xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision 6841c2677c5b5e85fd727bfb934efdafd4ccc2bc)
1  //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // MachineScheduler schedules machine instructions after phi elimination. It
10  // preserves LiveIntervals so it can be invoked before register allocation.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "llvm/CodeGen/MachineScheduler.h"
15  #include "llvm/ADT/ArrayRef.h"
16  #include "llvm/ADT/BitVector.h"
17  #include "llvm/ADT/DenseMap.h"
18  #include "llvm/ADT/PriorityQueue.h"
19  #include "llvm/ADT/STLExtras.h"
20  #include "llvm/ADT/SmallVector.h"
21  #include "llvm/ADT/Statistic.h"
22  #include "llvm/ADT/iterator_range.h"
23  #include "llvm/Analysis/AliasAnalysis.h"
24  #include "llvm/CodeGen/LiveInterval.h"
25  #include "llvm/CodeGen/LiveIntervals.h"
26  #include "llvm/CodeGen/MachineBasicBlock.h"
27  #include "llvm/CodeGen/MachineDominators.h"
28  #include "llvm/CodeGen/MachineFunction.h"
29  #include "llvm/CodeGen/MachineFunctionPass.h"
30  #include "llvm/CodeGen/MachineInstr.h"
31  #include "llvm/CodeGen/MachineLoopInfo.h"
32  #include "llvm/CodeGen/MachineOperand.h"
33  #include "llvm/CodeGen/MachinePassRegistry.h"
34  #include "llvm/CodeGen/MachineRegisterInfo.h"
35  #include "llvm/CodeGen/MachineValueType.h"
36  #include "llvm/CodeGen/RegisterClassInfo.h"
37  #include "llvm/CodeGen/RegisterPressure.h"
38  #include "llvm/CodeGen/ScheduleDAG.h"
39  #include "llvm/CodeGen/ScheduleDAGInstrs.h"
40  #include "llvm/CodeGen/ScheduleDAGMutation.h"
41  #include "llvm/CodeGen/ScheduleDFS.h"
42  #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
43  #include "llvm/CodeGen/SlotIndexes.h"
44  #include "llvm/CodeGen/TargetFrameLowering.h"
45  #include "llvm/CodeGen/TargetInstrInfo.h"
46  #include "llvm/CodeGen/TargetLowering.h"
47  #include "llvm/CodeGen/TargetPassConfig.h"
48  #include "llvm/CodeGen/TargetRegisterInfo.h"
49  #include "llvm/CodeGen/TargetSchedule.h"
50  #include "llvm/CodeGen/TargetSubtargetInfo.h"
51  #include "llvm/Config/llvm-config.h"
52  #include "llvm/InitializePasses.h"
53  #include "llvm/MC/LaneBitmask.h"
54  #include "llvm/Pass.h"
55  #include "llvm/Support/CommandLine.h"
56  #include "llvm/Support/Compiler.h"
57  #include "llvm/Support/Debug.h"
58  #include "llvm/Support/ErrorHandling.h"
59  #include "llvm/Support/GraphWriter.h"
60  #include "llvm/Support/raw_ostream.h"
61  #include <algorithm>
62  #include <cassert>
63  #include <cstdint>
64  #include <iterator>
65  #include <limits>
66  #include <memory>
67  #include <string>
68  #include <tuple>
69  #include <utility>
70  #include <vector>
71  
72  using namespace llvm;
73  
74  #define DEBUG_TYPE "machine-scheduler"
75  
76  STATISTIC(NumClustered, "Number of load/store pairs clustered");
77  
78  namespace llvm {
79  
80  cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
81                             cl::desc("Force top-down list scheduling"));
82  cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
83                              cl::desc("Force bottom-up list scheduling"));
84  cl::opt<bool>
85  DumpCriticalPathLength("misched-dcpl", cl::Hidden,
86                         cl::desc("Print critical path length to stdout"));
87  
88  cl::opt<bool> VerifyScheduling(
89      "verify-misched", cl::Hidden,
90      cl::desc("Verify machine instrs before and after machine scheduling"));
91  
92  #ifndef NDEBUG
93  cl::opt<bool> ViewMISchedDAGs(
94      "view-misched-dags", cl::Hidden,
95      cl::desc("Pop up a window to show MISched dags after they are processed"));
96  cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
97                          cl::desc("Print schedule DAGs"));
98  cl::opt<bool> MISchedDumpReservedCycles(
99      "misched-dump-reserved-cycles", cl::Hidden, cl::init(false),
100      cl::desc("Dump resource usage at schedule boundary."));
101  cl::opt<bool> MischedDetailResourceBooking(
102      "misched-detail-resource-booking", cl::Hidden, cl::init(false),
103      cl::desc("Show details of invoking getNextResoufceCycle."));
104  #else
105  const bool ViewMISchedDAGs = false;
106  const bool PrintDAGs = false;
107  const bool MischedDetailResourceBooking = false;
108  #ifdef LLVM_ENABLE_DUMP
109  const bool MISchedDumpReservedCycles = false;
110  #endif // LLVM_ENABLE_DUMP
111  #endif // NDEBUG
112  
113  } // end namespace llvm
114  
115  #ifndef NDEBUG
116  /// In some situations a few uninteresting nodes depend on nearly all other
117  /// nodes in the graph, provide a cutoff to hide them.
118  static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
119    cl::desc("Hide nodes with more predecessor/successor than cutoff"));
120  
121  static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
122    cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
123  
124  static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
125    cl::desc("Only schedule this function"));
126  static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
127                                          cl::desc("Only schedule this MBB#"));
128  #endif // NDEBUG
129  
130  /// Avoid quadratic complexity in unusually large basic blocks by limiting the
131  /// size of the ready lists.
132  static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
133    cl::desc("Limit ready list to N instructions"), cl::init(256));
134  
135  static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
136    cl::desc("Enable register pressure scheduling."), cl::init(true));
137  
138  static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
139    cl::desc("Enable cyclic critical path analysis."), cl::init(true));
140  
141  static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
142                                          cl::desc("Enable memop clustering."),
143                                          cl::init(true));
144  static cl::opt<bool>
145      ForceFastCluster("force-fast-cluster", cl::Hidden,
146                       cl::desc("Switch to fast cluster algorithm with the lost "
147                                "of some fusion opportunities"),
148                       cl::init(false));
149  static cl::opt<unsigned>
150      FastClusterThreshold("fast-cluster-threshold", cl::Hidden,
151                           cl::desc("The threshold for fast cluster"),
152                           cl::init(1000));
153  
154  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
155  static cl::opt<bool> MISchedDumpScheduleTrace(
156      "misched-dump-schedule-trace", cl::Hidden, cl::init(false),
157      cl::desc("Dump resource usage at schedule boundary."));
158  static cl::opt<unsigned>
159      HeaderColWidth("misched-dump-schedule-trace-col-header-width", cl::Hidden,
160                     cl::desc("Set width of the columns with "
161                              "the resources and schedule units"),
162                     cl::init(19));
163  static cl::opt<unsigned>
164      ColWidth("misched-dump-schedule-trace-col-width", cl::Hidden,
165               cl::desc("Set width of the columns showing resource booking."),
166               cl::init(5));
167  static cl::opt<bool> MISchedSortResourcesInTrace(
168      "misched-sort-resources-in-trace", cl::Hidden, cl::init(true),
169      cl::desc("Sort the resources printed in the dump trace"));
170  #endif
171  
172  static cl::opt<unsigned>
173      MIResourceCutOff("misched-resource-cutoff", cl::Hidden,
174                       cl::desc("Number of intervals to track"), cl::init(10));
175  
176  // DAG subtrees must have at least this many nodes.
177  static const unsigned MinSubtreeSize = 8;
178  
179  // Pin the vtables to this file.
180  void MachineSchedStrategy::anchor() {}
181  
182  void ScheduleDAGMutation::anchor() {}
183  
184  //===----------------------------------------------------------------------===//
185  // Machine Instruction Scheduling Pass and Registry
186  //===----------------------------------------------------------------------===//
187  
188  MachineSchedContext::MachineSchedContext() {
189    RegClassInfo = new RegisterClassInfo();
190  }
191  
192  MachineSchedContext::~MachineSchedContext() {
193    delete RegClassInfo;
194  }
195  
196  namespace {
197  
198  /// Base class for a machine scheduler class that can run at any point.
199  class MachineSchedulerBase : public MachineSchedContext,
200                               public MachineFunctionPass {
201  public:
202    MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
203  
204    void print(raw_ostream &O, const Module* = nullptr) const override;
205  
206  protected:
207    void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
208  };
209  
210  /// MachineScheduler runs after coalescing and before register allocation.
211  class MachineScheduler : public MachineSchedulerBase {
212  public:
213    MachineScheduler();
214  
215    void getAnalysisUsage(AnalysisUsage &AU) const override;
216  
217    bool runOnMachineFunction(MachineFunction&) override;
218  
219    static char ID; // Class identification, replacement for typeinfo
220  
221  protected:
222    ScheduleDAGInstrs *createMachineScheduler();
223  };
224  
225  /// PostMachineScheduler runs after shortly before code emission.
226  class PostMachineScheduler : public MachineSchedulerBase {
227  public:
228    PostMachineScheduler();
229  
230    void getAnalysisUsage(AnalysisUsage &AU) const override;
231  
232    bool runOnMachineFunction(MachineFunction&) override;
233  
234    static char ID; // Class identification, replacement for typeinfo
235  
236  protected:
237    ScheduleDAGInstrs *createPostMachineScheduler();
238  };
239  
240  } // end anonymous namespace
241  
242  char MachineScheduler::ID = 0;
243  
244  char &llvm::MachineSchedulerID = MachineScheduler::ID;
245  
246  INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
247                        "Machine Instruction Scheduler", false, false)
248  INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
249  INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
250  INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
251  INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
252  INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
253  INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
254                      "Machine Instruction Scheduler", false, false)
255  
256  MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
257    initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
258  }
259  
260  void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
261    AU.setPreservesCFG();
262    AU.addRequired<MachineDominatorTree>();
263    AU.addRequired<MachineLoopInfo>();
264    AU.addRequired<AAResultsWrapperPass>();
265    AU.addRequired<TargetPassConfig>();
266    AU.addRequired<SlotIndexes>();
267    AU.addPreserved<SlotIndexes>();
268    AU.addRequired<LiveIntervals>();
269    AU.addPreserved<LiveIntervals>();
270    MachineFunctionPass::getAnalysisUsage(AU);
271  }
272  
273  char PostMachineScheduler::ID = 0;
274  
275  char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
276  
277  INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched",
278                        "PostRA Machine Instruction Scheduler", false, false)
279  INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
280  INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
281  INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
282  INITIALIZE_PASS_END(PostMachineScheduler, "postmisched",
283                      "PostRA Machine Instruction Scheduler", false, false)
284  
285  PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
286    initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
287  }
288  
289  void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
290    AU.setPreservesCFG();
291    AU.addRequired<MachineDominatorTree>();
292    AU.addRequired<MachineLoopInfo>();
293    AU.addRequired<AAResultsWrapperPass>();
294    AU.addRequired<TargetPassConfig>();
295    MachineFunctionPass::getAnalysisUsage(AU);
296  }
297  
298  MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
299      MachineSchedRegistry::Registry;
300  
301  /// A dummy default scheduler factory indicates whether the scheduler
302  /// is overridden on the command line.
303  static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
304    return nullptr;
305  }
306  
307  /// MachineSchedOpt allows command line selection of the scheduler.
308  static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
309                 RegisterPassParser<MachineSchedRegistry>>
310  MachineSchedOpt("misched",
311                  cl::init(&useDefaultMachineSched), cl::Hidden,
312                  cl::desc("Machine instruction scheduler to use"));
313  
314  static MachineSchedRegistry
315  DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
316                       useDefaultMachineSched);
317  
318  static cl::opt<bool> EnableMachineSched(
319      "enable-misched",
320      cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
321      cl::Hidden);
322  
323  static cl::opt<bool> EnablePostRAMachineSched(
324      "enable-post-misched",
325      cl::desc("Enable the post-ra machine instruction scheduling pass."),
326      cl::init(true), cl::Hidden);
327  
328  /// Decrement this iterator until reaching the top or a non-debug instr.
329  static MachineBasicBlock::const_iterator
330  priorNonDebug(MachineBasicBlock::const_iterator I,
331                MachineBasicBlock::const_iterator Beg) {
332    assert(I != Beg && "reached the top of the region, cannot decrement");
333    while (--I != Beg) {
334      if (!I->isDebugOrPseudoInstr())
335        break;
336    }
337    return I;
338  }
339  
340  /// Non-const version.
341  static MachineBasicBlock::iterator
342  priorNonDebug(MachineBasicBlock::iterator I,
343                MachineBasicBlock::const_iterator Beg) {
344    return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
345        .getNonConstIterator();
346  }
347  
348  /// If this iterator is a debug value, increment until reaching the End or a
349  /// non-debug instruction.
350  static MachineBasicBlock::const_iterator
351  nextIfDebug(MachineBasicBlock::const_iterator I,
352              MachineBasicBlock::const_iterator End) {
353    for(; I != End; ++I) {
354      if (!I->isDebugOrPseudoInstr())
355        break;
356    }
357    return I;
358  }
359  
360  /// Non-const version.
361  static MachineBasicBlock::iterator
362  nextIfDebug(MachineBasicBlock::iterator I,
363              MachineBasicBlock::const_iterator End) {
364    return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
365        .getNonConstIterator();
366  }
367  
368  /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
369  ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
370    // Select the scheduler, or set the default.
371    MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
372    if (Ctor != useDefaultMachineSched)
373      return Ctor(this);
374  
375    // Get the default scheduler set by the target for this function.
376    ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
377    if (Scheduler)
378      return Scheduler;
379  
380    // Default to GenericScheduler.
381    return createGenericSchedLive(this);
382  }
383  
384  /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
385  /// the caller. We don't have a command line option to override the postRA
386  /// scheduler. The Target must configure it.
387  ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
388    // Get the postRA scheduler set by the target for this function.
389    ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
390    if (Scheduler)
391      return Scheduler;
392  
393    // Default to GenericScheduler.
394    return createGenericSchedPostRA(this);
395  }
396  
397  /// Top-level MachineScheduler pass driver.
398  ///
399  /// Visit blocks in function order. Divide each block into scheduling regions
400  /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
401  /// consistent with the DAG builder, which traverses the interior of the
402  /// scheduling regions bottom-up.
403  ///
404  /// This design avoids exposing scheduling boundaries to the DAG builder,
405  /// simplifying the DAG builder's support for "special" target instructions.
406  /// At the same time the design allows target schedulers to operate across
407  /// scheduling boundaries, for example to bundle the boundary instructions
408  /// without reordering them. This creates complexity, because the target
409  /// scheduler must update the RegionBegin and RegionEnd positions cached by
410  /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
411  /// design would be to split blocks at scheduling boundaries, but LLVM has a
412  /// general bias against block splitting purely for implementation simplicity.
413  bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
414    if (skipFunction(mf.getFunction()))
415      return false;
416  
417    if (EnableMachineSched.getNumOccurrences()) {
418      if (!EnableMachineSched)
419        return false;
420    } else if (!mf.getSubtarget().enableMachineScheduler())
421      return false;
422  
423    LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
424  
425    // Initialize the context of the pass.
426    MF = &mf;
427    MLI = &getAnalysis<MachineLoopInfo>();
428    MDT = &getAnalysis<MachineDominatorTree>();
429    PassConfig = &getAnalysis<TargetPassConfig>();
430    AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
431  
432    LIS = &getAnalysis<LiveIntervals>();
433  
434    if (VerifyScheduling) {
435      LLVM_DEBUG(LIS->dump());
436      MF->verify(this, "Before machine scheduling.");
437    }
438    RegClassInfo->runOnMachineFunction(*MF);
439  
440    // Instantiate the selected scheduler for this target, function, and
441    // optimization level.
442    std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
443    scheduleRegions(*Scheduler, false);
444  
445    LLVM_DEBUG(LIS->dump());
446    if (VerifyScheduling)
447      MF->verify(this, "After machine scheduling.");
448    return true;
449  }
450  
451  bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
452    if (skipFunction(mf.getFunction()))
453      return false;
454  
455    if (EnablePostRAMachineSched.getNumOccurrences()) {
456      if (!EnablePostRAMachineSched)
457        return false;
458    } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) {
459      LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
460      return false;
461    }
462    LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
463  
464    // Initialize the context of the pass.
465    MF = &mf;
466    MLI = &getAnalysis<MachineLoopInfo>();
467    PassConfig = &getAnalysis<TargetPassConfig>();
468    AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
469  
470    if (VerifyScheduling)
471      MF->verify(this, "Before post machine scheduling.");
472  
473    // Instantiate the selected scheduler for this target, function, and
474    // optimization level.
475    std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
476    scheduleRegions(*Scheduler, true);
477  
478    if (VerifyScheduling)
479      MF->verify(this, "After post machine scheduling.");
480    return true;
481  }
482  
483  /// Return true of the given instruction should not be included in a scheduling
484  /// region.
485  ///
486  /// MachineScheduler does not currently support scheduling across calls. To
487  /// handle calls, the DAG builder needs to be modified to create register
488  /// anti/output dependencies on the registers clobbered by the call's regmask
489  /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
490  /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
491  /// the boundary, but there would be no benefit to postRA scheduling across
492  /// calls this late anyway.
493  static bool isSchedBoundary(MachineBasicBlock::iterator MI,
494                              MachineBasicBlock *MBB,
495                              MachineFunction *MF,
496                              const TargetInstrInfo *TII) {
497    return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
498  }
499  
500  /// A region of an MBB for scheduling.
501  namespace {
502  struct SchedRegion {
503    /// RegionBegin is the first instruction in the scheduling region, and
504    /// RegionEnd is either MBB->end() or the scheduling boundary after the
505    /// last instruction in the scheduling region. These iterators cannot refer
506    /// to instructions outside of the identified scheduling region because
507    /// those may be reordered before scheduling this region.
508    MachineBasicBlock::iterator RegionBegin;
509    MachineBasicBlock::iterator RegionEnd;
510    unsigned NumRegionInstrs;
511  
512    SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
513                unsigned N) :
514      RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
515  };
516  } // end anonymous namespace
517  
518  using MBBRegionsVector = SmallVector<SchedRegion, 16>;
519  
520  static void
521  getSchedRegions(MachineBasicBlock *MBB,
522                  MBBRegionsVector &Regions,
523                  bool RegionsTopDown) {
524    MachineFunction *MF = MBB->getParent();
525    const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
526  
527    MachineBasicBlock::iterator I = nullptr;
528    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
529        RegionEnd != MBB->begin(); RegionEnd = I) {
530  
531      // Avoid decrementing RegionEnd for blocks with no terminator.
532      if (RegionEnd != MBB->end() ||
533          isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
534        --RegionEnd;
535      }
536  
537      // The next region starts above the previous region. Look backward in the
538      // instruction stream until we find the nearest boundary.
539      unsigned NumRegionInstrs = 0;
540      I = RegionEnd;
541      for (;I != MBB->begin(); --I) {
542        MachineInstr &MI = *std::prev(I);
543        if (isSchedBoundary(&MI, &*MBB, MF, TII))
544          break;
545        if (!MI.isDebugOrPseudoInstr()) {
546          // MBB::size() uses instr_iterator to count. Here we need a bundle to
547          // count as a single instruction.
548          ++NumRegionInstrs;
549        }
550      }
551  
552      // It's possible we found a scheduling region that only has debug
553      // instructions. Don't bother scheduling these.
554      if (NumRegionInstrs != 0)
555        Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
556    }
557  
558    if (RegionsTopDown)
559      std::reverse(Regions.begin(), Regions.end());
560  }
561  
562  /// Main driver for both MachineScheduler and PostMachineScheduler.
563  void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
564                                             bool FixKillFlags) {
565    // Visit all machine basic blocks.
566    //
567    // TODO: Visit blocks in global postorder or postorder within the bottom-up
568    // loop tree. Then we can optionally compute global RegPressure.
569    for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
570         MBB != MBBEnd; ++MBB) {
571  
572      Scheduler.startBlock(&*MBB);
573  
574  #ifndef NDEBUG
575      if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
576        continue;
577      if (SchedOnlyBlock.getNumOccurrences()
578          && (int)SchedOnlyBlock != MBB->getNumber())
579        continue;
580  #endif
581  
582      // Break the block into scheduling regions [I, RegionEnd). RegionEnd
583      // points to the scheduling boundary at the bottom of the region. The DAG
584      // does not include RegionEnd, but the region does (i.e. the next
585      // RegionEnd is above the previous RegionBegin). If the current block has
586      // no terminator then RegionEnd == MBB->end() for the bottom region.
587      //
588      // All the regions of MBB are first found and stored in MBBRegions, which
589      // will be processed (MBB) top-down if initialized with true.
590      //
591      // The Scheduler may insert instructions during either schedule() or
592      // exitRegion(), even for empty regions. So the local iterators 'I' and
593      // 'RegionEnd' are invalid across these calls. Instructions must not be
594      // added to other regions than the current one without updating MBBRegions.
595  
596      MBBRegionsVector MBBRegions;
597      getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
598      for (const SchedRegion &R : MBBRegions) {
599        MachineBasicBlock::iterator I = R.RegionBegin;
600        MachineBasicBlock::iterator RegionEnd = R.RegionEnd;
601        unsigned NumRegionInstrs = R.NumRegionInstrs;
602  
603        // Notify the scheduler of the region, even if we may skip scheduling
604        // it. Perhaps it still needs to be bundled.
605        Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
606  
607        // Skip empty scheduling regions (0 or 1 schedulable instructions).
608        if (I == RegionEnd || I == std::prev(RegionEnd)) {
609          // Close the current region. Bundle the terminator if needed.
610          // This invalidates 'RegionEnd' and 'I'.
611          Scheduler.exitRegion();
612          continue;
613        }
614        LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
615        LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
616                          << " " << MBB->getName() << "\n  From: " << *I
617                          << "    To: ";
618                   if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
619                   else dbgs() << "End\n";
620                   dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
621        if (DumpCriticalPathLength) {
622          errs() << MF->getName();
623          errs() << ":%bb. " << MBB->getNumber();
624          errs() << " " << MBB->getName() << " \n";
625        }
626  
627        // Schedule a region: possibly reorder instructions.
628        // This invalidates the original region iterators.
629        Scheduler.schedule();
630  
631        // Close the current region.
632        Scheduler.exitRegion();
633      }
634      Scheduler.finishBlock();
635      // FIXME: Ideally, no further passes should rely on kill flags. However,
636      // thumb2 size reduction is currently an exception, so the PostMIScheduler
637      // needs to do this.
638      if (FixKillFlags)
639        Scheduler.fixupKills(*MBB);
640    }
641    Scheduler.finalizeSchedule();
642  }
643  
644  void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
645    // unimplemented
646  }
647  
648  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
649  LLVM_DUMP_METHOD void ReadyQueue::dump() const {
650    dbgs() << "Queue " << Name << ": ";
651    for (const SUnit *SU : Queue)
652      dbgs() << SU->NodeNum << " ";
653    dbgs() << "\n";
654  }
655  #endif
656  
657  //===----------------------------------------------------------------------===//
658  // ScheduleDAGMI - Basic machine instruction scheduling. This is
659  // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
660  // virtual registers.
661  // ===----------------------------------------------------------------------===/
662  
663  // Provide a vtable anchor.
664  ScheduleDAGMI::~ScheduleDAGMI() = default;
665  
666  /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
667  /// NumPredsLeft reaches zero, release the successor node.
668  ///
669  /// FIXME: Adjust SuccSU height based on MinLatency.
670  void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
671    SUnit *SuccSU = SuccEdge->getSUnit();
672  
673    if (SuccEdge->isWeak()) {
674      --SuccSU->WeakPredsLeft;
675      if (SuccEdge->isCluster())
676        NextClusterSucc = SuccSU;
677      return;
678    }
679  #ifndef NDEBUG
680    if (SuccSU->NumPredsLeft == 0) {
681      dbgs() << "*** Scheduling failed! ***\n";
682      dumpNode(*SuccSU);
683      dbgs() << " has been released too many times!\n";
684      llvm_unreachable(nullptr);
685    }
686  #endif
687    // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
688    // CurrCycle may have advanced since then.
689    if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
690      SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
691  
692    --SuccSU->NumPredsLeft;
693    if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
694      SchedImpl->releaseTopNode(SuccSU);
695  }
696  
697  /// releaseSuccessors - Call releaseSucc on each of SU's successors.
698  void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
699    for (SDep &Succ : SU->Succs)
700      releaseSucc(SU, &Succ);
701  }
702  
703  /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
704  /// NumSuccsLeft reaches zero, release the predecessor node.
705  ///
706  /// FIXME: Adjust PredSU height based on MinLatency.
707  void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
708    SUnit *PredSU = PredEdge->getSUnit();
709  
710    if (PredEdge->isWeak()) {
711      --PredSU->WeakSuccsLeft;
712      if (PredEdge->isCluster())
713        NextClusterPred = PredSU;
714      return;
715    }
716  #ifndef NDEBUG
717    if (PredSU->NumSuccsLeft == 0) {
718      dbgs() << "*** Scheduling failed! ***\n";
719      dumpNode(*PredSU);
720      dbgs() << " has been released too many times!\n";
721      llvm_unreachable(nullptr);
722    }
723  #endif
724    // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
725    // CurrCycle may have advanced since then.
726    if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
727      PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
728  
729    --PredSU->NumSuccsLeft;
730    if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
731      SchedImpl->releaseBottomNode(PredSU);
732  }
733  
734  /// releasePredecessors - Call releasePred on each of SU's predecessors.
735  void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
736    for (SDep &Pred : SU->Preds)
737      releasePred(SU, &Pred);
738  }
739  
740  void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
741    ScheduleDAGInstrs::startBlock(bb);
742    SchedImpl->enterMBB(bb);
743  }
744  
745  void ScheduleDAGMI::finishBlock() {
746    SchedImpl->leaveMBB();
747    ScheduleDAGInstrs::finishBlock();
748  }
749  
750  /// enterRegion - Called back from PostMachineScheduler::runOnMachineFunction
751  /// after crossing a scheduling boundary. [begin, end) includes all instructions
752  /// in the region, including the boundary itself and single-instruction regions
753  /// that don't get scheduled.
754  void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
755                                       MachineBasicBlock::iterator begin,
756                                       MachineBasicBlock::iterator end,
757                                       unsigned regioninstrs)
758  {
759    ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
760  
761    SchedImpl->initPolicy(begin, end, regioninstrs);
762  }
763  
764  /// This is normally called from the main scheduler loop but may also be invoked
765  /// by the scheduling strategy to perform additional code motion.
766  void ScheduleDAGMI::moveInstruction(
767    MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
768    // Advance RegionBegin if the first instruction moves down.
769    if (&*RegionBegin == MI)
770      ++RegionBegin;
771  
772    // Update the instruction stream.
773    BB->splice(InsertPos, BB, MI);
774  
775    // Update LiveIntervals
776    if (LIS)
777      LIS->handleMove(*MI, /*UpdateFlags=*/true);
778  
779    // Recede RegionBegin if an instruction moves above the first.
780    if (RegionBegin == InsertPos)
781      RegionBegin = MI;
782  }
783  
784  bool ScheduleDAGMI::checkSchedLimit() {
785  #if LLVM_ENABLE_ABI_BREAKING_CHECKS && !defined(NDEBUG)
786    if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
787      CurrentTop = CurrentBottom;
788      return false;
789    }
790    ++NumInstrsScheduled;
791  #endif
792    return true;
793  }
794  
795  /// Per-region scheduling driver, called back from
796  /// PostMachineScheduler::runOnMachineFunction. This is a simplified driver
797  /// that does not consider liveness or register pressure. It is useful for
798  /// PostRA scheduling and potentially other custom schedulers.
799  void ScheduleDAGMI::schedule() {
800    LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
801    LLVM_DEBUG(SchedImpl->dumpPolicy());
802  
803    // Build the DAG.
804    buildSchedGraph(AA);
805  
806    postProcessDAG();
807  
808    SmallVector<SUnit*, 8> TopRoots, BotRoots;
809    findRootsAndBiasEdges(TopRoots, BotRoots);
810  
811    LLVM_DEBUG(dump());
812    if (PrintDAGs) dump();
813    if (ViewMISchedDAGs) viewGraph();
814  
815    // Initialize the strategy before modifying the DAG.
816    // This may initialize a DFSResult to be used for queue priority.
817    SchedImpl->initialize(this);
818  
819    // Initialize ready queues now that the DAG and priority data are finalized.
820    initQueues(TopRoots, BotRoots);
821  
822    bool IsTopNode = false;
823    while (true) {
824      LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
825      SUnit *SU = SchedImpl->pickNode(IsTopNode);
826      if (!SU) break;
827  
828      assert(!SU->isScheduled && "Node already scheduled");
829      if (!checkSchedLimit())
830        break;
831  
832      MachineInstr *MI = SU->getInstr();
833      if (IsTopNode) {
834        assert(SU->isTopReady() && "node still has unscheduled dependencies");
835        if (&*CurrentTop == MI)
836          CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
837        else
838          moveInstruction(MI, CurrentTop);
839      } else {
840        assert(SU->isBottomReady() && "node still has unscheduled dependencies");
841        MachineBasicBlock::iterator priorII =
842          priorNonDebug(CurrentBottom, CurrentTop);
843        if (&*priorII == MI)
844          CurrentBottom = priorII;
845        else {
846          if (&*CurrentTop == MI)
847            CurrentTop = nextIfDebug(++CurrentTop, priorII);
848          moveInstruction(MI, CurrentBottom);
849          CurrentBottom = MI;
850        }
851      }
852      // Notify the scheduling strategy before updating the DAG.
853      // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
854      // runs, it can then use the accurate ReadyCycle time to determine whether
855      // newly released nodes can move to the readyQ.
856      SchedImpl->schedNode(SU, IsTopNode);
857  
858      updateQueues(SU, IsTopNode);
859    }
860    assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
861  
862    placeDebugValues();
863  
864    LLVM_DEBUG({
865      dbgs() << "*** Final schedule for "
866             << printMBBReference(*begin()->getParent()) << " ***\n";
867      dumpSchedule();
868      dbgs() << '\n';
869    });
870  }
871  
872  /// Apply each ScheduleDAGMutation step in order.
873  void ScheduleDAGMI::postProcessDAG() {
874    for (auto &m : Mutations)
875      m->apply(this);
876  }
877  
878  void ScheduleDAGMI::
879  findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
880                        SmallVectorImpl<SUnit*> &BotRoots) {
881    for (SUnit &SU : SUnits) {
882      assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
883  
884      // Order predecessors so DFSResult follows the critical path.
885      SU.biasCriticalPath();
886  
887      // A SUnit is ready to top schedule if it has no predecessors.
888      if (!SU.NumPredsLeft)
889        TopRoots.push_back(&SU);
890      // A SUnit is ready to bottom schedule if it has no successors.
891      if (!SU.NumSuccsLeft)
892        BotRoots.push_back(&SU);
893    }
894    ExitSU.biasCriticalPath();
895  }
896  
897  /// Identify DAG roots and setup scheduler queues.
898  void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
899                                 ArrayRef<SUnit*> BotRoots) {
900    NextClusterSucc = nullptr;
901    NextClusterPred = nullptr;
902  
903    // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
904    //
905    // Nodes with unreleased weak edges can still be roots.
906    // Release top roots in forward order.
907    for (SUnit *SU : TopRoots)
908      SchedImpl->releaseTopNode(SU);
909  
910    // Release bottom roots in reverse order so the higher priority nodes appear
911    // first. This is more natural and slightly more efficient.
912    for (SmallVectorImpl<SUnit*>::const_reverse_iterator
913           I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
914      SchedImpl->releaseBottomNode(*I);
915    }
916  
917    releaseSuccessors(&EntrySU);
918    releasePredecessors(&ExitSU);
919  
920    SchedImpl->registerRoots();
921  
922    // Advance past initial DebugValues.
923    CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
924    CurrentBottom = RegionEnd;
925  }
926  
927  /// Update scheduler queues after scheduling an instruction.
928  void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
929    // Release dependent instructions for scheduling.
930    if (IsTopNode)
931      releaseSuccessors(SU);
932    else
933      releasePredecessors(SU);
934  
935    SU->isScheduled = true;
936  }
937  
938  /// Reinsert any remaining debug_values, just like the PostRA scheduler.
939  void ScheduleDAGMI::placeDebugValues() {
940    // If first instruction was a DBG_VALUE then put it back.
941    if (FirstDbgValue) {
942      BB->splice(RegionBegin, BB, FirstDbgValue);
943      RegionBegin = FirstDbgValue;
944    }
945  
946    for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
947           DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
948      std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
949      MachineInstr *DbgValue = P.first;
950      MachineBasicBlock::iterator OrigPrevMI = P.second;
951      if (&*RegionBegin == DbgValue)
952        ++RegionBegin;
953      BB->splice(std::next(OrigPrevMI), BB, DbgValue);
954      if (RegionEnd != BB->end() && OrigPrevMI == &*RegionEnd)
955        RegionEnd = DbgValue;
956    }
957  }
958  
959  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
960  static const char *scheduleTableLegend = "  i: issue\n  x: resource booked";
961  
962  LLVM_DUMP_METHOD void ScheduleDAGMI::dumpScheduleTraceTopDown() const {
963    // Bail off when there is no schedule model to query.
964    if (!SchedModel.hasInstrSchedModel())
965      return;
966  
967    //  Nothing to show if there is no or just one instruction.
968    if (BB->size() < 2)
969      return;
970  
971    dbgs() << " * Schedule table (TopDown):\n";
972    dbgs() << scheduleTableLegend << "\n";
973    const unsigned FirstCycle = getSUnit(&*(std::begin(*this)))->TopReadyCycle;
974    unsigned LastCycle = getSUnit(&*(std::prev(std::end(*this))))->TopReadyCycle;
975    for (MachineInstr &MI : *this) {
976      SUnit *SU = getSUnit(&MI);
977      if (!SU)
978        continue;
979      const MCSchedClassDesc *SC = getSchedClass(SU);
980      for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC),
981                                         PE = SchedModel.getWriteProcResEnd(SC);
982           PI != PE; ++PI) {
983        if (SU->TopReadyCycle + PI->ReleaseAtCycle - 1 > LastCycle)
984          LastCycle = SU->TopReadyCycle + PI->ReleaseAtCycle - 1;
985      }
986    }
987    // Print the header with the cycles
988    dbgs() << llvm::left_justify("Cycle", HeaderColWidth);
989    for (unsigned C = FirstCycle; C <= LastCycle; ++C)
990      dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth);
991    dbgs() << "|\n";
992  
993    for (MachineInstr &MI : *this) {
994      SUnit *SU = getSUnit(&MI);
995      if (!SU) {
996        dbgs() << "Missing SUnit\n";
997        continue;
998      }
999      std::string NodeName("SU(");
1000      NodeName += std::to_string(SU->NodeNum) + ")";
1001      dbgs() << llvm::left_justify(NodeName, HeaderColWidth);
1002      unsigned C = FirstCycle;
1003      for (; C <= LastCycle; ++C) {
1004        if (C == SU->TopReadyCycle)
1005          dbgs() << llvm::left_justify("| i", ColWidth);
1006        else
1007          dbgs() << llvm::left_justify("|", ColWidth);
1008      }
1009      dbgs() << "|\n";
1010      const MCSchedClassDesc *SC = getSchedClass(SU);
1011  
1012      SmallVector<MCWriteProcResEntry, 4> ResourcesIt(
1013          make_range(SchedModel.getWriteProcResBegin(SC),
1014                     SchedModel.getWriteProcResEnd(SC)));
1015  
1016      if (MISchedSortResourcesInTrace)
1017        llvm::stable_sort(ResourcesIt,
1018                          [](const MCWriteProcResEntry &LHS,
1019                             const MCWriteProcResEntry &RHS) -> bool {
1020                            return LHS.AcquireAtCycle < RHS.AcquireAtCycle ||
1021                                   (LHS.AcquireAtCycle == RHS.AcquireAtCycle &&
1022                                    LHS.ReleaseAtCycle < RHS.ReleaseAtCycle);
1023                          });
1024      for (const MCWriteProcResEntry &PI : ResourcesIt) {
1025        C = FirstCycle;
1026        const std::string ResName =
1027            SchedModel.getResourceName(PI.ProcResourceIdx);
1028        dbgs() << llvm::right_justify(ResName + " ", HeaderColWidth);
1029        for (; C < SU->TopReadyCycle + PI.AcquireAtCycle; ++C) {
1030          dbgs() << llvm::left_justify("|", ColWidth);
1031        }
1032        for (unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle; I != E;
1033             ++I, ++C)
1034          dbgs() << llvm::left_justify("| x", ColWidth);
1035        while (C++ <= LastCycle)
1036          dbgs() << llvm::left_justify("|", ColWidth);
1037        // Place end char
1038        dbgs() << "| \n";
1039      }
1040    }
1041  }
1042  
1043  LLVM_DUMP_METHOD void ScheduleDAGMI::dumpScheduleTraceBottomUp() const {
1044    // Bail off when there is no schedule model to query.
1045    if (!SchedModel.hasInstrSchedModel())
1046      return;
1047  
1048    //  Nothing to show if there is no or just one instruction.
1049    if (BB->size() < 2)
1050      return;
1051  
1052    dbgs() << " * Schedule table (BottomUp):\n";
1053    dbgs() << scheduleTableLegend << "\n";
1054  
1055    const int FirstCycle = getSUnit(&*(std::begin(*this)))->BotReadyCycle;
1056    int LastCycle = getSUnit(&*(std::prev(std::end(*this))))->BotReadyCycle;
1057    for (MachineInstr &MI : *this) {
1058      SUnit *SU = getSUnit(&MI);
1059      if (!SU)
1060        continue;
1061      const MCSchedClassDesc *SC = getSchedClass(SU);
1062      for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC),
1063                                         PE = SchedModel.getWriteProcResEnd(SC);
1064           PI != PE; ++PI) {
1065        if ((int)SU->BotReadyCycle - PI->ReleaseAtCycle + 1 < LastCycle)
1066          LastCycle = (int)SU->BotReadyCycle - PI->ReleaseAtCycle + 1;
1067      }
1068    }
1069    // Print the header with the cycles
1070    dbgs() << llvm::left_justify("Cycle", HeaderColWidth);
1071    for (int C = FirstCycle; C >= LastCycle; --C)
1072      dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth);
1073    dbgs() << "|\n";
1074  
1075    for (MachineInstr &MI : *this) {
1076      SUnit *SU = getSUnit(&MI);
1077      if (!SU) {
1078        dbgs() << "Missing SUnit\n";
1079        continue;
1080      }
1081      std::string NodeName("SU(");
1082      NodeName += std::to_string(SU->NodeNum) + ")";
1083      dbgs() << llvm::left_justify(NodeName, HeaderColWidth);
1084      int C = FirstCycle;
1085      for (; C >= LastCycle; --C) {
1086        if (C == (int)SU->BotReadyCycle)
1087          dbgs() << llvm::left_justify("| i", ColWidth);
1088        else
1089          dbgs() << llvm::left_justify("|", ColWidth);
1090      }
1091      dbgs() << "|\n";
1092      const MCSchedClassDesc *SC = getSchedClass(SU);
1093      SmallVector<MCWriteProcResEntry, 4> ResourcesIt(
1094          make_range(SchedModel.getWriteProcResBegin(SC),
1095                     SchedModel.getWriteProcResEnd(SC)));
1096  
1097      if (MISchedSortResourcesInTrace)
1098        llvm::stable_sort(ResourcesIt,
1099                          [](const MCWriteProcResEntry &LHS,
1100                             const MCWriteProcResEntry &RHS) -> bool {
1101                            return LHS.AcquireAtCycle < RHS.AcquireAtCycle ||
1102                                   (LHS.AcquireAtCycle == RHS.AcquireAtCycle &&
1103                                    LHS.ReleaseAtCycle < RHS.ReleaseAtCycle);
1104                          });
1105      for (const MCWriteProcResEntry &PI : ResourcesIt) {
1106        C = FirstCycle;
1107        const std::string ResName =
1108            SchedModel.getResourceName(PI.ProcResourceIdx);
1109        dbgs() << llvm::right_justify(ResName + " ", HeaderColWidth);
1110        for (; C > ((int)SU->BotReadyCycle - (int)PI.AcquireAtCycle); --C) {
1111          dbgs() << llvm::left_justify("|", ColWidth);
1112        }
1113        for (unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle; I != E;
1114             ++I, --C)
1115          dbgs() << llvm::left_justify("| x", ColWidth);
1116        while (C-- >= LastCycle)
1117          dbgs() << llvm::left_justify("|", ColWidth);
1118        // Place end char
1119        dbgs() << "| \n";
1120      }
1121    }
1122  }
1123  #endif
1124  
1125  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1126  LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
1127    if (MISchedDumpScheduleTrace) {
1128      if (ForceTopDown)
1129        dumpScheduleTraceTopDown();
1130      else if (ForceBottomUp)
1131        dumpScheduleTraceBottomUp();
1132      else {
1133        dbgs() << "* Schedule table (Bidirectional): not implemented\n";
1134      }
1135    }
1136  
1137    for (MachineInstr &MI : *this) {
1138      if (SUnit *SU = getSUnit(&MI))
1139        dumpNode(*SU);
1140      else
1141        dbgs() << "Missing SUnit\n";
1142    }
1143  }
1144  #endif
1145  
1146  //===----------------------------------------------------------------------===//
1147  // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
1148  // preservation.
1149  //===----------------------------------------------------------------------===//
1150  
1151  ScheduleDAGMILive::~ScheduleDAGMILive() {
1152    delete DFSResult;
1153  }
1154  
1155  void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
1156    const MachineInstr &MI = *SU.getInstr();
1157    for (const MachineOperand &MO : MI.operands()) {
1158      if (!MO.isReg())
1159        continue;
1160      if (!MO.readsReg())
1161        continue;
1162      if (TrackLaneMasks && !MO.isUse())
1163        continue;
1164  
1165      Register Reg = MO.getReg();
1166      if (!Reg.isVirtual())
1167        continue;
1168  
1169      // Ignore re-defs.
1170      if (TrackLaneMasks) {
1171        bool FoundDef = false;
1172        for (const MachineOperand &MO2 : MI.all_defs()) {
1173          if (MO2.getReg() == Reg && !MO2.isDead()) {
1174            FoundDef = true;
1175            break;
1176          }
1177        }
1178        if (FoundDef)
1179          continue;
1180      }
1181  
1182      // Record this local VReg use.
1183      VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
1184      for (; UI != VRegUses.end(); ++UI) {
1185        if (UI->SU == &SU)
1186          break;
1187      }
1188      if (UI == VRegUses.end())
1189        VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
1190    }
1191  }
1192  
1193  /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
1194  /// crossing a scheduling boundary. [begin, end) includes all instructions in
1195  /// the region, including the boundary itself and single-instruction regions
1196  /// that don't get scheduled.
1197  void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
1198                                  MachineBasicBlock::iterator begin,
1199                                  MachineBasicBlock::iterator end,
1200                                  unsigned regioninstrs)
1201  {
1202    // ScheduleDAGMI initializes SchedImpl's per-region policy.
1203    ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
1204  
1205    // For convenience remember the end of the liveness region.
1206    LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
1207  
1208    SUPressureDiffs.clear();
1209  
1210    ShouldTrackPressure = SchedImpl->shouldTrackPressure();
1211    ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
1212  
1213    assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
1214           "ShouldTrackLaneMasks requires ShouldTrackPressure");
1215  }
1216  
1217  // Setup the register pressure trackers for the top scheduled and bottom
1218  // scheduled regions.
1219  void ScheduleDAGMILive::initRegPressure() {
1220    VRegUses.clear();
1221    VRegUses.setUniverse(MRI.getNumVirtRegs());
1222    for (SUnit &SU : SUnits)
1223      collectVRegUses(SU);
1224  
1225    TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1226                      ShouldTrackLaneMasks, false);
1227    BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1228                      ShouldTrackLaneMasks, false);
1229  
1230    // Close the RPTracker to finalize live ins.
1231    RPTracker.closeRegion();
1232  
1233    LLVM_DEBUG(RPTracker.dump());
1234  
1235    // Initialize the live ins and live outs.
1236    TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1237    BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1238  
1239    // Close one end of the tracker so we can call
1240    // getMaxUpward/DownwardPressureDelta before advancing across any
1241    // instructions. This converts currently live regs into live ins/outs.
1242    TopRPTracker.closeTop();
1243    BotRPTracker.closeBottom();
1244  
1245    BotRPTracker.initLiveThru(RPTracker);
1246    if (!BotRPTracker.getLiveThru().empty()) {
1247      TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1248      LLVM_DEBUG(dbgs() << "Live Thru: ";
1249                 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1250    };
1251  
1252    // For each live out vreg reduce the pressure change associated with other
1253    // uses of the same vreg below the live-out reaching def.
1254    updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1255  
1256    // Account for liveness generated by the region boundary.
1257    if (LiveRegionEnd != RegionEnd) {
1258      SmallVector<RegisterMaskPair, 8> LiveUses;
1259      BotRPTracker.recede(&LiveUses);
1260      updatePressureDiffs(LiveUses);
1261    }
1262  
1263    LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1264               dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1265               dbgs() << "Bottom Pressure:\n";
1266               dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1267  
1268    assert((BotRPTracker.getPos() == RegionEnd ||
1269            (RegionEnd->isDebugInstr() &&
1270             BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1271           "Can't find the region bottom");
1272  
1273    // Cache the list of excess pressure sets in this region. This will also track
1274    // the max pressure in the scheduled code for these sets.
1275    RegionCriticalPSets.clear();
1276    const std::vector<unsigned> &RegionPressure =
1277      RPTracker.getPressure().MaxSetPressure;
1278    for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1279      unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1280      if (RegionPressure[i] > Limit) {
1281        LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1282                          << " Actual " << RegionPressure[i] << "\n");
1283        RegionCriticalPSets.push_back(PressureChange(i));
1284      }
1285    }
1286    LLVM_DEBUG(dbgs() << "Excess PSets: ";
1287               for (const PressureChange &RCPS
1288                    : RegionCriticalPSets) dbgs()
1289               << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1290               dbgs() << "\n");
1291  }
1292  
1293  void ScheduleDAGMILive::
1294  updateScheduledPressure(const SUnit *SU,
1295                          const std::vector<unsigned> &NewMaxPressure) {
1296    const PressureDiff &PDiff = getPressureDiff(SU);
1297    unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1298    for (const PressureChange &PC : PDiff) {
1299      if (!PC.isValid())
1300        break;
1301      unsigned ID = PC.getPSet();
1302      while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1303        ++CritIdx;
1304      if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1305        if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1306            && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1307          RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1308      }
1309      unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1310      if (NewMaxPressure[ID] >= Limit - 2) {
1311        LLVM_DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1312                          << NewMaxPressure[ID]
1313                          << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1314                          << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1315                          << " livethru)\n");
1316      }
1317    }
1318  }
1319  
1320  /// Update the PressureDiff array for liveness after scheduling this
1321  /// instruction.
1322  void ScheduleDAGMILive::updatePressureDiffs(
1323      ArrayRef<RegisterMaskPair> LiveUses) {
1324    for (const RegisterMaskPair &P : LiveUses) {
1325      Register Reg = P.RegUnit;
1326      /// FIXME: Currently assuming single-use physregs.
1327      if (!Reg.isVirtual())
1328        continue;
1329  
1330      if (ShouldTrackLaneMasks) {
1331        // If the register has just become live then other uses won't change
1332        // this fact anymore => decrement pressure.
1333        // If the register has just become dead then other uses make it come
1334        // back to life => increment pressure.
1335        bool Decrement = P.LaneMask.any();
1336  
1337        for (const VReg2SUnit &V2SU
1338             : make_range(VRegUses.find(Reg), VRegUses.end())) {
1339          SUnit &SU = *V2SU.SU;
1340          if (SU.isScheduled || &SU == &ExitSU)
1341            continue;
1342  
1343          PressureDiff &PDiff = getPressureDiff(&SU);
1344          PDiff.addPressureChange(Reg, Decrement, &MRI);
1345          LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1346                            << printReg(Reg, TRI) << ':'
1347                            << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1348                     dbgs() << "              to "; PDiff.dump(*TRI););
1349        }
1350      } else {
1351        assert(P.LaneMask.any());
1352        LLVM_DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1353        // This may be called before CurrentBottom has been initialized. However,
1354        // BotRPTracker must have a valid position. We want the value live into the
1355        // instruction or live out of the block, so ask for the previous
1356        // instruction's live-out.
1357        const LiveInterval &LI = LIS->getInterval(Reg);
1358        VNInfo *VNI;
1359        MachineBasicBlock::const_iterator I =
1360          nextIfDebug(BotRPTracker.getPos(), BB->end());
1361        if (I == BB->end())
1362          VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1363        else {
1364          LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1365          VNI = LRQ.valueIn();
1366        }
1367        // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1368        assert(VNI && "No live value at use.");
1369        for (const VReg2SUnit &V2SU
1370             : make_range(VRegUses.find(Reg), VRegUses.end())) {
1371          SUnit *SU = V2SU.SU;
1372          // If this use comes before the reaching def, it cannot be a last use,
1373          // so decrease its pressure change.
1374          if (!SU->isScheduled && SU != &ExitSU) {
1375            LiveQueryResult LRQ =
1376                LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1377            if (LRQ.valueIn() == VNI) {
1378              PressureDiff &PDiff = getPressureDiff(SU);
1379              PDiff.addPressureChange(Reg, true, &MRI);
1380              LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1381                                << *SU->getInstr();
1382                         dbgs() << "              to "; PDiff.dump(*TRI););
1383            }
1384          }
1385        }
1386      }
1387    }
1388  }
1389  
1390  void ScheduleDAGMILive::dump() const {
1391  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1392    if (EntrySU.getInstr() != nullptr)
1393      dumpNodeAll(EntrySU);
1394    for (const SUnit &SU : SUnits) {
1395      dumpNodeAll(SU);
1396      if (ShouldTrackPressure) {
1397        dbgs() << "  Pressure Diff      : ";
1398        getPressureDiff(&SU).dump(*TRI);
1399      }
1400      dbgs() << "  Single Issue       : ";
1401      if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1402          SchedModel.mustEndGroup(SU.getInstr()))
1403        dbgs() << "true;";
1404      else
1405        dbgs() << "false;";
1406      dbgs() << '\n';
1407    }
1408    if (ExitSU.getInstr() != nullptr)
1409      dumpNodeAll(ExitSU);
1410  #endif
1411  }
1412  
1413  /// schedule - Called back from MachineScheduler::runOnMachineFunction
1414  /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1415  /// only includes instructions that have DAG nodes, not scheduling boundaries.
1416  ///
1417  /// This is a skeletal driver, with all the functionality pushed into helpers,
1418  /// so that it can be easily extended by experimental schedulers. Generally,
1419  /// implementing MachineSchedStrategy should be sufficient to implement a new
1420  /// scheduling algorithm. However, if a scheduler further subclasses
1421  /// ScheduleDAGMILive then it will want to override this virtual method in order
1422  /// to update any specialized state.
1423  void ScheduleDAGMILive::schedule() {
1424    LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1425    LLVM_DEBUG(SchedImpl->dumpPolicy());
1426    buildDAGWithRegPressure();
1427  
1428    postProcessDAG();
1429  
1430    SmallVector<SUnit*, 8> TopRoots, BotRoots;
1431    findRootsAndBiasEdges(TopRoots, BotRoots);
1432  
1433    // Initialize the strategy before modifying the DAG.
1434    // This may initialize a DFSResult to be used for queue priority.
1435    SchedImpl->initialize(this);
1436  
1437    LLVM_DEBUG(dump());
1438    if (PrintDAGs) dump();
1439    if (ViewMISchedDAGs) viewGraph();
1440  
1441    // Initialize ready queues now that the DAG and priority data are finalized.
1442    initQueues(TopRoots, BotRoots);
1443  
1444    bool IsTopNode = false;
1445    while (true) {
1446      LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1447      SUnit *SU = SchedImpl->pickNode(IsTopNode);
1448      if (!SU) break;
1449  
1450      assert(!SU->isScheduled && "Node already scheduled");
1451      if (!checkSchedLimit())
1452        break;
1453  
1454      scheduleMI(SU, IsTopNode);
1455  
1456      if (DFSResult) {
1457        unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1458        if (!ScheduledTrees.test(SubtreeID)) {
1459          ScheduledTrees.set(SubtreeID);
1460          DFSResult->scheduleTree(SubtreeID);
1461          SchedImpl->scheduleTree(SubtreeID);
1462        }
1463      }
1464  
1465      // Notify the scheduling strategy after updating the DAG.
1466      SchedImpl->schedNode(SU, IsTopNode);
1467  
1468      updateQueues(SU, IsTopNode);
1469    }
1470    assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1471  
1472    placeDebugValues();
1473  
1474    LLVM_DEBUG({
1475      dbgs() << "*** Final schedule for "
1476             << printMBBReference(*begin()->getParent()) << " ***\n";
1477      dumpSchedule();
1478      dbgs() << '\n';
1479    });
1480  }
1481  
1482  /// Build the DAG and setup three register pressure trackers.
1483  void ScheduleDAGMILive::buildDAGWithRegPressure() {
1484    if (!ShouldTrackPressure) {
1485      RPTracker.reset();
1486      RegionCriticalPSets.clear();
1487      buildSchedGraph(AA);
1488      return;
1489    }
1490  
1491    // Initialize the register pressure tracker used by buildSchedGraph.
1492    RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1493                   ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1494  
1495    // Account for liveness generate by the region boundary.
1496    if (LiveRegionEnd != RegionEnd)
1497      RPTracker.recede();
1498  
1499    // Build the DAG, and compute current register pressure.
1500    buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1501  
1502    // Initialize top/bottom trackers after computing region pressure.
1503    initRegPressure();
1504  }
1505  
1506  void ScheduleDAGMILive::computeDFSResult() {
1507    if (!DFSResult)
1508      DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1509    DFSResult->clear();
1510    ScheduledTrees.clear();
1511    DFSResult->resize(SUnits.size());
1512    DFSResult->compute(SUnits);
1513    ScheduledTrees.resize(DFSResult->getNumSubtrees());
1514  }
1515  
1516  /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1517  /// only provides the critical path for single block loops. To handle loops that
1518  /// span blocks, we could use the vreg path latencies provided by
1519  /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1520  /// available for use in the scheduler.
1521  ///
1522  /// The cyclic path estimation identifies a def-use pair that crosses the back
1523  /// edge and considers the depth and height of the nodes. For example, consider
1524  /// the following instruction sequence where each instruction has unit latency
1525  /// and defines an eponymous virtual register:
1526  ///
1527  /// a->b(a,c)->c(b)->d(c)->exit
1528  ///
1529  /// The cyclic critical path is a two cycles: b->c->b
1530  /// The acyclic critical path is four cycles: a->b->c->d->exit
1531  /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1532  /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1533  /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1534  /// LiveInDepth = depth(b) = len(a->b) = 1
1535  ///
1536  /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1537  /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1538  /// CyclicCriticalPath = min(2, 2) = 2
1539  ///
1540  /// This could be relevant to PostRA scheduling, but is currently implemented
1541  /// assuming LiveIntervals.
1542  unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1543    // This only applies to single block loop.
1544    if (!BB->isSuccessor(BB))
1545      return 0;
1546  
1547    unsigned MaxCyclicLatency = 0;
1548    // Visit each live out vreg def to find def/use pairs that cross iterations.
1549    for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1550      Register Reg = P.RegUnit;
1551      if (!Reg.isVirtual())
1552        continue;
1553      const LiveInterval &LI = LIS->getInterval(Reg);
1554      const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1555      if (!DefVNI)
1556        continue;
1557  
1558      MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1559      const SUnit *DefSU = getSUnit(DefMI);
1560      if (!DefSU)
1561        continue;
1562  
1563      unsigned LiveOutHeight = DefSU->getHeight();
1564      unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1565      // Visit all local users of the vreg def.
1566      for (const VReg2SUnit &V2SU
1567           : make_range(VRegUses.find(Reg), VRegUses.end())) {
1568        SUnit *SU = V2SU.SU;
1569        if (SU == &ExitSU)
1570          continue;
1571  
1572        // Only consider uses of the phi.
1573        LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1574        if (!LRQ.valueIn()->isPHIDef())
1575          continue;
1576  
1577        // Assume that a path spanning two iterations is a cycle, which could
1578        // overestimate in strange cases. This allows cyclic latency to be
1579        // estimated as the minimum slack of the vreg's depth or height.
1580        unsigned CyclicLatency = 0;
1581        if (LiveOutDepth > SU->getDepth())
1582          CyclicLatency = LiveOutDepth - SU->getDepth();
1583  
1584        unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1585        if (LiveInHeight > LiveOutHeight) {
1586          if (LiveInHeight - LiveOutHeight < CyclicLatency)
1587            CyclicLatency = LiveInHeight - LiveOutHeight;
1588        } else
1589          CyclicLatency = 0;
1590  
1591        LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1592                          << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1593        if (CyclicLatency > MaxCyclicLatency)
1594          MaxCyclicLatency = CyclicLatency;
1595      }
1596    }
1597    LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1598    return MaxCyclicLatency;
1599  }
1600  
1601  /// Release ExitSU predecessors and setup scheduler queues. Re-position
1602  /// the Top RP tracker in case the region beginning has changed.
1603  void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1604                                     ArrayRef<SUnit*> BotRoots) {
1605    ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1606    if (ShouldTrackPressure) {
1607      assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1608      TopRPTracker.setPos(CurrentTop);
1609    }
1610  }
1611  
1612  /// Move an instruction and update register pressure.
1613  void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1614    // Move the instruction to its new location in the instruction stream.
1615    MachineInstr *MI = SU->getInstr();
1616  
1617    if (IsTopNode) {
1618      assert(SU->isTopReady() && "node still has unscheduled dependencies");
1619      if (&*CurrentTop == MI)
1620        CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1621      else {
1622        moveInstruction(MI, CurrentTop);
1623        TopRPTracker.setPos(MI);
1624      }
1625  
1626      if (ShouldTrackPressure) {
1627        // Update top scheduled pressure.
1628        RegisterOperands RegOpers;
1629        RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1630        if (ShouldTrackLaneMasks) {
1631          // Adjust liveness and add missing dead+read-undef flags.
1632          SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1633          RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1634        } else {
1635          // Adjust for missing dead-def flags.
1636          RegOpers.detectDeadDefs(*MI, *LIS);
1637        }
1638  
1639        TopRPTracker.advance(RegOpers);
1640        assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1641        LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1642                       TopRPTracker.getRegSetPressureAtPos(), TRI););
1643  
1644        updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1645      }
1646    } else {
1647      assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1648      MachineBasicBlock::iterator priorII =
1649        priorNonDebug(CurrentBottom, CurrentTop);
1650      if (&*priorII == MI)
1651        CurrentBottom = priorII;
1652      else {
1653        if (&*CurrentTop == MI) {
1654          CurrentTop = nextIfDebug(++CurrentTop, priorII);
1655          TopRPTracker.setPos(CurrentTop);
1656        }
1657        moveInstruction(MI, CurrentBottom);
1658        CurrentBottom = MI;
1659        BotRPTracker.setPos(CurrentBottom);
1660      }
1661      if (ShouldTrackPressure) {
1662        RegisterOperands RegOpers;
1663        RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1664        if (ShouldTrackLaneMasks) {
1665          // Adjust liveness and add missing dead+read-undef flags.
1666          SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1667          RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1668        } else {
1669          // Adjust for missing dead-def flags.
1670          RegOpers.detectDeadDefs(*MI, *LIS);
1671        }
1672  
1673        if (BotRPTracker.getPos() != CurrentBottom)
1674          BotRPTracker.recedeSkipDebugValues();
1675        SmallVector<RegisterMaskPair, 8> LiveUses;
1676        BotRPTracker.recede(RegOpers, &LiveUses);
1677        assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1678        LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1679                       BotRPTracker.getRegSetPressureAtPos(), TRI););
1680  
1681        updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1682        updatePressureDiffs(LiveUses);
1683      }
1684    }
1685  }
1686  
1687  //===----------------------------------------------------------------------===//
1688  // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1689  //===----------------------------------------------------------------------===//
1690  
1691  namespace {
1692  
1693  /// Post-process the DAG to create cluster edges between neighboring
1694  /// loads or between neighboring stores.
1695  class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1696    struct MemOpInfo {
1697      SUnit *SU;
1698      SmallVector<const MachineOperand *, 4> BaseOps;
1699      int64_t Offset;
1700      unsigned Width;
1701      bool OffsetIsScalable;
1702  
1703      MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps,
1704                int64_t Offset, bool OffsetIsScalable, unsigned Width)
1705          : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset),
1706            Width(Width), OffsetIsScalable(OffsetIsScalable) {}
1707  
1708      static bool Compare(const MachineOperand *const &A,
1709                          const MachineOperand *const &B) {
1710        if (A->getType() != B->getType())
1711          return A->getType() < B->getType();
1712        if (A->isReg())
1713          return A->getReg() < B->getReg();
1714        if (A->isFI()) {
1715          const MachineFunction &MF = *A->getParent()->getParent()->getParent();
1716          const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
1717          bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1718                                TargetFrameLowering::StackGrowsDown;
1719          return StackGrowsDown ? A->getIndex() > B->getIndex()
1720                                : A->getIndex() < B->getIndex();
1721        }
1722  
1723        llvm_unreachable("MemOpClusterMutation only supports register or frame "
1724                         "index bases.");
1725      }
1726  
1727      bool operator<(const MemOpInfo &RHS) const {
1728        // FIXME: Don't compare everything twice. Maybe use C++20 three way
1729        // comparison instead when it's available.
1730        if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(),
1731                                         RHS.BaseOps.begin(), RHS.BaseOps.end(),
1732                                         Compare))
1733          return true;
1734        if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(),
1735                                         BaseOps.begin(), BaseOps.end(), Compare))
1736          return false;
1737        if (Offset != RHS.Offset)
1738          return Offset < RHS.Offset;
1739        return SU->NodeNum < RHS.SU->NodeNum;
1740      }
1741    };
1742  
1743    const TargetInstrInfo *TII;
1744    const TargetRegisterInfo *TRI;
1745    bool IsLoad;
1746    bool ReorderWhileClustering;
1747  
1748  public:
1749    BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1750                             const TargetRegisterInfo *tri, bool IsLoad,
1751                             bool ReorderWhileClustering)
1752        : TII(tii), TRI(tri), IsLoad(IsLoad),
1753          ReorderWhileClustering(ReorderWhileClustering) {}
1754  
1755    void apply(ScheduleDAGInstrs *DAGInstrs) override;
1756  
1757  protected:
1758    void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster,
1759                                  ScheduleDAGInstrs *DAG);
1760    void collectMemOpRecords(std::vector<SUnit> &SUnits,
1761                             SmallVectorImpl<MemOpInfo> &MemOpRecords);
1762    bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1763                     DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups);
1764  };
1765  
1766  class StoreClusterMutation : public BaseMemOpClusterMutation {
1767  public:
1768    StoreClusterMutation(const TargetInstrInfo *tii,
1769                         const TargetRegisterInfo *tri,
1770                         bool ReorderWhileClustering)
1771        : BaseMemOpClusterMutation(tii, tri, false, ReorderWhileClustering) {}
1772  };
1773  
1774  class LoadClusterMutation : public BaseMemOpClusterMutation {
1775  public:
1776    LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri,
1777                        bool ReorderWhileClustering)
1778        : BaseMemOpClusterMutation(tii, tri, true, ReorderWhileClustering) {}
1779  };
1780  
1781  } // end anonymous namespace
1782  
1783  namespace llvm {
1784  
1785  std::unique_ptr<ScheduleDAGMutation>
1786  createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1787                               const TargetRegisterInfo *TRI,
1788                               bool ReorderWhileClustering) {
1789    return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(
1790                                    TII, TRI, ReorderWhileClustering)
1791                              : nullptr;
1792  }
1793  
1794  std::unique_ptr<ScheduleDAGMutation>
1795  createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1796                                const TargetRegisterInfo *TRI,
1797                                bool ReorderWhileClustering) {
1798    return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(
1799                                    TII, TRI, ReorderWhileClustering)
1800                              : nullptr;
1801  }
1802  
1803  } // end namespace llvm
1804  
1805  // Sorting all the loads/stores first, then for each load/store, checking the
1806  // following load/store one by one, until reach the first non-dependent one and
1807  // call target hook to see if they can cluster.
1808  // If FastCluster is enabled, we assume that, all the loads/stores have been
1809  // preprocessed and now, they didn't have dependencies on each other.
1810  void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1811      ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster,
1812      ScheduleDAGInstrs *DAG) {
1813    // Keep track of the current cluster length and bytes for each SUnit.
1814    DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo;
1815  
1816    // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to
1817    // cluster mem ops collected within `MemOpRecords` array.
1818    for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1819      // Decision to cluster mem ops is taken based on target dependent logic
1820      auto MemOpa = MemOpRecords[Idx];
1821  
1822      // Seek for the next load/store to do the cluster.
1823      unsigned NextIdx = Idx + 1;
1824      for (; NextIdx < End; ++NextIdx)
1825        // Skip if MemOpb has been clustered already or has dependency with
1826        // MemOpa.
1827        if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) &&
1828            (FastCluster ||
1829             (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) &&
1830              !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU))))
1831          break;
1832      if (NextIdx == End)
1833        continue;
1834  
1835      auto MemOpb = MemOpRecords[NextIdx];
1836      unsigned ClusterLength = 2;
1837      unsigned CurrentClusterBytes = MemOpa.Width + MemOpb.Width;
1838      if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) {
1839        ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1;
1840        CurrentClusterBytes =
1841            SUnit2ClusterInfo[MemOpa.SU->NodeNum].second + MemOpb.Width;
1842      }
1843  
1844      if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpa.Offset,
1845                                    MemOpa.OffsetIsScalable, MemOpb.BaseOps,
1846                                    MemOpb.Offset, MemOpb.OffsetIsScalable,
1847                                    ClusterLength, CurrentClusterBytes))
1848        continue;
1849  
1850      SUnit *SUa = MemOpa.SU;
1851      SUnit *SUb = MemOpb.SU;
1852      if (!ReorderWhileClustering && SUa->NodeNum > SUb->NodeNum)
1853        std::swap(SUa, SUb);
1854  
1855      // FIXME: Is this check really required?
1856      if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster)))
1857        continue;
1858  
1859      LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1860                        << SUb->NodeNum << ")\n");
1861      ++NumClustered;
1862  
1863      if (IsLoad) {
1864        // Copy successor edges from SUa to SUb. Interleaving computation
1865        // dependent on SUa can prevent load combining due to register reuse.
1866        // Predecessor edges do not need to be copied from SUb to SUa since
1867        // nearby loads should have effectively the same inputs.
1868        for (const SDep &Succ : SUa->Succs) {
1869          if (Succ.getSUnit() == SUb)
1870            continue;
1871          LLVM_DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum
1872                            << ")\n");
1873          DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1874        }
1875      } else {
1876        // Copy predecessor edges from SUb to SUa to avoid the SUnits that
1877        // SUb dependent on scheduled in-between SUb and SUa. Successor edges
1878        // do not need to be copied from SUa to SUb since no one will depend
1879        // on stores.
1880        // Notice that, we don't need to care about the memory dependency as
1881        // we won't try to cluster them if they have any memory dependency.
1882        for (const SDep &Pred : SUb->Preds) {
1883          if (Pred.getSUnit() == SUa)
1884            continue;
1885          LLVM_DEBUG(dbgs() << "  Copy Pred SU(" << Pred.getSUnit()->NodeNum
1886                            << ")\n");
1887          DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial));
1888        }
1889      }
1890  
1891      SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength,
1892                                               CurrentClusterBytes};
1893  
1894      LLVM_DEBUG(dbgs() << "  Curr cluster length: " << ClusterLength
1895                        << ", Curr cluster bytes: " << CurrentClusterBytes
1896                        << "\n");
1897    }
1898  }
1899  
1900  void BaseMemOpClusterMutation::collectMemOpRecords(
1901      std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) {
1902    for (auto &SU : SUnits) {
1903      if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1904          (!IsLoad && !SU.getInstr()->mayStore()))
1905        continue;
1906  
1907      const MachineInstr &MI = *SU.getInstr();
1908      SmallVector<const MachineOperand *, 4> BaseOps;
1909      int64_t Offset;
1910      bool OffsetIsScalable;
1911      unsigned Width;
1912      if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset,
1913                                             OffsetIsScalable, Width, TRI)) {
1914        MemOpRecords.push_back(
1915            MemOpInfo(&SU, BaseOps, Offset, OffsetIsScalable, Width));
1916  
1917        LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: "
1918                          << Offset << ", OffsetIsScalable: " << OffsetIsScalable
1919                          << ", Width: " << Width << "\n");
1920      }
1921  #ifndef NDEBUG
1922      for (const auto *Op : BaseOps)
1923        assert(Op);
1924  #endif
1925    }
1926  }
1927  
1928  bool BaseMemOpClusterMutation::groupMemOps(
1929      ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1930      DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups) {
1931    bool FastCluster =
1932        ForceFastCluster ||
1933        MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold;
1934  
1935    for (const auto &MemOp : MemOps) {
1936      unsigned ChainPredID = DAG->SUnits.size();
1937      if (FastCluster) {
1938        for (const SDep &Pred : MemOp.SU->Preds) {
1939          // We only want to cluster the mem ops that have the same ctrl(non-data)
1940          // pred so that they didn't have ctrl dependency for each other. But for
1941          // store instrs, we can still cluster them if the pred is load instr.
1942          if ((Pred.isCtrl() &&
1943               (IsLoad ||
1944                (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) &&
1945              !Pred.isArtificial()) {
1946            ChainPredID = Pred.getSUnit()->NodeNum;
1947            break;
1948          }
1949        }
1950      } else
1951        ChainPredID = 0;
1952  
1953      Groups[ChainPredID].push_back(MemOp);
1954    }
1955    return FastCluster;
1956  }
1957  
1958  /// Callback from DAG postProcessing to create cluster edges for loads/stores.
1959  void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
1960    // Collect all the clusterable loads/stores
1961    SmallVector<MemOpInfo, 32> MemOpRecords;
1962    collectMemOpRecords(DAG->SUnits, MemOpRecords);
1963  
1964    if (MemOpRecords.size() < 2)
1965      return;
1966  
1967    // Put the loads/stores without dependency into the same group with some
1968    // heuristic if the DAG is too complex to avoid compiling time blow up.
1969    // Notice that, some fusion pair could be lost with this.
1970    DenseMap<unsigned, SmallVector<MemOpInfo, 32>> Groups;
1971    bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups);
1972  
1973    for (auto &Group : Groups) {
1974      // Sorting the loads/stores, so that, we can stop the cluster as early as
1975      // possible.
1976      llvm::sort(Group.second);
1977  
1978      // Trying to cluster all the neighboring loads/stores.
1979      clusterNeighboringMemOps(Group.second, FastCluster, DAG);
1980    }
1981  }
1982  
1983  //===----------------------------------------------------------------------===//
1984  // CopyConstrain - DAG post-processing to encourage copy elimination.
1985  //===----------------------------------------------------------------------===//
1986  
1987  namespace {
1988  
1989  /// Post-process the DAG to create weak edges from all uses of a copy to
1990  /// the one use that defines the copy's source vreg, most likely an induction
1991  /// variable increment.
1992  class CopyConstrain : public ScheduleDAGMutation {
1993    // Transient state.
1994    SlotIndex RegionBeginIdx;
1995  
1996    // RegionEndIdx is the slot index of the last non-debug instruction in the
1997    // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1998    SlotIndex RegionEndIdx;
1999  
2000  public:
2001    CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
2002  
2003    void apply(ScheduleDAGInstrs *DAGInstrs) override;
2004  
2005  protected:
2006    void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
2007  };
2008  
2009  } // end anonymous namespace
2010  
2011  namespace llvm {
2012  
2013  std::unique_ptr<ScheduleDAGMutation>
2014  createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
2015                                 const TargetRegisterInfo *TRI) {
2016    return std::make_unique<CopyConstrain>(TII, TRI);
2017  }
2018  
2019  } // end namespace llvm
2020  
2021  /// constrainLocalCopy handles two possibilities:
2022  /// 1) Local src:
2023  /// I0:     = dst
2024  /// I1: src = ...
2025  /// I2:     = dst
2026  /// I3: dst = src (copy)
2027  /// (create pred->succ edges I0->I1, I2->I1)
2028  ///
2029  /// 2) Local copy:
2030  /// I0: dst = src (copy)
2031  /// I1:     = dst
2032  /// I2: src = ...
2033  /// I3:     = dst
2034  /// (create pred->succ edges I1->I2, I3->I2)
2035  ///
2036  /// Although the MachineScheduler is currently constrained to single blocks,
2037  /// this algorithm should handle extended blocks. An EBB is a set of
2038  /// contiguously numbered blocks such that the previous block in the EBB is
2039  /// always the single predecessor.
2040  void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
2041    LiveIntervals *LIS = DAG->getLIS();
2042    MachineInstr *Copy = CopySU->getInstr();
2043  
2044    // Check for pure vreg copies.
2045    const MachineOperand &SrcOp = Copy->getOperand(1);
2046    Register SrcReg = SrcOp.getReg();
2047    if (!SrcReg.isVirtual() || !SrcOp.readsReg())
2048      return;
2049  
2050    const MachineOperand &DstOp = Copy->getOperand(0);
2051    Register DstReg = DstOp.getReg();
2052    if (!DstReg.isVirtual() || DstOp.isDead())
2053      return;
2054  
2055    // Check if either the dest or source is local. If it's live across a back
2056    // edge, it's not local. Note that if both vregs are live across the back
2057    // edge, we cannot successfully contrain the copy without cyclic scheduling.
2058    // If both the copy's source and dest are local live intervals, then we
2059    // should treat the dest as the global for the purpose of adding
2060    // constraints. This adds edges from source's other uses to the copy.
2061    unsigned LocalReg = SrcReg;
2062    unsigned GlobalReg = DstReg;
2063    LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
2064    if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
2065      LocalReg = DstReg;
2066      GlobalReg = SrcReg;
2067      LocalLI = &LIS->getInterval(LocalReg);
2068      if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
2069        return;
2070    }
2071    LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
2072  
2073    // Find the global segment after the start of the local LI.
2074    LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
2075    // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
2076    // local live range. We could create edges from other global uses to the local
2077    // start, but the coalescer should have already eliminated these cases, so
2078    // don't bother dealing with it.
2079    if (GlobalSegment == GlobalLI->end())
2080      return;
2081  
2082    // If GlobalSegment is killed at the LocalLI->start, the call to find()
2083    // returned the next global segment. But if GlobalSegment overlaps with
2084    // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
2085    // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
2086    if (GlobalSegment->contains(LocalLI->beginIndex()))
2087      ++GlobalSegment;
2088  
2089    if (GlobalSegment == GlobalLI->end())
2090      return;
2091  
2092    // Check if GlobalLI contains a hole in the vicinity of LocalLI.
2093    if (GlobalSegment != GlobalLI->begin()) {
2094      // Two address defs have no hole.
2095      if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
2096                                 GlobalSegment->start)) {
2097        return;
2098      }
2099      // If the prior global segment may be defined by the same two-address
2100      // instruction that also defines LocalLI, then can't make a hole here.
2101      if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
2102                                 LocalLI->beginIndex())) {
2103        return;
2104      }
2105      // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
2106      // it would be a disconnected component in the live range.
2107      assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
2108             "Disconnected LRG within the scheduling region.");
2109    }
2110    MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
2111    if (!GlobalDef)
2112      return;
2113  
2114    SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
2115    if (!GlobalSU)
2116      return;
2117  
2118    // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
2119    // constraining the uses of the last local def to precede GlobalDef.
2120    SmallVector<SUnit*,8> LocalUses;
2121    const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
2122    MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
2123    SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
2124    for (const SDep &Succ : LastLocalSU->Succs) {
2125      if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
2126        continue;
2127      if (Succ.getSUnit() == GlobalSU)
2128        continue;
2129      if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
2130        return;
2131      LocalUses.push_back(Succ.getSUnit());
2132    }
2133    // Open the top of the GlobalLI hole by constraining any earlier global uses
2134    // to precede the start of LocalLI.
2135    SmallVector<SUnit*,8> GlobalUses;
2136    MachineInstr *FirstLocalDef =
2137      LIS->getInstructionFromIndex(LocalLI->beginIndex());
2138    SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
2139    for (const SDep &Pred : GlobalSU->Preds) {
2140      if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
2141        continue;
2142      if (Pred.getSUnit() == FirstLocalSU)
2143        continue;
2144      if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
2145        return;
2146      GlobalUses.push_back(Pred.getSUnit());
2147    }
2148    LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
2149    // Add the weak edges.
2150    for (SUnit *LU : LocalUses) {
2151      LLVM_DEBUG(dbgs() << "  Local use SU(" << LU->NodeNum << ") -> SU("
2152                        << GlobalSU->NodeNum << ")\n");
2153      DAG->addEdge(GlobalSU, SDep(LU, SDep::Weak));
2154    }
2155    for (SUnit *GU : GlobalUses) {
2156      LLVM_DEBUG(dbgs() << "  Global use SU(" << GU->NodeNum << ") -> SU("
2157                        << FirstLocalSU->NodeNum << ")\n");
2158      DAG->addEdge(FirstLocalSU, SDep(GU, SDep::Weak));
2159    }
2160  }
2161  
2162  /// Callback from DAG postProcessing to create weak edges to encourage
2163  /// copy elimination.
2164  void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
2165    ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
2166    assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
2167  
2168    MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
2169    if (FirstPos == DAG->end())
2170      return;
2171    RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
2172    RegionEndIdx = DAG->getLIS()->getInstructionIndex(
2173        *priorNonDebug(DAG->end(), DAG->begin()));
2174  
2175    for (SUnit &SU : DAG->SUnits) {
2176      if (!SU.getInstr()->isCopy())
2177        continue;
2178  
2179      constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
2180    }
2181  }
2182  
2183  //===----------------------------------------------------------------------===//
2184  // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
2185  // and possibly other custom schedulers.
2186  //===----------------------------------------------------------------------===//
2187  
2188  static const unsigned InvalidCycle = ~0U;
2189  
2190  SchedBoundary::~SchedBoundary() { delete HazardRec; }
2191  
2192  /// Given a Count of resource usage and a Latency value, return true if a
2193  /// SchedBoundary becomes resource limited.
2194  /// If we are checking after scheduling a node, we should return true when
2195  /// we just reach the resource limit.
2196  static bool checkResourceLimit(unsigned LFactor, unsigned Count,
2197                                 unsigned Latency, bool AfterSchedNode) {
2198    int ResCntFactor = (int)(Count - (Latency * LFactor));
2199    if (AfterSchedNode)
2200      return ResCntFactor >= (int)LFactor;
2201    else
2202      return ResCntFactor > (int)LFactor;
2203  }
2204  
2205  void SchedBoundary::reset() {
2206    // A new HazardRec is created for each DAG and owned by SchedBoundary.
2207    // Destroying and reconstructing it is very expensive though. So keep
2208    // invalid, placeholder HazardRecs.
2209    if (HazardRec && HazardRec->isEnabled()) {
2210      delete HazardRec;
2211      HazardRec = nullptr;
2212    }
2213    Available.clear();
2214    Pending.clear();
2215    CheckPending = false;
2216    CurrCycle = 0;
2217    CurrMOps = 0;
2218    MinReadyCycle = std::numeric_limits<unsigned>::max();
2219    ExpectedLatency = 0;
2220    DependentLatency = 0;
2221    RetiredMOps = 0;
2222    MaxExecutedResCount = 0;
2223    ZoneCritResIdx = 0;
2224    IsResourceLimited = false;
2225    ReservedCycles.clear();
2226    ReservedResourceSegments.clear();
2227    ReservedCyclesIndex.clear();
2228    ResourceGroupSubUnitMasks.clear();
2229  #if LLVM_ENABLE_ABI_BREAKING_CHECKS
2230    // Track the maximum number of stall cycles that could arise either from the
2231    // latency of a DAG edge or the number of cycles that a processor resource is
2232    // reserved (SchedBoundary::ReservedCycles).
2233    MaxObservedStall = 0;
2234  #endif
2235    // Reserve a zero-count for invalid CritResIdx.
2236    ExecutedResCounts.resize(1);
2237    assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
2238  }
2239  
2240  void SchedRemainder::
2241  init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
2242    reset();
2243    if (!SchedModel->hasInstrSchedModel())
2244      return;
2245    RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
2246    for (SUnit &SU : DAG->SUnits) {
2247      const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
2248      RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
2249        * SchedModel->getMicroOpFactor();
2250      for (TargetSchedModel::ProcResIter
2251             PI = SchedModel->getWriteProcResBegin(SC),
2252             PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2253        unsigned PIdx = PI->ProcResourceIdx;
2254        unsigned Factor = SchedModel->getResourceFactor(PIdx);
2255        assert(PI->ReleaseAtCycle >= PI->AcquireAtCycle);
2256        RemainingCounts[PIdx] +=
2257            (Factor * (PI->ReleaseAtCycle - PI->AcquireAtCycle));
2258      }
2259    }
2260  }
2261  
2262  void SchedBoundary::
2263  init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
2264    reset();
2265    DAG = dag;
2266    SchedModel = smodel;
2267    Rem = rem;
2268    if (SchedModel->hasInstrSchedModel()) {
2269      unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
2270      ReservedCyclesIndex.resize(ResourceCount);
2271      ExecutedResCounts.resize(ResourceCount);
2272      ResourceGroupSubUnitMasks.resize(ResourceCount, APInt(ResourceCount, 0));
2273      unsigned NumUnits = 0;
2274  
2275      for (unsigned i = 0; i < ResourceCount; ++i) {
2276        ReservedCyclesIndex[i] = NumUnits;
2277        NumUnits += SchedModel->getProcResource(i)->NumUnits;
2278        if (isUnbufferedGroup(i)) {
2279          auto SubUnits = SchedModel->getProcResource(i)->SubUnitsIdxBegin;
2280          for (unsigned U = 0, UE = SchedModel->getProcResource(i)->NumUnits;
2281               U != UE; ++U)
2282            ResourceGroupSubUnitMasks[i].setBit(SubUnits[U]);
2283        }
2284      }
2285  
2286      ReservedCycles.resize(NumUnits, InvalidCycle);
2287    }
2288  }
2289  
2290  /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
2291  /// these "soft stalls" differently than the hard stall cycles based on CPU
2292  /// resources and computed by checkHazard(). A fully in-order model
2293  /// (MicroOpBufferSize==0) will not make use of this since instructions are not
2294  /// available for scheduling until they are ready. However, a weaker in-order
2295  /// model may use this for heuristics. For example, if a processor has in-order
2296  /// behavior when reading certain resources, this may come into play.
2297  unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
2298    if (!SU->isUnbuffered)
2299      return 0;
2300  
2301    unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2302    if (ReadyCycle > CurrCycle)
2303      return ReadyCycle - CurrCycle;
2304    return 0;
2305  }
2306  
2307  /// Compute the next cycle at which the given processor resource unit
2308  /// can be scheduled.
2309  unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx,
2310                                                         unsigned ReleaseAtCycle,
2311                                                         unsigned AcquireAtCycle) {
2312    if (SchedModel && SchedModel->enableIntervals()) {
2313      if (isTop())
2314        return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromTop(
2315            CurrCycle, AcquireAtCycle, ReleaseAtCycle);
2316  
2317      return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromBottom(
2318          CurrCycle, AcquireAtCycle, ReleaseAtCycle);
2319    }
2320  
2321    unsigned NextUnreserved = ReservedCycles[InstanceIdx];
2322    // If this resource has never been used, always return cycle zero.
2323    if (NextUnreserved == InvalidCycle)
2324      return CurrCycle;
2325    // For bottom-up scheduling add the cycles needed for the current operation.
2326    if (!isTop())
2327      NextUnreserved = std::max(CurrCycle, NextUnreserved + ReleaseAtCycle);
2328    return NextUnreserved;
2329  }
2330  
2331  /// Compute the next cycle at which the given processor resource can be
2332  /// scheduled.  Returns the next cycle and the index of the processor resource
2333  /// instance in the reserved cycles vector.
2334  std::pair<unsigned, unsigned>
2335  SchedBoundary::getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx,
2336                                      unsigned ReleaseAtCycle,
2337                                      unsigned AcquireAtCycle) {
2338    if (MischedDetailResourceBooking) {
2339      LLVM_DEBUG(dbgs() << "  Resource booking (@" << CurrCycle << "c): \n");
2340      LLVM_DEBUG(dumpReservedCycles());
2341      LLVM_DEBUG(dbgs() << "  getNextResourceCycle (@" << CurrCycle << "c): \n");
2342    }
2343    unsigned MinNextUnreserved = InvalidCycle;
2344    unsigned InstanceIdx = 0;
2345    unsigned StartIndex = ReservedCyclesIndex[PIdx];
2346    unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
2347    assert(NumberOfInstances > 0 &&
2348           "Cannot have zero instances of a ProcResource");
2349  
2350    if (isUnbufferedGroup(PIdx)) {
2351      // If any subunits are used by the instruction, report that the
2352      // subunits of the resource group are available at the first cycle
2353      // in which the unit is available, effectively removing the group
2354      // record from hazarding and basing the hazarding decisions on the
2355      // subunit records. Otherwise, choose the first available instance
2356      // from among the subunits.  Specifications which assign cycles to
2357      // both the subunits and the group or which use an unbuffered
2358      // group with buffered subunits will appear to schedule
2359      // strangely. In the first case, the additional cycles for the
2360      // group will be ignored.  In the second, the group will be
2361      // ignored entirely.
2362      for (const MCWriteProcResEntry &PE :
2363           make_range(SchedModel->getWriteProcResBegin(SC),
2364                      SchedModel->getWriteProcResEnd(SC)))
2365        if (ResourceGroupSubUnitMasks[PIdx][PE.ProcResourceIdx])
2366          return std::make_pair(getNextResourceCycleByInstance(
2367                                    StartIndex, ReleaseAtCycle, AcquireAtCycle),
2368                                StartIndex);
2369  
2370      auto SubUnits = SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin;
2371      for (unsigned I = 0, End = NumberOfInstances; I < End; ++I) {
2372        unsigned NextUnreserved, NextInstanceIdx;
2373        std::tie(NextUnreserved, NextInstanceIdx) =
2374            getNextResourceCycle(SC, SubUnits[I], ReleaseAtCycle, AcquireAtCycle);
2375        if (MinNextUnreserved > NextUnreserved) {
2376          InstanceIdx = NextInstanceIdx;
2377          MinNextUnreserved = NextUnreserved;
2378        }
2379      }
2380      return std::make_pair(MinNextUnreserved, InstanceIdx);
2381    }
2382  
2383    for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
2384         ++I) {
2385      unsigned NextUnreserved =
2386          getNextResourceCycleByInstance(I, ReleaseAtCycle, AcquireAtCycle);
2387      if (MischedDetailResourceBooking)
2388        LLVM_DEBUG(dbgs() << "    Instance " << I - StartIndex << " available @"
2389                          << NextUnreserved << "c\n");
2390      if (MinNextUnreserved > NextUnreserved) {
2391        InstanceIdx = I;
2392        MinNextUnreserved = NextUnreserved;
2393      }
2394    }
2395    if (MischedDetailResourceBooking)
2396      LLVM_DEBUG(dbgs() << "    selecting " << SchedModel->getResourceName(PIdx)
2397                        << "[" << InstanceIdx - StartIndex << "]"
2398                        << " available @" << MinNextUnreserved << "c"
2399                        << "\n");
2400    return std::make_pair(MinNextUnreserved, InstanceIdx);
2401  }
2402  
2403  /// Does this SU have a hazard within the current instruction group.
2404  ///
2405  /// The scheduler supports two modes of hazard recognition. The first is the
2406  /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
2407  /// supports highly complicated in-order reservation tables
2408  /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
2409  ///
2410  /// The second is a streamlined mechanism that checks for hazards based on
2411  /// simple counters that the scheduler itself maintains. It explicitly checks
2412  /// for instruction dispatch limitations, including the number of micro-ops that
2413  /// can dispatch per cycle.
2414  ///
2415  /// TODO: Also check whether the SU must start a new group.
2416  bool SchedBoundary::checkHazard(SUnit *SU) {
2417    if (HazardRec->isEnabled()
2418        && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
2419      return true;
2420    }
2421  
2422    unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
2423    if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
2424      LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
2425                        << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
2426      return true;
2427    }
2428  
2429    if (CurrMOps > 0 &&
2430        ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
2431         (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
2432      LLVM_DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
2433                        << (isTop() ? "begin" : "end") << " group\n");
2434      return true;
2435    }
2436  
2437    if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
2438      const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2439      for (const MCWriteProcResEntry &PE :
2440            make_range(SchedModel->getWriteProcResBegin(SC),
2441                       SchedModel->getWriteProcResEnd(SC))) {
2442        unsigned ResIdx = PE.ProcResourceIdx;
2443        unsigned ReleaseAtCycle = PE.ReleaseAtCycle;
2444        unsigned AcquireAtCycle = PE.AcquireAtCycle;
2445        unsigned NRCycle, InstanceIdx;
2446        std::tie(NRCycle, InstanceIdx) =
2447            getNextResourceCycle(SC, ResIdx, ReleaseAtCycle, AcquireAtCycle);
2448        if (NRCycle > CurrCycle) {
2449  #if LLVM_ENABLE_ABI_BREAKING_CHECKS
2450          MaxObservedStall = std::max(ReleaseAtCycle, MaxObservedStall);
2451  #endif
2452          LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
2453                            << SchedModel->getResourceName(ResIdx)
2454                            << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx]  << ']'
2455                            << "=" << NRCycle << "c\n");
2456          return true;
2457        }
2458      }
2459    }
2460    return false;
2461  }
2462  
2463  // Find the unscheduled node in ReadySUs with the highest latency.
2464  unsigned SchedBoundary::
2465  findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
2466    SUnit *LateSU = nullptr;
2467    unsigned RemLatency = 0;
2468    for (SUnit *SU : ReadySUs) {
2469      unsigned L = getUnscheduledLatency(SU);
2470      if (L > RemLatency) {
2471        RemLatency = L;
2472        LateSU = SU;
2473      }
2474    }
2475    if (LateSU) {
2476      LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2477                        << LateSU->NodeNum << ") " << RemLatency << "c\n");
2478    }
2479    return RemLatency;
2480  }
2481  
2482  // Count resources in this zone and the remaining unscheduled
2483  // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2484  // resource index, or zero if the zone is issue limited.
2485  unsigned SchedBoundary::
2486  getOtherResourceCount(unsigned &OtherCritIdx) {
2487    OtherCritIdx = 0;
2488    if (!SchedModel->hasInstrSchedModel())
2489      return 0;
2490  
2491    unsigned OtherCritCount = Rem->RemIssueCount
2492      + (RetiredMOps * SchedModel->getMicroOpFactor());
2493    LLVM_DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2494                      << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2495    for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2496         PIdx != PEnd; ++PIdx) {
2497      unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2498      if (OtherCount > OtherCritCount) {
2499        OtherCritCount = OtherCount;
2500        OtherCritIdx = PIdx;
2501      }
2502    }
2503    if (OtherCritIdx) {
2504      LLVM_DEBUG(
2505          dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2506                 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2507                 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2508    }
2509    return OtherCritCount;
2510  }
2511  
2512  void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue,
2513                                  unsigned Idx) {
2514    assert(SU->getInstr() && "Scheduled SUnit must have instr");
2515  
2516  #if LLVM_ENABLE_ABI_BREAKING_CHECKS
2517    // ReadyCycle was been bumped up to the CurrCycle when this node was
2518    // scheduled, but CurrCycle may have been eagerly advanced immediately after
2519    // scheduling, so may now be greater than ReadyCycle.
2520    if (ReadyCycle > CurrCycle)
2521      MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2522  #endif
2523  
2524    if (ReadyCycle < MinReadyCycle)
2525      MinReadyCycle = ReadyCycle;
2526  
2527    // Check for interlocks first. For the purpose of other heuristics, an
2528    // instruction that cannot issue appears as if it's not in the ReadyQueue.
2529    bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2530    bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) ||
2531                          checkHazard(SU) || (Available.size() >= ReadyListLimit);
2532  
2533    if (!HazardDetected) {
2534      Available.push(SU);
2535  
2536      if (InPQueue)
2537        Pending.remove(Pending.begin() + Idx);
2538      return;
2539    }
2540  
2541    if (!InPQueue)
2542      Pending.push(SU);
2543  }
2544  
2545  /// Move the boundary of scheduled code by one cycle.
2546  void SchedBoundary::bumpCycle(unsigned NextCycle) {
2547    if (SchedModel->getMicroOpBufferSize() == 0) {
2548      assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2549             "MinReadyCycle uninitialized");
2550      if (MinReadyCycle > NextCycle)
2551        NextCycle = MinReadyCycle;
2552    }
2553    // Update the current micro-ops, which will issue in the next cycle.
2554    unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2555    CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2556  
2557    // Decrement DependentLatency based on the next cycle.
2558    if ((NextCycle - CurrCycle) > DependentLatency)
2559      DependentLatency = 0;
2560    else
2561      DependentLatency -= (NextCycle - CurrCycle);
2562  
2563    if (!HazardRec->isEnabled()) {
2564      // Bypass HazardRec virtual calls.
2565      CurrCycle = NextCycle;
2566    } else {
2567      // Bypass getHazardType calls in case of long latency.
2568      for (; CurrCycle != NextCycle; ++CurrCycle) {
2569        if (isTop())
2570          HazardRec->AdvanceCycle();
2571        else
2572          HazardRec->RecedeCycle();
2573      }
2574    }
2575    CheckPending = true;
2576    IsResourceLimited =
2577        checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2578                           getScheduledLatency(), true);
2579  
2580    LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2581                      << '\n');
2582  }
2583  
2584  void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2585    ExecutedResCounts[PIdx] += Count;
2586    if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2587      MaxExecutedResCount = ExecutedResCounts[PIdx];
2588  }
2589  
2590  /// Add the given processor resource to this scheduled zone.
2591  ///
2592  /// \param ReleaseAtCycle indicates the number of consecutive (non-pipelined)
2593  /// cycles during which this resource is released.
2594  ///
2595  /// \param AcquireAtCycle indicates the number of consecutive (non-pipelined)
2596  /// cycles at which the resource is aquired after issue (assuming no stalls).
2597  ///
2598  /// \return the next cycle at which the instruction may execute without
2599  /// oversubscribing resources.
2600  unsigned SchedBoundary::countResource(const MCSchedClassDesc *SC, unsigned PIdx,
2601                                        unsigned ReleaseAtCycle,
2602                                        unsigned NextCycle,
2603                                        unsigned AcquireAtCycle) {
2604    unsigned Factor = SchedModel->getResourceFactor(PIdx);
2605    unsigned Count = Factor * (ReleaseAtCycle- AcquireAtCycle);
2606    LLVM_DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) << " +"
2607                      << ReleaseAtCycle << "x" << Factor << "u\n");
2608  
2609    // Update Executed resources counts.
2610    incExecutedResources(PIdx, Count);
2611    assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2612    Rem->RemainingCounts[PIdx] -= Count;
2613  
2614    // Check if this resource exceeds the current critical resource. If so, it
2615    // becomes the critical resource.
2616    if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2617      ZoneCritResIdx = PIdx;
2618      LLVM_DEBUG(dbgs() << "  *** Critical resource "
2619                        << SchedModel->getResourceName(PIdx) << ": "
2620                        << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2621                        << "c\n");
2622    }
2623    // For reserved resources, record the highest cycle using the resource.
2624    unsigned NextAvailable, InstanceIdx;
2625    std::tie(NextAvailable, InstanceIdx) =
2626        getNextResourceCycle(SC, PIdx, ReleaseAtCycle, AcquireAtCycle);
2627    if (NextAvailable > CurrCycle) {
2628      LLVM_DEBUG(dbgs() << "  Resource conflict: "
2629                        << SchedModel->getResourceName(PIdx)
2630                        << '[' << InstanceIdx - ReservedCyclesIndex[PIdx]  << ']'
2631                        << " reserved until @" << NextAvailable << "\n");
2632    }
2633    return NextAvailable;
2634  }
2635  
2636  /// Move the boundary of scheduled code by one SUnit.
2637  void SchedBoundary::bumpNode(SUnit *SU) {
2638    // Update the reservation table.
2639    if (HazardRec->isEnabled()) {
2640      if (!isTop() && SU->isCall) {
2641        // Calls are scheduled with their preceding instructions. For bottom-up
2642        // scheduling, clear the pipeline state before emitting.
2643        HazardRec->Reset();
2644      }
2645      HazardRec->EmitInstruction(SU);
2646      // Scheduling an instruction may have made pending instructions available.
2647      CheckPending = true;
2648    }
2649    // checkHazard should prevent scheduling multiple instructions per cycle that
2650    // exceed the issue width.
2651    const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2652    unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2653    assert(
2654        (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2655        "Cannot schedule this instruction's MicroOps in the current cycle.");
2656  
2657    unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2658    LLVM_DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2659  
2660    unsigned NextCycle = CurrCycle;
2661    switch (SchedModel->getMicroOpBufferSize()) {
2662    case 0:
2663      assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2664      break;
2665    case 1:
2666      if (ReadyCycle > NextCycle) {
2667        NextCycle = ReadyCycle;
2668        LLVM_DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2669      }
2670      break;
2671    default:
2672      // We don't currently model the OOO reorder buffer, so consider all
2673      // scheduled MOps to be "retired". We do loosely model in-order resource
2674      // latency. If this instruction uses an in-order resource, account for any
2675      // likely stall cycles.
2676      if (SU->isUnbuffered && ReadyCycle > NextCycle)
2677        NextCycle = ReadyCycle;
2678      break;
2679    }
2680    RetiredMOps += IncMOps;
2681  
2682    // Update resource counts and critical resource.
2683    if (SchedModel->hasInstrSchedModel()) {
2684      unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2685      assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2686      Rem->RemIssueCount -= DecRemIssue;
2687      if (ZoneCritResIdx) {
2688        // Scale scheduled micro-ops for comparing with the critical resource.
2689        unsigned ScaledMOps =
2690          RetiredMOps * SchedModel->getMicroOpFactor();
2691  
2692        // If scaled micro-ops are now more than the previous critical resource by
2693        // a full cycle, then micro-ops issue becomes critical.
2694        if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2695            >= (int)SchedModel->getLatencyFactor()) {
2696          ZoneCritResIdx = 0;
2697          LLVM_DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2698                            << ScaledMOps / SchedModel->getLatencyFactor()
2699                            << "c\n");
2700        }
2701      }
2702      for (TargetSchedModel::ProcResIter
2703             PI = SchedModel->getWriteProcResBegin(SC),
2704             PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2705        unsigned RCycle =
2706            countResource(SC, PI->ProcResourceIdx, PI->ReleaseAtCycle, NextCycle,
2707                          PI->AcquireAtCycle);
2708        if (RCycle > NextCycle)
2709          NextCycle = RCycle;
2710      }
2711      if (SU->hasReservedResource) {
2712        // For reserved resources, record the highest cycle using the resource.
2713        // For top-down scheduling, this is the cycle in which we schedule this
2714        // instruction plus the number of cycles the operations reserves the
2715        // resource. For bottom-up is it simply the instruction's cycle.
2716        for (TargetSchedModel::ProcResIter
2717               PI = SchedModel->getWriteProcResBegin(SC),
2718               PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2719          unsigned PIdx = PI->ProcResourceIdx;
2720          if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2721  
2722            if (SchedModel && SchedModel->enableIntervals()) {
2723              unsigned ReservedUntil, InstanceIdx;
2724              std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(
2725                  SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle);
2726              if (isTop()) {
2727                ReservedResourceSegments[InstanceIdx].add(
2728                    ResourceSegments::getResourceIntervalTop(
2729                        NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle),
2730                    MIResourceCutOff);
2731              } else {
2732                ReservedResourceSegments[InstanceIdx].add(
2733                    ResourceSegments::getResourceIntervalBottom(
2734                        NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle),
2735                    MIResourceCutOff);
2736              }
2737            } else {
2738  
2739              unsigned ReservedUntil, InstanceIdx;
2740              std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(
2741                  SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle);
2742              if (isTop()) {
2743                ReservedCycles[InstanceIdx] =
2744                    std::max(ReservedUntil, NextCycle + PI->ReleaseAtCycle);
2745              } else
2746                ReservedCycles[InstanceIdx] = NextCycle;
2747            }
2748          }
2749        }
2750      }
2751    }
2752    // Update ExpectedLatency and DependentLatency.
2753    unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2754    unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2755    if (SU->getDepth() > TopLatency) {
2756      TopLatency = SU->getDepth();
2757      LLVM_DEBUG(dbgs() << "  " << Available.getName() << " TopLatency SU("
2758                        << SU->NodeNum << ") " << TopLatency << "c\n");
2759    }
2760    if (SU->getHeight() > BotLatency) {
2761      BotLatency = SU->getHeight();
2762      LLVM_DEBUG(dbgs() << "  " << Available.getName() << " BotLatency SU("
2763                        << SU->NodeNum << ") " << BotLatency << "c\n");
2764    }
2765    // If we stall for any reason, bump the cycle.
2766    if (NextCycle > CurrCycle)
2767      bumpCycle(NextCycle);
2768    else
2769      // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2770      // resource limited. If a stall occurred, bumpCycle does this.
2771      IsResourceLimited =
2772          checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2773                             getScheduledLatency(), true);
2774  
2775    // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2776    // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2777    // one cycle.  Since we commonly reach the max MOps here, opportunistically
2778    // bump the cycle to avoid uselessly checking everything in the readyQ.
2779    CurrMOps += IncMOps;
2780  
2781    // Bump the cycle count for issue group constraints.
2782    // This must be done after NextCycle has been adjust for all other stalls.
2783    // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2784    // currCycle to X.
2785    if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2786        (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2787      LLVM_DEBUG(dbgs() << "  Bump cycle to " << (isTop() ? "end" : "begin")
2788                        << " group\n");
2789      bumpCycle(++NextCycle);
2790    }
2791  
2792    while (CurrMOps >= SchedModel->getIssueWidth()) {
2793      LLVM_DEBUG(dbgs() << "  *** Max MOps " << CurrMOps << " at cycle "
2794                        << CurrCycle << '\n');
2795      bumpCycle(++NextCycle);
2796    }
2797    LLVM_DEBUG(dumpScheduledState());
2798  }
2799  
2800  /// Release pending ready nodes in to the available queue. This makes them
2801  /// visible to heuristics.
2802  void SchedBoundary::releasePending() {
2803    // If the available queue is empty, it is safe to reset MinReadyCycle.
2804    if (Available.empty())
2805      MinReadyCycle = std::numeric_limits<unsigned>::max();
2806  
2807    // Check to see if any of the pending instructions are ready to issue.  If
2808    // so, add them to the available queue.
2809    for (unsigned I = 0, E = Pending.size(); I < E; ++I) {
2810      SUnit *SU = *(Pending.begin() + I);
2811      unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2812  
2813      if (ReadyCycle < MinReadyCycle)
2814        MinReadyCycle = ReadyCycle;
2815  
2816      if (Available.size() >= ReadyListLimit)
2817        break;
2818  
2819      releaseNode(SU, ReadyCycle, true, I);
2820      if (E != Pending.size()) {
2821        --I;
2822        --E;
2823      }
2824    }
2825    CheckPending = false;
2826  }
2827  
2828  /// Remove SU from the ready set for this boundary.
2829  void SchedBoundary::removeReady(SUnit *SU) {
2830    if (Available.isInQueue(SU))
2831      Available.remove(Available.find(SU));
2832    else {
2833      assert(Pending.isInQueue(SU) && "bad ready count");
2834      Pending.remove(Pending.find(SU));
2835    }
2836  }
2837  
2838  /// If this queue only has one ready candidate, return it. As a side effect,
2839  /// defer any nodes that now hit a hazard, and advance the cycle until at least
2840  /// one node is ready. If multiple instructions are ready, return NULL.
2841  SUnit *SchedBoundary::pickOnlyChoice() {
2842    if (CheckPending)
2843      releasePending();
2844  
2845    // Defer any ready instrs that now have a hazard.
2846    for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2847      if (checkHazard(*I)) {
2848        Pending.push(*I);
2849        I = Available.remove(I);
2850        continue;
2851      }
2852      ++I;
2853    }
2854    for (unsigned i = 0; Available.empty(); ++i) {
2855  //  FIXME: Re-enable assert once PR20057 is resolved.
2856  //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2857  //           "permanent hazard");
2858      (void)i;
2859      bumpCycle(CurrCycle + 1);
2860      releasePending();
2861    }
2862  
2863    LLVM_DEBUG(Pending.dump());
2864    LLVM_DEBUG(Available.dump());
2865  
2866    if (Available.size() == 1)
2867      return *Available.begin();
2868    return nullptr;
2869  }
2870  
2871  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2872  
2873  /// Dump the content of the \ref ReservedCycles vector for the
2874  /// resources that are used in the basic block.
2875  ///
2876  LLVM_DUMP_METHOD void SchedBoundary::dumpReservedCycles() const {
2877    if (!SchedModel->hasInstrSchedModel())
2878      return;
2879  
2880    unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
2881    unsigned StartIdx = 0;
2882  
2883    for (unsigned ResIdx = 0; ResIdx < ResourceCount; ++ResIdx) {
2884      const unsigned NumUnits = SchedModel->getProcResource(ResIdx)->NumUnits;
2885      std::string ResName = SchedModel->getResourceName(ResIdx);
2886      for (unsigned UnitIdx = 0; UnitIdx < NumUnits; ++UnitIdx) {
2887        dbgs() << ResName << "(" << UnitIdx << ") = ";
2888        if (SchedModel && SchedModel->enableIntervals()) {
2889          if (ReservedResourceSegments.count(StartIdx + UnitIdx))
2890            dbgs() << ReservedResourceSegments.at(StartIdx + UnitIdx);
2891          else
2892            dbgs() << "{ }\n";
2893        } else
2894          dbgs() << ReservedCycles[StartIdx + UnitIdx] << "\n";
2895      }
2896      StartIdx += NumUnits;
2897    }
2898  }
2899  
2900  // This is useful information to dump after bumpNode.
2901  // Note that the Queue contents are more useful before pickNodeFromQueue.
2902  LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2903    unsigned ResFactor;
2904    unsigned ResCount;
2905    if (ZoneCritResIdx) {
2906      ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2907      ResCount = getResourceCount(ZoneCritResIdx);
2908    } else {
2909      ResFactor = SchedModel->getMicroOpFactor();
2910      ResCount = RetiredMOps * ResFactor;
2911    }
2912    unsigned LFactor = SchedModel->getLatencyFactor();
2913    dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2914           << "  Retired: " << RetiredMOps;
2915    dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2916    dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2917           << ResCount / ResFactor << " "
2918           << SchedModel->getResourceName(ZoneCritResIdx)
2919           << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2920           << (IsResourceLimited ? "  - Resource" : "  - Latency")
2921           << " limited.\n";
2922    if (MISchedDumpReservedCycles)
2923      dumpReservedCycles();
2924  }
2925  #endif
2926  
2927  //===----------------------------------------------------------------------===//
2928  // GenericScheduler - Generic implementation of MachineSchedStrategy.
2929  //===----------------------------------------------------------------------===//
2930  
2931  void GenericSchedulerBase::SchedCandidate::
2932  initResourceDelta(const ScheduleDAGMI *DAG,
2933                    const TargetSchedModel *SchedModel) {
2934    if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2935      return;
2936  
2937    const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2938    for (TargetSchedModel::ProcResIter
2939           PI = SchedModel->getWriteProcResBegin(SC),
2940           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2941      if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2942        ResDelta.CritResources += PI->ReleaseAtCycle;
2943      if (PI->ProcResourceIdx == Policy.DemandResIdx)
2944        ResDelta.DemandedResources += PI->ReleaseAtCycle;
2945    }
2946  }
2947  
2948  /// Compute remaining latency. We need this both to determine whether the
2949  /// overall schedule has become latency-limited and whether the instructions
2950  /// outside this zone are resource or latency limited.
2951  ///
2952  /// The "dependent" latency is updated incrementally during scheduling as the
2953  /// max height/depth of scheduled nodes minus the cycles since it was
2954  /// scheduled:
2955  ///   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2956  ///
2957  /// The "independent" latency is the max ready queue depth:
2958  ///   ILat = max N.depth for N in Available|Pending
2959  ///
2960  /// RemainingLatency is the greater of independent and dependent latency.
2961  ///
2962  /// These computations are expensive, especially in DAGs with many edges, so
2963  /// only do them if necessary.
2964  static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2965    unsigned RemLatency = CurrZone.getDependentLatency();
2966    RemLatency = std::max(RemLatency,
2967                          CurrZone.findMaxLatency(CurrZone.Available.elements()));
2968    RemLatency = std::max(RemLatency,
2969                          CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2970    return RemLatency;
2971  }
2972  
2973  /// Returns true if the current cycle plus remaning latency is greater than
2974  /// the critical path in the scheduling region.
2975  bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2976                                                 SchedBoundary &CurrZone,
2977                                                 bool ComputeRemLatency,
2978                                                 unsigned &RemLatency) const {
2979    // The current cycle is already greater than the critical path, so we are
2980    // already latency limited and don't need to compute the remaining latency.
2981    if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2982      return true;
2983  
2984    // If we haven't scheduled anything yet, then we aren't latency limited.
2985    if (CurrZone.getCurrCycle() == 0)
2986      return false;
2987  
2988    if (ComputeRemLatency)
2989      RemLatency = computeRemLatency(CurrZone);
2990  
2991    return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2992  }
2993  
2994  /// Set the CandPolicy given a scheduling zone given the current resources and
2995  /// latencies inside and outside the zone.
2996  void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2997                                       SchedBoundary &CurrZone,
2998                                       SchedBoundary *OtherZone) {
2999    // Apply preemptive heuristics based on the total latency and resources
3000    // inside and outside this zone. Potential stalls should be considered before
3001    // following this policy.
3002  
3003    // Compute the critical resource outside the zone.
3004    unsigned OtherCritIdx = 0;
3005    unsigned OtherCount =
3006      OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
3007  
3008    bool OtherResLimited = false;
3009    unsigned RemLatency = 0;
3010    bool RemLatencyComputed = false;
3011    if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
3012      RemLatency = computeRemLatency(CurrZone);
3013      RemLatencyComputed = true;
3014      OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
3015                                           OtherCount, RemLatency, false);
3016    }
3017  
3018    // Schedule aggressively for latency in PostRA mode. We don't check for
3019    // acyclic latency during PostRA, and highly out-of-order processors will
3020    // skip PostRA scheduling.
3021    if (!OtherResLimited &&
3022        (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
3023                                         RemLatency))) {
3024      Policy.ReduceLatency |= true;
3025      LLVM_DEBUG(dbgs() << "  " << CurrZone.Available.getName()
3026                        << " RemainingLatency " << RemLatency << " + "
3027                        << CurrZone.getCurrCycle() << "c > CritPath "
3028                        << Rem.CriticalPath << "\n");
3029    }
3030    // If the same resource is limiting inside and outside the zone, do nothing.
3031    if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
3032      return;
3033  
3034    LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
3035      dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
3036             << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
3037    } if (OtherResLimited) dbgs()
3038                   << "  RemainingLimit: "
3039                   << SchedModel->getResourceName(OtherCritIdx) << "\n";
3040               if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
3041               << "  Latency limited both directions.\n");
3042  
3043    if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
3044      Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
3045  
3046    if (OtherResLimited)
3047      Policy.DemandResIdx = OtherCritIdx;
3048  }
3049  
3050  #ifndef NDEBUG
3051  const char *GenericSchedulerBase::getReasonStr(
3052    GenericSchedulerBase::CandReason Reason) {
3053    switch (Reason) {
3054    case NoCand:         return "NOCAND    ";
3055    case Only1:          return "ONLY1     ";
3056    case PhysReg:        return "PHYS-REG  ";
3057    case RegExcess:      return "REG-EXCESS";
3058    case RegCritical:    return "REG-CRIT  ";
3059    case Stall:          return "STALL     ";
3060    case Cluster:        return "CLUSTER   ";
3061    case Weak:           return "WEAK      ";
3062    case RegMax:         return "REG-MAX   ";
3063    case ResourceReduce: return "RES-REDUCE";
3064    case ResourceDemand: return "RES-DEMAND";
3065    case TopDepthReduce: return "TOP-DEPTH ";
3066    case TopPathReduce:  return "TOP-PATH  ";
3067    case BotHeightReduce:return "BOT-HEIGHT";
3068    case BotPathReduce:  return "BOT-PATH  ";
3069    case NextDefUse:     return "DEF-USE   ";
3070    case NodeOrder:      return "ORDER     ";
3071    };
3072    llvm_unreachable("Unknown reason!");
3073  }
3074  
3075  void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
3076    PressureChange P;
3077    unsigned ResIdx = 0;
3078    unsigned Latency = 0;
3079    switch (Cand.Reason) {
3080    default:
3081      break;
3082    case RegExcess:
3083      P = Cand.RPDelta.Excess;
3084      break;
3085    case RegCritical:
3086      P = Cand.RPDelta.CriticalMax;
3087      break;
3088    case RegMax:
3089      P = Cand.RPDelta.CurrentMax;
3090      break;
3091    case ResourceReduce:
3092      ResIdx = Cand.Policy.ReduceResIdx;
3093      break;
3094    case ResourceDemand:
3095      ResIdx = Cand.Policy.DemandResIdx;
3096      break;
3097    case TopDepthReduce:
3098      Latency = Cand.SU->getDepth();
3099      break;
3100    case TopPathReduce:
3101      Latency = Cand.SU->getHeight();
3102      break;
3103    case BotHeightReduce:
3104      Latency = Cand.SU->getHeight();
3105      break;
3106    case BotPathReduce:
3107      Latency = Cand.SU->getDepth();
3108      break;
3109    }
3110    dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
3111    if (P.isValid())
3112      dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
3113             << ":" << P.getUnitInc() << " ";
3114    else
3115      dbgs() << "      ";
3116    if (ResIdx)
3117      dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
3118    else
3119      dbgs() << "         ";
3120    if (Latency)
3121      dbgs() << " " << Latency << " cycles ";
3122    else
3123      dbgs() << "          ";
3124    dbgs() << '\n';
3125  }
3126  #endif
3127  
3128  namespace llvm {
3129  /// Return true if this heuristic determines order.
3130  /// TODO: Consider refactor return type of these functions as integer or enum,
3131  /// as we may need to differentiate whether TryCand is better than Cand.
3132  bool tryLess(int TryVal, int CandVal,
3133               GenericSchedulerBase::SchedCandidate &TryCand,
3134               GenericSchedulerBase::SchedCandidate &Cand,
3135               GenericSchedulerBase::CandReason Reason) {
3136    if (TryVal < CandVal) {
3137      TryCand.Reason = Reason;
3138      return true;
3139    }
3140    if (TryVal > CandVal) {
3141      if (Cand.Reason > Reason)
3142        Cand.Reason = Reason;
3143      return true;
3144    }
3145    return false;
3146  }
3147  
3148  bool tryGreater(int TryVal, int CandVal,
3149                  GenericSchedulerBase::SchedCandidate &TryCand,
3150                  GenericSchedulerBase::SchedCandidate &Cand,
3151                  GenericSchedulerBase::CandReason Reason) {
3152    if (TryVal > CandVal) {
3153      TryCand.Reason = Reason;
3154      return true;
3155    }
3156    if (TryVal < CandVal) {
3157      if (Cand.Reason > Reason)
3158        Cand.Reason = Reason;
3159      return true;
3160    }
3161    return false;
3162  }
3163  
3164  bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
3165                  GenericSchedulerBase::SchedCandidate &Cand,
3166                  SchedBoundary &Zone) {
3167    if (Zone.isTop()) {
3168      // Prefer the candidate with the lesser depth, but only if one of them has
3169      // depth greater than the total latency scheduled so far, otherwise either
3170      // of them could be scheduled now with no stall.
3171      if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) >
3172          Zone.getScheduledLatency()) {
3173        if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
3174                    TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
3175          return true;
3176      }
3177      if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
3178                     TryCand, Cand, GenericSchedulerBase::TopPathReduce))
3179        return true;
3180    } else {
3181      // Prefer the candidate with the lesser height, but only if one of them has
3182      // height greater than the total latency scheduled so far, otherwise either
3183      // of them could be scheduled now with no stall.
3184      if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) >
3185          Zone.getScheduledLatency()) {
3186        if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
3187                    TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
3188          return true;
3189      }
3190      if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
3191                     TryCand, Cand, GenericSchedulerBase::BotPathReduce))
3192        return true;
3193    }
3194    return false;
3195  }
3196  } // end namespace llvm
3197  
3198  static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
3199    LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
3200                      << GenericSchedulerBase::getReasonStr(Reason) << '\n');
3201  }
3202  
3203  static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
3204    tracePick(Cand.Reason, Cand.AtTop);
3205  }
3206  
3207  void GenericScheduler::initialize(ScheduleDAGMI *dag) {
3208    assert(dag->hasVRegLiveness() &&
3209           "(PreRA)GenericScheduler needs vreg liveness");
3210    DAG = static_cast<ScheduleDAGMILive*>(dag);
3211    SchedModel = DAG->getSchedModel();
3212    TRI = DAG->TRI;
3213  
3214    if (RegionPolicy.ComputeDFSResult)
3215      DAG->computeDFSResult();
3216  
3217    Rem.init(DAG, SchedModel);
3218    Top.init(DAG, SchedModel, &Rem);
3219    Bot.init(DAG, SchedModel, &Rem);
3220  
3221    // Initialize resource counts.
3222  
3223    // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
3224    // are disabled, then these HazardRecs will be disabled.
3225    const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3226    if (!Top.HazardRec) {
3227      Top.HazardRec =
3228          DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3229              Itin, DAG);
3230    }
3231    if (!Bot.HazardRec) {
3232      Bot.HazardRec =
3233          DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3234              Itin, DAG);
3235    }
3236    TopCand.SU = nullptr;
3237    BotCand.SU = nullptr;
3238  }
3239  
3240  /// Initialize the per-region scheduling policy.
3241  void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
3242                                    MachineBasicBlock::iterator End,
3243                                    unsigned NumRegionInstrs) {
3244    const MachineFunction &MF = *Begin->getMF();
3245    const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
3246  
3247    // Avoid setting up the register pressure tracker for small regions to save
3248    // compile time. As a rough heuristic, only track pressure when the number of
3249    // schedulable instructions exceeds half the integer register file.
3250    RegionPolicy.ShouldTrackPressure = true;
3251    for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
3252      MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
3253      if (TLI->isTypeLegal(LegalIntVT)) {
3254        unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
3255          TLI->getRegClassFor(LegalIntVT));
3256        RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
3257      }
3258    }
3259  
3260    // For generic targets, we default to bottom-up, because it's simpler and more
3261    // compile-time optimizations have been implemented in that direction.
3262    RegionPolicy.OnlyBottomUp = true;
3263  
3264    // Allow the subtarget to override default policy.
3265    MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
3266  
3267    // After subtarget overrides, apply command line options.
3268    if (!EnableRegPressure) {
3269      RegionPolicy.ShouldTrackPressure = false;
3270      RegionPolicy.ShouldTrackLaneMasks = false;
3271    }
3272  
3273    // Check -misched-topdown/bottomup can force or unforce scheduling direction.
3274    // e.g. -misched-bottomup=false allows scheduling in both directions.
3275    assert((!ForceTopDown || !ForceBottomUp) &&
3276           "-misched-topdown incompatible with -misched-bottomup");
3277    if (ForceBottomUp.getNumOccurrences() > 0) {
3278      RegionPolicy.OnlyBottomUp = ForceBottomUp;
3279      if (RegionPolicy.OnlyBottomUp)
3280        RegionPolicy.OnlyTopDown = false;
3281    }
3282    if (ForceTopDown.getNumOccurrences() > 0) {
3283      RegionPolicy.OnlyTopDown = ForceTopDown;
3284      if (RegionPolicy.OnlyTopDown)
3285        RegionPolicy.OnlyBottomUp = false;
3286    }
3287  }
3288  
3289  void GenericScheduler::dumpPolicy() const {
3290    // Cannot completely remove virtual function even in release mode.
3291  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3292    dbgs() << "GenericScheduler RegionPolicy: "
3293           << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
3294           << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
3295           << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
3296           << "\n";
3297  #endif
3298  }
3299  
3300  /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
3301  /// critical path by more cycles than it takes to drain the instruction buffer.
3302  /// We estimate an upper bounds on in-flight instructions as:
3303  ///
3304  /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
3305  /// InFlightIterations = AcyclicPath / CyclesPerIteration
3306  /// InFlightResources = InFlightIterations * LoopResources
3307  ///
3308  /// TODO: Check execution resources in addition to IssueCount.
3309  void GenericScheduler::checkAcyclicLatency() {
3310    if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
3311      return;
3312  
3313    // Scaled number of cycles per loop iteration.
3314    unsigned IterCount =
3315      std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
3316               Rem.RemIssueCount);
3317    // Scaled acyclic critical path.
3318    unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
3319    // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
3320    unsigned InFlightCount =
3321      (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
3322    unsigned BufferLimit =
3323      SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
3324  
3325    Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
3326  
3327    LLVM_DEBUG(
3328        dbgs() << "IssueCycles="
3329               << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
3330               << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
3331               << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
3332               << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
3333               << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
3334        if (Rem.IsAcyclicLatencyLimited) dbgs() << "  ACYCLIC LATENCY LIMIT\n");
3335  }
3336  
3337  void GenericScheduler::registerRoots() {
3338    Rem.CriticalPath = DAG->ExitSU.getDepth();
3339  
3340    // Some roots may not feed into ExitSU. Check all of them in case.
3341    for (const SUnit *SU : Bot.Available) {
3342      if (SU->getDepth() > Rem.CriticalPath)
3343        Rem.CriticalPath = SU->getDepth();
3344    }
3345    LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
3346    if (DumpCriticalPathLength) {
3347      errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
3348    }
3349  
3350    if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
3351      Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
3352      checkAcyclicLatency();
3353    }
3354  }
3355  
3356  namespace llvm {
3357  bool tryPressure(const PressureChange &TryP,
3358                   const PressureChange &CandP,
3359                   GenericSchedulerBase::SchedCandidate &TryCand,
3360                   GenericSchedulerBase::SchedCandidate &Cand,
3361                   GenericSchedulerBase::CandReason Reason,
3362                   const TargetRegisterInfo *TRI,
3363                   const MachineFunction &MF) {
3364    // If one candidate decreases and the other increases, go with it.
3365    // Invalid candidates have UnitInc==0.
3366    if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
3367                   Reason)) {
3368      return true;
3369    }
3370    // Do not compare the magnitude of pressure changes between top and bottom
3371    // boundary.
3372    if (Cand.AtTop != TryCand.AtTop)
3373      return false;
3374  
3375    // If both candidates affect the same set in the same boundary, go with the
3376    // smallest increase.
3377    unsigned TryPSet = TryP.getPSetOrMax();
3378    unsigned CandPSet = CandP.getPSetOrMax();
3379    if (TryPSet == CandPSet) {
3380      return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
3381                     Reason);
3382    }
3383  
3384    int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
3385                                   std::numeric_limits<int>::max();
3386  
3387    int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
3388                                     std::numeric_limits<int>::max();
3389  
3390    // If the candidates are decreasing pressure, reverse priority.
3391    if (TryP.getUnitInc() < 0)
3392      std::swap(TryRank, CandRank);
3393    return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
3394  }
3395  
3396  unsigned getWeakLeft(const SUnit *SU, bool isTop) {
3397    return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
3398  }
3399  
3400  /// Minimize physical register live ranges. Regalloc wants them adjacent to
3401  /// their physreg def/use.
3402  ///
3403  /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
3404  /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
3405  /// with the operation that produces or consumes the physreg. We'll do this when
3406  /// regalloc has support for parallel copies.
3407  int biasPhysReg(const SUnit *SU, bool isTop) {
3408    const MachineInstr *MI = SU->getInstr();
3409  
3410    if (MI->isCopy()) {
3411      unsigned ScheduledOper = isTop ? 1 : 0;
3412      unsigned UnscheduledOper = isTop ? 0 : 1;
3413      // If we have already scheduled the physreg produce/consumer, immediately
3414      // schedule the copy.
3415      if (MI->getOperand(ScheduledOper).getReg().isPhysical())
3416        return 1;
3417      // If the physreg is at the boundary, defer it. Otherwise schedule it
3418      // immediately to free the dependent. We can hoist the copy later.
3419      bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
3420      if (MI->getOperand(UnscheduledOper).getReg().isPhysical())
3421        return AtBoundary ? -1 : 1;
3422    }
3423  
3424    if (MI->isMoveImmediate()) {
3425      // If we have a move immediate and all successors have been assigned, bias
3426      // towards scheduling this later. Make sure all register defs are to
3427      // physical registers.
3428      bool DoBias = true;
3429      for (const MachineOperand &Op : MI->defs()) {
3430        if (Op.isReg() && !Op.getReg().isPhysical()) {
3431          DoBias = false;
3432          break;
3433        }
3434      }
3435  
3436      if (DoBias)
3437        return isTop ? -1 : 1;
3438    }
3439  
3440    return 0;
3441  }
3442  } // end namespace llvm
3443  
3444  void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
3445                                       bool AtTop,
3446                                       const RegPressureTracker &RPTracker,
3447                                       RegPressureTracker &TempTracker) {
3448    Cand.SU = SU;
3449    Cand.AtTop = AtTop;
3450    if (DAG->isTrackingPressure()) {
3451      if (AtTop) {
3452        TempTracker.getMaxDownwardPressureDelta(
3453          Cand.SU->getInstr(),
3454          Cand.RPDelta,
3455          DAG->getRegionCriticalPSets(),
3456          DAG->getRegPressure().MaxSetPressure);
3457      } else {
3458        if (VerifyScheduling) {
3459          TempTracker.getMaxUpwardPressureDelta(
3460            Cand.SU->getInstr(),
3461            &DAG->getPressureDiff(Cand.SU),
3462            Cand.RPDelta,
3463            DAG->getRegionCriticalPSets(),
3464            DAG->getRegPressure().MaxSetPressure);
3465        } else {
3466          RPTracker.getUpwardPressureDelta(
3467            Cand.SU->getInstr(),
3468            DAG->getPressureDiff(Cand.SU),
3469            Cand.RPDelta,
3470            DAG->getRegionCriticalPSets(),
3471            DAG->getRegPressure().MaxSetPressure);
3472        }
3473      }
3474    }
3475    LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
3476               << "  Try  SU(" << Cand.SU->NodeNum << ") "
3477               << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
3478               << Cand.RPDelta.Excess.getUnitInc() << "\n");
3479  }
3480  
3481  /// Apply a set of heuristics to a new candidate. Heuristics are currently
3482  /// hierarchical. This may be more efficient than a graduated cost model because
3483  /// we don't need to evaluate all aspects of the model for each node in the
3484  /// queue. But it's really done to make the heuristics easier to debug and
3485  /// statistically analyze.
3486  ///
3487  /// \param Cand provides the policy and current best candidate.
3488  /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3489  /// \param Zone describes the scheduled zone that we are extending, or nullptr
3490  ///             if Cand is from a different zone than TryCand.
3491  /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
3492  bool GenericScheduler::tryCandidate(SchedCandidate &Cand,
3493                                      SchedCandidate &TryCand,
3494                                      SchedBoundary *Zone) const {
3495    // Initialize the candidate if needed.
3496    if (!Cand.isValid()) {
3497      TryCand.Reason = NodeOrder;
3498      return true;
3499    }
3500  
3501    // Bias PhysReg Defs and copies to their uses and defined respectively.
3502    if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
3503                   biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
3504      return TryCand.Reason != NoCand;
3505  
3506    // Avoid exceeding the target's limit.
3507    if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
3508                                                 Cand.RPDelta.Excess,
3509                                                 TryCand, Cand, RegExcess, TRI,
3510                                                 DAG->MF))
3511      return TryCand.Reason != NoCand;
3512  
3513    // Avoid increasing the max critical pressure in the scheduled region.
3514    if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
3515                                                 Cand.RPDelta.CriticalMax,
3516                                                 TryCand, Cand, RegCritical, TRI,
3517                                                 DAG->MF))
3518      return TryCand.Reason != NoCand;
3519  
3520    // We only compare a subset of features when comparing nodes between
3521    // Top and Bottom boundary. Some properties are simply incomparable, in many
3522    // other instances we should only override the other boundary if something
3523    // is a clear good pick on one boundary. Skip heuristics that are more
3524    // "tie-breaking" in nature.
3525    bool SameBoundary = Zone != nullptr;
3526    if (SameBoundary) {
3527      // For loops that are acyclic path limited, aggressively schedule for
3528      // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
3529      // heuristics to take precedence.
3530      if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
3531          tryLatency(TryCand, Cand, *Zone))
3532        return TryCand.Reason != NoCand;
3533  
3534      // Prioritize instructions that read unbuffered resources by stall cycles.
3535      if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
3536                  Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3537        return TryCand.Reason != NoCand;
3538    }
3539  
3540    // Keep clustered nodes together to encourage downstream peephole
3541    // optimizations which may reduce resource requirements.
3542    //
3543    // This is a best effort to set things up for a post-RA pass. Optimizations
3544    // like generating loads of multiple registers should ideally be done within
3545    // the scheduler pass by combining the loads during DAG postprocessing.
3546    const SUnit *CandNextClusterSU =
3547      Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3548    const SUnit *TryCandNextClusterSU =
3549      TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3550    if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3551                   Cand.SU == CandNextClusterSU,
3552                   TryCand, Cand, Cluster))
3553      return TryCand.Reason != NoCand;
3554  
3555    if (SameBoundary) {
3556      // Weak edges are for clustering and other constraints.
3557      if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3558                  getWeakLeft(Cand.SU, Cand.AtTop),
3559                  TryCand, Cand, Weak))
3560        return TryCand.Reason != NoCand;
3561    }
3562  
3563    // Avoid increasing the max pressure of the entire region.
3564    if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3565                                                 Cand.RPDelta.CurrentMax,
3566                                                 TryCand, Cand, RegMax, TRI,
3567                                                 DAG->MF))
3568      return TryCand.Reason != NoCand;
3569  
3570    if (SameBoundary) {
3571      // Avoid critical resource consumption and balance the schedule.
3572      TryCand.initResourceDelta(DAG, SchedModel);
3573      if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3574                  TryCand, Cand, ResourceReduce))
3575        return TryCand.Reason != NoCand;
3576      if (tryGreater(TryCand.ResDelta.DemandedResources,
3577                     Cand.ResDelta.DemandedResources,
3578                     TryCand, Cand, ResourceDemand))
3579        return TryCand.Reason != NoCand;
3580  
3581      // Avoid serializing long latency dependence chains.
3582      // For acyclic path limited loops, latency was already checked above.
3583      if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3584          !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3585        return TryCand.Reason != NoCand;
3586  
3587      // Fall through to original instruction order.
3588      if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3589          || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3590        TryCand.Reason = NodeOrder;
3591        return true;
3592      }
3593    }
3594  
3595    return false;
3596  }
3597  
3598  /// Pick the best candidate from the queue.
3599  ///
3600  /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3601  /// DAG building. To adjust for the current scheduling location we need to
3602  /// maintain the number of vreg uses remaining to be top-scheduled.
3603  void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3604                                           const CandPolicy &ZonePolicy,
3605                                           const RegPressureTracker &RPTracker,
3606                                           SchedCandidate &Cand) {
3607    // getMaxPressureDelta temporarily modifies the tracker.
3608    RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3609  
3610    ReadyQueue &Q = Zone.Available;
3611    for (SUnit *SU : Q) {
3612  
3613      SchedCandidate TryCand(ZonePolicy);
3614      initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3615      // Pass SchedBoundary only when comparing nodes from the same boundary.
3616      SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3617      if (tryCandidate(Cand, TryCand, ZoneArg)) {
3618        // Initialize resource delta if needed in case future heuristics query it.
3619        if (TryCand.ResDelta == SchedResourceDelta())
3620          TryCand.initResourceDelta(DAG, SchedModel);
3621        Cand.setBest(TryCand);
3622        LLVM_DEBUG(traceCandidate(Cand));
3623      }
3624    }
3625  }
3626  
3627  /// Pick the best candidate node from either the top or bottom queue.
3628  SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3629    // Schedule as far as possible in the direction of no choice. This is most
3630    // efficient, but also provides the best heuristics for CriticalPSets.
3631    if (SUnit *SU = Bot.pickOnlyChoice()) {
3632      IsTopNode = false;
3633      tracePick(Only1, false);
3634      return SU;
3635    }
3636    if (SUnit *SU = Top.pickOnlyChoice()) {
3637      IsTopNode = true;
3638      tracePick(Only1, true);
3639      return SU;
3640    }
3641    // Set the bottom-up policy based on the state of the current bottom zone and
3642    // the instructions outside the zone, including the top zone.
3643    CandPolicy BotPolicy;
3644    setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3645    // Set the top-down policy based on the state of the current top zone and
3646    // the instructions outside the zone, including the bottom zone.
3647    CandPolicy TopPolicy;
3648    setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3649  
3650    // See if BotCand is still valid (because we previously scheduled from Top).
3651    LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3652    if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3653        BotCand.Policy != BotPolicy) {
3654      BotCand.reset(CandPolicy());
3655      pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3656      assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3657    } else {
3658      LLVM_DEBUG(traceCandidate(BotCand));
3659  #ifndef NDEBUG
3660      if (VerifyScheduling) {
3661        SchedCandidate TCand;
3662        TCand.reset(CandPolicy());
3663        pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3664        assert(TCand.SU == BotCand.SU &&
3665               "Last pick result should correspond to re-picking right now");
3666      }
3667  #endif
3668    }
3669  
3670    // Check if the top Q has a better candidate.
3671    LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3672    if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3673        TopCand.Policy != TopPolicy) {
3674      TopCand.reset(CandPolicy());
3675      pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3676      assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3677    } else {
3678      LLVM_DEBUG(traceCandidate(TopCand));
3679  #ifndef NDEBUG
3680      if (VerifyScheduling) {
3681        SchedCandidate TCand;
3682        TCand.reset(CandPolicy());
3683        pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3684        assert(TCand.SU == TopCand.SU &&
3685             "Last pick result should correspond to re-picking right now");
3686      }
3687  #endif
3688    }
3689  
3690    // Pick best from BotCand and TopCand.
3691    assert(BotCand.isValid());
3692    assert(TopCand.isValid());
3693    SchedCandidate Cand = BotCand;
3694    TopCand.Reason = NoCand;
3695    if (tryCandidate(Cand, TopCand, nullptr)) {
3696      Cand.setBest(TopCand);
3697      LLVM_DEBUG(traceCandidate(Cand));
3698    }
3699  
3700    IsTopNode = Cand.AtTop;
3701    tracePick(Cand);
3702    return Cand.SU;
3703  }
3704  
3705  /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3706  SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3707    if (DAG->top() == DAG->bottom()) {
3708      assert(Top.Available.empty() && Top.Pending.empty() &&
3709             Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3710      return nullptr;
3711    }
3712    SUnit *SU;
3713    do {
3714      if (RegionPolicy.OnlyTopDown) {
3715        SU = Top.pickOnlyChoice();
3716        if (!SU) {
3717          CandPolicy NoPolicy;
3718          TopCand.reset(NoPolicy);
3719          pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3720          assert(TopCand.Reason != NoCand && "failed to find a candidate");
3721          tracePick(TopCand);
3722          SU = TopCand.SU;
3723        }
3724        IsTopNode = true;
3725      } else if (RegionPolicy.OnlyBottomUp) {
3726        SU = Bot.pickOnlyChoice();
3727        if (!SU) {
3728          CandPolicy NoPolicy;
3729          BotCand.reset(NoPolicy);
3730          pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3731          assert(BotCand.Reason != NoCand && "failed to find a candidate");
3732          tracePick(BotCand);
3733          SU = BotCand.SU;
3734        }
3735        IsTopNode = false;
3736      } else {
3737        SU = pickNodeBidirectional(IsTopNode);
3738      }
3739    } while (SU->isScheduled);
3740  
3741    if (SU->isTopReady())
3742      Top.removeReady(SU);
3743    if (SU->isBottomReady())
3744      Bot.removeReady(SU);
3745  
3746    LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3747                      << *SU->getInstr());
3748    return SU;
3749  }
3750  
3751  void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3752    MachineBasicBlock::iterator InsertPos = SU->getInstr();
3753    if (!isTop)
3754      ++InsertPos;
3755    SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3756  
3757    // Find already scheduled copies with a single physreg dependence and move
3758    // them just above the scheduled instruction.
3759    for (SDep &Dep : Deps) {
3760      if (Dep.getKind() != SDep::Data ||
3761          !Register::isPhysicalRegister(Dep.getReg()))
3762        continue;
3763      SUnit *DepSU = Dep.getSUnit();
3764      if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3765        continue;
3766      MachineInstr *Copy = DepSU->getInstr();
3767      if (!Copy->isCopy() && !Copy->isMoveImmediate())
3768        continue;
3769      LLVM_DEBUG(dbgs() << "  Rescheduling physreg copy ";
3770                 DAG->dumpNode(*Dep.getSUnit()));
3771      DAG->moveInstruction(Copy, InsertPos);
3772    }
3773  }
3774  
3775  /// Update the scheduler's state after scheduling a node. This is the same node
3776  /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3777  /// update it's state based on the current cycle before MachineSchedStrategy
3778  /// does.
3779  ///
3780  /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3781  /// them here. See comments in biasPhysReg.
3782  void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3783    if (IsTopNode) {
3784      SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3785      Top.bumpNode(SU);
3786      if (SU->hasPhysRegUses)
3787        reschedulePhysReg(SU, true);
3788    } else {
3789      SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3790      Bot.bumpNode(SU);
3791      if (SU->hasPhysRegDefs)
3792        reschedulePhysReg(SU, false);
3793    }
3794  }
3795  
3796  /// Create the standard converging machine scheduler. This will be used as the
3797  /// default scheduler if the target does not set a default.
3798  ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3799    ScheduleDAGMILive *DAG =
3800        new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C));
3801    // Register DAG post-processors.
3802    //
3803    // FIXME: extend the mutation API to allow earlier mutations to instantiate
3804    // data and pass it to later mutations. Have a single mutation that gathers
3805    // the interesting nodes in one pass.
3806    DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3807    return DAG;
3808  }
3809  
3810  static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
3811    return createGenericSchedLive(C);
3812  }
3813  
3814  static MachineSchedRegistry
3815  GenericSchedRegistry("converge", "Standard converging scheduler.",
3816                       createConvergingSched);
3817  
3818  //===----------------------------------------------------------------------===//
3819  // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3820  //===----------------------------------------------------------------------===//
3821  
3822  void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3823    DAG = Dag;
3824    SchedModel = DAG->getSchedModel();
3825    TRI = DAG->TRI;
3826  
3827    Rem.init(DAG, SchedModel);
3828    Top.init(DAG, SchedModel, &Rem);
3829    BotRoots.clear();
3830  
3831    // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3832    // or are disabled, then these HazardRecs will be disabled.
3833    const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3834    if (!Top.HazardRec) {
3835      Top.HazardRec =
3836          DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3837              Itin, DAG);
3838    }
3839  }
3840  
3841  void PostGenericScheduler::registerRoots() {
3842    Rem.CriticalPath = DAG->ExitSU.getDepth();
3843  
3844    // Some roots may not feed into ExitSU. Check all of them in case.
3845    for (const SUnit *SU : BotRoots) {
3846      if (SU->getDepth() > Rem.CriticalPath)
3847        Rem.CriticalPath = SU->getDepth();
3848    }
3849    LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3850    if (DumpCriticalPathLength) {
3851      errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3852    }
3853  }
3854  
3855  /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3856  ///
3857  /// \param Cand provides the policy and current best candidate.
3858  /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3859  /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
3860  bool PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3861                                          SchedCandidate &TryCand) {
3862    // Initialize the candidate if needed.
3863    if (!Cand.isValid()) {
3864      TryCand.Reason = NodeOrder;
3865      return true;
3866    }
3867  
3868    // Prioritize instructions that read unbuffered resources by stall cycles.
3869    if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3870                Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3871      return TryCand.Reason != NoCand;
3872  
3873    // Keep clustered nodes together.
3874    if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3875                   Cand.SU == DAG->getNextClusterSucc(),
3876                   TryCand, Cand, Cluster))
3877      return TryCand.Reason != NoCand;
3878  
3879    // Avoid critical resource consumption and balance the schedule.
3880    if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3881                TryCand, Cand, ResourceReduce))
3882      return TryCand.Reason != NoCand;
3883    if (tryGreater(TryCand.ResDelta.DemandedResources,
3884                   Cand.ResDelta.DemandedResources,
3885                   TryCand, Cand, ResourceDemand))
3886      return TryCand.Reason != NoCand;
3887  
3888    // Avoid serializing long latency dependence chains.
3889    if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3890      return TryCand.Reason != NoCand;
3891    }
3892  
3893    // Fall through to original instruction order.
3894    if (TryCand.SU->NodeNum < Cand.SU->NodeNum) {
3895      TryCand.Reason = NodeOrder;
3896      return true;
3897    }
3898  
3899    return false;
3900  }
3901  
3902  void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3903    ReadyQueue &Q = Top.Available;
3904    for (SUnit *SU : Q) {
3905      SchedCandidate TryCand(Cand.Policy);
3906      TryCand.SU = SU;
3907      TryCand.AtTop = true;
3908      TryCand.initResourceDelta(DAG, SchedModel);
3909      if (tryCandidate(Cand, TryCand)) {
3910        Cand.setBest(TryCand);
3911        LLVM_DEBUG(traceCandidate(Cand));
3912      }
3913    }
3914  }
3915  
3916  /// Pick the next node to schedule.
3917  SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3918    if (DAG->top() == DAG->bottom()) {
3919      assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3920      return nullptr;
3921    }
3922    SUnit *SU;
3923    do {
3924      SU = Top.pickOnlyChoice();
3925      if (SU) {
3926        tracePick(Only1, true);
3927      } else {
3928        CandPolicy NoPolicy;
3929        SchedCandidate TopCand(NoPolicy);
3930        // Set the top-down policy based on the state of the current top zone and
3931        // the instructions outside the zone, including the bottom zone.
3932        setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3933        pickNodeFromQueue(TopCand);
3934        assert(TopCand.Reason != NoCand && "failed to find a candidate");
3935        tracePick(TopCand);
3936        SU = TopCand.SU;
3937      }
3938    } while (SU->isScheduled);
3939  
3940    IsTopNode = true;
3941    Top.removeReady(SU);
3942  
3943    LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3944                      << *SU->getInstr());
3945    return SU;
3946  }
3947  
3948  /// Called after ScheduleDAGMI has scheduled an instruction and updated
3949  /// scheduled/remaining flags in the DAG nodes.
3950  void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3951    SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3952    Top.bumpNode(SU);
3953  }
3954  
3955  ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3956    return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C),
3957                             /*RemoveKillFlags=*/true);
3958  }
3959  
3960  //===----------------------------------------------------------------------===//
3961  // ILP Scheduler. Currently for experimental analysis of heuristics.
3962  //===----------------------------------------------------------------------===//
3963  
3964  namespace {
3965  
3966  /// Order nodes by the ILP metric.
3967  struct ILPOrder {
3968    const SchedDFSResult *DFSResult = nullptr;
3969    const BitVector *ScheduledTrees = nullptr;
3970    bool MaximizeILP;
3971  
3972    ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3973  
3974    /// Apply a less-than relation on node priority.
3975    ///
3976    /// (Return true if A comes after B in the Q.)
3977    bool operator()(const SUnit *A, const SUnit *B) const {
3978      unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3979      unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3980      if (SchedTreeA != SchedTreeB) {
3981        // Unscheduled trees have lower priority.
3982        if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3983          return ScheduledTrees->test(SchedTreeB);
3984  
3985        // Trees with shallower connections have lower priority.
3986        if (DFSResult->getSubtreeLevel(SchedTreeA)
3987            != DFSResult->getSubtreeLevel(SchedTreeB)) {
3988          return DFSResult->getSubtreeLevel(SchedTreeA)
3989            < DFSResult->getSubtreeLevel(SchedTreeB);
3990        }
3991      }
3992      if (MaximizeILP)
3993        return DFSResult->getILP(A) < DFSResult->getILP(B);
3994      else
3995        return DFSResult->getILP(A) > DFSResult->getILP(B);
3996    }
3997  };
3998  
3999  /// Schedule based on the ILP metric.
4000  class ILPScheduler : public MachineSchedStrategy {
4001    ScheduleDAGMILive *DAG = nullptr;
4002    ILPOrder Cmp;
4003  
4004    std::vector<SUnit*> ReadyQ;
4005  
4006  public:
4007    ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
4008  
4009    void initialize(ScheduleDAGMI *dag) override {
4010      assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
4011      DAG = static_cast<ScheduleDAGMILive*>(dag);
4012      DAG->computeDFSResult();
4013      Cmp.DFSResult = DAG->getDFSResult();
4014      Cmp.ScheduledTrees = &DAG->getScheduledTrees();
4015      ReadyQ.clear();
4016    }
4017  
4018    void registerRoots() override {
4019      // Restore the heap in ReadyQ with the updated DFS results.
4020      std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4021    }
4022  
4023    /// Implement MachineSchedStrategy interface.
4024    /// -----------------------------------------
4025  
4026    /// Callback to select the highest priority node from the ready Q.
4027    SUnit *pickNode(bool &IsTopNode) override {
4028      if (ReadyQ.empty()) return nullptr;
4029      std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4030      SUnit *SU = ReadyQ.back();
4031      ReadyQ.pop_back();
4032      IsTopNode = false;
4033      LLVM_DEBUG(dbgs() << "Pick node "
4034                        << "SU(" << SU->NodeNum << ") "
4035                        << " ILP: " << DAG->getDFSResult()->getILP(SU)
4036                        << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
4037                        << " @"
4038                        << DAG->getDFSResult()->getSubtreeLevel(
4039                               DAG->getDFSResult()->getSubtreeID(SU))
4040                        << '\n'
4041                        << "Scheduling " << *SU->getInstr());
4042      return SU;
4043    }
4044  
4045    /// Scheduler callback to notify that a new subtree is scheduled.
4046    void scheduleTree(unsigned SubtreeID) override {
4047      std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4048    }
4049  
4050    /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
4051    /// DFSResults, and resort the priority Q.
4052    void schedNode(SUnit *SU, bool IsTopNode) override {
4053      assert(!IsTopNode && "SchedDFSResult needs bottom-up");
4054    }
4055  
4056    void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
4057  
4058    void releaseBottomNode(SUnit *SU) override {
4059      ReadyQ.push_back(SU);
4060      std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4061    }
4062  };
4063  
4064  } // end anonymous namespace
4065  
4066  static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
4067    return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true));
4068  }
4069  static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
4070    return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false));
4071  }
4072  
4073  static MachineSchedRegistry ILPMaxRegistry(
4074    "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
4075  static MachineSchedRegistry ILPMinRegistry(
4076    "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
4077  
4078  //===----------------------------------------------------------------------===//
4079  // Machine Instruction Shuffler for Correctness Testing
4080  //===----------------------------------------------------------------------===//
4081  
4082  #ifndef NDEBUG
4083  namespace {
4084  
4085  /// Apply a less-than relation on the node order, which corresponds to the
4086  /// instruction order prior to scheduling. IsReverse implements greater-than.
4087  template<bool IsReverse>
4088  struct SUnitOrder {
4089    bool operator()(SUnit *A, SUnit *B) const {
4090      if (IsReverse)
4091        return A->NodeNum > B->NodeNum;
4092      else
4093        return A->NodeNum < B->NodeNum;
4094    }
4095  };
4096  
4097  /// Reorder instructions as much as possible.
4098  class InstructionShuffler : public MachineSchedStrategy {
4099    bool IsAlternating;
4100    bool IsTopDown;
4101  
4102    // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
4103    // gives nodes with a higher number higher priority causing the latest
4104    // instructions to be scheduled first.
4105    PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
4106      TopQ;
4107  
4108    // When scheduling bottom-up, use greater-than as the queue priority.
4109    PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
4110      BottomQ;
4111  
4112  public:
4113    InstructionShuffler(bool alternate, bool topdown)
4114      : IsAlternating(alternate), IsTopDown(topdown) {}
4115  
4116    void initialize(ScheduleDAGMI*) override {
4117      TopQ.clear();
4118      BottomQ.clear();
4119    }
4120  
4121    /// Implement MachineSchedStrategy interface.
4122    /// -----------------------------------------
4123  
4124    SUnit *pickNode(bool &IsTopNode) override {
4125      SUnit *SU;
4126      if (IsTopDown) {
4127        do {
4128          if (TopQ.empty()) return nullptr;
4129          SU = TopQ.top();
4130          TopQ.pop();
4131        } while (SU->isScheduled);
4132        IsTopNode = true;
4133      } else {
4134        do {
4135          if (BottomQ.empty()) return nullptr;
4136          SU = BottomQ.top();
4137          BottomQ.pop();
4138        } while (SU->isScheduled);
4139        IsTopNode = false;
4140      }
4141      if (IsAlternating)
4142        IsTopDown = !IsTopDown;
4143      return SU;
4144    }
4145  
4146    void schedNode(SUnit *SU, bool IsTopNode) override {}
4147  
4148    void releaseTopNode(SUnit *SU) override {
4149      TopQ.push(SU);
4150    }
4151    void releaseBottomNode(SUnit *SU) override {
4152      BottomQ.push(SU);
4153    }
4154  };
4155  
4156  } // end anonymous namespace
4157  
4158  static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
4159    bool Alternate = !ForceTopDown && !ForceBottomUp;
4160    bool TopDown = !ForceBottomUp;
4161    assert((TopDown || !ForceTopDown) &&
4162           "-misched-topdown incompatible with -misched-bottomup");
4163    return new ScheduleDAGMILive(
4164        C, std::make_unique<InstructionShuffler>(Alternate, TopDown));
4165  }
4166  
4167  static MachineSchedRegistry ShufflerRegistry(
4168    "shuffle", "Shuffle machine instructions alternating directions",
4169    createInstructionShuffler);
4170  #endif // !NDEBUG
4171  
4172  //===----------------------------------------------------------------------===//
4173  // GraphWriter support for ScheduleDAGMILive.
4174  //===----------------------------------------------------------------------===//
4175  
4176  #ifndef NDEBUG
4177  namespace llvm {
4178  
4179  template<> struct GraphTraits<
4180    ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
4181  
4182  template<>
4183  struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
4184    DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
4185  
4186    static std::string getGraphName(const ScheduleDAG *G) {
4187      return std::string(G->MF.getName());
4188    }
4189  
4190    static bool renderGraphFromBottomUp() {
4191      return true;
4192    }
4193  
4194    static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) {
4195      if (ViewMISchedCutoff == 0)
4196        return false;
4197      return (Node->Preds.size() > ViewMISchedCutoff
4198           || Node->Succs.size() > ViewMISchedCutoff);
4199    }
4200  
4201    /// If you want to override the dot attributes printed for a particular
4202    /// edge, override this method.
4203    static std::string getEdgeAttributes(const SUnit *Node,
4204                                         SUnitIterator EI,
4205                                         const ScheduleDAG *Graph) {
4206      if (EI.isArtificialDep())
4207        return "color=cyan,style=dashed";
4208      if (EI.isCtrlDep())
4209        return "color=blue,style=dashed";
4210      return "";
4211    }
4212  
4213    static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
4214      std::string Str;
4215      raw_string_ostream SS(Str);
4216      const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
4217      const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
4218        static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
4219      SS << "SU:" << SU->NodeNum;
4220      if (DFS)
4221        SS << " I:" << DFS->getNumInstrs(SU);
4222      return SS.str();
4223    }
4224  
4225    static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
4226      return G->getGraphNodeLabel(SU);
4227    }
4228  
4229    static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
4230      std::string Str("shape=Mrecord");
4231      const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
4232      const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
4233        static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
4234      if (DFS) {
4235        Str += ",style=filled,fillcolor=\"#";
4236        Str += DOT::getColorString(DFS->getSubtreeID(N));
4237        Str += '"';
4238      }
4239      return Str;
4240    }
4241  };
4242  
4243  } // end namespace llvm
4244  #endif // NDEBUG
4245  
4246  /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
4247  /// rendered using 'dot'.
4248  void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
4249  #ifndef NDEBUG
4250    ViewGraph(this, Name, false, Title);
4251  #else
4252    errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
4253           << "systems with Graphviz or gv!\n";
4254  #endif  // NDEBUG
4255  }
4256  
4257  /// Out-of-line implementation with no arguments is handy for gdb.
4258  void ScheduleDAGMI::viewGraph() {
4259    viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
4260  }
4261  
4262  /// Sort predicate for the intervals stored in an instance of
4263  /// ResourceSegments. Intervals are always disjoint (no intersection
4264  /// for any pairs of intervals), therefore we can sort the totality of
4265  /// the intervals by looking only at the left boundary.
4266  static bool sortIntervals(const ResourceSegments::IntervalTy &A,
4267                            const ResourceSegments::IntervalTy &B) {
4268    return A.first < B.first;
4269  }
4270  
4271  unsigned ResourceSegments::getFirstAvailableAt(
4272      unsigned CurrCycle, unsigned AcquireAtCycle, unsigned ReleaseAtCycle,
4273      std::function<ResourceSegments::IntervalTy(unsigned, unsigned, unsigned)>
4274          IntervalBuilder) const {
4275    assert(std::is_sorted(std::begin(_Intervals), std::end(_Intervals),
4276                          sortIntervals) &&
4277           "Cannot execute on an un-sorted set of intervals.");
4278    unsigned RetCycle = CurrCycle;
4279    ResourceSegments::IntervalTy NewInterval =
4280        IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle);
4281    for (auto &Interval : _Intervals) {
4282      if (!intersects(NewInterval, Interval))
4283        continue;
4284  
4285      // Move the interval right next to the top of the one it
4286      // intersects.
4287      assert(Interval.second > NewInterval.first &&
4288             "Invalid intervals configuration.");
4289      RetCycle += (unsigned)Interval.second - (unsigned)NewInterval.first;
4290      NewInterval = IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle);
4291    }
4292    return RetCycle;
4293  }
4294  
4295  void ResourceSegments::add(ResourceSegments::IntervalTy A,
4296                             const unsigned CutOff) {
4297    assert(A.first < A.second && "Cannot add empty resource usage");
4298    assert(CutOff > 0 && "0-size interval history has no use.");
4299    assert(all_of(_Intervals,
4300                  [&A](const ResourceSegments::IntervalTy &Interval) -> bool {
4301                    return !intersects(A, Interval);
4302                  }) &&
4303           "A resource is being overwritten");
4304    _Intervals.push_back(A);
4305  
4306    sortAndMerge();
4307  
4308    // Do not keep the full history of the intervals, just the
4309    // latest #CutOff.
4310    while (_Intervals.size() > CutOff)
4311      _Intervals.pop_front();
4312  }
4313  
4314  bool ResourceSegments::intersects(ResourceSegments::IntervalTy A,
4315                                    ResourceSegments::IntervalTy B) {
4316    assert(A.first <= A.second && "Invalid interval");
4317    assert(B.first <= B.second && "Invalid interval");
4318  
4319    // Share one boundary.
4320    if ((A.first == B.first) || (A.second == B.second))
4321      return true;
4322  
4323    // full intersersect: [    ***     )  B
4324    //                        [***)       A
4325    if ((A.first > B.first) && (A.second < B.second))
4326      return true;
4327  
4328    // right intersect: [     ***)        B
4329    //                       [***      )  A
4330    if ((A.first > B.first) && (A.first < B.second) && (A.second > B.second))
4331      return true;
4332  
4333    // left intersect:      [***      )  B
4334    //                 [     ***)        A
4335    if ((A.first < B.first) && (B.first < A.second) && (B.second > B.first))
4336      return true;
4337  
4338    return false;
4339  }
4340  
4341  void ResourceSegments::sortAndMerge() {
4342    if (_Intervals.size() <= 1)
4343      return;
4344  
4345    // First sort the collection.
4346    _Intervals.sort(sortIntervals);
4347  
4348    // can use next because I have at least 2 elements in the list
4349    auto next = std::next(std::begin(_Intervals));
4350    auto E = std::end(_Intervals);
4351    for (; next != E; ++next) {
4352      if (std::prev(next)->second >= next->first) {
4353        next->first = std::prev(next)->first;
4354        _Intervals.erase(std::prev(next));
4355        continue;
4356      }
4357    }
4358  }
4359