xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision 66fd12cf4896eb08ad8e7a2627537f84ead84dd3)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachineScheduler schedules machine instructions after phi elimination. It
10 // preserves LiveIntervals so it can be invoked before register allocation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineScheduler.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePassRegistry.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/RegisterClassInfo.h"
36 #include "llvm/CodeGen/RegisterPressure.h"
37 #include "llvm/CodeGen/ScheduleDAG.h"
38 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
39 #include "llvm/CodeGen/ScheduleDAGMutation.h"
40 #include "llvm/CodeGen/ScheduleDFS.h"
41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42 #include "llvm/CodeGen/SlotIndexes.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSchedule.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/Config/llvm-config.h"
51 #include "llvm/InitializePasses.h"
52 #include "llvm/MC/LaneBitmask.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/GraphWriter.h"
59 #include "llvm/Support/MachineValueType.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <limits>
66 #include <memory>
67 #include <string>
68 #include <tuple>
69 #include <utility>
70 #include <vector>
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "machine-scheduler"
75 
76 STATISTIC(NumClustered, "Number of load/store pairs clustered");
77 
78 namespace llvm {
79 
80 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
81                            cl::desc("Force top-down list scheduling"));
82 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
83                             cl::desc("Force bottom-up list scheduling"));
84 cl::opt<bool>
85 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
86                        cl::desc("Print critical path length to stdout"));
87 
88 cl::opt<bool> VerifyScheduling(
89     "verify-misched", cl::Hidden,
90     cl::desc("Verify machine instrs before and after machine scheduling"));
91 
92 #ifndef NDEBUG
93 cl::opt<bool> ViewMISchedDAGs(
94     "view-misched-dags", cl::Hidden,
95     cl::desc("Pop up a window to show MISched dags after they are processed"));
96 cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
97                         cl::desc("Print schedule DAGs"));
98 cl::opt<bool> MISchedDumpReservedCycles(
99     "misched-dump-reserved-cycles", cl::Hidden, cl::init(false),
100     cl::desc("Dump resource usage at schedule boundary."));
101 #else
102 const bool ViewMISchedDAGs = false;
103 const bool PrintDAGs = false;
104 #ifdef LLVM_ENABLE_DUMP
105 const bool MISchedDumpReservedCycles = false;
106 #endif // LLVM_ENABLE_DUMP
107 #endif // NDEBUG
108 
109 } // end namespace llvm
110 
111 #ifndef NDEBUG
112 /// In some situations a few uninteresting nodes depend on nearly all other
113 /// nodes in the graph, provide a cutoff to hide them.
114 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
115   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
116 
117 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
118   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
119 
120 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
121   cl::desc("Only schedule this function"));
122 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
123                                         cl::desc("Only schedule this MBB#"));
124 #endif // NDEBUG
125 
126 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
127 /// size of the ready lists.
128 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
129   cl::desc("Limit ready list to N instructions"), cl::init(256));
130 
131 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
132   cl::desc("Enable register pressure scheduling."), cl::init(true));
133 
134 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
135   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
136 
137 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
138                                         cl::desc("Enable memop clustering."),
139                                         cl::init(true));
140 static cl::opt<bool>
141     ForceFastCluster("force-fast-cluster", cl::Hidden,
142                      cl::desc("Switch to fast cluster algorithm with the lost "
143                               "of some fusion opportunities"),
144                      cl::init(false));
145 static cl::opt<unsigned>
146     FastClusterThreshold("fast-cluster-threshold", cl::Hidden,
147                          cl::desc("The threshold for fast cluster"),
148                          cl::init(1000));
149 
150 // DAG subtrees must have at least this many nodes.
151 static const unsigned MinSubtreeSize = 8;
152 
153 // Pin the vtables to this file.
154 void MachineSchedStrategy::anchor() {}
155 
156 void ScheduleDAGMutation::anchor() {}
157 
158 //===----------------------------------------------------------------------===//
159 // Machine Instruction Scheduling Pass and Registry
160 //===----------------------------------------------------------------------===//
161 
162 MachineSchedContext::MachineSchedContext() {
163   RegClassInfo = new RegisterClassInfo();
164 }
165 
166 MachineSchedContext::~MachineSchedContext() {
167   delete RegClassInfo;
168 }
169 
170 namespace {
171 
172 /// Base class for a machine scheduler class that can run at any point.
173 class MachineSchedulerBase : public MachineSchedContext,
174                              public MachineFunctionPass {
175 public:
176   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
177 
178   void print(raw_ostream &O, const Module* = nullptr) const override;
179 
180 protected:
181   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
182 };
183 
184 /// MachineScheduler runs after coalescing and before register allocation.
185 class MachineScheduler : public MachineSchedulerBase {
186 public:
187   MachineScheduler();
188 
189   void getAnalysisUsage(AnalysisUsage &AU) const override;
190 
191   bool runOnMachineFunction(MachineFunction&) override;
192 
193   static char ID; // Class identification, replacement for typeinfo
194 
195 protected:
196   ScheduleDAGInstrs *createMachineScheduler();
197 };
198 
199 /// PostMachineScheduler runs after shortly before code emission.
200 class PostMachineScheduler : public MachineSchedulerBase {
201 public:
202   PostMachineScheduler();
203 
204   void getAnalysisUsage(AnalysisUsage &AU) const override;
205 
206   bool runOnMachineFunction(MachineFunction&) override;
207 
208   static char ID; // Class identification, replacement for typeinfo
209 
210 protected:
211   ScheduleDAGInstrs *createPostMachineScheduler();
212 };
213 
214 } // end anonymous namespace
215 
216 char MachineScheduler::ID = 0;
217 
218 char &llvm::MachineSchedulerID = MachineScheduler::ID;
219 
220 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
221                       "Machine Instruction Scheduler", false, false)
222 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
223 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
224 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
225 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
226 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
227 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
228                     "Machine Instruction Scheduler", false, false)
229 
230 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
231   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
232 }
233 
234 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
235   AU.setPreservesCFG();
236   AU.addRequired<MachineDominatorTree>();
237   AU.addRequired<MachineLoopInfo>();
238   AU.addRequired<AAResultsWrapperPass>();
239   AU.addRequired<TargetPassConfig>();
240   AU.addRequired<SlotIndexes>();
241   AU.addPreserved<SlotIndexes>();
242   AU.addRequired<LiveIntervals>();
243   AU.addPreserved<LiveIntervals>();
244   MachineFunctionPass::getAnalysisUsage(AU);
245 }
246 
247 char PostMachineScheduler::ID = 0;
248 
249 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
250 
251 INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched",
252                       "PostRA Machine Instruction Scheduler", false, false)
253 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
254 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
255 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
256 INITIALIZE_PASS_END(PostMachineScheduler, "postmisched",
257                     "PostRA Machine Instruction Scheduler", false, false)
258 
259 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
260   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
261 }
262 
263 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
264   AU.setPreservesCFG();
265   AU.addRequired<MachineDominatorTree>();
266   AU.addRequired<MachineLoopInfo>();
267   AU.addRequired<AAResultsWrapperPass>();
268   AU.addRequired<TargetPassConfig>();
269   MachineFunctionPass::getAnalysisUsage(AU);
270 }
271 
272 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
273     MachineSchedRegistry::Registry;
274 
275 /// A dummy default scheduler factory indicates whether the scheduler
276 /// is overridden on the command line.
277 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
278   return nullptr;
279 }
280 
281 /// MachineSchedOpt allows command line selection of the scheduler.
282 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
283                RegisterPassParser<MachineSchedRegistry>>
284 MachineSchedOpt("misched",
285                 cl::init(&useDefaultMachineSched), cl::Hidden,
286                 cl::desc("Machine instruction scheduler to use"));
287 
288 static MachineSchedRegistry
289 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
290                      useDefaultMachineSched);
291 
292 static cl::opt<bool> EnableMachineSched(
293     "enable-misched",
294     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
295     cl::Hidden);
296 
297 static cl::opt<bool> EnablePostRAMachineSched(
298     "enable-post-misched",
299     cl::desc("Enable the post-ra machine instruction scheduling pass."),
300     cl::init(true), cl::Hidden);
301 
302 /// Decrement this iterator until reaching the top or a non-debug instr.
303 static MachineBasicBlock::const_iterator
304 priorNonDebug(MachineBasicBlock::const_iterator I,
305               MachineBasicBlock::const_iterator Beg) {
306   assert(I != Beg && "reached the top of the region, cannot decrement");
307   while (--I != Beg) {
308     if (!I->isDebugOrPseudoInstr())
309       break;
310   }
311   return I;
312 }
313 
314 /// Non-const version.
315 static MachineBasicBlock::iterator
316 priorNonDebug(MachineBasicBlock::iterator I,
317               MachineBasicBlock::const_iterator Beg) {
318   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
319       .getNonConstIterator();
320 }
321 
322 /// If this iterator is a debug value, increment until reaching the End or a
323 /// non-debug instruction.
324 static MachineBasicBlock::const_iterator
325 nextIfDebug(MachineBasicBlock::const_iterator I,
326             MachineBasicBlock::const_iterator End) {
327   for(; I != End; ++I) {
328     if (!I->isDebugOrPseudoInstr())
329       break;
330   }
331   return I;
332 }
333 
334 /// Non-const version.
335 static MachineBasicBlock::iterator
336 nextIfDebug(MachineBasicBlock::iterator I,
337             MachineBasicBlock::const_iterator End) {
338   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
339       .getNonConstIterator();
340 }
341 
342 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
343 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
344   // Select the scheduler, or set the default.
345   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
346   if (Ctor != useDefaultMachineSched)
347     return Ctor(this);
348 
349   // Get the default scheduler set by the target for this function.
350   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
351   if (Scheduler)
352     return Scheduler;
353 
354   // Default to GenericScheduler.
355   return createGenericSchedLive(this);
356 }
357 
358 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
359 /// the caller. We don't have a command line option to override the postRA
360 /// scheduler. The Target must configure it.
361 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
362   // Get the postRA scheduler set by the target for this function.
363   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
364   if (Scheduler)
365     return Scheduler;
366 
367   // Default to GenericScheduler.
368   return createGenericSchedPostRA(this);
369 }
370 
371 /// Top-level MachineScheduler pass driver.
372 ///
373 /// Visit blocks in function order. Divide each block into scheduling regions
374 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
375 /// consistent with the DAG builder, which traverses the interior of the
376 /// scheduling regions bottom-up.
377 ///
378 /// This design avoids exposing scheduling boundaries to the DAG builder,
379 /// simplifying the DAG builder's support for "special" target instructions.
380 /// At the same time the design allows target schedulers to operate across
381 /// scheduling boundaries, for example to bundle the boundary instructions
382 /// without reordering them. This creates complexity, because the target
383 /// scheduler must update the RegionBegin and RegionEnd positions cached by
384 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
385 /// design would be to split blocks at scheduling boundaries, but LLVM has a
386 /// general bias against block splitting purely for implementation simplicity.
387 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
388   if (skipFunction(mf.getFunction()))
389     return false;
390 
391   if (EnableMachineSched.getNumOccurrences()) {
392     if (!EnableMachineSched)
393       return false;
394   } else if (!mf.getSubtarget().enableMachineScheduler())
395     return false;
396 
397   LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
398 
399   // Initialize the context of the pass.
400   MF = &mf;
401   MLI = &getAnalysis<MachineLoopInfo>();
402   MDT = &getAnalysis<MachineDominatorTree>();
403   PassConfig = &getAnalysis<TargetPassConfig>();
404   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
405 
406   LIS = &getAnalysis<LiveIntervals>();
407 
408   if (VerifyScheduling) {
409     LLVM_DEBUG(LIS->dump());
410     MF->verify(this, "Before machine scheduling.");
411   }
412   RegClassInfo->runOnMachineFunction(*MF);
413 
414   // Instantiate the selected scheduler for this target, function, and
415   // optimization level.
416   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
417   scheduleRegions(*Scheduler, false);
418 
419   LLVM_DEBUG(LIS->dump());
420   if (VerifyScheduling)
421     MF->verify(this, "After machine scheduling.");
422   return true;
423 }
424 
425 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
426   if (skipFunction(mf.getFunction()))
427     return false;
428 
429   if (EnablePostRAMachineSched.getNumOccurrences()) {
430     if (!EnablePostRAMachineSched)
431       return false;
432   } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) {
433     LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
434     return false;
435   }
436   LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
437 
438   // Initialize the context of the pass.
439   MF = &mf;
440   MLI = &getAnalysis<MachineLoopInfo>();
441   PassConfig = &getAnalysis<TargetPassConfig>();
442   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
443 
444   if (VerifyScheduling)
445     MF->verify(this, "Before post machine scheduling.");
446 
447   // Instantiate the selected scheduler for this target, function, and
448   // optimization level.
449   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
450   scheduleRegions(*Scheduler, true);
451 
452   if (VerifyScheduling)
453     MF->verify(this, "After post machine scheduling.");
454   return true;
455 }
456 
457 /// Return true of the given instruction should not be included in a scheduling
458 /// region.
459 ///
460 /// MachineScheduler does not currently support scheduling across calls. To
461 /// handle calls, the DAG builder needs to be modified to create register
462 /// anti/output dependencies on the registers clobbered by the call's regmask
463 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
464 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
465 /// the boundary, but there would be no benefit to postRA scheduling across
466 /// calls this late anyway.
467 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
468                             MachineBasicBlock *MBB,
469                             MachineFunction *MF,
470                             const TargetInstrInfo *TII) {
471   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
472 }
473 
474 /// A region of an MBB for scheduling.
475 namespace {
476 struct SchedRegion {
477   /// RegionBegin is the first instruction in the scheduling region, and
478   /// RegionEnd is either MBB->end() or the scheduling boundary after the
479   /// last instruction in the scheduling region. These iterators cannot refer
480   /// to instructions outside of the identified scheduling region because
481   /// those may be reordered before scheduling this region.
482   MachineBasicBlock::iterator RegionBegin;
483   MachineBasicBlock::iterator RegionEnd;
484   unsigned NumRegionInstrs;
485 
486   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
487               unsigned N) :
488     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
489 };
490 } // end anonymous namespace
491 
492 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
493 
494 static void
495 getSchedRegions(MachineBasicBlock *MBB,
496                 MBBRegionsVector &Regions,
497                 bool RegionsTopDown) {
498   MachineFunction *MF = MBB->getParent();
499   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
500 
501   MachineBasicBlock::iterator I = nullptr;
502   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
503       RegionEnd != MBB->begin(); RegionEnd = I) {
504 
505     // Avoid decrementing RegionEnd for blocks with no terminator.
506     if (RegionEnd != MBB->end() ||
507         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
508       --RegionEnd;
509     }
510 
511     // The next region starts above the previous region. Look backward in the
512     // instruction stream until we find the nearest boundary.
513     unsigned NumRegionInstrs = 0;
514     I = RegionEnd;
515     for (;I != MBB->begin(); --I) {
516       MachineInstr &MI = *std::prev(I);
517       if (isSchedBoundary(&MI, &*MBB, MF, TII))
518         break;
519       if (!MI.isDebugOrPseudoInstr()) {
520         // MBB::size() uses instr_iterator to count. Here we need a bundle to
521         // count as a single instruction.
522         ++NumRegionInstrs;
523       }
524     }
525 
526     // It's possible we found a scheduling region that only has debug
527     // instructions. Don't bother scheduling these.
528     if (NumRegionInstrs != 0)
529       Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
530   }
531 
532   if (RegionsTopDown)
533     std::reverse(Regions.begin(), Regions.end());
534 }
535 
536 /// Main driver for both MachineScheduler and PostMachineScheduler.
537 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
538                                            bool FixKillFlags) {
539   // Visit all machine basic blocks.
540   //
541   // TODO: Visit blocks in global postorder or postorder within the bottom-up
542   // loop tree. Then we can optionally compute global RegPressure.
543   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
544        MBB != MBBEnd; ++MBB) {
545 
546     Scheduler.startBlock(&*MBB);
547 
548 #ifndef NDEBUG
549     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
550       continue;
551     if (SchedOnlyBlock.getNumOccurrences()
552         && (int)SchedOnlyBlock != MBB->getNumber())
553       continue;
554 #endif
555 
556     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
557     // points to the scheduling boundary at the bottom of the region. The DAG
558     // does not include RegionEnd, but the region does (i.e. the next
559     // RegionEnd is above the previous RegionBegin). If the current block has
560     // no terminator then RegionEnd == MBB->end() for the bottom region.
561     //
562     // All the regions of MBB are first found and stored in MBBRegions, which
563     // will be processed (MBB) top-down if initialized with true.
564     //
565     // The Scheduler may insert instructions during either schedule() or
566     // exitRegion(), even for empty regions. So the local iterators 'I' and
567     // 'RegionEnd' are invalid across these calls. Instructions must not be
568     // added to other regions than the current one without updating MBBRegions.
569 
570     MBBRegionsVector MBBRegions;
571     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
572     for (const SchedRegion &R : MBBRegions) {
573       MachineBasicBlock::iterator I = R.RegionBegin;
574       MachineBasicBlock::iterator RegionEnd = R.RegionEnd;
575       unsigned NumRegionInstrs = R.NumRegionInstrs;
576 
577       // Notify the scheduler of the region, even if we may skip scheduling
578       // it. Perhaps it still needs to be bundled.
579       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
580 
581       // Skip empty scheduling regions (0 or 1 schedulable instructions).
582       if (I == RegionEnd || I == std::prev(RegionEnd)) {
583         // Close the current region. Bundle the terminator if needed.
584         // This invalidates 'RegionEnd' and 'I'.
585         Scheduler.exitRegion();
586         continue;
587       }
588       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
589       LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
590                         << " " << MBB->getName() << "\n  From: " << *I
591                         << "    To: ";
592                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
593                  else dbgs() << "End\n";
594                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
595       if (DumpCriticalPathLength) {
596         errs() << MF->getName();
597         errs() << ":%bb. " << MBB->getNumber();
598         errs() << " " << MBB->getName() << " \n";
599       }
600 
601       // Schedule a region: possibly reorder instructions.
602       // This invalidates the original region iterators.
603       Scheduler.schedule();
604 
605       // Close the current region.
606       Scheduler.exitRegion();
607     }
608     Scheduler.finishBlock();
609     // FIXME: Ideally, no further passes should rely on kill flags. However,
610     // thumb2 size reduction is currently an exception, so the PostMIScheduler
611     // needs to do this.
612     if (FixKillFlags)
613       Scheduler.fixupKills(*MBB);
614   }
615   Scheduler.finalizeSchedule();
616 }
617 
618 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
619   // unimplemented
620 }
621 
622 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
623 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
624   dbgs() << "Queue " << Name << ": ";
625   for (const SUnit *SU : Queue)
626     dbgs() << SU->NodeNum << " ";
627   dbgs() << "\n";
628 }
629 #endif
630 
631 //===----------------------------------------------------------------------===//
632 // ScheduleDAGMI - Basic machine instruction scheduling. This is
633 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
634 // virtual registers.
635 // ===----------------------------------------------------------------------===/
636 
637 // Provide a vtable anchor.
638 ScheduleDAGMI::~ScheduleDAGMI() = default;
639 
640 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
641 /// NumPredsLeft reaches zero, release the successor node.
642 ///
643 /// FIXME: Adjust SuccSU height based on MinLatency.
644 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
645   SUnit *SuccSU = SuccEdge->getSUnit();
646 
647   if (SuccEdge->isWeak()) {
648     --SuccSU->WeakPredsLeft;
649     if (SuccEdge->isCluster())
650       NextClusterSucc = SuccSU;
651     return;
652   }
653 #ifndef NDEBUG
654   if (SuccSU->NumPredsLeft == 0) {
655     dbgs() << "*** Scheduling failed! ***\n";
656     dumpNode(*SuccSU);
657     dbgs() << " has been released too many times!\n";
658     llvm_unreachable(nullptr);
659   }
660 #endif
661   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
662   // CurrCycle may have advanced since then.
663   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
664     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
665 
666   --SuccSU->NumPredsLeft;
667   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
668     SchedImpl->releaseTopNode(SuccSU);
669 }
670 
671 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
672 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
673   for (SDep &Succ : SU->Succs)
674     releaseSucc(SU, &Succ);
675 }
676 
677 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
678 /// NumSuccsLeft reaches zero, release the predecessor node.
679 ///
680 /// FIXME: Adjust PredSU height based on MinLatency.
681 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
682   SUnit *PredSU = PredEdge->getSUnit();
683 
684   if (PredEdge->isWeak()) {
685     --PredSU->WeakSuccsLeft;
686     if (PredEdge->isCluster())
687       NextClusterPred = PredSU;
688     return;
689   }
690 #ifndef NDEBUG
691   if (PredSU->NumSuccsLeft == 0) {
692     dbgs() << "*** Scheduling failed! ***\n";
693     dumpNode(*PredSU);
694     dbgs() << " has been released too many times!\n";
695     llvm_unreachable(nullptr);
696   }
697 #endif
698   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
699   // CurrCycle may have advanced since then.
700   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
701     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
702 
703   --PredSU->NumSuccsLeft;
704   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
705     SchedImpl->releaseBottomNode(PredSU);
706 }
707 
708 /// releasePredecessors - Call releasePred on each of SU's predecessors.
709 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
710   for (SDep &Pred : SU->Preds)
711     releasePred(SU, &Pred);
712 }
713 
714 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
715   ScheduleDAGInstrs::startBlock(bb);
716   SchedImpl->enterMBB(bb);
717 }
718 
719 void ScheduleDAGMI::finishBlock() {
720   SchedImpl->leaveMBB();
721   ScheduleDAGInstrs::finishBlock();
722 }
723 
724 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
725 /// crossing a scheduling boundary. [begin, end) includes all instructions in
726 /// the region, including the boundary itself and single-instruction regions
727 /// that don't get scheduled.
728 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
729                                      MachineBasicBlock::iterator begin,
730                                      MachineBasicBlock::iterator end,
731                                      unsigned regioninstrs)
732 {
733   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
734 
735   SchedImpl->initPolicy(begin, end, regioninstrs);
736 }
737 
738 /// This is normally called from the main scheduler loop but may also be invoked
739 /// by the scheduling strategy to perform additional code motion.
740 void ScheduleDAGMI::moveInstruction(
741   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
742   // Advance RegionBegin if the first instruction moves down.
743   if (&*RegionBegin == MI)
744     ++RegionBegin;
745 
746   // Update the instruction stream.
747   BB->splice(InsertPos, BB, MI);
748 
749   // Update LiveIntervals
750   if (LIS)
751     LIS->handleMove(*MI, /*UpdateFlags=*/true);
752 
753   // Recede RegionBegin if an instruction moves above the first.
754   if (RegionBegin == InsertPos)
755     RegionBegin = MI;
756 }
757 
758 bool ScheduleDAGMI::checkSchedLimit() {
759 #if LLVM_ENABLE_ABI_BREAKING_CHECKS && !defined(NDEBUG)
760   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
761     CurrentTop = CurrentBottom;
762     return false;
763   }
764   ++NumInstrsScheduled;
765 #endif
766   return true;
767 }
768 
769 /// Per-region scheduling driver, called back from
770 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
771 /// does not consider liveness or register pressure. It is useful for PostRA
772 /// scheduling and potentially other custom schedulers.
773 void ScheduleDAGMI::schedule() {
774   LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
775   LLVM_DEBUG(SchedImpl->dumpPolicy());
776 
777   // Build the DAG.
778   buildSchedGraph(AA);
779 
780   postprocessDAG();
781 
782   SmallVector<SUnit*, 8> TopRoots, BotRoots;
783   findRootsAndBiasEdges(TopRoots, BotRoots);
784 
785   LLVM_DEBUG(dump());
786   if (PrintDAGs) dump();
787   if (ViewMISchedDAGs) viewGraph();
788 
789   // Initialize the strategy before modifying the DAG.
790   // This may initialize a DFSResult to be used for queue priority.
791   SchedImpl->initialize(this);
792 
793   // Initialize ready queues now that the DAG and priority data are finalized.
794   initQueues(TopRoots, BotRoots);
795 
796   bool IsTopNode = false;
797   while (true) {
798     LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
799     SUnit *SU = SchedImpl->pickNode(IsTopNode);
800     if (!SU) break;
801 
802     assert(!SU->isScheduled && "Node already scheduled");
803     if (!checkSchedLimit())
804       break;
805 
806     MachineInstr *MI = SU->getInstr();
807     if (IsTopNode) {
808       assert(SU->isTopReady() && "node still has unscheduled dependencies");
809       if (&*CurrentTop == MI)
810         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
811       else
812         moveInstruction(MI, CurrentTop);
813     } else {
814       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
815       MachineBasicBlock::iterator priorII =
816         priorNonDebug(CurrentBottom, CurrentTop);
817       if (&*priorII == MI)
818         CurrentBottom = priorII;
819       else {
820         if (&*CurrentTop == MI)
821           CurrentTop = nextIfDebug(++CurrentTop, priorII);
822         moveInstruction(MI, CurrentBottom);
823         CurrentBottom = MI;
824       }
825     }
826     // Notify the scheduling strategy before updating the DAG.
827     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
828     // runs, it can then use the accurate ReadyCycle time to determine whether
829     // newly released nodes can move to the readyQ.
830     SchedImpl->schedNode(SU, IsTopNode);
831 
832     updateQueues(SU, IsTopNode);
833   }
834   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
835 
836   placeDebugValues();
837 
838   LLVM_DEBUG({
839     dbgs() << "*** Final schedule for "
840            << printMBBReference(*begin()->getParent()) << " ***\n";
841     dumpSchedule();
842     dbgs() << '\n';
843   });
844 }
845 
846 /// Apply each ScheduleDAGMutation step in order.
847 void ScheduleDAGMI::postprocessDAG() {
848   for (auto &m : Mutations)
849     m->apply(this);
850 }
851 
852 void ScheduleDAGMI::
853 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
854                       SmallVectorImpl<SUnit*> &BotRoots) {
855   for (SUnit &SU : SUnits) {
856     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
857 
858     // Order predecessors so DFSResult follows the critical path.
859     SU.biasCriticalPath();
860 
861     // A SUnit is ready to top schedule if it has no predecessors.
862     if (!SU.NumPredsLeft)
863       TopRoots.push_back(&SU);
864     // A SUnit is ready to bottom schedule if it has no successors.
865     if (!SU.NumSuccsLeft)
866       BotRoots.push_back(&SU);
867   }
868   ExitSU.biasCriticalPath();
869 }
870 
871 /// Identify DAG roots and setup scheduler queues.
872 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
873                                ArrayRef<SUnit*> BotRoots) {
874   NextClusterSucc = nullptr;
875   NextClusterPred = nullptr;
876 
877   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
878   //
879   // Nodes with unreleased weak edges can still be roots.
880   // Release top roots in forward order.
881   for (SUnit *SU : TopRoots)
882     SchedImpl->releaseTopNode(SU);
883 
884   // Release bottom roots in reverse order so the higher priority nodes appear
885   // first. This is more natural and slightly more efficient.
886   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
887          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
888     SchedImpl->releaseBottomNode(*I);
889   }
890 
891   releaseSuccessors(&EntrySU);
892   releasePredecessors(&ExitSU);
893 
894   SchedImpl->registerRoots();
895 
896   // Advance past initial DebugValues.
897   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
898   CurrentBottom = RegionEnd;
899 }
900 
901 /// Update scheduler queues after scheduling an instruction.
902 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
903   // Release dependent instructions for scheduling.
904   if (IsTopNode)
905     releaseSuccessors(SU);
906   else
907     releasePredecessors(SU);
908 
909   SU->isScheduled = true;
910 }
911 
912 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
913 void ScheduleDAGMI::placeDebugValues() {
914   // If first instruction was a DBG_VALUE then put it back.
915   if (FirstDbgValue) {
916     BB->splice(RegionBegin, BB, FirstDbgValue);
917     RegionBegin = FirstDbgValue;
918   }
919 
920   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
921          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
922     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
923     MachineInstr *DbgValue = P.first;
924     MachineBasicBlock::iterator OrigPrevMI = P.second;
925     if (&*RegionBegin == DbgValue)
926       ++RegionBegin;
927     BB->splice(std::next(OrigPrevMI), BB, DbgValue);
928     if (RegionEnd != BB->end() && OrigPrevMI == &*RegionEnd)
929       RegionEnd = DbgValue;
930   }
931 }
932 
933 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
934 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
935   for (MachineInstr &MI : *this) {
936     if (SUnit *SU = getSUnit(&MI))
937       dumpNode(*SU);
938     else
939       dbgs() << "Missing SUnit\n";
940   }
941 }
942 #endif
943 
944 //===----------------------------------------------------------------------===//
945 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
946 // preservation.
947 //===----------------------------------------------------------------------===//
948 
949 ScheduleDAGMILive::~ScheduleDAGMILive() {
950   delete DFSResult;
951 }
952 
953 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
954   const MachineInstr &MI = *SU.getInstr();
955   for (const MachineOperand &MO : MI.operands()) {
956     if (!MO.isReg())
957       continue;
958     if (!MO.readsReg())
959       continue;
960     if (TrackLaneMasks && !MO.isUse())
961       continue;
962 
963     Register Reg = MO.getReg();
964     if (!Reg.isVirtual())
965       continue;
966 
967     // Ignore re-defs.
968     if (TrackLaneMasks) {
969       bool FoundDef = false;
970       for (const MachineOperand &MO2 : MI.operands()) {
971         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
972           FoundDef = true;
973           break;
974         }
975       }
976       if (FoundDef)
977         continue;
978     }
979 
980     // Record this local VReg use.
981     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
982     for (; UI != VRegUses.end(); ++UI) {
983       if (UI->SU == &SU)
984         break;
985     }
986     if (UI == VRegUses.end())
987       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
988   }
989 }
990 
991 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
992 /// crossing a scheduling boundary. [begin, end) includes all instructions in
993 /// the region, including the boundary itself and single-instruction regions
994 /// that don't get scheduled.
995 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
996                                 MachineBasicBlock::iterator begin,
997                                 MachineBasicBlock::iterator end,
998                                 unsigned regioninstrs)
999 {
1000   // ScheduleDAGMI initializes SchedImpl's per-region policy.
1001   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
1002 
1003   // For convenience remember the end of the liveness region.
1004   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
1005 
1006   SUPressureDiffs.clear();
1007 
1008   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
1009   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
1010 
1011   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
1012          "ShouldTrackLaneMasks requires ShouldTrackPressure");
1013 }
1014 
1015 // Setup the register pressure trackers for the top scheduled and bottom
1016 // scheduled regions.
1017 void ScheduleDAGMILive::initRegPressure() {
1018   VRegUses.clear();
1019   VRegUses.setUniverse(MRI.getNumVirtRegs());
1020   for (SUnit &SU : SUnits)
1021     collectVRegUses(SU);
1022 
1023   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1024                     ShouldTrackLaneMasks, false);
1025   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1026                     ShouldTrackLaneMasks, false);
1027 
1028   // Close the RPTracker to finalize live ins.
1029   RPTracker.closeRegion();
1030 
1031   LLVM_DEBUG(RPTracker.dump());
1032 
1033   // Initialize the live ins and live outs.
1034   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1035   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1036 
1037   // Close one end of the tracker so we can call
1038   // getMaxUpward/DownwardPressureDelta before advancing across any
1039   // instructions. This converts currently live regs into live ins/outs.
1040   TopRPTracker.closeTop();
1041   BotRPTracker.closeBottom();
1042 
1043   BotRPTracker.initLiveThru(RPTracker);
1044   if (!BotRPTracker.getLiveThru().empty()) {
1045     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1046     LLVM_DEBUG(dbgs() << "Live Thru: ";
1047                dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1048   };
1049 
1050   // For each live out vreg reduce the pressure change associated with other
1051   // uses of the same vreg below the live-out reaching def.
1052   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1053 
1054   // Account for liveness generated by the region boundary.
1055   if (LiveRegionEnd != RegionEnd) {
1056     SmallVector<RegisterMaskPair, 8> LiveUses;
1057     BotRPTracker.recede(&LiveUses);
1058     updatePressureDiffs(LiveUses);
1059   }
1060 
1061   LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1062              dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1063              dbgs() << "Bottom Pressure:\n";
1064              dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1065 
1066   assert((BotRPTracker.getPos() == RegionEnd ||
1067           (RegionEnd->isDebugInstr() &&
1068            BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1069          "Can't find the region bottom");
1070 
1071   // Cache the list of excess pressure sets in this region. This will also track
1072   // the max pressure in the scheduled code for these sets.
1073   RegionCriticalPSets.clear();
1074   const std::vector<unsigned> &RegionPressure =
1075     RPTracker.getPressure().MaxSetPressure;
1076   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1077     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1078     if (RegionPressure[i] > Limit) {
1079       LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1080                         << " Actual " << RegionPressure[i] << "\n");
1081       RegionCriticalPSets.push_back(PressureChange(i));
1082     }
1083   }
1084   LLVM_DEBUG(dbgs() << "Excess PSets: ";
1085              for (const PressureChange &RCPS
1086                   : RegionCriticalPSets) dbgs()
1087              << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1088              dbgs() << "\n");
1089 }
1090 
1091 void ScheduleDAGMILive::
1092 updateScheduledPressure(const SUnit *SU,
1093                         const std::vector<unsigned> &NewMaxPressure) {
1094   const PressureDiff &PDiff = getPressureDiff(SU);
1095   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1096   for (const PressureChange &PC : PDiff) {
1097     if (!PC.isValid())
1098       break;
1099     unsigned ID = PC.getPSet();
1100     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1101       ++CritIdx;
1102     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1103       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1104           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1105         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1106     }
1107     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1108     if (NewMaxPressure[ID] >= Limit - 2) {
1109       LLVM_DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1110                         << NewMaxPressure[ID]
1111                         << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1112                         << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1113                         << " livethru)\n");
1114     }
1115   }
1116 }
1117 
1118 /// Update the PressureDiff array for liveness after scheduling this
1119 /// instruction.
1120 void ScheduleDAGMILive::updatePressureDiffs(
1121     ArrayRef<RegisterMaskPair> LiveUses) {
1122   for (const RegisterMaskPair &P : LiveUses) {
1123     Register Reg = P.RegUnit;
1124     /// FIXME: Currently assuming single-use physregs.
1125     if (!Reg.isVirtual())
1126       continue;
1127 
1128     if (ShouldTrackLaneMasks) {
1129       // If the register has just become live then other uses won't change
1130       // this fact anymore => decrement pressure.
1131       // If the register has just become dead then other uses make it come
1132       // back to life => increment pressure.
1133       bool Decrement = P.LaneMask.any();
1134 
1135       for (const VReg2SUnit &V2SU
1136            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1137         SUnit &SU = *V2SU.SU;
1138         if (SU.isScheduled || &SU == &ExitSU)
1139           continue;
1140 
1141         PressureDiff &PDiff = getPressureDiff(&SU);
1142         PDiff.addPressureChange(Reg, Decrement, &MRI);
1143         LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1144                           << printReg(Reg, TRI) << ':'
1145                           << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1146                    dbgs() << "              to "; PDiff.dump(*TRI););
1147       }
1148     } else {
1149       assert(P.LaneMask.any());
1150       LLVM_DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1151       // This may be called before CurrentBottom has been initialized. However,
1152       // BotRPTracker must have a valid position. We want the value live into the
1153       // instruction or live out of the block, so ask for the previous
1154       // instruction's live-out.
1155       const LiveInterval &LI = LIS->getInterval(Reg);
1156       VNInfo *VNI;
1157       MachineBasicBlock::const_iterator I =
1158         nextIfDebug(BotRPTracker.getPos(), BB->end());
1159       if (I == BB->end())
1160         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1161       else {
1162         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1163         VNI = LRQ.valueIn();
1164       }
1165       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1166       assert(VNI && "No live value at use.");
1167       for (const VReg2SUnit &V2SU
1168            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1169         SUnit *SU = V2SU.SU;
1170         // If this use comes before the reaching def, it cannot be a last use,
1171         // so decrease its pressure change.
1172         if (!SU->isScheduled && SU != &ExitSU) {
1173           LiveQueryResult LRQ =
1174               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1175           if (LRQ.valueIn() == VNI) {
1176             PressureDiff &PDiff = getPressureDiff(SU);
1177             PDiff.addPressureChange(Reg, true, &MRI);
1178             LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1179                               << *SU->getInstr();
1180                        dbgs() << "              to "; PDiff.dump(*TRI););
1181           }
1182         }
1183       }
1184     }
1185   }
1186 }
1187 
1188 void ScheduleDAGMILive::dump() const {
1189 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1190   if (EntrySU.getInstr() != nullptr)
1191     dumpNodeAll(EntrySU);
1192   for (const SUnit &SU : SUnits) {
1193     dumpNodeAll(SU);
1194     if (ShouldTrackPressure) {
1195       dbgs() << "  Pressure Diff      : ";
1196       getPressureDiff(&SU).dump(*TRI);
1197     }
1198     dbgs() << "  Single Issue       : ";
1199     if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1200         SchedModel.mustEndGroup(SU.getInstr()))
1201       dbgs() << "true;";
1202     else
1203       dbgs() << "false;";
1204     dbgs() << '\n';
1205   }
1206   if (ExitSU.getInstr() != nullptr)
1207     dumpNodeAll(ExitSU);
1208 #endif
1209 }
1210 
1211 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1212 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1213 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1214 ///
1215 /// This is a skeletal driver, with all the functionality pushed into helpers,
1216 /// so that it can be easily extended by experimental schedulers. Generally,
1217 /// implementing MachineSchedStrategy should be sufficient to implement a new
1218 /// scheduling algorithm. However, if a scheduler further subclasses
1219 /// ScheduleDAGMILive then it will want to override this virtual method in order
1220 /// to update any specialized state.
1221 void ScheduleDAGMILive::schedule() {
1222   LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1223   LLVM_DEBUG(SchedImpl->dumpPolicy());
1224   buildDAGWithRegPressure();
1225 
1226   postprocessDAG();
1227 
1228   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1229   findRootsAndBiasEdges(TopRoots, BotRoots);
1230 
1231   // Initialize the strategy before modifying the DAG.
1232   // This may initialize a DFSResult to be used for queue priority.
1233   SchedImpl->initialize(this);
1234 
1235   LLVM_DEBUG(dump());
1236   if (PrintDAGs) dump();
1237   if (ViewMISchedDAGs) viewGraph();
1238 
1239   // Initialize ready queues now that the DAG and priority data are finalized.
1240   initQueues(TopRoots, BotRoots);
1241 
1242   bool IsTopNode = false;
1243   while (true) {
1244     LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1245     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1246     if (!SU) break;
1247 
1248     assert(!SU->isScheduled && "Node already scheduled");
1249     if (!checkSchedLimit())
1250       break;
1251 
1252     scheduleMI(SU, IsTopNode);
1253 
1254     if (DFSResult) {
1255       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1256       if (!ScheduledTrees.test(SubtreeID)) {
1257         ScheduledTrees.set(SubtreeID);
1258         DFSResult->scheduleTree(SubtreeID);
1259         SchedImpl->scheduleTree(SubtreeID);
1260       }
1261     }
1262 
1263     // Notify the scheduling strategy after updating the DAG.
1264     SchedImpl->schedNode(SU, IsTopNode);
1265 
1266     updateQueues(SU, IsTopNode);
1267   }
1268   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1269 
1270   placeDebugValues();
1271 
1272   LLVM_DEBUG({
1273     dbgs() << "*** Final schedule for "
1274            << printMBBReference(*begin()->getParent()) << " ***\n";
1275     dumpSchedule();
1276     dbgs() << '\n';
1277   });
1278 }
1279 
1280 /// Build the DAG and setup three register pressure trackers.
1281 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1282   if (!ShouldTrackPressure) {
1283     RPTracker.reset();
1284     RegionCriticalPSets.clear();
1285     buildSchedGraph(AA);
1286     return;
1287   }
1288 
1289   // Initialize the register pressure tracker used by buildSchedGraph.
1290   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1291                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1292 
1293   // Account for liveness generate by the region boundary.
1294   if (LiveRegionEnd != RegionEnd)
1295     RPTracker.recede();
1296 
1297   // Build the DAG, and compute current register pressure.
1298   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1299 
1300   // Initialize top/bottom trackers after computing region pressure.
1301   initRegPressure();
1302 }
1303 
1304 void ScheduleDAGMILive::computeDFSResult() {
1305   if (!DFSResult)
1306     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1307   DFSResult->clear();
1308   ScheduledTrees.clear();
1309   DFSResult->resize(SUnits.size());
1310   DFSResult->compute(SUnits);
1311   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1312 }
1313 
1314 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1315 /// only provides the critical path for single block loops. To handle loops that
1316 /// span blocks, we could use the vreg path latencies provided by
1317 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1318 /// available for use in the scheduler.
1319 ///
1320 /// The cyclic path estimation identifies a def-use pair that crosses the back
1321 /// edge and considers the depth and height of the nodes. For example, consider
1322 /// the following instruction sequence where each instruction has unit latency
1323 /// and defines an eponymous virtual register:
1324 ///
1325 /// a->b(a,c)->c(b)->d(c)->exit
1326 ///
1327 /// The cyclic critical path is a two cycles: b->c->b
1328 /// The acyclic critical path is four cycles: a->b->c->d->exit
1329 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1330 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1331 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1332 /// LiveInDepth = depth(b) = len(a->b) = 1
1333 ///
1334 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1335 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1336 /// CyclicCriticalPath = min(2, 2) = 2
1337 ///
1338 /// This could be relevant to PostRA scheduling, but is currently implemented
1339 /// assuming LiveIntervals.
1340 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1341   // This only applies to single block loop.
1342   if (!BB->isSuccessor(BB))
1343     return 0;
1344 
1345   unsigned MaxCyclicLatency = 0;
1346   // Visit each live out vreg def to find def/use pairs that cross iterations.
1347   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1348     Register Reg = P.RegUnit;
1349     if (!Reg.isVirtual())
1350       continue;
1351     const LiveInterval &LI = LIS->getInterval(Reg);
1352     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1353     if (!DefVNI)
1354       continue;
1355 
1356     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1357     const SUnit *DefSU = getSUnit(DefMI);
1358     if (!DefSU)
1359       continue;
1360 
1361     unsigned LiveOutHeight = DefSU->getHeight();
1362     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1363     // Visit all local users of the vreg def.
1364     for (const VReg2SUnit &V2SU
1365          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1366       SUnit *SU = V2SU.SU;
1367       if (SU == &ExitSU)
1368         continue;
1369 
1370       // Only consider uses of the phi.
1371       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1372       if (!LRQ.valueIn()->isPHIDef())
1373         continue;
1374 
1375       // Assume that a path spanning two iterations is a cycle, which could
1376       // overestimate in strange cases. This allows cyclic latency to be
1377       // estimated as the minimum slack of the vreg's depth or height.
1378       unsigned CyclicLatency = 0;
1379       if (LiveOutDepth > SU->getDepth())
1380         CyclicLatency = LiveOutDepth - SU->getDepth();
1381 
1382       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1383       if (LiveInHeight > LiveOutHeight) {
1384         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1385           CyclicLatency = LiveInHeight - LiveOutHeight;
1386       } else
1387         CyclicLatency = 0;
1388 
1389       LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1390                         << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1391       if (CyclicLatency > MaxCyclicLatency)
1392         MaxCyclicLatency = CyclicLatency;
1393     }
1394   }
1395   LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1396   return MaxCyclicLatency;
1397 }
1398 
1399 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1400 /// the Top RP tracker in case the region beginning has changed.
1401 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1402                                    ArrayRef<SUnit*> BotRoots) {
1403   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1404   if (ShouldTrackPressure) {
1405     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1406     TopRPTracker.setPos(CurrentTop);
1407   }
1408 }
1409 
1410 /// Move an instruction and update register pressure.
1411 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1412   // Move the instruction to its new location in the instruction stream.
1413   MachineInstr *MI = SU->getInstr();
1414 
1415   if (IsTopNode) {
1416     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1417     if (&*CurrentTop == MI)
1418       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1419     else {
1420       moveInstruction(MI, CurrentTop);
1421       TopRPTracker.setPos(MI);
1422     }
1423 
1424     if (ShouldTrackPressure) {
1425       // Update top scheduled pressure.
1426       RegisterOperands RegOpers;
1427       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1428       if (ShouldTrackLaneMasks) {
1429         // Adjust liveness and add missing dead+read-undef flags.
1430         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1431         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1432       } else {
1433         // Adjust for missing dead-def flags.
1434         RegOpers.detectDeadDefs(*MI, *LIS);
1435       }
1436 
1437       TopRPTracker.advance(RegOpers);
1438       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1439       LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1440                      TopRPTracker.getRegSetPressureAtPos(), TRI););
1441 
1442       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1443     }
1444   } else {
1445     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1446     MachineBasicBlock::iterator priorII =
1447       priorNonDebug(CurrentBottom, CurrentTop);
1448     if (&*priorII == MI)
1449       CurrentBottom = priorII;
1450     else {
1451       if (&*CurrentTop == MI) {
1452         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1453         TopRPTracker.setPos(CurrentTop);
1454       }
1455       moveInstruction(MI, CurrentBottom);
1456       CurrentBottom = MI;
1457       BotRPTracker.setPos(CurrentBottom);
1458     }
1459     if (ShouldTrackPressure) {
1460       RegisterOperands RegOpers;
1461       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1462       if (ShouldTrackLaneMasks) {
1463         // Adjust liveness and add missing dead+read-undef flags.
1464         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1465         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1466       } else {
1467         // Adjust for missing dead-def flags.
1468         RegOpers.detectDeadDefs(*MI, *LIS);
1469       }
1470 
1471       if (BotRPTracker.getPos() != CurrentBottom)
1472         BotRPTracker.recedeSkipDebugValues();
1473       SmallVector<RegisterMaskPair, 8> LiveUses;
1474       BotRPTracker.recede(RegOpers, &LiveUses);
1475       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1476       LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1477                      BotRPTracker.getRegSetPressureAtPos(), TRI););
1478 
1479       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1480       updatePressureDiffs(LiveUses);
1481     }
1482   }
1483 }
1484 
1485 //===----------------------------------------------------------------------===//
1486 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1487 //===----------------------------------------------------------------------===//
1488 
1489 namespace {
1490 
1491 /// Post-process the DAG to create cluster edges between neighboring
1492 /// loads or between neighboring stores.
1493 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1494   struct MemOpInfo {
1495     SUnit *SU;
1496     SmallVector<const MachineOperand *, 4> BaseOps;
1497     int64_t Offset;
1498     unsigned Width;
1499 
1500     MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps,
1501               int64_t Offset, unsigned Width)
1502         : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset),
1503           Width(Width) {}
1504 
1505     static bool Compare(const MachineOperand *const &A,
1506                         const MachineOperand *const &B) {
1507       if (A->getType() != B->getType())
1508         return A->getType() < B->getType();
1509       if (A->isReg())
1510         return A->getReg() < B->getReg();
1511       if (A->isFI()) {
1512         const MachineFunction &MF = *A->getParent()->getParent()->getParent();
1513         const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
1514         bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1515                               TargetFrameLowering::StackGrowsDown;
1516         return StackGrowsDown ? A->getIndex() > B->getIndex()
1517                               : A->getIndex() < B->getIndex();
1518       }
1519 
1520       llvm_unreachable("MemOpClusterMutation only supports register or frame "
1521                        "index bases.");
1522     }
1523 
1524     bool operator<(const MemOpInfo &RHS) const {
1525       // FIXME: Don't compare everything twice. Maybe use C++20 three way
1526       // comparison instead when it's available.
1527       if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(),
1528                                        RHS.BaseOps.begin(), RHS.BaseOps.end(),
1529                                        Compare))
1530         return true;
1531       if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(),
1532                                        BaseOps.begin(), BaseOps.end(), Compare))
1533         return false;
1534       if (Offset != RHS.Offset)
1535         return Offset < RHS.Offset;
1536       return SU->NodeNum < RHS.SU->NodeNum;
1537     }
1538   };
1539 
1540   const TargetInstrInfo *TII;
1541   const TargetRegisterInfo *TRI;
1542   bool IsLoad;
1543 
1544 public:
1545   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1546                            const TargetRegisterInfo *tri, bool IsLoad)
1547       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1548 
1549   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1550 
1551 protected:
1552   void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster,
1553                                 ScheduleDAGInstrs *DAG);
1554   void collectMemOpRecords(std::vector<SUnit> &SUnits,
1555                            SmallVectorImpl<MemOpInfo> &MemOpRecords);
1556   bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1557                    DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups);
1558 };
1559 
1560 class StoreClusterMutation : public BaseMemOpClusterMutation {
1561 public:
1562   StoreClusterMutation(const TargetInstrInfo *tii,
1563                        const TargetRegisterInfo *tri)
1564       : BaseMemOpClusterMutation(tii, tri, false) {}
1565 };
1566 
1567 class LoadClusterMutation : public BaseMemOpClusterMutation {
1568 public:
1569   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1570       : BaseMemOpClusterMutation(tii, tri, true) {}
1571 };
1572 
1573 } // end anonymous namespace
1574 
1575 namespace llvm {
1576 
1577 std::unique_ptr<ScheduleDAGMutation>
1578 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1579                              const TargetRegisterInfo *TRI) {
1580   return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI)
1581                             : nullptr;
1582 }
1583 
1584 std::unique_ptr<ScheduleDAGMutation>
1585 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1586                               const TargetRegisterInfo *TRI) {
1587   return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI)
1588                             : nullptr;
1589 }
1590 
1591 } // end namespace llvm
1592 
1593 // Sorting all the loads/stores first, then for each load/store, checking the
1594 // following load/store one by one, until reach the first non-dependent one and
1595 // call target hook to see if they can cluster.
1596 // If FastCluster is enabled, we assume that, all the loads/stores have been
1597 // preprocessed and now, they didn't have dependencies on each other.
1598 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1599     ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster,
1600     ScheduleDAGInstrs *DAG) {
1601   // Keep track of the current cluster length and bytes for each SUnit.
1602   DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo;
1603 
1604   // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to
1605   // cluster mem ops collected within `MemOpRecords` array.
1606   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1607     // Decision to cluster mem ops is taken based on target dependent logic
1608     auto MemOpa = MemOpRecords[Idx];
1609 
1610     // Seek for the next load/store to do the cluster.
1611     unsigned NextIdx = Idx + 1;
1612     for (; NextIdx < End; ++NextIdx)
1613       // Skip if MemOpb has been clustered already or has dependency with
1614       // MemOpa.
1615       if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) &&
1616           (FastCluster ||
1617            (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) &&
1618             !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU))))
1619         break;
1620     if (NextIdx == End)
1621       continue;
1622 
1623     auto MemOpb = MemOpRecords[NextIdx];
1624     unsigned ClusterLength = 2;
1625     unsigned CurrentClusterBytes = MemOpa.Width + MemOpb.Width;
1626     if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) {
1627       ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1;
1628       CurrentClusterBytes =
1629           SUnit2ClusterInfo[MemOpa.SU->NodeNum].second + MemOpb.Width;
1630     }
1631 
1632     if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpb.BaseOps, ClusterLength,
1633                                   CurrentClusterBytes))
1634       continue;
1635 
1636     SUnit *SUa = MemOpa.SU;
1637     SUnit *SUb = MemOpb.SU;
1638     if (SUa->NodeNum > SUb->NodeNum)
1639       std::swap(SUa, SUb);
1640 
1641     // FIXME: Is this check really required?
1642     if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster)))
1643       continue;
1644 
1645     LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1646                       << SUb->NodeNum << ")\n");
1647     ++NumClustered;
1648 
1649     if (IsLoad) {
1650       // Copy successor edges from SUa to SUb. Interleaving computation
1651       // dependent on SUa can prevent load combining due to register reuse.
1652       // Predecessor edges do not need to be copied from SUb to SUa since
1653       // nearby loads should have effectively the same inputs.
1654       for (const SDep &Succ : SUa->Succs) {
1655         if (Succ.getSUnit() == SUb)
1656           continue;
1657         LLVM_DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum
1658                           << ")\n");
1659         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1660       }
1661     } else {
1662       // Copy predecessor edges from SUb to SUa to avoid the SUnits that
1663       // SUb dependent on scheduled in-between SUb and SUa. Successor edges
1664       // do not need to be copied from SUa to SUb since no one will depend
1665       // on stores.
1666       // Notice that, we don't need to care about the memory dependency as
1667       // we won't try to cluster them if they have any memory dependency.
1668       for (const SDep &Pred : SUb->Preds) {
1669         if (Pred.getSUnit() == SUa)
1670           continue;
1671         LLVM_DEBUG(dbgs() << "  Copy Pred SU(" << Pred.getSUnit()->NodeNum
1672                           << ")\n");
1673         DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial));
1674       }
1675     }
1676 
1677     SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength,
1678                                              CurrentClusterBytes};
1679 
1680     LLVM_DEBUG(dbgs() << "  Curr cluster length: " << ClusterLength
1681                       << ", Curr cluster bytes: " << CurrentClusterBytes
1682                       << "\n");
1683   }
1684 }
1685 
1686 void BaseMemOpClusterMutation::collectMemOpRecords(
1687     std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) {
1688   for (auto &SU : SUnits) {
1689     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1690         (!IsLoad && !SU.getInstr()->mayStore()))
1691       continue;
1692 
1693     const MachineInstr &MI = *SU.getInstr();
1694     SmallVector<const MachineOperand *, 4> BaseOps;
1695     int64_t Offset;
1696     bool OffsetIsScalable;
1697     unsigned Width;
1698     if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset,
1699                                            OffsetIsScalable, Width, TRI)) {
1700       MemOpRecords.push_back(MemOpInfo(&SU, BaseOps, Offset, Width));
1701 
1702       LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: "
1703                         << Offset << ", OffsetIsScalable: " << OffsetIsScalable
1704                         << ", Width: " << Width << "\n");
1705     }
1706 #ifndef NDEBUG
1707     for (const auto *Op : BaseOps)
1708       assert(Op);
1709 #endif
1710   }
1711 }
1712 
1713 bool BaseMemOpClusterMutation::groupMemOps(
1714     ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1715     DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups) {
1716   bool FastCluster =
1717       ForceFastCluster ||
1718       MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold;
1719 
1720   for (const auto &MemOp : MemOps) {
1721     unsigned ChainPredID = DAG->SUnits.size();
1722     if (FastCluster) {
1723       for (const SDep &Pred : MemOp.SU->Preds) {
1724         // We only want to cluster the mem ops that have the same ctrl(non-data)
1725         // pred so that they didn't have ctrl dependency for each other. But for
1726         // store instrs, we can still cluster them if the pred is load instr.
1727         if ((Pred.isCtrl() &&
1728              (IsLoad ||
1729               (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) &&
1730             !Pred.isArtificial()) {
1731           ChainPredID = Pred.getSUnit()->NodeNum;
1732           break;
1733         }
1734       }
1735     } else
1736       ChainPredID = 0;
1737 
1738     Groups[ChainPredID].push_back(MemOp);
1739   }
1740   return FastCluster;
1741 }
1742 
1743 /// Callback from DAG postProcessing to create cluster edges for loads/stores.
1744 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
1745   // Collect all the clusterable loads/stores
1746   SmallVector<MemOpInfo, 32> MemOpRecords;
1747   collectMemOpRecords(DAG->SUnits, MemOpRecords);
1748 
1749   if (MemOpRecords.size() < 2)
1750     return;
1751 
1752   // Put the loads/stores without dependency into the same group with some
1753   // heuristic if the DAG is too complex to avoid compiling time blow up.
1754   // Notice that, some fusion pair could be lost with this.
1755   DenseMap<unsigned, SmallVector<MemOpInfo, 32>> Groups;
1756   bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups);
1757 
1758   for (auto &Group : Groups) {
1759     // Sorting the loads/stores, so that, we can stop the cluster as early as
1760     // possible.
1761     llvm::sort(Group.second);
1762 
1763     // Trying to cluster all the neighboring loads/stores.
1764     clusterNeighboringMemOps(Group.second, FastCluster, DAG);
1765   }
1766 }
1767 
1768 //===----------------------------------------------------------------------===//
1769 // CopyConstrain - DAG post-processing to encourage copy elimination.
1770 //===----------------------------------------------------------------------===//
1771 
1772 namespace {
1773 
1774 /// Post-process the DAG to create weak edges from all uses of a copy to
1775 /// the one use that defines the copy's source vreg, most likely an induction
1776 /// variable increment.
1777 class CopyConstrain : public ScheduleDAGMutation {
1778   // Transient state.
1779   SlotIndex RegionBeginIdx;
1780 
1781   // RegionEndIdx is the slot index of the last non-debug instruction in the
1782   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1783   SlotIndex RegionEndIdx;
1784 
1785 public:
1786   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1787 
1788   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1789 
1790 protected:
1791   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1792 };
1793 
1794 } // end anonymous namespace
1795 
1796 namespace llvm {
1797 
1798 std::unique_ptr<ScheduleDAGMutation>
1799 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1800                                const TargetRegisterInfo *TRI) {
1801   return std::make_unique<CopyConstrain>(TII, TRI);
1802 }
1803 
1804 } // end namespace llvm
1805 
1806 /// constrainLocalCopy handles two possibilities:
1807 /// 1) Local src:
1808 /// I0:     = dst
1809 /// I1: src = ...
1810 /// I2:     = dst
1811 /// I3: dst = src (copy)
1812 /// (create pred->succ edges I0->I1, I2->I1)
1813 ///
1814 /// 2) Local copy:
1815 /// I0: dst = src (copy)
1816 /// I1:     = dst
1817 /// I2: src = ...
1818 /// I3:     = dst
1819 /// (create pred->succ edges I1->I2, I3->I2)
1820 ///
1821 /// Although the MachineScheduler is currently constrained to single blocks,
1822 /// this algorithm should handle extended blocks. An EBB is a set of
1823 /// contiguously numbered blocks such that the previous block in the EBB is
1824 /// always the single predecessor.
1825 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1826   LiveIntervals *LIS = DAG->getLIS();
1827   MachineInstr *Copy = CopySU->getInstr();
1828 
1829   // Check for pure vreg copies.
1830   const MachineOperand &SrcOp = Copy->getOperand(1);
1831   Register SrcReg = SrcOp.getReg();
1832   if (!SrcReg.isVirtual() || !SrcOp.readsReg())
1833     return;
1834 
1835   const MachineOperand &DstOp = Copy->getOperand(0);
1836   Register DstReg = DstOp.getReg();
1837   if (!DstReg.isVirtual() || DstOp.isDead())
1838     return;
1839 
1840   // Check if either the dest or source is local. If it's live across a back
1841   // edge, it's not local. Note that if both vregs are live across the back
1842   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1843   // If both the copy's source and dest are local live intervals, then we
1844   // should treat the dest as the global for the purpose of adding
1845   // constraints. This adds edges from source's other uses to the copy.
1846   unsigned LocalReg = SrcReg;
1847   unsigned GlobalReg = DstReg;
1848   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1849   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1850     LocalReg = DstReg;
1851     GlobalReg = SrcReg;
1852     LocalLI = &LIS->getInterval(LocalReg);
1853     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1854       return;
1855   }
1856   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1857 
1858   // Find the global segment after the start of the local LI.
1859   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1860   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1861   // local live range. We could create edges from other global uses to the local
1862   // start, but the coalescer should have already eliminated these cases, so
1863   // don't bother dealing with it.
1864   if (GlobalSegment == GlobalLI->end())
1865     return;
1866 
1867   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1868   // returned the next global segment. But if GlobalSegment overlaps with
1869   // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
1870   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1871   if (GlobalSegment->contains(LocalLI->beginIndex()))
1872     ++GlobalSegment;
1873 
1874   if (GlobalSegment == GlobalLI->end())
1875     return;
1876 
1877   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1878   if (GlobalSegment != GlobalLI->begin()) {
1879     // Two address defs have no hole.
1880     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1881                                GlobalSegment->start)) {
1882       return;
1883     }
1884     // If the prior global segment may be defined by the same two-address
1885     // instruction that also defines LocalLI, then can't make a hole here.
1886     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1887                                LocalLI->beginIndex())) {
1888       return;
1889     }
1890     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1891     // it would be a disconnected component in the live range.
1892     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1893            "Disconnected LRG within the scheduling region.");
1894   }
1895   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1896   if (!GlobalDef)
1897     return;
1898 
1899   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1900   if (!GlobalSU)
1901     return;
1902 
1903   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1904   // constraining the uses of the last local def to precede GlobalDef.
1905   SmallVector<SUnit*,8> LocalUses;
1906   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1907   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1908   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1909   for (const SDep &Succ : LastLocalSU->Succs) {
1910     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1911       continue;
1912     if (Succ.getSUnit() == GlobalSU)
1913       continue;
1914     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1915       return;
1916     LocalUses.push_back(Succ.getSUnit());
1917   }
1918   // Open the top of the GlobalLI hole by constraining any earlier global uses
1919   // to precede the start of LocalLI.
1920   SmallVector<SUnit*,8> GlobalUses;
1921   MachineInstr *FirstLocalDef =
1922     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1923   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1924   for (const SDep &Pred : GlobalSU->Preds) {
1925     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1926       continue;
1927     if (Pred.getSUnit() == FirstLocalSU)
1928       continue;
1929     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1930       return;
1931     GlobalUses.push_back(Pred.getSUnit());
1932   }
1933   LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1934   // Add the weak edges.
1935   for (SUnit *LU : LocalUses) {
1936     LLVM_DEBUG(dbgs() << "  Local use SU(" << LU->NodeNum << ") -> SU("
1937                       << GlobalSU->NodeNum << ")\n");
1938     DAG->addEdge(GlobalSU, SDep(LU, SDep::Weak));
1939   }
1940   for (SUnit *GU : GlobalUses) {
1941     LLVM_DEBUG(dbgs() << "  Global use SU(" << GU->NodeNum << ") -> SU("
1942                       << FirstLocalSU->NodeNum << ")\n");
1943     DAG->addEdge(FirstLocalSU, SDep(GU, SDep::Weak));
1944   }
1945 }
1946 
1947 /// Callback from DAG postProcessing to create weak edges to encourage
1948 /// copy elimination.
1949 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1950   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1951   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1952 
1953   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1954   if (FirstPos == DAG->end())
1955     return;
1956   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1957   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1958       *priorNonDebug(DAG->end(), DAG->begin()));
1959 
1960   for (SUnit &SU : DAG->SUnits) {
1961     if (!SU.getInstr()->isCopy())
1962       continue;
1963 
1964     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1965   }
1966 }
1967 
1968 //===----------------------------------------------------------------------===//
1969 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1970 // and possibly other custom schedulers.
1971 //===----------------------------------------------------------------------===//
1972 
1973 static const unsigned InvalidCycle = ~0U;
1974 
1975 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1976 
1977 /// Given a Count of resource usage and a Latency value, return true if a
1978 /// SchedBoundary becomes resource limited.
1979 /// If we are checking after scheduling a node, we should return true when
1980 /// we just reach the resource limit.
1981 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1982                                unsigned Latency, bool AfterSchedNode) {
1983   int ResCntFactor = (int)(Count - (Latency * LFactor));
1984   if (AfterSchedNode)
1985     return ResCntFactor >= (int)LFactor;
1986   else
1987     return ResCntFactor > (int)LFactor;
1988 }
1989 
1990 void SchedBoundary::reset() {
1991   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1992   // Destroying and reconstructing it is very expensive though. So keep
1993   // invalid, placeholder HazardRecs.
1994   if (HazardRec && HazardRec->isEnabled()) {
1995     delete HazardRec;
1996     HazardRec = nullptr;
1997   }
1998   Available.clear();
1999   Pending.clear();
2000   CheckPending = false;
2001   CurrCycle = 0;
2002   CurrMOps = 0;
2003   MinReadyCycle = std::numeric_limits<unsigned>::max();
2004   ExpectedLatency = 0;
2005   DependentLatency = 0;
2006   RetiredMOps = 0;
2007   MaxExecutedResCount = 0;
2008   ZoneCritResIdx = 0;
2009   IsResourceLimited = false;
2010   ReservedCycles.clear();
2011   ReservedCyclesIndex.clear();
2012   ResourceGroupSubUnitMasks.clear();
2013 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
2014   // Track the maximum number of stall cycles that could arise either from the
2015   // latency of a DAG edge or the number of cycles that a processor resource is
2016   // reserved (SchedBoundary::ReservedCycles).
2017   MaxObservedStall = 0;
2018 #endif
2019   // Reserve a zero-count for invalid CritResIdx.
2020   ExecutedResCounts.resize(1);
2021   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
2022 }
2023 
2024 void SchedRemainder::
2025 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
2026   reset();
2027   if (!SchedModel->hasInstrSchedModel())
2028     return;
2029   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
2030   for (SUnit &SU : DAG->SUnits) {
2031     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
2032     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
2033       * SchedModel->getMicroOpFactor();
2034     for (TargetSchedModel::ProcResIter
2035            PI = SchedModel->getWriteProcResBegin(SC),
2036            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2037       unsigned PIdx = PI->ProcResourceIdx;
2038       unsigned Factor = SchedModel->getResourceFactor(PIdx);
2039       RemainingCounts[PIdx] += (Factor * PI->Cycles);
2040     }
2041   }
2042 }
2043 
2044 void SchedBoundary::
2045 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
2046   reset();
2047   DAG = dag;
2048   SchedModel = smodel;
2049   Rem = rem;
2050   if (SchedModel->hasInstrSchedModel()) {
2051     unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
2052     ReservedCyclesIndex.resize(ResourceCount);
2053     ExecutedResCounts.resize(ResourceCount);
2054     ResourceGroupSubUnitMasks.resize(ResourceCount, APInt(ResourceCount, 0));
2055     unsigned NumUnits = 0;
2056 
2057     for (unsigned i = 0; i < ResourceCount; ++i) {
2058       ReservedCyclesIndex[i] = NumUnits;
2059       NumUnits += SchedModel->getProcResource(i)->NumUnits;
2060       if (isUnbufferedGroup(i)) {
2061         auto SubUnits = SchedModel->getProcResource(i)->SubUnitsIdxBegin;
2062         for (unsigned U = 0, UE = SchedModel->getProcResource(i)->NumUnits;
2063              U != UE; ++U)
2064           ResourceGroupSubUnitMasks[i].setBit(SubUnits[U]);
2065       }
2066     }
2067 
2068     ReservedCycles.resize(NumUnits, InvalidCycle);
2069   }
2070 }
2071 
2072 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
2073 /// these "soft stalls" differently than the hard stall cycles based on CPU
2074 /// resources and computed by checkHazard(). A fully in-order model
2075 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
2076 /// available for scheduling until they are ready. However, a weaker in-order
2077 /// model may use this for heuristics. For example, if a processor has in-order
2078 /// behavior when reading certain resources, this may come into play.
2079 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
2080   if (!SU->isUnbuffered)
2081     return 0;
2082 
2083   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2084   if (ReadyCycle > CurrCycle)
2085     return ReadyCycle - CurrCycle;
2086   return 0;
2087 }
2088 
2089 /// Compute the next cycle at which the given processor resource unit
2090 /// can be scheduled.
2091 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx,
2092                                                        unsigned Cycles) {
2093   unsigned NextUnreserved = ReservedCycles[InstanceIdx];
2094   // If this resource has never been used, always return cycle zero.
2095   if (NextUnreserved == InvalidCycle)
2096     return 0;
2097   // For bottom-up scheduling add the cycles needed for the current operation.
2098   if (!isTop())
2099     NextUnreserved += Cycles;
2100   return NextUnreserved;
2101 }
2102 
2103 /// Compute the next cycle at which the given processor resource can be
2104 /// scheduled.  Returns the next cycle and the index of the processor resource
2105 /// instance in the reserved cycles vector.
2106 std::pair<unsigned, unsigned>
2107 SchedBoundary::getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx,
2108                                     unsigned Cycles) {
2109 
2110   unsigned MinNextUnreserved = InvalidCycle;
2111   unsigned InstanceIdx = 0;
2112   unsigned StartIndex = ReservedCyclesIndex[PIdx];
2113   unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
2114   assert(NumberOfInstances > 0 &&
2115          "Cannot have zero instances of a ProcResource");
2116 
2117   if (isUnbufferedGroup(PIdx)) {
2118     // If any subunits are used by the instruction, report that the resource
2119     // group is available at 0, effectively removing the group record from
2120     // hazarding and basing the hazarding decisions on the subunit records.
2121     // Otherwise, choose the first available instance from among the subunits.
2122     // Specifications which assign cycles to both the subunits and the group or
2123     // which use an unbuffered group with buffered subunits will appear to
2124     // schedule strangely. In the first case, the additional cycles for the
2125     // group will be ignored.  In the second, the group will be ignored
2126     // entirely.
2127     for (const MCWriteProcResEntry &PE :
2128          make_range(SchedModel->getWriteProcResBegin(SC),
2129                     SchedModel->getWriteProcResEnd(SC)))
2130       if (ResourceGroupSubUnitMasks[PIdx][PE.ProcResourceIdx])
2131         return std::make_pair(0u, StartIndex);
2132 
2133     auto SubUnits = SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin;
2134     for (unsigned I = 0, End = NumberOfInstances; I < End; ++I) {
2135       unsigned NextUnreserved, NextInstanceIdx;
2136       std::tie(NextUnreserved, NextInstanceIdx) =
2137           getNextResourceCycle(SC, SubUnits[I], Cycles);
2138       if (MinNextUnreserved > NextUnreserved) {
2139         InstanceIdx = NextInstanceIdx;
2140         MinNextUnreserved = NextUnreserved;
2141       }
2142     }
2143     return std::make_pair(MinNextUnreserved, InstanceIdx);
2144   }
2145 
2146   for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
2147        ++I) {
2148     unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles);
2149     if (MinNextUnreserved > NextUnreserved) {
2150       InstanceIdx = I;
2151       MinNextUnreserved = NextUnreserved;
2152     }
2153   }
2154   return std::make_pair(MinNextUnreserved, InstanceIdx);
2155 }
2156 
2157 /// Does this SU have a hazard within the current instruction group.
2158 ///
2159 /// The scheduler supports two modes of hazard recognition. The first is the
2160 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
2161 /// supports highly complicated in-order reservation tables
2162 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
2163 ///
2164 /// The second is a streamlined mechanism that checks for hazards based on
2165 /// simple counters that the scheduler itself maintains. It explicitly checks
2166 /// for instruction dispatch limitations, including the number of micro-ops that
2167 /// can dispatch per cycle.
2168 ///
2169 /// TODO: Also check whether the SU must start a new group.
2170 bool SchedBoundary::checkHazard(SUnit *SU) {
2171   if (HazardRec->isEnabled()
2172       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
2173     return true;
2174   }
2175 
2176   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
2177   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
2178     LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
2179                       << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
2180     return true;
2181   }
2182 
2183   if (CurrMOps > 0 &&
2184       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
2185        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
2186     LLVM_DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
2187                       << (isTop() ? "begin" : "end") << " group\n");
2188     return true;
2189   }
2190 
2191   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
2192     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2193     for (const MCWriteProcResEntry &PE :
2194           make_range(SchedModel->getWriteProcResBegin(SC),
2195                      SchedModel->getWriteProcResEnd(SC))) {
2196       unsigned ResIdx = PE.ProcResourceIdx;
2197       unsigned Cycles = PE.Cycles;
2198       unsigned NRCycle, InstanceIdx;
2199       std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(SC, ResIdx, Cycles);
2200       if (NRCycle > CurrCycle) {
2201 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
2202         MaxObservedStall = std::max(Cycles, MaxObservedStall);
2203 #endif
2204         LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
2205                           << SchedModel->getResourceName(ResIdx)
2206                           << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx]  << ']'
2207                           << "=" << NRCycle << "c\n");
2208         return true;
2209       }
2210     }
2211   }
2212   return false;
2213 }
2214 
2215 // Find the unscheduled node in ReadySUs with the highest latency.
2216 unsigned SchedBoundary::
2217 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
2218   SUnit *LateSU = nullptr;
2219   unsigned RemLatency = 0;
2220   for (SUnit *SU : ReadySUs) {
2221     unsigned L = getUnscheduledLatency(SU);
2222     if (L > RemLatency) {
2223       RemLatency = L;
2224       LateSU = SU;
2225     }
2226   }
2227   if (LateSU) {
2228     LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2229                       << LateSU->NodeNum << ") " << RemLatency << "c\n");
2230   }
2231   return RemLatency;
2232 }
2233 
2234 // Count resources in this zone and the remaining unscheduled
2235 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2236 // resource index, or zero if the zone is issue limited.
2237 unsigned SchedBoundary::
2238 getOtherResourceCount(unsigned &OtherCritIdx) {
2239   OtherCritIdx = 0;
2240   if (!SchedModel->hasInstrSchedModel())
2241     return 0;
2242 
2243   unsigned OtherCritCount = Rem->RemIssueCount
2244     + (RetiredMOps * SchedModel->getMicroOpFactor());
2245   LLVM_DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2246                     << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2247   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2248        PIdx != PEnd; ++PIdx) {
2249     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2250     if (OtherCount > OtherCritCount) {
2251       OtherCritCount = OtherCount;
2252       OtherCritIdx = PIdx;
2253     }
2254   }
2255   if (OtherCritIdx) {
2256     LLVM_DEBUG(
2257         dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2258                << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2259                << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2260   }
2261   return OtherCritCount;
2262 }
2263 
2264 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue,
2265                                 unsigned Idx) {
2266   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2267 
2268 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
2269   // ReadyCycle was been bumped up to the CurrCycle when this node was
2270   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2271   // scheduling, so may now be greater than ReadyCycle.
2272   if (ReadyCycle > CurrCycle)
2273     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2274 #endif
2275 
2276   if (ReadyCycle < MinReadyCycle)
2277     MinReadyCycle = ReadyCycle;
2278 
2279   // Check for interlocks first. For the purpose of other heuristics, an
2280   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2281   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2282   bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) ||
2283                         checkHazard(SU) || (Available.size() >= ReadyListLimit);
2284 
2285   if (!HazardDetected) {
2286     Available.push(SU);
2287 
2288     if (InPQueue)
2289       Pending.remove(Pending.begin() + Idx);
2290     return;
2291   }
2292 
2293   if (!InPQueue)
2294     Pending.push(SU);
2295 }
2296 
2297 /// Move the boundary of scheduled code by one cycle.
2298 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2299   if (SchedModel->getMicroOpBufferSize() == 0) {
2300     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2301            "MinReadyCycle uninitialized");
2302     if (MinReadyCycle > NextCycle)
2303       NextCycle = MinReadyCycle;
2304   }
2305   // Update the current micro-ops, which will issue in the next cycle.
2306   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2307   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2308 
2309   // Decrement DependentLatency based on the next cycle.
2310   if ((NextCycle - CurrCycle) > DependentLatency)
2311     DependentLatency = 0;
2312   else
2313     DependentLatency -= (NextCycle - CurrCycle);
2314 
2315   if (!HazardRec->isEnabled()) {
2316     // Bypass HazardRec virtual calls.
2317     CurrCycle = NextCycle;
2318   } else {
2319     // Bypass getHazardType calls in case of long latency.
2320     for (; CurrCycle != NextCycle; ++CurrCycle) {
2321       if (isTop())
2322         HazardRec->AdvanceCycle();
2323       else
2324         HazardRec->RecedeCycle();
2325     }
2326   }
2327   CheckPending = true;
2328   IsResourceLimited =
2329       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2330                          getScheduledLatency(), true);
2331 
2332   LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2333                     << '\n');
2334 }
2335 
2336 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2337   ExecutedResCounts[PIdx] += Count;
2338   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2339     MaxExecutedResCount = ExecutedResCounts[PIdx];
2340 }
2341 
2342 /// Add the given processor resource to this scheduled zone.
2343 ///
2344 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2345 /// during which this resource is consumed.
2346 ///
2347 /// \return the next cycle at which the instruction may execute without
2348 /// oversubscribing resources.
2349 unsigned SchedBoundary::countResource(const MCSchedClassDesc *SC, unsigned PIdx,
2350                                       unsigned Cycles, unsigned NextCycle) {
2351   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2352   unsigned Count = Factor * Cycles;
2353   LLVM_DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) << " +"
2354                     << Cycles << "x" << Factor << "u\n");
2355 
2356   // Update Executed resources counts.
2357   incExecutedResources(PIdx, Count);
2358   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2359   Rem->RemainingCounts[PIdx] -= Count;
2360 
2361   // Check if this resource exceeds the current critical resource. If so, it
2362   // becomes the critical resource.
2363   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2364     ZoneCritResIdx = PIdx;
2365     LLVM_DEBUG(dbgs() << "  *** Critical resource "
2366                       << SchedModel->getResourceName(PIdx) << ": "
2367                       << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2368                       << "c\n");
2369   }
2370   // For reserved resources, record the highest cycle using the resource.
2371   unsigned NextAvailable, InstanceIdx;
2372   std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(SC, PIdx, Cycles);
2373   if (NextAvailable > CurrCycle) {
2374     LLVM_DEBUG(dbgs() << "  Resource conflict: "
2375                       << SchedModel->getResourceName(PIdx)
2376                       << '[' << InstanceIdx - ReservedCyclesIndex[PIdx]  << ']'
2377                       << " reserved until @" << NextAvailable << "\n");
2378   }
2379   return NextAvailable;
2380 }
2381 
2382 /// Move the boundary of scheduled code by one SUnit.
2383 void SchedBoundary::bumpNode(SUnit *SU) {
2384   // Update the reservation table.
2385   if (HazardRec->isEnabled()) {
2386     if (!isTop() && SU->isCall) {
2387       // Calls are scheduled with their preceding instructions. For bottom-up
2388       // scheduling, clear the pipeline state before emitting.
2389       HazardRec->Reset();
2390     }
2391     HazardRec->EmitInstruction(SU);
2392     // Scheduling an instruction may have made pending instructions available.
2393     CheckPending = true;
2394   }
2395   // checkHazard should prevent scheduling multiple instructions per cycle that
2396   // exceed the issue width.
2397   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2398   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2399   assert(
2400       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2401       "Cannot schedule this instruction's MicroOps in the current cycle.");
2402 
2403   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2404   LLVM_DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2405 
2406   unsigned NextCycle = CurrCycle;
2407   switch (SchedModel->getMicroOpBufferSize()) {
2408   case 0:
2409     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2410     break;
2411   case 1:
2412     if (ReadyCycle > NextCycle) {
2413       NextCycle = ReadyCycle;
2414       LLVM_DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2415     }
2416     break;
2417   default:
2418     // We don't currently model the OOO reorder buffer, so consider all
2419     // scheduled MOps to be "retired". We do loosely model in-order resource
2420     // latency. If this instruction uses an in-order resource, account for any
2421     // likely stall cycles.
2422     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2423       NextCycle = ReadyCycle;
2424     break;
2425   }
2426   RetiredMOps += IncMOps;
2427 
2428   // Update resource counts and critical resource.
2429   if (SchedModel->hasInstrSchedModel()) {
2430     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2431     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2432     Rem->RemIssueCount -= DecRemIssue;
2433     if (ZoneCritResIdx) {
2434       // Scale scheduled micro-ops for comparing with the critical resource.
2435       unsigned ScaledMOps =
2436         RetiredMOps * SchedModel->getMicroOpFactor();
2437 
2438       // If scaled micro-ops are now more than the previous critical resource by
2439       // a full cycle, then micro-ops issue becomes critical.
2440       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2441           >= (int)SchedModel->getLatencyFactor()) {
2442         ZoneCritResIdx = 0;
2443         LLVM_DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2444                           << ScaledMOps / SchedModel->getLatencyFactor()
2445                           << "c\n");
2446       }
2447     }
2448     for (TargetSchedModel::ProcResIter
2449            PI = SchedModel->getWriteProcResBegin(SC),
2450            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2451       unsigned RCycle =
2452         countResource(SC, PI->ProcResourceIdx, PI->Cycles, NextCycle);
2453       if (RCycle > NextCycle)
2454         NextCycle = RCycle;
2455     }
2456     if (SU->hasReservedResource) {
2457       // For reserved resources, record the highest cycle using the resource.
2458       // For top-down scheduling, this is the cycle in which we schedule this
2459       // instruction plus the number of cycles the operations reserves the
2460       // resource. For bottom-up is it simply the instruction's cycle.
2461       for (TargetSchedModel::ProcResIter
2462              PI = SchedModel->getWriteProcResBegin(SC),
2463              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2464         unsigned PIdx = PI->ProcResourceIdx;
2465         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2466           unsigned ReservedUntil, InstanceIdx;
2467           std::tie(ReservedUntil, InstanceIdx) =
2468               getNextResourceCycle(SC, PIdx, 0);
2469           if (isTop()) {
2470             ReservedCycles[InstanceIdx] =
2471                 std::max(ReservedUntil, NextCycle + PI->Cycles);
2472           } else
2473             ReservedCycles[InstanceIdx] = NextCycle;
2474         }
2475       }
2476     }
2477   }
2478   // Update ExpectedLatency and DependentLatency.
2479   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2480   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2481   if (SU->getDepth() > TopLatency) {
2482     TopLatency = SU->getDepth();
2483     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " TopLatency SU("
2484                       << SU->NodeNum << ") " << TopLatency << "c\n");
2485   }
2486   if (SU->getHeight() > BotLatency) {
2487     BotLatency = SU->getHeight();
2488     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " BotLatency SU("
2489                       << SU->NodeNum << ") " << BotLatency << "c\n");
2490   }
2491   // If we stall for any reason, bump the cycle.
2492   if (NextCycle > CurrCycle)
2493     bumpCycle(NextCycle);
2494   else
2495     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2496     // resource limited. If a stall occurred, bumpCycle does this.
2497     IsResourceLimited =
2498         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2499                            getScheduledLatency(), true);
2500 
2501   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2502   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2503   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2504   // bump the cycle to avoid uselessly checking everything in the readyQ.
2505   CurrMOps += IncMOps;
2506 
2507   // Bump the cycle count for issue group constraints.
2508   // This must be done after NextCycle has been adjust for all other stalls.
2509   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2510   // currCycle to X.
2511   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2512       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2513     LLVM_DEBUG(dbgs() << "  Bump cycle to " << (isTop() ? "end" : "begin")
2514                       << " group\n");
2515     bumpCycle(++NextCycle);
2516   }
2517 
2518   while (CurrMOps >= SchedModel->getIssueWidth()) {
2519     LLVM_DEBUG(dbgs() << "  *** Max MOps " << CurrMOps << " at cycle "
2520                       << CurrCycle << '\n');
2521     bumpCycle(++NextCycle);
2522   }
2523   LLVM_DEBUG(dumpScheduledState());
2524 }
2525 
2526 /// Release pending ready nodes in to the available queue. This makes them
2527 /// visible to heuristics.
2528 void SchedBoundary::releasePending() {
2529   // If the available queue is empty, it is safe to reset MinReadyCycle.
2530   if (Available.empty())
2531     MinReadyCycle = std::numeric_limits<unsigned>::max();
2532 
2533   // Check to see if any of the pending instructions are ready to issue.  If
2534   // so, add them to the available queue.
2535   for (unsigned I = 0, E = Pending.size(); I < E; ++I) {
2536     SUnit *SU = *(Pending.begin() + I);
2537     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2538 
2539     if (ReadyCycle < MinReadyCycle)
2540       MinReadyCycle = ReadyCycle;
2541 
2542     if (Available.size() >= ReadyListLimit)
2543       break;
2544 
2545     releaseNode(SU, ReadyCycle, true, I);
2546     if (E != Pending.size()) {
2547       --I;
2548       --E;
2549     }
2550   }
2551   CheckPending = false;
2552 }
2553 
2554 /// Remove SU from the ready set for this boundary.
2555 void SchedBoundary::removeReady(SUnit *SU) {
2556   if (Available.isInQueue(SU))
2557     Available.remove(Available.find(SU));
2558   else {
2559     assert(Pending.isInQueue(SU) && "bad ready count");
2560     Pending.remove(Pending.find(SU));
2561   }
2562 }
2563 
2564 /// If this queue only has one ready candidate, return it. As a side effect,
2565 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2566 /// one node is ready. If multiple instructions are ready, return NULL.
2567 SUnit *SchedBoundary::pickOnlyChoice() {
2568   if (CheckPending)
2569     releasePending();
2570 
2571   // Defer any ready instrs that now have a hazard.
2572   for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2573     if (checkHazard(*I)) {
2574       Pending.push(*I);
2575       I = Available.remove(I);
2576       continue;
2577     }
2578     ++I;
2579   }
2580   for (unsigned i = 0; Available.empty(); ++i) {
2581 //  FIXME: Re-enable assert once PR20057 is resolved.
2582 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2583 //           "permanent hazard");
2584     (void)i;
2585     bumpCycle(CurrCycle + 1);
2586     releasePending();
2587   }
2588 
2589   LLVM_DEBUG(Pending.dump());
2590   LLVM_DEBUG(Available.dump());
2591 
2592   if (Available.size() == 1)
2593     return *Available.begin();
2594   return nullptr;
2595 }
2596 
2597 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2598 
2599 /// Dump the content of the \ref ReservedCycles vector for the
2600 /// resources that are used in the basic block.
2601 ///
2602 LLVM_DUMP_METHOD void SchedBoundary::dumpReservedCycles() const {
2603   if (!SchedModel->hasInstrSchedModel())
2604     return;
2605 
2606   unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
2607   unsigned StartIdx = 0;
2608 
2609   for (unsigned ResIdx = 0; ResIdx < ResourceCount; ++ResIdx) {
2610     const unsigned NumUnits = SchedModel->getProcResource(ResIdx)->NumUnits;
2611     std::string ResName = SchedModel->getResourceName(ResIdx);
2612     for (unsigned UnitIdx = 0; UnitIdx < NumUnits; ++UnitIdx) {
2613       dbgs() << ResName << "(" << UnitIdx
2614              << ") = " << ReservedCycles[StartIdx + UnitIdx] << "\n";
2615     }
2616     StartIdx += NumUnits;
2617   }
2618 }
2619 
2620 // This is useful information to dump after bumpNode.
2621 // Note that the Queue contents are more useful before pickNodeFromQueue.
2622 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2623   unsigned ResFactor;
2624   unsigned ResCount;
2625   if (ZoneCritResIdx) {
2626     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2627     ResCount = getResourceCount(ZoneCritResIdx);
2628   } else {
2629     ResFactor = SchedModel->getMicroOpFactor();
2630     ResCount = RetiredMOps * ResFactor;
2631   }
2632   unsigned LFactor = SchedModel->getLatencyFactor();
2633   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2634          << "  Retired: " << RetiredMOps;
2635   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2636   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2637          << ResCount / ResFactor << " "
2638          << SchedModel->getResourceName(ZoneCritResIdx)
2639          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2640          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2641          << " limited.\n";
2642   if (MISchedDumpReservedCycles)
2643     dumpReservedCycles();
2644 }
2645 #endif
2646 
2647 //===----------------------------------------------------------------------===//
2648 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2649 //===----------------------------------------------------------------------===//
2650 
2651 void GenericSchedulerBase::SchedCandidate::
2652 initResourceDelta(const ScheduleDAGMI *DAG,
2653                   const TargetSchedModel *SchedModel) {
2654   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2655     return;
2656 
2657   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2658   for (TargetSchedModel::ProcResIter
2659          PI = SchedModel->getWriteProcResBegin(SC),
2660          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2661     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2662       ResDelta.CritResources += PI->Cycles;
2663     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2664       ResDelta.DemandedResources += PI->Cycles;
2665   }
2666 }
2667 
2668 /// Compute remaining latency. We need this both to determine whether the
2669 /// overall schedule has become latency-limited and whether the instructions
2670 /// outside this zone are resource or latency limited.
2671 ///
2672 /// The "dependent" latency is updated incrementally during scheduling as the
2673 /// max height/depth of scheduled nodes minus the cycles since it was
2674 /// scheduled:
2675 ///   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2676 ///
2677 /// The "independent" latency is the max ready queue depth:
2678 ///   ILat = max N.depth for N in Available|Pending
2679 ///
2680 /// RemainingLatency is the greater of independent and dependent latency.
2681 ///
2682 /// These computations are expensive, especially in DAGs with many edges, so
2683 /// only do them if necessary.
2684 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2685   unsigned RemLatency = CurrZone.getDependentLatency();
2686   RemLatency = std::max(RemLatency,
2687                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2688   RemLatency = std::max(RemLatency,
2689                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2690   return RemLatency;
2691 }
2692 
2693 /// Returns true if the current cycle plus remaning latency is greater than
2694 /// the critical path in the scheduling region.
2695 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2696                                                SchedBoundary &CurrZone,
2697                                                bool ComputeRemLatency,
2698                                                unsigned &RemLatency) const {
2699   // The current cycle is already greater than the critical path, so we are
2700   // already latency limited and don't need to compute the remaining latency.
2701   if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2702     return true;
2703 
2704   // If we haven't scheduled anything yet, then we aren't latency limited.
2705   if (CurrZone.getCurrCycle() == 0)
2706     return false;
2707 
2708   if (ComputeRemLatency)
2709     RemLatency = computeRemLatency(CurrZone);
2710 
2711   return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2712 }
2713 
2714 /// Set the CandPolicy given a scheduling zone given the current resources and
2715 /// latencies inside and outside the zone.
2716 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2717                                      SchedBoundary &CurrZone,
2718                                      SchedBoundary *OtherZone) {
2719   // Apply preemptive heuristics based on the total latency and resources
2720   // inside and outside this zone. Potential stalls should be considered before
2721   // following this policy.
2722 
2723   // Compute the critical resource outside the zone.
2724   unsigned OtherCritIdx = 0;
2725   unsigned OtherCount =
2726     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2727 
2728   bool OtherResLimited = false;
2729   unsigned RemLatency = 0;
2730   bool RemLatencyComputed = false;
2731   if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
2732     RemLatency = computeRemLatency(CurrZone);
2733     RemLatencyComputed = true;
2734     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2735                                          OtherCount, RemLatency, false);
2736   }
2737 
2738   // Schedule aggressively for latency in PostRA mode. We don't check for
2739   // acyclic latency during PostRA, and highly out-of-order processors will
2740   // skip PostRA scheduling.
2741   if (!OtherResLimited &&
2742       (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
2743                                        RemLatency))) {
2744     Policy.ReduceLatency |= true;
2745     LLVM_DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2746                       << " RemainingLatency " << RemLatency << " + "
2747                       << CurrZone.getCurrCycle() << "c > CritPath "
2748                       << Rem.CriticalPath << "\n");
2749   }
2750   // If the same resource is limiting inside and outside the zone, do nothing.
2751   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2752     return;
2753 
2754   LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
2755     dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2756            << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
2757   } if (OtherResLimited) dbgs()
2758                  << "  RemainingLimit: "
2759                  << SchedModel->getResourceName(OtherCritIdx) << "\n";
2760              if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
2761              << "  Latency limited both directions.\n");
2762 
2763   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2764     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2765 
2766   if (OtherResLimited)
2767     Policy.DemandResIdx = OtherCritIdx;
2768 }
2769 
2770 #ifndef NDEBUG
2771 const char *GenericSchedulerBase::getReasonStr(
2772   GenericSchedulerBase::CandReason Reason) {
2773   switch (Reason) {
2774   case NoCand:         return "NOCAND    ";
2775   case Only1:          return "ONLY1     ";
2776   case PhysReg:        return "PHYS-REG  ";
2777   case RegExcess:      return "REG-EXCESS";
2778   case RegCritical:    return "REG-CRIT  ";
2779   case Stall:          return "STALL     ";
2780   case Cluster:        return "CLUSTER   ";
2781   case Weak:           return "WEAK      ";
2782   case RegMax:         return "REG-MAX   ";
2783   case ResourceReduce: return "RES-REDUCE";
2784   case ResourceDemand: return "RES-DEMAND";
2785   case TopDepthReduce: return "TOP-DEPTH ";
2786   case TopPathReduce:  return "TOP-PATH  ";
2787   case BotHeightReduce:return "BOT-HEIGHT";
2788   case BotPathReduce:  return "BOT-PATH  ";
2789   case NextDefUse:     return "DEF-USE   ";
2790   case NodeOrder:      return "ORDER     ";
2791   };
2792   llvm_unreachable("Unknown reason!");
2793 }
2794 
2795 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2796   PressureChange P;
2797   unsigned ResIdx = 0;
2798   unsigned Latency = 0;
2799   switch (Cand.Reason) {
2800   default:
2801     break;
2802   case RegExcess:
2803     P = Cand.RPDelta.Excess;
2804     break;
2805   case RegCritical:
2806     P = Cand.RPDelta.CriticalMax;
2807     break;
2808   case RegMax:
2809     P = Cand.RPDelta.CurrentMax;
2810     break;
2811   case ResourceReduce:
2812     ResIdx = Cand.Policy.ReduceResIdx;
2813     break;
2814   case ResourceDemand:
2815     ResIdx = Cand.Policy.DemandResIdx;
2816     break;
2817   case TopDepthReduce:
2818     Latency = Cand.SU->getDepth();
2819     break;
2820   case TopPathReduce:
2821     Latency = Cand.SU->getHeight();
2822     break;
2823   case BotHeightReduce:
2824     Latency = Cand.SU->getHeight();
2825     break;
2826   case BotPathReduce:
2827     Latency = Cand.SU->getDepth();
2828     break;
2829   }
2830   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2831   if (P.isValid())
2832     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2833            << ":" << P.getUnitInc() << " ";
2834   else
2835     dbgs() << "      ";
2836   if (ResIdx)
2837     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2838   else
2839     dbgs() << "         ";
2840   if (Latency)
2841     dbgs() << " " << Latency << " cycles ";
2842   else
2843     dbgs() << "          ";
2844   dbgs() << '\n';
2845 }
2846 #endif
2847 
2848 namespace llvm {
2849 /// Return true if this heuristic determines order.
2850 /// TODO: Consider refactor return type of these functions as integer or enum,
2851 /// as we may need to differentiate whether TryCand is better than Cand.
2852 bool tryLess(int TryVal, int CandVal,
2853              GenericSchedulerBase::SchedCandidate &TryCand,
2854              GenericSchedulerBase::SchedCandidate &Cand,
2855              GenericSchedulerBase::CandReason Reason) {
2856   if (TryVal < CandVal) {
2857     TryCand.Reason = Reason;
2858     return true;
2859   }
2860   if (TryVal > CandVal) {
2861     if (Cand.Reason > Reason)
2862       Cand.Reason = Reason;
2863     return true;
2864   }
2865   return false;
2866 }
2867 
2868 bool tryGreater(int TryVal, int CandVal,
2869                 GenericSchedulerBase::SchedCandidate &TryCand,
2870                 GenericSchedulerBase::SchedCandidate &Cand,
2871                 GenericSchedulerBase::CandReason Reason) {
2872   if (TryVal > CandVal) {
2873     TryCand.Reason = Reason;
2874     return true;
2875   }
2876   if (TryVal < CandVal) {
2877     if (Cand.Reason > Reason)
2878       Cand.Reason = Reason;
2879     return true;
2880   }
2881   return false;
2882 }
2883 
2884 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2885                 GenericSchedulerBase::SchedCandidate &Cand,
2886                 SchedBoundary &Zone) {
2887   if (Zone.isTop()) {
2888     // Prefer the candidate with the lesser depth, but only if one of them has
2889     // depth greater than the total latency scheduled so far, otherwise either
2890     // of them could be scheduled now with no stall.
2891     if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) >
2892         Zone.getScheduledLatency()) {
2893       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2894                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2895         return true;
2896     }
2897     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2898                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2899       return true;
2900   } else {
2901     // Prefer the candidate with the lesser height, but only if one of them has
2902     // height greater than the total latency scheduled so far, otherwise either
2903     // of them could be scheduled now with no stall.
2904     if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) >
2905         Zone.getScheduledLatency()) {
2906       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2907                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2908         return true;
2909     }
2910     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2911                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2912       return true;
2913   }
2914   return false;
2915 }
2916 } // end namespace llvm
2917 
2918 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2919   LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2920                     << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2921 }
2922 
2923 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2924   tracePick(Cand.Reason, Cand.AtTop);
2925 }
2926 
2927 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2928   assert(dag->hasVRegLiveness() &&
2929          "(PreRA)GenericScheduler needs vreg liveness");
2930   DAG = static_cast<ScheduleDAGMILive*>(dag);
2931   SchedModel = DAG->getSchedModel();
2932   TRI = DAG->TRI;
2933 
2934   if (RegionPolicy.ComputeDFSResult)
2935     DAG->computeDFSResult();
2936 
2937   Rem.init(DAG, SchedModel);
2938   Top.init(DAG, SchedModel, &Rem);
2939   Bot.init(DAG, SchedModel, &Rem);
2940 
2941   // Initialize resource counts.
2942 
2943   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2944   // are disabled, then these HazardRecs will be disabled.
2945   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2946   if (!Top.HazardRec) {
2947     Top.HazardRec =
2948         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2949             Itin, DAG);
2950   }
2951   if (!Bot.HazardRec) {
2952     Bot.HazardRec =
2953         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2954             Itin, DAG);
2955   }
2956   TopCand.SU = nullptr;
2957   BotCand.SU = nullptr;
2958 }
2959 
2960 /// Initialize the per-region scheduling policy.
2961 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2962                                   MachineBasicBlock::iterator End,
2963                                   unsigned NumRegionInstrs) {
2964   const MachineFunction &MF = *Begin->getMF();
2965   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2966 
2967   // Avoid setting up the register pressure tracker for small regions to save
2968   // compile time. As a rough heuristic, only track pressure when the number of
2969   // schedulable instructions exceeds half the integer register file.
2970   RegionPolicy.ShouldTrackPressure = true;
2971   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2972     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2973     if (TLI->isTypeLegal(LegalIntVT)) {
2974       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2975         TLI->getRegClassFor(LegalIntVT));
2976       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2977     }
2978   }
2979 
2980   // For generic targets, we default to bottom-up, because it's simpler and more
2981   // compile-time optimizations have been implemented in that direction.
2982   RegionPolicy.OnlyBottomUp = true;
2983 
2984   // Allow the subtarget to override default policy.
2985   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2986 
2987   // After subtarget overrides, apply command line options.
2988   if (!EnableRegPressure) {
2989     RegionPolicy.ShouldTrackPressure = false;
2990     RegionPolicy.ShouldTrackLaneMasks = false;
2991   }
2992 
2993   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2994   // e.g. -misched-bottomup=false allows scheduling in both directions.
2995   assert((!ForceTopDown || !ForceBottomUp) &&
2996          "-misched-topdown incompatible with -misched-bottomup");
2997   if (ForceBottomUp.getNumOccurrences() > 0) {
2998     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2999     if (RegionPolicy.OnlyBottomUp)
3000       RegionPolicy.OnlyTopDown = false;
3001   }
3002   if (ForceTopDown.getNumOccurrences() > 0) {
3003     RegionPolicy.OnlyTopDown = ForceTopDown;
3004     if (RegionPolicy.OnlyTopDown)
3005       RegionPolicy.OnlyBottomUp = false;
3006   }
3007 }
3008 
3009 void GenericScheduler::dumpPolicy() const {
3010   // Cannot completely remove virtual function even in release mode.
3011 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3012   dbgs() << "GenericScheduler RegionPolicy: "
3013          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
3014          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
3015          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
3016          << "\n";
3017 #endif
3018 }
3019 
3020 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
3021 /// critical path by more cycles than it takes to drain the instruction buffer.
3022 /// We estimate an upper bounds on in-flight instructions as:
3023 ///
3024 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
3025 /// InFlightIterations = AcyclicPath / CyclesPerIteration
3026 /// InFlightResources = InFlightIterations * LoopResources
3027 ///
3028 /// TODO: Check execution resources in addition to IssueCount.
3029 void GenericScheduler::checkAcyclicLatency() {
3030   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
3031     return;
3032 
3033   // Scaled number of cycles per loop iteration.
3034   unsigned IterCount =
3035     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
3036              Rem.RemIssueCount);
3037   // Scaled acyclic critical path.
3038   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
3039   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
3040   unsigned InFlightCount =
3041     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
3042   unsigned BufferLimit =
3043     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
3044 
3045   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
3046 
3047   LLVM_DEBUG(
3048       dbgs() << "IssueCycles="
3049              << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
3050              << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
3051              << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
3052              << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
3053              << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
3054       if (Rem.IsAcyclicLatencyLimited) dbgs() << "  ACYCLIC LATENCY LIMIT\n");
3055 }
3056 
3057 void GenericScheduler::registerRoots() {
3058   Rem.CriticalPath = DAG->ExitSU.getDepth();
3059 
3060   // Some roots may not feed into ExitSU. Check all of them in case.
3061   for (const SUnit *SU : Bot.Available) {
3062     if (SU->getDepth() > Rem.CriticalPath)
3063       Rem.CriticalPath = SU->getDepth();
3064   }
3065   LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
3066   if (DumpCriticalPathLength) {
3067     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
3068   }
3069 
3070   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
3071     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
3072     checkAcyclicLatency();
3073   }
3074 }
3075 
3076 namespace llvm {
3077 bool tryPressure(const PressureChange &TryP,
3078                  const PressureChange &CandP,
3079                  GenericSchedulerBase::SchedCandidate &TryCand,
3080                  GenericSchedulerBase::SchedCandidate &Cand,
3081                  GenericSchedulerBase::CandReason Reason,
3082                  const TargetRegisterInfo *TRI,
3083                  const MachineFunction &MF) {
3084   // If one candidate decreases and the other increases, go with it.
3085   // Invalid candidates have UnitInc==0.
3086   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
3087                  Reason)) {
3088     return true;
3089   }
3090   // Do not compare the magnitude of pressure changes between top and bottom
3091   // boundary.
3092   if (Cand.AtTop != TryCand.AtTop)
3093     return false;
3094 
3095   // If both candidates affect the same set in the same boundary, go with the
3096   // smallest increase.
3097   unsigned TryPSet = TryP.getPSetOrMax();
3098   unsigned CandPSet = CandP.getPSetOrMax();
3099   if (TryPSet == CandPSet) {
3100     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
3101                    Reason);
3102   }
3103 
3104   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
3105                                  std::numeric_limits<int>::max();
3106 
3107   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
3108                                    std::numeric_limits<int>::max();
3109 
3110   // If the candidates are decreasing pressure, reverse priority.
3111   if (TryP.getUnitInc() < 0)
3112     std::swap(TryRank, CandRank);
3113   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
3114 }
3115 
3116 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
3117   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
3118 }
3119 
3120 /// Minimize physical register live ranges. Regalloc wants them adjacent to
3121 /// their physreg def/use.
3122 ///
3123 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
3124 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
3125 /// with the operation that produces or consumes the physreg. We'll do this when
3126 /// regalloc has support for parallel copies.
3127 int biasPhysReg(const SUnit *SU, bool isTop) {
3128   const MachineInstr *MI = SU->getInstr();
3129 
3130   if (MI->isCopy()) {
3131     unsigned ScheduledOper = isTop ? 1 : 0;
3132     unsigned UnscheduledOper = isTop ? 0 : 1;
3133     // If we have already scheduled the physreg produce/consumer, immediately
3134     // schedule the copy.
3135     if (MI->getOperand(ScheduledOper).getReg().isPhysical())
3136       return 1;
3137     // If the physreg is at the boundary, defer it. Otherwise schedule it
3138     // immediately to free the dependent. We can hoist the copy later.
3139     bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
3140     if (MI->getOperand(UnscheduledOper).getReg().isPhysical())
3141       return AtBoundary ? -1 : 1;
3142   }
3143 
3144   if (MI->isMoveImmediate()) {
3145     // If we have a move immediate and all successors have been assigned, bias
3146     // towards scheduling this later. Make sure all register defs are to
3147     // physical registers.
3148     bool DoBias = true;
3149     for (const MachineOperand &Op : MI->defs()) {
3150       if (Op.isReg() && !Op.getReg().isPhysical()) {
3151         DoBias = false;
3152         break;
3153       }
3154     }
3155 
3156     if (DoBias)
3157       return isTop ? -1 : 1;
3158   }
3159 
3160   return 0;
3161 }
3162 } // end namespace llvm
3163 
3164 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
3165                                      bool AtTop,
3166                                      const RegPressureTracker &RPTracker,
3167                                      RegPressureTracker &TempTracker) {
3168   Cand.SU = SU;
3169   Cand.AtTop = AtTop;
3170   if (DAG->isTrackingPressure()) {
3171     if (AtTop) {
3172       TempTracker.getMaxDownwardPressureDelta(
3173         Cand.SU->getInstr(),
3174         Cand.RPDelta,
3175         DAG->getRegionCriticalPSets(),
3176         DAG->getRegPressure().MaxSetPressure);
3177     } else {
3178       if (VerifyScheduling) {
3179         TempTracker.getMaxUpwardPressureDelta(
3180           Cand.SU->getInstr(),
3181           &DAG->getPressureDiff(Cand.SU),
3182           Cand.RPDelta,
3183           DAG->getRegionCriticalPSets(),
3184           DAG->getRegPressure().MaxSetPressure);
3185       } else {
3186         RPTracker.getUpwardPressureDelta(
3187           Cand.SU->getInstr(),
3188           DAG->getPressureDiff(Cand.SU),
3189           Cand.RPDelta,
3190           DAG->getRegionCriticalPSets(),
3191           DAG->getRegPressure().MaxSetPressure);
3192       }
3193     }
3194   }
3195   LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
3196              << "  Try  SU(" << Cand.SU->NodeNum << ") "
3197              << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
3198              << Cand.RPDelta.Excess.getUnitInc() << "\n");
3199 }
3200 
3201 /// Apply a set of heuristics to a new candidate. Heuristics are currently
3202 /// hierarchical. This may be more efficient than a graduated cost model because
3203 /// we don't need to evaluate all aspects of the model for each node in the
3204 /// queue. But it's really done to make the heuristics easier to debug and
3205 /// statistically analyze.
3206 ///
3207 /// \param Cand provides the policy and current best candidate.
3208 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3209 /// \param Zone describes the scheduled zone that we are extending, or nullptr
3210 ///             if Cand is from a different zone than TryCand.
3211 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
3212 bool GenericScheduler::tryCandidate(SchedCandidate &Cand,
3213                                     SchedCandidate &TryCand,
3214                                     SchedBoundary *Zone) const {
3215   // Initialize the candidate if needed.
3216   if (!Cand.isValid()) {
3217     TryCand.Reason = NodeOrder;
3218     return true;
3219   }
3220 
3221   // Bias PhysReg Defs and copies to their uses and defined respectively.
3222   if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
3223                  biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
3224     return TryCand.Reason != NoCand;
3225 
3226   // Avoid exceeding the target's limit.
3227   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
3228                                                Cand.RPDelta.Excess,
3229                                                TryCand, Cand, RegExcess, TRI,
3230                                                DAG->MF))
3231     return TryCand.Reason != NoCand;
3232 
3233   // Avoid increasing the max critical pressure in the scheduled region.
3234   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
3235                                                Cand.RPDelta.CriticalMax,
3236                                                TryCand, Cand, RegCritical, TRI,
3237                                                DAG->MF))
3238     return TryCand.Reason != NoCand;
3239 
3240   // We only compare a subset of features when comparing nodes between
3241   // Top and Bottom boundary. Some properties are simply incomparable, in many
3242   // other instances we should only override the other boundary if something
3243   // is a clear good pick on one boundary. Skip heuristics that are more
3244   // "tie-breaking" in nature.
3245   bool SameBoundary = Zone != nullptr;
3246   if (SameBoundary) {
3247     // For loops that are acyclic path limited, aggressively schedule for
3248     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
3249     // heuristics to take precedence.
3250     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
3251         tryLatency(TryCand, Cand, *Zone))
3252       return TryCand.Reason != NoCand;
3253 
3254     // Prioritize instructions that read unbuffered resources by stall cycles.
3255     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
3256                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3257       return TryCand.Reason != NoCand;
3258   }
3259 
3260   // Keep clustered nodes together to encourage downstream peephole
3261   // optimizations which may reduce resource requirements.
3262   //
3263   // This is a best effort to set things up for a post-RA pass. Optimizations
3264   // like generating loads of multiple registers should ideally be done within
3265   // the scheduler pass by combining the loads during DAG postprocessing.
3266   const SUnit *CandNextClusterSU =
3267     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3268   const SUnit *TryCandNextClusterSU =
3269     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3270   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3271                  Cand.SU == CandNextClusterSU,
3272                  TryCand, Cand, Cluster))
3273     return TryCand.Reason != NoCand;
3274 
3275   if (SameBoundary) {
3276     // Weak edges are for clustering and other constraints.
3277     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3278                 getWeakLeft(Cand.SU, Cand.AtTop),
3279                 TryCand, Cand, Weak))
3280       return TryCand.Reason != NoCand;
3281   }
3282 
3283   // Avoid increasing the max pressure of the entire region.
3284   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3285                                                Cand.RPDelta.CurrentMax,
3286                                                TryCand, Cand, RegMax, TRI,
3287                                                DAG->MF))
3288     return TryCand.Reason != NoCand;
3289 
3290   if (SameBoundary) {
3291     // Avoid critical resource consumption and balance the schedule.
3292     TryCand.initResourceDelta(DAG, SchedModel);
3293     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3294                 TryCand, Cand, ResourceReduce))
3295       return TryCand.Reason != NoCand;
3296     if (tryGreater(TryCand.ResDelta.DemandedResources,
3297                    Cand.ResDelta.DemandedResources,
3298                    TryCand, Cand, ResourceDemand))
3299       return TryCand.Reason != NoCand;
3300 
3301     // Avoid serializing long latency dependence chains.
3302     // For acyclic path limited loops, latency was already checked above.
3303     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3304         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3305       return TryCand.Reason != NoCand;
3306 
3307     // Fall through to original instruction order.
3308     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3309         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3310       TryCand.Reason = NodeOrder;
3311       return true;
3312     }
3313   }
3314 
3315   return false;
3316 }
3317 
3318 /// Pick the best candidate from the queue.
3319 ///
3320 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3321 /// DAG building. To adjust for the current scheduling location we need to
3322 /// maintain the number of vreg uses remaining to be top-scheduled.
3323 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3324                                          const CandPolicy &ZonePolicy,
3325                                          const RegPressureTracker &RPTracker,
3326                                          SchedCandidate &Cand) {
3327   // getMaxPressureDelta temporarily modifies the tracker.
3328   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3329 
3330   ReadyQueue &Q = Zone.Available;
3331   for (SUnit *SU : Q) {
3332 
3333     SchedCandidate TryCand(ZonePolicy);
3334     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3335     // Pass SchedBoundary only when comparing nodes from the same boundary.
3336     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3337     if (tryCandidate(Cand, TryCand, ZoneArg)) {
3338       // Initialize resource delta if needed in case future heuristics query it.
3339       if (TryCand.ResDelta == SchedResourceDelta())
3340         TryCand.initResourceDelta(DAG, SchedModel);
3341       Cand.setBest(TryCand);
3342       LLVM_DEBUG(traceCandidate(Cand));
3343     }
3344   }
3345 }
3346 
3347 /// Pick the best candidate node from either the top or bottom queue.
3348 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3349   // Schedule as far as possible in the direction of no choice. This is most
3350   // efficient, but also provides the best heuristics for CriticalPSets.
3351   if (SUnit *SU = Bot.pickOnlyChoice()) {
3352     IsTopNode = false;
3353     tracePick(Only1, false);
3354     return SU;
3355   }
3356   if (SUnit *SU = Top.pickOnlyChoice()) {
3357     IsTopNode = true;
3358     tracePick(Only1, true);
3359     return SU;
3360   }
3361   // Set the bottom-up policy based on the state of the current bottom zone and
3362   // the instructions outside the zone, including the top zone.
3363   CandPolicy BotPolicy;
3364   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3365   // Set the top-down policy based on the state of the current top zone and
3366   // the instructions outside the zone, including the bottom zone.
3367   CandPolicy TopPolicy;
3368   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3369 
3370   // See if BotCand is still valid (because we previously scheduled from Top).
3371   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3372   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3373       BotCand.Policy != BotPolicy) {
3374     BotCand.reset(CandPolicy());
3375     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3376     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3377   } else {
3378     LLVM_DEBUG(traceCandidate(BotCand));
3379 #ifndef NDEBUG
3380     if (VerifyScheduling) {
3381       SchedCandidate TCand;
3382       TCand.reset(CandPolicy());
3383       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3384       assert(TCand.SU == BotCand.SU &&
3385              "Last pick result should correspond to re-picking right now");
3386     }
3387 #endif
3388   }
3389 
3390   // Check if the top Q has a better candidate.
3391   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3392   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3393       TopCand.Policy != TopPolicy) {
3394     TopCand.reset(CandPolicy());
3395     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3396     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3397   } else {
3398     LLVM_DEBUG(traceCandidate(TopCand));
3399 #ifndef NDEBUG
3400     if (VerifyScheduling) {
3401       SchedCandidate TCand;
3402       TCand.reset(CandPolicy());
3403       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3404       assert(TCand.SU == TopCand.SU &&
3405            "Last pick result should correspond to re-picking right now");
3406     }
3407 #endif
3408   }
3409 
3410   // Pick best from BotCand and TopCand.
3411   assert(BotCand.isValid());
3412   assert(TopCand.isValid());
3413   SchedCandidate Cand = BotCand;
3414   TopCand.Reason = NoCand;
3415   if (tryCandidate(Cand, TopCand, nullptr)) {
3416     Cand.setBest(TopCand);
3417     LLVM_DEBUG(traceCandidate(Cand));
3418   }
3419 
3420   IsTopNode = Cand.AtTop;
3421   tracePick(Cand);
3422   return Cand.SU;
3423 }
3424 
3425 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3426 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3427   if (DAG->top() == DAG->bottom()) {
3428     assert(Top.Available.empty() && Top.Pending.empty() &&
3429            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3430     return nullptr;
3431   }
3432   SUnit *SU;
3433   do {
3434     if (RegionPolicy.OnlyTopDown) {
3435       SU = Top.pickOnlyChoice();
3436       if (!SU) {
3437         CandPolicy NoPolicy;
3438         TopCand.reset(NoPolicy);
3439         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3440         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3441         tracePick(TopCand);
3442         SU = TopCand.SU;
3443       }
3444       IsTopNode = true;
3445     } else if (RegionPolicy.OnlyBottomUp) {
3446       SU = Bot.pickOnlyChoice();
3447       if (!SU) {
3448         CandPolicy NoPolicy;
3449         BotCand.reset(NoPolicy);
3450         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3451         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3452         tracePick(BotCand);
3453         SU = BotCand.SU;
3454       }
3455       IsTopNode = false;
3456     } else {
3457       SU = pickNodeBidirectional(IsTopNode);
3458     }
3459   } while (SU->isScheduled);
3460 
3461   if (SU->isTopReady())
3462     Top.removeReady(SU);
3463   if (SU->isBottomReady())
3464     Bot.removeReady(SU);
3465 
3466   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3467                     << *SU->getInstr());
3468   return SU;
3469 }
3470 
3471 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3472   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3473   if (!isTop)
3474     ++InsertPos;
3475   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3476 
3477   // Find already scheduled copies with a single physreg dependence and move
3478   // them just above the scheduled instruction.
3479   for (SDep &Dep : Deps) {
3480     if (Dep.getKind() != SDep::Data ||
3481         !Register::isPhysicalRegister(Dep.getReg()))
3482       continue;
3483     SUnit *DepSU = Dep.getSUnit();
3484     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3485       continue;
3486     MachineInstr *Copy = DepSU->getInstr();
3487     if (!Copy->isCopy() && !Copy->isMoveImmediate())
3488       continue;
3489     LLVM_DEBUG(dbgs() << "  Rescheduling physreg copy ";
3490                DAG->dumpNode(*Dep.getSUnit()));
3491     DAG->moveInstruction(Copy, InsertPos);
3492   }
3493 }
3494 
3495 /// Update the scheduler's state after scheduling a node. This is the same node
3496 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3497 /// update it's state based on the current cycle before MachineSchedStrategy
3498 /// does.
3499 ///
3500 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3501 /// them here. See comments in biasPhysReg.
3502 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3503   if (IsTopNode) {
3504     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3505     Top.bumpNode(SU);
3506     if (SU->hasPhysRegUses)
3507       reschedulePhysReg(SU, true);
3508   } else {
3509     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3510     Bot.bumpNode(SU);
3511     if (SU->hasPhysRegDefs)
3512       reschedulePhysReg(SU, false);
3513   }
3514 }
3515 
3516 /// Create the standard converging machine scheduler. This will be used as the
3517 /// default scheduler if the target does not set a default.
3518 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3519   ScheduleDAGMILive *DAG =
3520       new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C));
3521   // Register DAG post-processors.
3522   //
3523   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3524   // data and pass it to later mutations. Have a single mutation that gathers
3525   // the interesting nodes in one pass.
3526   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3527   return DAG;
3528 }
3529 
3530 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
3531   return createGenericSchedLive(C);
3532 }
3533 
3534 static MachineSchedRegistry
3535 GenericSchedRegistry("converge", "Standard converging scheduler.",
3536                      createConvergingSched);
3537 
3538 //===----------------------------------------------------------------------===//
3539 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3540 //===----------------------------------------------------------------------===//
3541 
3542 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3543   DAG = Dag;
3544   SchedModel = DAG->getSchedModel();
3545   TRI = DAG->TRI;
3546 
3547   Rem.init(DAG, SchedModel);
3548   Top.init(DAG, SchedModel, &Rem);
3549   BotRoots.clear();
3550 
3551   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3552   // or are disabled, then these HazardRecs will be disabled.
3553   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3554   if (!Top.HazardRec) {
3555     Top.HazardRec =
3556         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3557             Itin, DAG);
3558   }
3559 }
3560 
3561 void PostGenericScheduler::registerRoots() {
3562   Rem.CriticalPath = DAG->ExitSU.getDepth();
3563 
3564   // Some roots may not feed into ExitSU. Check all of them in case.
3565   for (const SUnit *SU : BotRoots) {
3566     if (SU->getDepth() > Rem.CriticalPath)
3567       Rem.CriticalPath = SU->getDepth();
3568   }
3569   LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3570   if (DumpCriticalPathLength) {
3571     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3572   }
3573 }
3574 
3575 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3576 ///
3577 /// \param Cand provides the policy and current best candidate.
3578 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3579 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
3580 bool PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3581                                         SchedCandidate &TryCand) {
3582   // Initialize the candidate if needed.
3583   if (!Cand.isValid()) {
3584     TryCand.Reason = NodeOrder;
3585     return true;
3586   }
3587 
3588   // Prioritize instructions that read unbuffered resources by stall cycles.
3589   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3590               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3591     return TryCand.Reason != NoCand;
3592 
3593   // Keep clustered nodes together.
3594   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3595                  Cand.SU == DAG->getNextClusterSucc(),
3596                  TryCand, Cand, Cluster))
3597     return TryCand.Reason != NoCand;
3598 
3599   // Avoid critical resource consumption and balance the schedule.
3600   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3601               TryCand, Cand, ResourceReduce))
3602     return TryCand.Reason != NoCand;
3603   if (tryGreater(TryCand.ResDelta.DemandedResources,
3604                  Cand.ResDelta.DemandedResources,
3605                  TryCand, Cand, ResourceDemand))
3606     return TryCand.Reason != NoCand;
3607 
3608   // Avoid serializing long latency dependence chains.
3609   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3610     return TryCand.Reason != NoCand;
3611   }
3612 
3613   // Fall through to original instruction order.
3614   if (TryCand.SU->NodeNum < Cand.SU->NodeNum) {
3615     TryCand.Reason = NodeOrder;
3616     return true;
3617   }
3618 
3619   return false;
3620 }
3621 
3622 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3623   ReadyQueue &Q = Top.Available;
3624   for (SUnit *SU : Q) {
3625     SchedCandidate TryCand(Cand.Policy);
3626     TryCand.SU = SU;
3627     TryCand.AtTop = true;
3628     TryCand.initResourceDelta(DAG, SchedModel);
3629     if (tryCandidate(Cand, TryCand)) {
3630       Cand.setBest(TryCand);
3631       LLVM_DEBUG(traceCandidate(Cand));
3632     }
3633   }
3634 }
3635 
3636 /// Pick the next node to schedule.
3637 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3638   if (DAG->top() == DAG->bottom()) {
3639     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3640     return nullptr;
3641   }
3642   SUnit *SU;
3643   do {
3644     SU = Top.pickOnlyChoice();
3645     if (SU) {
3646       tracePick(Only1, true);
3647     } else {
3648       CandPolicy NoPolicy;
3649       SchedCandidate TopCand(NoPolicy);
3650       // Set the top-down policy based on the state of the current top zone and
3651       // the instructions outside the zone, including the bottom zone.
3652       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3653       pickNodeFromQueue(TopCand);
3654       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3655       tracePick(TopCand);
3656       SU = TopCand.SU;
3657     }
3658   } while (SU->isScheduled);
3659 
3660   IsTopNode = true;
3661   Top.removeReady(SU);
3662 
3663   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3664                     << *SU->getInstr());
3665   return SU;
3666 }
3667 
3668 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3669 /// scheduled/remaining flags in the DAG nodes.
3670 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3671   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3672   Top.bumpNode(SU);
3673 }
3674 
3675 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3676   return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C),
3677                            /*RemoveKillFlags=*/true);
3678 }
3679 
3680 //===----------------------------------------------------------------------===//
3681 // ILP Scheduler. Currently for experimental analysis of heuristics.
3682 //===----------------------------------------------------------------------===//
3683 
3684 namespace {
3685 
3686 /// Order nodes by the ILP metric.
3687 struct ILPOrder {
3688   const SchedDFSResult *DFSResult = nullptr;
3689   const BitVector *ScheduledTrees = nullptr;
3690   bool MaximizeILP;
3691 
3692   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3693 
3694   /// Apply a less-than relation on node priority.
3695   ///
3696   /// (Return true if A comes after B in the Q.)
3697   bool operator()(const SUnit *A, const SUnit *B) const {
3698     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3699     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3700     if (SchedTreeA != SchedTreeB) {
3701       // Unscheduled trees have lower priority.
3702       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3703         return ScheduledTrees->test(SchedTreeB);
3704 
3705       // Trees with shallower connections have have lower priority.
3706       if (DFSResult->getSubtreeLevel(SchedTreeA)
3707           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3708         return DFSResult->getSubtreeLevel(SchedTreeA)
3709           < DFSResult->getSubtreeLevel(SchedTreeB);
3710       }
3711     }
3712     if (MaximizeILP)
3713       return DFSResult->getILP(A) < DFSResult->getILP(B);
3714     else
3715       return DFSResult->getILP(A) > DFSResult->getILP(B);
3716   }
3717 };
3718 
3719 /// Schedule based on the ILP metric.
3720 class ILPScheduler : public MachineSchedStrategy {
3721   ScheduleDAGMILive *DAG = nullptr;
3722   ILPOrder Cmp;
3723 
3724   std::vector<SUnit*> ReadyQ;
3725 
3726 public:
3727   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3728 
3729   void initialize(ScheduleDAGMI *dag) override {
3730     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3731     DAG = static_cast<ScheduleDAGMILive*>(dag);
3732     DAG->computeDFSResult();
3733     Cmp.DFSResult = DAG->getDFSResult();
3734     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3735     ReadyQ.clear();
3736   }
3737 
3738   void registerRoots() override {
3739     // Restore the heap in ReadyQ with the updated DFS results.
3740     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3741   }
3742 
3743   /// Implement MachineSchedStrategy interface.
3744   /// -----------------------------------------
3745 
3746   /// Callback to select the highest priority node from the ready Q.
3747   SUnit *pickNode(bool &IsTopNode) override {
3748     if (ReadyQ.empty()) return nullptr;
3749     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3750     SUnit *SU = ReadyQ.back();
3751     ReadyQ.pop_back();
3752     IsTopNode = false;
3753     LLVM_DEBUG(dbgs() << "Pick node "
3754                       << "SU(" << SU->NodeNum << ") "
3755                       << " ILP: " << DAG->getDFSResult()->getILP(SU)
3756                       << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
3757                       << " @"
3758                       << DAG->getDFSResult()->getSubtreeLevel(
3759                              DAG->getDFSResult()->getSubtreeID(SU))
3760                       << '\n'
3761                       << "Scheduling " << *SU->getInstr());
3762     return SU;
3763   }
3764 
3765   /// Scheduler callback to notify that a new subtree is scheduled.
3766   void scheduleTree(unsigned SubtreeID) override {
3767     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3768   }
3769 
3770   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3771   /// DFSResults, and resort the priority Q.
3772   void schedNode(SUnit *SU, bool IsTopNode) override {
3773     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3774   }
3775 
3776   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3777 
3778   void releaseBottomNode(SUnit *SU) override {
3779     ReadyQ.push_back(SU);
3780     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3781   }
3782 };
3783 
3784 } // end anonymous namespace
3785 
3786 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3787   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true));
3788 }
3789 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3790   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false));
3791 }
3792 
3793 static MachineSchedRegistry ILPMaxRegistry(
3794   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3795 static MachineSchedRegistry ILPMinRegistry(
3796   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3797 
3798 //===----------------------------------------------------------------------===//
3799 // Machine Instruction Shuffler for Correctness Testing
3800 //===----------------------------------------------------------------------===//
3801 
3802 #ifndef NDEBUG
3803 namespace {
3804 
3805 /// Apply a less-than relation on the node order, which corresponds to the
3806 /// instruction order prior to scheduling. IsReverse implements greater-than.
3807 template<bool IsReverse>
3808 struct SUnitOrder {
3809   bool operator()(SUnit *A, SUnit *B) const {
3810     if (IsReverse)
3811       return A->NodeNum > B->NodeNum;
3812     else
3813       return A->NodeNum < B->NodeNum;
3814   }
3815 };
3816 
3817 /// Reorder instructions as much as possible.
3818 class InstructionShuffler : public MachineSchedStrategy {
3819   bool IsAlternating;
3820   bool IsTopDown;
3821 
3822   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3823   // gives nodes with a higher number higher priority causing the latest
3824   // instructions to be scheduled first.
3825   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3826     TopQ;
3827 
3828   // When scheduling bottom-up, use greater-than as the queue priority.
3829   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3830     BottomQ;
3831 
3832 public:
3833   InstructionShuffler(bool alternate, bool topdown)
3834     : IsAlternating(alternate), IsTopDown(topdown) {}
3835 
3836   void initialize(ScheduleDAGMI*) override {
3837     TopQ.clear();
3838     BottomQ.clear();
3839   }
3840 
3841   /// Implement MachineSchedStrategy interface.
3842   /// -----------------------------------------
3843 
3844   SUnit *pickNode(bool &IsTopNode) override {
3845     SUnit *SU;
3846     if (IsTopDown) {
3847       do {
3848         if (TopQ.empty()) return nullptr;
3849         SU = TopQ.top();
3850         TopQ.pop();
3851       } while (SU->isScheduled);
3852       IsTopNode = true;
3853     } else {
3854       do {
3855         if (BottomQ.empty()) return nullptr;
3856         SU = BottomQ.top();
3857         BottomQ.pop();
3858       } while (SU->isScheduled);
3859       IsTopNode = false;
3860     }
3861     if (IsAlternating)
3862       IsTopDown = !IsTopDown;
3863     return SU;
3864   }
3865 
3866   void schedNode(SUnit *SU, bool IsTopNode) override {}
3867 
3868   void releaseTopNode(SUnit *SU) override {
3869     TopQ.push(SU);
3870   }
3871   void releaseBottomNode(SUnit *SU) override {
3872     BottomQ.push(SU);
3873   }
3874 };
3875 
3876 } // end anonymous namespace
3877 
3878 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3879   bool Alternate = !ForceTopDown && !ForceBottomUp;
3880   bool TopDown = !ForceBottomUp;
3881   assert((TopDown || !ForceTopDown) &&
3882          "-misched-topdown incompatible with -misched-bottomup");
3883   return new ScheduleDAGMILive(
3884       C, std::make_unique<InstructionShuffler>(Alternate, TopDown));
3885 }
3886 
3887 static MachineSchedRegistry ShufflerRegistry(
3888   "shuffle", "Shuffle machine instructions alternating directions",
3889   createInstructionShuffler);
3890 #endif // !NDEBUG
3891 
3892 //===----------------------------------------------------------------------===//
3893 // GraphWriter support for ScheduleDAGMILive.
3894 //===----------------------------------------------------------------------===//
3895 
3896 #ifndef NDEBUG
3897 namespace llvm {
3898 
3899 template<> struct GraphTraits<
3900   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3901 
3902 template<>
3903 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3904   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3905 
3906   static std::string getGraphName(const ScheduleDAG *G) {
3907     return std::string(G->MF.getName());
3908   }
3909 
3910   static bool renderGraphFromBottomUp() {
3911     return true;
3912   }
3913 
3914   static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) {
3915     if (ViewMISchedCutoff == 0)
3916       return false;
3917     return (Node->Preds.size() > ViewMISchedCutoff
3918          || Node->Succs.size() > ViewMISchedCutoff);
3919   }
3920 
3921   /// If you want to override the dot attributes printed for a particular
3922   /// edge, override this method.
3923   static std::string getEdgeAttributes(const SUnit *Node,
3924                                        SUnitIterator EI,
3925                                        const ScheduleDAG *Graph) {
3926     if (EI.isArtificialDep())
3927       return "color=cyan,style=dashed";
3928     if (EI.isCtrlDep())
3929       return "color=blue,style=dashed";
3930     return "";
3931   }
3932 
3933   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3934     std::string Str;
3935     raw_string_ostream SS(Str);
3936     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3937     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3938       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3939     SS << "SU:" << SU->NodeNum;
3940     if (DFS)
3941       SS << " I:" << DFS->getNumInstrs(SU);
3942     return SS.str();
3943   }
3944 
3945   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3946     return G->getGraphNodeLabel(SU);
3947   }
3948 
3949   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3950     std::string Str("shape=Mrecord");
3951     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3952     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3953       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3954     if (DFS) {
3955       Str += ",style=filled,fillcolor=\"#";
3956       Str += DOT::getColorString(DFS->getSubtreeID(N));
3957       Str += '"';
3958     }
3959     return Str;
3960   }
3961 };
3962 
3963 } // end namespace llvm
3964 #endif // NDEBUG
3965 
3966 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3967 /// rendered using 'dot'.
3968 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3969 #ifndef NDEBUG
3970   ViewGraph(this, Name, false, Title);
3971 #else
3972   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3973          << "systems with Graphviz or gv!\n";
3974 #endif  // NDEBUG
3975 }
3976 
3977 /// Out-of-line implementation with no arguments is handy for gdb.
3978 void ScheduleDAGMI::viewGraph() {
3979   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3980 }
3981