1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // MachineScheduler schedules machine instructions after phi elimination. It 10 // preserves LiveIntervals so it can be invoked before register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineScheduler.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveInterval.h" 24 #include "llvm/CodeGen/LiveIntervals.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineDominators.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachinePassRegistry.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/Passes.h" 35 #include "llvm/CodeGen/RegisterClassInfo.h" 36 #include "llvm/CodeGen/RegisterPressure.h" 37 #include "llvm/CodeGen/ScheduleDAG.h" 38 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 39 #include "llvm/CodeGen/ScheduleDAGMutation.h" 40 #include "llvm/CodeGen/ScheduleDFS.h" 41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 42 #include "llvm/CodeGen/SlotIndexes.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSchedule.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/Config/llvm-config.h" 51 #include "llvm/MC/LaneBitmask.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/GraphWriter.h" 58 #include "llvm/Support/MachineValueType.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <iterator> 64 #include <limits> 65 #include <memory> 66 #include <string> 67 #include <tuple> 68 #include <utility> 69 #include <vector> 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "machine-scheduler" 74 75 namespace llvm { 76 77 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 78 cl::desc("Force top-down list scheduling")); 79 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 80 cl::desc("Force bottom-up list scheduling")); 81 cl::opt<bool> 82 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 83 cl::desc("Print critical path length to stdout")); 84 85 cl::opt<bool> VerifyScheduling( 86 "verify-misched", cl::Hidden, 87 cl::desc("Verify machine instrs before and after machine scheduling")); 88 89 } // end namespace llvm 90 91 #ifndef NDEBUG 92 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 93 cl::desc("Pop up a window to show MISched dags after they are processed")); 94 95 /// In some situations a few uninteresting nodes depend on nearly all other 96 /// nodes in the graph, provide a cutoff to hide them. 97 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 98 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 99 100 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 101 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 102 103 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 104 cl::desc("Only schedule this function")); 105 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 106 cl::desc("Only schedule this MBB#")); 107 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden, 108 cl::desc("Print schedule DAGs")); 109 #else 110 static const bool ViewMISchedDAGs = false; 111 static const bool PrintDAGs = false; 112 #endif // NDEBUG 113 114 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 115 /// size of the ready lists. 116 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 117 cl::desc("Limit ready list to N instructions"), cl::init(256)); 118 119 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 120 cl::desc("Enable register pressure scheduling."), cl::init(true)); 121 122 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 123 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 124 125 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 126 cl::desc("Enable memop clustering."), 127 cl::init(true)); 128 129 // DAG subtrees must have at least this many nodes. 130 static const unsigned MinSubtreeSize = 8; 131 132 // Pin the vtables to this file. 133 void MachineSchedStrategy::anchor() {} 134 135 void ScheduleDAGMutation::anchor() {} 136 137 //===----------------------------------------------------------------------===// 138 // Machine Instruction Scheduling Pass and Registry 139 //===----------------------------------------------------------------------===// 140 141 MachineSchedContext::MachineSchedContext() { 142 RegClassInfo = new RegisterClassInfo(); 143 } 144 145 MachineSchedContext::~MachineSchedContext() { 146 delete RegClassInfo; 147 } 148 149 namespace { 150 151 /// Base class for a machine scheduler class that can run at any point. 152 class MachineSchedulerBase : public MachineSchedContext, 153 public MachineFunctionPass { 154 public: 155 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 156 157 void print(raw_ostream &O, const Module* = nullptr) const override; 158 159 protected: 160 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 161 }; 162 163 /// MachineScheduler runs after coalescing and before register allocation. 164 class MachineScheduler : public MachineSchedulerBase { 165 public: 166 MachineScheduler(); 167 168 void getAnalysisUsage(AnalysisUsage &AU) const override; 169 170 bool runOnMachineFunction(MachineFunction&) override; 171 172 static char ID; // Class identification, replacement for typeinfo 173 174 protected: 175 ScheduleDAGInstrs *createMachineScheduler(); 176 }; 177 178 /// PostMachineScheduler runs after shortly before code emission. 179 class PostMachineScheduler : public MachineSchedulerBase { 180 public: 181 PostMachineScheduler(); 182 183 void getAnalysisUsage(AnalysisUsage &AU) const override; 184 185 bool runOnMachineFunction(MachineFunction&) override; 186 187 static char ID; // Class identification, replacement for typeinfo 188 189 protected: 190 ScheduleDAGInstrs *createPostMachineScheduler(); 191 }; 192 193 } // end anonymous namespace 194 195 char MachineScheduler::ID = 0; 196 197 char &llvm::MachineSchedulerID = MachineScheduler::ID; 198 199 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 200 "Machine Instruction Scheduler", false, false) 201 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 202 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 203 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 204 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 205 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 206 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 207 "Machine Instruction Scheduler", false, false) 208 209 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 210 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 211 } 212 213 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 214 AU.setPreservesCFG(); 215 AU.addRequired<MachineDominatorTree>(); 216 AU.addRequired<MachineLoopInfo>(); 217 AU.addRequired<AAResultsWrapperPass>(); 218 AU.addRequired<TargetPassConfig>(); 219 AU.addRequired<SlotIndexes>(); 220 AU.addPreserved<SlotIndexes>(); 221 AU.addRequired<LiveIntervals>(); 222 AU.addPreserved<LiveIntervals>(); 223 MachineFunctionPass::getAnalysisUsage(AU); 224 } 225 226 char PostMachineScheduler::ID = 0; 227 228 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 229 230 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 231 "PostRA Machine Instruction Scheduler", false, false) 232 233 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 234 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 235 } 236 237 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 238 AU.setPreservesCFG(); 239 AU.addRequired<MachineDominatorTree>(); 240 AU.addRequired<MachineLoopInfo>(); 241 AU.addRequired<TargetPassConfig>(); 242 MachineFunctionPass::getAnalysisUsage(AU); 243 } 244 245 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor> 246 MachineSchedRegistry::Registry; 247 248 /// A dummy default scheduler factory indicates whether the scheduler 249 /// is overridden on the command line. 250 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 251 return nullptr; 252 } 253 254 /// MachineSchedOpt allows command line selection of the scheduler. 255 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 256 RegisterPassParser<MachineSchedRegistry>> 257 MachineSchedOpt("misched", 258 cl::init(&useDefaultMachineSched), cl::Hidden, 259 cl::desc("Machine instruction scheduler to use")); 260 261 static MachineSchedRegistry 262 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 263 useDefaultMachineSched); 264 265 static cl::opt<bool> EnableMachineSched( 266 "enable-misched", 267 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 268 cl::Hidden); 269 270 static cl::opt<bool> EnablePostRAMachineSched( 271 "enable-post-misched", 272 cl::desc("Enable the post-ra machine instruction scheduling pass."), 273 cl::init(true), cl::Hidden); 274 275 /// Decrement this iterator until reaching the top or a non-debug instr. 276 static MachineBasicBlock::const_iterator 277 priorNonDebug(MachineBasicBlock::const_iterator I, 278 MachineBasicBlock::const_iterator Beg) { 279 assert(I != Beg && "reached the top of the region, cannot decrement"); 280 while (--I != Beg) { 281 if (!I->isDebugInstr()) 282 break; 283 } 284 return I; 285 } 286 287 /// Non-const version. 288 static MachineBasicBlock::iterator 289 priorNonDebug(MachineBasicBlock::iterator I, 290 MachineBasicBlock::const_iterator Beg) { 291 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 292 .getNonConstIterator(); 293 } 294 295 /// If this iterator is a debug value, increment until reaching the End or a 296 /// non-debug instruction. 297 static MachineBasicBlock::const_iterator 298 nextIfDebug(MachineBasicBlock::const_iterator I, 299 MachineBasicBlock::const_iterator End) { 300 for(; I != End; ++I) { 301 if (!I->isDebugInstr()) 302 break; 303 } 304 return I; 305 } 306 307 /// Non-const version. 308 static MachineBasicBlock::iterator 309 nextIfDebug(MachineBasicBlock::iterator I, 310 MachineBasicBlock::const_iterator End) { 311 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 312 .getNonConstIterator(); 313 } 314 315 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 316 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 317 // Select the scheduler, or set the default. 318 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 319 if (Ctor != useDefaultMachineSched) 320 return Ctor(this); 321 322 // Get the default scheduler set by the target for this function. 323 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 324 if (Scheduler) 325 return Scheduler; 326 327 // Default to GenericScheduler. 328 return createGenericSchedLive(this); 329 } 330 331 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 332 /// the caller. We don't have a command line option to override the postRA 333 /// scheduler. The Target must configure it. 334 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 335 // Get the postRA scheduler set by the target for this function. 336 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 337 if (Scheduler) 338 return Scheduler; 339 340 // Default to GenericScheduler. 341 return createGenericSchedPostRA(this); 342 } 343 344 /// Top-level MachineScheduler pass driver. 345 /// 346 /// Visit blocks in function order. Divide each block into scheduling regions 347 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 348 /// consistent with the DAG builder, which traverses the interior of the 349 /// scheduling regions bottom-up. 350 /// 351 /// This design avoids exposing scheduling boundaries to the DAG builder, 352 /// simplifying the DAG builder's support for "special" target instructions. 353 /// At the same time the design allows target schedulers to operate across 354 /// scheduling boundaries, for example to bundle the boundary instructions 355 /// without reordering them. This creates complexity, because the target 356 /// scheduler must update the RegionBegin and RegionEnd positions cached by 357 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 358 /// design would be to split blocks at scheduling boundaries, but LLVM has a 359 /// general bias against block splitting purely for implementation simplicity. 360 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 361 if (skipFunction(mf.getFunction())) 362 return false; 363 364 if (EnableMachineSched.getNumOccurrences()) { 365 if (!EnableMachineSched) 366 return false; 367 } else if (!mf.getSubtarget().enableMachineScheduler()) 368 return false; 369 370 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 371 372 // Initialize the context of the pass. 373 MF = &mf; 374 MLI = &getAnalysis<MachineLoopInfo>(); 375 MDT = &getAnalysis<MachineDominatorTree>(); 376 PassConfig = &getAnalysis<TargetPassConfig>(); 377 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 378 379 LIS = &getAnalysis<LiveIntervals>(); 380 381 if (VerifyScheduling) { 382 LLVM_DEBUG(LIS->dump()); 383 MF->verify(this, "Before machine scheduling."); 384 } 385 RegClassInfo->runOnMachineFunction(*MF); 386 387 // Instantiate the selected scheduler for this target, function, and 388 // optimization level. 389 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 390 scheduleRegions(*Scheduler, false); 391 392 LLVM_DEBUG(LIS->dump()); 393 if (VerifyScheduling) 394 MF->verify(this, "After machine scheduling."); 395 return true; 396 } 397 398 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 399 if (skipFunction(mf.getFunction())) 400 return false; 401 402 if (EnablePostRAMachineSched.getNumOccurrences()) { 403 if (!EnablePostRAMachineSched) 404 return false; 405 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 406 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 407 return false; 408 } 409 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 410 411 // Initialize the context of the pass. 412 MF = &mf; 413 MLI = &getAnalysis<MachineLoopInfo>(); 414 PassConfig = &getAnalysis<TargetPassConfig>(); 415 416 if (VerifyScheduling) 417 MF->verify(this, "Before post machine scheduling."); 418 419 // Instantiate the selected scheduler for this target, function, and 420 // optimization level. 421 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 422 scheduleRegions(*Scheduler, true); 423 424 if (VerifyScheduling) 425 MF->verify(this, "After post machine scheduling."); 426 return true; 427 } 428 429 /// Return true of the given instruction should not be included in a scheduling 430 /// region. 431 /// 432 /// MachineScheduler does not currently support scheduling across calls. To 433 /// handle calls, the DAG builder needs to be modified to create register 434 /// anti/output dependencies on the registers clobbered by the call's regmask 435 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 436 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 437 /// the boundary, but there would be no benefit to postRA scheduling across 438 /// calls this late anyway. 439 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 440 MachineBasicBlock *MBB, 441 MachineFunction *MF, 442 const TargetInstrInfo *TII) { 443 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 444 } 445 446 /// A region of an MBB for scheduling. 447 namespace { 448 struct SchedRegion { 449 /// RegionBegin is the first instruction in the scheduling region, and 450 /// RegionEnd is either MBB->end() or the scheduling boundary after the 451 /// last instruction in the scheduling region. These iterators cannot refer 452 /// to instructions outside of the identified scheduling region because 453 /// those may be reordered before scheduling this region. 454 MachineBasicBlock::iterator RegionBegin; 455 MachineBasicBlock::iterator RegionEnd; 456 unsigned NumRegionInstrs; 457 458 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 459 unsigned N) : 460 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 461 }; 462 } // end anonymous namespace 463 464 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 465 466 static void 467 getSchedRegions(MachineBasicBlock *MBB, 468 MBBRegionsVector &Regions, 469 bool RegionsTopDown) { 470 MachineFunction *MF = MBB->getParent(); 471 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 472 473 MachineBasicBlock::iterator I = nullptr; 474 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 475 RegionEnd != MBB->begin(); RegionEnd = I) { 476 477 // Avoid decrementing RegionEnd for blocks with no terminator. 478 if (RegionEnd != MBB->end() || 479 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 480 --RegionEnd; 481 } 482 483 // The next region starts above the previous region. Look backward in the 484 // instruction stream until we find the nearest boundary. 485 unsigned NumRegionInstrs = 0; 486 I = RegionEnd; 487 for (;I != MBB->begin(); --I) { 488 MachineInstr &MI = *std::prev(I); 489 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 490 break; 491 if (!MI.isDebugInstr()) { 492 // MBB::size() uses instr_iterator to count. Here we need a bundle to 493 // count as a single instruction. 494 ++NumRegionInstrs; 495 } 496 } 497 498 // It's possible we found a scheduling region that only has debug 499 // instructions. Don't bother scheduling these. 500 if (NumRegionInstrs != 0) 501 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 502 } 503 504 if (RegionsTopDown) 505 std::reverse(Regions.begin(), Regions.end()); 506 } 507 508 /// Main driver for both MachineScheduler and PostMachineScheduler. 509 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 510 bool FixKillFlags) { 511 // Visit all machine basic blocks. 512 // 513 // TODO: Visit blocks in global postorder or postorder within the bottom-up 514 // loop tree. Then we can optionally compute global RegPressure. 515 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 516 MBB != MBBEnd; ++MBB) { 517 518 Scheduler.startBlock(&*MBB); 519 520 #ifndef NDEBUG 521 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 522 continue; 523 if (SchedOnlyBlock.getNumOccurrences() 524 && (int)SchedOnlyBlock != MBB->getNumber()) 525 continue; 526 #endif 527 528 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 529 // points to the scheduling boundary at the bottom of the region. The DAG 530 // does not include RegionEnd, but the region does (i.e. the next 531 // RegionEnd is above the previous RegionBegin). If the current block has 532 // no terminator then RegionEnd == MBB->end() for the bottom region. 533 // 534 // All the regions of MBB are first found and stored in MBBRegions, which 535 // will be processed (MBB) top-down if initialized with true. 536 // 537 // The Scheduler may insert instructions during either schedule() or 538 // exitRegion(), even for empty regions. So the local iterators 'I' and 539 // 'RegionEnd' are invalid across these calls. Instructions must not be 540 // added to other regions than the current one without updating MBBRegions. 541 542 MBBRegionsVector MBBRegions; 543 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 544 for (MBBRegionsVector::iterator R = MBBRegions.begin(); 545 R != MBBRegions.end(); ++R) { 546 MachineBasicBlock::iterator I = R->RegionBegin; 547 MachineBasicBlock::iterator RegionEnd = R->RegionEnd; 548 unsigned NumRegionInstrs = R->NumRegionInstrs; 549 550 // Notify the scheduler of the region, even if we may skip scheduling 551 // it. Perhaps it still needs to be bundled. 552 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 553 554 // Skip empty scheduling regions (0 or 1 schedulable instructions). 555 if (I == RegionEnd || I == std::prev(RegionEnd)) { 556 // Close the current region. Bundle the terminator if needed. 557 // This invalidates 'RegionEnd' and 'I'. 558 Scheduler.exitRegion(); 559 continue; 560 } 561 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 562 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) 563 << " " << MBB->getName() << "\n From: " << *I 564 << " To: "; 565 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 566 else dbgs() << "End"; 567 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 568 if (DumpCriticalPathLength) { 569 errs() << MF->getName(); 570 errs() << ":%bb. " << MBB->getNumber(); 571 errs() << " " << MBB->getName() << " \n"; 572 } 573 574 // Schedule a region: possibly reorder instructions. 575 // This invalidates the original region iterators. 576 Scheduler.schedule(); 577 578 // Close the current region. 579 Scheduler.exitRegion(); 580 } 581 Scheduler.finishBlock(); 582 // FIXME: Ideally, no further passes should rely on kill flags. However, 583 // thumb2 size reduction is currently an exception, so the PostMIScheduler 584 // needs to do this. 585 if (FixKillFlags) 586 Scheduler.fixupKills(*MBB); 587 } 588 Scheduler.finalizeSchedule(); 589 } 590 591 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 592 // unimplemented 593 } 594 595 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 596 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 597 dbgs() << "Queue " << Name << ": "; 598 for (const SUnit *SU : Queue) 599 dbgs() << SU->NodeNum << " "; 600 dbgs() << "\n"; 601 } 602 #endif 603 604 //===----------------------------------------------------------------------===// 605 // ScheduleDAGMI - Basic machine instruction scheduling. This is 606 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 607 // virtual registers. 608 // ===----------------------------------------------------------------------===/ 609 610 // Provide a vtable anchor. 611 ScheduleDAGMI::~ScheduleDAGMI() = default; 612 613 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 614 /// NumPredsLeft reaches zero, release the successor node. 615 /// 616 /// FIXME: Adjust SuccSU height based on MinLatency. 617 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 618 SUnit *SuccSU = SuccEdge->getSUnit(); 619 620 if (SuccEdge->isWeak()) { 621 --SuccSU->WeakPredsLeft; 622 if (SuccEdge->isCluster()) 623 NextClusterSucc = SuccSU; 624 return; 625 } 626 #ifndef NDEBUG 627 if (SuccSU->NumPredsLeft == 0) { 628 dbgs() << "*** Scheduling failed! ***\n"; 629 dumpNode(*SuccSU); 630 dbgs() << " has been released too many times!\n"; 631 llvm_unreachable(nullptr); 632 } 633 #endif 634 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 635 // CurrCycle may have advanced since then. 636 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 637 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 638 639 --SuccSU->NumPredsLeft; 640 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 641 SchedImpl->releaseTopNode(SuccSU); 642 } 643 644 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 645 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 646 for (SDep &Succ : SU->Succs) 647 releaseSucc(SU, &Succ); 648 } 649 650 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 651 /// NumSuccsLeft reaches zero, release the predecessor node. 652 /// 653 /// FIXME: Adjust PredSU height based on MinLatency. 654 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 655 SUnit *PredSU = PredEdge->getSUnit(); 656 657 if (PredEdge->isWeak()) { 658 --PredSU->WeakSuccsLeft; 659 if (PredEdge->isCluster()) 660 NextClusterPred = PredSU; 661 return; 662 } 663 #ifndef NDEBUG 664 if (PredSU->NumSuccsLeft == 0) { 665 dbgs() << "*** Scheduling failed! ***\n"; 666 dumpNode(*PredSU); 667 dbgs() << " has been released too many times!\n"; 668 llvm_unreachable(nullptr); 669 } 670 #endif 671 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 672 // CurrCycle may have advanced since then. 673 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 674 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 675 676 --PredSU->NumSuccsLeft; 677 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 678 SchedImpl->releaseBottomNode(PredSU); 679 } 680 681 /// releasePredecessors - Call releasePred on each of SU's predecessors. 682 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 683 for (SDep &Pred : SU->Preds) 684 releasePred(SU, &Pred); 685 } 686 687 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 688 ScheduleDAGInstrs::startBlock(bb); 689 SchedImpl->enterMBB(bb); 690 } 691 692 void ScheduleDAGMI::finishBlock() { 693 SchedImpl->leaveMBB(); 694 ScheduleDAGInstrs::finishBlock(); 695 } 696 697 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 698 /// crossing a scheduling boundary. [begin, end) includes all instructions in 699 /// the region, including the boundary itself and single-instruction regions 700 /// that don't get scheduled. 701 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 702 MachineBasicBlock::iterator begin, 703 MachineBasicBlock::iterator end, 704 unsigned regioninstrs) 705 { 706 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 707 708 SchedImpl->initPolicy(begin, end, regioninstrs); 709 } 710 711 /// This is normally called from the main scheduler loop but may also be invoked 712 /// by the scheduling strategy to perform additional code motion. 713 void ScheduleDAGMI::moveInstruction( 714 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 715 // Advance RegionBegin if the first instruction moves down. 716 if (&*RegionBegin == MI) 717 ++RegionBegin; 718 719 // Update the instruction stream. 720 BB->splice(InsertPos, BB, MI); 721 722 // Update LiveIntervals 723 if (LIS) 724 LIS->handleMove(*MI, /*UpdateFlags=*/true); 725 726 // Recede RegionBegin if an instruction moves above the first. 727 if (RegionBegin == InsertPos) 728 RegionBegin = MI; 729 } 730 731 bool ScheduleDAGMI::checkSchedLimit() { 732 #ifndef NDEBUG 733 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 734 CurrentTop = CurrentBottom; 735 return false; 736 } 737 ++NumInstrsScheduled; 738 #endif 739 return true; 740 } 741 742 /// Per-region scheduling driver, called back from 743 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 744 /// does not consider liveness or register pressure. It is useful for PostRA 745 /// scheduling and potentially other custom schedulers. 746 void ScheduleDAGMI::schedule() { 747 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 748 LLVM_DEBUG(SchedImpl->dumpPolicy()); 749 750 // Build the DAG. 751 buildSchedGraph(AA); 752 753 postprocessDAG(); 754 755 SmallVector<SUnit*, 8> TopRoots, BotRoots; 756 findRootsAndBiasEdges(TopRoots, BotRoots); 757 758 LLVM_DEBUG(dump()); 759 if (PrintDAGs) dump(); 760 if (ViewMISchedDAGs) viewGraph(); 761 762 // Initialize the strategy before modifying the DAG. 763 // This may initialize a DFSResult to be used for queue priority. 764 SchedImpl->initialize(this); 765 766 // Initialize ready queues now that the DAG and priority data are finalized. 767 initQueues(TopRoots, BotRoots); 768 769 bool IsTopNode = false; 770 while (true) { 771 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 772 SUnit *SU = SchedImpl->pickNode(IsTopNode); 773 if (!SU) break; 774 775 assert(!SU->isScheduled && "Node already scheduled"); 776 if (!checkSchedLimit()) 777 break; 778 779 MachineInstr *MI = SU->getInstr(); 780 if (IsTopNode) { 781 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 782 if (&*CurrentTop == MI) 783 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 784 else 785 moveInstruction(MI, CurrentTop); 786 } else { 787 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 788 MachineBasicBlock::iterator priorII = 789 priorNonDebug(CurrentBottom, CurrentTop); 790 if (&*priorII == MI) 791 CurrentBottom = priorII; 792 else { 793 if (&*CurrentTop == MI) 794 CurrentTop = nextIfDebug(++CurrentTop, priorII); 795 moveInstruction(MI, CurrentBottom); 796 CurrentBottom = MI; 797 } 798 } 799 // Notify the scheduling strategy before updating the DAG. 800 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 801 // runs, it can then use the accurate ReadyCycle time to determine whether 802 // newly released nodes can move to the readyQ. 803 SchedImpl->schedNode(SU, IsTopNode); 804 805 updateQueues(SU, IsTopNode); 806 } 807 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 808 809 placeDebugValues(); 810 811 LLVM_DEBUG({ 812 dbgs() << "*** Final schedule for " 813 << printMBBReference(*begin()->getParent()) << " ***\n"; 814 dumpSchedule(); 815 dbgs() << '\n'; 816 }); 817 } 818 819 /// Apply each ScheduleDAGMutation step in order. 820 void ScheduleDAGMI::postprocessDAG() { 821 for (auto &m : Mutations) 822 m->apply(this); 823 } 824 825 void ScheduleDAGMI:: 826 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 827 SmallVectorImpl<SUnit*> &BotRoots) { 828 for (SUnit &SU : SUnits) { 829 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 830 831 // Order predecessors so DFSResult follows the critical path. 832 SU.biasCriticalPath(); 833 834 // A SUnit is ready to top schedule if it has no predecessors. 835 if (!SU.NumPredsLeft) 836 TopRoots.push_back(&SU); 837 // A SUnit is ready to bottom schedule if it has no successors. 838 if (!SU.NumSuccsLeft) 839 BotRoots.push_back(&SU); 840 } 841 ExitSU.biasCriticalPath(); 842 } 843 844 /// Identify DAG roots and setup scheduler queues. 845 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 846 ArrayRef<SUnit*> BotRoots) { 847 NextClusterSucc = nullptr; 848 NextClusterPred = nullptr; 849 850 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 851 // 852 // Nodes with unreleased weak edges can still be roots. 853 // Release top roots in forward order. 854 for (SUnit *SU : TopRoots) 855 SchedImpl->releaseTopNode(SU); 856 857 // Release bottom roots in reverse order so the higher priority nodes appear 858 // first. This is more natural and slightly more efficient. 859 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 860 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 861 SchedImpl->releaseBottomNode(*I); 862 } 863 864 releaseSuccessors(&EntrySU); 865 releasePredecessors(&ExitSU); 866 867 SchedImpl->registerRoots(); 868 869 // Advance past initial DebugValues. 870 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 871 CurrentBottom = RegionEnd; 872 } 873 874 /// Update scheduler queues after scheduling an instruction. 875 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 876 // Release dependent instructions for scheduling. 877 if (IsTopNode) 878 releaseSuccessors(SU); 879 else 880 releasePredecessors(SU); 881 882 SU->isScheduled = true; 883 } 884 885 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 886 void ScheduleDAGMI::placeDebugValues() { 887 // If first instruction was a DBG_VALUE then put it back. 888 if (FirstDbgValue) { 889 BB->splice(RegionBegin, BB, FirstDbgValue); 890 RegionBegin = FirstDbgValue; 891 } 892 893 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 894 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 895 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 896 MachineInstr *DbgValue = P.first; 897 MachineBasicBlock::iterator OrigPrevMI = P.second; 898 if (&*RegionBegin == DbgValue) 899 ++RegionBegin; 900 BB->splice(++OrigPrevMI, BB, DbgValue); 901 if (OrigPrevMI == std::prev(RegionEnd)) 902 RegionEnd = DbgValue; 903 } 904 DbgValues.clear(); 905 FirstDbgValue = nullptr; 906 } 907 908 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 909 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 910 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 911 if (SUnit *SU = getSUnit(&(*MI))) 912 dumpNode(*SU); 913 else 914 dbgs() << "Missing SUnit\n"; 915 } 916 } 917 #endif 918 919 //===----------------------------------------------------------------------===// 920 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 921 // preservation. 922 //===----------------------------------------------------------------------===// 923 924 ScheduleDAGMILive::~ScheduleDAGMILive() { 925 delete DFSResult; 926 } 927 928 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 929 const MachineInstr &MI = *SU.getInstr(); 930 for (const MachineOperand &MO : MI.operands()) { 931 if (!MO.isReg()) 932 continue; 933 if (!MO.readsReg()) 934 continue; 935 if (TrackLaneMasks && !MO.isUse()) 936 continue; 937 938 Register Reg = MO.getReg(); 939 if (!Register::isVirtualRegister(Reg)) 940 continue; 941 942 // Ignore re-defs. 943 if (TrackLaneMasks) { 944 bool FoundDef = false; 945 for (const MachineOperand &MO2 : MI.operands()) { 946 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 947 FoundDef = true; 948 break; 949 } 950 } 951 if (FoundDef) 952 continue; 953 } 954 955 // Record this local VReg use. 956 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 957 for (; UI != VRegUses.end(); ++UI) { 958 if (UI->SU == &SU) 959 break; 960 } 961 if (UI == VRegUses.end()) 962 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 963 } 964 } 965 966 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 967 /// crossing a scheduling boundary. [begin, end) includes all instructions in 968 /// the region, including the boundary itself and single-instruction regions 969 /// that don't get scheduled. 970 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 971 MachineBasicBlock::iterator begin, 972 MachineBasicBlock::iterator end, 973 unsigned regioninstrs) 974 { 975 // ScheduleDAGMI initializes SchedImpl's per-region policy. 976 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 977 978 // For convenience remember the end of the liveness region. 979 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 980 981 SUPressureDiffs.clear(); 982 983 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 984 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 985 986 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 987 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 988 } 989 990 // Setup the register pressure trackers for the top scheduled and bottom 991 // scheduled regions. 992 void ScheduleDAGMILive::initRegPressure() { 993 VRegUses.clear(); 994 VRegUses.setUniverse(MRI.getNumVirtRegs()); 995 for (SUnit &SU : SUnits) 996 collectVRegUses(SU); 997 998 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 999 ShouldTrackLaneMasks, false); 1000 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1001 ShouldTrackLaneMasks, false); 1002 1003 // Close the RPTracker to finalize live ins. 1004 RPTracker.closeRegion(); 1005 1006 LLVM_DEBUG(RPTracker.dump()); 1007 1008 // Initialize the live ins and live outs. 1009 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1010 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1011 1012 // Close one end of the tracker so we can call 1013 // getMaxUpward/DownwardPressureDelta before advancing across any 1014 // instructions. This converts currently live regs into live ins/outs. 1015 TopRPTracker.closeTop(); 1016 BotRPTracker.closeBottom(); 1017 1018 BotRPTracker.initLiveThru(RPTracker); 1019 if (!BotRPTracker.getLiveThru().empty()) { 1020 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1021 LLVM_DEBUG(dbgs() << "Live Thru: "; 1022 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1023 }; 1024 1025 // For each live out vreg reduce the pressure change associated with other 1026 // uses of the same vreg below the live-out reaching def. 1027 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1028 1029 // Account for liveness generated by the region boundary. 1030 if (LiveRegionEnd != RegionEnd) { 1031 SmallVector<RegisterMaskPair, 8> LiveUses; 1032 BotRPTracker.recede(&LiveUses); 1033 updatePressureDiffs(LiveUses); 1034 } 1035 1036 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; 1037 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1038 dbgs() << "Bottom Pressure:\n"; 1039 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);); 1040 1041 assert((BotRPTracker.getPos() == RegionEnd || 1042 (RegionEnd->isDebugInstr() && 1043 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && 1044 "Can't find the region bottom"); 1045 1046 // Cache the list of excess pressure sets in this region. This will also track 1047 // the max pressure in the scheduled code for these sets. 1048 RegionCriticalPSets.clear(); 1049 const std::vector<unsigned> &RegionPressure = 1050 RPTracker.getPressure().MaxSetPressure; 1051 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1052 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1053 if (RegionPressure[i] > Limit) { 1054 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit 1055 << " Actual " << RegionPressure[i] << "\n"); 1056 RegionCriticalPSets.push_back(PressureChange(i)); 1057 } 1058 } 1059 LLVM_DEBUG(dbgs() << "Excess PSets: "; 1060 for (const PressureChange &RCPS 1061 : RegionCriticalPSets) dbgs() 1062 << TRI->getRegPressureSetName(RCPS.getPSet()) << " "; 1063 dbgs() << "\n"); 1064 } 1065 1066 void ScheduleDAGMILive:: 1067 updateScheduledPressure(const SUnit *SU, 1068 const std::vector<unsigned> &NewMaxPressure) { 1069 const PressureDiff &PDiff = getPressureDiff(SU); 1070 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1071 for (const PressureChange &PC : PDiff) { 1072 if (!PC.isValid()) 1073 break; 1074 unsigned ID = PC.getPSet(); 1075 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1076 ++CritIdx; 1077 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1078 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1079 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1080 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1081 } 1082 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1083 if (NewMaxPressure[ID] >= Limit - 2) { 1084 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1085 << NewMaxPressure[ID] 1086 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") 1087 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID] 1088 << " livethru)\n"); 1089 } 1090 } 1091 } 1092 1093 /// Update the PressureDiff array for liveness after scheduling this 1094 /// instruction. 1095 void ScheduleDAGMILive::updatePressureDiffs( 1096 ArrayRef<RegisterMaskPair> LiveUses) { 1097 for (const RegisterMaskPair &P : LiveUses) { 1098 unsigned Reg = P.RegUnit; 1099 /// FIXME: Currently assuming single-use physregs. 1100 if (!Register::isVirtualRegister(Reg)) 1101 continue; 1102 1103 if (ShouldTrackLaneMasks) { 1104 // If the register has just become live then other uses won't change 1105 // this fact anymore => decrement pressure. 1106 // If the register has just become dead then other uses make it come 1107 // back to life => increment pressure. 1108 bool Decrement = P.LaneMask.any(); 1109 1110 for (const VReg2SUnit &V2SU 1111 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1112 SUnit &SU = *V2SU.SU; 1113 if (SU.isScheduled || &SU == &ExitSU) 1114 continue; 1115 1116 PressureDiff &PDiff = getPressureDiff(&SU); 1117 PDiff.addPressureChange(Reg, Decrement, &MRI); 1118 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1119 << printReg(Reg, TRI) << ':' 1120 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr(); 1121 dbgs() << " to "; PDiff.dump(*TRI);); 1122 } 1123 } else { 1124 assert(P.LaneMask.any()); 1125 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1126 // This may be called before CurrentBottom has been initialized. However, 1127 // BotRPTracker must have a valid position. We want the value live into the 1128 // instruction or live out of the block, so ask for the previous 1129 // instruction's live-out. 1130 const LiveInterval &LI = LIS->getInterval(Reg); 1131 VNInfo *VNI; 1132 MachineBasicBlock::const_iterator I = 1133 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1134 if (I == BB->end()) 1135 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1136 else { 1137 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1138 VNI = LRQ.valueIn(); 1139 } 1140 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1141 assert(VNI && "No live value at use."); 1142 for (const VReg2SUnit &V2SU 1143 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1144 SUnit *SU = V2SU.SU; 1145 // If this use comes before the reaching def, it cannot be a last use, 1146 // so decrease its pressure change. 1147 if (!SU->isScheduled && SU != &ExitSU) { 1148 LiveQueryResult LRQ = 1149 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1150 if (LRQ.valueIn() == VNI) { 1151 PressureDiff &PDiff = getPressureDiff(SU); 1152 PDiff.addPressureChange(Reg, true, &MRI); 1153 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1154 << *SU->getInstr(); 1155 dbgs() << " to "; PDiff.dump(*TRI);); 1156 } 1157 } 1158 } 1159 } 1160 } 1161 } 1162 1163 void ScheduleDAGMILive::dump() const { 1164 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1165 if (EntrySU.getInstr() != nullptr) 1166 dumpNodeAll(EntrySU); 1167 for (const SUnit &SU : SUnits) { 1168 dumpNodeAll(SU); 1169 if (ShouldTrackPressure) { 1170 dbgs() << " Pressure Diff : "; 1171 getPressureDiff(&SU).dump(*TRI); 1172 } 1173 dbgs() << " Single Issue : "; 1174 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1175 SchedModel.mustEndGroup(SU.getInstr())) 1176 dbgs() << "true;"; 1177 else 1178 dbgs() << "false;"; 1179 dbgs() << '\n'; 1180 } 1181 if (ExitSU.getInstr() != nullptr) 1182 dumpNodeAll(ExitSU); 1183 #endif 1184 } 1185 1186 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1187 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1188 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1189 /// 1190 /// This is a skeletal driver, with all the functionality pushed into helpers, 1191 /// so that it can be easily extended by experimental schedulers. Generally, 1192 /// implementing MachineSchedStrategy should be sufficient to implement a new 1193 /// scheduling algorithm. However, if a scheduler further subclasses 1194 /// ScheduleDAGMILive then it will want to override this virtual method in order 1195 /// to update any specialized state. 1196 void ScheduleDAGMILive::schedule() { 1197 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1198 LLVM_DEBUG(SchedImpl->dumpPolicy()); 1199 buildDAGWithRegPressure(); 1200 1201 postprocessDAG(); 1202 1203 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1204 findRootsAndBiasEdges(TopRoots, BotRoots); 1205 1206 // Initialize the strategy before modifying the DAG. 1207 // This may initialize a DFSResult to be used for queue priority. 1208 SchedImpl->initialize(this); 1209 1210 LLVM_DEBUG(dump()); 1211 if (PrintDAGs) dump(); 1212 if (ViewMISchedDAGs) viewGraph(); 1213 1214 // Initialize ready queues now that the DAG and priority data are finalized. 1215 initQueues(TopRoots, BotRoots); 1216 1217 bool IsTopNode = false; 1218 while (true) { 1219 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1220 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1221 if (!SU) break; 1222 1223 assert(!SU->isScheduled && "Node already scheduled"); 1224 if (!checkSchedLimit()) 1225 break; 1226 1227 scheduleMI(SU, IsTopNode); 1228 1229 if (DFSResult) { 1230 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1231 if (!ScheduledTrees.test(SubtreeID)) { 1232 ScheduledTrees.set(SubtreeID); 1233 DFSResult->scheduleTree(SubtreeID); 1234 SchedImpl->scheduleTree(SubtreeID); 1235 } 1236 } 1237 1238 // Notify the scheduling strategy after updating the DAG. 1239 SchedImpl->schedNode(SU, IsTopNode); 1240 1241 updateQueues(SU, IsTopNode); 1242 } 1243 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1244 1245 placeDebugValues(); 1246 1247 LLVM_DEBUG({ 1248 dbgs() << "*** Final schedule for " 1249 << printMBBReference(*begin()->getParent()) << " ***\n"; 1250 dumpSchedule(); 1251 dbgs() << '\n'; 1252 }); 1253 } 1254 1255 /// Build the DAG and setup three register pressure trackers. 1256 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1257 if (!ShouldTrackPressure) { 1258 RPTracker.reset(); 1259 RegionCriticalPSets.clear(); 1260 buildSchedGraph(AA); 1261 return; 1262 } 1263 1264 // Initialize the register pressure tracker used by buildSchedGraph. 1265 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1266 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1267 1268 // Account for liveness generate by the region boundary. 1269 if (LiveRegionEnd != RegionEnd) 1270 RPTracker.recede(); 1271 1272 // Build the DAG, and compute current register pressure. 1273 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1274 1275 // Initialize top/bottom trackers after computing region pressure. 1276 initRegPressure(); 1277 } 1278 1279 void ScheduleDAGMILive::computeDFSResult() { 1280 if (!DFSResult) 1281 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1282 DFSResult->clear(); 1283 ScheduledTrees.clear(); 1284 DFSResult->resize(SUnits.size()); 1285 DFSResult->compute(SUnits); 1286 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1287 } 1288 1289 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1290 /// only provides the critical path for single block loops. To handle loops that 1291 /// span blocks, we could use the vreg path latencies provided by 1292 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1293 /// available for use in the scheduler. 1294 /// 1295 /// The cyclic path estimation identifies a def-use pair that crosses the back 1296 /// edge and considers the depth and height of the nodes. For example, consider 1297 /// the following instruction sequence where each instruction has unit latency 1298 /// and defines an epomymous virtual register: 1299 /// 1300 /// a->b(a,c)->c(b)->d(c)->exit 1301 /// 1302 /// The cyclic critical path is a two cycles: b->c->b 1303 /// The acyclic critical path is four cycles: a->b->c->d->exit 1304 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1305 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1306 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1307 /// LiveInDepth = depth(b) = len(a->b) = 1 1308 /// 1309 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1310 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1311 /// CyclicCriticalPath = min(2, 2) = 2 1312 /// 1313 /// This could be relevant to PostRA scheduling, but is currently implemented 1314 /// assuming LiveIntervals. 1315 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1316 // This only applies to single block loop. 1317 if (!BB->isSuccessor(BB)) 1318 return 0; 1319 1320 unsigned MaxCyclicLatency = 0; 1321 // Visit each live out vreg def to find def/use pairs that cross iterations. 1322 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1323 unsigned Reg = P.RegUnit; 1324 if (!Register::isVirtualRegister(Reg)) 1325 continue; 1326 const LiveInterval &LI = LIS->getInterval(Reg); 1327 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1328 if (!DefVNI) 1329 continue; 1330 1331 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1332 const SUnit *DefSU = getSUnit(DefMI); 1333 if (!DefSU) 1334 continue; 1335 1336 unsigned LiveOutHeight = DefSU->getHeight(); 1337 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1338 // Visit all local users of the vreg def. 1339 for (const VReg2SUnit &V2SU 1340 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1341 SUnit *SU = V2SU.SU; 1342 if (SU == &ExitSU) 1343 continue; 1344 1345 // Only consider uses of the phi. 1346 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1347 if (!LRQ.valueIn()->isPHIDef()) 1348 continue; 1349 1350 // Assume that a path spanning two iterations is a cycle, which could 1351 // overestimate in strange cases. This allows cyclic latency to be 1352 // estimated as the minimum slack of the vreg's depth or height. 1353 unsigned CyclicLatency = 0; 1354 if (LiveOutDepth > SU->getDepth()) 1355 CyclicLatency = LiveOutDepth - SU->getDepth(); 1356 1357 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1358 if (LiveInHeight > LiveOutHeight) { 1359 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1360 CyclicLatency = LiveInHeight - LiveOutHeight; 1361 } else 1362 CyclicLatency = 0; 1363 1364 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1365 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1366 if (CyclicLatency > MaxCyclicLatency) 1367 MaxCyclicLatency = CyclicLatency; 1368 } 1369 } 1370 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1371 return MaxCyclicLatency; 1372 } 1373 1374 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1375 /// the Top RP tracker in case the region beginning has changed. 1376 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1377 ArrayRef<SUnit*> BotRoots) { 1378 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1379 if (ShouldTrackPressure) { 1380 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1381 TopRPTracker.setPos(CurrentTop); 1382 } 1383 } 1384 1385 /// Move an instruction and update register pressure. 1386 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1387 // Move the instruction to its new location in the instruction stream. 1388 MachineInstr *MI = SU->getInstr(); 1389 1390 if (IsTopNode) { 1391 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1392 if (&*CurrentTop == MI) 1393 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1394 else { 1395 moveInstruction(MI, CurrentTop); 1396 TopRPTracker.setPos(MI); 1397 } 1398 1399 if (ShouldTrackPressure) { 1400 // Update top scheduled pressure. 1401 RegisterOperands RegOpers; 1402 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1403 if (ShouldTrackLaneMasks) { 1404 // Adjust liveness and add missing dead+read-undef flags. 1405 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1406 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1407 } else { 1408 // Adjust for missing dead-def flags. 1409 RegOpers.detectDeadDefs(*MI, *LIS); 1410 } 1411 1412 TopRPTracker.advance(RegOpers); 1413 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1414 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure( 1415 TopRPTracker.getRegSetPressureAtPos(), TRI);); 1416 1417 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1418 } 1419 } else { 1420 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1421 MachineBasicBlock::iterator priorII = 1422 priorNonDebug(CurrentBottom, CurrentTop); 1423 if (&*priorII == MI) 1424 CurrentBottom = priorII; 1425 else { 1426 if (&*CurrentTop == MI) { 1427 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1428 TopRPTracker.setPos(CurrentTop); 1429 } 1430 moveInstruction(MI, CurrentBottom); 1431 CurrentBottom = MI; 1432 BotRPTracker.setPos(CurrentBottom); 1433 } 1434 if (ShouldTrackPressure) { 1435 RegisterOperands RegOpers; 1436 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1437 if (ShouldTrackLaneMasks) { 1438 // Adjust liveness and add missing dead+read-undef flags. 1439 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1440 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1441 } else { 1442 // Adjust for missing dead-def flags. 1443 RegOpers.detectDeadDefs(*MI, *LIS); 1444 } 1445 1446 if (BotRPTracker.getPos() != CurrentBottom) 1447 BotRPTracker.recedeSkipDebugValues(); 1448 SmallVector<RegisterMaskPair, 8> LiveUses; 1449 BotRPTracker.recede(RegOpers, &LiveUses); 1450 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1451 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure( 1452 BotRPTracker.getRegSetPressureAtPos(), TRI);); 1453 1454 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1455 updatePressureDiffs(LiveUses); 1456 } 1457 } 1458 } 1459 1460 //===----------------------------------------------------------------------===// 1461 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1462 //===----------------------------------------------------------------------===// 1463 1464 namespace { 1465 1466 /// Post-process the DAG to create cluster edges between neighboring 1467 /// loads or between neighboring stores. 1468 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1469 struct MemOpInfo { 1470 SUnit *SU; 1471 const MachineOperand *BaseOp; 1472 int64_t Offset; 1473 1474 MemOpInfo(SUnit *su, const MachineOperand *Op, int64_t ofs) 1475 : SU(su), BaseOp(Op), Offset(ofs) {} 1476 1477 bool operator<(const MemOpInfo &RHS) const { 1478 if (BaseOp->getType() != RHS.BaseOp->getType()) 1479 return BaseOp->getType() < RHS.BaseOp->getType(); 1480 1481 if (BaseOp->isReg()) 1482 return std::make_tuple(BaseOp->getReg(), Offset, SU->NodeNum) < 1483 std::make_tuple(RHS.BaseOp->getReg(), RHS.Offset, 1484 RHS.SU->NodeNum); 1485 if (BaseOp->isFI()) { 1486 const MachineFunction &MF = 1487 *BaseOp->getParent()->getParent()->getParent(); 1488 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); 1489 bool StackGrowsDown = TFI.getStackGrowthDirection() == 1490 TargetFrameLowering::StackGrowsDown; 1491 // Can't use tuple comparison here since we might need to use a 1492 // different order when the stack grows down. 1493 if (BaseOp->getIndex() != RHS.BaseOp->getIndex()) 1494 return StackGrowsDown ? BaseOp->getIndex() > RHS.BaseOp->getIndex() 1495 : BaseOp->getIndex() < RHS.BaseOp->getIndex(); 1496 1497 if (Offset != RHS.Offset) 1498 return StackGrowsDown ? Offset > RHS.Offset : Offset < RHS.Offset; 1499 1500 return SU->NodeNum < RHS.SU->NodeNum; 1501 } 1502 1503 llvm_unreachable("MemOpClusterMutation only supports register or frame " 1504 "index bases."); 1505 } 1506 }; 1507 1508 const TargetInstrInfo *TII; 1509 const TargetRegisterInfo *TRI; 1510 bool IsLoad; 1511 1512 public: 1513 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1514 const TargetRegisterInfo *tri, bool IsLoad) 1515 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1516 1517 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1518 1519 protected: 1520 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG); 1521 }; 1522 1523 class StoreClusterMutation : public BaseMemOpClusterMutation { 1524 public: 1525 StoreClusterMutation(const TargetInstrInfo *tii, 1526 const TargetRegisterInfo *tri) 1527 : BaseMemOpClusterMutation(tii, tri, false) {} 1528 }; 1529 1530 class LoadClusterMutation : public BaseMemOpClusterMutation { 1531 public: 1532 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1533 : BaseMemOpClusterMutation(tii, tri, true) {} 1534 }; 1535 1536 } // end anonymous namespace 1537 1538 namespace llvm { 1539 1540 std::unique_ptr<ScheduleDAGMutation> 1541 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1542 const TargetRegisterInfo *TRI) { 1543 return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI) 1544 : nullptr; 1545 } 1546 1547 std::unique_ptr<ScheduleDAGMutation> 1548 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1549 const TargetRegisterInfo *TRI) { 1550 return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI) 1551 : nullptr; 1552 } 1553 1554 } // end namespace llvm 1555 1556 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1557 ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG) { 1558 SmallVector<MemOpInfo, 32> MemOpRecords; 1559 for (SUnit *SU : MemOps) { 1560 const MachineOperand *BaseOp; 1561 int64_t Offset; 1562 if (TII->getMemOperandWithOffset(*SU->getInstr(), BaseOp, Offset, TRI)) 1563 MemOpRecords.push_back(MemOpInfo(SU, BaseOp, Offset)); 1564 } 1565 if (MemOpRecords.size() < 2) 1566 return; 1567 1568 llvm::sort(MemOpRecords); 1569 unsigned ClusterLength = 1; 1570 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1571 SUnit *SUa = MemOpRecords[Idx].SU; 1572 SUnit *SUb = MemOpRecords[Idx+1].SU; 1573 if (TII->shouldClusterMemOps(*MemOpRecords[Idx].BaseOp, 1574 *MemOpRecords[Idx + 1].BaseOp, 1575 ClusterLength) && 1576 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1577 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1578 << SUb->NodeNum << ")\n"); 1579 // Copy successor edges from SUa to SUb. Interleaving computation 1580 // dependent on SUa can prevent load combining due to register reuse. 1581 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1582 // loads should have effectively the same inputs. 1583 for (const SDep &Succ : SUa->Succs) { 1584 if (Succ.getSUnit() == SUb) 1585 continue; 1586 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum 1587 << ")\n"); 1588 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1589 } 1590 ++ClusterLength; 1591 } else 1592 ClusterLength = 1; 1593 } 1594 } 1595 1596 /// Callback from DAG postProcessing to create cluster edges for loads. 1597 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) { 1598 // Map DAG NodeNum to store chain ID. 1599 DenseMap<unsigned, unsigned> StoreChainIDs; 1600 // Map each store chain to a set of dependent MemOps. 1601 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1602 for (SUnit &SU : DAG->SUnits) { 1603 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1604 (!IsLoad && !SU.getInstr()->mayStore())) 1605 continue; 1606 1607 unsigned ChainPredID = DAG->SUnits.size(); 1608 for (const SDep &Pred : SU.Preds) { 1609 if (Pred.isCtrl()) { 1610 ChainPredID = Pred.getSUnit()->NodeNum; 1611 break; 1612 } 1613 } 1614 // Check if this chain-like pred has been seen 1615 // before. ChainPredID==MaxNodeID at the top of the schedule. 1616 unsigned NumChains = StoreChainDependents.size(); 1617 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1618 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1619 if (Result.second) 1620 StoreChainDependents.resize(NumChains + 1); 1621 StoreChainDependents[Result.first->second].push_back(&SU); 1622 } 1623 1624 // Iterate over the store chains. 1625 for (auto &SCD : StoreChainDependents) 1626 clusterNeighboringMemOps(SCD, DAG); 1627 } 1628 1629 //===----------------------------------------------------------------------===// 1630 // CopyConstrain - DAG post-processing to encourage copy elimination. 1631 //===----------------------------------------------------------------------===// 1632 1633 namespace { 1634 1635 /// Post-process the DAG to create weak edges from all uses of a copy to 1636 /// the one use that defines the copy's source vreg, most likely an induction 1637 /// variable increment. 1638 class CopyConstrain : public ScheduleDAGMutation { 1639 // Transient state. 1640 SlotIndex RegionBeginIdx; 1641 1642 // RegionEndIdx is the slot index of the last non-debug instruction in the 1643 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1644 SlotIndex RegionEndIdx; 1645 1646 public: 1647 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1648 1649 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1650 1651 protected: 1652 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1653 }; 1654 1655 } // end anonymous namespace 1656 1657 namespace llvm { 1658 1659 std::unique_ptr<ScheduleDAGMutation> 1660 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1661 const TargetRegisterInfo *TRI) { 1662 return std::make_unique<CopyConstrain>(TII, TRI); 1663 } 1664 1665 } // end namespace llvm 1666 1667 /// constrainLocalCopy handles two possibilities: 1668 /// 1) Local src: 1669 /// I0: = dst 1670 /// I1: src = ... 1671 /// I2: = dst 1672 /// I3: dst = src (copy) 1673 /// (create pred->succ edges I0->I1, I2->I1) 1674 /// 1675 /// 2) Local copy: 1676 /// I0: dst = src (copy) 1677 /// I1: = dst 1678 /// I2: src = ... 1679 /// I3: = dst 1680 /// (create pred->succ edges I1->I2, I3->I2) 1681 /// 1682 /// Although the MachineScheduler is currently constrained to single blocks, 1683 /// this algorithm should handle extended blocks. An EBB is a set of 1684 /// contiguously numbered blocks such that the previous block in the EBB is 1685 /// always the single predecessor. 1686 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1687 LiveIntervals *LIS = DAG->getLIS(); 1688 MachineInstr *Copy = CopySU->getInstr(); 1689 1690 // Check for pure vreg copies. 1691 const MachineOperand &SrcOp = Copy->getOperand(1); 1692 Register SrcReg = SrcOp.getReg(); 1693 if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1694 return; 1695 1696 const MachineOperand &DstOp = Copy->getOperand(0); 1697 Register DstReg = DstOp.getReg(); 1698 if (!Register::isVirtualRegister(DstReg) || DstOp.isDead()) 1699 return; 1700 1701 // Check if either the dest or source is local. If it's live across a back 1702 // edge, it's not local. Note that if both vregs are live across the back 1703 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1704 // If both the copy's source and dest are local live intervals, then we 1705 // should treat the dest as the global for the purpose of adding 1706 // constraints. This adds edges from source's other uses to the copy. 1707 unsigned LocalReg = SrcReg; 1708 unsigned GlobalReg = DstReg; 1709 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1710 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1711 LocalReg = DstReg; 1712 GlobalReg = SrcReg; 1713 LocalLI = &LIS->getInterval(LocalReg); 1714 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1715 return; 1716 } 1717 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1718 1719 // Find the global segment after the start of the local LI. 1720 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1721 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1722 // local live range. We could create edges from other global uses to the local 1723 // start, but the coalescer should have already eliminated these cases, so 1724 // don't bother dealing with it. 1725 if (GlobalSegment == GlobalLI->end()) 1726 return; 1727 1728 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1729 // returned the next global segment. But if GlobalSegment overlaps with 1730 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI 1731 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1732 if (GlobalSegment->contains(LocalLI->beginIndex())) 1733 ++GlobalSegment; 1734 1735 if (GlobalSegment == GlobalLI->end()) 1736 return; 1737 1738 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1739 if (GlobalSegment != GlobalLI->begin()) { 1740 // Two address defs have no hole. 1741 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1742 GlobalSegment->start)) { 1743 return; 1744 } 1745 // If the prior global segment may be defined by the same two-address 1746 // instruction that also defines LocalLI, then can't make a hole here. 1747 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1748 LocalLI->beginIndex())) { 1749 return; 1750 } 1751 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1752 // it would be a disconnected component in the live range. 1753 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1754 "Disconnected LRG within the scheduling region."); 1755 } 1756 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1757 if (!GlobalDef) 1758 return; 1759 1760 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1761 if (!GlobalSU) 1762 return; 1763 1764 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1765 // constraining the uses of the last local def to precede GlobalDef. 1766 SmallVector<SUnit*,8> LocalUses; 1767 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1768 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1769 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1770 for (const SDep &Succ : LastLocalSU->Succs) { 1771 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 1772 continue; 1773 if (Succ.getSUnit() == GlobalSU) 1774 continue; 1775 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 1776 return; 1777 LocalUses.push_back(Succ.getSUnit()); 1778 } 1779 // Open the top of the GlobalLI hole by constraining any earlier global uses 1780 // to precede the start of LocalLI. 1781 SmallVector<SUnit*,8> GlobalUses; 1782 MachineInstr *FirstLocalDef = 1783 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1784 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1785 for (const SDep &Pred : GlobalSU->Preds) { 1786 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 1787 continue; 1788 if (Pred.getSUnit() == FirstLocalSU) 1789 continue; 1790 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 1791 return; 1792 GlobalUses.push_back(Pred.getSUnit()); 1793 } 1794 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1795 // Add the weak edges. 1796 for (SmallVectorImpl<SUnit*>::const_iterator 1797 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1798 LLVM_DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1799 << GlobalSU->NodeNum << ")\n"); 1800 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1801 } 1802 for (SmallVectorImpl<SUnit*>::const_iterator 1803 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1804 LLVM_DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1805 << FirstLocalSU->NodeNum << ")\n"); 1806 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1807 } 1808 } 1809 1810 /// Callback from DAG postProcessing to create weak edges to encourage 1811 /// copy elimination. 1812 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1813 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1814 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1815 1816 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1817 if (FirstPos == DAG->end()) 1818 return; 1819 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1820 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1821 *priorNonDebug(DAG->end(), DAG->begin())); 1822 1823 for (SUnit &SU : DAG->SUnits) { 1824 if (!SU.getInstr()->isCopy()) 1825 continue; 1826 1827 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 1828 } 1829 } 1830 1831 //===----------------------------------------------------------------------===// 1832 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1833 // and possibly other custom schedulers. 1834 //===----------------------------------------------------------------------===// 1835 1836 static const unsigned InvalidCycle = ~0U; 1837 1838 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1839 1840 /// Given a Count of resource usage and a Latency value, return true if a 1841 /// SchedBoundary becomes resource limited. 1842 /// If we are checking after scheduling a node, we should return true when 1843 /// we just reach the resource limit. 1844 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 1845 unsigned Latency, bool AfterSchedNode) { 1846 int ResCntFactor = (int)(Count - (Latency * LFactor)); 1847 if (AfterSchedNode) 1848 return ResCntFactor >= (int)LFactor; 1849 else 1850 return ResCntFactor > (int)LFactor; 1851 } 1852 1853 void SchedBoundary::reset() { 1854 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1855 // Destroying and reconstructing it is very expensive though. So keep 1856 // invalid, placeholder HazardRecs. 1857 if (HazardRec && HazardRec->isEnabled()) { 1858 delete HazardRec; 1859 HazardRec = nullptr; 1860 } 1861 Available.clear(); 1862 Pending.clear(); 1863 CheckPending = false; 1864 CurrCycle = 0; 1865 CurrMOps = 0; 1866 MinReadyCycle = std::numeric_limits<unsigned>::max(); 1867 ExpectedLatency = 0; 1868 DependentLatency = 0; 1869 RetiredMOps = 0; 1870 MaxExecutedResCount = 0; 1871 ZoneCritResIdx = 0; 1872 IsResourceLimited = false; 1873 ReservedCycles.clear(); 1874 ReservedCyclesIndex.clear(); 1875 #ifndef NDEBUG 1876 // Track the maximum number of stall cycles that could arise either from the 1877 // latency of a DAG edge or the number of cycles that a processor resource is 1878 // reserved (SchedBoundary::ReservedCycles). 1879 MaxObservedStall = 0; 1880 #endif 1881 // Reserve a zero-count for invalid CritResIdx. 1882 ExecutedResCounts.resize(1); 1883 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1884 } 1885 1886 void SchedRemainder:: 1887 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1888 reset(); 1889 if (!SchedModel->hasInstrSchedModel()) 1890 return; 1891 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1892 for (SUnit &SU : DAG->SUnits) { 1893 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 1894 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 1895 * SchedModel->getMicroOpFactor(); 1896 for (TargetSchedModel::ProcResIter 1897 PI = SchedModel->getWriteProcResBegin(SC), 1898 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1899 unsigned PIdx = PI->ProcResourceIdx; 1900 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1901 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1902 } 1903 } 1904 } 1905 1906 void SchedBoundary:: 1907 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1908 reset(); 1909 DAG = dag; 1910 SchedModel = smodel; 1911 Rem = rem; 1912 if (SchedModel->hasInstrSchedModel()) { 1913 unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); 1914 ReservedCyclesIndex.resize(ResourceCount); 1915 ExecutedResCounts.resize(ResourceCount); 1916 unsigned NumUnits = 0; 1917 1918 for (unsigned i = 0; i < ResourceCount; ++i) { 1919 ReservedCyclesIndex[i] = NumUnits; 1920 NumUnits += SchedModel->getProcResource(i)->NumUnits; 1921 } 1922 1923 ReservedCycles.resize(NumUnits, InvalidCycle); 1924 } 1925 } 1926 1927 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1928 /// these "soft stalls" differently than the hard stall cycles based on CPU 1929 /// resources and computed by checkHazard(). A fully in-order model 1930 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1931 /// available for scheduling until they are ready. However, a weaker in-order 1932 /// model may use this for heuristics. For example, if a processor has in-order 1933 /// behavior when reading certain resources, this may come into play. 1934 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1935 if (!SU->isUnbuffered) 1936 return 0; 1937 1938 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1939 if (ReadyCycle > CurrCycle) 1940 return ReadyCycle - CurrCycle; 1941 return 0; 1942 } 1943 1944 /// Compute the next cycle at which the given processor resource unit 1945 /// can be scheduled. 1946 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx, 1947 unsigned Cycles) { 1948 unsigned NextUnreserved = ReservedCycles[InstanceIdx]; 1949 // If this resource has never been used, always return cycle zero. 1950 if (NextUnreserved == InvalidCycle) 1951 return 0; 1952 // For bottom-up scheduling add the cycles needed for the current operation. 1953 if (!isTop()) 1954 NextUnreserved += Cycles; 1955 return NextUnreserved; 1956 } 1957 1958 /// Compute the next cycle at which the given processor resource can be 1959 /// scheduled. Returns the next cycle and the index of the processor resource 1960 /// instance in the reserved cycles vector. 1961 std::pair<unsigned, unsigned> 1962 SchedBoundary::getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1963 unsigned MinNextUnreserved = InvalidCycle; 1964 unsigned InstanceIdx = 0; 1965 unsigned StartIndex = ReservedCyclesIndex[PIdx]; 1966 unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits; 1967 assert(NumberOfInstances > 0 && 1968 "Cannot have zero instances of a ProcResource"); 1969 1970 for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End; 1971 ++I) { 1972 unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles); 1973 if (MinNextUnreserved > NextUnreserved) { 1974 InstanceIdx = I; 1975 MinNextUnreserved = NextUnreserved; 1976 } 1977 } 1978 return std::make_pair(MinNextUnreserved, InstanceIdx); 1979 } 1980 1981 /// Does this SU have a hazard within the current instruction group. 1982 /// 1983 /// The scheduler supports two modes of hazard recognition. The first is the 1984 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1985 /// supports highly complicated in-order reservation tables 1986 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. 1987 /// 1988 /// The second is a streamlined mechanism that checks for hazards based on 1989 /// simple counters that the scheduler itself maintains. It explicitly checks 1990 /// for instruction dispatch limitations, including the number of micro-ops that 1991 /// can dispatch per cycle. 1992 /// 1993 /// TODO: Also check whether the SU must start a new group. 1994 bool SchedBoundary::checkHazard(SUnit *SU) { 1995 if (HazardRec->isEnabled() 1996 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1997 return true; 1998 } 1999 2000 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 2001 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 2002 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 2003 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 2004 return true; 2005 } 2006 2007 if (CurrMOps > 0 && 2008 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 2009 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 2010 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 2011 << (isTop() ? "begin" : "end") << " group\n"); 2012 return true; 2013 } 2014 2015 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 2016 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2017 for (const MCWriteProcResEntry &PE : 2018 make_range(SchedModel->getWriteProcResBegin(SC), 2019 SchedModel->getWriteProcResEnd(SC))) { 2020 unsigned ResIdx = PE.ProcResourceIdx; 2021 unsigned Cycles = PE.Cycles; 2022 unsigned NRCycle, InstanceIdx; 2023 std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(ResIdx, Cycles); 2024 if (NRCycle > CurrCycle) { 2025 #ifndef NDEBUG 2026 MaxObservedStall = std::max(Cycles, MaxObservedStall); 2027 #endif 2028 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 2029 << SchedModel->getResourceName(ResIdx) 2030 << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']' 2031 << "=" << NRCycle << "c\n"); 2032 return true; 2033 } 2034 } 2035 } 2036 return false; 2037 } 2038 2039 // Find the unscheduled node in ReadySUs with the highest latency. 2040 unsigned SchedBoundary:: 2041 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 2042 SUnit *LateSU = nullptr; 2043 unsigned RemLatency = 0; 2044 for (SUnit *SU : ReadySUs) { 2045 unsigned L = getUnscheduledLatency(SU); 2046 if (L > RemLatency) { 2047 RemLatency = L; 2048 LateSU = SU; 2049 } 2050 } 2051 if (LateSU) { 2052 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2053 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2054 } 2055 return RemLatency; 2056 } 2057 2058 // Count resources in this zone and the remaining unscheduled 2059 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2060 // resource index, or zero if the zone is issue limited. 2061 unsigned SchedBoundary:: 2062 getOtherResourceCount(unsigned &OtherCritIdx) { 2063 OtherCritIdx = 0; 2064 if (!SchedModel->hasInstrSchedModel()) 2065 return 0; 2066 2067 unsigned OtherCritCount = Rem->RemIssueCount 2068 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2069 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2070 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2071 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2072 PIdx != PEnd; ++PIdx) { 2073 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2074 if (OtherCount > OtherCritCount) { 2075 OtherCritCount = OtherCount; 2076 OtherCritIdx = PIdx; 2077 } 2078 } 2079 if (OtherCritIdx) { 2080 LLVM_DEBUG( 2081 dbgs() << " " << Available.getName() << " + Remain CritRes: " 2082 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2083 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2084 } 2085 return OtherCritCount; 2086 } 2087 2088 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 2089 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2090 2091 #ifndef NDEBUG 2092 // ReadyCycle was been bumped up to the CurrCycle when this node was 2093 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2094 // scheduling, so may now be greater than ReadyCycle. 2095 if (ReadyCycle > CurrCycle) 2096 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2097 #endif 2098 2099 if (ReadyCycle < MinReadyCycle) 2100 MinReadyCycle = ReadyCycle; 2101 2102 // Check for interlocks first. For the purpose of other heuristics, an 2103 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2104 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2105 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 2106 Available.size() >= ReadyListLimit) 2107 Pending.push(SU); 2108 else 2109 Available.push(SU); 2110 } 2111 2112 /// Move the boundary of scheduled code by one cycle. 2113 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2114 if (SchedModel->getMicroOpBufferSize() == 0) { 2115 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2116 "MinReadyCycle uninitialized"); 2117 if (MinReadyCycle > NextCycle) 2118 NextCycle = MinReadyCycle; 2119 } 2120 // Update the current micro-ops, which will issue in the next cycle. 2121 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2122 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2123 2124 // Decrement DependentLatency based on the next cycle. 2125 if ((NextCycle - CurrCycle) > DependentLatency) 2126 DependentLatency = 0; 2127 else 2128 DependentLatency -= (NextCycle - CurrCycle); 2129 2130 if (!HazardRec->isEnabled()) { 2131 // Bypass HazardRec virtual calls. 2132 CurrCycle = NextCycle; 2133 } else { 2134 // Bypass getHazardType calls in case of long latency. 2135 for (; CurrCycle != NextCycle; ++CurrCycle) { 2136 if (isTop()) 2137 HazardRec->AdvanceCycle(); 2138 else 2139 HazardRec->RecedeCycle(); 2140 } 2141 } 2142 CheckPending = true; 2143 IsResourceLimited = 2144 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2145 getScheduledLatency(), true); 2146 2147 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() 2148 << '\n'); 2149 } 2150 2151 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2152 ExecutedResCounts[PIdx] += Count; 2153 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2154 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2155 } 2156 2157 /// Add the given processor resource to this scheduled zone. 2158 /// 2159 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2160 /// during which this resource is consumed. 2161 /// 2162 /// \return the next cycle at which the instruction may execute without 2163 /// oversubscribing resources. 2164 unsigned SchedBoundary:: 2165 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2166 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2167 unsigned Count = Factor * Cycles; 2168 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +" 2169 << Cycles << "x" << Factor << "u\n"); 2170 2171 // Update Executed resources counts. 2172 incExecutedResources(PIdx, Count); 2173 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2174 Rem->RemainingCounts[PIdx] -= Count; 2175 2176 // Check if this resource exceeds the current critical resource. If so, it 2177 // becomes the critical resource. 2178 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2179 ZoneCritResIdx = PIdx; 2180 LLVM_DEBUG(dbgs() << " *** Critical resource " 2181 << SchedModel->getResourceName(PIdx) << ": " 2182 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() 2183 << "c\n"); 2184 } 2185 // For reserved resources, record the highest cycle using the resource. 2186 unsigned NextAvailable, InstanceIdx; 2187 std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(PIdx, Cycles); 2188 if (NextAvailable > CurrCycle) { 2189 LLVM_DEBUG(dbgs() << " Resource conflict: " 2190 << SchedModel->getResourceName(PIdx) 2191 << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']' 2192 << " reserved until @" << NextAvailable << "\n"); 2193 } 2194 return NextAvailable; 2195 } 2196 2197 /// Move the boundary of scheduled code by one SUnit. 2198 void SchedBoundary::bumpNode(SUnit *SU) { 2199 // Update the reservation table. 2200 if (HazardRec->isEnabled()) { 2201 if (!isTop() && SU->isCall) { 2202 // Calls are scheduled with their preceding instructions. For bottom-up 2203 // scheduling, clear the pipeline state before emitting. 2204 HazardRec->Reset(); 2205 } 2206 HazardRec->EmitInstruction(SU); 2207 // Scheduling an instruction may have made pending instructions available. 2208 CheckPending = true; 2209 } 2210 // checkHazard should prevent scheduling multiple instructions per cycle that 2211 // exceed the issue width. 2212 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2213 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2214 assert( 2215 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2216 "Cannot schedule this instruction's MicroOps in the current cycle."); 2217 2218 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2219 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2220 2221 unsigned NextCycle = CurrCycle; 2222 switch (SchedModel->getMicroOpBufferSize()) { 2223 case 0: 2224 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2225 break; 2226 case 1: 2227 if (ReadyCycle > NextCycle) { 2228 NextCycle = ReadyCycle; 2229 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2230 } 2231 break; 2232 default: 2233 // We don't currently model the OOO reorder buffer, so consider all 2234 // scheduled MOps to be "retired". We do loosely model in-order resource 2235 // latency. If this instruction uses an in-order resource, account for any 2236 // likely stall cycles. 2237 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2238 NextCycle = ReadyCycle; 2239 break; 2240 } 2241 RetiredMOps += IncMOps; 2242 2243 // Update resource counts and critical resource. 2244 if (SchedModel->hasInstrSchedModel()) { 2245 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2246 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2247 Rem->RemIssueCount -= DecRemIssue; 2248 if (ZoneCritResIdx) { 2249 // Scale scheduled micro-ops for comparing with the critical resource. 2250 unsigned ScaledMOps = 2251 RetiredMOps * SchedModel->getMicroOpFactor(); 2252 2253 // If scaled micro-ops are now more than the previous critical resource by 2254 // a full cycle, then micro-ops issue becomes critical. 2255 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2256 >= (int)SchedModel->getLatencyFactor()) { 2257 ZoneCritResIdx = 0; 2258 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2259 << ScaledMOps / SchedModel->getLatencyFactor() 2260 << "c\n"); 2261 } 2262 } 2263 for (TargetSchedModel::ProcResIter 2264 PI = SchedModel->getWriteProcResBegin(SC), 2265 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2266 unsigned RCycle = 2267 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2268 if (RCycle > NextCycle) 2269 NextCycle = RCycle; 2270 } 2271 if (SU->hasReservedResource) { 2272 // For reserved resources, record the highest cycle using the resource. 2273 // For top-down scheduling, this is the cycle in which we schedule this 2274 // instruction plus the number of cycles the operations reserves the 2275 // resource. For bottom-up is it simply the instruction's cycle. 2276 for (TargetSchedModel::ProcResIter 2277 PI = SchedModel->getWriteProcResBegin(SC), 2278 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2279 unsigned PIdx = PI->ProcResourceIdx; 2280 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2281 unsigned ReservedUntil, InstanceIdx; 2282 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(PIdx, 0); 2283 if (isTop()) { 2284 ReservedCycles[InstanceIdx] = 2285 std::max(ReservedUntil, NextCycle + PI->Cycles); 2286 } else 2287 ReservedCycles[InstanceIdx] = NextCycle; 2288 } 2289 } 2290 } 2291 } 2292 // Update ExpectedLatency and DependentLatency. 2293 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2294 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2295 if (SU->getDepth() > TopLatency) { 2296 TopLatency = SU->getDepth(); 2297 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU(" 2298 << SU->NodeNum << ") " << TopLatency << "c\n"); 2299 } 2300 if (SU->getHeight() > BotLatency) { 2301 BotLatency = SU->getHeight(); 2302 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU(" 2303 << SU->NodeNum << ") " << BotLatency << "c\n"); 2304 } 2305 // If we stall for any reason, bump the cycle. 2306 if (NextCycle > CurrCycle) 2307 bumpCycle(NextCycle); 2308 else 2309 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2310 // resource limited. If a stall occurred, bumpCycle does this. 2311 IsResourceLimited = 2312 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2313 getScheduledLatency(), true); 2314 2315 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2316 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2317 // one cycle. Since we commonly reach the max MOps here, opportunistically 2318 // bump the cycle to avoid uselessly checking everything in the readyQ. 2319 CurrMOps += IncMOps; 2320 2321 // Bump the cycle count for issue group constraints. 2322 // This must be done after NextCycle has been adjust for all other stalls. 2323 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2324 // currCycle to X. 2325 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2326 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2327 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin") 2328 << " group\n"); 2329 bumpCycle(++NextCycle); 2330 } 2331 2332 while (CurrMOps >= SchedModel->getIssueWidth()) { 2333 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle " 2334 << CurrCycle << '\n'); 2335 bumpCycle(++NextCycle); 2336 } 2337 LLVM_DEBUG(dumpScheduledState()); 2338 } 2339 2340 /// Release pending ready nodes in to the available queue. This makes them 2341 /// visible to heuristics. 2342 void SchedBoundary::releasePending() { 2343 // If the available queue is empty, it is safe to reset MinReadyCycle. 2344 if (Available.empty()) 2345 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2346 2347 // Check to see if any of the pending instructions are ready to issue. If 2348 // so, add them to the available queue. 2349 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2350 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2351 SUnit *SU = *(Pending.begin()+i); 2352 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2353 2354 if (ReadyCycle < MinReadyCycle) 2355 MinReadyCycle = ReadyCycle; 2356 2357 if (!IsBuffered && ReadyCycle > CurrCycle) 2358 continue; 2359 2360 if (checkHazard(SU)) 2361 continue; 2362 2363 if (Available.size() >= ReadyListLimit) 2364 break; 2365 2366 Available.push(SU); 2367 Pending.remove(Pending.begin()+i); 2368 --i; --e; 2369 } 2370 CheckPending = false; 2371 } 2372 2373 /// Remove SU from the ready set for this boundary. 2374 void SchedBoundary::removeReady(SUnit *SU) { 2375 if (Available.isInQueue(SU)) 2376 Available.remove(Available.find(SU)); 2377 else { 2378 assert(Pending.isInQueue(SU) && "bad ready count"); 2379 Pending.remove(Pending.find(SU)); 2380 } 2381 } 2382 2383 /// If this queue only has one ready candidate, return it. As a side effect, 2384 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2385 /// one node is ready. If multiple instructions are ready, return NULL. 2386 SUnit *SchedBoundary::pickOnlyChoice() { 2387 if (CheckPending) 2388 releasePending(); 2389 2390 if (CurrMOps > 0) { 2391 // Defer any ready instrs that now have a hazard. 2392 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2393 if (checkHazard(*I)) { 2394 Pending.push(*I); 2395 I = Available.remove(I); 2396 continue; 2397 } 2398 ++I; 2399 } 2400 } 2401 for (unsigned i = 0; Available.empty(); ++i) { 2402 // FIXME: Re-enable assert once PR20057 is resolved. 2403 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2404 // "permanent hazard"); 2405 (void)i; 2406 bumpCycle(CurrCycle + 1); 2407 releasePending(); 2408 } 2409 2410 LLVM_DEBUG(Pending.dump()); 2411 LLVM_DEBUG(Available.dump()); 2412 2413 if (Available.size() == 1) 2414 return *Available.begin(); 2415 return nullptr; 2416 } 2417 2418 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2419 // This is useful information to dump after bumpNode. 2420 // Note that the Queue contents are more useful before pickNodeFromQueue. 2421 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2422 unsigned ResFactor; 2423 unsigned ResCount; 2424 if (ZoneCritResIdx) { 2425 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2426 ResCount = getResourceCount(ZoneCritResIdx); 2427 } else { 2428 ResFactor = SchedModel->getMicroOpFactor(); 2429 ResCount = RetiredMOps * ResFactor; 2430 } 2431 unsigned LFactor = SchedModel->getLatencyFactor(); 2432 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2433 << " Retired: " << RetiredMOps; 2434 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2435 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2436 << ResCount / ResFactor << " " 2437 << SchedModel->getResourceName(ZoneCritResIdx) 2438 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2439 << (IsResourceLimited ? " - Resource" : " - Latency") 2440 << " limited.\n"; 2441 } 2442 #endif 2443 2444 //===----------------------------------------------------------------------===// 2445 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2446 //===----------------------------------------------------------------------===// 2447 2448 void GenericSchedulerBase::SchedCandidate:: 2449 initResourceDelta(const ScheduleDAGMI *DAG, 2450 const TargetSchedModel *SchedModel) { 2451 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2452 return; 2453 2454 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2455 for (TargetSchedModel::ProcResIter 2456 PI = SchedModel->getWriteProcResBegin(SC), 2457 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2458 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2459 ResDelta.CritResources += PI->Cycles; 2460 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2461 ResDelta.DemandedResources += PI->Cycles; 2462 } 2463 } 2464 2465 /// Compute remaining latency. We need this both to determine whether the 2466 /// overall schedule has become latency-limited and whether the instructions 2467 /// outside this zone are resource or latency limited. 2468 /// 2469 /// The "dependent" latency is updated incrementally during scheduling as the 2470 /// max height/depth of scheduled nodes minus the cycles since it was 2471 /// scheduled: 2472 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2473 /// 2474 /// The "independent" latency is the max ready queue depth: 2475 /// ILat = max N.depth for N in Available|Pending 2476 /// 2477 /// RemainingLatency is the greater of independent and dependent latency. 2478 /// 2479 /// These computations are expensive, especially in DAGs with many edges, so 2480 /// only do them if necessary. 2481 static unsigned computeRemLatency(SchedBoundary &CurrZone) { 2482 unsigned RemLatency = CurrZone.getDependentLatency(); 2483 RemLatency = std::max(RemLatency, 2484 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2485 RemLatency = std::max(RemLatency, 2486 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2487 return RemLatency; 2488 } 2489 2490 /// Returns true if the current cycle plus remaning latency is greater than 2491 /// the critical path in the scheduling region. 2492 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy, 2493 SchedBoundary &CurrZone, 2494 bool ComputeRemLatency, 2495 unsigned &RemLatency) const { 2496 // The current cycle is already greater than the critical path, so we are 2497 // already latency limited and don't need to compute the remaining latency. 2498 if (CurrZone.getCurrCycle() > Rem.CriticalPath) 2499 return true; 2500 2501 // If we haven't scheduled anything yet, then we aren't latency limited. 2502 if (CurrZone.getCurrCycle() == 0) 2503 return false; 2504 2505 if (ComputeRemLatency) 2506 RemLatency = computeRemLatency(CurrZone); 2507 2508 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath; 2509 } 2510 2511 /// Set the CandPolicy given a scheduling zone given the current resources and 2512 /// latencies inside and outside the zone. 2513 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2514 SchedBoundary &CurrZone, 2515 SchedBoundary *OtherZone) { 2516 // Apply preemptive heuristics based on the total latency and resources 2517 // inside and outside this zone. Potential stalls should be considered before 2518 // following this policy. 2519 2520 // Compute the critical resource outside the zone. 2521 unsigned OtherCritIdx = 0; 2522 unsigned OtherCount = 2523 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2524 2525 bool OtherResLimited = false; 2526 unsigned RemLatency = 0; 2527 bool RemLatencyComputed = false; 2528 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) { 2529 RemLatency = computeRemLatency(CurrZone); 2530 RemLatencyComputed = true; 2531 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 2532 OtherCount, RemLatency, false); 2533 } 2534 2535 // Schedule aggressively for latency in PostRA mode. We don't check for 2536 // acyclic latency during PostRA, and highly out-of-order processors will 2537 // skip PostRA scheduling. 2538 if (!OtherResLimited && 2539 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed, 2540 RemLatency))) { 2541 Policy.ReduceLatency |= true; 2542 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName() 2543 << " RemainingLatency " << RemLatency << " + " 2544 << CurrZone.getCurrCycle() << "c > CritPath " 2545 << Rem.CriticalPath << "\n"); 2546 } 2547 // If the same resource is limiting inside and outside the zone, do nothing. 2548 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2549 return; 2550 2551 LLVM_DEBUG(if (CurrZone.isResourceLimited()) { 2552 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2553 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n"; 2554 } if (OtherResLimited) dbgs() 2555 << " RemainingLimit: " 2556 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2557 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs() 2558 << " Latency limited both directions.\n"); 2559 2560 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2561 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2562 2563 if (OtherResLimited) 2564 Policy.DemandResIdx = OtherCritIdx; 2565 } 2566 2567 #ifndef NDEBUG 2568 const char *GenericSchedulerBase::getReasonStr( 2569 GenericSchedulerBase::CandReason Reason) { 2570 switch (Reason) { 2571 case NoCand: return "NOCAND "; 2572 case Only1: return "ONLY1 "; 2573 case PhysReg: return "PHYS-REG "; 2574 case RegExcess: return "REG-EXCESS"; 2575 case RegCritical: return "REG-CRIT "; 2576 case Stall: return "STALL "; 2577 case Cluster: return "CLUSTER "; 2578 case Weak: return "WEAK "; 2579 case RegMax: return "REG-MAX "; 2580 case ResourceReduce: return "RES-REDUCE"; 2581 case ResourceDemand: return "RES-DEMAND"; 2582 case TopDepthReduce: return "TOP-DEPTH "; 2583 case TopPathReduce: return "TOP-PATH "; 2584 case BotHeightReduce:return "BOT-HEIGHT"; 2585 case BotPathReduce: return "BOT-PATH "; 2586 case NextDefUse: return "DEF-USE "; 2587 case NodeOrder: return "ORDER "; 2588 }; 2589 llvm_unreachable("Unknown reason!"); 2590 } 2591 2592 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2593 PressureChange P; 2594 unsigned ResIdx = 0; 2595 unsigned Latency = 0; 2596 switch (Cand.Reason) { 2597 default: 2598 break; 2599 case RegExcess: 2600 P = Cand.RPDelta.Excess; 2601 break; 2602 case RegCritical: 2603 P = Cand.RPDelta.CriticalMax; 2604 break; 2605 case RegMax: 2606 P = Cand.RPDelta.CurrentMax; 2607 break; 2608 case ResourceReduce: 2609 ResIdx = Cand.Policy.ReduceResIdx; 2610 break; 2611 case ResourceDemand: 2612 ResIdx = Cand.Policy.DemandResIdx; 2613 break; 2614 case TopDepthReduce: 2615 Latency = Cand.SU->getDepth(); 2616 break; 2617 case TopPathReduce: 2618 Latency = Cand.SU->getHeight(); 2619 break; 2620 case BotHeightReduce: 2621 Latency = Cand.SU->getHeight(); 2622 break; 2623 case BotPathReduce: 2624 Latency = Cand.SU->getDepth(); 2625 break; 2626 } 2627 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2628 if (P.isValid()) 2629 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2630 << ":" << P.getUnitInc() << " "; 2631 else 2632 dbgs() << " "; 2633 if (ResIdx) 2634 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2635 else 2636 dbgs() << " "; 2637 if (Latency) 2638 dbgs() << " " << Latency << " cycles "; 2639 else 2640 dbgs() << " "; 2641 dbgs() << '\n'; 2642 } 2643 #endif 2644 2645 namespace llvm { 2646 /// Return true if this heuristic determines order. 2647 bool tryLess(int TryVal, int CandVal, 2648 GenericSchedulerBase::SchedCandidate &TryCand, 2649 GenericSchedulerBase::SchedCandidate &Cand, 2650 GenericSchedulerBase::CandReason Reason) { 2651 if (TryVal < CandVal) { 2652 TryCand.Reason = Reason; 2653 return true; 2654 } 2655 if (TryVal > CandVal) { 2656 if (Cand.Reason > Reason) 2657 Cand.Reason = Reason; 2658 return true; 2659 } 2660 return false; 2661 } 2662 2663 bool tryGreater(int TryVal, int CandVal, 2664 GenericSchedulerBase::SchedCandidate &TryCand, 2665 GenericSchedulerBase::SchedCandidate &Cand, 2666 GenericSchedulerBase::CandReason Reason) { 2667 if (TryVal > CandVal) { 2668 TryCand.Reason = Reason; 2669 return true; 2670 } 2671 if (TryVal < CandVal) { 2672 if (Cand.Reason > Reason) 2673 Cand.Reason = Reason; 2674 return true; 2675 } 2676 return false; 2677 } 2678 2679 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2680 GenericSchedulerBase::SchedCandidate &Cand, 2681 SchedBoundary &Zone) { 2682 if (Zone.isTop()) { 2683 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2684 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2685 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2686 return true; 2687 } 2688 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2689 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2690 return true; 2691 } else { 2692 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2693 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2694 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2695 return true; 2696 } 2697 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2698 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2699 return true; 2700 } 2701 return false; 2702 } 2703 } // end namespace llvm 2704 2705 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2706 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2707 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2708 } 2709 2710 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2711 tracePick(Cand.Reason, Cand.AtTop); 2712 } 2713 2714 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2715 assert(dag->hasVRegLiveness() && 2716 "(PreRA)GenericScheduler needs vreg liveness"); 2717 DAG = static_cast<ScheduleDAGMILive*>(dag); 2718 SchedModel = DAG->getSchedModel(); 2719 TRI = DAG->TRI; 2720 2721 Rem.init(DAG, SchedModel); 2722 Top.init(DAG, SchedModel, &Rem); 2723 Bot.init(DAG, SchedModel, &Rem); 2724 2725 // Initialize resource counts. 2726 2727 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2728 // are disabled, then these HazardRecs will be disabled. 2729 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2730 if (!Top.HazardRec) { 2731 Top.HazardRec = 2732 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2733 Itin, DAG); 2734 } 2735 if (!Bot.HazardRec) { 2736 Bot.HazardRec = 2737 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2738 Itin, DAG); 2739 } 2740 TopCand.SU = nullptr; 2741 BotCand.SU = nullptr; 2742 } 2743 2744 /// Initialize the per-region scheduling policy. 2745 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2746 MachineBasicBlock::iterator End, 2747 unsigned NumRegionInstrs) { 2748 const MachineFunction &MF = *Begin->getMF(); 2749 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2750 2751 // Avoid setting up the register pressure tracker for small regions to save 2752 // compile time. As a rough heuristic, only track pressure when the number of 2753 // schedulable instructions exceeds half the integer register file. 2754 RegionPolicy.ShouldTrackPressure = true; 2755 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2756 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2757 if (TLI->isTypeLegal(LegalIntVT)) { 2758 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2759 TLI->getRegClassFor(LegalIntVT)); 2760 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2761 } 2762 } 2763 2764 // For generic targets, we default to bottom-up, because it's simpler and more 2765 // compile-time optimizations have been implemented in that direction. 2766 RegionPolicy.OnlyBottomUp = true; 2767 2768 // Allow the subtarget to override default policy. 2769 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2770 2771 // After subtarget overrides, apply command line options. 2772 if (!EnableRegPressure) { 2773 RegionPolicy.ShouldTrackPressure = false; 2774 RegionPolicy.ShouldTrackLaneMasks = false; 2775 } 2776 2777 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2778 // e.g. -misched-bottomup=false allows scheduling in both directions. 2779 assert((!ForceTopDown || !ForceBottomUp) && 2780 "-misched-topdown incompatible with -misched-bottomup"); 2781 if (ForceBottomUp.getNumOccurrences() > 0) { 2782 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2783 if (RegionPolicy.OnlyBottomUp) 2784 RegionPolicy.OnlyTopDown = false; 2785 } 2786 if (ForceTopDown.getNumOccurrences() > 0) { 2787 RegionPolicy.OnlyTopDown = ForceTopDown; 2788 if (RegionPolicy.OnlyTopDown) 2789 RegionPolicy.OnlyBottomUp = false; 2790 } 2791 } 2792 2793 void GenericScheduler::dumpPolicy() const { 2794 // Cannot completely remove virtual function even in release mode. 2795 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2796 dbgs() << "GenericScheduler RegionPolicy: " 2797 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2798 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2799 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2800 << "\n"; 2801 #endif 2802 } 2803 2804 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2805 /// critical path by more cycles than it takes to drain the instruction buffer. 2806 /// We estimate an upper bounds on in-flight instructions as: 2807 /// 2808 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2809 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2810 /// InFlightResources = InFlightIterations * LoopResources 2811 /// 2812 /// TODO: Check execution resources in addition to IssueCount. 2813 void GenericScheduler::checkAcyclicLatency() { 2814 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2815 return; 2816 2817 // Scaled number of cycles per loop iteration. 2818 unsigned IterCount = 2819 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2820 Rem.RemIssueCount); 2821 // Scaled acyclic critical path. 2822 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2823 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2824 unsigned InFlightCount = 2825 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2826 unsigned BufferLimit = 2827 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2828 2829 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2830 2831 LLVM_DEBUG( 2832 dbgs() << "IssueCycles=" 2833 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2834 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2835 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount 2836 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2837 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2838 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2839 } 2840 2841 void GenericScheduler::registerRoots() { 2842 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2843 2844 // Some roots may not feed into ExitSU. Check all of them in case. 2845 for (const SUnit *SU : Bot.Available) { 2846 if (SU->getDepth() > Rem.CriticalPath) 2847 Rem.CriticalPath = SU->getDepth(); 2848 } 2849 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2850 if (DumpCriticalPathLength) { 2851 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2852 } 2853 2854 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 2855 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2856 checkAcyclicLatency(); 2857 } 2858 } 2859 2860 namespace llvm { 2861 bool tryPressure(const PressureChange &TryP, 2862 const PressureChange &CandP, 2863 GenericSchedulerBase::SchedCandidate &TryCand, 2864 GenericSchedulerBase::SchedCandidate &Cand, 2865 GenericSchedulerBase::CandReason Reason, 2866 const TargetRegisterInfo *TRI, 2867 const MachineFunction &MF) { 2868 // If one candidate decreases and the other increases, go with it. 2869 // Invalid candidates have UnitInc==0. 2870 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2871 Reason)) { 2872 return true; 2873 } 2874 // Do not compare the magnitude of pressure changes between top and bottom 2875 // boundary. 2876 if (Cand.AtTop != TryCand.AtTop) 2877 return false; 2878 2879 // If both candidates affect the same set in the same boundary, go with the 2880 // smallest increase. 2881 unsigned TryPSet = TryP.getPSetOrMax(); 2882 unsigned CandPSet = CandP.getPSetOrMax(); 2883 if (TryPSet == CandPSet) { 2884 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2885 Reason); 2886 } 2887 2888 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2889 std::numeric_limits<int>::max(); 2890 2891 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2892 std::numeric_limits<int>::max(); 2893 2894 // If the candidates are decreasing pressure, reverse priority. 2895 if (TryP.getUnitInc() < 0) 2896 std::swap(TryRank, CandRank); 2897 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2898 } 2899 2900 unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2901 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2902 } 2903 2904 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2905 /// their physreg def/use. 2906 /// 2907 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2908 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2909 /// with the operation that produces or consumes the physreg. We'll do this when 2910 /// regalloc has support for parallel copies. 2911 int biasPhysReg(const SUnit *SU, bool isTop) { 2912 const MachineInstr *MI = SU->getInstr(); 2913 2914 if (MI->isCopy()) { 2915 unsigned ScheduledOper = isTop ? 1 : 0; 2916 unsigned UnscheduledOper = isTop ? 0 : 1; 2917 // If we have already scheduled the physreg produce/consumer, immediately 2918 // schedule the copy. 2919 if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg())) 2920 return 1; 2921 // If the physreg is at the boundary, defer it. Otherwise schedule it 2922 // immediately to free the dependent. We can hoist the copy later. 2923 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2924 if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg())) 2925 return AtBoundary ? -1 : 1; 2926 } 2927 2928 if (MI->isMoveImmediate()) { 2929 // If we have a move immediate and all successors have been assigned, bias 2930 // towards scheduling this later. Make sure all register defs are to 2931 // physical registers. 2932 bool DoBias = true; 2933 for (const MachineOperand &Op : MI->defs()) { 2934 if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) { 2935 DoBias = false; 2936 break; 2937 } 2938 } 2939 2940 if (DoBias) 2941 return isTop ? -1 : 1; 2942 } 2943 2944 return 0; 2945 } 2946 } // end namespace llvm 2947 2948 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2949 bool AtTop, 2950 const RegPressureTracker &RPTracker, 2951 RegPressureTracker &TempTracker) { 2952 Cand.SU = SU; 2953 Cand.AtTop = AtTop; 2954 if (DAG->isTrackingPressure()) { 2955 if (AtTop) { 2956 TempTracker.getMaxDownwardPressureDelta( 2957 Cand.SU->getInstr(), 2958 Cand.RPDelta, 2959 DAG->getRegionCriticalPSets(), 2960 DAG->getRegPressure().MaxSetPressure); 2961 } else { 2962 if (VerifyScheduling) { 2963 TempTracker.getMaxUpwardPressureDelta( 2964 Cand.SU->getInstr(), 2965 &DAG->getPressureDiff(Cand.SU), 2966 Cand.RPDelta, 2967 DAG->getRegionCriticalPSets(), 2968 DAG->getRegPressure().MaxSetPressure); 2969 } else { 2970 RPTracker.getUpwardPressureDelta( 2971 Cand.SU->getInstr(), 2972 DAG->getPressureDiff(Cand.SU), 2973 Cand.RPDelta, 2974 DAG->getRegionCriticalPSets(), 2975 DAG->getRegPressure().MaxSetPressure); 2976 } 2977 } 2978 } 2979 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs() 2980 << " Try SU(" << Cand.SU->NodeNum << ") " 2981 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":" 2982 << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2983 } 2984 2985 /// Apply a set of heuristics to a new candidate. Heuristics are currently 2986 /// hierarchical. This may be more efficient than a graduated cost model because 2987 /// we don't need to evaluate all aspects of the model for each node in the 2988 /// queue. But it's really done to make the heuristics easier to debug and 2989 /// statistically analyze. 2990 /// 2991 /// \param Cand provides the policy and current best candidate. 2992 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2993 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2994 // if Cand is from a different zone than TryCand. 2995 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2996 SchedCandidate &TryCand, 2997 SchedBoundary *Zone) const { 2998 // Initialize the candidate if needed. 2999 if (!Cand.isValid()) { 3000 TryCand.Reason = NodeOrder; 3001 return; 3002 } 3003 3004 // Bias PhysReg Defs and copies to their uses and defined respectively. 3005 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop), 3006 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg)) 3007 return; 3008 3009 // Avoid exceeding the target's limit. 3010 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 3011 Cand.RPDelta.Excess, 3012 TryCand, Cand, RegExcess, TRI, 3013 DAG->MF)) 3014 return; 3015 3016 // Avoid increasing the max critical pressure in the scheduled region. 3017 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 3018 Cand.RPDelta.CriticalMax, 3019 TryCand, Cand, RegCritical, TRI, 3020 DAG->MF)) 3021 return; 3022 3023 // We only compare a subset of features when comparing nodes between 3024 // Top and Bottom boundary. Some properties are simply incomparable, in many 3025 // other instances we should only override the other boundary if something 3026 // is a clear good pick on one boundary. Skip heuristics that are more 3027 // "tie-breaking" in nature. 3028 bool SameBoundary = Zone != nullptr; 3029 if (SameBoundary) { 3030 // For loops that are acyclic path limited, aggressively schedule for 3031 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 3032 // heuristics to take precedence. 3033 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 3034 tryLatency(TryCand, Cand, *Zone)) 3035 return; 3036 3037 // Prioritize instructions that read unbuffered resources by stall cycles. 3038 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 3039 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3040 return; 3041 } 3042 3043 // Keep clustered nodes together to encourage downstream peephole 3044 // optimizations which may reduce resource requirements. 3045 // 3046 // This is a best effort to set things up for a post-RA pass. Optimizations 3047 // like generating loads of multiple registers should ideally be done within 3048 // the scheduler pass by combining the loads during DAG postprocessing. 3049 const SUnit *CandNextClusterSU = 3050 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3051 const SUnit *TryCandNextClusterSU = 3052 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3053 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 3054 Cand.SU == CandNextClusterSU, 3055 TryCand, Cand, Cluster)) 3056 return; 3057 3058 if (SameBoundary) { 3059 // Weak edges are for clustering and other constraints. 3060 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 3061 getWeakLeft(Cand.SU, Cand.AtTop), 3062 TryCand, Cand, Weak)) 3063 return; 3064 } 3065 3066 // Avoid increasing the max pressure of the entire region. 3067 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 3068 Cand.RPDelta.CurrentMax, 3069 TryCand, Cand, RegMax, TRI, 3070 DAG->MF)) 3071 return; 3072 3073 if (SameBoundary) { 3074 // Avoid critical resource consumption and balance the schedule. 3075 TryCand.initResourceDelta(DAG, SchedModel); 3076 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3077 TryCand, Cand, ResourceReduce)) 3078 return; 3079 if (tryGreater(TryCand.ResDelta.DemandedResources, 3080 Cand.ResDelta.DemandedResources, 3081 TryCand, Cand, ResourceDemand)) 3082 return; 3083 3084 // Avoid serializing long latency dependence chains. 3085 // For acyclic path limited loops, latency was already checked above. 3086 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 3087 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 3088 return; 3089 3090 // Fall through to original instruction order. 3091 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 3092 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 3093 TryCand.Reason = NodeOrder; 3094 } 3095 } 3096 } 3097 3098 /// Pick the best candidate from the queue. 3099 /// 3100 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 3101 /// DAG building. To adjust for the current scheduling location we need to 3102 /// maintain the number of vreg uses remaining to be top-scheduled. 3103 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3104 const CandPolicy &ZonePolicy, 3105 const RegPressureTracker &RPTracker, 3106 SchedCandidate &Cand) { 3107 // getMaxPressureDelta temporarily modifies the tracker. 3108 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3109 3110 ReadyQueue &Q = Zone.Available; 3111 for (SUnit *SU : Q) { 3112 3113 SchedCandidate TryCand(ZonePolicy); 3114 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3115 // Pass SchedBoundary only when comparing nodes from the same boundary. 3116 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3117 tryCandidate(Cand, TryCand, ZoneArg); 3118 if (TryCand.Reason != NoCand) { 3119 // Initialize resource delta if needed in case future heuristics query it. 3120 if (TryCand.ResDelta == SchedResourceDelta()) 3121 TryCand.initResourceDelta(DAG, SchedModel); 3122 Cand.setBest(TryCand); 3123 LLVM_DEBUG(traceCandidate(Cand)); 3124 } 3125 } 3126 } 3127 3128 /// Pick the best candidate node from either the top or bottom queue. 3129 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3130 // Schedule as far as possible in the direction of no choice. This is most 3131 // efficient, but also provides the best heuristics for CriticalPSets. 3132 if (SUnit *SU = Bot.pickOnlyChoice()) { 3133 IsTopNode = false; 3134 tracePick(Only1, false); 3135 return SU; 3136 } 3137 if (SUnit *SU = Top.pickOnlyChoice()) { 3138 IsTopNode = true; 3139 tracePick(Only1, true); 3140 return SU; 3141 } 3142 // Set the bottom-up policy based on the state of the current bottom zone and 3143 // the instructions outside the zone, including the top zone. 3144 CandPolicy BotPolicy; 3145 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3146 // Set the top-down policy based on the state of the current top zone and 3147 // the instructions outside the zone, including the bottom zone. 3148 CandPolicy TopPolicy; 3149 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3150 3151 // See if BotCand is still valid (because we previously scheduled from Top). 3152 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 3153 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3154 BotCand.Policy != BotPolicy) { 3155 BotCand.reset(CandPolicy()); 3156 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3157 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3158 } else { 3159 LLVM_DEBUG(traceCandidate(BotCand)); 3160 #ifndef NDEBUG 3161 if (VerifyScheduling) { 3162 SchedCandidate TCand; 3163 TCand.reset(CandPolicy()); 3164 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3165 assert(TCand.SU == BotCand.SU && 3166 "Last pick result should correspond to re-picking right now"); 3167 } 3168 #endif 3169 } 3170 3171 // Check if the top Q has a better candidate. 3172 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 3173 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3174 TopCand.Policy != TopPolicy) { 3175 TopCand.reset(CandPolicy()); 3176 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3177 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3178 } else { 3179 LLVM_DEBUG(traceCandidate(TopCand)); 3180 #ifndef NDEBUG 3181 if (VerifyScheduling) { 3182 SchedCandidate TCand; 3183 TCand.reset(CandPolicy()); 3184 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3185 assert(TCand.SU == TopCand.SU && 3186 "Last pick result should correspond to re-picking right now"); 3187 } 3188 #endif 3189 } 3190 3191 // Pick best from BotCand and TopCand. 3192 assert(BotCand.isValid()); 3193 assert(TopCand.isValid()); 3194 SchedCandidate Cand = BotCand; 3195 TopCand.Reason = NoCand; 3196 tryCandidate(Cand, TopCand, nullptr); 3197 if (TopCand.Reason != NoCand) { 3198 Cand.setBest(TopCand); 3199 LLVM_DEBUG(traceCandidate(Cand)); 3200 } 3201 3202 IsTopNode = Cand.AtTop; 3203 tracePick(Cand); 3204 return Cand.SU; 3205 } 3206 3207 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3208 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3209 if (DAG->top() == DAG->bottom()) { 3210 assert(Top.Available.empty() && Top.Pending.empty() && 3211 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3212 return nullptr; 3213 } 3214 SUnit *SU; 3215 do { 3216 if (RegionPolicy.OnlyTopDown) { 3217 SU = Top.pickOnlyChoice(); 3218 if (!SU) { 3219 CandPolicy NoPolicy; 3220 TopCand.reset(NoPolicy); 3221 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3222 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3223 tracePick(TopCand); 3224 SU = TopCand.SU; 3225 } 3226 IsTopNode = true; 3227 } else if (RegionPolicy.OnlyBottomUp) { 3228 SU = Bot.pickOnlyChoice(); 3229 if (!SU) { 3230 CandPolicy NoPolicy; 3231 BotCand.reset(NoPolicy); 3232 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3233 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3234 tracePick(BotCand); 3235 SU = BotCand.SU; 3236 } 3237 IsTopNode = false; 3238 } else { 3239 SU = pickNodeBidirectional(IsTopNode); 3240 } 3241 } while (SU->isScheduled); 3242 3243 if (SU->isTopReady()) 3244 Top.removeReady(SU); 3245 if (SU->isBottomReady()) 3246 Bot.removeReady(SU); 3247 3248 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3249 << *SU->getInstr()); 3250 return SU; 3251 } 3252 3253 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) { 3254 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3255 if (!isTop) 3256 ++InsertPos; 3257 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3258 3259 // Find already scheduled copies with a single physreg dependence and move 3260 // them just above the scheduled instruction. 3261 for (SDep &Dep : Deps) { 3262 if (Dep.getKind() != SDep::Data || 3263 !Register::isPhysicalRegister(Dep.getReg())) 3264 continue; 3265 SUnit *DepSU = Dep.getSUnit(); 3266 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3267 continue; 3268 MachineInstr *Copy = DepSU->getInstr(); 3269 if (!Copy->isCopy() && !Copy->isMoveImmediate()) 3270 continue; 3271 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy "; 3272 DAG->dumpNode(*Dep.getSUnit())); 3273 DAG->moveInstruction(Copy, InsertPos); 3274 } 3275 } 3276 3277 /// Update the scheduler's state after scheduling a node. This is the same node 3278 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3279 /// update it's state based on the current cycle before MachineSchedStrategy 3280 /// does. 3281 /// 3282 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3283 /// them here. See comments in biasPhysReg. 3284 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3285 if (IsTopNode) { 3286 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3287 Top.bumpNode(SU); 3288 if (SU->hasPhysRegUses) 3289 reschedulePhysReg(SU, true); 3290 } else { 3291 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3292 Bot.bumpNode(SU); 3293 if (SU->hasPhysRegDefs) 3294 reschedulePhysReg(SU, false); 3295 } 3296 } 3297 3298 /// Create the standard converging machine scheduler. This will be used as the 3299 /// default scheduler if the target does not set a default. 3300 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3301 ScheduleDAGMILive *DAG = 3302 new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)); 3303 // Register DAG post-processors. 3304 // 3305 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3306 // data and pass it to later mutations. Have a single mutation that gathers 3307 // the interesting nodes in one pass. 3308 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3309 return DAG; 3310 } 3311 3312 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) { 3313 return createGenericSchedLive(C); 3314 } 3315 3316 static MachineSchedRegistry 3317 GenericSchedRegistry("converge", "Standard converging scheduler.", 3318 createConveringSched); 3319 3320 //===----------------------------------------------------------------------===// 3321 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3322 //===----------------------------------------------------------------------===// 3323 3324 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3325 DAG = Dag; 3326 SchedModel = DAG->getSchedModel(); 3327 TRI = DAG->TRI; 3328 3329 Rem.init(DAG, SchedModel); 3330 Top.init(DAG, SchedModel, &Rem); 3331 BotRoots.clear(); 3332 3333 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3334 // or are disabled, then these HazardRecs will be disabled. 3335 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3336 if (!Top.HazardRec) { 3337 Top.HazardRec = 3338 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3339 Itin, DAG); 3340 } 3341 } 3342 3343 void PostGenericScheduler::registerRoots() { 3344 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3345 3346 // Some roots may not feed into ExitSU. Check all of them in case. 3347 for (const SUnit *SU : BotRoots) { 3348 if (SU->getDepth() > Rem.CriticalPath) 3349 Rem.CriticalPath = SU->getDepth(); 3350 } 3351 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3352 if (DumpCriticalPathLength) { 3353 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3354 } 3355 } 3356 3357 /// Apply a set of heuristics to a new candidate for PostRA scheduling. 3358 /// 3359 /// \param Cand provides the policy and current best candidate. 3360 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3361 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3362 SchedCandidate &TryCand) { 3363 // Initialize the candidate if needed. 3364 if (!Cand.isValid()) { 3365 TryCand.Reason = NodeOrder; 3366 return; 3367 } 3368 3369 // Prioritize instructions that read unbuffered resources by stall cycles. 3370 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3371 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3372 return; 3373 3374 // Keep clustered nodes together. 3375 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3376 Cand.SU == DAG->getNextClusterSucc(), 3377 TryCand, Cand, Cluster)) 3378 return; 3379 3380 // Avoid critical resource consumption and balance the schedule. 3381 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3382 TryCand, Cand, ResourceReduce)) 3383 return; 3384 if (tryGreater(TryCand.ResDelta.DemandedResources, 3385 Cand.ResDelta.DemandedResources, 3386 TryCand, Cand, ResourceDemand)) 3387 return; 3388 3389 // Avoid serializing long latency dependence chains. 3390 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3391 return; 3392 } 3393 3394 // Fall through to original instruction order. 3395 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3396 TryCand.Reason = NodeOrder; 3397 } 3398 3399 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3400 ReadyQueue &Q = Top.Available; 3401 for (SUnit *SU : Q) { 3402 SchedCandidate TryCand(Cand.Policy); 3403 TryCand.SU = SU; 3404 TryCand.AtTop = true; 3405 TryCand.initResourceDelta(DAG, SchedModel); 3406 tryCandidate(Cand, TryCand); 3407 if (TryCand.Reason != NoCand) { 3408 Cand.setBest(TryCand); 3409 LLVM_DEBUG(traceCandidate(Cand)); 3410 } 3411 } 3412 } 3413 3414 /// Pick the next node to schedule. 3415 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3416 if (DAG->top() == DAG->bottom()) { 3417 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3418 return nullptr; 3419 } 3420 SUnit *SU; 3421 do { 3422 SU = Top.pickOnlyChoice(); 3423 if (SU) { 3424 tracePick(Only1, true); 3425 } else { 3426 CandPolicy NoPolicy; 3427 SchedCandidate TopCand(NoPolicy); 3428 // Set the top-down policy based on the state of the current top zone and 3429 // the instructions outside the zone, including the bottom zone. 3430 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3431 pickNodeFromQueue(TopCand); 3432 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3433 tracePick(TopCand); 3434 SU = TopCand.SU; 3435 } 3436 } while (SU->isScheduled); 3437 3438 IsTopNode = true; 3439 Top.removeReady(SU); 3440 3441 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3442 << *SU->getInstr()); 3443 return SU; 3444 } 3445 3446 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3447 /// scheduled/remaining flags in the DAG nodes. 3448 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3449 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3450 Top.bumpNode(SU); 3451 } 3452 3453 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3454 return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C), 3455 /*RemoveKillFlags=*/true); 3456 } 3457 3458 //===----------------------------------------------------------------------===// 3459 // ILP Scheduler. Currently for experimental analysis of heuristics. 3460 //===----------------------------------------------------------------------===// 3461 3462 namespace { 3463 3464 /// Order nodes by the ILP metric. 3465 struct ILPOrder { 3466 const SchedDFSResult *DFSResult = nullptr; 3467 const BitVector *ScheduledTrees = nullptr; 3468 bool MaximizeILP; 3469 3470 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3471 3472 /// Apply a less-than relation on node priority. 3473 /// 3474 /// (Return true if A comes after B in the Q.) 3475 bool operator()(const SUnit *A, const SUnit *B) const { 3476 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3477 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3478 if (SchedTreeA != SchedTreeB) { 3479 // Unscheduled trees have lower priority. 3480 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3481 return ScheduledTrees->test(SchedTreeB); 3482 3483 // Trees with shallower connections have have lower priority. 3484 if (DFSResult->getSubtreeLevel(SchedTreeA) 3485 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3486 return DFSResult->getSubtreeLevel(SchedTreeA) 3487 < DFSResult->getSubtreeLevel(SchedTreeB); 3488 } 3489 } 3490 if (MaximizeILP) 3491 return DFSResult->getILP(A) < DFSResult->getILP(B); 3492 else 3493 return DFSResult->getILP(A) > DFSResult->getILP(B); 3494 } 3495 }; 3496 3497 /// Schedule based on the ILP metric. 3498 class ILPScheduler : public MachineSchedStrategy { 3499 ScheduleDAGMILive *DAG = nullptr; 3500 ILPOrder Cmp; 3501 3502 std::vector<SUnit*> ReadyQ; 3503 3504 public: 3505 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3506 3507 void initialize(ScheduleDAGMI *dag) override { 3508 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3509 DAG = static_cast<ScheduleDAGMILive*>(dag); 3510 DAG->computeDFSResult(); 3511 Cmp.DFSResult = DAG->getDFSResult(); 3512 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3513 ReadyQ.clear(); 3514 } 3515 3516 void registerRoots() override { 3517 // Restore the heap in ReadyQ with the updated DFS results. 3518 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3519 } 3520 3521 /// Implement MachineSchedStrategy interface. 3522 /// ----------------------------------------- 3523 3524 /// Callback to select the highest priority node from the ready Q. 3525 SUnit *pickNode(bool &IsTopNode) override { 3526 if (ReadyQ.empty()) return nullptr; 3527 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3528 SUnit *SU = ReadyQ.back(); 3529 ReadyQ.pop_back(); 3530 IsTopNode = false; 3531 LLVM_DEBUG(dbgs() << "Pick node " 3532 << "SU(" << SU->NodeNum << ") " 3533 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3534 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) 3535 << " @" 3536 << DAG->getDFSResult()->getSubtreeLevel( 3537 DAG->getDFSResult()->getSubtreeID(SU)) 3538 << '\n' 3539 << "Scheduling " << *SU->getInstr()); 3540 return SU; 3541 } 3542 3543 /// Scheduler callback to notify that a new subtree is scheduled. 3544 void scheduleTree(unsigned SubtreeID) override { 3545 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3546 } 3547 3548 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3549 /// DFSResults, and resort the priority Q. 3550 void schedNode(SUnit *SU, bool IsTopNode) override { 3551 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3552 } 3553 3554 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3555 3556 void releaseBottomNode(SUnit *SU) override { 3557 ReadyQ.push_back(SU); 3558 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3559 } 3560 }; 3561 3562 } // end anonymous namespace 3563 3564 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3565 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true)); 3566 } 3567 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3568 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false)); 3569 } 3570 3571 static MachineSchedRegistry ILPMaxRegistry( 3572 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3573 static MachineSchedRegistry ILPMinRegistry( 3574 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3575 3576 //===----------------------------------------------------------------------===// 3577 // Machine Instruction Shuffler for Correctness Testing 3578 //===----------------------------------------------------------------------===// 3579 3580 #ifndef NDEBUG 3581 namespace { 3582 3583 /// Apply a less-than relation on the node order, which corresponds to the 3584 /// instruction order prior to scheduling. IsReverse implements greater-than. 3585 template<bool IsReverse> 3586 struct SUnitOrder { 3587 bool operator()(SUnit *A, SUnit *B) const { 3588 if (IsReverse) 3589 return A->NodeNum > B->NodeNum; 3590 else 3591 return A->NodeNum < B->NodeNum; 3592 } 3593 }; 3594 3595 /// Reorder instructions as much as possible. 3596 class InstructionShuffler : public MachineSchedStrategy { 3597 bool IsAlternating; 3598 bool IsTopDown; 3599 3600 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3601 // gives nodes with a higher number higher priority causing the latest 3602 // instructions to be scheduled first. 3603 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3604 TopQ; 3605 3606 // When scheduling bottom-up, use greater-than as the queue priority. 3607 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3608 BottomQ; 3609 3610 public: 3611 InstructionShuffler(bool alternate, bool topdown) 3612 : IsAlternating(alternate), IsTopDown(topdown) {} 3613 3614 void initialize(ScheduleDAGMI*) override { 3615 TopQ.clear(); 3616 BottomQ.clear(); 3617 } 3618 3619 /// Implement MachineSchedStrategy interface. 3620 /// ----------------------------------------- 3621 3622 SUnit *pickNode(bool &IsTopNode) override { 3623 SUnit *SU; 3624 if (IsTopDown) { 3625 do { 3626 if (TopQ.empty()) return nullptr; 3627 SU = TopQ.top(); 3628 TopQ.pop(); 3629 } while (SU->isScheduled); 3630 IsTopNode = true; 3631 } else { 3632 do { 3633 if (BottomQ.empty()) return nullptr; 3634 SU = BottomQ.top(); 3635 BottomQ.pop(); 3636 } while (SU->isScheduled); 3637 IsTopNode = false; 3638 } 3639 if (IsAlternating) 3640 IsTopDown = !IsTopDown; 3641 return SU; 3642 } 3643 3644 void schedNode(SUnit *SU, bool IsTopNode) override {} 3645 3646 void releaseTopNode(SUnit *SU) override { 3647 TopQ.push(SU); 3648 } 3649 void releaseBottomNode(SUnit *SU) override { 3650 BottomQ.push(SU); 3651 } 3652 }; 3653 3654 } // end anonymous namespace 3655 3656 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3657 bool Alternate = !ForceTopDown && !ForceBottomUp; 3658 bool TopDown = !ForceBottomUp; 3659 assert((TopDown || !ForceTopDown) && 3660 "-misched-topdown incompatible with -misched-bottomup"); 3661 return new ScheduleDAGMILive( 3662 C, std::make_unique<InstructionShuffler>(Alternate, TopDown)); 3663 } 3664 3665 static MachineSchedRegistry ShufflerRegistry( 3666 "shuffle", "Shuffle machine instructions alternating directions", 3667 createInstructionShuffler); 3668 #endif // !NDEBUG 3669 3670 //===----------------------------------------------------------------------===// 3671 // GraphWriter support for ScheduleDAGMILive. 3672 //===----------------------------------------------------------------------===// 3673 3674 #ifndef NDEBUG 3675 namespace llvm { 3676 3677 template<> struct GraphTraits< 3678 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3679 3680 template<> 3681 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3682 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3683 3684 static std::string getGraphName(const ScheduleDAG *G) { 3685 return G->MF.getName(); 3686 } 3687 3688 static bool renderGraphFromBottomUp() { 3689 return true; 3690 } 3691 3692 static bool isNodeHidden(const SUnit *Node) { 3693 if (ViewMISchedCutoff == 0) 3694 return false; 3695 return (Node->Preds.size() > ViewMISchedCutoff 3696 || Node->Succs.size() > ViewMISchedCutoff); 3697 } 3698 3699 /// If you want to override the dot attributes printed for a particular 3700 /// edge, override this method. 3701 static std::string getEdgeAttributes(const SUnit *Node, 3702 SUnitIterator EI, 3703 const ScheduleDAG *Graph) { 3704 if (EI.isArtificialDep()) 3705 return "color=cyan,style=dashed"; 3706 if (EI.isCtrlDep()) 3707 return "color=blue,style=dashed"; 3708 return ""; 3709 } 3710 3711 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3712 std::string Str; 3713 raw_string_ostream SS(Str); 3714 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3715 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3716 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3717 SS << "SU:" << SU->NodeNum; 3718 if (DFS) 3719 SS << " I:" << DFS->getNumInstrs(SU); 3720 return SS.str(); 3721 } 3722 3723 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3724 return G->getGraphNodeLabel(SU); 3725 } 3726 3727 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3728 std::string Str("shape=Mrecord"); 3729 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3730 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3731 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3732 if (DFS) { 3733 Str += ",style=filled,fillcolor=\"#"; 3734 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3735 Str += '"'; 3736 } 3737 return Str; 3738 } 3739 }; 3740 3741 } // end namespace llvm 3742 #endif // NDEBUG 3743 3744 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3745 /// rendered using 'dot'. 3746 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3747 #ifndef NDEBUG 3748 ViewGraph(this, Name, false, Title); 3749 #else 3750 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3751 << "systems with Graphviz or gv!\n"; 3752 #endif // NDEBUG 3753 } 3754 3755 /// Out-of-line implementation with no arguments is handy for gdb. 3756 void ScheduleDAGMI::viewGraph() { 3757 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3758 } 3759