduling algorithm. However, if a scheduler further subclasses
1421 /// ScheduleDAGMILive then it will want to override this virtual method in order
1422 /// to update any specialized state.
1423 void ScheduleDAGMILive::schedule() {
1424   LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1425   LLVM_DEBUG(SchedImpl->dumpPolicy());
1426   buildDAGWithRegPressure();
1427 
1428   postProcessDAG();
1429 
1430   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1431   findRootsAndBiasEdges(TopRoots, BotRoots);
1432 
1433   // Initialize the strategy before modifying the DAG.
1434   // This may initialize a DFSResult to be used for queue priority.
1435   SchedImpl->initialize(this);
1436 
1437   LLVM_DEBUG(dump());
1438   if (PrintDAGs) dump();
1439   if (ViewMISchedDAGs) viewGraph();
1440 
1441   // Initialize ready queues now that the DAG and priority data are finalized.
1442   initQueues(TopRoots, BotRoots);
1443 
1444   bool IsTopNode = false;
1445   while (true) {
1446     LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1447     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1448     if (!SU) break;
1449 
1450     assert(!SU->isScheduled && "Node already scheduled");
1451     if (!checkSchedLimit())
1452       break;
1453 
1454     scheduleMI(SU, IsTopNode);
1455 
1456     if (DFSResult) {
1457       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1458       if (!ScheduledTrees.test(SubtreeID)) {
1459         ScheduledTrees.set(SubtreeID);
1460         DFSResult->scheduleTree(SubtreeID);
1461         SchedImpl->scheduleTree(SubtreeID);
1462       }
1463     }
1464 
1465     // Notify the scheduling strategy after updating the DAG.
1466     SchedImpl->schedNode(SU, IsTopNode);
1467 
1468     updateQueues(SU, IsTopNode);
1469   }
1470   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1471 
1472   placeDebugValues();
1473 
1474   LLVM_DEBUG({
1475     dbgs() << "*** Final schedule for "
1476            << printMBBReference(*begin()->getParent()) << " ***\n";
1477     dumpSchedule();
1478     dbgs() << '\n';
1479   });
1480 }
1481 
1482 /// Build the DAG and setup three register pressure trackers.
1483 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1484   if (!ShouldTrackPressure) {
1485     RPTracker.reset();
1486     RegionCriticalPSets.clear();
1487     buildSchedGraph(AA);
1488     return;
1489   }
1490 
1491   // Initialize the register pressure tracker used by buildSchedGraph.
1492   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1493                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1494 
1495   // Account for liveness generate by the region boundary.
1496   if (LiveRegionEnd != RegionEnd)
1497     RPTracker.recede();
1498 
1499   // Build the DAG, and compute current register pressure.
1500   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1501 
1502   // Initialize top/bottom trackers after computing region pressure.
1503   initRegPressure();
1504 }
1505 
1506 void ScheduleDAGMILive::computeDFSResult() {
1507   if (!DFSResult)
1508     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1509   DFSResult->clear();
1510   ScheduledTrees.clear();
1511   DFSResult->resize(SUnits.size());
1512   DFSResult->compute(SUnits);
1513   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1514 }
1515 
1516 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1517 /// only provides the critical path for single block loops. To handle loops that
1518 /// span blocks, we could use the vreg path latencies provided by
1519 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1520 /// available for use in the scheduler.
1521 ///
1522 /// The cyclic path estimation identifies a def-use pair that crosses the back
1523 /// edge and considers the depth and height of the nodes. For example, consider
1524 /// the following instruction sequence where each instruction has unit latency
1525 /// and defines an eponymous virtual register:
1526 ///
1527 /// a->b(a,c)->c(b)->d(c)->exit
1528 ///
1529 /// The cyclic critical path is a two cycles: b->c->b
1530 /// The acyclic critical path is four cycles: a->b->c->d->exit
1531 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1532 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1533 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1534 /// LiveInDepth = depth(b) = len(a->b) = 1
1535 ///
1536 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1537 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1538 /// CyclicCriticalPath = min(2, 2) = 2
1539 ///
1540 /// This could be relevant to PostRA scheduling, but is currently implemented
1541 /// assuming LiveIntervals.
1542 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1543   // This only applies to single block loop.
1544   if (!BB->isSuccessor(BB))
1545     return 0;
1546 
1547   unsigned MaxCyclicLatency = 0;
1548   // Visit each live out vreg def to find def/use pairs that cross iterations.
1549   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1550     Register Reg = P.RegUnit;
1551     if (!Reg.isVirtual())
1552       continue;
1553     const LiveInterval &LI = LIS->getInterval(Reg);
1554     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1555     if (!DefVNI)
1556       continue;
1557 
1558     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1559     const SUnit *DefSU = getSUnit(DefMI);
1560     if (!DefSU)
1561       continue;
1562 
1563     unsigned LiveOutHeight = DefSU->getHeight();
1564     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1565     // Visit all local users of the vreg def.
1566     for (const VReg2SUnit &V2SU
1567          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1568       SUnit *SU = V2SU.SU;
1569       if (SU == &ExitSU)
1570         continue;
1571 
1572       // Only consider uses of the phi.
1573       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1574       if (!LRQ.valueIn()->isPHIDef())
1575         continue;
1576 
1577       // Assume that a path spanning two iterations is a cycle, which could
1578       // overestimate in strange cases. This allows cyclic latency to be
1579       // estimated as the minimum slack of the vreg's depth or height.
1580       unsigned CyclicLatency = 0;
1581       if (LiveOutDepth > SU->getDepth())
1582         CyclicLatency = LiveOutDepth - SU->getDepth();
1583 
1584       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1585       if (LiveInHeight > LiveOutHeight) {
1586         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1587           CyclicLatency = LiveInHeight - LiveOutHeight;
1588       } else
1589         CyclicLatency = 0;
1590 
1591       LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1592                         << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1593       if (CyclicLatency > MaxCyclicLatency)
1594         MaxCyclicLatency = CyclicLatency;
1595     }
1596   }
1597   LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1598   return MaxCyclicLatency;
1599 }
1600 
1601 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1602 /// the Top RP tracker in case the region beginning has changed.
1603 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1604                                    ArrayRef<SUnit*> BotRoots) {
1605   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1606   if (ShouldTrackPressure) {
1607     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1608     TopRPTracker.setPos(CurrentTop);
1609   }
1610 }
1611 
1612 /// Move an instruction and update register pressure.
1613 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1614   // Move the instruction to its new location in the instruction stream.
1615   MachineInstr *MI = SU->getInstr();
1616 
1617   if (IsTopNode) {
1618     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1619     if (&*CurrentTop == MI)
1620       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1621     else {
1622       moveInstruction(MI, CurrentTop);
1623       TopRPTracker.setPos(MI);
1624     }
1625 
1626     if (ShouldTrackPressure) {
1627       // Update top scheduled pressure.
1628       RegisterOperands RegOpers;
1629       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1630       if (ShouldTrackLaneMasks) {
1631         // Adjust liveness and add missing dead+read-undef flags.
1632         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1633         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1634       } else {
1635         // Adjust for missing dead-def flags.
1636         RegOpers.detectDeadDefs(*MI, *LIS);
1637       }
1638 
1639       TopRPTracker.advance(RegOpers);
1640       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1641       LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1642                      TopRPTracker.getRegSetPressureAtPos(), TRI););
1643 
1644       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1645     }
1646   } else {
1647     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1648     MachineBasicBlock::iterator priorII =
1649       priorNonDebug(CurrentBottom, CurrentTop);
1650     if (&*priorII == MI)
1651       CurrentBottom = priorII;
1652     else {
1653       if (&*CurrentTop == MI) {
1654         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1655         TopRPTracker.setPos(CurrentTop);
1656       }
1657       moveInstruction(MI, CurrentBottom);
1658       CurrentBottom = MI;
1659       BotRPTracker.setPos(CurrentBottom);
1660     }
1661     if (ShouldTrackPressure) {
1662       RegisterOperands RegOpers;
1663       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1664       if (ShouldTrackLaneMasks) {
1665         // Adjust liveness and add missing dead+read-undef flags.
1666         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1667         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1668       } else {
1669         // Adjust for missing dead-def flags.
1670         RegOpers.detectDeadDefs(*MI, *LIS);
1671       }
1672 
1673       if (BotRPTracker.getPos() != CurrentBottom)
1674         BotRPTracker.recedeSkipDebugValues();
1675       SmallVector<RegisterMaskPair, 8> LiveUses;
1676       BotRPTracker.recede(RegOpers, &LiveUses);
1677       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1678       LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1679                      BotRPTracker.getRegSetPressureAtPos(), TRI););
1680 
1681       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1682       updatePressureDiffs(LiveUses);
1683     }
1684   }
1685 }
1686 
1687 //===----------------------------------------------------------------------===//
1688 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1689 //===----------------------------------------------------------------------===//
1690 
1691 namespace {
1692 
1693 /// Post-process the DAG to create cluster edges between neighboring
1694 /// loads or between neighboring stores.
1695 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1696   struct MemOpInfo {
1697     SUnit *SU;
1698     SmallVector<const MachineOperand *, 4> BaseOps;
1699     int64_t Offset;
1700     unsigned Width;
1701     bool OffsetIsScalable;
1702 
1703     MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps,
1704               int64_t Offset, bool OffsetIsScalable, unsigned Width)
1705         : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset),
1706           Width(Width), OffsetIsScalable(OffsetIsScalable) {}
1707 
1708     static bool Compare(const MachineOperand *const &A,
1709                         const MachineOperand *const &B) {
1710       if (A->getType() != B->getType())
1711         return A->getType() < B->getType();
1712       if (A->isReg())
1713         return A->getReg() < B->getReg();
1714       if (A->isFI()) {
1715         const MachineFunction &MF = *A->getParent()->getParent()->getParent();
1716         const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
1717         bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1718                               TargetFrameLowering::StackGrowsDown;
1719         return StackGrowsDown ? A->getIndex() > B->getIndex()
1720                               : A->getIndex() < B->getIndex();
1721       }
1722 
1723       llvm_unreachable("MemOpClusterMutation only supports register or frame "
1724                        "index bases.");
1725     }
1726 
1727     bool operator<(const MemOpInfo &RHS) const {
1728       // FIXME: Don't compare everything twice. Maybe use C++20 three way
1729       // comparison instead when it's available.
1730       if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(),
1731                                        RHS.BaseOps.begin(), RHS.BaseOps.end(),
1732                                        Compare))
1733         return true;
1734       if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(),
1735                                        BaseOps.begin(), BaseOps.end(), Compare))
1736         return false;
1737       if (Offset != RHS.Offset)
1738         return Offset < RHS.Offset;
1739       return SU->NodeNum < RHS.SU->NodeNum;
1740     }
1741   };
1742 
1743   const TargetInstrInfo *TII;
1744   const TargetRegisterInfo *TRI;
1745   bool IsLoad;
1746   bool ReorderWhileClustering;
1747 
1748 public:
1749   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1750                            const TargetRegisterInfo *tri, bool IsLoad,
1751                            bool ReorderWhileClustering)
1752       : TII(tii), TRI(tri), IsLoad(IsLoad),
1753         ReorderWhileClustering(ReorderWhileClustering) {}
1754 
1755   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1756 
1757 protected:
1758   void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster,
1759                                 ScheduleDAGInstrs *DAG);
1760   void collectMemOpRecords(std::vector<SUnit> &SUnits,
1761                            SmallVectorImpl<MemOpInfo> &MemOpRecords);
1762   bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1763                    DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups);
1764 };
1765 
1766 class StoreClusterMutation : public BaseMemOpClusterMutation {
1767 public:
1768   StoreClusterMutation(const TargetInstrInfo *tii,
1769                        const TargetRegisterInfo *tri,
1770                        bool ReorderWhileClustering)
1771       : BaseMemOpClusterMutation(tii, tri, false, ReorderWhileClustering) {}
1772 };
1773 
1774 class LoadClusterMutation : public BaseMemOpClusterMutation {
1775 public:
1776   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri,
1777                       bool ReorderWhileClustering)
1778       : BaseMemOpClusterMutation(tii, tri, true, ReorderWhileClustering) {}
1779 };
1780 
1781 } // end anonymous namespace
1782 
1783 namespace llvm {
1784 
1785 std::unique_ptr<ScheduleDAGMutation>
1786 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1787                              const TargetRegisterInfo *TRI,
1788                              bool ReorderWhileClustering) {
1789   return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(
1790                                   TII, TRI, ReorderWhileClustering)
1791                             : nullptr;
1792 }
1793 
1794 std::unique_ptr<ScheduleDAGMutation>
1795 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1796                               const TargetRegisterInfo *TRI,
1797                               bool ReorderWhileClustering) {
1798   return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(
1799                                   TII, TRI, ReorderWhileClustering)
1800                             : nullptr;
1801 }
1802 
1803 } // end namespace llvm
1804 
1805 // Sorting all the loads/stores first, then for each load/store, checking the
1806 // following load/store one by one, until reach the first non-dependent one and
1807 // call target hook to see if they can cluster.
1808 // If FastCluster is enabled, we assume that, all the loads/stores have been
1809 // preprocessed and now, they didn't have dependencies on each other.
1810 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1811     ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster,
1812     ScheduleDAGInstrs *DAG) {
1813   // Keep track of the current cluster length and bytes for each SUnit.
1814   DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo;
1815 
1816   // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to
1817   // cluster mem ops collected within `MemOpRecords` array.
1818   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1819     // Decision to cluster mem ops is taken based on target dependent logic
1820     auto MemOpa = MemOpRecords[Idx];
1821 
1822     // Seek for the next load/store to do the cluster.
1823     unsigned NextIdx = Idx + 1;
1824     for (; NextIdx < End; ++NextIdx)
1825       // Skip if MemOpb has been clustered already or has dependency with
1826       // MemOpa.
1827       if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) &&
1828           (FastCluster ||
1829            (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) &&
1830             !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU))))
1831         break;
1832     if (NextIdx == End)
1833       continue;
1834 
1835     auto MemOpb = MemOpRecords[NextIdx];
1836     unsigned ClusterLength = 2;
1837     unsigned CurrentClusterBytes = MemOpa.Width + MemOpb.Width;
1838     if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) {
1839       ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1;
1840       CurrentClusterBytes =
1841           SUnit2ClusterInfo[MemOpa.SU->NodeNum].second + MemOpb.Width;
1842     }
1843 
1844     if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpa.Offset,
1845                                   MemOpa.OffsetIsScalable, MemOpb.BaseOps,
1846                                   MemOpb.Offset, MemOpb.OffsetIsScalable,
1847                                   ClusterLength, CurrentClusterBytes))
1848       continue;
1849 
1850     SUnit *SUa = MemOpa.SU;
1851     SUnit *SUb = MemOpb.SU;
1852     if (!ReorderWhileClustering && SUa->NodeNum > SUb->NodeNum)
1853       std::swap(SUa, SUb);
1854 
1855     // FIXME: Is this check really required?
1856     if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster)))
1857       continue;
1858 
1859     LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1860                       << SUb->NodeNum << ")\n");
1861     ++NumClustered;
1862 
1863     if (IsLoad) {
1864       // Copy successor edges from SUa to SUb. Interleaving computation
1865       // dependent on SUa can prevent load combining due to register reuse.
1866       // Predecessor edges do not need to be copied from SUb to SUa since
1867       // nearby loads should have effectively the same inputs.
1868       for (const SDep &Succ : SUa->Succs) {
1869         if (Succ.getSUnit() == SUb)
1870           continue;
1871         LLVM_DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum
1872                           << ")\n");
1873         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1874       }
1875     } else {
1876       // Copy predecessor edges from SUb to SUa to avoid the SUnits that
1877       // SUb dependent on scheduled in-between SUb and SUa. Successor edges
1878       // do not need to be copied from SUa to SUb since no one will depend
1879       // on stores.
1880       // Notice that, we don't need to care about the memory dependency as
1881       // we won't try to cluster them if they have any memory dependency.
1882       for (const SDep &Pred : SUb->Preds) {
1883         if (Pred.getSUnit() == SUa)
1884           continue;
1885         LLVM_DEBUG(dbgs() << "  Copy Pred SU(" << Pred.getSUnit()->NodeNum
1886                           << ")\n");
1887         DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial));
1888       }
1889     }
1890 
1891     SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength,
1892                                              CurrentClusterBytes};
1893 
1894     LLVM_DEBUG(dbgs() << "  Curr cluster length: " << ClusterLength
1895                       << ", Curr cluster bytes: " << CurrentClusterBytes
1896                       << "\n");
1897   }
1898 }
1899 
1900 void BaseMemOpClusterMutation::collectMemOpRecords(
1901     std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) {
1902   for (auto &SU : SUnits) {
1903     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1904         (!IsLoad && !SU.getInstr()->mayStore()))
1905       continue;
1906 
1907     const MachineInstr &MI = *SU.getInstr();
1908     SmallVector<const MachineOperand *, 4> BaseOps;
1909     int64_t Offset;
1910     bool OffsetIsScalable;
1911     unsigned Width;
1912     if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset,
1913                                            OffsetIsScalable, Width, TRI)) {
1914       MemOpRecords.push_back(
1915           MemOpInfo(&SU, BaseOps, Offset, OffsetIsScalable, Width));
1916 
1917       LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: "
1918                         << Offset << ", OffsetIsScalable: " << OffsetIsScalable
1919                         << ", Width: " << Width << "\n");
1920     }
1921 #ifndef NDEBUG
1922     for (const auto *Op : BaseOps)
1923       assert(Op);
1924 #endif
1925   }
1926 }
1927 
1928 bool BaseMemOpClusterMutation::groupMemOps(
1929     ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1930     DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups) {
1931   bool FastCluster =
1932       ForceFastCluster ||
1933       MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold;
1934 
1935   for (const auto &MemOp : MemOps) {
1936     unsigned ChainPredID = DAG->SUnits.size();
1937     if (FastCluster) {
1938       for (const SDep &Pred : MemOp.SU->Preds) {
1939         // We only want to cluster the mem ops that have the same ctrl(non-data)
1940         // pred so that they didn't have ctrl dependency for each other. But for
1941         // store instrs, we can still cluster them if the pred is load instr.
1942         if ((Pred.isCtrl() &&
1943              (IsLoad ||
1944               (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) &&
1945             !Pred.isArtificial()) {
1946           ChainPredID = Pred.getSUnit()->NodeNum;
1947           break;
1948         }
1949       }
1950     } else
1951       ChainPredID = 0;
1952 
1953     Groups[ChainPredID].push_back(MemOp);
1954   }
1955   return FastCluster;
1956 }
1957 
1958 /// Callback from DAG postProcessing to create cluster edges for loads/stores.
1959 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
1960   // Collect all the clusterable loads/stores
1961   SmallVector<MemOpInfo, 32> MemOpRecords;
1962   collectMemOpRecords(DAG->SUnits, MemOpRecords);
1963 
1964   if (MemOpRecords.size() < 2)
1965     return;
1966 
1967   // Put the loads/stores without dependency into the same group with some
1968   // heuristic if the DAG is too complex to avoid compiling time blow up.
1969   // Notice that, some fusion pair could be lost with this.
1970   DenseMap<unsigned, SmallVector<MemOpInfo, 32>> Groups;
1971   bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups);
1972 
1973   for (auto &Group : Groups) {
1974     // Sorting the loads/stores, so that, we can stop the cluster as early as
1975     // possible.
1976     llvm::sort(Group.second);
1977 
1978     // Trying to cluster all the neighboring loads/stores.
1979     clusterNeighboringMemOps(Group.second, FastCluster, DAG);
1980   }
1981 }
1982 
1983 //===----------------------------------------------------------------------===//
1984 // CopyConstrain - DAG post-processing to encourage copy elimination.
1985 //===----------------------------------------------------------------------===//
1986 
1987 namespace {
1988 
1989 /// Post-process the DAG to create weak edges from all uses of a copy to
1990 /// the one use that defines the copy's source vreg, most likely an induction
1991 /// variable increment.
1992 class CopyConstrain : public ScheduleDAGMutation {
1993   // Transient state.
1994   SlotIndex RegionBeginIdx;
1995 
1996   // RegionEndIdx is the slot index of the last non-debug instruction in the
1997   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1998   SlotIndex RegionEndIdx;
1999 
2000 public:
2001   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
2002 
2003   void apply(ScheduleDAGInstrs *DAGInstrs) override;
2004 
2005 protected:
2006   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
2007 };
2008 
2009 } // end anonymous namespace
2010 
2011 namespace llvm {
2012 
2013 std::unique_ptr<ScheduleDAGMutation>
2014 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
2015                                const TargetRegisterInfo *TRI) {
2016   return std::make_unique<CopyConstrain>(TII, TRI);
2017 }
2018 
2019 } // end namespace llvm
2020 
2021 /// constrainLocalCopy handles two possibilities:
2022 /// 1) Local src:
2023 /// I0:     = dst
2024 /// I1: src = ...
2025 /// I2:     = dst
2026 /// I3: dst = src (copy)
2027 /// (create pred->succ edges I0->I1, I2->I1)
2028 ///
2029 /// 2) Local copy:
2030 /// I0: dst = src (copy)
2031 /// I1:     = dst
2032 /// I2: src = ...
2033 /// I3:     = dst
2034 /// (create pred->succ edges I1->I2, I3->I2)
2035 ///
2036 /// Although the MachineScheduler is currently constrained to single blocks,
2037 /// this algorithm should handle extended blocks. An EBB is a set of
2038 /// contiguously numbered blocks such that the previous block in the EBB is
2039 /// always the single predecessor.
2040 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
2041   LiveIntervals *LIS = DAG->getLIS();
2042   MachineInstr *Copy = CopySU->getInstr();
2043 
2044   // Check for pure vreg copies.
2045   const MachineOperand &SrcOp = Copy->getOperand(1);
2046   Register SrcReg = SrcOp.getReg();
2047   if (!SrcReg.isVirtual() || !SrcOp.readsReg())
2048     return;
2049 
2050   const MachineOperand &DstOp = Copy->getOperand(0);
2051   Register DstReg = DstOp.getReg();
2052   if (!DstReg.isVirtual() || DstOp.isDead())
2053     return;
2054 
2055   // Check if either the dest or source is local. If it's live across a back
2056   // edge, it's not local. Note that if both vregs are live across the back
2057   // edge, we cannot successfully contrain the copy without cyclic scheduling.
2058   // If both the copy's source and dest are local live intervals, then we
2059   // should treat the dest as the global for the purpose of adding
2060   // constraints. This adds edges from source's other uses to the copy.
2061   unsigned LocalReg = SrcReg;
2062   unsigned GlobalReg = DstReg;
2063   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
2064   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
2065     LocalReg = DstReg;
2066     GlobalReg = SrcReg;
2067     LocalLI = &LIS->getInterval(LocalReg);
2068     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
2069       return;
2070   }
2071   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
2072 
2073   // Find the global segment after the start of the local LI.
2074   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
2075   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
2076   // local live range. We could create edges from other global uses to the local
2077   // start, but the coalescer should have already eliminated these cases, so
2078   // don't bother dealing with it.
2079   if (GlobalSegment == GlobalLI->end())
2080     return;
2081 
2082   // If GlobalSegment is killed at the LocalLI->start, the call to find()
2083   // returned the next global segment. But if GlobalSegment overlaps with
2084   // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
2085   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
2086   if (GlobalSegment->contains(LocalLI->beginIndex()))
2087     ++GlobalSegment;
2088 
2089   if (GlobalSegment == GlobalLI->end())
2090     return;
2091 
2092   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
2093   if (GlobalSegment != GlobalLI->begin()) {
2094     // Two address defs have no hole.
2095     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
2096                                GlobalSegment->start)) {
2097       return;
2098     }
2099     // If the prior global segment may be defined by the same two-address
2100     // instruction that also defines LocalLI, then can't make a hole here.
2101     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
2102                                LocalLI->beginIndex())) {
2103       return;
2104     }
2105     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
2106     // it would be a disconnected component in the live range.
2107     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
2108            "Disconnected LRG within the scheduling region.");
2109   }
2110   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
2111   if (!GlobalDef)
2112     return;
2113 
2114   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
2115   if (!GlobalSU)
2116     return;
2117 
2118   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
2119   // constraining the uses of the last local def to precede GlobalDef.
2120   SmallVector<SUnit*,8> LocalUses;
2121   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
2122   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
2123   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
2124   for (const SDep &Succ : LastLocalSU->Succs) {
2125     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
2126       continue;
2127     if (Succ.getSUnit() == GlobalSU)
2128       continue;
2129     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
2130       return;
2131     LocalUses.push_back(Succ.getSUnit());
2132   }
2133   // Open the top of the GlobalLI hole by constraining any earlier global uses
2134   // to precede the start of LocalLI.
2135   SmallVector<SUnit*,8> GlobalUses;
2136   MachineInstr *FirstLocalDef =
2137     LIS->getInstructionFromIndex(LocalLI->beginIndex());
2138   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
2139   for (const SDep &Pred : GlobalSU->Preds) {
2140     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
2141       continue;
2142     if (Pred.getSUnit() == FirstLocalSU)
2143       continue;
2144     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
2145       return;
2146     GlobalUses.push_back(Pred.getSUnit());
2147   }
2148   LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
2149   // Add the weak edges.
2150   for (SUnit *LU : LocalUses) {
2151     LLVM_DEBUG(dbgs() << "  Local use SU(" << LU->NodeNum << ") -> SU("
2152                       << GlobalSU->NodeNum << ")\n");
2153     DAG->addEdge(GlobalSU, SDep(LU, SDep::Weak));
2154   }
2155   for (SUnit *GU : GlobalUses) {
2156     LLVM_DEBUG(dbgs() << "  Global use SU(" << GU->NodeNum << ") -> SU("
2157                       << FirstLocalSU->NodeNum << ")\n");
2158     DAG->addEdge(FirstLocalSU, SDep(GU, SDep::Weak));
2159   }
2160 }
2161 
2162 /// Callback from DAG postProcessing to create weak edges to encourage
2163 /// copy elimination.
2164 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
2165   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
2166   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
2167 
2168   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
2169   if (FirstPos == DAG->end())
2170     return;
2171   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
2172   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
2173       *priorNonDebug(DAG->end(), DAG->begin()));
2174 
2175   for (SUnit &SU : DAG->SUnits) {
2176     if (!SU.getInstr()->isCopy())
2177       continue;
2178 
2179     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
2180   }
2181 }
2182 
2183 //===----------------------------------------------------------------------===//
2184 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
2185 // and possibly other custom schedulers.
2186 //===----------------------------------------------------------------------===//
2187 
2188 static const unsigned InvalidCycle = ~0U;
2189 
2190 SchedBoundary::~SchedBoundary() { delete HazardRec; }
2191 
2192 /// Given a Count of resource usage and a Latency value, return true if a
2193 /// SchedBoundary becomes resource limited.
2194 /// If we are checking after scheduling a node, we should return true when
2195 /// we just reach the resource limit.
2196 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
2197                                unsigned Latency, bool AfterSchedNode) {
2198   int ResCntFactor = (int)(Count - (Latency * LFactor));
2199   if (AfterSchedNode)
2200     return ResCntFactor >= (int)LFactor;
2201   else
2202     return ResCntFactor > (int)LFactor;
2203 }
2204 
2205 void SchedBoundary::reset() {
2206   // A new HazardRec is created for each DAG and owned by SchedBoundary.
2207   // Destroying and reconstructing it is very expensive though. So keep
2208   // invalid, placeholder HazardRecs.
2209   if (HazardRec && HazardRec->isEnabled()) {
2210     delete HazardRec;
2211     HazardRec = nullptr;
2212   }
2213   Available.clear();
2214   Pending.clear();
2215   CheckPending = false;
2216   CurrCycle = 0;
2217   CurrMOps = 0;
2218   MinReadyCycle = std::numeric_limits<unsigned>::max();
2219   ExpectedLatency = 0;
2220   DependentLatency = 0;
2221   RetiredMOps = 0;
2222   MaxExecutedResCount = 0;
2223   ZoneCritResIdx = 0;
2224   IsResourceLimited = false;
2225   ReservedCycles.clear();
2226   ReservedResourceSegments.clear();
2227   ReservedCyclesIndex.clear();
2228   ResourceGroupSubUnitMasks.clear();
2229 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
2230   // Track the maximum number of stall cycles that could arise either from the
2231   // latency of a DAG edge or the number of cycles that a processor resource is
2232   // reserved (SchedBoundary::ReservedCycles).
2233   MaxObservedStall = 0;
2234 #endif
2235   // Reserve a zero-count for invalid CritResIdx.
2236   ExecutedResCounts.resize(1);
2237   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
2238 }
2239 
2240 void SchedRemainder::
2241 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
2242   reset();
2243   if (!SchedModel->hasInstrSchedModel())
2244     return;
2245   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
2246   for (SUnit &SU : DAG->SUnits) {
2247     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
2248     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
2249       * SchedModel->getMicroOpFactor();
2250     for (TargetSchedModel::ProcResIter
2251            PI = SchedModel->getWriteProcResBegin(SC),
2252            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2253       unsigned PIdx = PI->ProcResourceIdx;
2254       unsigned Factor = SchedModel->getResourceFactor(PIdx);
2255       assert(PI->ReleaseAtCycle >= PI->AcquireAtCycle);
2256       RemainingCounts[PIdx] +=
2257           (Factor * (PI->ReleaseAtCycle - PI->AcquireAtCycle));
2258     }
2259   }
2260 }
2261 
2262 void SchedBoundary::
2263 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
2264   reset();
2265   DAG = dag;
2266   SchedModel = smodel;
2267   Rem = rem;
2268   if (SchedModel->hasInstrSchedModel()) {
2269     unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
2270     ReservedCyclesIndex.resize(ResourceCount);
2271     ExecutedResCounts.resize(ResourceCount);
2272     ResourceGroupSubUnitMasks.resize(ResourceCount, APInt(ResourceCount, 0));
2273     unsigned NumUnits = 0;
2274 
2275     for (unsigned i = 0; i < ResourceCount; ++i) {
2276       ReservedCyclesIndex[i] = NumUnits;
2277       NumUnits += SchedModel->getProcResource(i)->NumUnits;
2278       if (isUnbufferedGroup(i)) {
2279         auto SubUnits = SchedModel->getProcResource(i)->SubUnitsIdxBegin;
2280         for (unsigned U = 0, UE = SchedModel->getProcResource(i)->NumUnits;
2281              U != UE; ++U)
2282           ResourceGroupSubUnitMasks[i].setBit(SubUnits[U]);
2283       }
2284     }
2285 
2286     ReservedCycles.resize(NumUnits, InvalidCycle);
2287   }
2288 }
2289 
2290 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
2291 /// these "soft stalls" differently than the hard stall cycles based on CPU
2292 /// resources and computed by checkHazard(). A fully in-order model
2293 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
2294 /// available for scheduling until they are ready. However, a weaker in-order
2295 /// model may use this for heuristics. For example, if a processor has in-order
2296 /// behavior when reading certain resources, this may come into play.
2297 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
2298   if (!SU->isUnbuffered)
2299     return 0;
2300 
2301   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2302   if (ReadyCycle > CurrCycle)
2303     return ReadyCycle - CurrCycle;
2304   return 0;
2305 }
2306 
2307 /// Compute the next cycle at which the given processor resource unit
2308 /// can be scheduled.
2309 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx,
2310                                                        unsigned ReleaseAtCycle,
2311                                                        unsigned AcquireAtCycle) {
2312   if (SchedModel && SchedModel->enableIntervals()) {
2313     if (isTop())
2314       return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromTop(
2315           CurrCycle, AcquireAtCycle, ReleaseAtCycle);
2316 
2317     return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromBottom(
2318         CurrCycle, AcquireAtCycle, ReleaseAtCycle);
2319   }
2320 
2321   unsigned NextUnreserved = ReservedCycles[InstanceIdx];
2322   // If this resource has never been used, always return cycle zero.
2323   if (NextUnreserved == InvalidCycle)
2324     return CurrCycle;
2325   // For bottom-up scheduling add the cycles needed for the current operation.
2326   if (!isTop())
2327     NextUnreserved = std::max(CurrCycle, NextUnreserved + ReleaseAtCycle);
2328   return NextUnreserved;
2329 }
2330 
2331 /// Compute the next cycle at which the given processor resource can be
2332 /// scheduled.  Returns the next cycle and the index of the processor resource
2333 /// instance in the reserved cycles vector.
2334 std::pair<unsigned, unsigned>
2335 SchedBoundary::getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx,
2336                                     unsigned ReleaseAtCycle,
2337                                     unsigned AcquireAtCycle) {
2338   if (MischedDetailResourceBooking) {
2339     LLVM_DEBUG(dbgs() << "  Resource booking (@" << CurrCycle << "c): \n");
2340     LLVM_DEBUG(dumpReservedCycles());
2341     LLVM_DEBUG(dbgs() << "  getNextResourceCycle (@" << CurrCycle << "c): \n");
2342   }
2343   unsigned MinNextUnreserved = InvalidCycle;
2344   unsigned InstanceIdx = 0;
2345   unsigned StartIndex = ReservedCyclesIndex[PIdx];
2346   unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
2347   assert(NumberOfInstances > 0 &&
2348          "Cannot have zero instances of a ProcResource");
2349 
2350   if (isUnbufferedGroup(PIdx)) {
2351     // If any subunits are used by the instruction, report that the
2352     // subunits of the resource group are available at the first cycle
2353     // in which the unit is available, effectively removing the group
2354     // record from hazarding and basing the hazarding decisions on the
2355     // subunit records. Otherwise, choose the first available instance
2356     // from among the subunits.  Specifications which assign cycles to
2357     // both the subunits and the group or which use an unbuffered
2358     // group with buffered subunits will appear to schedule
2359     // strangely. In the first case, the additional cycles for the
2360     // group will be ignored.  In the second, the group will be
2361     // ignored entirely.
2362     for (const MCWriteProcResEntry &PE :
2363          make_range(SchedModel->getWriteProcResBegin(SC),
2364                     SchedModel->getWriteProcResEnd(SC)))
2365       if (ResourceGroupSubUnitMasks[PIdx][PE.ProcResourceIdx])
2366         return std::make_pair(getNextResourceCycleByInstance(
2367                                   StartIndex, ReleaseAtCycle, AcquireAtCycle),
2368                               StartIndex);
2369 
2370     auto SubUnits = SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin;
2371     for (unsigned I = 0, End = NumberOfInstances; I < End; ++I) {
2372       unsigned NextUnreserved, NextInstanceIdx;
2373       std::tie(NextUnreserved, NextInstanceIdx) =
2374           getNextResourceCycle(SC, SubUnits[I], ReleaseAtCycle, AcquireAtCycle);
2375       if (MinNextUnreserved > NextUnreserved) {
2376         InstanceIdx = NextInstanceIdx;
2377         MinNextUnreserved = NextUnreserved;
2378       }
2379     }
2380     return std::make_pair(MinNextUnreserved, InstanceIdx);
2381   }
2382 
2383   for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
2384        ++I) {
2385     unsigned NextUnreserved =
2386         getNextResourceCycleByInstance(I, ReleaseAtCycle, AcquireAtCycle);
2387     if (MischedDetailResourceBooking)
2388       LLVM_DEBUG(dbgs() << "    Instance " << I - StartIndex << " available @"
2389                         << NextUnreserved << "c\n");
2390     if (MinNextUnreserved > NextUnreserved) {
2391       InstanceIdx = I;
2392       MinNextUnreserved = NextUnreserved;
2393     }
2394   }
2395   if (MischedDetailResourceBooking)
2396     LLVM_DEBUG(dbgs() << "    selecting " << SchedModel->getResourceName(PIdx)
2397                       << "[" << InstanceIdx - StartIndex << "]"
2398                       << " available @" << MinNextUnreserved << "c"
2399                       << "\n");
2400   return std::make_pair(MinNextUnreserved, InstanceIdx);
2401 }
2402 
2403 /// Does this SU have a hazard within the current instruction group.
2404 ///
2405 /// The scheduler supports two modes of hazard recognition. The first is the
2406 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
2407 /// supports highly complicated in-order reservation tables
2408 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
2409 ///
2410 /// The second is a streamlined mechanism that checks for hazards based on
2411 /// simple counters that the scheduler itself maintains. It explicitly checks
2412 /// for instruction dispatch limitations, including the number of micro-ops that
2413 /// can dispatch per cycle.
2414 ///
2415 /// TODO: Also check whether the SU must start a new group.
2416 bool SchedBoundary::checkHazard(SUnit *SU) {
2417   if (HazardRec->isEnabled()
2418       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
2419     return true;
2420   }
2421 
2422   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
2423   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
2424     LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
2425                       << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
2426     return true;
2427   }
2428 
2429   if (CurrMOps > 0 &&
2430       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
2431        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
2432     LLVM_DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
2433                       << (isTop() ? "begin" : "end") << " group\n");
2434     return true;
2435   }
2436 
2437   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
2438     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2439     for (const MCWriteProcResEntry &PE :
2440           make_range(SchedModel->getWriteProcResBegin(SC),
2441                      SchedModel->getWriteProcResEnd(SC))) {
2442       unsigned ResIdx = PE.ProcResourceIdx;
2443       unsigned ReleaseAtCycle = PE.ReleaseAtCycle;
2444       unsigned AcquireAtCycle = PE.AcquireAtCycle;
2445       unsigned NRCycle, InstanceIdx;
2446       std::tie(NRCycle, InstanceIdx) =
2447           getNextResourceCycle(SC, ResIdx, ReleaseAtCycle, AcquireAtCycle);
2448       if (NRCycle > CurrCycle) {
2449 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
2450         MaxObservedStall = std::max(ReleaseAtCycle, MaxObservedStall);
2451 #endif
2452         LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
2453                           << SchedModel->getResourceName(ResIdx)
2454                           << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx]  << ']'
2455                           << "=" << NRCycle << "c\n");
2456         return true;
2457       }
2458     }
2459   }
2460   return false;
2461 }
2462 
2463 // Find the unscheduled node in ReadySUs with the highest latency.
2464 unsigned SchedBoundary::
2465 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
2466   SUnit *LateSU = nullptr;
2467   unsigned RemLatency = 0;
2468   for (SUnit *SU : ReadySUs) {
2469     unsigned L = getUnscheduledLatency(SU);
2470     if (L > RemLatency) {
2471       RemLatency = L;
2472       LateSU = SU;
2473     }
2474   }
2475   if (LateSU) {
2476     LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2477                       << LateSU->NodeNum << ") " << RemLatency << "c\n");
2478   }
2479   return RemLatency;
2480 }
2481 
2482 // Count resources in this zone and the remaining unscheduled
2483 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2484 // resource index, or zero if the zone is issue limited.
2485 unsigned SchedBoundary::
2486 getOtherResourceCount(unsigned &OtherCritIdx) {
2487   OtherCritIdx = 0;
2488   if (!SchedModel->hasInstrSchedModel())
2489     return 0;
2490 
2491   unsigned OtherCritCount = Rem->RemIssueCount
2492     + (RetiredMOps * SchedModel->getMicroOpFactor());
2493   LLVM_DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2494                     << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2495   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2496        PIdx != PEnd; ++PIdx) {
2497     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2498     if (OtherCount > OtherCritCount) {
2499       OtherCritCount = OtherCount;
2500       OtherCritIdx = PIdx;
2501     }
2502   }
2503   if (OtherCritIdx) {
2504     LLVM_DEBUG(
2505         dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2506                << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2507                << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2508   }
2509   return OtherCritCount;
2510 }
2511 
2512 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue,
2513                                 unsigned Idx) {
2514   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2515 
2516 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
2517   // ReadyCycle was been bumped up to the CurrCycle when this node was
2518   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2519   // scheduling, so may now be greater than ReadyCycle.
2520   if (ReadyCycle > CurrCycle)
2521     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2522 #endif
2523 
2524   if (ReadyCycle < MinReadyCycle)
2525     MinReadyCycle = ReadyCycle;
2526 
2527   // Check for interlocks first. For the purpose of other heuristics, an
2528   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2529   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2530   bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) ||
2531                         checkHazard(SU) || (Available.size() >= ReadyListLimit);
2532 
2533   if (!HazardDetected) {
2534     Available.push(SU);
2535 
2536     if (InPQueue)
2537       Pending.remove(Pending.begin() + Idx);
2538     return;
2539   }
2540 
2541   if (!InPQueue)
2542     Pending.push(SU);
2543 }
2544 
2545 /// Move the boundary of scheduled code by one cycle.
2546 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2547   if (SchedModel->getMicroOpBufferSize() == 0) {
2548     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2549            "MinReadyCycle uninitialized");
2550     if (MinReadyCycle > NextCycle)
2551       NextCycle = MinReadyCycle;
2552   }
2553   // Update the current micro-ops, which will issue in the next cycle.
2554   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2555   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2556 
2557   // Decrement DependentLatency based on the next cycle.
2558   if ((NextCycle - CurrCycle) > DependentLatency)
2559     DependentLatency = 0;
2560   else
2561     DependentLatency -= (NextCycle - CurrCycle);
2562 
2563   if (!HazardRec->isEnabled()) {
2564     // Bypass HazardRec virtual calls.
2565     CurrCycle = NextCycle;
2566   } else {
2567     // Bypass getHazardType calls in case of long latency.
2568     for (; CurrCycle != NextCycle; ++CurrCycle) {
2569       if (isTop())
2570         HazardRec->AdvanceCycle();
2571       else
2572         HazardRec->RecedeCycle();
2573     }
2574   }
2575   CheckPending = true;
2576   IsResourceLimited =
2577       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2578                          getScheduledLatency(), true);
2579 
2580   LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2581                     << '\n');
2582 }
2583 
2584 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2585   ExecutedResCounts[PIdx] += Count;
2586   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2587     MaxExecutedResCount = ExecutedResCounts[PIdx];
2588 }
2589 
2590 /// Add the given processor resource to this scheduled zone.
2591 ///
2592 /// \param ReleaseAtCycle indicates the number of consecutive (non-pipelined)
2593 /// cycles during which this resource is released.
2594 ///
2595 /// \param AcquireAtCycle indicates the number of consecutive (non-pipelined)
2596 /// cycles at which the resource is aquired after issue (assuming no stalls).
2597 ///
2598 /// \return the next cycle at which the instruction may execute without
2599 /// oversubscribing resources.
2600 unsigned SchedBoundary::countResource(const MCSchedClassDesc *SC, unsigned PIdx,
2601                                       unsigned ReleaseAtCycle,
2602                                       unsigned NextCycle,
2603                                       unsigned AcquireAtCycle) {
2604   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2605   unsigned Count = Factor * (ReleaseAtCycle- AcquireAtCycle);
2606   LLVM_DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) << " +"
2607                     << ReleaseAtCycle << "x" << Factor << "u\n");
2608 
2609   // Update Executed resources counts.
2610   incExecutedResources(PIdx, Count);
2611   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2612   Rem->RemainingCounts[PIdx] -= Count;
2613 
2614   // Check if this resource exceeds the current critical resource. If so, it
2615   // becomes the critical resource.
2616   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2617     ZoneCritResIdx = PIdx;
2618     LLVM_DEBUG(dbgs() << "  *** Critical resource "
2619                       << SchedModel->getResourceName(PIdx) << ": "
2620                       << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2621                       << "c\n");
2622   }
2623   // For reserved resources, record the highest cycle using the resource.
2624   unsigned NextAvailable, InstanceIdx;
2625   std::tie(NextAvailable, InstanceIdx) =
2626       getNextResourceCycle(SC, PIdx, ReleaseAtCycle, AcquireAtCycle);
2627   if (NextAvailable > CurrCycle) {
2628     LLVM_DEBUG(dbgs() << "  Resource conflict: "
2629                       << SchedModel->getResourceName(PIdx)
2630                       << '[' << InstanceIdx - ReservedCyclesIndex[PIdx]  << ']'
2631                       << " reserved until @" << NextAvailable << "\n");
2632   }
2633   return NextAvailable;
2634 }
2635 
2636 /// Move the boundary of scheduled code by one SUnit.
2637 void SchedBoundary::bumpNode(SUnit *SU) {
2638   // Update the reservation table.
2639   if (HazardRec->isEnabled()) {
2640     if (!isTop() && SU->isCall) {
2641       // Calls are scheduled with their preceding instructions. For bottom-up
2642       // scheduling, clear the pipeline state before emitting.
2643       HazardRec->Reset();
2644     }
2645     HazardRec->EmitInstruction(SU);
2646     // Scheduling an instruction may have made pending instructions available.
2647     CheckPending = true;
2648   }
2649   // checkHazard should prevent scheduling multiple instructions per cycle that
2650   // exceed the issue width.
2651   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2652   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2653   assert(
2654       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2655       "Cannot schedule this instruction's MicroOps in the current cycle.");
2656 
2657   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2658   LLVM_DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2659 
2660   unsigned NextCycle = CurrCycle;
2661   switch (SchedModel->getMicroOpBufferSize()) {
2662   case 0:
2663     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2664     break;
2665   case 1:
2666     if (ReadyCycle > NextCycle) {
2667       NextCycle = ReadyCycle;
2668       LLVM_DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2669     }
2670     break;
2671   default:
2672     // We don't currently model the OOO reorder buffer, so consider all
2673     // scheduled MOps to be "retired". We do loosely model in-order resource
2674     // latency. If this instruction uses an in-order resource, account for any
2675     // likely stall cycles.
2676     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2677       NextCycle = ReadyCycle;
2678     break;
2679   }
2680   RetiredMOps += IncMOps;
2681 
2682   // Update resource counts and critical resource.
2683   if (SchedModel->hasInstrSchedModel()) {
2684     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2685     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2686     Rem->RemIssueCount -= DecRemIssue;
2687     if (ZoneCritResIdx) {
2688       // Scale scheduled micro-ops for comparing with the critical resource.
2689       unsigned ScaledMOps =
2690         RetiredMOps * SchedModel->getMicroOpFactor();
2691 
2692       // If scaled micro-ops are now more than the previous critical resource by
2693       // a full cycle, then micro-ops issue becomes critical.
2694       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2695           >= (int)SchedModel->getLatencyFactor()) {
2696         ZoneCritResIdx = 0;
2697         LLVM_DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2698                           << ScaledMOps / SchedModel->getLatencyFactor()
2699                           << "c\n");
2700       }
2701     }
2702     for (TargetSchedModel::ProcResIter
2703            PI = SchedModel->getWriteProcResBegin(SC),
2704            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2705       unsigned RCycle =
2706           countResource(SC, PI->ProcResourceIdx, PI->ReleaseAtCycle, NextCycle,
2707                         PI->AcquireAtCycle);
2708       if (RCycle > NextCycle)
2709         NextCycle = RCycle;
2710     }
2711     if (SU->hasReservedResource) {
2712       // For reserved resources, record the highest cycle using the resource.
2713       // For top-down scheduling, this is the cycle in which we schedule this
2714       // instruction plus the number of cycles the operations reserves the
2715       // resource. For bottom-up is it simply the instruction's cycle.
2716       for (TargetSchedModel::ProcResIter
2717              PI = SchedModel->getWriteProcResBegin(SC),
2718              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2719         unsigned PIdx = PI->ProcResourceIdx;
2720         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2721 
2722           if (SchedModel && SchedModel->enableIntervals()) {
2723             unsigned ReservedUntil, InstanceIdx;
2724             std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(
2725                 SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle);
2726             if (isTop()) {
2727               ReservedResourceSegments[InstanceIdx].add(
2728                   ResourceSegments::getResourceIntervalTop(
2729                       NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle),
2730                   MIResourceCutOff);
2731             } else {
2732               ReservedResourceSegments[InstanceIdx].add(
2733                   ResourceSegments::getResourceIntervalBottom(
2734                       NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle),
2735                   MIResourceCutOff);
2736             }
2737           } else {
2738 
2739             unsigned ReservedUntil, InstanceIdx;
2740             std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(
2741                 SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle);
2742             if (isTop()) {
2743               ReservedCycles[InstanceIdx] =
2744                   std::max(ReservedUntil, NextCycle + PI->ReleaseAtCycle);
2745             } else
2746               ReservedCycles[InstanceIdx] = NextCycle;
2747           }
2748         }
2749       }
2750     }
2751   }
2752   // Update ExpectedLatency and DependentLatency.
2753   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2754   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2755   if (SU->getDepth() > TopLatency) {
2756     TopLatency = SU->getDepth();
2757     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " TopLatency SU("
2758                       << SU->NodeNum << ") " << TopLatency << "c\n");
2759   }
2760   if (SU->getHeight() > BotLatency) {
2761     BotLatency = SU->getHeight();
2762     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " BotLatency SU("
2763                       << SU->NodeNum << ") " << BotLatency << "c\n");
2764   }
2765   // If we stall for any reason, bump the cycle.
2766   if (NextCycle > CurrCycle)
2767     bumpCycle(NextCycle);
2768   else
2769     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2770     // resource limited. If a stall occurred, bumpCycle does this.
2771     IsResourceLimited =
2772         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2773                            getScheduledLatency(), true);
2774 
2775   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2776   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2777   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2778   // bump the cycle to avoid uselessly checking everything in the readyQ.
2779   CurrMOps += IncMOps;
2780 
2781   // Bump the cycle count for issue group constraints.
2782   // This must be done after NextCycle has been adjust for all other stalls.
2783   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2784   // currCycle to X.
2785   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2786       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2787     LLVM_DEBUG(dbgs() << "  Bump cycle to " << (isTop() ? "end" : "begin")
2788                       << " group\n");
2789     bumpCycle(++NextCycle);
2790   }
2791 
2792   while (CurrMOps >= SchedModel->getIssueWidth()) {
2793     LLVM_DEBUG(dbgs() << "  *** Max MOps " << CurrMOps << " at cycle "
2794                       << CurrCycle << '\n');
2795     bumpCycle(++NextCycle);
2796   }
2797   LLVM_DEBUG(dumpScheduledState());
2798 }
2799 
2800 /// Release pending ready nodes in to the available queue. This makes them
2801 /// visible to heuristics.
2802 void SchedBoundary::releasePending() {
2803   // If the available queue is empty, it is safe to reset MinReadyCycle.
2804   if (Available.empty())
2805     MinReadyCycle = std::numeric_limits<unsigned>::max();
2806 
2807   // Check to see if any of the pending instructions are ready to issue.  If
2808   // so, add them to the available queue.
2809   for (unsigned I = 0, E = Pending.size(); I < E; ++I) {
2810     SUnit *SU = *(Pending.begin() + I);
2811     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2812 
2813     if (ReadyCycle < MinReadyCycle)
2814       MinReadyCycle = ReadyCycle;
2815 
2816     if (Available.size() >= ReadyListLimit)
2817       break;
2818 
2819     releaseNode(SU, ReadyCycle, true, I);
2820     if (E != Pending.size()) {
2821       --I;
2822       --E;
2823     }
2824   }
2825   CheckPending = false;
2826 }
2827 
2828 /// Remove SU from the ready set for this boundary.
2829 void SchedBoundary::removeReady(SUnit *SU) {
2830   if (Available.isInQueue(SU))
2831     Available.remove(Available.find(SU));
2832   else {
2833     assert(Pending.isInQueue(SU) && "bad ready count");
2834     Pending.remove(Pending.find(SU));
2835   }
2836 }
2837 
2838 /// If this queue only has one ready candidate, return it. As a side effect,
2839 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2840 /// one node is ready. If multiple instructions are ready, return NULL.
2841 SUnit *SchedBoundary::pickOnlyChoice() {
2842   if (CheckPending)
2843     releasePending();
2844 
2845   // Defer any ready instrs that now have a hazard.
2846   for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2847     if (checkHazard(*I)) {
2848       Pending.push(*I);
2849       I = Available.remove(I);
2850       continue;
2851     }
2852     ++I;
2853   }
2854   for (unsigned i = 0; Available.empty(); ++i) {
2855 //  FIXME: Re-enable assert once PR20057 is resolved.
2856 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2857 //           "permanent hazard");
2858     (void)i;
2859     bumpCycle(CurrCycle + 1);
2860     releasePending();
2861   }
2862 
2863   LLVM_DEBUG(Pending.dump());
2864   LLVM_DEBUG(Available.dump());
2865 
2866   if (Available.size() == 1)
2867     return *Available.begin();
2868   return nullptr;
2869 }
2870 
2871 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2872 
2873 /// Dump the content of the \ref ReservedCycles vector for the
2874 /// resources that are used in the basic block.
2875 ///
2876 LLVM_DUMP_METHOD void SchedBoundary::dumpReservedCycles() const {
2877   if (!SchedModel->hasInstrSchedModel())
2878     return;
2879 
2880   unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
2881   unsigned StartIdx = 0;
2882 
2883   for (unsigned ResIdx = 0; ResIdx < ResourceCount; ++ResIdx) {
2884     const unsigned NumUnits = SchedModel->getProcResource(ResIdx)->NumUnits;
2885     std::string ResName = SchedModel->getResourceName(ResIdx);
2886     for (unsigned UnitIdx = 0; UnitIdx < NumUnits; ++UnitIdx) {
2887       dbgs() << ResName << "(" << UnitIdx << ") = ";
2888       if (SchedModel && SchedModel->enableIntervals()) {
2889         if (ReservedResourceSegments.count(StartIdx + UnitIdx))
2890           dbgs() << ReservedResourceSegments.at(StartIdx + UnitIdx);
2891         else
2892           dbgs() << "{ }\n";
2893       } else
2894         dbgs() << ReservedCycles[StartIdx + UnitIdx] << "\n";
2895     }
2896     StartIdx += NumUnits;
2897   }
2898 }
2899 
2900 // This is useful information to dump after bumpNode.
2901 // Note that the Queue contents are more useful before pickNodeFromQueue.
2902 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2903   unsigned ResFactor;
2904   unsigned ResCount;
2905   if (ZoneCritResIdx) {
2906     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2907     ResCount = getResourceCount(ZoneCritResIdx);
2908   } else {
2909     ResFactor = SchedModel->getMicroOpFactor();
2910     ResCount = RetiredMOps * ResFactor;
2911   }
2912   unsigned LFactor = SchedModel->getLatencyFactor();
2913   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2914          << "  Retired: " << RetiredMOps;
2915   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2916   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2917          << ResCount / ResFactor << " "
2918          << SchedModel->getResourceName(ZoneCritResIdx)
2919          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2920          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2921          << " limited.\n";
2922   if (MISchedDumpReservedCycles)
2923     dumpReservedCycles();
2924 }
2925 #endif
2926 
2927 //===----------------------------------------------------------------------===//
2928 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2929 //===----------------------------------------------------------------------===//
2930 
2931 void GenericSchedulerBase::SchedCandidate::
2932 initResourceDelta(const ScheduleDAGMI *DAG,
2933                   const TargetSchedModel *SchedModel) {
2934   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2935     return;
2936 
2937   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2938   for (TargetSchedModel::ProcResIter
2939          PI = SchedModel->getWriteProcResBegin(SC),
2940          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2941     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2942       ResDelta.CritResources += PI->ReleaseAtCycle;
2943     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2944       ResDelta.DemandedResources += PI->ReleaseAtCycle;
2945   }
2946 }
2947 
2948 /// Compute remaining latency. We need this both to determine whether the
2949 /// overall schedule has become latency-limited and whether the instructions
2950 /// outside this zone are resource or latency limited.
2951 ///
2952 /// The "dependent" latency is updated incrementally during scheduling as the
2953 /// max height/depth of scheduled nodes minus the cycles since it was
2954 /// scheduled:
2955 ///   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2956 ///
2957 /// The "independent" latency is the max ready queue depth:
2958 ///   ILat = max N.depth for N in Available|Pending
2959 ///
2960 /// RemainingLatency is the greater of independent and dependent latency.
2961 ///
2962 /// These computations are expensive, especially in DAGs with many edges, so
2963 /// only do them if necessary.
2964 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2965   unsigned RemLatency = CurrZone.getDependentLatency();
2966   RemLatency = std::max(RemLatency,
2967                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2968   RemLatency = std::max(RemLatency,
2969                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2970   return RemLatency;
2971 }
2972 
2973 /// Returns true if the current cycle plus remaning latency is greater than
2974 /// the critical path in the scheduling region.
2975 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2976                                                SchedBoundary &CurrZone,
2977                                                bool ComputeRemLatency,
2978                                                unsigned &RemLatency) const {
2979   // The current cycle is already greater than the critical path, so we are
2980   // already latency limited and don't need to compute the remaining latency.
2981   if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2982     return true;
2983 
2984   // If we haven't scheduled anything yet, then we aren't latency limited.
2985   if (CurrZone.getCurrCycle() == 0)
2986     return false;
2987 
2988   if (ComputeRemLatency)
2989     RemLatency = computeRemLatency(CurrZone);
2990 
2991   return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2992 }
2993 
2994 /// Set the CandPolicy given a scheduling zone given the current resources and
2995 /// latencies inside and outside the zone.
2996 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2997                                      SchedBoundary &CurrZone,
2998                                      SchedBoundary *OtherZone) {
2999   // Apply preemptive heuristics based on the total latency and resources
3000   // inside and outside this zone. Potential stalls should be considered before
3001   // following this policy.
3002 
3003   // Compute the critical resource outside the zone.
3004   unsigned OtherCritIdx = 0;
3005   unsigned OtherCount =
3006     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
3007 
3008   bool OtherResLimited = false;
3009   unsigned RemLatency = 0;
3010   bool RemLatencyComputed = false;
3011   if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
3012     RemLatency = computeRemLatency(CurrZone);
3013     RemLatencyComputed = true;
3014     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
3015                                          OtherCount, RemLatency, false);
3016   }
3017 
3018   // Schedule aggressively for latency in PostRA mode. We don't check for
3019   // acyclic latency during PostRA, and highly out-of-order processors will
3020   // skip PostRA scheduling.
3021   if (!OtherResLimited &&
3022       (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
3023                                        RemLatency))) {
3024     Policy.ReduceLatency |= true;
3025     LLVM_DEBUG(dbgs() << "  " << CurrZone.Available.getName()
3026                       << " RemainingLatency " << RemLatency << " + "
3027                       << CurrZone.getCurrCycle() << "c > CritPath "
3028                       << Rem.CriticalPath << "\n");
3029   }
3030   // If the same resource is limiting inside and outside the zone, do nothing.
3031   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
3032     return;
3033 
3034   LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
3035     dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
3036            << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
3037   } if (OtherResLimited) dbgs()
3038                  << "  RemainingLimit: "
3039                  << SchedModel->getResourceName(OtherCritIdx) << "\n";
3040              if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
3041              << "  Latency limited both directions.\n");
3042 
3043   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
3044     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
3045 
3046   if (OtherResLimited)
3047     Policy.DemandResIdx = OtherCritIdx;
3048 }
3049 
3050 #ifndef NDEBUG
3051 const char *GenericSchedulerBase::getReasonStr(
3052   GenericSchedulerBase::CandReason Reason) {
3053   switch (Reason) {
3054   case NoCand:         return "NOCAND    ";
3055   case Only1:          return "ONLY1     ";
3056   case PhysReg:        return "PHYS-REG  ";
3057   case RegExcess:      return "REG-EXCESS";
3058   case RegCritical:    return "REG-CRIT  ";
3059   case Stall:          return "STALL     ";
3060   case Cluster:        return "CLUSTER   ";
3061   case Weak:           return "WEAK      ";
3062   case RegMax:         return "REG-MAX   ";
3063   case ResourceReduce: return "RES-REDUCE";
3064   case ResourceDemand: return "RES-DEMAND";
3065   case TopDepthReduce: return "TOP-DEPTH ";
3066   case TopPathReduce:  return "TOP-PATH  ";
3067   case BotHeightReduce:return "BOT-HEIGHT";
3068   case BotPathReduce:  return "BOT-PATH  ";
3069   case NextDefUse:     return "DEF-USE   ";
3070   case NodeOrder:      return "ORDER     ";
3071   };
3072   llvm_unreachable("Unknown reason!");
3073 }
3074 
3075 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
3076   PressureChange P;
3077   unsigned ResIdx = 0;
3078   unsigned Latency = 0;
3079   switch (Cand.Reason) {
3080   default:
3081     break;
3082   case RegExcess:
3083     P = Cand.RPDelta.Excess;
3084     break;
3085   case RegCritical:
3086     P = Cand.RPDelta.CriticalMax;
3087     break;
3088   case RegMax:
3089     P = Cand.RPDelta.CurrentMax;
3090     break;
3091   case ResourceReduce:
3092     ResIdx = Cand.Policy.ReduceResIdx;
3093     break;
3094   case ResourceDemand:
3095     ResIdx = Cand.Policy.DemandResIdx;
3096     break;
3097   case TopDepthReduce:
3098     Latency = Cand.SU->getDepth();
3099     break;
3100   case TopPathReduce:
3101     Latency = Cand.SU->getHeight();
3102     break;
3103   case BotHeightReduce:
3104     Latency = Cand.SU->getHeight();
3105     break;
3106   case BotPathReduce:
3107     Latency = Cand.SU->getDepth();
3108     break;
3109   }
3110   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
3111   if (P.isValid())
3112     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
3113            << ":" << P.getUnitInc() << " ";
3114   else
3115     dbgs() << "      ";
3116   if (ResIdx)
3117     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
3118   else
3119     dbgs() << "         ";
3120   if (Latency)
3121     dbgs() << " " << Latency << " cycles ";
3122   else
3123     dbgs() << "          ";
3124   dbgs() << '\n';
3125 }
3126 #endif
3127 
3128 namespace llvm {
3129 /// Return true if this heuristic determines order.
3130 /// TODO: Consider refactor return type of these functions as integer or enum,
3131 /// as we may need to differentiate whether TryCand is better than Cand.
3132 bool tryLess(int TryVal, int CandVal,
3133              GenericSchedulerBase::SchedCandidate &TryCand,
3134              GenericSchedulerBase::SchedCandidate &Cand,
3135              GenericSchedulerBase::CandReason Reason) {
3136   if (TryVal < CandVal) {
3137     TryCand.Reason = Reason;
3138     return true;
3139   }
3140   if (TryVal > CandVal) {
3141     if (Cand.Reason > Reason)
3142       Cand.Reason = Reason;
3143     return true;
3144   }
3145   return false;
3146 }
3147 
3148 bool tryGreater(int TryVal, int CandVal,
3149                 GenericSchedulerBase::SchedCandidate &TryCand,
3150                 GenericSchedulerBase::SchedCandidate &Cand,
3151                 GenericSchedulerBase::CandReason Reason) {
3152   if (TryVal > CandVal) {
3153     TryCand.Reason = Reason;
3154     return true;
3155   }
3156   if (TryVal < CandVal) {
3157     if (Cand.Reason > Reason)
3158       Cand.Reason = Reason;
3159     return true;
3160   }
3161   return false;
3162 }
3163 
3164 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
3165                 GenericSchedulerBase::SchedCandidate &Cand,
3166                 SchedBoundary &Zone) {
3167   if (Zone.isTop()) {
3168     // Prefer the candidate with the lesser depth, but only if one of them has
3169     // depth greater than the total latency scheduled so far, otherwise either
3170     // of them could be scheduled now with no stall.
3171     if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) >
3172         Zone.getScheduledLatency()) {
3173       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
3174                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
3175         return true;
3176     }
3177     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
3178                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
3179       return true;
3180   } else {
3181     // Prefer the candidate with the lesser height, but only if one of them has
3182     // height greater than the total latency scheduled so far, otherwise either
3183     // of them could be scheduled now with no stall.
3184     if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) >
3185         Zone.getScheduledLatency()) {
3186       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
3187                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
3188         return true;
3189     }
3190     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
3191                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
3192       return true;
3193   }
3194   return false;
3195 }
3196 } // end namespace llvm
3197 
3198 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
3199   LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
3200                     << GenericSchedulerBase::getReasonStr(Reason) << '\n');
3201 }
3202 
3203 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
3204   tracePick(Cand.Reason, Cand.AtTop);
3205 }
3206 
3207 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
3208   assert(dag->hasVRegLiveness() &&
3209          "(PreRA)GenericScheduler needs vreg liveness");
3210   DAG = static_cast<ScheduleDAGMILive*>(dag);
3211   SchedModel = DAG->getSchedModel();
3212   TRI = DAG->TRI;
3213 
3214   if (RegionPolicy.ComputeDFSResult)
3215     DAG->computeDFSResult();
3216 
3217   Rem.init(DAG, SchedModel);
3218   Top.init(DAG, SchedModel, &Rem);
3219   Bot.init(DAG, SchedModel, &Rem);
3220 
3221   // Initialize resource counts.
3222 
3223   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
3224   // are disabled, then these HazardRecs will be disabled.
3225   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3226   if (!Top.HazardRec) {
3227     Top.HazardRec =
3228         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3229             Itin, DAG);
3230   }
3231   if (!Bot.HazardRec) {
3232     Bot.HazardRec =
3233         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3234             Itin, DAG);
3235   }
3236   TopCand.SU = nullptr;
3237   BotCand.SU = nullptr;
3238 }
3239 
3240 /// Initialize the per-region scheduling policy.
3241 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
3242                                   MachineBasicBlock::iterator End,
3243                                   unsigned NumRegionInstrs) {
3244   const MachineFunction &MF = *Begin->getMF();
3245   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
3246 
3247   // Avoid setting up the register pressure tracker for small regions to save
3248   // compile time. As a rough heuristic, only track pressure when the number of
3249   // schedulable instructions exceeds half the integer register file.
3250   RegionPolicy.ShouldTrackPressure = true;
3251   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
3252     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
3253     if (TLI->isTypeLegal(LegalIntVT)) {
3254       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
3255         TLI->getRegClassFor(LegalIntVT));
3256       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
3257     }
3258   }
3259 
3260   // For generic targets, we default to bottom-up, because it's simpler and more
3261   // compile-time optimizations have been implemented in that direction.
3262   RegionPolicy.OnlyBottomUp = true;
3263 
3264   // Allow the subtarget to override default policy.
3265   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
3266 
3267   // After subtarget overrides, apply command line options.
3268   if (!EnableRegPressure) {
3269     RegionPolicy.ShouldTrackPressure = false;
3270     RegionPolicy.ShouldTrackLaneMasks = false;
3271   }
3272 
3273   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
3274   // e.g. -misched-bottomup=false allows scheduling in both directions.
3275   assert((!ForceTopDown || !ForceBottomUp) &&
3276          "-misched-topdown incompatible with -misched-bottomup");
3277   if (ForceBottomUp.getNumOccurrences() > 0) {
3278     RegionPolicy.OnlyBottomUp = ForceBottomUp;
3279     if (RegionPolicy.OnlyBottomUp)
3280       RegionPolicy.OnlyTopDown = false;
3281   }
3282   if (ForceTopDown.getNumOccurrences() > 0) {
3283     RegionPolicy.OnlyTopDown = ForceTopDown;
3284     if (RegionPolicy.OnlyTopDown)
3285       RegionPolicy.OnlyBottomUp = false;
3286   }
3287 }
3288 
3289 void GenericScheduler::dumpPolicy() const {
3290   // Cannot completely remove virtual function even in release mode.
3291 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3292   dbgs() << "GenericScheduler RegionPolicy: "
3293          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
3294          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
3295          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
3296          << "\n";
3297 #endif
3298 }
3299 
3300 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
3301 /// critical path by more cycles than it takes to drain the instruction buffer.
3302 /// We estimate an upper bounds on in-flight instructions as:
3303 ///
3304 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
3305 /// InFlightIterations = AcyclicPath / CyclesPerIteration
3306 /// InFlightResources = InFlightIterations * LoopResources
3307 ///
3308 /// TODO: Check execution resources in addition to IssueCount.
3309 void GenericScheduler::checkAcyclicLatency() {
3310   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
3311     return;
3312 
3313   // Scaled number of cycles per loop iteration.
3314   unsigned IterCount =
3315     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
3316              Rem.RemIssueCount);
3317   // Scaled acyclic critical path.
3318   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
3319   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
3320   unsigned InFlightCount =
3321     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
3322   unsigned BufferLimit =
3323     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
3324 
3325   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
3326 
3327   LLVM_DEBUG(
3328       dbgs() << "IssueCycles="
3329              << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
3330              << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
3331              << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
3332              << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
3333              << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
3334       if (Rem.IsAcyclicLatencyLimited) dbgs() << "  ACYCLIC LATENCY LIMIT\n");
3335 }
3336 
3337 void GenericScheduler::registerRoots() {
3338   Rem.CriticalPath = DAG->ExitSU.getDepth();
3339 
3340   // Some roots may not feed into ExitSU. Check all of them in case.
3341   for (const SUnit *SU : Bot.Available) {
3342     if (SU->getDepth() > Rem.CriticalPath)
3343       Rem.CriticalPath = SU->getDepth();
3344   }
3345   LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
3346   if (DumpCriticalPathLength) {
3347     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
3348   }
3349 
3350   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
3351     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
3352     checkAcyclicLatency();
3353   }
3354 }
3355 
3356 namespace llvm {
3357 bool tryPressure(const PressureChange &TryP,
3358                  const PressureChange &CandP,
3359                  GenericSchedulerBase::SchedCandidate &TryCand,
3360                  GenericSchedulerBase::SchedCandidate &Cand,
3361                  GenericSchedulerBase::CandReason Reason,
3362                  const TargetRegisterInfo *TRI,
3363                  const MachineFunction &MF) {
3364   // If one candidate decreases and the other increases, go with it.
3365   // Invalid candidates have UnitInc==0.
3366   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
3367                  Reason)) {
3368     return true;
3369   }
3370   // Do not compare the magnitude of pressure changes between top and bottom
3371   // boundary.
3372   if (Cand.AtTop != TryCand.AtTop)
3373     return false;
3374 
3375   // If both candidates affect the same set in the same boundary, go with the
3376   // smallest increase.
3377   unsigned TryPSet = TryP.getPSetOrMax();
3378   unsigned CandPSet = CandP.getPSetOrMax();
3379   if (TryPSet == CandPSet) {
3380     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
3381                    Reason);
3382   }
3383 
3384   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
3385                                  std::numeric_limits<int>::max();
3386 
3387   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
3388                                    std::numeric_limits<int>::max();
3389 
3390   // If the candidates are decreasing pressure, reverse priority.
3391   if (TryP.getUnitInc() < 0)
3392     std::swap(TryRank, CandRank);
3393   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
3394 }
3395 
3396 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
3397   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
3398 }
3399 
3400 /// Minimize physical register live ranges. Regalloc wants them adjacent to
3401 /// their physreg def/use.
3402 ///
3403 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
3404 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
3405 /// with the operation that produces or consumes the physreg. We'll do this when
3406 /// regalloc has support for parallel copies.
3407 int biasPhysReg(const SUnit *SU, bool isTop) {
3408   const MachineInstr *MI = SU->getInstr();
3409 
3410   if (MI->isCopy()) {
3411     unsigned ScheduledOper = isTop ? 1 : 0;
3412     unsigned UnscheduledOper = isTop ? 0 : 1;
3413     // If we have already scheduled the physreg produce/consumer, immediately
3414     // schedule the copy.
3415     if (MI->getOperand(ScheduledOper).getReg().isPhysical())
3416       return 1;
3417     // If the physreg is at the boundary, defer it. Otherwise schedule it
3418     // immediately to free the dependent. We can hoist the copy later.
3419     bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
3420     if (MI->getOperand(UnscheduledOper).getReg().isPhysical())
3421       return AtBoundary ? -1 : 1;
3422   }
3423 
3424   if (MI->isMoveImmediate()) {
3425     // If we have a move immediate and all successors have been assigned, bias
3426     // towards scheduling this later. Make sure all register defs are to
3427     // physical registers.
3428     bool DoBias = true;
3429     for (const MachineOperand &Op : MI->defs()) {
3430       if (Op.isReg() && !Op.getReg().isPhysical()) {
3431         DoBias = false;
3432         break;
3433       }
3434     }
3435 
3436     if (DoBias)
3437       return isTop ? -1 : 1;
3438   }
3439 
3440   return 0;
3441 }
3442 } // end namespace llvm
3443 
3444 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
3445                                      bool AtTop,
3446                                      const RegPressureTracker &RPTracker,
3447                                      RegPressureTracker &TempTracker) {
3448   Cand.SU = SU;
3449   Cand.AtTop = AtTop;
3450   if (DAG->isTrackingPressure()) {
3451     if (AtTop) {
3452       TempTracker.getMaxDownwardPressureDelta(
3453         Cand.SU->getInstr(),
3454         Cand.RPDelta,
3455         DAG->getRegionCriticalPSets(),
3456         DAG->getRegPressure().MaxSetPressure);
3457     } else {
3458       if (VerifyScheduling) {
3459         TempTracker.getMaxUpwardPressureDelta(
3460           Cand.SU->getInstr(),
3461           &DAG->getPressureDiff(Cand.SU),
3462           Cand.RPDelta,
3463           DAG->getRegionCriticalPSets(),
3464           DAG->getRegPressure().MaxSetPressure);
3465       } else {
3466         RPTracker.getUpwardPressureDelta(
3467           Cand.SU->getInstr(),
3468           DAG->getPressureDiff(Cand.SU),
3469           Cand.RPDelta,
3470           DAG->getRegionCriticalPSets(),
3471           DAG->getRegPressure().MaxSetPressure);
3472       }
3473     }
3474   }
3475   LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
3476              << "  Try  SU(" << Cand.SU->NodeNum << ") "
3477              << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
3478              << Cand.RPDelta.Excess.getUnitInc() << "\n");
3479 }
3480 
3481 /// Apply a set of heuristics to a new candidate. Heuristics are currently
3482 /// hierarchical. This may be more efficient than a graduated cost model because
3483 /// we don't need to evaluate all aspects of the model for each node in the
3484 /// queue. But it's really done to make the heuristics easier to debug and
3485 /// statistically analyze.
3486 ///
3487 /// \param Cand provides the policy and current best candidate.
3488 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3489 /// \param Zone describes the scheduled zone that we are extending, or nullptr
3490 ///             if Cand is from a different zone than TryCand.
3491 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
3492 bool GenericScheduler::tryCandidate(SchedCandidate &Cand,
3493                                     SchedCandidate &TryCand,
3494                                     SchedBoundary *Zone) const {
3495   // Initialize the candidate if needed.
3496   if (!Cand.isValid()) {
3497     TryCand.Reason = NodeOrder;
3498     return true;
3499   }
3500 
3501   // Bias PhysReg Defs and copies to their uses and defined respectively.
3502   if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
3503                  biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
3504     return TryCand.Reason != NoCand;
3505 
3506   // Avoid exceeding the target's limit.
3507   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
3508                                                Cand.RPDelta.Excess,
3509                                                TryCand, Cand, RegExcess, TRI,
3510                                                DAG->MF))
3511     return TryCand.Reason != NoCand;
3512 
3513   // Avoid increasing the max critical pressure in the scheduled region.
3514   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
3515                                                Cand.RPDelta.CriticalMax,
3516                                                TryCand, Cand, RegCritical, TRI,
3517                                                DAG->MF))
3518     return TryCand.Reason != NoCand;
3519 
3520   // We only compare a subset of features when comparing nodes between
3521   // Top and Bottom boundary. Some properties are simply incomparable, in many
3522   // other instances we should only override the other boundary if something
3523   // is a clear good pick on one boundary. Skip heuristics that are more
3524   // "tie-breaking" in nature.
3525   bool SameBoundary = Zone != nullptr;
3526   if (SameBoundary) {
3527     // For loops that are acyclic path limited, aggressively schedule for
3528     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
3529     // heuristics to take precedence.
3530     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
3531         tryLatency(TryCand, Cand, *Zone))
3532       return TryCand.Reason != NoCand;
3533 
3534     // Prioritize instructions that read unbuffered resources by stall cycles.
3535     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
3536                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3537       return TryCand.Reason != NoCand;
3538   }
3539 
3540   // Keep clustered nodes together to encourage downstream peephole
3541   // optimizations which may reduce resource requirements.
3542   //
3543   // This is a best effort to set things up for a post-RA pass. Optimizations
3544   // like generating loads of multiple registers should ideally be done within
3545   // the scheduler pass by combining the loads during DAG postprocessing.
3546   const SUnit *CandNextClusterSU =
3547     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3548   const SUnit *TryCandNextClusterSU =
3549     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3550   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3551                  Cand.SU == CandNextClusterSU,
3552                  TryCand, Cand, Cluster))
3553     return TryCand.Reason != NoCand;
3554 
3555   if (SameBoundary) {
3556     // Weak edges are for clustering and other constraints.
3557     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3558                 getWeakLeft(Cand.SU, Cand.AtTop),
3559                 TryCand, Cand, Weak))
3560       return TryCand.Reason != NoCand;
3561   }
3562 
3563   // Avoid increasing the max pressure of the entire region.
3564   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3565                                                Cand.RPDelta.CurrentMax,
3566                                                TryCand, Cand, RegMax, TRI,
3567                                                DAG->MF))
3568     return TryCand.Reason != NoCand;
3569 
3570   if (SameBoundary) {
3571     // Avoid critical resource consumption and balance the schedule.
3572     TryCand.initResourceDelta(DAG, SchedModel);
3573     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3574                 TryCand, Cand, ResourceReduce))
3575       return TryCand.Reason != NoCand;
3576     if (tryGreater(TryCand.ResDelta.DemandedResources,
3577                    Cand.ResDelta.DemandedResources,
3578                    TryCand, Cand, ResourceDemand))
3579       return TryCand.Reason != NoCand;
3580 
3581     // Avoid serializing long latency dependence chains.
3582     // For acyclic path limited loops, latency was already checked above.
3583     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3584         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3585       return TryCand.Reason != NoCand;
3586 
3587     // Fall through to original instruction order.
3588     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3589         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3590       TryCand.Reason = NodeOrder;
3591       return true;
3592     }
3593   }
3594 
3595   return false;
3596 }
3597 
3598 /// Pick the best candidate from the queue.
3599 ///
3600 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3601 /// DAG building. To adjust for the current scheduling location we need to
3602 /// maintain the number of vreg uses remaining to be top-scheduled.
3603 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3604                                          const CandPolicy &ZonePolicy,
3605                                          const RegPressureTracker &RPTracker,
3606                                          SchedCandidate &Cand) {
3607   // getMaxPressureDelta temporarily modifies the tracker.
3608   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3609 
3610   ReadyQueue &Q = Zone.Available;
3611   for (SUnit *SU : Q) {
3612 
3613     SchedCandidate TryCand(ZonePolicy);
3614     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3615     // Pass SchedBoundary only when comparing nodes from the same boundary.
3616     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3617     if (tryCandidate(Cand, TryCand, ZoneArg)) {
3618       // Initialize resource delta if needed in case future heuristics query it.
3619       if (TryCand.ResDelta == SchedResourceDelta())
3620         TryCand.initResourceDelta(DAG, SchedModel);
3621       Cand.setBest(TryCand);
3622       LLVM_DEBUG(traceCandidate(Cand));
3623     }
3624   }
3625 }
3626 
3627 /// Pick the best candidate node from either the top or bottom queue.
3628 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3629   // Schedule as far as possible in the direction of no choice. This is most
3630   // efficient, but also provides the best heuristics for CriticalPSets.
3631   if (SUnit *SU = Bot.pickOnlyChoice()) {
3632     IsTopNode = false;
3633     tracePick(Only1, false);
3634     return SU;
3635   }
3636   if (SUnit *SU = Top.pickOnlyChoice()) {
3637     IsTopNode = true;
3638     tracePick(Only1, true);
3639     return SU;
3640   }
3641   // Set the bottom-up policy based on the state of the current bottom zone and
3642   // the instructions outside the zone, including the top zone.
3643   CandPolicy BotPolicy;
3644   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3645   // Set the top-down policy based on the state of the current top zone and
3646   // the instructions outside the zone, including the bottom zone.
3647   CandPolicy TopPolicy;
3648   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3649 
3650   // See if BotCand is still valid (because we previously scheduled from Top).
3651   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3652   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3653       BotCand.Policy != BotPolicy) {
3654     BotCand.reset(CandPolicy());
3655     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3656     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3657   } else {
3658     LLVM_DEBUG(traceCandidate(BotCand));
3659 #ifndef NDEBUG
3660     if (VerifyScheduling) {
3661       SchedCandidate TCand;
3662       TCand.reset(CandPolicy());
3663       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3664       assert(TCand.SU == BotCand.SU &&
3665              "Last pick result should correspond to re-picking right now");
3666     }
3667 #endif
3668   }
3669 
3670   // Check if the top Q has a better candidate.
3671   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3672   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3673       TopCand.Policy != TopPolicy) {
3674     TopCand.reset(CandPolicy());
3675     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3676     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3677   } else {
3678     LLVM_DEBUG(traceCandidate(TopCand));
3679 #ifndef NDEBUG
3680     if (VerifyScheduling) {
3681       SchedCandidate TCand;
3682       TCand.reset(CandPolicy());
3683       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3684       assert(TCand.SU == TopCand.SU &&
3685            "Last pick result should correspond to re-picking right now");
3686     }
3687 #endif
3688   }
3689 
3690   // Pick best from BotCand and TopCand.
3691   assert(BotCand.isValid());
3692   assert(TopCand.isValid());
3693   SchedCandidate Cand = BotCand;
3694   TopCand.Reason = NoCand;
3695   if (tryCandidate(Cand, TopCand, nullptr)) {
3696     Cand.setBest(TopCand);
3697     LLVM_DEBUG(traceCandidate(Cand));
3698   }
3699 
3700   IsTopNode = Cand.AtTop;
3701   tracePick(Cand);
3702   return Cand.SU;
3703 }
3704 
3705 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3706 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3707   if (DAG->top() == DAG->bottom()) {
3708     assert(Top.Available.empty() && Top.Pending.empty() &&
3709            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3710     return nullptr;
3711   }
3712   SUnit *SU;
3713   do {
3714     if (RegionPolicy.OnlyTopDown) {
3715       SU = Top.pickOnlyChoice();
3716       if (!SU) {
3717         CandPolicy NoPolicy;
3718         TopCand.reset(NoPolicy);
3719         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3720         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3721         tracePick(TopCand);
3722         SU = TopCand.SU;
3723       }
3724       IsTopNode = true;
3725     } else if (RegionPolicy.OnlyBottomUp) {
3726       SU = Bot.pickOnlyChoice();
3727       if (!SU) {
3728         CandPolicy NoPolicy;
3729         BotCand.reset(NoPolicy);
3730         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3731         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3732         tracePick(BotCand);
3733         SU = BotCand.SU;
3734       }
3735       IsTopNode = false;
3736     } else {
3737       SU = pickNodeBidirectional(IsTopNode);
3738     }
3739   } while (SU->isScheduled);
3740 
3741   if (SU->isTopReady())
3742     Top.removeReady(SU);
3743   if (SU->isBottomReady())
3744     Bot.removeReady(SU);
3745 
3746   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3747                     << *SU->getInstr());
3748   return SU;
3749 }
3750 
3751 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3752   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3753   if (!isTop)
3754     ++InsertPos;
3755   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3756 
3757   // Find already scheduled copies with a single physreg dependence and move
3758   // them just above the scheduled instruction.
3759   for (SDep &Dep : Deps) {
3760     if (Dep.getKind() != SDep::Data ||
3761         !Register::isPhysicalRegister(Dep.getReg()))
3762       continue;
3763     SUnit *DepSU = Dep.getSUnit();
3764     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3765       continue;
3766     MachineInstr *Copy = DepSU->getInstr();
3767     if (!Copy->isCopy() && !Copy->isMoveImmediate())
3768       continue;
3769     LLVM_DEBUG(dbgs() << "  Rescheduling physreg copy ";
3770                DAG->dumpNode(*Dep.getSUnit()));
3771     DAG->moveInstruction(Copy, InsertPos);
3772   }
3773 }
3774 
3775 /// Update the scheduler's state after scheduling a node. This is the same node
3776 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3777 /// update it's state based on the current cycle before MachineSchedStrategy
3778 /// does.
3779 ///
3780 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3781 /// them here. See comments in biasPhysReg.
3782 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3783   if (IsTopNode) {
3784     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3785     Top.bumpNode(SU);
3786     if (SU->hasPhysRegUses)
3787       reschedulePhysReg(SU, true);
3788   } else {
3789     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3790     Bot.bumpNode(SU);
3791     if (SU->hasPhysRegDefs)
3792       reschedulePhysReg(SU, false);
3793   }
3794 }
3795 
3796 /// Create the standard converging machine scheduler. This will be used as the
3797 /// default scheduler if the target does not set a default.
3798 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3799   ScheduleDAGMILive *DAG =
3800       new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C));
3801   // Register DAG post-processors.
3802   //
3803   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3804   // data and pass it to later mutations. Have a single mutation that gathers
3805   // the interesting nodes in one pass.
3806   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3807   return DAG;
3808 }
3809 
3810 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
3811   return createGenericSchedLive(C);
3812 }
3813 
3814 static MachineSchedRegistry
3815 GenericSchedRegistry("converge", "Standard converging scheduler.",
3816                      createConvergingSched);
3817 
3818 //===----------------------------------------------------------------------===//
3819 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3820 //===----------------------------------------------------------------------===//
3821 
3822 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3823   DAG = Dag;
3824   SchedModel = DAG->getSchedModel();
3825   TRI = DAG->TRI;
3826 
3827   Rem.init(DAG, SchedModel);
3828   Top.init(DAG, SchedModel, &Rem);
3829   BotRoots.clear();
3830 
3831   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3832   // or are disabled, then these HazardRecs will be disabled.
3833   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3834   if (!Top.HazardRec) {
3835     Top.HazardRec =
3836         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3837             Itin, DAG);
3838   }
3839 }
3840 
3841 void PostGenericScheduler::registerRoots() {
3842   Rem.CriticalPath = DAG->ExitSU.getDepth();
3843 
3844   // Some roots may not feed into ExitSU. Check all of them in case.
3845   for (const SUnit *SU : BotRoots) {
3846     if (SU->getDepth() > Rem.CriticalPath)
3847       Rem.CriticalPath = SU->getDepth();
3848   }
3849   LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3850   if (DumpCriticalPathLength) {
3851     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3852   }
3853 }
3854 
3855 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3856 ///
3857 /// \param Cand provides the policy and current best candidate.
3858 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3859 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
3860 bool PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3861                                         SchedCandidate &TryCand) {
3862   // Initialize the candidate if needed.
3863   if (!Cand.isValid()) {
3864     TryCand.Reason = NodeOrder;
3865     return true;
3866   }
3867 
3868   // Prioritize instructions that read unbuffered resources by stall cycles.
3869   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3870               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3871     return TryCand.Reason != NoCand;
3872 
3873   // Keep clustered nodes together.
3874   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3875                  Cand.SU == DAG->getNextClusterSucc(),
3876                  TryCand, Cand, Cluster))
3877     return TryCand.Reason != NoCand;
3878 
3879   // Avoid critical resource consumption and balance the schedule.
3880   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3881               TryCand, Cand, ResourceReduce))
3882     return TryCand.Reason != NoCand;
3883   if (tryGreater(TryCand.ResDelta.DemandedResources,
3884                  Cand.ResDelta.DemandedResources,
3885                  TryCand, Cand, ResourceDemand))
3886     return TryCand.Reason != NoCand;
3887 
3888   // Avoid serializing long latency dependence chains.
3889   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3890     return TryCand.Reason != NoCand;
3891   }
3892 
3893   // Fall through to original instruction order.
3894   if (TryCand.SU->NodeNum < Cand.SU->NodeNum) {
3895     TryCand.Reason = NodeOrder;
3896     return true;
3897   }
3898 
3899   return false;
3900 }
3901 
3902 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3903   ReadyQueue &Q = Top.Available;
3904   for (SUnit *SU : Q) {
3905     SchedCandidate TryCand(Cand.Policy);
3906     TryCand.SU = SU;
3907     TryCand.AtTop = true;
3908     TryCand.initResourceDelta(DAG, SchedModel);
3909     if (tryCandidate(Cand, TryCand)) {
3910       Cand.setBest(TryCand);
3911       LLVM_DEBUG(traceCandidate(Cand));
3912     }
3913   }
3914 }
3915 
3916 /// Pick the next node to schedule.
3917 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3918   if (DAG->top() == DAG->bottom()) {
3919     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3920     return nullptr;
3921   }
3922   SUnit *SU;
3923   do {
3924     SU = Top.pickOnlyChoice();
3925     if (SU) {
3926       tracePick(Only1, true);
3927     } else {
3928       CandPolicy NoPolicy;
3929       SchedCandidate TopCand(NoPolicy);
3930       // Set the top-down policy based on the state of the current top zone and
3931       // the instructions outside the zone, including the bottom zone.
3932       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3933       pickNodeFromQueue(TopCand);
3934       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3935       tracePick(TopCand);
3936       SU = TopCand.SU;
3937     }
3938   } while (SU->isScheduled);
3939 
3940   IsTopNode = true;
3941   Top.removeReady(SU);
3942 
3943   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3944                     << *SU->getInstr());
3945   return SU;
3946 }
3947 
3948 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3949 /// scheduled/remaining flags in the DAG nodes.
3950 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3951   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3952   Top.bumpNode(SU);
3953 }
3954 
3955 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3956   return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C),
3957                            /*RemoveKillFlags=*/true);
3958 }
3959 
3960 //===----------------------------------------------------------------------===//
3961 // ILP Scheduler. Currently for experimental analysis of heuristics.
3962 //===----------------------------------------------------------------------===//
3963 
3964 namespace {
3965 
3966 /// Order nodes by the ILP metric.
3967 struct ILPOrder {
3968   const SchedDFSResult *DFSResult = nullptr;
3969   const BitVector *ScheduledTrees = nullptr;
3970   bool MaximizeILP;
3971 
3972   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3973 
3974   /// Apply a less-than relation on node priority.
3975   ///
3976   /// (Return true if A comes after B in the Q.)
3977   bool operator()(const SUnit *A, const SUnit *B) const {
3978     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3979     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3980     if (SchedTreeA != SchedTreeB) {
3981       // Unscheduled trees have lower priority.
3982       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3983         return ScheduledTrees->test(SchedTreeB);
3984 
3985       // Trees with shallower connections have lower priority.
3986       if (DFSResult->getSubtreeLevel(SchedTreeA)
3987           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3988         return DFSResult->getSubtreeLevel(SchedTreeA)
3989           < DFSResult->getSubtreeLevel(SchedTreeB);
3990       }
3991     }
3992     if (MaximizeILP)
3993       return DFSResult->getILP(A) < DFSResult->getILP(B);
3994     else
3995       return DFSResult->getILP(A) > DFSResult->getILP(B);
3996   }
3997 };
3998 
3999 /// Schedule based on the ILP metric.
4000 class ILPScheduler : public MachineSchedStrategy {
4001   ScheduleDAGMILive *DAG = nullptr;
4002   ILPOrder Cmp;
4003 
4004   std::vector<SUnit*> ReadyQ;
4005 
4006 public:
4007   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
4008 
4009   void initialize(ScheduleDAGMI *dag) override {
4010     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
4011     DAG = static_cast<ScheduleDAGMILive*>(dag);
4012     DAG->computeDFSResult();
4013     Cmp.DFSResult = DAG->getDFSResult();
4014     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
4015     ReadyQ.clear();
4016   }
4017 
4018   void registerRoots() override {
4019     // Restore the heap in ReadyQ with the updated DFS results.
4020     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4021   }
4022 
4023   /// Implement MachineSchedStrategy interface.
4024   /// -----------------------------------------
4025 
4026   /// Callback to select the highest priority node from the ready Q.
4027   SUnit *pickNode(bool &IsTopNode) override {
4028     if (ReadyQ.empty()) return nullptr;
4029     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4030     SUnit *SU = ReadyQ.back();
4031     ReadyQ.pop_back();
4032     IsTopNode = false;
4033     LLVM_DEBUG(dbgs() << "Pick node "
4034                       << "SU(" << SU->NodeNum << ") "
4035                       << " ILP: " << DAG->getDFSResult()->getILP(SU)
4036                       << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
4037                       << " @"
4038                       << DAG->getDFSResult()->getSubtreeLevel(
4039                              DAG->getDFSResult()->getSubtreeID(SU))
4040                       << '\n'
4041                       << "Scheduling " << *SU->getInstr());
4042     return SU;
4043   }
4044 
4045   /// Scheduler callback to notify that a new subtree is scheduled.
4046   void scheduleTree(unsigned SubtreeID) override {
4047     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4048   }
4049 
4050   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
4051   /// DFSResults, and resort the priority Q.
4052   void schedNode(SUnit *SU, bool IsTopNode) override {
4053     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
4054   }
4055 
4056   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
4057 
4058   void releaseBottomNode(SUnit *SU) override {
4059     ReadyQ.push_back(SU);
4060     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4061   }
4062 };
4063 
4064 } // end anonymous namespace
4065 
4066 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
4067   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true));
4068 }
4069 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
4070   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false));
4071 }
4072 
4073 static MachineSchedRegistry ILPMaxRegistry(
4074   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
4075 static MachineSchedRegistry ILPMinRegistry(
4076   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
4077 
4078 //===----------------------------------------------------------------------===//
4079 // Machine Instruction Shuffler for Correctness Testing
4080 //===----------------------------------------------------------------------===//
4081 
4082 #ifndef NDEBUG
4083 namespace {
4084 
4085 /// Apply a less-than relation on the node order, which corresponds to the
4086 /// instruction order prior to scheduling. IsReverse implements greater-than.
4087 template<bool IsReverse>
4088 struct SUnitOrder {
4089   bool operator()(SUnit *A, SUnit *B) const {
4090     if (IsReverse)
4091       return A->NodeNum > B->NodeNum;
4092     else
4093       return A->NodeNum < B->NodeNum;
4094   }
4095 };
4096 
4097 /// Reorder instructions as much as possible.
4098 class InstructionShuffler : public MachineSchedStrategy {
4099   bool IsAlternating;
4100   bool IsTopDown;
4101 
4102   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
4103   // gives nodes with a higher number higher priority causing the latest
4104   // instructions to be scheduled first.
4105   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
4106     TopQ;
4107 
4108   // When scheduling bottom-up, use greater-than as the queue priority.
4109   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
4110     BottomQ;
4111 
4112 public:
4113   InstructionShuffler(bool alternate, bool topdown)
4114     : IsAlternating(alternate), IsTopDown(topdown) {}
4115 
4116   void initialize(ScheduleDAGMI*) override {
4117     TopQ.clear();
4118     BottomQ.clear();
4119   }
4120 
4121   /// Implement MachineSchedStrategy interface.
4122   /// -----------------------------------------
4123 
4124   SUnit *pickNode(bool &IsTopNode) override {
4125     SUnit *SU;
4126     if (IsTopDown) {
4127       do {
4128         if (TopQ.empty()) return nullptr;
4129         SU = TopQ.top();
4130         TopQ.pop();
4131       } while (SU->isScheduled);
4132       IsTopNode = true;
4133     } else {
4134       do {
4135         if (BottomQ.empty()) return nullptr;
4136         SU = BottomQ.top();
4137         BottomQ.pop();
4138       } while (SU->isScheduled);
4139       IsTopNode = false;
4140     }
4141     if (IsAlternating)
4142       IsTopDown = !IsTopDown;
4143     return SU;
4144   }
4145 
4146   void schedNode(SUnit *SU, bool IsTopNode) override {}
4147 
4148   void releaseTopNode(SUnit *SU) override {
4149     TopQ.push(SU);
4150   }
4151   void releaseBottomNode(SUnit *SU) override {
4152     BottomQ.push(SU);
4153   }
4154 };
4155 
4156 } // end anonymous namespace
4157 
4158 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
4159   bool Alternate = !ForceTopDown && !ForceBottomUp;
4160   bool TopDown = !ForceBottomUp;
4161   assert((TopDown || !ForceTopDown) &&
4162          "-misched-topdown incompatible with -misched-bottomup");
4163   return new ScheduleDAGMILive(
4164       C, std::make_unique<InstructionShuffler>(Alternate, TopDown));
4165 }
4166 
4167 static MachineSchedRegistry ShufflerRegistry(
4168   "shuffle", "Shuffle machine instructions alternating directions",
4169   createInstructionShuffler);
4170 #endif // !NDEBUG
4171 
4172 //===----------------------------------------------------------------------===//
4173 // GraphWriter support for ScheduleDAGMILive.
4174 //===----------------------------------------------------------------------===//
4175 
4176 #ifndef NDEBUG
4177 namespace llvm {
4178 
4179 template<> struct GraphTraits<
4180   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
4181 
4182 template<>
4183 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
4184   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
4185 
4186   static std::string getGraphName(const ScheduleDAG *G) {
4187     return std::string(G->MF.getName());
4188   }
4189 
4190   static bool renderGraphFromBottomUp() {
4191     return true;
4192   }
4193 
4194   static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) {
4195     if (ViewMISchedCutoff == 0)
4196       return false;
4197     return (Node->Preds.size() > ViewMISchedCutoff
4198          || Node->Succs.size() > ViewMISchedCutoff);
4199   }
4200 
4201   /// If you want to override the dot attributes printed for a particular
4202   /// edge, override this method.
4203   static std::string getEdgeAttributes(const SUnit *Node,
4204                                        SUnitIterator EI,
4205                                        const ScheduleDAG *Graph) {
4206     if (EI.isArtificialDep())
4207       return "color=cyan,style=dashed";
4208     if (EI.isCtrlDep())
4209       return "color=blue,style=dashed";
4210     return "";
4211   }
4212 
4213   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
4214     std::string Str;
4215     raw_string_ostream SS(Str);
4216     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
4217     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
4218       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
4219     SS << "SU:" << SU->NodeNum;
4220     if (DFS)
4221       SS << " I:" << DFS->getNumInstrs(SU);
4222     return SS.str();
4223   }
4224 
4225   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
4226     return G->getGraphNodeLabel(SU);
4227   }
4228 
4229   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
4230     std::string Str("shape=Mrecord");
4231     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
4232     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
4233       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
4234     if (DFS) {
4235       Str += ",style=filled,fillcolor=\"#";
4236       Str += DOT::getColorString(DFS->getSubtreeID(N));
4237       Str += '"';
4238     }
4239     return Str;
4240   }
4241 };
4242 
4243 } // end namespace llvm
4244 #endif // NDEBUG
4245 
4246 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
4247 /// rendered using 'dot'.
4248 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
4249 #ifndef NDEBUG
4250   ViewGraph(this, Name, false, Title);
4251 #else
4252   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
4253          << "systems with Graphviz or gv!\n";
4254 #endif  // NDEBUG
4255 }
4256 
4257 /// Out-of-line implementation with no arguments is handy for gdb.
4258 void ScheduleDAGMI::viewGraph() {
4259   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
4260 }
4261 
4262 /// Sort predicate for the intervals stored in an instance of
4263 /// ResourceSegments. Intervals are always disjoint (no intersection
4264 /// for any pairs of intervals), therefore we can sort the totality of
4265 /// the intervals by looking only at the left boundary.
4266 static bool sortIntervals(const ResourceSegments::IntervalTy &A,
4267                           const ResourceSegments::IntervalTy &B) {
4268   return A.first < B.first;
4269 }
4270 
4271 unsigned ResourceSegments::getFirstAvailableAt(
4272     unsigned CurrCycle, unsigned AcquireAtCycle, unsigned ReleaseAtCycle,
4273     std::function<ResourceSegments::IntervalTy(unsigned, unsigned, unsigned)>
4274         IntervalBuilder) const {
4275   assert(std::is_sorted(std::begin(_Intervals), std::end(_Intervals),
4276                         sortIntervals) &&
4277          "Cannot execute on an un-sorted set of intervals.");
4278   unsigned RetCycle = CurrCycle;
4279   ResourceSegments::IntervalTy NewInterval =
4280       IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle);
4281   for (auto &Interval : _Intervals) {
4282     if (!intersects(NewInterval, Interval))
4283       continue;
4284 
4285     // Move the interval right next to the top of the one it
4286     // intersects.
4287     assert(Interval.second > NewInterval.first &&
4288            "Invalid intervals configuration.");
4289     RetCycle += (unsigned)Interval.second - (unsigned)NewInterval.first;
4290     NewInterval = IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle);
4291   }
4292   return RetCycle;
4293 }
4294 
4295 void ResourceSegments::add(ResourceSegments::IntervalTy A,
4296                            const unsigned CutOff) {
4297   assert(A.first < A.second && "Cannot add empty resource usage");
4298   assert(CutOff > 0 && "0-size interval history has no use.");
4299   assert(all_of(_Intervals,
4300                 [&A](const ResourceSegments::IntervalTy &Interval) -> bool {
4301                   return !intersects(A, Interval);
4302                 }) &&
4303          "A resource is being overwritten");
4304   _Intervals.push_back(A);
4305 
4306   sortAndMerge();
4307 
4308   // Do not keep the full history of the intervals, just the
4309   // latest #CutOff.
4310   while (_Intervals.size() > CutOff)
4311     _Intervals.pop_front();
4312 }
4313 
4314 bool ResourceSegments::intersects(ResourceSegments::IntervalTy A,
4315                                   ResourceSegments::IntervalTy B) {
4316   assert(A.first <= A.second && "Invalid interval");
4317   assert(B.first <= B.second && "Invalid interval");
4318 
4319   // Share one boundary.
4320   if ((A.first == B.first) || (A.second == B.second))
4321     return true;
4322 
4323   // full intersersect: [    ***     )  B
4324   //                        [***)       A
4325   if ((A.first > B.first) && (A.second < B.second))
4326     return true;
4327 
4328   // right intersect: [     ***)        B
4329   //                       [***      )  A
4330   if ((A.first > B.first) && (A.first < B.second) && (A.second > B.second))
4331     return true;
4332 
4333   // left intersect:      [***      )  B
4334   //                 [     ***)        A
4335   if ((A.first < B.first) && (B.first < A.second) && (B.second > B.first))
4336     return true;
4337 
4338   return false;
4339 }
4340 
4341 void ResourceSegments::sortAndMerge() {
4342   if (_Intervals.size() <= 1)
4343     return;
4344 
4345   // First sort the collection.
4346   _Intervals.sort(sortIntervals);
4347 
4348   // can use next because I have at least 2 elements in the list
4349   auto next = std::next(std::begin(_Intervals));
4350   auto E = std::end(_Intervals);
4351   for (; next != E; ++next) {
4352     if (std::prev(next)->second >= next->first) {
4353       next->first = std::prev(next)->first;
4354       _Intervals.erase(std::prev(next));
4355       continue;
4356     }
4357   }
4358 }
4359