xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision 85868e8a1daeaae7a0e48effb2ea2310ae3b02c6)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachineScheduler schedules machine instructions after phi elimination. It
10 // preserves LiveIntervals so it can be invoked before register allocation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineScheduler.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveInterval.h"
24 #include "llvm/CodeGen/LiveIntervals.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachinePassRegistry.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/Passes.h"
35 #include "llvm/CodeGen/RegisterClassInfo.h"
36 #include "llvm/CodeGen/RegisterPressure.h"
37 #include "llvm/CodeGen/ScheduleDAG.h"
38 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
39 #include "llvm/CodeGen/ScheduleDAGMutation.h"
40 #include "llvm/CodeGen/ScheduleDFS.h"
41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42 #include "llvm/CodeGen/SlotIndexes.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSchedule.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/Config/llvm-config.h"
51 #include "llvm/MC/LaneBitmask.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/GraphWriter.h"
58 #include "llvm/Support/MachineValueType.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <limits>
65 #include <memory>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69 #include <vector>
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "machine-scheduler"
74 
75 namespace llvm {
76 
77 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
78                            cl::desc("Force top-down list scheduling"));
79 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
80                             cl::desc("Force bottom-up list scheduling"));
81 cl::opt<bool>
82 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
83                        cl::desc("Print critical path length to stdout"));
84 
85 cl::opt<bool> VerifyScheduling(
86     "verify-misched", cl::Hidden,
87     cl::desc("Verify machine instrs before and after machine scheduling"));
88 
89 } // end namespace llvm
90 
91 #ifndef NDEBUG
92 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
93   cl::desc("Pop up a window to show MISched dags after they are processed"));
94 
95 /// In some situations a few uninteresting nodes depend on nearly all other
96 /// nodes in the graph, provide a cutoff to hide them.
97 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
98   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
99 
100 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
101   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
102 
103 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
104   cl::desc("Only schedule this function"));
105 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
106                                         cl::desc("Only schedule this MBB#"));
107 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
108                               cl::desc("Print schedule DAGs"));
109 #else
110 static const bool ViewMISchedDAGs = false;
111 static const bool PrintDAGs = false;
112 #endif // NDEBUG
113 
114 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
115 /// size of the ready lists.
116 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
117   cl::desc("Limit ready list to N instructions"), cl::init(256));
118 
119 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
120   cl::desc("Enable register pressure scheduling."), cl::init(true));
121 
122 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
123   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
124 
125 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
126                                         cl::desc("Enable memop clustering."),
127                                         cl::init(true));
128 
129 // DAG subtrees must have at least this many nodes.
130 static const unsigned MinSubtreeSize = 8;
131 
132 // Pin the vtables to this file.
133 void MachineSchedStrategy::anchor() {}
134 
135 void ScheduleDAGMutation::anchor() {}
136 
137 //===----------------------------------------------------------------------===//
138 // Machine Instruction Scheduling Pass and Registry
139 //===----------------------------------------------------------------------===//
140 
141 MachineSchedContext::MachineSchedContext() {
142   RegClassInfo = new RegisterClassInfo();
143 }
144 
145 MachineSchedContext::~MachineSchedContext() {
146   delete RegClassInfo;
147 }
148 
149 namespace {
150 
151 /// Base class for a machine scheduler class that can run at any point.
152 class MachineSchedulerBase : public MachineSchedContext,
153                              public MachineFunctionPass {
154 public:
155   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
156 
157   void print(raw_ostream &O, const Module* = nullptr) const override;
158 
159 protected:
160   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
161 };
162 
163 /// MachineScheduler runs after coalescing and before register allocation.
164 class MachineScheduler : public MachineSchedulerBase {
165 public:
166   MachineScheduler();
167 
168   void getAnalysisUsage(AnalysisUsage &AU) const override;
169 
170   bool runOnMachineFunction(MachineFunction&) override;
171 
172   static char ID; // Class identification, replacement for typeinfo
173 
174 protected:
175   ScheduleDAGInstrs *createMachineScheduler();
176 };
177 
178 /// PostMachineScheduler runs after shortly before code emission.
179 class PostMachineScheduler : public MachineSchedulerBase {
180 public:
181   PostMachineScheduler();
182 
183   void getAnalysisUsage(AnalysisUsage &AU) const override;
184 
185   bool runOnMachineFunction(MachineFunction&) override;
186 
187   static char ID; // Class identification, replacement for typeinfo
188 
189 protected:
190   ScheduleDAGInstrs *createPostMachineScheduler();
191 };
192 
193 } // end anonymous namespace
194 
195 char MachineScheduler::ID = 0;
196 
197 char &llvm::MachineSchedulerID = MachineScheduler::ID;
198 
199 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
200                       "Machine Instruction Scheduler", false, false)
201 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
202 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
203 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
204 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
205 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
206 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
207                     "Machine Instruction Scheduler", false, false)
208 
209 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
210   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
211 }
212 
213 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
214   AU.setPreservesCFG();
215   AU.addRequired<MachineDominatorTree>();
216   AU.addRequired<MachineLoopInfo>();
217   AU.addRequired<AAResultsWrapperPass>();
218   AU.addRequired<TargetPassConfig>();
219   AU.addRequired<SlotIndexes>();
220   AU.addPreserved<SlotIndexes>();
221   AU.addRequired<LiveIntervals>();
222   AU.addPreserved<LiveIntervals>();
223   MachineFunctionPass::getAnalysisUsage(AU);
224 }
225 
226 char PostMachineScheduler::ID = 0;
227 
228 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
229 
230 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
231                 "PostRA Machine Instruction Scheduler", false, false)
232 
233 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
234   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
235 }
236 
237 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
238   AU.setPreservesCFG();
239   AU.addRequired<MachineDominatorTree>();
240   AU.addRequired<MachineLoopInfo>();
241   AU.addRequired<TargetPassConfig>();
242   MachineFunctionPass::getAnalysisUsage(AU);
243 }
244 
245 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
246     MachineSchedRegistry::Registry;
247 
248 /// A dummy default scheduler factory indicates whether the scheduler
249 /// is overridden on the command line.
250 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
251   return nullptr;
252 }
253 
254 /// MachineSchedOpt allows command line selection of the scheduler.
255 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
256                RegisterPassParser<MachineSchedRegistry>>
257 MachineSchedOpt("misched",
258                 cl::init(&useDefaultMachineSched), cl::Hidden,
259                 cl::desc("Machine instruction scheduler to use"));
260 
261 static MachineSchedRegistry
262 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
263                      useDefaultMachineSched);
264 
265 static cl::opt<bool> EnableMachineSched(
266     "enable-misched",
267     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
268     cl::Hidden);
269 
270 static cl::opt<bool> EnablePostRAMachineSched(
271     "enable-post-misched",
272     cl::desc("Enable the post-ra machine instruction scheduling pass."),
273     cl::init(true), cl::Hidden);
274 
275 /// Decrement this iterator until reaching the top or a non-debug instr.
276 static MachineBasicBlock::const_iterator
277 priorNonDebug(MachineBasicBlock::const_iterator I,
278               MachineBasicBlock::const_iterator Beg) {
279   assert(I != Beg && "reached the top of the region, cannot decrement");
280   while (--I != Beg) {
281     if (!I->isDebugInstr())
282       break;
283   }
284   return I;
285 }
286 
287 /// Non-const version.
288 static MachineBasicBlock::iterator
289 priorNonDebug(MachineBasicBlock::iterator I,
290               MachineBasicBlock::const_iterator Beg) {
291   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
292       .getNonConstIterator();
293 }
294 
295 /// If this iterator is a debug value, increment until reaching the End or a
296 /// non-debug instruction.
297 static MachineBasicBlock::const_iterator
298 nextIfDebug(MachineBasicBlock::const_iterator I,
299             MachineBasicBlock::const_iterator End) {
300   for(; I != End; ++I) {
301     if (!I->isDebugInstr())
302       break;
303   }
304   return I;
305 }
306 
307 /// Non-const version.
308 static MachineBasicBlock::iterator
309 nextIfDebug(MachineBasicBlock::iterator I,
310             MachineBasicBlock::const_iterator End) {
311   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
312       .getNonConstIterator();
313 }
314 
315 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
316 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
317   // Select the scheduler, or set the default.
318   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
319   if (Ctor != useDefaultMachineSched)
320     return Ctor(this);
321 
322   // Get the default scheduler set by the target for this function.
323   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
324   if (Scheduler)
325     return Scheduler;
326 
327   // Default to GenericScheduler.
328   return createGenericSchedLive(this);
329 }
330 
331 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
332 /// the caller. We don't have a command line option to override the postRA
333 /// scheduler. The Target must configure it.
334 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
335   // Get the postRA scheduler set by the target for this function.
336   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
337   if (Scheduler)
338     return Scheduler;
339 
340   // Default to GenericScheduler.
341   return createGenericSchedPostRA(this);
342 }
343 
344 /// Top-level MachineScheduler pass driver.
345 ///
346 /// Visit blocks in function order. Divide each block into scheduling regions
347 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
348 /// consistent with the DAG builder, which traverses the interior of the
349 /// scheduling regions bottom-up.
350 ///
351 /// This design avoids exposing scheduling boundaries to the DAG builder,
352 /// simplifying the DAG builder's support for "special" target instructions.
353 /// At the same time the design allows target schedulers to operate across
354 /// scheduling boundaries, for example to bundle the boundary instructions
355 /// without reordering them. This creates complexity, because the target
356 /// scheduler must update the RegionBegin and RegionEnd positions cached by
357 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
358 /// design would be to split blocks at scheduling boundaries, but LLVM has a
359 /// general bias against block splitting purely for implementation simplicity.
360 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
361   if (skipFunction(mf.getFunction()))
362     return false;
363 
364   if (EnableMachineSched.getNumOccurrences()) {
365     if (!EnableMachineSched)
366       return false;
367   } else if (!mf.getSubtarget().enableMachineScheduler())
368     return false;
369 
370   LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
371 
372   // Initialize the context of the pass.
373   MF = &mf;
374   MLI = &getAnalysis<MachineLoopInfo>();
375   MDT = &getAnalysis<MachineDominatorTree>();
376   PassConfig = &getAnalysis<TargetPassConfig>();
377   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
378 
379   LIS = &getAnalysis<LiveIntervals>();
380 
381   if (VerifyScheduling) {
382     LLVM_DEBUG(LIS->dump());
383     MF->verify(this, "Before machine scheduling.");
384   }
385   RegClassInfo->runOnMachineFunction(*MF);
386 
387   // Instantiate the selected scheduler for this target, function, and
388   // optimization level.
389   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
390   scheduleRegions(*Scheduler, false);
391 
392   LLVM_DEBUG(LIS->dump());
393   if (VerifyScheduling)
394     MF->verify(this, "After machine scheduling.");
395   return true;
396 }
397 
398 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
399   if (skipFunction(mf.getFunction()))
400     return false;
401 
402   if (EnablePostRAMachineSched.getNumOccurrences()) {
403     if (!EnablePostRAMachineSched)
404       return false;
405   } else if (!mf.getSubtarget().enablePostRAScheduler()) {
406     LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
407     return false;
408   }
409   LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
410 
411   // Initialize the context of the pass.
412   MF = &mf;
413   MLI = &getAnalysis<MachineLoopInfo>();
414   PassConfig = &getAnalysis<TargetPassConfig>();
415 
416   if (VerifyScheduling)
417     MF->verify(this, "Before post machine scheduling.");
418 
419   // Instantiate the selected scheduler for this target, function, and
420   // optimization level.
421   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
422   scheduleRegions(*Scheduler, true);
423 
424   if (VerifyScheduling)
425     MF->verify(this, "After post machine scheduling.");
426   return true;
427 }
428 
429 /// Return true of the given instruction should not be included in a scheduling
430 /// region.
431 ///
432 /// MachineScheduler does not currently support scheduling across calls. To
433 /// handle calls, the DAG builder needs to be modified to create register
434 /// anti/output dependencies on the registers clobbered by the call's regmask
435 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
436 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
437 /// the boundary, but there would be no benefit to postRA scheduling across
438 /// calls this late anyway.
439 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
440                             MachineBasicBlock *MBB,
441                             MachineFunction *MF,
442                             const TargetInstrInfo *TII) {
443   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
444 }
445 
446 /// A region of an MBB for scheduling.
447 namespace {
448 struct SchedRegion {
449   /// RegionBegin is the first instruction in the scheduling region, and
450   /// RegionEnd is either MBB->end() or the scheduling boundary after the
451   /// last instruction in the scheduling region. These iterators cannot refer
452   /// to instructions outside of the identified scheduling region because
453   /// those may be reordered before scheduling this region.
454   MachineBasicBlock::iterator RegionBegin;
455   MachineBasicBlock::iterator RegionEnd;
456   unsigned NumRegionInstrs;
457 
458   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
459               unsigned N) :
460     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
461 };
462 } // end anonymous namespace
463 
464 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
465 
466 static void
467 getSchedRegions(MachineBasicBlock *MBB,
468                 MBBRegionsVector &Regions,
469                 bool RegionsTopDown) {
470   MachineFunction *MF = MBB->getParent();
471   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
472 
473   MachineBasicBlock::iterator I = nullptr;
474   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
475       RegionEnd != MBB->begin(); RegionEnd = I) {
476 
477     // Avoid decrementing RegionEnd for blocks with no terminator.
478     if (RegionEnd != MBB->end() ||
479         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
480       --RegionEnd;
481     }
482 
483     // The next region starts above the previous region. Look backward in the
484     // instruction stream until we find the nearest boundary.
485     unsigned NumRegionInstrs = 0;
486     I = RegionEnd;
487     for (;I != MBB->begin(); --I) {
488       MachineInstr &MI = *std::prev(I);
489       if (isSchedBoundary(&MI, &*MBB, MF, TII))
490         break;
491       if (!MI.isDebugInstr()) {
492         // MBB::size() uses instr_iterator to count. Here we need a bundle to
493         // count as a single instruction.
494         ++NumRegionInstrs;
495       }
496     }
497 
498     // It's possible we found a scheduling region that only has debug
499     // instructions. Don't bother scheduling these.
500     if (NumRegionInstrs != 0)
501       Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
502   }
503 
504   if (RegionsTopDown)
505     std::reverse(Regions.begin(), Regions.end());
506 }
507 
508 /// Main driver for both MachineScheduler and PostMachineScheduler.
509 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
510                                            bool FixKillFlags) {
511   // Visit all machine basic blocks.
512   //
513   // TODO: Visit blocks in global postorder or postorder within the bottom-up
514   // loop tree. Then we can optionally compute global RegPressure.
515   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
516        MBB != MBBEnd; ++MBB) {
517 
518     Scheduler.startBlock(&*MBB);
519 
520 #ifndef NDEBUG
521     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
522       continue;
523     if (SchedOnlyBlock.getNumOccurrences()
524         && (int)SchedOnlyBlock != MBB->getNumber())
525       continue;
526 #endif
527 
528     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
529     // points to the scheduling boundary at the bottom of the region. The DAG
530     // does not include RegionEnd, but the region does (i.e. the next
531     // RegionEnd is above the previous RegionBegin). If the current block has
532     // no terminator then RegionEnd == MBB->end() for the bottom region.
533     //
534     // All the regions of MBB are first found and stored in MBBRegions, which
535     // will be processed (MBB) top-down if initialized with true.
536     //
537     // The Scheduler may insert instructions during either schedule() or
538     // exitRegion(), even for empty regions. So the local iterators 'I' and
539     // 'RegionEnd' are invalid across these calls. Instructions must not be
540     // added to other regions than the current one without updating MBBRegions.
541 
542     MBBRegionsVector MBBRegions;
543     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
544     for (MBBRegionsVector::iterator R = MBBRegions.begin();
545          R != MBBRegions.end(); ++R) {
546       MachineBasicBlock::iterator I = R->RegionBegin;
547       MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
548       unsigned NumRegionInstrs = R->NumRegionInstrs;
549 
550       // Notify the scheduler of the region, even if we may skip scheduling
551       // it. Perhaps it still needs to be bundled.
552       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
553 
554       // Skip empty scheduling regions (0 or 1 schedulable instructions).
555       if (I == RegionEnd || I == std::prev(RegionEnd)) {
556         // Close the current region. Bundle the terminator if needed.
557         // This invalidates 'RegionEnd' and 'I'.
558         Scheduler.exitRegion();
559         continue;
560       }
561       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
562       LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
563                         << " " << MBB->getName() << "\n  From: " << *I
564                         << "    To: ";
565                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
566                  else dbgs() << "End";
567                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
568       if (DumpCriticalPathLength) {
569         errs() << MF->getName();
570         errs() << ":%bb. " << MBB->getNumber();
571         errs() << " " << MBB->getName() << " \n";
572       }
573 
574       // Schedule a region: possibly reorder instructions.
575       // This invalidates the original region iterators.
576       Scheduler.schedule();
577 
578       // Close the current region.
579       Scheduler.exitRegion();
580     }
581     Scheduler.finishBlock();
582     // FIXME: Ideally, no further passes should rely on kill flags. However,
583     // thumb2 size reduction is currently an exception, so the PostMIScheduler
584     // needs to do this.
585     if (FixKillFlags)
586       Scheduler.fixupKills(*MBB);
587   }
588   Scheduler.finalizeSchedule();
589 }
590 
591 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
592   // unimplemented
593 }
594 
595 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
596 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
597   dbgs() << "Queue " << Name << ": ";
598   for (const SUnit *SU : Queue)
599     dbgs() << SU->NodeNum << " ";
600   dbgs() << "\n";
601 }
602 #endif
603 
604 //===----------------------------------------------------------------------===//
605 // ScheduleDAGMI - Basic machine instruction scheduling. This is
606 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
607 // virtual registers.
608 // ===----------------------------------------------------------------------===/
609 
610 // Provide a vtable anchor.
611 ScheduleDAGMI::~ScheduleDAGMI() = default;
612 
613 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
614 /// NumPredsLeft reaches zero, release the successor node.
615 ///
616 /// FIXME: Adjust SuccSU height based on MinLatency.
617 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
618   SUnit *SuccSU = SuccEdge->getSUnit();
619 
620   if (SuccEdge->isWeak()) {
621     --SuccSU->WeakPredsLeft;
622     if (SuccEdge->isCluster())
623       NextClusterSucc = SuccSU;
624     return;
625   }
626 #ifndef NDEBUG
627   if (SuccSU->NumPredsLeft == 0) {
628     dbgs() << "*** Scheduling failed! ***\n";
629     dumpNode(*SuccSU);
630     dbgs() << " has been released too many times!\n";
631     llvm_unreachable(nullptr);
632   }
633 #endif
634   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
635   // CurrCycle may have advanced since then.
636   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
637     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
638 
639   --SuccSU->NumPredsLeft;
640   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
641     SchedImpl->releaseTopNode(SuccSU);
642 }
643 
644 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
645 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
646   for (SDep &Succ : SU->Succs)
647     releaseSucc(SU, &Succ);
648 }
649 
650 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
651 /// NumSuccsLeft reaches zero, release the predecessor node.
652 ///
653 /// FIXME: Adjust PredSU height based on MinLatency.
654 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
655   SUnit *PredSU = PredEdge->getSUnit();
656 
657   if (PredEdge->isWeak()) {
658     --PredSU->WeakSuccsLeft;
659     if (PredEdge->isCluster())
660       NextClusterPred = PredSU;
661     return;
662   }
663 #ifndef NDEBUG
664   if (PredSU->NumSuccsLeft == 0) {
665     dbgs() << "*** Scheduling failed! ***\n";
666     dumpNode(*PredSU);
667     dbgs() << " has been released too many times!\n";
668     llvm_unreachable(nullptr);
669   }
670 #endif
671   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
672   // CurrCycle may have advanced since then.
673   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
674     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
675 
676   --PredSU->NumSuccsLeft;
677   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
678     SchedImpl->releaseBottomNode(PredSU);
679 }
680 
681 /// releasePredecessors - Call releasePred on each of SU's predecessors.
682 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
683   for (SDep &Pred : SU->Preds)
684     releasePred(SU, &Pred);
685 }
686 
687 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
688   ScheduleDAGInstrs::startBlock(bb);
689   SchedImpl->enterMBB(bb);
690 }
691 
692 void ScheduleDAGMI::finishBlock() {
693   SchedImpl->leaveMBB();
694   ScheduleDAGInstrs::finishBlock();
695 }
696 
697 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
698 /// crossing a scheduling boundary. [begin, end) includes all instructions in
699 /// the region, including the boundary itself and single-instruction regions
700 /// that don't get scheduled.
701 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
702                                      MachineBasicBlock::iterator begin,
703                                      MachineBasicBlock::iterator end,
704                                      unsigned regioninstrs)
705 {
706   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
707 
708   SchedImpl->initPolicy(begin, end, regioninstrs);
709 }
710 
711 /// This is normally called from the main scheduler loop but may also be invoked
712 /// by the scheduling strategy to perform additional code motion.
713 void ScheduleDAGMI::moveInstruction(
714   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
715   // Advance RegionBegin if the first instruction moves down.
716   if (&*RegionBegin == MI)
717     ++RegionBegin;
718 
719   // Update the instruction stream.
720   BB->splice(InsertPos, BB, MI);
721 
722   // Update LiveIntervals
723   if (LIS)
724     LIS->handleMove(*MI, /*UpdateFlags=*/true);
725 
726   // Recede RegionBegin if an instruction moves above the first.
727   if (RegionBegin == InsertPos)
728     RegionBegin = MI;
729 }
730 
731 bool ScheduleDAGMI::checkSchedLimit() {
732 #ifndef NDEBUG
733   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
734     CurrentTop = CurrentBottom;
735     return false;
736   }
737   ++NumInstrsScheduled;
738 #endif
739   return true;
740 }
741 
742 /// Per-region scheduling driver, called back from
743 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
744 /// does not consider liveness or register pressure. It is useful for PostRA
745 /// scheduling and potentially other custom schedulers.
746 void ScheduleDAGMI::schedule() {
747   LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
748   LLVM_DEBUG(SchedImpl->dumpPolicy());
749 
750   // Build the DAG.
751   buildSchedGraph(AA);
752 
753   postprocessDAG();
754 
755   SmallVector<SUnit*, 8> TopRoots, BotRoots;
756   findRootsAndBiasEdges(TopRoots, BotRoots);
757 
758   LLVM_DEBUG(dump());
759   if (PrintDAGs) dump();
760   if (ViewMISchedDAGs) viewGraph();
761 
762   // Initialize the strategy before modifying the DAG.
763   // This may initialize a DFSResult to be used for queue priority.
764   SchedImpl->initialize(this);
765 
766   // Initialize ready queues now that the DAG and priority data are finalized.
767   initQueues(TopRoots, BotRoots);
768 
769   bool IsTopNode = false;
770   while (true) {
771     LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
772     SUnit *SU = SchedImpl->pickNode(IsTopNode);
773     if (!SU) break;
774 
775     assert(!SU->isScheduled && "Node already scheduled");
776     if (!checkSchedLimit())
777       break;
778 
779     MachineInstr *MI = SU->getInstr();
780     if (IsTopNode) {
781       assert(SU->isTopReady() && "node still has unscheduled dependencies");
782       if (&*CurrentTop == MI)
783         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
784       else
785         moveInstruction(MI, CurrentTop);
786     } else {
787       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
788       MachineBasicBlock::iterator priorII =
789         priorNonDebug(CurrentBottom, CurrentTop);
790       if (&*priorII == MI)
791         CurrentBottom = priorII;
792       else {
793         if (&*CurrentTop == MI)
794           CurrentTop = nextIfDebug(++CurrentTop, priorII);
795         moveInstruction(MI, CurrentBottom);
796         CurrentBottom = MI;
797       }
798     }
799     // Notify the scheduling strategy before updating the DAG.
800     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
801     // runs, it can then use the accurate ReadyCycle time to determine whether
802     // newly released nodes can move to the readyQ.
803     SchedImpl->schedNode(SU, IsTopNode);
804 
805     updateQueues(SU, IsTopNode);
806   }
807   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
808 
809   placeDebugValues();
810 
811   LLVM_DEBUG({
812     dbgs() << "*** Final schedule for "
813            << printMBBReference(*begin()->getParent()) << " ***\n";
814     dumpSchedule();
815     dbgs() << '\n';
816   });
817 }
818 
819 /// Apply each ScheduleDAGMutation step in order.
820 void ScheduleDAGMI::postprocessDAG() {
821   for (auto &m : Mutations)
822     m->apply(this);
823 }
824 
825 void ScheduleDAGMI::
826 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
827                       SmallVectorImpl<SUnit*> &BotRoots) {
828   for (SUnit &SU : SUnits) {
829     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
830 
831     // Order predecessors so DFSResult follows the critical path.
832     SU.biasCriticalPath();
833 
834     // A SUnit is ready to top schedule if it has no predecessors.
835     if (!SU.NumPredsLeft)
836       TopRoots.push_back(&SU);
837     // A SUnit is ready to bottom schedule if it has no successors.
838     if (!SU.NumSuccsLeft)
839       BotRoots.push_back(&SU);
840   }
841   ExitSU.biasCriticalPath();
842 }
843 
844 /// Identify DAG roots and setup scheduler queues.
845 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
846                                ArrayRef<SUnit*> BotRoots) {
847   NextClusterSucc = nullptr;
848   NextClusterPred = nullptr;
849 
850   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
851   //
852   // Nodes with unreleased weak edges can still be roots.
853   // Release top roots in forward order.
854   for (SUnit *SU : TopRoots)
855     SchedImpl->releaseTopNode(SU);
856 
857   // Release bottom roots in reverse order so the higher priority nodes appear
858   // first. This is more natural and slightly more efficient.
859   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
860          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
861     SchedImpl->releaseBottomNode(*I);
862   }
863 
864   releaseSuccessors(&EntrySU);
865   releasePredecessors(&ExitSU);
866 
867   SchedImpl->registerRoots();
868 
869   // Advance past initial DebugValues.
870   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
871   CurrentBottom = RegionEnd;
872 }
873 
874 /// Update scheduler queues after scheduling an instruction.
875 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
876   // Release dependent instructions for scheduling.
877   if (IsTopNode)
878     releaseSuccessors(SU);
879   else
880     releasePredecessors(SU);
881 
882   SU->isScheduled = true;
883 }
884 
885 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
886 void ScheduleDAGMI::placeDebugValues() {
887   // If first instruction was a DBG_VALUE then put it back.
888   if (FirstDbgValue) {
889     BB->splice(RegionBegin, BB, FirstDbgValue);
890     RegionBegin = FirstDbgValue;
891   }
892 
893   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
894          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
895     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
896     MachineInstr *DbgValue = P.first;
897     MachineBasicBlock::iterator OrigPrevMI = P.second;
898     if (&*RegionBegin == DbgValue)
899       ++RegionBegin;
900     BB->splice(++OrigPrevMI, BB, DbgValue);
901     if (OrigPrevMI == std::prev(RegionEnd))
902       RegionEnd = DbgValue;
903   }
904   DbgValues.clear();
905   FirstDbgValue = nullptr;
906 }
907 
908 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
909 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
910   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
911     if (SUnit *SU = getSUnit(&(*MI)))
912       dumpNode(*SU);
913     else
914       dbgs() << "Missing SUnit\n";
915   }
916 }
917 #endif
918 
919 //===----------------------------------------------------------------------===//
920 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
921 // preservation.
922 //===----------------------------------------------------------------------===//
923 
924 ScheduleDAGMILive::~ScheduleDAGMILive() {
925   delete DFSResult;
926 }
927 
928 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
929   const MachineInstr &MI = *SU.getInstr();
930   for (const MachineOperand &MO : MI.operands()) {
931     if (!MO.isReg())
932       continue;
933     if (!MO.readsReg())
934       continue;
935     if (TrackLaneMasks && !MO.isUse())
936       continue;
937 
938     Register Reg = MO.getReg();
939     if (!Register::isVirtualRegister(Reg))
940       continue;
941 
942     // Ignore re-defs.
943     if (TrackLaneMasks) {
944       bool FoundDef = false;
945       for (const MachineOperand &MO2 : MI.operands()) {
946         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
947           FoundDef = true;
948           break;
949         }
950       }
951       if (FoundDef)
952         continue;
953     }
954 
955     // Record this local VReg use.
956     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
957     for (; UI != VRegUses.end(); ++UI) {
958       if (UI->SU == &SU)
959         break;
960     }
961     if (UI == VRegUses.end())
962       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
963   }
964 }
965 
966 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
967 /// crossing a scheduling boundary. [begin, end) includes all instructions in
968 /// the region, including the boundary itself and single-instruction regions
969 /// that don't get scheduled.
970 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
971                                 MachineBasicBlock::iterator begin,
972                                 MachineBasicBlock::iterator end,
973                                 unsigned regioninstrs)
974 {
975   // ScheduleDAGMI initializes SchedImpl's per-region policy.
976   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
977 
978   // For convenience remember the end of the liveness region.
979   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
980 
981   SUPressureDiffs.clear();
982 
983   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
984   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
985 
986   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
987          "ShouldTrackLaneMasks requires ShouldTrackPressure");
988 }
989 
990 // Setup the register pressure trackers for the top scheduled and bottom
991 // scheduled regions.
992 void ScheduleDAGMILive::initRegPressure() {
993   VRegUses.clear();
994   VRegUses.setUniverse(MRI.getNumVirtRegs());
995   for (SUnit &SU : SUnits)
996     collectVRegUses(SU);
997 
998   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
999                     ShouldTrackLaneMasks, false);
1000   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1001                     ShouldTrackLaneMasks, false);
1002 
1003   // Close the RPTracker to finalize live ins.
1004   RPTracker.closeRegion();
1005 
1006   LLVM_DEBUG(RPTracker.dump());
1007 
1008   // Initialize the live ins and live outs.
1009   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1010   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1011 
1012   // Close one end of the tracker so we can call
1013   // getMaxUpward/DownwardPressureDelta before advancing across any
1014   // instructions. This converts currently live regs into live ins/outs.
1015   TopRPTracker.closeTop();
1016   BotRPTracker.closeBottom();
1017 
1018   BotRPTracker.initLiveThru(RPTracker);
1019   if (!BotRPTracker.getLiveThru().empty()) {
1020     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1021     LLVM_DEBUG(dbgs() << "Live Thru: ";
1022                dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1023   };
1024 
1025   // For each live out vreg reduce the pressure change associated with other
1026   // uses of the same vreg below the live-out reaching def.
1027   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1028 
1029   // Account for liveness generated by the region boundary.
1030   if (LiveRegionEnd != RegionEnd) {
1031     SmallVector<RegisterMaskPair, 8> LiveUses;
1032     BotRPTracker.recede(&LiveUses);
1033     updatePressureDiffs(LiveUses);
1034   }
1035 
1036   LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1037              dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1038              dbgs() << "Bottom Pressure:\n";
1039              dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1040 
1041   assert((BotRPTracker.getPos() == RegionEnd ||
1042           (RegionEnd->isDebugInstr() &&
1043            BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1044          "Can't find the region bottom");
1045 
1046   // Cache the list of excess pressure sets in this region. This will also track
1047   // the max pressure in the scheduled code for these sets.
1048   RegionCriticalPSets.clear();
1049   const std::vector<unsigned> &RegionPressure =
1050     RPTracker.getPressure().MaxSetPressure;
1051   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1052     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1053     if (RegionPressure[i] > Limit) {
1054       LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1055                         << " Actual " << RegionPressure[i] << "\n");
1056       RegionCriticalPSets.push_back(PressureChange(i));
1057     }
1058   }
1059   LLVM_DEBUG(dbgs() << "Excess PSets: ";
1060              for (const PressureChange &RCPS
1061                   : RegionCriticalPSets) dbgs()
1062              << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1063              dbgs() << "\n");
1064 }
1065 
1066 void ScheduleDAGMILive::
1067 updateScheduledPressure(const SUnit *SU,
1068                         const std::vector<unsigned> &NewMaxPressure) {
1069   const PressureDiff &PDiff = getPressureDiff(SU);
1070   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1071   for (const PressureChange &PC : PDiff) {
1072     if (!PC.isValid())
1073       break;
1074     unsigned ID = PC.getPSet();
1075     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1076       ++CritIdx;
1077     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1078       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1079           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1080         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1081     }
1082     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1083     if (NewMaxPressure[ID] >= Limit - 2) {
1084       LLVM_DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1085                         << NewMaxPressure[ID]
1086                         << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1087                         << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1088                         << " livethru)\n");
1089     }
1090   }
1091 }
1092 
1093 /// Update the PressureDiff array for liveness after scheduling this
1094 /// instruction.
1095 void ScheduleDAGMILive::updatePressureDiffs(
1096     ArrayRef<RegisterMaskPair> LiveUses) {
1097   for (const RegisterMaskPair &P : LiveUses) {
1098     unsigned Reg = P.RegUnit;
1099     /// FIXME: Currently assuming single-use physregs.
1100     if (!Register::isVirtualRegister(Reg))
1101       continue;
1102 
1103     if (ShouldTrackLaneMasks) {
1104       // If the register has just become live then other uses won't change
1105       // this fact anymore => decrement pressure.
1106       // If the register has just become dead then other uses make it come
1107       // back to life => increment pressure.
1108       bool Decrement = P.LaneMask.any();
1109 
1110       for (const VReg2SUnit &V2SU
1111            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1112         SUnit &SU = *V2SU.SU;
1113         if (SU.isScheduled || &SU == &ExitSU)
1114           continue;
1115 
1116         PressureDiff &PDiff = getPressureDiff(&SU);
1117         PDiff.addPressureChange(Reg, Decrement, &MRI);
1118         LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1119                           << printReg(Reg, TRI) << ':'
1120                           << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1121                    dbgs() << "              to "; PDiff.dump(*TRI););
1122       }
1123     } else {
1124       assert(P.LaneMask.any());
1125       LLVM_DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1126       // This may be called before CurrentBottom has been initialized. However,
1127       // BotRPTracker must have a valid position. We want the value live into the
1128       // instruction or live out of the block, so ask for the previous
1129       // instruction's live-out.
1130       const LiveInterval &LI = LIS->getInterval(Reg);
1131       VNInfo *VNI;
1132       MachineBasicBlock::const_iterator I =
1133         nextIfDebug(BotRPTracker.getPos(), BB->end());
1134       if (I == BB->end())
1135         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1136       else {
1137         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1138         VNI = LRQ.valueIn();
1139       }
1140       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1141       assert(VNI && "No live value at use.");
1142       for (const VReg2SUnit &V2SU
1143            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1144         SUnit *SU = V2SU.SU;
1145         // If this use comes before the reaching def, it cannot be a last use,
1146         // so decrease its pressure change.
1147         if (!SU->isScheduled && SU != &ExitSU) {
1148           LiveQueryResult LRQ =
1149               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1150           if (LRQ.valueIn() == VNI) {
1151             PressureDiff &PDiff = getPressureDiff(SU);
1152             PDiff.addPressureChange(Reg, true, &MRI);
1153             LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1154                               << *SU->getInstr();
1155                        dbgs() << "              to "; PDiff.dump(*TRI););
1156           }
1157         }
1158       }
1159     }
1160   }
1161 }
1162 
1163 void ScheduleDAGMILive::dump() const {
1164 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1165   if (EntrySU.getInstr() != nullptr)
1166     dumpNodeAll(EntrySU);
1167   for (const SUnit &SU : SUnits) {
1168     dumpNodeAll(SU);
1169     if (ShouldTrackPressure) {
1170       dbgs() << "  Pressure Diff      : ";
1171       getPressureDiff(&SU).dump(*TRI);
1172     }
1173     dbgs() << "  Single Issue       : ";
1174     if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1175         SchedModel.mustEndGroup(SU.getInstr()))
1176       dbgs() << "true;";
1177     else
1178       dbgs() << "false;";
1179     dbgs() << '\n';
1180   }
1181   if (ExitSU.getInstr() != nullptr)
1182     dumpNodeAll(ExitSU);
1183 #endif
1184 }
1185 
1186 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1187 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1188 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1189 ///
1190 /// This is a skeletal driver, with all the functionality pushed into helpers,
1191 /// so that it can be easily extended by experimental schedulers. Generally,
1192 /// implementing MachineSchedStrategy should be sufficient to implement a new
1193 /// scheduling algorithm. However, if a scheduler further subclasses
1194 /// ScheduleDAGMILive then it will want to override this virtual method in order
1195 /// to update any specialized state.
1196 void ScheduleDAGMILive::schedule() {
1197   LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1198   LLVM_DEBUG(SchedImpl->dumpPolicy());
1199   buildDAGWithRegPressure();
1200 
1201   postprocessDAG();
1202 
1203   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1204   findRootsAndBiasEdges(TopRoots, BotRoots);
1205 
1206   // Initialize the strategy before modifying the DAG.
1207   // This may initialize a DFSResult to be used for queue priority.
1208   SchedImpl->initialize(this);
1209 
1210   LLVM_DEBUG(dump());
1211   if (PrintDAGs) dump();
1212   if (ViewMISchedDAGs) viewGraph();
1213 
1214   // Initialize ready queues now that the DAG and priority data are finalized.
1215   initQueues(TopRoots, BotRoots);
1216 
1217   bool IsTopNode = false;
1218   while (true) {
1219     LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1220     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1221     if (!SU) break;
1222 
1223     assert(!SU->isScheduled && "Node already scheduled");
1224     if (!checkSchedLimit())
1225       break;
1226 
1227     scheduleMI(SU, IsTopNode);
1228 
1229     if (DFSResult) {
1230       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1231       if (!ScheduledTrees.test(SubtreeID)) {
1232         ScheduledTrees.set(SubtreeID);
1233         DFSResult->scheduleTree(SubtreeID);
1234         SchedImpl->scheduleTree(SubtreeID);
1235       }
1236     }
1237 
1238     // Notify the scheduling strategy after updating the DAG.
1239     SchedImpl->schedNode(SU, IsTopNode);
1240 
1241     updateQueues(SU, IsTopNode);
1242   }
1243   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1244 
1245   placeDebugValues();
1246 
1247   LLVM_DEBUG({
1248     dbgs() << "*** Final schedule for "
1249            << printMBBReference(*begin()->getParent()) << " ***\n";
1250     dumpSchedule();
1251     dbgs() << '\n';
1252   });
1253 }
1254 
1255 /// Build the DAG and setup three register pressure trackers.
1256 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1257   if (!ShouldTrackPressure) {
1258     RPTracker.reset();
1259     RegionCriticalPSets.clear();
1260     buildSchedGraph(AA);
1261     return;
1262   }
1263 
1264   // Initialize the register pressure tracker used by buildSchedGraph.
1265   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1266                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1267 
1268   // Account for liveness generate by the region boundary.
1269   if (LiveRegionEnd != RegionEnd)
1270     RPTracker.recede();
1271 
1272   // Build the DAG, and compute current register pressure.
1273   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1274 
1275   // Initialize top/bottom trackers after computing region pressure.
1276   initRegPressure();
1277 }
1278 
1279 void ScheduleDAGMILive::computeDFSResult() {
1280   if (!DFSResult)
1281     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1282   DFSResult->clear();
1283   ScheduledTrees.clear();
1284   DFSResult->resize(SUnits.size());
1285   DFSResult->compute(SUnits);
1286   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1287 }
1288 
1289 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1290 /// only provides the critical path for single block loops. To handle loops that
1291 /// span blocks, we could use the vreg path latencies provided by
1292 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1293 /// available for use in the scheduler.
1294 ///
1295 /// The cyclic path estimation identifies a def-use pair that crosses the back
1296 /// edge and considers the depth and height of the nodes. For example, consider
1297 /// the following instruction sequence where each instruction has unit latency
1298 /// and defines an epomymous virtual register:
1299 ///
1300 /// a->b(a,c)->c(b)->d(c)->exit
1301 ///
1302 /// The cyclic critical path is a two cycles: b->c->b
1303 /// The acyclic critical path is four cycles: a->b->c->d->exit
1304 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1305 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1306 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1307 /// LiveInDepth = depth(b) = len(a->b) = 1
1308 ///
1309 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1310 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1311 /// CyclicCriticalPath = min(2, 2) = 2
1312 ///
1313 /// This could be relevant to PostRA scheduling, but is currently implemented
1314 /// assuming LiveIntervals.
1315 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1316   // This only applies to single block loop.
1317   if (!BB->isSuccessor(BB))
1318     return 0;
1319 
1320   unsigned MaxCyclicLatency = 0;
1321   // Visit each live out vreg def to find def/use pairs that cross iterations.
1322   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1323     unsigned Reg = P.RegUnit;
1324     if (!Register::isVirtualRegister(Reg))
1325       continue;
1326     const LiveInterval &LI = LIS->getInterval(Reg);
1327     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1328     if (!DefVNI)
1329       continue;
1330 
1331     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1332     const SUnit *DefSU = getSUnit(DefMI);
1333     if (!DefSU)
1334       continue;
1335 
1336     unsigned LiveOutHeight = DefSU->getHeight();
1337     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1338     // Visit all local users of the vreg def.
1339     for (const VReg2SUnit &V2SU
1340          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1341       SUnit *SU = V2SU.SU;
1342       if (SU == &ExitSU)
1343         continue;
1344 
1345       // Only consider uses of the phi.
1346       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1347       if (!LRQ.valueIn()->isPHIDef())
1348         continue;
1349 
1350       // Assume that a path spanning two iterations is a cycle, which could
1351       // overestimate in strange cases. This allows cyclic latency to be
1352       // estimated as the minimum slack of the vreg's depth or height.
1353       unsigned CyclicLatency = 0;
1354       if (LiveOutDepth > SU->getDepth())
1355         CyclicLatency = LiveOutDepth - SU->getDepth();
1356 
1357       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1358       if (LiveInHeight > LiveOutHeight) {
1359         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1360           CyclicLatency = LiveInHeight - LiveOutHeight;
1361       } else
1362         CyclicLatency = 0;
1363 
1364       LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1365                         << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1366       if (CyclicLatency > MaxCyclicLatency)
1367         MaxCyclicLatency = CyclicLatency;
1368     }
1369   }
1370   LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1371   return MaxCyclicLatency;
1372 }
1373 
1374 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1375 /// the Top RP tracker in case the region beginning has changed.
1376 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1377                                    ArrayRef<SUnit*> BotRoots) {
1378   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1379   if (ShouldTrackPressure) {
1380     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1381     TopRPTracker.setPos(CurrentTop);
1382   }
1383 }
1384 
1385 /// Move an instruction and update register pressure.
1386 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1387   // Move the instruction to its new location in the instruction stream.
1388   MachineInstr *MI = SU->getInstr();
1389 
1390   if (IsTopNode) {
1391     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1392     if (&*CurrentTop == MI)
1393       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1394     else {
1395       moveInstruction(MI, CurrentTop);
1396       TopRPTracker.setPos(MI);
1397     }
1398 
1399     if (ShouldTrackPressure) {
1400       // Update top scheduled pressure.
1401       RegisterOperands RegOpers;
1402       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1403       if (ShouldTrackLaneMasks) {
1404         // Adjust liveness and add missing dead+read-undef flags.
1405         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1406         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1407       } else {
1408         // Adjust for missing dead-def flags.
1409         RegOpers.detectDeadDefs(*MI, *LIS);
1410       }
1411 
1412       TopRPTracker.advance(RegOpers);
1413       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1414       LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1415                      TopRPTracker.getRegSetPressureAtPos(), TRI););
1416 
1417       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1418     }
1419   } else {
1420     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1421     MachineBasicBlock::iterator priorII =
1422       priorNonDebug(CurrentBottom, CurrentTop);
1423     if (&*priorII == MI)
1424       CurrentBottom = priorII;
1425     else {
1426       if (&*CurrentTop == MI) {
1427         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1428         TopRPTracker.setPos(CurrentTop);
1429       }
1430       moveInstruction(MI, CurrentBottom);
1431       CurrentBottom = MI;
1432       BotRPTracker.setPos(CurrentBottom);
1433     }
1434     if (ShouldTrackPressure) {
1435       RegisterOperands RegOpers;
1436       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1437       if (ShouldTrackLaneMasks) {
1438         // Adjust liveness and add missing dead+read-undef flags.
1439         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1440         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1441       } else {
1442         // Adjust for missing dead-def flags.
1443         RegOpers.detectDeadDefs(*MI, *LIS);
1444       }
1445 
1446       if (BotRPTracker.getPos() != CurrentBottom)
1447         BotRPTracker.recedeSkipDebugValues();
1448       SmallVector<RegisterMaskPair, 8> LiveUses;
1449       BotRPTracker.recede(RegOpers, &LiveUses);
1450       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1451       LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1452                      BotRPTracker.getRegSetPressureAtPos(), TRI););
1453 
1454       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1455       updatePressureDiffs(LiveUses);
1456     }
1457   }
1458 }
1459 
1460 //===----------------------------------------------------------------------===//
1461 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1462 //===----------------------------------------------------------------------===//
1463 
1464 namespace {
1465 
1466 /// Post-process the DAG to create cluster edges between neighboring
1467 /// loads or between neighboring stores.
1468 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1469   struct MemOpInfo {
1470     SUnit *SU;
1471     const MachineOperand *BaseOp;
1472     int64_t Offset;
1473 
1474     MemOpInfo(SUnit *su, const MachineOperand *Op, int64_t ofs)
1475         : SU(su), BaseOp(Op), Offset(ofs) {}
1476 
1477     bool operator<(const MemOpInfo &RHS) const {
1478       if (BaseOp->getType() != RHS.BaseOp->getType())
1479         return BaseOp->getType() < RHS.BaseOp->getType();
1480 
1481       if (BaseOp->isReg())
1482         return std::make_tuple(BaseOp->getReg(), Offset, SU->NodeNum) <
1483                std::make_tuple(RHS.BaseOp->getReg(), RHS.Offset,
1484                                RHS.SU->NodeNum);
1485       if (BaseOp->isFI()) {
1486         const MachineFunction &MF =
1487             *BaseOp->getParent()->getParent()->getParent();
1488         const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
1489         bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1490                               TargetFrameLowering::StackGrowsDown;
1491         // Can't use tuple comparison here since we might need to use a
1492         // different order when the stack grows down.
1493         if (BaseOp->getIndex() != RHS.BaseOp->getIndex())
1494           return StackGrowsDown ? BaseOp->getIndex() > RHS.BaseOp->getIndex()
1495                                 : BaseOp->getIndex() < RHS.BaseOp->getIndex();
1496 
1497         if (Offset != RHS.Offset)
1498           return StackGrowsDown ? Offset > RHS.Offset : Offset < RHS.Offset;
1499 
1500         return SU->NodeNum < RHS.SU->NodeNum;
1501       }
1502 
1503       llvm_unreachable("MemOpClusterMutation only supports register or frame "
1504                        "index bases.");
1505     }
1506   };
1507 
1508   const TargetInstrInfo *TII;
1509   const TargetRegisterInfo *TRI;
1510   bool IsLoad;
1511 
1512 public:
1513   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1514                            const TargetRegisterInfo *tri, bool IsLoad)
1515       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1516 
1517   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1518 
1519 protected:
1520   void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG);
1521 };
1522 
1523 class StoreClusterMutation : public BaseMemOpClusterMutation {
1524 public:
1525   StoreClusterMutation(const TargetInstrInfo *tii,
1526                        const TargetRegisterInfo *tri)
1527       : BaseMemOpClusterMutation(tii, tri, false) {}
1528 };
1529 
1530 class LoadClusterMutation : public BaseMemOpClusterMutation {
1531 public:
1532   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1533       : BaseMemOpClusterMutation(tii, tri, true) {}
1534 };
1535 
1536 } // end anonymous namespace
1537 
1538 namespace llvm {
1539 
1540 std::unique_ptr<ScheduleDAGMutation>
1541 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1542                              const TargetRegisterInfo *TRI) {
1543   return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI)
1544                             : nullptr;
1545 }
1546 
1547 std::unique_ptr<ScheduleDAGMutation>
1548 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1549                               const TargetRegisterInfo *TRI) {
1550   return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI)
1551                             : nullptr;
1552 }
1553 
1554 } // end namespace llvm
1555 
1556 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1557     ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG) {
1558   SmallVector<MemOpInfo, 32> MemOpRecords;
1559   for (SUnit *SU : MemOps) {
1560     const MachineOperand *BaseOp;
1561     int64_t Offset;
1562     if (TII->getMemOperandWithOffset(*SU->getInstr(), BaseOp, Offset, TRI))
1563       MemOpRecords.push_back(MemOpInfo(SU, BaseOp, Offset));
1564   }
1565   if (MemOpRecords.size() < 2)
1566     return;
1567 
1568   llvm::sort(MemOpRecords);
1569   unsigned ClusterLength = 1;
1570   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1571     SUnit *SUa = MemOpRecords[Idx].SU;
1572     SUnit *SUb = MemOpRecords[Idx+1].SU;
1573     if (TII->shouldClusterMemOps(*MemOpRecords[Idx].BaseOp,
1574                                  *MemOpRecords[Idx + 1].BaseOp,
1575                                  ClusterLength) &&
1576         DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1577       LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1578                         << SUb->NodeNum << ")\n");
1579       // Copy successor edges from SUa to SUb. Interleaving computation
1580       // dependent on SUa can prevent load combining due to register reuse.
1581       // Predecessor edges do not need to be copied from SUb to SUa since nearby
1582       // loads should have effectively the same inputs.
1583       for (const SDep &Succ : SUa->Succs) {
1584         if (Succ.getSUnit() == SUb)
1585           continue;
1586         LLVM_DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum
1587                           << ")\n");
1588         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1589       }
1590       ++ClusterLength;
1591     } else
1592       ClusterLength = 1;
1593   }
1594 }
1595 
1596 /// Callback from DAG postProcessing to create cluster edges for loads.
1597 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
1598   // Map DAG NodeNum to store chain ID.
1599   DenseMap<unsigned, unsigned> StoreChainIDs;
1600   // Map each store chain to a set of dependent MemOps.
1601   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1602   for (SUnit &SU : DAG->SUnits) {
1603     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1604         (!IsLoad && !SU.getInstr()->mayStore()))
1605       continue;
1606 
1607     unsigned ChainPredID = DAG->SUnits.size();
1608     for (const SDep &Pred : SU.Preds) {
1609       if (Pred.isCtrl()) {
1610         ChainPredID = Pred.getSUnit()->NodeNum;
1611         break;
1612       }
1613     }
1614     // Check if this chain-like pred has been seen
1615     // before. ChainPredID==MaxNodeID at the top of the schedule.
1616     unsigned NumChains = StoreChainDependents.size();
1617     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1618       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1619     if (Result.second)
1620       StoreChainDependents.resize(NumChains + 1);
1621     StoreChainDependents[Result.first->second].push_back(&SU);
1622   }
1623 
1624   // Iterate over the store chains.
1625   for (auto &SCD : StoreChainDependents)
1626     clusterNeighboringMemOps(SCD, DAG);
1627 }
1628 
1629 //===----------------------------------------------------------------------===//
1630 // CopyConstrain - DAG post-processing to encourage copy elimination.
1631 //===----------------------------------------------------------------------===//
1632 
1633 namespace {
1634 
1635 /// Post-process the DAG to create weak edges from all uses of a copy to
1636 /// the one use that defines the copy's source vreg, most likely an induction
1637 /// variable increment.
1638 class CopyConstrain : public ScheduleDAGMutation {
1639   // Transient state.
1640   SlotIndex RegionBeginIdx;
1641 
1642   // RegionEndIdx is the slot index of the last non-debug instruction in the
1643   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1644   SlotIndex RegionEndIdx;
1645 
1646 public:
1647   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1648 
1649   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1650 
1651 protected:
1652   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1653 };
1654 
1655 } // end anonymous namespace
1656 
1657 namespace llvm {
1658 
1659 std::unique_ptr<ScheduleDAGMutation>
1660 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1661                                const TargetRegisterInfo *TRI) {
1662   return std::make_unique<CopyConstrain>(TII, TRI);
1663 }
1664 
1665 } // end namespace llvm
1666 
1667 /// constrainLocalCopy handles two possibilities:
1668 /// 1) Local src:
1669 /// I0:     = dst
1670 /// I1: src = ...
1671 /// I2:     = dst
1672 /// I3: dst = src (copy)
1673 /// (create pred->succ edges I0->I1, I2->I1)
1674 ///
1675 /// 2) Local copy:
1676 /// I0: dst = src (copy)
1677 /// I1:     = dst
1678 /// I2: src = ...
1679 /// I3:     = dst
1680 /// (create pred->succ edges I1->I2, I3->I2)
1681 ///
1682 /// Although the MachineScheduler is currently constrained to single blocks,
1683 /// this algorithm should handle extended blocks. An EBB is a set of
1684 /// contiguously numbered blocks such that the previous block in the EBB is
1685 /// always the single predecessor.
1686 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1687   LiveIntervals *LIS = DAG->getLIS();
1688   MachineInstr *Copy = CopySU->getInstr();
1689 
1690   // Check for pure vreg copies.
1691   const MachineOperand &SrcOp = Copy->getOperand(1);
1692   Register SrcReg = SrcOp.getReg();
1693   if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1694     return;
1695 
1696   const MachineOperand &DstOp = Copy->getOperand(0);
1697   Register DstReg = DstOp.getReg();
1698   if (!Register::isVirtualRegister(DstReg) || DstOp.isDead())
1699     return;
1700 
1701   // Check if either the dest or source is local. If it's live across a back
1702   // edge, it's not local. Note that if both vregs are live across the back
1703   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1704   // If both the copy's source and dest are local live intervals, then we
1705   // should treat the dest as the global for the purpose of adding
1706   // constraints. This adds edges from source's other uses to the copy.
1707   unsigned LocalReg = SrcReg;
1708   unsigned GlobalReg = DstReg;
1709   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1710   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1711     LocalReg = DstReg;
1712     GlobalReg = SrcReg;
1713     LocalLI = &LIS->getInterval(LocalReg);
1714     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1715       return;
1716   }
1717   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1718 
1719   // Find the global segment after the start of the local LI.
1720   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1721   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1722   // local live range. We could create edges from other global uses to the local
1723   // start, but the coalescer should have already eliminated these cases, so
1724   // don't bother dealing with it.
1725   if (GlobalSegment == GlobalLI->end())
1726     return;
1727 
1728   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1729   // returned the next global segment. But if GlobalSegment overlaps with
1730   // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
1731   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1732   if (GlobalSegment->contains(LocalLI->beginIndex()))
1733     ++GlobalSegment;
1734 
1735   if (GlobalSegment == GlobalLI->end())
1736     return;
1737 
1738   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1739   if (GlobalSegment != GlobalLI->begin()) {
1740     // Two address defs have no hole.
1741     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1742                                GlobalSegment->start)) {
1743       return;
1744     }
1745     // If the prior global segment may be defined by the same two-address
1746     // instruction that also defines LocalLI, then can't make a hole here.
1747     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1748                                LocalLI->beginIndex())) {
1749       return;
1750     }
1751     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1752     // it would be a disconnected component in the live range.
1753     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1754            "Disconnected LRG within the scheduling region.");
1755   }
1756   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1757   if (!GlobalDef)
1758     return;
1759 
1760   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1761   if (!GlobalSU)
1762     return;
1763 
1764   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1765   // constraining the uses of the last local def to precede GlobalDef.
1766   SmallVector<SUnit*,8> LocalUses;
1767   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1768   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1769   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1770   for (const SDep &Succ : LastLocalSU->Succs) {
1771     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1772       continue;
1773     if (Succ.getSUnit() == GlobalSU)
1774       continue;
1775     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1776       return;
1777     LocalUses.push_back(Succ.getSUnit());
1778   }
1779   // Open the top of the GlobalLI hole by constraining any earlier global uses
1780   // to precede the start of LocalLI.
1781   SmallVector<SUnit*,8> GlobalUses;
1782   MachineInstr *FirstLocalDef =
1783     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1784   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1785   for (const SDep &Pred : GlobalSU->Preds) {
1786     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1787       continue;
1788     if (Pred.getSUnit() == FirstLocalSU)
1789       continue;
1790     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1791       return;
1792     GlobalUses.push_back(Pred.getSUnit());
1793   }
1794   LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1795   // Add the weak edges.
1796   for (SmallVectorImpl<SUnit*>::const_iterator
1797          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1798     LLVM_DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1799                       << GlobalSU->NodeNum << ")\n");
1800     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1801   }
1802   for (SmallVectorImpl<SUnit*>::const_iterator
1803          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1804     LLVM_DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1805                       << FirstLocalSU->NodeNum << ")\n");
1806     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1807   }
1808 }
1809 
1810 /// Callback from DAG postProcessing to create weak edges to encourage
1811 /// copy elimination.
1812 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1813   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1814   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1815 
1816   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1817   if (FirstPos == DAG->end())
1818     return;
1819   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1820   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1821       *priorNonDebug(DAG->end(), DAG->begin()));
1822 
1823   for (SUnit &SU : DAG->SUnits) {
1824     if (!SU.getInstr()->isCopy())
1825       continue;
1826 
1827     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1828   }
1829 }
1830 
1831 //===----------------------------------------------------------------------===//
1832 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1833 // and possibly other custom schedulers.
1834 //===----------------------------------------------------------------------===//
1835 
1836 static const unsigned InvalidCycle = ~0U;
1837 
1838 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1839 
1840 /// Given a Count of resource usage and a Latency value, return true if a
1841 /// SchedBoundary becomes resource limited.
1842 /// If we are checking after scheduling a node, we should return true when
1843 /// we just reach the resource limit.
1844 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1845                                unsigned Latency, bool AfterSchedNode) {
1846   int ResCntFactor = (int)(Count - (Latency * LFactor));
1847   if (AfterSchedNode)
1848     return ResCntFactor >= (int)LFactor;
1849   else
1850     return ResCntFactor > (int)LFactor;
1851 }
1852 
1853 void SchedBoundary::reset() {
1854   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1855   // Destroying and reconstructing it is very expensive though. So keep
1856   // invalid, placeholder HazardRecs.
1857   if (HazardRec && HazardRec->isEnabled()) {
1858     delete HazardRec;
1859     HazardRec = nullptr;
1860   }
1861   Available.clear();
1862   Pending.clear();
1863   CheckPending = false;
1864   CurrCycle = 0;
1865   CurrMOps = 0;
1866   MinReadyCycle = std::numeric_limits<unsigned>::max();
1867   ExpectedLatency = 0;
1868   DependentLatency = 0;
1869   RetiredMOps = 0;
1870   MaxExecutedResCount = 0;
1871   ZoneCritResIdx = 0;
1872   IsResourceLimited = false;
1873   ReservedCycles.clear();
1874   ReservedCyclesIndex.clear();
1875 #ifndef NDEBUG
1876   // Track the maximum number of stall cycles that could arise either from the
1877   // latency of a DAG edge or the number of cycles that a processor resource is
1878   // reserved (SchedBoundary::ReservedCycles).
1879   MaxObservedStall = 0;
1880 #endif
1881   // Reserve a zero-count for invalid CritResIdx.
1882   ExecutedResCounts.resize(1);
1883   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1884 }
1885 
1886 void SchedRemainder::
1887 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1888   reset();
1889   if (!SchedModel->hasInstrSchedModel())
1890     return;
1891   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1892   for (SUnit &SU : DAG->SUnits) {
1893     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
1894     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
1895       * SchedModel->getMicroOpFactor();
1896     for (TargetSchedModel::ProcResIter
1897            PI = SchedModel->getWriteProcResBegin(SC),
1898            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1899       unsigned PIdx = PI->ProcResourceIdx;
1900       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1901       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1902     }
1903   }
1904 }
1905 
1906 void SchedBoundary::
1907 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1908   reset();
1909   DAG = dag;
1910   SchedModel = smodel;
1911   Rem = rem;
1912   if (SchedModel->hasInstrSchedModel()) {
1913     unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
1914     ReservedCyclesIndex.resize(ResourceCount);
1915     ExecutedResCounts.resize(ResourceCount);
1916     unsigned NumUnits = 0;
1917 
1918     for (unsigned i = 0; i < ResourceCount; ++i) {
1919       ReservedCyclesIndex[i] = NumUnits;
1920       NumUnits += SchedModel->getProcResource(i)->NumUnits;
1921     }
1922 
1923     ReservedCycles.resize(NumUnits, InvalidCycle);
1924   }
1925 }
1926 
1927 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1928 /// these "soft stalls" differently than the hard stall cycles based on CPU
1929 /// resources and computed by checkHazard(). A fully in-order model
1930 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1931 /// available for scheduling until they are ready. However, a weaker in-order
1932 /// model may use this for heuristics. For example, if a processor has in-order
1933 /// behavior when reading certain resources, this may come into play.
1934 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1935   if (!SU->isUnbuffered)
1936     return 0;
1937 
1938   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1939   if (ReadyCycle > CurrCycle)
1940     return ReadyCycle - CurrCycle;
1941   return 0;
1942 }
1943 
1944 /// Compute the next cycle at which the given processor resource unit
1945 /// can be scheduled.
1946 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx,
1947                                                        unsigned Cycles) {
1948   unsigned NextUnreserved = ReservedCycles[InstanceIdx];
1949   // If this resource has never been used, always return cycle zero.
1950   if (NextUnreserved == InvalidCycle)
1951     return 0;
1952   // For bottom-up scheduling add the cycles needed for the current operation.
1953   if (!isTop())
1954     NextUnreserved += Cycles;
1955   return NextUnreserved;
1956 }
1957 
1958 /// Compute the next cycle at which the given processor resource can be
1959 /// scheduled.  Returns the next cycle and the index of the processor resource
1960 /// instance in the reserved cycles vector.
1961 std::pair<unsigned, unsigned>
1962 SchedBoundary::getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1963   unsigned MinNextUnreserved = InvalidCycle;
1964   unsigned InstanceIdx = 0;
1965   unsigned StartIndex = ReservedCyclesIndex[PIdx];
1966   unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
1967   assert(NumberOfInstances > 0 &&
1968          "Cannot have zero instances of a ProcResource");
1969 
1970   for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
1971        ++I) {
1972     unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles);
1973     if (MinNextUnreserved > NextUnreserved) {
1974       InstanceIdx = I;
1975       MinNextUnreserved = NextUnreserved;
1976     }
1977   }
1978   return std::make_pair(MinNextUnreserved, InstanceIdx);
1979 }
1980 
1981 /// Does this SU have a hazard within the current instruction group.
1982 ///
1983 /// The scheduler supports two modes of hazard recognition. The first is the
1984 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1985 /// supports highly complicated in-order reservation tables
1986 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
1987 ///
1988 /// The second is a streamlined mechanism that checks for hazards based on
1989 /// simple counters that the scheduler itself maintains. It explicitly checks
1990 /// for instruction dispatch limitations, including the number of micro-ops that
1991 /// can dispatch per cycle.
1992 ///
1993 /// TODO: Also check whether the SU must start a new group.
1994 bool SchedBoundary::checkHazard(SUnit *SU) {
1995   if (HazardRec->isEnabled()
1996       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1997     return true;
1998   }
1999 
2000   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
2001   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
2002     LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
2003                       << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
2004     return true;
2005   }
2006 
2007   if (CurrMOps > 0 &&
2008       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
2009        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
2010     LLVM_DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
2011                       << (isTop() ? "begin" : "end") << " group\n");
2012     return true;
2013   }
2014 
2015   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
2016     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2017     for (const MCWriteProcResEntry &PE :
2018           make_range(SchedModel->getWriteProcResBegin(SC),
2019                      SchedModel->getWriteProcResEnd(SC))) {
2020       unsigned ResIdx = PE.ProcResourceIdx;
2021       unsigned Cycles = PE.Cycles;
2022       unsigned NRCycle, InstanceIdx;
2023       std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(ResIdx, Cycles);
2024       if (NRCycle > CurrCycle) {
2025 #ifndef NDEBUG
2026         MaxObservedStall = std::max(Cycles, MaxObservedStall);
2027 #endif
2028         LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
2029                           << SchedModel->getResourceName(ResIdx)
2030                           << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx]  << ']'
2031                           << "=" << NRCycle << "c\n");
2032         return true;
2033       }
2034     }
2035   }
2036   return false;
2037 }
2038 
2039 // Find the unscheduled node in ReadySUs with the highest latency.
2040 unsigned SchedBoundary::
2041 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
2042   SUnit *LateSU = nullptr;
2043   unsigned RemLatency = 0;
2044   for (SUnit *SU : ReadySUs) {
2045     unsigned L = getUnscheduledLatency(SU);
2046     if (L > RemLatency) {
2047       RemLatency = L;
2048       LateSU = SU;
2049     }
2050   }
2051   if (LateSU) {
2052     LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2053                       << LateSU->NodeNum << ") " << RemLatency << "c\n");
2054   }
2055   return RemLatency;
2056 }
2057 
2058 // Count resources in this zone and the remaining unscheduled
2059 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2060 // resource index, or zero if the zone is issue limited.
2061 unsigned SchedBoundary::
2062 getOtherResourceCount(unsigned &OtherCritIdx) {
2063   OtherCritIdx = 0;
2064   if (!SchedModel->hasInstrSchedModel())
2065     return 0;
2066 
2067   unsigned OtherCritCount = Rem->RemIssueCount
2068     + (RetiredMOps * SchedModel->getMicroOpFactor());
2069   LLVM_DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2070                     << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2071   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2072        PIdx != PEnd; ++PIdx) {
2073     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2074     if (OtherCount > OtherCritCount) {
2075       OtherCritCount = OtherCount;
2076       OtherCritIdx = PIdx;
2077     }
2078   }
2079   if (OtherCritIdx) {
2080     LLVM_DEBUG(
2081         dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2082                << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2083                << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2084   }
2085   return OtherCritCount;
2086 }
2087 
2088 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
2089   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2090 
2091 #ifndef NDEBUG
2092   // ReadyCycle was been bumped up to the CurrCycle when this node was
2093   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2094   // scheduling, so may now be greater than ReadyCycle.
2095   if (ReadyCycle > CurrCycle)
2096     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2097 #endif
2098 
2099   if (ReadyCycle < MinReadyCycle)
2100     MinReadyCycle = ReadyCycle;
2101 
2102   // Check for interlocks first. For the purpose of other heuristics, an
2103   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2104   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2105   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
2106       Available.size() >= ReadyListLimit)
2107     Pending.push(SU);
2108   else
2109     Available.push(SU);
2110 }
2111 
2112 /// Move the boundary of scheduled code by one cycle.
2113 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2114   if (SchedModel->getMicroOpBufferSize() == 0) {
2115     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2116            "MinReadyCycle uninitialized");
2117     if (MinReadyCycle > NextCycle)
2118       NextCycle = MinReadyCycle;
2119   }
2120   // Update the current micro-ops, which will issue in the next cycle.
2121   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2122   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2123 
2124   // Decrement DependentLatency based on the next cycle.
2125   if ((NextCycle - CurrCycle) > DependentLatency)
2126     DependentLatency = 0;
2127   else
2128     DependentLatency -= (NextCycle - CurrCycle);
2129 
2130   if (!HazardRec->isEnabled()) {
2131     // Bypass HazardRec virtual calls.
2132     CurrCycle = NextCycle;
2133   } else {
2134     // Bypass getHazardType calls in case of long latency.
2135     for (; CurrCycle != NextCycle; ++CurrCycle) {
2136       if (isTop())
2137         HazardRec->AdvanceCycle();
2138       else
2139         HazardRec->RecedeCycle();
2140     }
2141   }
2142   CheckPending = true;
2143   IsResourceLimited =
2144       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2145                          getScheduledLatency(), true);
2146 
2147   LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2148                     << '\n');
2149 }
2150 
2151 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2152   ExecutedResCounts[PIdx] += Count;
2153   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2154     MaxExecutedResCount = ExecutedResCounts[PIdx];
2155 }
2156 
2157 /// Add the given processor resource to this scheduled zone.
2158 ///
2159 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2160 /// during which this resource is consumed.
2161 ///
2162 /// \return the next cycle at which the instruction may execute without
2163 /// oversubscribing resources.
2164 unsigned SchedBoundary::
2165 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2166   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2167   unsigned Count = Factor * Cycles;
2168   LLVM_DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) << " +"
2169                     << Cycles << "x" << Factor << "u\n");
2170 
2171   // Update Executed resources counts.
2172   incExecutedResources(PIdx, Count);
2173   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2174   Rem->RemainingCounts[PIdx] -= Count;
2175 
2176   // Check if this resource exceeds the current critical resource. If so, it
2177   // becomes the critical resource.
2178   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2179     ZoneCritResIdx = PIdx;
2180     LLVM_DEBUG(dbgs() << "  *** Critical resource "
2181                       << SchedModel->getResourceName(PIdx) << ": "
2182                       << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2183                       << "c\n");
2184   }
2185   // For reserved resources, record the highest cycle using the resource.
2186   unsigned NextAvailable, InstanceIdx;
2187   std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(PIdx, Cycles);
2188   if (NextAvailable > CurrCycle) {
2189     LLVM_DEBUG(dbgs() << "  Resource conflict: "
2190                       << SchedModel->getResourceName(PIdx)
2191                       << '[' << InstanceIdx - ReservedCyclesIndex[PIdx]  << ']'
2192                       << " reserved until @" << NextAvailable << "\n");
2193   }
2194   return NextAvailable;
2195 }
2196 
2197 /// Move the boundary of scheduled code by one SUnit.
2198 void SchedBoundary::bumpNode(SUnit *SU) {
2199   // Update the reservation table.
2200   if (HazardRec->isEnabled()) {
2201     if (!isTop() && SU->isCall) {
2202       // Calls are scheduled with their preceding instructions. For bottom-up
2203       // scheduling, clear the pipeline state before emitting.
2204       HazardRec->Reset();
2205     }
2206     HazardRec->EmitInstruction(SU);
2207     // Scheduling an instruction may have made pending instructions available.
2208     CheckPending = true;
2209   }
2210   // checkHazard should prevent scheduling multiple instructions per cycle that
2211   // exceed the issue width.
2212   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2213   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2214   assert(
2215       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2216       "Cannot schedule this instruction's MicroOps in the current cycle.");
2217 
2218   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2219   LLVM_DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2220 
2221   unsigned NextCycle = CurrCycle;
2222   switch (SchedModel->getMicroOpBufferSize()) {
2223   case 0:
2224     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2225     break;
2226   case 1:
2227     if (ReadyCycle > NextCycle) {
2228       NextCycle = ReadyCycle;
2229       LLVM_DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2230     }
2231     break;
2232   default:
2233     // We don't currently model the OOO reorder buffer, so consider all
2234     // scheduled MOps to be "retired". We do loosely model in-order resource
2235     // latency. If this instruction uses an in-order resource, account for any
2236     // likely stall cycles.
2237     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2238       NextCycle = ReadyCycle;
2239     break;
2240   }
2241   RetiredMOps += IncMOps;
2242 
2243   // Update resource counts and critical resource.
2244   if (SchedModel->hasInstrSchedModel()) {
2245     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2246     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2247     Rem->RemIssueCount -= DecRemIssue;
2248     if (ZoneCritResIdx) {
2249       // Scale scheduled micro-ops for comparing with the critical resource.
2250       unsigned ScaledMOps =
2251         RetiredMOps * SchedModel->getMicroOpFactor();
2252 
2253       // If scaled micro-ops are now more than the previous critical resource by
2254       // a full cycle, then micro-ops issue becomes critical.
2255       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2256           >= (int)SchedModel->getLatencyFactor()) {
2257         ZoneCritResIdx = 0;
2258         LLVM_DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2259                           << ScaledMOps / SchedModel->getLatencyFactor()
2260                           << "c\n");
2261       }
2262     }
2263     for (TargetSchedModel::ProcResIter
2264            PI = SchedModel->getWriteProcResBegin(SC),
2265            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2266       unsigned RCycle =
2267         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2268       if (RCycle > NextCycle)
2269         NextCycle = RCycle;
2270     }
2271     if (SU->hasReservedResource) {
2272       // For reserved resources, record the highest cycle using the resource.
2273       // For top-down scheduling, this is the cycle in which we schedule this
2274       // instruction plus the number of cycles the operations reserves the
2275       // resource. For bottom-up is it simply the instruction's cycle.
2276       for (TargetSchedModel::ProcResIter
2277              PI = SchedModel->getWriteProcResBegin(SC),
2278              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2279         unsigned PIdx = PI->ProcResourceIdx;
2280         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2281           unsigned ReservedUntil, InstanceIdx;
2282           std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(PIdx, 0);
2283           if (isTop()) {
2284             ReservedCycles[InstanceIdx] =
2285                 std::max(ReservedUntil, NextCycle + PI->Cycles);
2286           } else
2287             ReservedCycles[InstanceIdx] = NextCycle;
2288         }
2289       }
2290     }
2291   }
2292   // Update ExpectedLatency and DependentLatency.
2293   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2294   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2295   if (SU->getDepth() > TopLatency) {
2296     TopLatency = SU->getDepth();
2297     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " TopLatency SU("
2298                       << SU->NodeNum << ") " << TopLatency << "c\n");
2299   }
2300   if (SU->getHeight() > BotLatency) {
2301     BotLatency = SU->getHeight();
2302     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " BotLatency SU("
2303                       << SU->NodeNum << ") " << BotLatency << "c\n");
2304   }
2305   // If we stall for any reason, bump the cycle.
2306   if (NextCycle > CurrCycle)
2307     bumpCycle(NextCycle);
2308   else
2309     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2310     // resource limited. If a stall occurred, bumpCycle does this.
2311     IsResourceLimited =
2312         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2313                            getScheduledLatency(), true);
2314 
2315   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2316   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2317   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2318   // bump the cycle to avoid uselessly checking everything in the readyQ.
2319   CurrMOps += IncMOps;
2320 
2321   // Bump the cycle count for issue group constraints.
2322   // This must be done after NextCycle has been adjust for all other stalls.
2323   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2324   // currCycle to X.
2325   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2326       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2327     LLVM_DEBUG(dbgs() << "  Bump cycle to " << (isTop() ? "end" : "begin")
2328                       << " group\n");
2329     bumpCycle(++NextCycle);
2330   }
2331 
2332   while (CurrMOps >= SchedModel->getIssueWidth()) {
2333     LLVM_DEBUG(dbgs() << "  *** Max MOps " << CurrMOps << " at cycle "
2334                       << CurrCycle << '\n');
2335     bumpCycle(++NextCycle);
2336   }
2337   LLVM_DEBUG(dumpScheduledState());
2338 }
2339 
2340 /// Release pending ready nodes in to the available queue. This makes them
2341 /// visible to heuristics.
2342 void SchedBoundary::releasePending() {
2343   // If the available queue is empty, it is safe to reset MinReadyCycle.
2344   if (Available.empty())
2345     MinReadyCycle = std::numeric_limits<unsigned>::max();
2346 
2347   // Check to see if any of the pending instructions are ready to issue.  If
2348   // so, add them to the available queue.
2349   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2350   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2351     SUnit *SU = *(Pending.begin()+i);
2352     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2353 
2354     if (ReadyCycle < MinReadyCycle)
2355       MinReadyCycle = ReadyCycle;
2356 
2357     if (!IsBuffered && ReadyCycle > CurrCycle)
2358       continue;
2359 
2360     if (checkHazard(SU))
2361       continue;
2362 
2363     if (Available.size() >= ReadyListLimit)
2364       break;
2365 
2366     Available.push(SU);
2367     Pending.remove(Pending.begin()+i);
2368     --i; --e;
2369   }
2370   CheckPending = false;
2371 }
2372 
2373 /// Remove SU from the ready set for this boundary.
2374 void SchedBoundary::removeReady(SUnit *SU) {
2375   if (Available.isInQueue(SU))
2376     Available.remove(Available.find(SU));
2377   else {
2378     assert(Pending.isInQueue(SU) && "bad ready count");
2379     Pending.remove(Pending.find(SU));
2380   }
2381 }
2382 
2383 /// If this queue only has one ready candidate, return it. As a side effect,
2384 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2385 /// one node is ready. If multiple instructions are ready, return NULL.
2386 SUnit *SchedBoundary::pickOnlyChoice() {
2387   if (CheckPending)
2388     releasePending();
2389 
2390   if (CurrMOps > 0) {
2391     // Defer any ready instrs that now have a hazard.
2392     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2393       if (checkHazard(*I)) {
2394         Pending.push(*I);
2395         I = Available.remove(I);
2396         continue;
2397       }
2398       ++I;
2399     }
2400   }
2401   for (unsigned i = 0; Available.empty(); ++i) {
2402 //  FIXME: Re-enable assert once PR20057 is resolved.
2403 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2404 //           "permanent hazard");
2405     (void)i;
2406     bumpCycle(CurrCycle + 1);
2407     releasePending();
2408   }
2409 
2410   LLVM_DEBUG(Pending.dump());
2411   LLVM_DEBUG(Available.dump());
2412 
2413   if (Available.size() == 1)
2414     return *Available.begin();
2415   return nullptr;
2416 }
2417 
2418 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2419 // This is useful information to dump after bumpNode.
2420 // Note that the Queue contents are more useful before pickNodeFromQueue.
2421 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2422   unsigned ResFactor;
2423   unsigned ResCount;
2424   if (ZoneCritResIdx) {
2425     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2426     ResCount = getResourceCount(ZoneCritResIdx);
2427   } else {
2428     ResFactor = SchedModel->getMicroOpFactor();
2429     ResCount = RetiredMOps * ResFactor;
2430   }
2431   unsigned LFactor = SchedModel->getLatencyFactor();
2432   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2433          << "  Retired: " << RetiredMOps;
2434   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2435   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2436          << ResCount / ResFactor << " "
2437          << SchedModel->getResourceName(ZoneCritResIdx)
2438          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2439          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2440          << " limited.\n";
2441 }
2442 #endif
2443 
2444 //===----------------------------------------------------------------------===//
2445 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2446 //===----------------------------------------------------------------------===//
2447 
2448 void GenericSchedulerBase::SchedCandidate::
2449 initResourceDelta(const ScheduleDAGMI *DAG,
2450                   const TargetSchedModel *SchedModel) {
2451   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2452     return;
2453 
2454   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2455   for (TargetSchedModel::ProcResIter
2456          PI = SchedModel->getWriteProcResBegin(SC),
2457          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2458     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2459       ResDelta.CritResources += PI->Cycles;
2460     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2461       ResDelta.DemandedResources += PI->Cycles;
2462   }
2463 }
2464 
2465 /// Compute remaining latency. We need this both to determine whether the
2466 /// overall schedule has become latency-limited and whether the instructions
2467 /// outside this zone are resource or latency limited.
2468 ///
2469 /// The "dependent" latency is updated incrementally during scheduling as the
2470 /// max height/depth of scheduled nodes minus the cycles since it was
2471 /// scheduled:
2472 ///   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2473 ///
2474 /// The "independent" latency is the max ready queue depth:
2475 ///   ILat = max N.depth for N in Available|Pending
2476 ///
2477 /// RemainingLatency is the greater of independent and dependent latency.
2478 ///
2479 /// These computations are expensive, especially in DAGs with many edges, so
2480 /// only do them if necessary.
2481 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2482   unsigned RemLatency = CurrZone.getDependentLatency();
2483   RemLatency = std::max(RemLatency,
2484                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2485   RemLatency = std::max(RemLatency,
2486                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2487   return RemLatency;
2488 }
2489 
2490 /// Returns true if the current cycle plus remaning latency is greater than
2491 /// the critical path in the scheduling region.
2492 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2493                                                SchedBoundary &CurrZone,
2494                                                bool ComputeRemLatency,
2495                                                unsigned &RemLatency) const {
2496   // The current cycle is already greater than the critical path, so we are
2497   // already latency limited and don't need to compute the remaining latency.
2498   if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2499     return true;
2500 
2501   // If we haven't scheduled anything yet, then we aren't latency limited.
2502   if (CurrZone.getCurrCycle() == 0)
2503     return false;
2504 
2505   if (ComputeRemLatency)
2506     RemLatency = computeRemLatency(CurrZone);
2507 
2508   return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2509 }
2510 
2511 /// Set the CandPolicy given a scheduling zone given the current resources and
2512 /// latencies inside and outside the zone.
2513 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2514                                      SchedBoundary &CurrZone,
2515                                      SchedBoundary *OtherZone) {
2516   // Apply preemptive heuristics based on the total latency and resources
2517   // inside and outside this zone. Potential stalls should be considered before
2518   // following this policy.
2519 
2520   // Compute the critical resource outside the zone.
2521   unsigned OtherCritIdx = 0;
2522   unsigned OtherCount =
2523     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2524 
2525   bool OtherResLimited = false;
2526   unsigned RemLatency = 0;
2527   bool RemLatencyComputed = false;
2528   if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
2529     RemLatency = computeRemLatency(CurrZone);
2530     RemLatencyComputed = true;
2531     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2532                                          OtherCount, RemLatency, false);
2533   }
2534 
2535   // Schedule aggressively for latency in PostRA mode. We don't check for
2536   // acyclic latency during PostRA, and highly out-of-order processors will
2537   // skip PostRA scheduling.
2538   if (!OtherResLimited &&
2539       (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
2540                                        RemLatency))) {
2541     Policy.ReduceLatency |= true;
2542     LLVM_DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2543                       << " RemainingLatency " << RemLatency << " + "
2544                       << CurrZone.getCurrCycle() << "c > CritPath "
2545                       << Rem.CriticalPath << "\n");
2546   }
2547   // If the same resource is limiting inside and outside the zone, do nothing.
2548   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2549     return;
2550 
2551   LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
2552     dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2553            << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
2554   } if (OtherResLimited) dbgs()
2555                  << "  RemainingLimit: "
2556                  << SchedModel->getResourceName(OtherCritIdx) << "\n";
2557              if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
2558              << "  Latency limited both directions.\n");
2559 
2560   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2561     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2562 
2563   if (OtherResLimited)
2564     Policy.DemandResIdx = OtherCritIdx;
2565 }
2566 
2567 #ifndef NDEBUG
2568 const char *GenericSchedulerBase::getReasonStr(
2569   GenericSchedulerBase::CandReason Reason) {
2570   switch (Reason) {
2571   case NoCand:         return "NOCAND    ";
2572   case Only1:          return "ONLY1     ";
2573   case PhysReg:        return "PHYS-REG  ";
2574   case RegExcess:      return "REG-EXCESS";
2575   case RegCritical:    return "REG-CRIT  ";
2576   case Stall:          return "STALL     ";
2577   case Cluster:        return "CLUSTER   ";
2578   case Weak:           return "WEAK      ";
2579   case RegMax:         return "REG-MAX   ";
2580   case ResourceReduce: return "RES-REDUCE";
2581   case ResourceDemand: return "RES-DEMAND";
2582   case TopDepthReduce: return "TOP-DEPTH ";
2583   case TopPathReduce:  return "TOP-PATH  ";
2584   case BotHeightReduce:return "BOT-HEIGHT";
2585   case BotPathReduce:  return "BOT-PATH  ";
2586   case NextDefUse:     return "DEF-USE   ";
2587   case NodeOrder:      return "ORDER     ";
2588   };
2589   llvm_unreachable("Unknown reason!");
2590 }
2591 
2592 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2593   PressureChange P;
2594   unsigned ResIdx = 0;
2595   unsigned Latency = 0;
2596   switch (Cand.Reason) {
2597   default:
2598     break;
2599   case RegExcess:
2600     P = Cand.RPDelta.Excess;
2601     break;
2602   case RegCritical:
2603     P = Cand.RPDelta.CriticalMax;
2604     break;
2605   case RegMax:
2606     P = Cand.RPDelta.CurrentMax;
2607     break;
2608   case ResourceReduce:
2609     ResIdx = Cand.Policy.ReduceResIdx;
2610     break;
2611   case ResourceDemand:
2612     ResIdx = Cand.Policy.DemandResIdx;
2613     break;
2614   case TopDepthReduce:
2615     Latency = Cand.SU->getDepth();
2616     break;
2617   case TopPathReduce:
2618     Latency = Cand.SU->getHeight();
2619     break;
2620   case BotHeightReduce:
2621     Latency = Cand.SU->getHeight();
2622     break;
2623   case BotPathReduce:
2624     Latency = Cand.SU->getDepth();
2625     break;
2626   }
2627   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2628   if (P.isValid())
2629     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2630            << ":" << P.getUnitInc() << " ";
2631   else
2632     dbgs() << "      ";
2633   if (ResIdx)
2634     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2635   else
2636     dbgs() << "         ";
2637   if (Latency)
2638     dbgs() << " " << Latency << " cycles ";
2639   else
2640     dbgs() << "          ";
2641   dbgs() << '\n';
2642 }
2643 #endif
2644 
2645 namespace llvm {
2646 /// Return true if this heuristic determines order.
2647 bool tryLess(int TryVal, int CandVal,
2648              GenericSchedulerBase::SchedCandidate &TryCand,
2649              GenericSchedulerBase::SchedCandidate &Cand,
2650              GenericSchedulerBase::CandReason Reason) {
2651   if (TryVal < CandVal) {
2652     TryCand.Reason = Reason;
2653     return true;
2654   }
2655   if (TryVal > CandVal) {
2656     if (Cand.Reason > Reason)
2657       Cand.Reason = Reason;
2658     return true;
2659   }
2660   return false;
2661 }
2662 
2663 bool tryGreater(int TryVal, int CandVal,
2664                 GenericSchedulerBase::SchedCandidate &TryCand,
2665                 GenericSchedulerBase::SchedCandidate &Cand,
2666                 GenericSchedulerBase::CandReason Reason) {
2667   if (TryVal > CandVal) {
2668     TryCand.Reason = Reason;
2669     return true;
2670   }
2671   if (TryVal < CandVal) {
2672     if (Cand.Reason > Reason)
2673       Cand.Reason = Reason;
2674     return true;
2675   }
2676   return false;
2677 }
2678 
2679 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2680                 GenericSchedulerBase::SchedCandidate &Cand,
2681                 SchedBoundary &Zone) {
2682   if (Zone.isTop()) {
2683     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2684       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2685                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2686         return true;
2687     }
2688     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2689                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2690       return true;
2691   } else {
2692     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2693       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2694                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2695         return true;
2696     }
2697     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2698                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2699       return true;
2700   }
2701   return false;
2702 }
2703 } // end namespace llvm
2704 
2705 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2706   LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2707                     << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2708 }
2709 
2710 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2711   tracePick(Cand.Reason, Cand.AtTop);
2712 }
2713 
2714 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2715   assert(dag->hasVRegLiveness() &&
2716          "(PreRA)GenericScheduler needs vreg liveness");
2717   DAG = static_cast<ScheduleDAGMILive*>(dag);
2718   SchedModel = DAG->getSchedModel();
2719   TRI = DAG->TRI;
2720 
2721   Rem.init(DAG, SchedModel);
2722   Top.init(DAG, SchedModel, &Rem);
2723   Bot.init(DAG, SchedModel, &Rem);
2724 
2725   // Initialize resource counts.
2726 
2727   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2728   // are disabled, then these HazardRecs will be disabled.
2729   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2730   if (!Top.HazardRec) {
2731     Top.HazardRec =
2732         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2733             Itin, DAG);
2734   }
2735   if (!Bot.HazardRec) {
2736     Bot.HazardRec =
2737         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2738             Itin, DAG);
2739   }
2740   TopCand.SU = nullptr;
2741   BotCand.SU = nullptr;
2742 }
2743 
2744 /// Initialize the per-region scheduling policy.
2745 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2746                                   MachineBasicBlock::iterator End,
2747                                   unsigned NumRegionInstrs) {
2748   const MachineFunction &MF = *Begin->getMF();
2749   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2750 
2751   // Avoid setting up the register pressure tracker for small regions to save
2752   // compile time. As a rough heuristic, only track pressure when the number of
2753   // schedulable instructions exceeds half the integer register file.
2754   RegionPolicy.ShouldTrackPressure = true;
2755   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2756     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2757     if (TLI->isTypeLegal(LegalIntVT)) {
2758       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2759         TLI->getRegClassFor(LegalIntVT));
2760       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2761     }
2762   }
2763 
2764   // For generic targets, we default to bottom-up, because it's simpler and more
2765   // compile-time optimizations have been implemented in that direction.
2766   RegionPolicy.OnlyBottomUp = true;
2767 
2768   // Allow the subtarget to override default policy.
2769   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2770 
2771   // After subtarget overrides, apply command line options.
2772   if (!EnableRegPressure) {
2773     RegionPolicy.ShouldTrackPressure = false;
2774     RegionPolicy.ShouldTrackLaneMasks = false;
2775   }
2776 
2777   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2778   // e.g. -misched-bottomup=false allows scheduling in both directions.
2779   assert((!ForceTopDown || !ForceBottomUp) &&
2780          "-misched-topdown incompatible with -misched-bottomup");
2781   if (ForceBottomUp.getNumOccurrences() > 0) {
2782     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2783     if (RegionPolicy.OnlyBottomUp)
2784       RegionPolicy.OnlyTopDown = false;
2785   }
2786   if (ForceTopDown.getNumOccurrences() > 0) {
2787     RegionPolicy.OnlyTopDown = ForceTopDown;
2788     if (RegionPolicy.OnlyTopDown)
2789       RegionPolicy.OnlyBottomUp = false;
2790   }
2791 }
2792 
2793 void GenericScheduler::dumpPolicy() const {
2794   // Cannot completely remove virtual function even in release mode.
2795 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2796   dbgs() << "GenericScheduler RegionPolicy: "
2797          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2798          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2799          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2800          << "\n";
2801 #endif
2802 }
2803 
2804 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2805 /// critical path by more cycles than it takes to drain the instruction buffer.
2806 /// We estimate an upper bounds on in-flight instructions as:
2807 ///
2808 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2809 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2810 /// InFlightResources = InFlightIterations * LoopResources
2811 ///
2812 /// TODO: Check execution resources in addition to IssueCount.
2813 void GenericScheduler::checkAcyclicLatency() {
2814   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2815     return;
2816 
2817   // Scaled number of cycles per loop iteration.
2818   unsigned IterCount =
2819     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2820              Rem.RemIssueCount);
2821   // Scaled acyclic critical path.
2822   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2823   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2824   unsigned InFlightCount =
2825     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2826   unsigned BufferLimit =
2827     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2828 
2829   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2830 
2831   LLVM_DEBUG(
2832       dbgs() << "IssueCycles="
2833              << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2834              << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2835              << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
2836              << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2837              << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2838       if (Rem.IsAcyclicLatencyLimited) dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2839 }
2840 
2841 void GenericScheduler::registerRoots() {
2842   Rem.CriticalPath = DAG->ExitSU.getDepth();
2843 
2844   // Some roots may not feed into ExitSU. Check all of them in case.
2845   for (const SUnit *SU : Bot.Available) {
2846     if (SU->getDepth() > Rem.CriticalPath)
2847       Rem.CriticalPath = SU->getDepth();
2848   }
2849   LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2850   if (DumpCriticalPathLength) {
2851     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2852   }
2853 
2854   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
2855     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2856     checkAcyclicLatency();
2857   }
2858 }
2859 
2860 namespace llvm {
2861 bool tryPressure(const PressureChange &TryP,
2862                  const PressureChange &CandP,
2863                  GenericSchedulerBase::SchedCandidate &TryCand,
2864                  GenericSchedulerBase::SchedCandidate &Cand,
2865                  GenericSchedulerBase::CandReason Reason,
2866                  const TargetRegisterInfo *TRI,
2867                  const MachineFunction &MF) {
2868   // If one candidate decreases and the other increases, go with it.
2869   // Invalid candidates have UnitInc==0.
2870   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2871                  Reason)) {
2872     return true;
2873   }
2874   // Do not compare the magnitude of pressure changes between top and bottom
2875   // boundary.
2876   if (Cand.AtTop != TryCand.AtTop)
2877     return false;
2878 
2879   // If both candidates affect the same set in the same boundary, go with the
2880   // smallest increase.
2881   unsigned TryPSet = TryP.getPSetOrMax();
2882   unsigned CandPSet = CandP.getPSetOrMax();
2883   if (TryPSet == CandPSet) {
2884     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2885                    Reason);
2886   }
2887 
2888   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2889                                  std::numeric_limits<int>::max();
2890 
2891   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2892                                    std::numeric_limits<int>::max();
2893 
2894   // If the candidates are decreasing pressure, reverse priority.
2895   if (TryP.getUnitInc() < 0)
2896     std::swap(TryRank, CandRank);
2897   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2898 }
2899 
2900 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2901   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2902 }
2903 
2904 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2905 /// their physreg def/use.
2906 ///
2907 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2908 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2909 /// with the operation that produces or consumes the physreg. We'll do this when
2910 /// regalloc has support for parallel copies.
2911 int biasPhysReg(const SUnit *SU, bool isTop) {
2912   const MachineInstr *MI = SU->getInstr();
2913 
2914   if (MI->isCopy()) {
2915     unsigned ScheduledOper = isTop ? 1 : 0;
2916     unsigned UnscheduledOper = isTop ? 0 : 1;
2917     // If we have already scheduled the physreg produce/consumer, immediately
2918     // schedule the copy.
2919     if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg()))
2920       return 1;
2921     // If the physreg is at the boundary, defer it. Otherwise schedule it
2922     // immediately to free the dependent. We can hoist the copy later.
2923     bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2924     if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg()))
2925       return AtBoundary ? -1 : 1;
2926   }
2927 
2928   if (MI->isMoveImmediate()) {
2929     // If we have a move immediate and all successors have been assigned, bias
2930     // towards scheduling this later. Make sure all register defs are to
2931     // physical registers.
2932     bool DoBias = true;
2933     for (const MachineOperand &Op : MI->defs()) {
2934       if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) {
2935         DoBias = false;
2936         break;
2937       }
2938     }
2939 
2940     if (DoBias)
2941       return isTop ? -1 : 1;
2942   }
2943 
2944   return 0;
2945 }
2946 } // end namespace llvm
2947 
2948 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
2949                                      bool AtTop,
2950                                      const RegPressureTracker &RPTracker,
2951                                      RegPressureTracker &TempTracker) {
2952   Cand.SU = SU;
2953   Cand.AtTop = AtTop;
2954   if (DAG->isTrackingPressure()) {
2955     if (AtTop) {
2956       TempTracker.getMaxDownwardPressureDelta(
2957         Cand.SU->getInstr(),
2958         Cand.RPDelta,
2959         DAG->getRegionCriticalPSets(),
2960         DAG->getRegPressure().MaxSetPressure);
2961     } else {
2962       if (VerifyScheduling) {
2963         TempTracker.getMaxUpwardPressureDelta(
2964           Cand.SU->getInstr(),
2965           &DAG->getPressureDiff(Cand.SU),
2966           Cand.RPDelta,
2967           DAG->getRegionCriticalPSets(),
2968           DAG->getRegPressure().MaxSetPressure);
2969       } else {
2970         RPTracker.getUpwardPressureDelta(
2971           Cand.SU->getInstr(),
2972           DAG->getPressureDiff(Cand.SU),
2973           Cand.RPDelta,
2974           DAG->getRegionCriticalPSets(),
2975           DAG->getRegPressure().MaxSetPressure);
2976       }
2977     }
2978   }
2979   LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
2980              << "  Try  SU(" << Cand.SU->NodeNum << ") "
2981              << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
2982              << Cand.RPDelta.Excess.getUnitInc() << "\n");
2983 }
2984 
2985 /// Apply a set of heuristics to a new candidate. Heuristics are currently
2986 /// hierarchical. This may be more efficient than a graduated cost model because
2987 /// we don't need to evaluate all aspects of the model for each node in the
2988 /// queue. But it's really done to make the heuristics easier to debug and
2989 /// statistically analyze.
2990 ///
2991 /// \param Cand provides the policy and current best candidate.
2992 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2993 /// \param Zone describes the scheduled zone that we are extending, or nullptr
2994 //              if Cand is from a different zone than TryCand.
2995 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2996                                     SchedCandidate &TryCand,
2997                                     SchedBoundary *Zone) const {
2998   // Initialize the candidate if needed.
2999   if (!Cand.isValid()) {
3000     TryCand.Reason = NodeOrder;
3001     return;
3002   }
3003 
3004   // Bias PhysReg Defs and copies to their uses and defined respectively.
3005   if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
3006                  biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
3007     return;
3008 
3009   // Avoid exceeding the target's limit.
3010   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
3011                                                Cand.RPDelta.Excess,
3012                                                TryCand, Cand, RegExcess, TRI,
3013                                                DAG->MF))
3014     return;
3015 
3016   // Avoid increasing the max critical pressure in the scheduled region.
3017   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
3018                                                Cand.RPDelta.CriticalMax,
3019                                                TryCand, Cand, RegCritical, TRI,
3020                                                DAG->MF))
3021     return;
3022 
3023   // We only compare a subset of features when comparing nodes between
3024   // Top and Bottom boundary. Some properties are simply incomparable, in many
3025   // other instances we should only override the other boundary if something
3026   // is a clear good pick on one boundary. Skip heuristics that are more
3027   // "tie-breaking" in nature.
3028   bool SameBoundary = Zone != nullptr;
3029   if (SameBoundary) {
3030     // For loops that are acyclic path limited, aggressively schedule for
3031     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
3032     // heuristics to take precedence.
3033     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
3034         tryLatency(TryCand, Cand, *Zone))
3035       return;
3036 
3037     // Prioritize instructions that read unbuffered resources by stall cycles.
3038     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
3039                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3040       return;
3041   }
3042 
3043   // Keep clustered nodes together to encourage downstream peephole
3044   // optimizations which may reduce resource requirements.
3045   //
3046   // This is a best effort to set things up for a post-RA pass. Optimizations
3047   // like generating loads of multiple registers should ideally be done within
3048   // the scheduler pass by combining the loads during DAG postprocessing.
3049   const SUnit *CandNextClusterSU =
3050     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3051   const SUnit *TryCandNextClusterSU =
3052     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3053   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3054                  Cand.SU == CandNextClusterSU,
3055                  TryCand, Cand, Cluster))
3056     return;
3057 
3058   if (SameBoundary) {
3059     // Weak edges are for clustering and other constraints.
3060     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3061                 getWeakLeft(Cand.SU, Cand.AtTop),
3062                 TryCand, Cand, Weak))
3063       return;
3064   }
3065 
3066   // Avoid increasing the max pressure of the entire region.
3067   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3068                                                Cand.RPDelta.CurrentMax,
3069                                                TryCand, Cand, RegMax, TRI,
3070                                                DAG->MF))
3071     return;
3072 
3073   if (SameBoundary) {
3074     // Avoid critical resource consumption and balance the schedule.
3075     TryCand.initResourceDelta(DAG, SchedModel);
3076     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3077                 TryCand, Cand, ResourceReduce))
3078       return;
3079     if (tryGreater(TryCand.ResDelta.DemandedResources,
3080                    Cand.ResDelta.DemandedResources,
3081                    TryCand, Cand, ResourceDemand))
3082       return;
3083 
3084     // Avoid serializing long latency dependence chains.
3085     // For acyclic path limited loops, latency was already checked above.
3086     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3087         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3088       return;
3089 
3090     // Fall through to original instruction order.
3091     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3092         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3093       TryCand.Reason = NodeOrder;
3094     }
3095   }
3096 }
3097 
3098 /// Pick the best candidate from the queue.
3099 ///
3100 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3101 /// DAG building. To adjust for the current scheduling location we need to
3102 /// maintain the number of vreg uses remaining to be top-scheduled.
3103 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3104                                          const CandPolicy &ZonePolicy,
3105                                          const RegPressureTracker &RPTracker,
3106                                          SchedCandidate &Cand) {
3107   // getMaxPressureDelta temporarily modifies the tracker.
3108   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3109 
3110   ReadyQueue &Q = Zone.Available;
3111   for (SUnit *SU : Q) {
3112 
3113     SchedCandidate TryCand(ZonePolicy);
3114     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3115     // Pass SchedBoundary only when comparing nodes from the same boundary.
3116     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3117     tryCandidate(Cand, TryCand, ZoneArg);
3118     if (TryCand.Reason != NoCand) {
3119       // Initialize resource delta if needed in case future heuristics query it.
3120       if (TryCand.ResDelta == SchedResourceDelta())
3121         TryCand.initResourceDelta(DAG, SchedModel);
3122       Cand.setBest(TryCand);
3123       LLVM_DEBUG(traceCandidate(Cand));
3124     }
3125   }
3126 }
3127 
3128 /// Pick the best candidate node from either the top or bottom queue.
3129 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3130   // Schedule as far as possible in the direction of no choice. This is most
3131   // efficient, but also provides the best heuristics for CriticalPSets.
3132   if (SUnit *SU = Bot.pickOnlyChoice()) {
3133     IsTopNode = false;
3134     tracePick(Only1, false);
3135     return SU;
3136   }
3137   if (SUnit *SU = Top.pickOnlyChoice()) {
3138     IsTopNode = true;
3139     tracePick(Only1, true);
3140     return SU;
3141   }
3142   // Set the bottom-up policy based on the state of the current bottom zone and
3143   // the instructions outside the zone, including the top zone.
3144   CandPolicy BotPolicy;
3145   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3146   // Set the top-down policy based on the state of the current top zone and
3147   // the instructions outside the zone, including the bottom zone.
3148   CandPolicy TopPolicy;
3149   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3150 
3151   // See if BotCand is still valid (because we previously scheduled from Top).
3152   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3153   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3154       BotCand.Policy != BotPolicy) {
3155     BotCand.reset(CandPolicy());
3156     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3157     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3158   } else {
3159     LLVM_DEBUG(traceCandidate(BotCand));
3160 #ifndef NDEBUG
3161     if (VerifyScheduling) {
3162       SchedCandidate TCand;
3163       TCand.reset(CandPolicy());
3164       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3165       assert(TCand.SU == BotCand.SU &&
3166              "Last pick result should correspond to re-picking right now");
3167     }
3168 #endif
3169   }
3170 
3171   // Check if the top Q has a better candidate.
3172   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3173   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3174       TopCand.Policy != TopPolicy) {
3175     TopCand.reset(CandPolicy());
3176     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3177     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3178   } else {
3179     LLVM_DEBUG(traceCandidate(TopCand));
3180 #ifndef NDEBUG
3181     if (VerifyScheduling) {
3182       SchedCandidate TCand;
3183       TCand.reset(CandPolicy());
3184       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3185       assert(TCand.SU == TopCand.SU &&
3186            "Last pick result should correspond to re-picking right now");
3187     }
3188 #endif
3189   }
3190 
3191   // Pick best from BotCand and TopCand.
3192   assert(BotCand.isValid());
3193   assert(TopCand.isValid());
3194   SchedCandidate Cand = BotCand;
3195   TopCand.Reason = NoCand;
3196   tryCandidate(Cand, TopCand, nullptr);
3197   if (TopCand.Reason != NoCand) {
3198     Cand.setBest(TopCand);
3199     LLVM_DEBUG(traceCandidate(Cand));
3200   }
3201 
3202   IsTopNode = Cand.AtTop;
3203   tracePick(Cand);
3204   return Cand.SU;
3205 }
3206 
3207 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3208 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3209   if (DAG->top() == DAG->bottom()) {
3210     assert(Top.Available.empty() && Top.Pending.empty() &&
3211            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3212     return nullptr;
3213   }
3214   SUnit *SU;
3215   do {
3216     if (RegionPolicy.OnlyTopDown) {
3217       SU = Top.pickOnlyChoice();
3218       if (!SU) {
3219         CandPolicy NoPolicy;
3220         TopCand.reset(NoPolicy);
3221         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3222         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3223         tracePick(TopCand);
3224         SU = TopCand.SU;
3225       }
3226       IsTopNode = true;
3227     } else if (RegionPolicy.OnlyBottomUp) {
3228       SU = Bot.pickOnlyChoice();
3229       if (!SU) {
3230         CandPolicy NoPolicy;
3231         BotCand.reset(NoPolicy);
3232         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3233         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3234         tracePick(BotCand);
3235         SU = BotCand.SU;
3236       }
3237       IsTopNode = false;
3238     } else {
3239       SU = pickNodeBidirectional(IsTopNode);
3240     }
3241   } while (SU->isScheduled);
3242 
3243   if (SU->isTopReady())
3244     Top.removeReady(SU);
3245   if (SU->isBottomReady())
3246     Bot.removeReady(SU);
3247 
3248   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3249                     << *SU->getInstr());
3250   return SU;
3251 }
3252 
3253 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3254   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3255   if (!isTop)
3256     ++InsertPos;
3257   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3258 
3259   // Find already scheduled copies with a single physreg dependence and move
3260   // them just above the scheduled instruction.
3261   for (SDep &Dep : Deps) {
3262     if (Dep.getKind() != SDep::Data ||
3263         !Register::isPhysicalRegister(Dep.getReg()))
3264       continue;
3265     SUnit *DepSU = Dep.getSUnit();
3266     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3267       continue;
3268     MachineInstr *Copy = DepSU->getInstr();
3269     if (!Copy->isCopy() && !Copy->isMoveImmediate())
3270       continue;
3271     LLVM_DEBUG(dbgs() << "  Rescheduling physreg copy ";
3272                DAG->dumpNode(*Dep.getSUnit()));
3273     DAG->moveInstruction(Copy, InsertPos);
3274   }
3275 }
3276 
3277 /// Update the scheduler's state after scheduling a node. This is the same node
3278 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3279 /// update it's state based on the current cycle before MachineSchedStrategy
3280 /// does.
3281 ///
3282 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3283 /// them here. See comments in biasPhysReg.
3284 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3285   if (IsTopNode) {
3286     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3287     Top.bumpNode(SU);
3288     if (SU->hasPhysRegUses)
3289       reschedulePhysReg(SU, true);
3290   } else {
3291     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3292     Bot.bumpNode(SU);
3293     if (SU->hasPhysRegDefs)
3294       reschedulePhysReg(SU, false);
3295   }
3296 }
3297 
3298 /// Create the standard converging machine scheduler. This will be used as the
3299 /// default scheduler if the target does not set a default.
3300 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3301   ScheduleDAGMILive *DAG =
3302       new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C));
3303   // Register DAG post-processors.
3304   //
3305   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3306   // data and pass it to later mutations. Have a single mutation that gathers
3307   // the interesting nodes in one pass.
3308   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3309   return DAG;
3310 }
3311 
3312 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
3313   return createGenericSchedLive(C);
3314 }
3315 
3316 static MachineSchedRegistry
3317 GenericSchedRegistry("converge", "Standard converging scheduler.",
3318                      createConveringSched);
3319 
3320 //===----------------------------------------------------------------------===//
3321 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3322 //===----------------------------------------------------------------------===//
3323 
3324 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3325   DAG = Dag;
3326   SchedModel = DAG->getSchedModel();
3327   TRI = DAG->TRI;
3328 
3329   Rem.init(DAG, SchedModel);
3330   Top.init(DAG, SchedModel, &Rem);
3331   BotRoots.clear();
3332 
3333   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3334   // or are disabled, then these HazardRecs will be disabled.
3335   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3336   if (!Top.HazardRec) {
3337     Top.HazardRec =
3338         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3339             Itin, DAG);
3340   }
3341 }
3342 
3343 void PostGenericScheduler::registerRoots() {
3344   Rem.CriticalPath = DAG->ExitSU.getDepth();
3345 
3346   // Some roots may not feed into ExitSU. Check all of them in case.
3347   for (const SUnit *SU : BotRoots) {
3348     if (SU->getDepth() > Rem.CriticalPath)
3349       Rem.CriticalPath = SU->getDepth();
3350   }
3351   LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3352   if (DumpCriticalPathLength) {
3353     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3354   }
3355 }
3356 
3357 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3358 ///
3359 /// \param Cand provides the policy and current best candidate.
3360 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3361 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3362                                         SchedCandidate &TryCand) {
3363   // Initialize the candidate if needed.
3364   if (!Cand.isValid()) {
3365     TryCand.Reason = NodeOrder;
3366     return;
3367   }
3368 
3369   // Prioritize instructions that read unbuffered resources by stall cycles.
3370   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3371               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3372     return;
3373 
3374   // Keep clustered nodes together.
3375   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3376                  Cand.SU == DAG->getNextClusterSucc(),
3377                  TryCand, Cand, Cluster))
3378     return;
3379 
3380   // Avoid critical resource consumption and balance the schedule.
3381   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3382               TryCand, Cand, ResourceReduce))
3383     return;
3384   if (tryGreater(TryCand.ResDelta.DemandedResources,
3385                  Cand.ResDelta.DemandedResources,
3386                  TryCand, Cand, ResourceDemand))
3387     return;
3388 
3389   // Avoid serializing long latency dependence chains.
3390   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3391     return;
3392   }
3393 
3394   // Fall through to original instruction order.
3395   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3396     TryCand.Reason = NodeOrder;
3397 }
3398 
3399 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3400   ReadyQueue &Q = Top.Available;
3401   for (SUnit *SU : Q) {
3402     SchedCandidate TryCand(Cand.Policy);
3403     TryCand.SU = SU;
3404     TryCand.AtTop = true;
3405     TryCand.initResourceDelta(DAG, SchedModel);
3406     tryCandidate(Cand, TryCand);
3407     if (TryCand.Reason != NoCand) {
3408       Cand.setBest(TryCand);
3409       LLVM_DEBUG(traceCandidate(Cand));
3410     }
3411   }
3412 }
3413 
3414 /// Pick the next node to schedule.
3415 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3416   if (DAG->top() == DAG->bottom()) {
3417     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3418     return nullptr;
3419   }
3420   SUnit *SU;
3421   do {
3422     SU = Top.pickOnlyChoice();
3423     if (SU) {
3424       tracePick(Only1, true);
3425     } else {
3426       CandPolicy NoPolicy;
3427       SchedCandidate TopCand(NoPolicy);
3428       // Set the top-down policy based on the state of the current top zone and
3429       // the instructions outside the zone, including the bottom zone.
3430       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3431       pickNodeFromQueue(TopCand);
3432       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3433       tracePick(TopCand);
3434       SU = TopCand.SU;
3435     }
3436   } while (SU->isScheduled);
3437 
3438   IsTopNode = true;
3439   Top.removeReady(SU);
3440 
3441   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3442                     << *SU->getInstr());
3443   return SU;
3444 }
3445 
3446 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3447 /// scheduled/remaining flags in the DAG nodes.
3448 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3449   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3450   Top.bumpNode(SU);
3451 }
3452 
3453 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3454   return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C),
3455                            /*RemoveKillFlags=*/true);
3456 }
3457 
3458 //===----------------------------------------------------------------------===//
3459 // ILP Scheduler. Currently for experimental analysis of heuristics.
3460 //===----------------------------------------------------------------------===//
3461 
3462 namespace {
3463 
3464 /// Order nodes by the ILP metric.
3465 struct ILPOrder {
3466   const SchedDFSResult *DFSResult = nullptr;
3467   const BitVector *ScheduledTrees = nullptr;
3468   bool MaximizeILP;
3469 
3470   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3471 
3472   /// Apply a less-than relation on node priority.
3473   ///
3474   /// (Return true if A comes after B in the Q.)
3475   bool operator()(const SUnit *A, const SUnit *B) const {
3476     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3477     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3478     if (SchedTreeA != SchedTreeB) {
3479       // Unscheduled trees have lower priority.
3480       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3481         return ScheduledTrees->test(SchedTreeB);
3482 
3483       // Trees with shallower connections have have lower priority.
3484       if (DFSResult->getSubtreeLevel(SchedTreeA)
3485           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3486         return DFSResult->getSubtreeLevel(SchedTreeA)
3487           < DFSResult->getSubtreeLevel(SchedTreeB);
3488       }
3489     }
3490     if (MaximizeILP)
3491       return DFSResult->getILP(A) < DFSResult->getILP(B);
3492     else
3493       return DFSResult->getILP(A) > DFSResult->getILP(B);
3494   }
3495 };
3496 
3497 /// Schedule based on the ILP metric.
3498 class ILPScheduler : public MachineSchedStrategy {
3499   ScheduleDAGMILive *DAG = nullptr;
3500   ILPOrder Cmp;
3501 
3502   std::vector<SUnit*> ReadyQ;
3503 
3504 public:
3505   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3506 
3507   void initialize(ScheduleDAGMI *dag) override {
3508     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3509     DAG = static_cast<ScheduleDAGMILive*>(dag);
3510     DAG->computeDFSResult();
3511     Cmp.DFSResult = DAG->getDFSResult();
3512     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3513     ReadyQ.clear();
3514   }
3515 
3516   void registerRoots() override {
3517     // Restore the heap in ReadyQ with the updated DFS results.
3518     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3519   }
3520 
3521   /// Implement MachineSchedStrategy interface.
3522   /// -----------------------------------------
3523 
3524   /// Callback to select the highest priority node from the ready Q.
3525   SUnit *pickNode(bool &IsTopNode) override {
3526     if (ReadyQ.empty()) return nullptr;
3527     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3528     SUnit *SU = ReadyQ.back();
3529     ReadyQ.pop_back();
3530     IsTopNode = false;
3531     LLVM_DEBUG(dbgs() << "Pick node "
3532                       << "SU(" << SU->NodeNum << ") "
3533                       << " ILP: " << DAG->getDFSResult()->getILP(SU)
3534                       << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
3535                       << " @"
3536                       << DAG->getDFSResult()->getSubtreeLevel(
3537                              DAG->getDFSResult()->getSubtreeID(SU))
3538                       << '\n'
3539                       << "Scheduling " << *SU->getInstr());
3540     return SU;
3541   }
3542 
3543   /// Scheduler callback to notify that a new subtree is scheduled.
3544   void scheduleTree(unsigned SubtreeID) override {
3545     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3546   }
3547 
3548   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3549   /// DFSResults, and resort the priority Q.
3550   void schedNode(SUnit *SU, bool IsTopNode) override {
3551     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3552   }
3553 
3554   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3555 
3556   void releaseBottomNode(SUnit *SU) override {
3557     ReadyQ.push_back(SU);
3558     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3559   }
3560 };
3561 
3562 } // end anonymous namespace
3563 
3564 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3565   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true));
3566 }
3567 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3568   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false));
3569 }
3570 
3571 static MachineSchedRegistry ILPMaxRegistry(
3572   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3573 static MachineSchedRegistry ILPMinRegistry(
3574   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3575 
3576 //===----------------------------------------------------------------------===//
3577 // Machine Instruction Shuffler for Correctness Testing
3578 //===----------------------------------------------------------------------===//
3579 
3580 #ifndef NDEBUG
3581 namespace {
3582 
3583 /// Apply a less-than relation on the node order, which corresponds to the
3584 /// instruction order prior to scheduling. IsReverse implements greater-than.
3585 template<bool IsReverse>
3586 struct SUnitOrder {
3587   bool operator()(SUnit *A, SUnit *B) const {
3588     if (IsReverse)
3589       return A->NodeNum > B->NodeNum;
3590     else
3591       return A->NodeNum < B->NodeNum;
3592   }
3593 };
3594 
3595 /// Reorder instructions as much as possible.
3596 class InstructionShuffler : public MachineSchedStrategy {
3597   bool IsAlternating;
3598   bool IsTopDown;
3599 
3600   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3601   // gives nodes with a higher number higher priority causing the latest
3602   // instructions to be scheduled first.
3603   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3604     TopQ;
3605 
3606   // When scheduling bottom-up, use greater-than as the queue priority.
3607   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3608     BottomQ;
3609 
3610 public:
3611   InstructionShuffler(bool alternate, bool topdown)
3612     : IsAlternating(alternate), IsTopDown(topdown) {}
3613 
3614   void initialize(ScheduleDAGMI*) override {
3615     TopQ.clear();
3616     BottomQ.clear();
3617   }
3618 
3619   /// Implement MachineSchedStrategy interface.
3620   /// -----------------------------------------
3621 
3622   SUnit *pickNode(bool &IsTopNode) override {
3623     SUnit *SU;
3624     if (IsTopDown) {
3625       do {
3626         if (TopQ.empty()) return nullptr;
3627         SU = TopQ.top();
3628         TopQ.pop();
3629       } while (SU->isScheduled);
3630       IsTopNode = true;
3631     } else {
3632       do {
3633         if (BottomQ.empty()) return nullptr;
3634         SU = BottomQ.top();
3635         BottomQ.pop();
3636       } while (SU->isScheduled);
3637       IsTopNode = false;
3638     }
3639     if (IsAlternating)
3640       IsTopDown = !IsTopDown;
3641     return SU;
3642   }
3643 
3644   void schedNode(SUnit *SU, bool IsTopNode) override {}
3645 
3646   void releaseTopNode(SUnit *SU) override {
3647     TopQ.push(SU);
3648   }
3649   void releaseBottomNode(SUnit *SU) override {
3650     BottomQ.push(SU);
3651   }
3652 };
3653 
3654 } // end anonymous namespace
3655 
3656 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3657   bool Alternate = !ForceTopDown && !ForceBottomUp;
3658   bool TopDown = !ForceBottomUp;
3659   assert((TopDown || !ForceTopDown) &&
3660          "-misched-topdown incompatible with -misched-bottomup");
3661   return new ScheduleDAGMILive(
3662       C, std::make_unique<InstructionShuffler>(Alternate, TopDown));
3663 }
3664 
3665 static MachineSchedRegistry ShufflerRegistry(
3666   "shuffle", "Shuffle machine instructions alternating directions",
3667   createInstructionShuffler);
3668 #endif // !NDEBUG
3669 
3670 //===----------------------------------------------------------------------===//
3671 // GraphWriter support for ScheduleDAGMILive.
3672 //===----------------------------------------------------------------------===//
3673 
3674 #ifndef NDEBUG
3675 namespace llvm {
3676 
3677 template<> struct GraphTraits<
3678   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3679 
3680 template<>
3681 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3682   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3683 
3684   static std::string getGraphName(const ScheduleDAG *G) {
3685     return G->MF.getName();
3686   }
3687 
3688   static bool renderGraphFromBottomUp() {
3689     return true;
3690   }
3691 
3692   static bool isNodeHidden(const SUnit *Node) {
3693     if (ViewMISchedCutoff == 0)
3694       return false;
3695     return (Node->Preds.size() > ViewMISchedCutoff
3696          || Node->Succs.size() > ViewMISchedCutoff);
3697   }
3698 
3699   /// If you want to override the dot attributes printed for a particular
3700   /// edge, override this method.
3701   static std::string getEdgeAttributes(const SUnit *Node,
3702                                        SUnitIterator EI,
3703                                        const ScheduleDAG *Graph) {
3704     if (EI.isArtificialDep())
3705       return "color=cyan,style=dashed";
3706     if (EI.isCtrlDep())
3707       return "color=blue,style=dashed";
3708     return "";
3709   }
3710 
3711   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3712     std::string Str;
3713     raw_string_ostream SS(Str);
3714     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3715     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3716       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3717     SS << "SU:" << SU->NodeNum;
3718     if (DFS)
3719       SS << " I:" << DFS->getNumInstrs(SU);
3720     return SS.str();
3721   }
3722 
3723   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3724     return G->getGraphNodeLabel(SU);
3725   }
3726 
3727   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3728     std::string Str("shape=Mrecord");
3729     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3730     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3731       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3732     if (DFS) {
3733       Str += ",style=filled,fillcolor=\"#";
3734       Str += DOT::getColorString(DFS->getSubtreeID(N));
3735       Str += '"';
3736     }
3737     return Str;
3738   }
3739 };
3740 
3741 } // end namespace llvm
3742 #endif // NDEBUG
3743 
3744 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3745 /// rendered using 'dot'.
3746 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3747 #ifndef NDEBUG
3748   ViewGraph(this, Name, false, Title);
3749 #else
3750   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3751          << "systems with Graphviz or gv!\n";
3752 #endif  // NDEBUG
3753 }
3754 
3755 /// Out-of-line implementation with no arguments is handy for gdb.
3756 void ScheduleDAGMI::viewGraph() {
3757   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3758 }
3759