xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachineScheduler schedules machine instructions after phi elimination. It
10 // preserves LiveIntervals so it can be invoked before register allocation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineScheduler.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePassRegistry.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/RegisterPressure.h"
38 #include "llvm/CodeGen/ScheduleDAG.h"
39 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
40 #include "llvm/CodeGen/ScheduleDAGMutation.h"
41 #include "llvm/CodeGen/ScheduleDFS.h"
42 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
43 #include "llvm/CodeGen/SlotIndexes.h"
44 #include "llvm/CodeGen/TargetFrameLowering.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSchedule.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/Config/llvm-config.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/MC/LaneBitmask.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/GraphWriter.h"
60 #include "llvm/Support/MachineValueType.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <iterator>
66 #include <limits>
67 #include <memory>
68 #include <string>
69 #include <tuple>
70 #include <utility>
71 #include <vector>
72 
73 using namespace llvm;
74 
75 #define DEBUG_TYPE "machine-scheduler"
76 
77 STATISTIC(NumClustered, "Number of load/store pairs clustered");
78 
79 namespace llvm {
80 
81 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
82                            cl::desc("Force top-down list scheduling"));
83 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
84                             cl::desc("Force bottom-up list scheduling"));
85 cl::opt<bool>
86 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
87                        cl::desc("Print critical path length to stdout"));
88 
89 cl::opt<bool> VerifyScheduling(
90     "verify-misched", cl::Hidden,
91     cl::desc("Verify machine instrs before and after machine scheduling"));
92 
93 } // end namespace llvm
94 
95 #ifndef NDEBUG
96 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
97   cl::desc("Pop up a window to show MISched dags after they are processed"));
98 
99 /// In some situations a few uninteresting nodes depend on nearly all other
100 /// nodes in the graph, provide a cutoff to hide them.
101 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
102   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
103 
104 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
105   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
106 
107 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
108   cl::desc("Only schedule this function"));
109 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
110                                         cl::desc("Only schedule this MBB#"));
111 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
112                               cl::desc("Print schedule DAGs"));
113 #else
114 static const bool ViewMISchedDAGs = false;
115 static const bool PrintDAGs = false;
116 #endif // NDEBUG
117 
118 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
119 /// size of the ready lists.
120 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
121   cl::desc("Limit ready list to N instructions"), cl::init(256));
122 
123 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
124   cl::desc("Enable register pressure scheduling."), cl::init(true));
125 
126 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
127   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
128 
129 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
130                                         cl::desc("Enable memop clustering."),
131                                         cl::init(true));
132 static cl::opt<bool>
133     ForceFastCluster("force-fast-cluster", cl::Hidden,
134                      cl::desc("Switch to fast cluster algorithm with the lost "
135                               "of some fusion opportunities"),
136                      cl::init(false));
137 static cl::opt<unsigned>
138     FastClusterThreshold("fast-cluster-threshold", cl::Hidden,
139                          cl::desc("The threshold for fast cluster"),
140                          cl::init(1000));
141 
142 // DAG subtrees must have at least this many nodes.
143 static const unsigned MinSubtreeSize = 8;
144 
145 // Pin the vtables to this file.
146 void MachineSchedStrategy::anchor() {}
147 
148 void ScheduleDAGMutation::anchor() {}
149 
150 //===----------------------------------------------------------------------===//
151 // Machine Instruction Scheduling Pass and Registry
152 //===----------------------------------------------------------------------===//
153 
154 MachineSchedContext::MachineSchedContext() {
155   RegClassInfo = new RegisterClassInfo();
156 }
157 
158 MachineSchedContext::~MachineSchedContext() {
159   delete RegClassInfo;
160 }
161 
162 namespace {
163 
164 /// Base class for a machine scheduler class that can run at any point.
165 class MachineSchedulerBase : public MachineSchedContext,
166                              public MachineFunctionPass {
167 public:
168   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
169 
170   void print(raw_ostream &O, const Module* = nullptr) const override;
171 
172 protected:
173   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
174 };
175 
176 /// MachineScheduler runs after coalescing and before register allocation.
177 class MachineScheduler : public MachineSchedulerBase {
178 public:
179   MachineScheduler();
180 
181   void getAnalysisUsage(AnalysisUsage &AU) const override;
182 
183   bool runOnMachineFunction(MachineFunction&) override;
184 
185   static char ID; // Class identification, replacement for typeinfo
186 
187 protected:
188   ScheduleDAGInstrs *createMachineScheduler();
189 };
190 
191 /// PostMachineScheduler runs after shortly before code emission.
192 class PostMachineScheduler : public MachineSchedulerBase {
193 public:
194   PostMachineScheduler();
195 
196   void getAnalysisUsage(AnalysisUsage &AU) const override;
197 
198   bool runOnMachineFunction(MachineFunction&) override;
199 
200   static char ID; // Class identification, replacement for typeinfo
201 
202 protected:
203   ScheduleDAGInstrs *createPostMachineScheduler();
204 };
205 
206 } // end anonymous namespace
207 
208 char MachineScheduler::ID = 0;
209 
210 char &llvm::MachineSchedulerID = MachineScheduler::ID;
211 
212 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
213                       "Machine Instruction Scheduler", false, false)
214 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
215 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
216 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
217 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
218 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
219 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
220                     "Machine Instruction Scheduler", false, false)
221 
222 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
223   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
224 }
225 
226 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
227   AU.setPreservesCFG();
228   AU.addRequired<MachineDominatorTree>();
229   AU.addRequired<MachineLoopInfo>();
230   AU.addRequired<AAResultsWrapperPass>();
231   AU.addRequired<TargetPassConfig>();
232   AU.addRequired<SlotIndexes>();
233   AU.addPreserved<SlotIndexes>();
234   AU.addRequired<LiveIntervals>();
235   AU.addPreserved<LiveIntervals>();
236   MachineFunctionPass::getAnalysisUsage(AU);
237 }
238 
239 char PostMachineScheduler::ID = 0;
240 
241 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
242 
243 INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched",
244                       "PostRA Machine Instruction Scheduler", false, false)
245 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
246 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
247 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
248 INITIALIZE_PASS_END(PostMachineScheduler, "postmisched",
249                     "PostRA Machine Instruction Scheduler", false, false)
250 
251 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
252   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
253 }
254 
255 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
256   AU.setPreservesCFG();
257   AU.addRequired<MachineDominatorTree>();
258   AU.addRequired<MachineLoopInfo>();
259   AU.addRequired<AAResultsWrapperPass>();
260   AU.addRequired<TargetPassConfig>();
261   MachineFunctionPass::getAnalysisUsage(AU);
262 }
263 
264 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
265     MachineSchedRegistry::Registry;
266 
267 /// A dummy default scheduler factory indicates whether the scheduler
268 /// is overridden on the command line.
269 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
270   return nullptr;
271 }
272 
273 /// MachineSchedOpt allows command line selection of the scheduler.
274 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
275                RegisterPassParser<MachineSchedRegistry>>
276 MachineSchedOpt("misched",
277                 cl::init(&useDefaultMachineSched), cl::Hidden,
278                 cl::desc("Machine instruction scheduler to use"));
279 
280 static MachineSchedRegistry
281 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
282                      useDefaultMachineSched);
283 
284 static cl::opt<bool> EnableMachineSched(
285     "enable-misched",
286     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
287     cl::Hidden);
288 
289 static cl::opt<bool> EnablePostRAMachineSched(
290     "enable-post-misched",
291     cl::desc("Enable the post-ra machine instruction scheduling pass."),
292     cl::init(true), cl::Hidden);
293 
294 /// Decrement this iterator until reaching the top or a non-debug instr.
295 static MachineBasicBlock::const_iterator
296 priorNonDebug(MachineBasicBlock::const_iterator I,
297               MachineBasicBlock::const_iterator Beg) {
298   assert(I != Beg && "reached the top of the region, cannot decrement");
299   while (--I != Beg) {
300     if (!I->isDebugOrPseudoInstr())
301       break;
302   }
303   return I;
304 }
305 
306 /// Non-const version.
307 static MachineBasicBlock::iterator
308 priorNonDebug(MachineBasicBlock::iterator I,
309               MachineBasicBlock::const_iterator Beg) {
310   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
311       .getNonConstIterator();
312 }
313 
314 /// If this iterator is a debug value, increment until reaching the End or a
315 /// non-debug instruction.
316 static MachineBasicBlock::const_iterator
317 nextIfDebug(MachineBasicBlock::const_iterator I,
318             MachineBasicBlock::const_iterator End) {
319   for(; I != End; ++I) {
320     if (!I->isDebugOrPseudoInstr())
321       break;
322   }
323   return I;
324 }
325 
326 /// Non-const version.
327 static MachineBasicBlock::iterator
328 nextIfDebug(MachineBasicBlock::iterator I,
329             MachineBasicBlock::const_iterator End) {
330   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
331       .getNonConstIterator();
332 }
333 
334 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
335 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
336   // Select the scheduler, or set the default.
337   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
338   if (Ctor != useDefaultMachineSched)
339     return Ctor(this);
340 
341   // Get the default scheduler set by the target for this function.
342   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
343   if (Scheduler)
344     return Scheduler;
345 
346   // Default to GenericScheduler.
347   return createGenericSchedLive(this);
348 }
349 
350 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
351 /// the caller. We don't have a command line option to override the postRA
352 /// scheduler. The Target must configure it.
353 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
354   // Get the postRA scheduler set by the target for this function.
355   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
356   if (Scheduler)
357     return Scheduler;
358 
359   // Default to GenericScheduler.
360   return createGenericSchedPostRA(this);
361 }
362 
363 /// Top-level MachineScheduler pass driver.
364 ///
365 /// Visit blocks in function order. Divide each block into scheduling regions
366 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
367 /// consistent with the DAG builder, which traverses the interior of the
368 /// scheduling regions bottom-up.
369 ///
370 /// This design avoids exposing scheduling boundaries to the DAG builder,
371 /// simplifying the DAG builder's support for "special" target instructions.
372 /// At the same time the design allows target schedulers to operate across
373 /// scheduling boundaries, for example to bundle the boundary instructions
374 /// without reordering them. This creates complexity, because the target
375 /// scheduler must update the RegionBegin and RegionEnd positions cached by
376 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
377 /// design would be to split blocks at scheduling boundaries, but LLVM has a
378 /// general bias against block splitting purely for implementation simplicity.
379 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
380   if (skipFunction(mf.getFunction()))
381     return false;
382 
383   if (EnableMachineSched.getNumOccurrences()) {
384     if (!EnableMachineSched)
385       return false;
386   } else if (!mf.getSubtarget().enableMachineScheduler())
387     return false;
388 
389   LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
390 
391   // Initialize the context of the pass.
392   MF = &mf;
393   MLI = &getAnalysis<MachineLoopInfo>();
394   MDT = &getAnalysis<MachineDominatorTree>();
395   PassConfig = &getAnalysis<TargetPassConfig>();
396   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
397 
398   LIS = &getAnalysis<LiveIntervals>();
399 
400   if (VerifyScheduling) {
401     LLVM_DEBUG(LIS->dump());
402     MF->verify(this, "Before machine scheduling.");
403   }
404   RegClassInfo->runOnMachineFunction(*MF);
405 
406   // Instantiate the selected scheduler for this target, function, and
407   // optimization level.
408   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
409   scheduleRegions(*Scheduler, false);
410 
411   LLVM_DEBUG(LIS->dump());
412   if (VerifyScheduling)
413     MF->verify(this, "After machine scheduling.");
414   return true;
415 }
416 
417 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
418   if (skipFunction(mf.getFunction()))
419     return false;
420 
421   if (EnablePostRAMachineSched.getNumOccurrences()) {
422     if (!EnablePostRAMachineSched)
423       return false;
424   } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) {
425     LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
426     return false;
427   }
428   LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
429 
430   // Initialize the context of the pass.
431   MF = &mf;
432   MLI = &getAnalysis<MachineLoopInfo>();
433   PassConfig = &getAnalysis<TargetPassConfig>();
434   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
435 
436   if (VerifyScheduling)
437     MF->verify(this, "Before post machine scheduling.");
438 
439   // Instantiate the selected scheduler for this target, function, and
440   // optimization level.
441   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
442   scheduleRegions(*Scheduler, true);
443 
444   if (VerifyScheduling)
445     MF->verify(this, "After post machine scheduling.");
446   return true;
447 }
448 
449 /// Return true of the given instruction should not be included in a scheduling
450 /// region.
451 ///
452 /// MachineScheduler does not currently support scheduling across calls. To
453 /// handle calls, the DAG builder needs to be modified to create register
454 /// anti/output dependencies on the registers clobbered by the call's regmask
455 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
456 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
457 /// the boundary, but there would be no benefit to postRA scheduling across
458 /// calls this late anyway.
459 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
460                             MachineBasicBlock *MBB,
461                             MachineFunction *MF,
462                             const TargetInstrInfo *TII) {
463   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
464 }
465 
466 /// A region of an MBB for scheduling.
467 namespace {
468 struct SchedRegion {
469   /// RegionBegin is the first instruction in the scheduling region, and
470   /// RegionEnd is either MBB->end() or the scheduling boundary after the
471   /// last instruction in the scheduling region. These iterators cannot refer
472   /// to instructions outside of the identified scheduling region because
473   /// those may be reordered before scheduling this region.
474   MachineBasicBlock::iterator RegionBegin;
475   MachineBasicBlock::iterator RegionEnd;
476   unsigned NumRegionInstrs;
477 
478   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
479               unsigned N) :
480     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
481 };
482 } // end anonymous namespace
483 
484 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
485 
486 static void
487 getSchedRegions(MachineBasicBlock *MBB,
488                 MBBRegionsVector &Regions,
489                 bool RegionsTopDown) {
490   MachineFunction *MF = MBB->getParent();
491   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
492 
493   MachineBasicBlock::iterator I = nullptr;
494   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
495       RegionEnd != MBB->begin(); RegionEnd = I) {
496 
497     // Avoid decrementing RegionEnd for blocks with no terminator.
498     if (RegionEnd != MBB->end() ||
499         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
500       --RegionEnd;
501     }
502 
503     // The next region starts above the previous region. Look backward in the
504     // instruction stream until we find the nearest boundary.
505     unsigned NumRegionInstrs = 0;
506     I = RegionEnd;
507     for (;I != MBB->begin(); --I) {
508       MachineInstr &MI = *std::prev(I);
509       if (isSchedBoundary(&MI, &*MBB, MF, TII))
510         break;
511       if (!MI.isDebugOrPseudoInstr()) {
512         // MBB::size() uses instr_iterator to count. Here we need a bundle to
513         // count as a single instruction.
514         ++NumRegionInstrs;
515       }
516     }
517 
518     // It's possible we found a scheduling region that only has debug
519     // instructions. Don't bother scheduling these.
520     if (NumRegionInstrs != 0)
521       Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
522   }
523 
524   if (RegionsTopDown)
525     std::reverse(Regions.begin(), Regions.end());
526 }
527 
528 /// Main driver for both MachineScheduler and PostMachineScheduler.
529 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
530                                            bool FixKillFlags) {
531   // Visit all machine basic blocks.
532   //
533   // TODO: Visit blocks in global postorder or postorder within the bottom-up
534   // loop tree. Then we can optionally compute global RegPressure.
535   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
536        MBB != MBBEnd; ++MBB) {
537 
538     Scheduler.startBlock(&*MBB);
539 
540 #ifndef NDEBUG
541     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
542       continue;
543     if (SchedOnlyBlock.getNumOccurrences()
544         && (int)SchedOnlyBlock != MBB->getNumber())
545       continue;
546 #endif
547 
548     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
549     // points to the scheduling boundary at the bottom of the region. The DAG
550     // does not include RegionEnd, but the region does (i.e. the next
551     // RegionEnd is above the previous RegionBegin). If the current block has
552     // no terminator then RegionEnd == MBB->end() for the bottom region.
553     //
554     // All the regions of MBB are first found and stored in MBBRegions, which
555     // will be processed (MBB) top-down if initialized with true.
556     //
557     // The Scheduler may insert instructions during either schedule() or
558     // exitRegion(), even for empty regions. So the local iterators 'I' and
559     // 'RegionEnd' are invalid across these calls. Instructions must not be
560     // added to other regions than the current one without updating MBBRegions.
561 
562     MBBRegionsVector MBBRegions;
563     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
564     for (MBBRegionsVector::iterator R = MBBRegions.begin();
565          R != MBBRegions.end(); ++R) {
566       MachineBasicBlock::iterator I = R->RegionBegin;
567       MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
568       unsigned NumRegionInstrs = R->NumRegionInstrs;
569 
570       // Notify the scheduler of the region, even if we may skip scheduling
571       // it. Perhaps it still needs to be bundled.
572       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
573 
574       // Skip empty scheduling regions (0 or 1 schedulable instructions).
575       if (I == RegionEnd || I == std::prev(RegionEnd)) {
576         // Close the current region. Bundle the terminator if needed.
577         // This invalidates 'RegionEnd' and 'I'.
578         Scheduler.exitRegion();
579         continue;
580       }
581       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
582       LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
583                         << " " << MBB->getName() << "\n  From: " << *I
584                         << "    To: ";
585                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
586                  else dbgs() << "End\n";
587                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
588       if (DumpCriticalPathLength) {
589         errs() << MF->getName();
590         errs() << ":%bb. " << MBB->getNumber();
591         errs() << " " << MBB->getName() << " \n";
592       }
593 
594       // Schedule a region: possibly reorder instructions.
595       // This invalidates the original region iterators.
596       Scheduler.schedule();
597 
598       // Close the current region.
599       Scheduler.exitRegion();
600     }
601     Scheduler.finishBlock();
602     // FIXME: Ideally, no further passes should rely on kill flags. However,
603     // thumb2 size reduction is currently an exception, so the PostMIScheduler
604     // needs to do this.
605     if (FixKillFlags)
606       Scheduler.fixupKills(*MBB);
607   }
608   Scheduler.finalizeSchedule();
609 }
610 
611 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
612   // unimplemented
613 }
614 
615 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
616 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
617   dbgs() << "Queue " << Name << ": ";
618   for (const SUnit *SU : Queue)
619     dbgs() << SU->NodeNum << " ";
620   dbgs() << "\n";
621 }
622 #endif
623 
624 //===----------------------------------------------------------------------===//
625 // ScheduleDAGMI - Basic machine instruction scheduling. This is
626 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
627 // virtual registers.
628 // ===----------------------------------------------------------------------===/
629 
630 // Provide a vtable anchor.
631 ScheduleDAGMI::~ScheduleDAGMI() = default;
632 
633 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
634 /// NumPredsLeft reaches zero, release the successor node.
635 ///
636 /// FIXME: Adjust SuccSU height based on MinLatency.
637 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
638   SUnit *SuccSU = SuccEdge->getSUnit();
639 
640   if (SuccEdge->isWeak()) {
641     --SuccSU->WeakPredsLeft;
642     if (SuccEdge->isCluster())
643       NextClusterSucc = SuccSU;
644     return;
645   }
646 #ifndef NDEBUG
647   if (SuccSU->NumPredsLeft == 0) {
648     dbgs() << "*** Scheduling failed! ***\n";
649     dumpNode(*SuccSU);
650     dbgs() << " has been released too many times!\n";
651     llvm_unreachable(nullptr);
652   }
653 #endif
654   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
655   // CurrCycle may have advanced since then.
656   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
657     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
658 
659   --SuccSU->NumPredsLeft;
660   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
661     SchedImpl->releaseTopNode(SuccSU);
662 }
663 
664 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
665 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
666   for (SDep &Succ : SU->Succs)
667     releaseSucc(SU, &Succ);
668 }
669 
670 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
671 /// NumSuccsLeft reaches zero, release the predecessor node.
672 ///
673 /// FIXME: Adjust PredSU height based on MinLatency.
674 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
675   SUnit *PredSU = PredEdge->getSUnit();
676 
677   if (PredEdge->isWeak()) {
678     --PredSU->WeakSuccsLeft;
679     if (PredEdge->isCluster())
680       NextClusterPred = PredSU;
681     return;
682   }
683 #ifndef NDEBUG
684   if (PredSU->NumSuccsLeft == 0) {
685     dbgs() << "*** Scheduling failed! ***\n";
686     dumpNode(*PredSU);
687     dbgs() << " has been released too many times!\n";
688     llvm_unreachable(nullptr);
689   }
690 #endif
691   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
692   // CurrCycle may have advanced since then.
693   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
694     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
695 
696   --PredSU->NumSuccsLeft;
697   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
698     SchedImpl->releaseBottomNode(PredSU);
699 }
700 
701 /// releasePredecessors - Call releasePred on each of SU's predecessors.
702 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
703   for (SDep &Pred : SU->Preds)
704     releasePred(SU, &Pred);
705 }
706 
707 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
708   ScheduleDAGInstrs::startBlock(bb);
709   SchedImpl->enterMBB(bb);
710 }
711 
712 void ScheduleDAGMI::finishBlock() {
713   SchedImpl->leaveMBB();
714   ScheduleDAGInstrs::finishBlock();
715 }
716 
717 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
718 /// crossing a scheduling boundary. [begin, end) includes all instructions in
719 /// the region, including the boundary itself and single-instruction regions
720 /// that don't get scheduled.
721 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
722                                      MachineBasicBlock::iterator begin,
723                                      MachineBasicBlock::iterator end,
724                                      unsigned regioninstrs)
725 {
726   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
727 
728   SchedImpl->initPolicy(begin, end, regioninstrs);
729 }
730 
731 /// This is normally called from the main scheduler loop but may also be invoked
732 /// by the scheduling strategy to perform additional code motion.
733 void ScheduleDAGMI::moveInstruction(
734   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
735   // Advance RegionBegin if the first instruction moves down.
736   if (&*RegionBegin == MI)
737     ++RegionBegin;
738 
739   // Update the instruction stream.
740   BB->splice(InsertPos, BB, MI);
741 
742   // Update LiveIntervals
743   if (LIS)
744     LIS->handleMove(*MI, /*UpdateFlags=*/true);
745 
746   // Recede RegionBegin if an instruction moves above the first.
747   if (RegionBegin == InsertPos)
748     RegionBegin = MI;
749 }
750 
751 bool ScheduleDAGMI::checkSchedLimit() {
752 #ifndef NDEBUG
753   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
754     CurrentTop = CurrentBottom;
755     return false;
756   }
757   ++NumInstrsScheduled;
758 #endif
759   return true;
760 }
761 
762 /// Per-region scheduling driver, called back from
763 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
764 /// does not consider liveness or register pressure. It is useful for PostRA
765 /// scheduling and potentially other custom schedulers.
766 void ScheduleDAGMI::schedule() {
767   LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
768   LLVM_DEBUG(SchedImpl->dumpPolicy());
769 
770   // Build the DAG.
771   buildSchedGraph(AA);
772 
773   postprocessDAG();
774 
775   SmallVector<SUnit*, 8> TopRoots, BotRoots;
776   findRootsAndBiasEdges(TopRoots, BotRoots);
777 
778   LLVM_DEBUG(dump());
779   if (PrintDAGs) dump();
780   if (ViewMISchedDAGs) viewGraph();
781 
782   // Initialize the strategy before modifying the DAG.
783   // This may initialize a DFSResult to be used for queue priority.
784   SchedImpl->initialize(this);
785 
786   // Initialize ready queues now that the DAG and priority data are finalized.
787   initQueues(TopRoots, BotRoots);
788 
789   bool IsTopNode = false;
790   while (true) {
791     LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
792     SUnit *SU = SchedImpl->pickNode(IsTopNode);
793     if (!SU) break;
794 
795     assert(!SU->isScheduled && "Node already scheduled");
796     if (!checkSchedLimit())
797       break;
798 
799     MachineInstr *MI = SU->getInstr();
800     if (IsTopNode) {
801       assert(SU->isTopReady() && "node still has unscheduled dependencies");
802       if (&*CurrentTop == MI)
803         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
804       else
805         moveInstruction(MI, CurrentTop);
806     } else {
807       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
808       MachineBasicBlock::iterator priorII =
809         priorNonDebug(CurrentBottom, CurrentTop);
810       if (&*priorII == MI)
811         CurrentBottom = priorII;
812       else {
813         if (&*CurrentTop == MI)
814           CurrentTop = nextIfDebug(++CurrentTop, priorII);
815         moveInstruction(MI, CurrentBottom);
816         CurrentBottom = MI;
817       }
818     }
819     // Notify the scheduling strategy before updating the DAG.
820     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
821     // runs, it can then use the accurate ReadyCycle time to determine whether
822     // newly released nodes can move to the readyQ.
823     SchedImpl->schedNode(SU, IsTopNode);
824 
825     updateQueues(SU, IsTopNode);
826   }
827   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
828 
829   placeDebugValues();
830 
831   LLVM_DEBUG({
832     dbgs() << "*** Final schedule for "
833            << printMBBReference(*begin()->getParent()) << " ***\n";
834     dumpSchedule();
835     dbgs() << '\n';
836   });
837 }
838 
839 /// Apply each ScheduleDAGMutation step in order.
840 void ScheduleDAGMI::postprocessDAG() {
841   for (auto &m : Mutations)
842     m->apply(this);
843 }
844 
845 void ScheduleDAGMI::
846 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
847                       SmallVectorImpl<SUnit*> &BotRoots) {
848   for (SUnit &SU : SUnits) {
849     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
850 
851     // Order predecessors so DFSResult follows the critical path.
852     SU.biasCriticalPath();
853 
854     // A SUnit is ready to top schedule if it has no predecessors.
855     if (!SU.NumPredsLeft)
856       TopRoots.push_back(&SU);
857     // A SUnit is ready to bottom schedule if it has no successors.
858     if (!SU.NumSuccsLeft)
859       BotRoots.push_back(&SU);
860   }
861   ExitSU.biasCriticalPath();
862 }
863 
864 /// Identify DAG roots and setup scheduler queues.
865 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
866                                ArrayRef<SUnit*> BotRoots) {
867   NextClusterSucc = nullptr;
868   NextClusterPred = nullptr;
869 
870   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
871   //
872   // Nodes with unreleased weak edges can still be roots.
873   // Release top roots in forward order.
874   for (SUnit *SU : TopRoots)
875     SchedImpl->releaseTopNode(SU);
876 
877   // Release bottom roots in reverse order so the higher priority nodes appear
878   // first. This is more natural and slightly more efficient.
879   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
880          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
881     SchedImpl->releaseBottomNode(*I);
882   }
883 
884   releaseSuccessors(&EntrySU);
885   releasePredecessors(&ExitSU);
886 
887   SchedImpl->registerRoots();
888 
889   // Advance past initial DebugValues.
890   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
891   CurrentBottom = RegionEnd;
892 }
893 
894 /// Update scheduler queues after scheduling an instruction.
895 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
896   // Release dependent instructions for scheduling.
897   if (IsTopNode)
898     releaseSuccessors(SU);
899   else
900     releasePredecessors(SU);
901 
902   SU->isScheduled = true;
903 }
904 
905 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
906 void ScheduleDAGMI::placeDebugValues() {
907   // If first instruction was a DBG_VALUE then put it back.
908   if (FirstDbgValue) {
909     BB->splice(RegionBegin, BB, FirstDbgValue);
910     RegionBegin = FirstDbgValue;
911   }
912 
913   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
914          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
915     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
916     MachineInstr *DbgValue = P.first;
917     MachineBasicBlock::iterator OrigPrevMI = P.second;
918     if (&*RegionBegin == DbgValue)
919       ++RegionBegin;
920     BB->splice(++OrigPrevMI, BB, DbgValue);
921     if (OrigPrevMI == std::prev(RegionEnd))
922       RegionEnd = DbgValue;
923   }
924   DbgValues.clear();
925   FirstDbgValue = nullptr;
926 }
927 
928 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
929 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
930   for (MachineInstr &MI : *this) {
931     if (SUnit *SU = getSUnit(&MI))
932       dumpNode(*SU);
933     else
934       dbgs() << "Missing SUnit\n";
935   }
936 }
937 #endif
938 
939 //===----------------------------------------------------------------------===//
940 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
941 // preservation.
942 //===----------------------------------------------------------------------===//
943 
944 ScheduleDAGMILive::~ScheduleDAGMILive() {
945   delete DFSResult;
946 }
947 
948 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
949   const MachineInstr &MI = *SU.getInstr();
950   for (const MachineOperand &MO : MI.operands()) {
951     if (!MO.isReg())
952       continue;
953     if (!MO.readsReg())
954       continue;
955     if (TrackLaneMasks && !MO.isUse())
956       continue;
957 
958     Register Reg = MO.getReg();
959     if (!Register::isVirtualRegister(Reg))
960       continue;
961 
962     // Ignore re-defs.
963     if (TrackLaneMasks) {
964       bool FoundDef = false;
965       for (const MachineOperand &MO2 : MI.operands()) {
966         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
967           FoundDef = true;
968           break;
969         }
970       }
971       if (FoundDef)
972         continue;
973     }
974 
975     // Record this local VReg use.
976     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
977     for (; UI != VRegUses.end(); ++UI) {
978       if (UI->SU == &SU)
979         break;
980     }
981     if (UI == VRegUses.end())
982       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
983   }
984 }
985 
986 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
987 /// crossing a scheduling boundary. [begin, end) includes all instructions in
988 /// the region, including the boundary itself and single-instruction regions
989 /// that don't get scheduled.
990 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
991                                 MachineBasicBlock::iterator begin,
992                                 MachineBasicBlock::iterator end,
993                                 unsigned regioninstrs)
994 {
995   // ScheduleDAGMI initializes SchedImpl's per-region policy.
996   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
997 
998   // For convenience remember the end of the liveness region.
999   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
1000 
1001   SUPressureDiffs.clear();
1002 
1003   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
1004   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
1005 
1006   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
1007          "ShouldTrackLaneMasks requires ShouldTrackPressure");
1008 }
1009 
1010 // Setup the register pressure trackers for the top scheduled and bottom
1011 // scheduled regions.
1012 void ScheduleDAGMILive::initRegPressure() {
1013   VRegUses.clear();
1014   VRegUses.setUniverse(MRI.getNumVirtRegs());
1015   for (SUnit &SU : SUnits)
1016     collectVRegUses(SU);
1017 
1018   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1019                     ShouldTrackLaneMasks, false);
1020   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1021                     ShouldTrackLaneMasks, false);
1022 
1023   // Close the RPTracker to finalize live ins.
1024   RPTracker.closeRegion();
1025 
1026   LLVM_DEBUG(RPTracker.dump());
1027 
1028   // Initialize the live ins and live outs.
1029   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1030   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1031 
1032   // Close one end of the tracker so we can call
1033   // getMaxUpward/DownwardPressureDelta before advancing across any
1034   // instructions. This converts currently live regs into live ins/outs.
1035   TopRPTracker.closeTop();
1036   BotRPTracker.closeBottom();
1037 
1038   BotRPTracker.initLiveThru(RPTracker);
1039   if (!BotRPTracker.getLiveThru().empty()) {
1040     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1041     LLVM_DEBUG(dbgs() << "Live Thru: ";
1042                dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1043   };
1044 
1045   // For each live out vreg reduce the pressure change associated with other
1046   // uses of the same vreg below the live-out reaching def.
1047   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1048 
1049   // Account for liveness generated by the region boundary.
1050   if (LiveRegionEnd != RegionEnd) {
1051     SmallVector<RegisterMaskPair, 8> LiveUses;
1052     BotRPTracker.recede(&LiveUses);
1053     updatePressureDiffs(LiveUses);
1054   }
1055 
1056   LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1057              dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1058              dbgs() << "Bottom Pressure:\n";
1059              dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1060 
1061   assert((BotRPTracker.getPos() == RegionEnd ||
1062           (RegionEnd->isDebugInstr() &&
1063            BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1064          "Can't find the region bottom");
1065 
1066   // Cache the list of excess pressure sets in this region. This will also track
1067   // the max pressure in the scheduled code for these sets.
1068   RegionCriticalPSets.clear();
1069   const std::vector<unsigned> &RegionPressure =
1070     RPTracker.getPressure().MaxSetPressure;
1071   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1072     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1073     if (RegionPressure[i] > Limit) {
1074       LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1075                         << " Actual " << RegionPressure[i] << "\n");
1076       RegionCriticalPSets.push_back(PressureChange(i));
1077     }
1078   }
1079   LLVM_DEBUG(dbgs() << "Excess PSets: ";
1080              for (const PressureChange &RCPS
1081                   : RegionCriticalPSets) dbgs()
1082              << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1083              dbgs() << "\n");
1084 }
1085 
1086 void ScheduleDAGMILive::
1087 updateScheduledPressure(const SUnit *SU,
1088                         const std::vector<unsigned> &NewMaxPressure) {
1089   const PressureDiff &PDiff = getPressureDiff(SU);
1090   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1091   for (const PressureChange &PC : PDiff) {
1092     if (!PC.isValid())
1093       break;
1094     unsigned ID = PC.getPSet();
1095     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1096       ++CritIdx;
1097     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1098       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1099           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1100         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1101     }
1102     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1103     if (NewMaxPressure[ID] >= Limit - 2) {
1104       LLVM_DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1105                         << NewMaxPressure[ID]
1106                         << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1107                         << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1108                         << " livethru)\n");
1109     }
1110   }
1111 }
1112 
1113 /// Update the PressureDiff array for liveness after scheduling this
1114 /// instruction.
1115 void ScheduleDAGMILive::updatePressureDiffs(
1116     ArrayRef<RegisterMaskPair> LiveUses) {
1117   for (const RegisterMaskPair &P : LiveUses) {
1118     Register Reg = P.RegUnit;
1119     /// FIXME: Currently assuming single-use physregs.
1120     if (!Register::isVirtualRegister(Reg))
1121       continue;
1122 
1123     if (ShouldTrackLaneMasks) {
1124       // If the register has just become live then other uses won't change
1125       // this fact anymore => decrement pressure.
1126       // If the register has just become dead then other uses make it come
1127       // back to life => increment pressure.
1128       bool Decrement = P.LaneMask.any();
1129 
1130       for (const VReg2SUnit &V2SU
1131            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1132         SUnit &SU = *V2SU.SU;
1133         if (SU.isScheduled || &SU == &ExitSU)
1134           continue;
1135 
1136         PressureDiff &PDiff = getPressureDiff(&SU);
1137         PDiff.addPressureChange(Reg, Decrement, &MRI);
1138         LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1139                           << printReg(Reg, TRI) << ':'
1140                           << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1141                    dbgs() << "              to "; PDiff.dump(*TRI););
1142       }
1143     } else {
1144       assert(P.LaneMask.any());
1145       LLVM_DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1146       // This may be called before CurrentBottom has been initialized. However,
1147       // BotRPTracker must have a valid position. We want the value live into the
1148       // instruction or live out of the block, so ask for the previous
1149       // instruction's live-out.
1150       const LiveInterval &LI = LIS->getInterval(Reg);
1151       VNInfo *VNI;
1152       MachineBasicBlock::const_iterator I =
1153         nextIfDebug(BotRPTracker.getPos(), BB->end());
1154       if (I == BB->end())
1155         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1156       else {
1157         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1158         VNI = LRQ.valueIn();
1159       }
1160       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1161       assert(VNI && "No live value at use.");
1162       for (const VReg2SUnit &V2SU
1163            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1164         SUnit *SU = V2SU.SU;
1165         // If this use comes before the reaching def, it cannot be a last use,
1166         // so decrease its pressure change.
1167         if (!SU->isScheduled && SU != &ExitSU) {
1168           LiveQueryResult LRQ =
1169               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1170           if (LRQ.valueIn() == VNI) {
1171             PressureDiff &PDiff = getPressureDiff(SU);
1172             PDiff.addPressureChange(Reg, true, &MRI);
1173             LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1174                               << *SU->getInstr();
1175                        dbgs() << "              to "; PDiff.dump(*TRI););
1176           }
1177         }
1178       }
1179     }
1180   }
1181 }
1182 
1183 void ScheduleDAGMILive::dump() const {
1184 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1185   if (EntrySU.getInstr() != nullptr)
1186     dumpNodeAll(EntrySU);
1187   for (const SUnit &SU : SUnits) {
1188     dumpNodeAll(SU);
1189     if (ShouldTrackPressure) {
1190       dbgs() << "  Pressure Diff      : ";
1191       getPressureDiff(&SU).dump(*TRI);
1192     }
1193     dbgs() << "  Single Issue       : ";
1194     if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1195         SchedModel.mustEndGroup(SU.getInstr()))
1196       dbgs() << "true;";
1197     else
1198       dbgs() << "false;";
1199     dbgs() << '\n';
1200   }
1201   if (ExitSU.getInstr() != nullptr)
1202     dumpNodeAll(ExitSU);
1203 #endif
1204 }
1205 
1206 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1207 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1208 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1209 ///
1210 /// This is a skeletal driver, with all the functionality pushed into helpers,
1211 /// so that it can be easily extended by experimental schedulers. Generally,
1212 /// implementing MachineSchedStrategy should be sufficient to implement a new
1213 /// scheduling algorithm. However, if a scheduler further subclasses
1214 /// ScheduleDAGMILive then it will want to override this virtual method in order
1215 /// to update any specialized state.
1216 void ScheduleDAGMILive::schedule() {
1217   LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1218   LLVM_DEBUG(SchedImpl->dumpPolicy());
1219   buildDAGWithRegPressure();
1220 
1221   postprocessDAG();
1222 
1223   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1224   findRootsAndBiasEdges(TopRoots, BotRoots);
1225 
1226   // Initialize the strategy before modifying the DAG.
1227   // This may initialize a DFSResult to be used for queue priority.
1228   SchedImpl->initialize(this);
1229 
1230   LLVM_DEBUG(dump());
1231   if (PrintDAGs) dump();
1232   if (ViewMISchedDAGs) viewGraph();
1233 
1234   // Initialize ready queues now that the DAG and priority data are finalized.
1235   initQueues(TopRoots, BotRoots);
1236 
1237   bool IsTopNode = false;
1238   while (true) {
1239     LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1240     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1241     if (!SU) break;
1242 
1243     assert(!SU->isScheduled && "Node already scheduled");
1244     if (!checkSchedLimit())
1245       break;
1246 
1247     scheduleMI(SU, IsTopNode);
1248 
1249     if (DFSResult) {
1250       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1251       if (!ScheduledTrees.test(SubtreeID)) {
1252         ScheduledTrees.set(SubtreeID);
1253         DFSResult->scheduleTree(SubtreeID);
1254         SchedImpl->scheduleTree(SubtreeID);
1255       }
1256     }
1257 
1258     // Notify the scheduling strategy after updating the DAG.
1259     SchedImpl->schedNode(SU, IsTopNode);
1260 
1261     updateQueues(SU, IsTopNode);
1262   }
1263   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1264 
1265   placeDebugValues();
1266 
1267   LLVM_DEBUG({
1268     dbgs() << "*** Final schedule for "
1269            << printMBBReference(*begin()->getParent()) << " ***\n";
1270     dumpSchedule();
1271     dbgs() << '\n';
1272   });
1273 }
1274 
1275 /// Build the DAG and setup three register pressure trackers.
1276 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1277   if (!ShouldTrackPressure) {
1278     RPTracker.reset();
1279     RegionCriticalPSets.clear();
1280     buildSchedGraph(AA);
1281     return;
1282   }
1283 
1284   // Initialize the register pressure tracker used by buildSchedGraph.
1285   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1286                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1287 
1288   // Account for liveness generate by the region boundary.
1289   if (LiveRegionEnd != RegionEnd)
1290     RPTracker.recede();
1291 
1292   // Build the DAG, and compute current register pressure.
1293   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1294 
1295   // Initialize top/bottom trackers after computing region pressure.
1296   initRegPressure();
1297 }
1298 
1299 void ScheduleDAGMILive::computeDFSResult() {
1300   if (!DFSResult)
1301     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1302   DFSResult->clear();
1303   ScheduledTrees.clear();
1304   DFSResult->resize(SUnits.size());
1305   DFSResult->compute(SUnits);
1306   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1307 }
1308 
1309 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1310 /// only provides the critical path for single block loops. To handle loops that
1311 /// span blocks, we could use the vreg path latencies provided by
1312 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1313 /// available for use in the scheduler.
1314 ///
1315 /// The cyclic path estimation identifies a def-use pair that crosses the back
1316 /// edge and considers the depth and height of the nodes. For example, consider
1317 /// the following instruction sequence where each instruction has unit latency
1318 /// and defines an eponymous virtual register:
1319 ///
1320 /// a->b(a,c)->c(b)->d(c)->exit
1321 ///
1322 /// The cyclic critical path is a two cycles: b->c->b
1323 /// The acyclic critical path is four cycles: a->b->c->d->exit
1324 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1325 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1326 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1327 /// LiveInDepth = depth(b) = len(a->b) = 1
1328 ///
1329 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1330 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1331 /// CyclicCriticalPath = min(2, 2) = 2
1332 ///
1333 /// This could be relevant to PostRA scheduling, but is currently implemented
1334 /// assuming LiveIntervals.
1335 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1336   // This only applies to single block loop.
1337   if (!BB->isSuccessor(BB))
1338     return 0;
1339 
1340   unsigned MaxCyclicLatency = 0;
1341   // Visit each live out vreg def to find def/use pairs that cross iterations.
1342   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1343     Register Reg = P.RegUnit;
1344     if (!Register::isVirtualRegister(Reg))
1345       continue;
1346     const LiveInterval &LI = LIS->getInterval(Reg);
1347     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1348     if (!DefVNI)
1349       continue;
1350 
1351     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1352     const SUnit *DefSU = getSUnit(DefMI);
1353     if (!DefSU)
1354       continue;
1355 
1356     unsigned LiveOutHeight = DefSU->getHeight();
1357     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1358     // Visit all local users of the vreg def.
1359     for (const VReg2SUnit &V2SU
1360          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1361       SUnit *SU = V2SU.SU;
1362       if (SU == &ExitSU)
1363         continue;
1364 
1365       // Only consider uses of the phi.
1366       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1367       if (!LRQ.valueIn()->isPHIDef())
1368         continue;
1369 
1370       // Assume that a path spanning two iterations is a cycle, which could
1371       // overestimate in strange cases. This allows cyclic latency to be
1372       // estimated as the minimum slack of the vreg's depth or height.
1373       unsigned CyclicLatency = 0;
1374       if (LiveOutDepth > SU->getDepth())
1375         CyclicLatency = LiveOutDepth - SU->getDepth();
1376 
1377       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1378       if (LiveInHeight > LiveOutHeight) {
1379         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1380           CyclicLatency = LiveInHeight - LiveOutHeight;
1381       } else
1382         CyclicLatency = 0;
1383 
1384       LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1385                         << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1386       if (CyclicLatency > MaxCyclicLatency)
1387         MaxCyclicLatency = CyclicLatency;
1388     }
1389   }
1390   LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1391   return MaxCyclicLatency;
1392 }
1393 
1394 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1395 /// the Top RP tracker in case the region beginning has changed.
1396 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1397                                    ArrayRef<SUnit*> BotRoots) {
1398   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1399   if (ShouldTrackPressure) {
1400     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1401     TopRPTracker.setPos(CurrentTop);
1402   }
1403 }
1404 
1405 /// Move an instruction and update register pressure.
1406 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1407   // Move the instruction to its new location in the instruction stream.
1408   MachineInstr *MI = SU->getInstr();
1409 
1410   if (IsTopNode) {
1411     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1412     if (&*CurrentTop == MI)
1413       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1414     else {
1415       moveInstruction(MI, CurrentTop);
1416       TopRPTracker.setPos(MI);
1417     }
1418 
1419     if (ShouldTrackPressure) {
1420       // Update top scheduled pressure.
1421       RegisterOperands RegOpers;
1422       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1423       if (ShouldTrackLaneMasks) {
1424         // Adjust liveness and add missing dead+read-undef flags.
1425         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1426         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1427       } else {
1428         // Adjust for missing dead-def flags.
1429         RegOpers.detectDeadDefs(*MI, *LIS);
1430       }
1431 
1432       TopRPTracker.advance(RegOpers);
1433       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1434       LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1435                      TopRPTracker.getRegSetPressureAtPos(), TRI););
1436 
1437       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1438     }
1439   } else {
1440     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1441     MachineBasicBlock::iterator priorII =
1442       priorNonDebug(CurrentBottom, CurrentTop);
1443     if (&*priorII == MI)
1444       CurrentBottom = priorII;
1445     else {
1446       if (&*CurrentTop == MI) {
1447         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1448         TopRPTracker.setPos(CurrentTop);
1449       }
1450       moveInstruction(MI, CurrentBottom);
1451       CurrentBottom = MI;
1452       BotRPTracker.setPos(CurrentBottom);
1453     }
1454     if (ShouldTrackPressure) {
1455       RegisterOperands RegOpers;
1456       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1457       if (ShouldTrackLaneMasks) {
1458         // Adjust liveness and add missing dead+read-undef flags.
1459         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1460         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1461       } else {
1462         // Adjust for missing dead-def flags.
1463         RegOpers.detectDeadDefs(*MI, *LIS);
1464       }
1465 
1466       if (BotRPTracker.getPos() != CurrentBottom)
1467         BotRPTracker.recedeSkipDebugValues();
1468       SmallVector<RegisterMaskPair, 8> LiveUses;
1469       BotRPTracker.recede(RegOpers, &LiveUses);
1470       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1471       LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1472                      BotRPTracker.getRegSetPressureAtPos(), TRI););
1473 
1474       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1475       updatePressureDiffs(LiveUses);
1476     }
1477   }
1478 }
1479 
1480 //===----------------------------------------------------------------------===//
1481 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1482 //===----------------------------------------------------------------------===//
1483 
1484 namespace {
1485 
1486 /// Post-process the DAG to create cluster edges between neighboring
1487 /// loads or between neighboring stores.
1488 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1489   struct MemOpInfo {
1490     SUnit *SU;
1491     SmallVector<const MachineOperand *, 4> BaseOps;
1492     int64_t Offset;
1493     unsigned Width;
1494 
1495     MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps,
1496               int64_t Offset, unsigned Width)
1497         : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset),
1498           Width(Width) {}
1499 
1500     static bool Compare(const MachineOperand *const &A,
1501                         const MachineOperand *const &B) {
1502       if (A->getType() != B->getType())
1503         return A->getType() < B->getType();
1504       if (A->isReg())
1505         return A->getReg() < B->getReg();
1506       if (A->isFI()) {
1507         const MachineFunction &MF = *A->getParent()->getParent()->getParent();
1508         const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
1509         bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1510                               TargetFrameLowering::StackGrowsDown;
1511         return StackGrowsDown ? A->getIndex() > B->getIndex()
1512                               : A->getIndex() < B->getIndex();
1513       }
1514 
1515       llvm_unreachable("MemOpClusterMutation only supports register or frame "
1516                        "index bases.");
1517     }
1518 
1519     bool operator<(const MemOpInfo &RHS) const {
1520       // FIXME: Don't compare everything twice. Maybe use C++20 three way
1521       // comparison instead when it's available.
1522       if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(),
1523                                        RHS.BaseOps.begin(), RHS.BaseOps.end(),
1524                                        Compare))
1525         return true;
1526       if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(),
1527                                        BaseOps.begin(), BaseOps.end(), Compare))
1528         return false;
1529       if (Offset != RHS.Offset)
1530         return Offset < RHS.Offset;
1531       return SU->NodeNum < RHS.SU->NodeNum;
1532     }
1533   };
1534 
1535   const TargetInstrInfo *TII;
1536   const TargetRegisterInfo *TRI;
1537   bool IsLoad;
1538 
1539 public:
1540   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1541                            const TargetRegisterInfo *tri, bool IsLoad)
1542       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1543 
1544   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1545 
1546 protected:
1547   void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster,
1548                                 ScheduleDAGInstrs *DAG);
1549   void collectMemOpRecords(std::vector<SUnit> &SUnits,
1550                            SmallVectorImpl<MemOpInfo> &MemOpRecords);
1551   bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1552                    DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups);
1553 };
1554 
1555 class StoreClusterMutation : public BaseMemOpClusterMutation {
1556 public:
1557   StoreClusterMutation(const TargetInstrInfo *tii,
1558                        const TargetRegisterInfo *tri)
1559       : BaseMemOpClusterMutation(tii, tri, false) {}
1560 };
1561 
1562 class LoadClusterMutation : public BaseMemOpClusterMutation {
1563 public:
1564   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1565       : BaseMemOpClusterMutation(tii, tri, true) {}
1566 };
1567 
1568 } // end anonymous namespace
1569 
1570 namespace llvm {
1571 
1572 std::unique_ptr<ScheduleDAGMutation>
1573 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1574                              const TargetRegisterInfo *TRI) {
1575   return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI)
1576                             : nullptr;
1577 }
1578 
1579 std::unique_ptr<ScheduleDAGMutation>
1580 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1581                               const TargetRegisterInfo *TRI) {
1582   return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI)
1583                             : nullptr;
1584 }
1585 
1586 } // end namespace llvm
1587 
1588 // Sorting all the loads/stores first, then for each load/store, checking the
1589 // following load/store one by one, until reach the first non-dependent one and
1590 // call target hook to see if they can cluster.
1591 // If FastCluster is enabled, we assume that, all the loads/stores have been
1592 // preprocessed and now, they didn't have dependencies on each other.
1593 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1594     ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster,
1595     ScheduleDAGInstrs *DAG) {
1596   // Keep track of the current cluster length and bytes for each SUnit.
1597   DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo;
1598 
1599   // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to
1600   // cluster mem ops collected within `MemOpRecords` array.
1601   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1602     // Decision to cluster mem ops is taken based on target dependent logic
1603     auto MemOpa = MemOpRecords[Idx];
1604 
1605     // Seek for the next load/store to do the cluster.
1606     unsigned NextIdx = Idx + 1;
1607     for (; NextIdx < End; ++NextIdx)
1608       // Skip if MemOpb has been clustered already or has dependency with
1609       // MemOpa.
1610       if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) &&
1611           (FastCluster ||
1612            (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) &&
1613             !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU))))
1614         break;
1615     if (NextIdx == End)
1616       continue;
1617 
1618     auto MemOpb = MemOpRecords[NextIdx];
1619     unsigned ClusterLength = 2;
1620     unsigned CurrentClusterBytes = MemOpa.Width + MemOpb.Width;
1621     if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) {
1622       ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1;
1623       CurrentClusterBytes =
1624           SUnit2ClusterInfo[MemOpa.SU->NodeNum].second + MemOpb.Width;
1625     }
1626 
1627     if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpb.BaseOps, ClusterLength,
1628                                   CurrentClusterBytes))
1629       continue;
1630 
1631     SUnit *SUa = MemOpa.SU;
1632     SUnit *SUb = MemOpb.SU;
1633     if (SUa->NodeNum > SUb->NodeNum)
1634       std::swap(SUa, SUb);
1635 
1636     // FIXME: Is this check really required?
1637     if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster)))
1638       continue;
1639 
1640     LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1641                       << SUb->NodeNum << ")\n");
1642     ++NumClustered;
1643 
1644     if (IsLoad) {
1645       // Copy successor edges from SUa to SUb. Interleaving computation
1646       // dependent on SUa can prevent load combining due to register reuse.
1647       // Predecessor edges do not need to be copied from SUb to SUa since
1648       // nearby loads should have effectively the same inputs.
1649       for (const SDep &Succ : SUa->Succs) {
1650         if (Succ.getSUnit() == SUb)
1651           continue;
1652         LLVM_DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum
1653                           << ")\n");
1654         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1655       }
1656     } else {
1657       // Copy predecessor edges from SUb to SUa to avoid the SUnits that
1658       // SUb dependent on scheduled in-between SUb and SUa. Successor edges
1659       // do not need to be copied from SUa to SUb since no one will depend
1660       // on stores.
1661       // Notice that, we don't need to care about the memory dependency as
1662       // we won't try to cluster them if they have any memory dependency.
1663       for (const SDep &Pred : SUb->Preds) {
1664         if (Pred.getSUnit() == SUa)
1665           continue;
1666         LLVM_DEBUG(dbgs() << "  Copy Pred SU(" << Pred.getSUnit()->NodeNum
1667                           << ")\n");
1668         DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial));
1669       }
1670     }
1671 
1672     SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength,
1673                                              CurrentClusterBytes};
1674 
1675     LLVM_DEBUG(dbgs() << "  Curr cluster length: " << ClusterLength
1676                       << ", Curr cluster bytes: " << CurrentClusterBytes
1677                       << "\n");
1678   }
1679 }
1680 
1681 void BaseMemOpClusterMutation::collectMemOpRecords(
1682     std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) {
1683   for (auto &SU : SUnits) {
1684     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1685         (!IsLoad && !SU.getInstr()->mayStore()))
1686       continue;
1687 
1688     const MachineInstr &MI = *SU.getInstr();
1689     SmallVector<const MachineOperand *, 4> BaseOps;
1690     int64_t Offset;
1691     bool OffsetIsScalable;
1692     unsigned Width;
1693     if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset,
1694                                            OffsetIsScalable, Width, TRI)) {
1695       MemOpRecords.push_back(MemOpInfo(&SU, BaseOps, Offset, Width));
1696 
1697       LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: "
1698                         << Offset << ", OffsetIsScalable: " << OffsetIsScalable
1699                         << ", Width: " << Width << "\n");
1700     }
1701 #ifndef NDEBUG
1702     for (auto *Op : BaseOps)
1703       assert(Op);
1704 #endif
1705   }
1706 }
1707 
1708 bool BaseMemOpClusterMutation::groupMemOps(
1709     ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1710     DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups) {
1711   bool FastCluster =
1712       ForceFastCluster ||
1713       MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold;
1714 
1715   for (const auto &MemOp : MemOps) {
1716     unsigned ChainPredID = DAG->SUnits.size();
1717     if (FastCluster) {
1718       for (const SDep &Pred : MemOp.SU->Preds) {
1719         // We only want to cluster the mem ops that have the same ctrl(non-data)
1720         // pred so that they didn't have ctrl dependency for each other. But for
1721         // store instrs, we can still cluster them if the pred is load instr.
1722         if ((Pred.isCtrl() &&
1723              (IsLoad ||
1724               (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) &&
1725             !Pred.isArtificial()) {
1726           ChainPredID = Pred.getSUnit()->NodeNum;
1727           break;
1728         }
1729       }
1730     } else
1731       ChainPredID = 0;
1732 
1733     Groups[ChainPredID].push_back(MemOp);
1734   }
1735   return FastCluster;
1736 }
1737 
1738 /// Callback from DAG postProcessing to create cluster edges for loads/stores.
1739 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
1740   // Collect all the clusterable loads/stores
1741   SmallVector<MemOpInfo, 32> MemOpRecords;
1742   collectMemOpRecords(DAG->SUnits, MemOpRecords);
1743 
1744   if (MemOpRecords.size() < 2)
1745     return;
1746 
1747   // Put the loads/stores without dependency into the same group with some
1748   // heuristic if the DAG is too complex to avoid compiling time blow up.
1749   // Notice that, some fusion pair could be lost with this.
1750   DenseMap<unsigned, SmallVector<MemOpInfo, 32>> Groups;
1751   bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups);
1752 
1753   for (auto &Group : Groups) {
1754     // Sorting the loads/stores, so that, we can stop the cluster as early as
1755     // possible.
1756     llvm::sort(Group.second);
1757 
1758     // Trying to cluster all the neighboring loads/stores.
1759     clusterNeighboringMemOps(Group.second, FastCluster, DAG);
1760   }
1761 }
1762 
1763 //===----------------------------------------------------------------------===//
1764 // CopyConstrain - DAG post-processing to encourage copy elimination.
1765 //===----------------------------------------------------------------------===//
1766 
1767 namespace {
1768 
1769 /// Post-process the DAG to create weak edges from all uses of a copy to
1770 /// the one use that defines the copy's source vreg, most likely an induction
1771 /// variable increment.
1772 class CopyConstrain : public ScheduleDAGMutation {
1773   // Transient state.
1774   SlotIndex RegionBeginIdx;
1775 
1776   // RegionEndIdx is the slot index of the last non-debug instruction in the
1777   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1778   SlotIndex RegionEndIdx;
1779 
1780 public:
1781   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1782 
1783   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1784 
1785 protected:
1786   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1787 };
1788 
1789 } // end anonymous namespace
1790 
1791 namespace llvm {
1792 
1793 std::unique_ptr<ScheduleDAGMutation>
1794 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1795                                const TargetRegisterInfo *TRI) {
1796   return std::make_unique<CopyConstrain>(TII, TRI);
1797 }
1798 
1799 } // end namespace llvm
1800 
1801 /// constrainLocalCopy handles two possibilities:
1802 /// 1) Local src:
1803 /// I0:     = dst
1804 /// I1: src = ...
1805 /// I2:     = dst
1806 /// I3: dst = src (copy)
1807 /// (create pred->succ edges I0->I1, I2->I1)
1808 ///
1809 /// 2) Local copy:
1810 /// I0: dst = src (copy)
1811 /// I1:     = dst
1812 /// I2: src = ...
1813 /// I3:     = dst
1814 /// (create pred->succ edges I1->I2, I3->I2)
1815 ///
1816 /// Although the MachineScheduler is currently constrained to single blocks,
1817 /// this algorithm should handle extended blocks. An EBB is a set of
1818 /// contiguously numbered blocks such that the previous block in the EBB is
1819 /// always the single predecessor.
1820 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1821   LiveIntervals *LIS = DAG->getLIS();
1822   MachineInstr *Copy = CopySU->getInstr();
1823 
1824   // Check for pure vreg copies.
1825   const MachineOperand &SrcOp = Copy->getOperand(1);
1826   Register SrcReg = SrcOp.getReg();
1827   if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1828     return;
1829 
1830   const MachineOperand &DstOp = Copy->getOperand(0);
1831   Register DstReg = DstOp.getReg();
1832   if (!Register::isVirtualRegister(DstReg) || DstOp.isDead())
1833     return;
1834 
1835   // Check if either the dest or source is local. If it's live across a back
1836   // edge, it's not local. Note that if both vregs are live across the back
1837   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1838   // If both the copy's source and dest are local live intervals, then we
1839   // should treat the dest as the global for the purpose of adding
1840   // constraints. This adds edges from source's other uses to the copy.
1841   unsigned LocalReg = SrcReg;
1842   unsigned GlobalReg = DstReg;
1843   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1844   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1845     LocalReg = DstReg;
1846     GlobalReg = SrcReg;
1847     LocalLI = &LIS->getInterval(LocalReg);
1848     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1849       return;
1850   }
1851   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1852 
1853   // Find the global segment after the start of the local LI.
1854   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1855   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1856   // local live range. We could create edges from other global uses to the local
1857   // start, but the coalescer should have already eliminated these cases, so
1858   // don't bother dealing with it.
1859   if (GlobalSegment == GlobalLI->end())
1860     return;
1861 
1862   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1863   // returned the next global segment. But if GlobalSegment overlaps with
1864   // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
1865   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1866   if (GlobalSegment->contains(LocalLI->beginIndex()))
1867     ++GlobalSegment;
1868 
1869   if (GlobalSegment == GlobalLI->end())
1870     return;
1871 
1872   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1873   if (GlobalSegment != GlobalLI->begin()) {
1874     // Two address defs have no hole.
1875     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1876                                GlobalSegment->start)) {
1877       return;
1878     }
1879     // If the prior global segment may be defined by the same two-address
1880     // instruction that also defines LocalLI, then can't make a hole here.
1881     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1882                                LocalLI->beginIndex())) {
1883       return;
1884     }
1885     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1886     // it would be a disconnected component in the live range.
1887     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1888            "Disconnected LRG within the scheduling region.");
1889   }
1890   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1891   if (!GlobalDef)
1892     return;
1893 
1894   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1895   if (!GlobalSU)
1896     return;
1897 
1898   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1899   // constraining the uses of the last local def to precede GlobalDef.
1900   SmallVector<SUnit*,8> LocalUses;
1901   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1902   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1903   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1904   for (const SDep &Succ : LastLocalSU->Succs) {
1905     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1906       continue;
1907     if (Succ.getSUnit() == GlobalSU)
1908       continue;
1909     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1910       return;
1911     LocalUses.push_back(Succ.getSUnit());
1912   }
1913   // Open the top of the GlobalLI hole by constraining any earlier global uses
1914   // to precede the start of LocalLI.
1915   SmallVector<SUnit*,8> GlobalUses;
1916   MachineInstr *FirstLocalDef =
1917     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1918   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1919   for (const SDep &Pred : GlobalSU->Preds) {
1920     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1921       continue;
1922     if (Pred.getSUnit() == FirstLocalSU)
1923       continue;
1924     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1925       return;
1926     GlobalUses.push_back(Pred.getSUnit());
1927   }
1928   LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1929   // Add the weak edges.
1930   for (SUnit *LU : LocalUses) {
1931     LLVM_DEBUG(dbgs() << "  Local use SU(" << LU->NodeNum << ") -> SU("
1932                       << GlobalSU->NodeNum << ")\n");
1933     DAG->addEdge(GlobalSU, SDep(LU, SDep::Weak));
1934   }
1935   for (SUnit *GU : GlobalUses) {
1936     LLVM_DEBUG(dbgs() << "  Global use SU(" << GU->NodeNum << ") -> SU("
1937                       << FirstLocalSU->NodeNum << ")\n");
1938     DAG->addEdge(FirstLocalSU, SDep(GU, SDep::Weak));
1939   }
1940 }
1941 
1942 /// Callback from DAG postProcessing to create weak edges to encourage
1943 /// copy elimination.
1944 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1945   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1946   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1947 
1948   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1949   if (FirstPos == DAG->end())
1950     return;
1951   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1952   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1953       *priorNonDebug(DAG->end(), DAG->begin()));
1954 
1955   for (SUnit &SU : DAG->SUnits) {
1956     if (!SU.getInstr()->isCopy())
1957       continue;
1958 
1959     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1960   }
1961 }
1962 
1963 //===----------------------------------------------------------------------===//
1964 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1965 // and possibly other custom schedulers.
1966 //===----------------------------------------------------------------------===//
1967 
1968 static const unsigned InvalidCycle = ~0U;
1969 
1970 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1971 
1972 /// Given a Count of resource usage and a Latency value, return true if a
1973 /// SchedBoundary becomes resource limited.
1974 /// If we are checking after scheduling a node, we should return true when
1975 /// we just reach the resource limit.
1976 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1977                                unsigned Latency, bool AfterSchedNode) {
1978   int ResCntFactor = (int)(Count - (Latency * LFactor));
1979   if (AfterSchedNode)
1980     return ResCntFactor >= (int)LFactor;
1981   else
1982     return ResCntFactor > (int)LFactor;
1983 }
1984 
1985 void SchedBoundary::reset() {
1986   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1987   // Destroying and reconstructing it is very expensive though. So keep
1988   // invalid, placeholder HazardRecs.
1989   if (HazardRec && HazardRec->isEnabled()) {
1990     delete HazardRec;
1991     HazardRec = nullptr;
1992   }
1993   Available.clear();
1994   Pending.clear();
1995   CheckPending = false;
1996   CurrCycle = 0;
1997   CurrMOps = 0;
1998   MinReadyCycle = std::numeric_limits<unsigned>::max();
1999   ExpectedLatency = 0;
2000   DependentLatency = 0;
2001   RetiredMOps = 0;
2002   MaxExecutedResCount = 0;
2003   ZoneCritResIdx = 0;
2004   IsResourceLimited = false;
2005   ReservedCycles.clear();
2006   ReservedCyclesIndex.clear();
2007   ResourceGroupSubUnitMasks.clear();
2008 #ifndef NDEBUG
2009   // Track the maximum number of stall cycles that could arise either from the
2010   // latency of a DAG edge or the number of cycles that a processor resource is
2011   // reserved (SchedBoundary::ReservedCycles).
2012   MaxObservedStall = 0;
2013 #endif
2014   // Reserve a zero-count for invalid CritResIdx.
2015   ExecutedResCounts.resize(1);
2016   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
2017 }
2018 
2019 void SchedRemainder::
2020 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
2021   reset();
2022   if (!SchedModel->hasInstrSchedModel())
2023     return;
2024   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
2025   for (SUnit &SU : DAG->SUnits) {
2026     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
2027     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
2028       * SchedModel->getMicroOpFactor();
2029     for (TargetSchedModel::ProcResIter
2030            PI = SchedModel->getWriteProcResBegin(SC),
2031            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2032       unsigned PIdx = PI->ProcResourceIdx;
2033       unsigned Factor = SchedModel->getResourceFactor(PIdx);
2034       RemainingCounts[PIdx] += (Factor * PI->Cycles);
2035     }
2036   }
2037 }
2038 
2039 void SchedBoundary::
2040 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
2041   reset();
2042   DAG = dag;
2043   SchedModel = smodel;
2044   Rem = rem;
2045   if (SchedModel->hasInstrSchedModel()) {
2046     unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
2047     ReservedCyclesIndex.resize(ResourceCount);
2048     ExecutedResCounts.resize(ResourceCount);
2049     ResourceGroupSubUnitMasks.resize(ResourceCount, APInt(ResourceCount, 0));
2050     unsigned NumUnits = 0;
2051 
2052     for (unsigned i = 0; i < ResourceCount; ++i) {
2053       ReservedCyclesIndex[i] = NumUnits;
2054       NumUnits += SchedModel->getProcResource(i)->NumUnits;
2055       if (isUnbufferedGroup(i)) {
2056         auto SubUnits = SchedModel->getProcResource(i)->SubUnitsIdxBegin;
2057         for (unsigned U = 0, UE = SchedModel->getProcResource(i)->NumUnits;
2058              U != UE; ++U)
2059           ResourceGroupSubUnitMasks[i].setBit(SubUnits[U]);
2060       }
2061     }
2062 
2063     ReservedCycles.resize(NumUnits, InvalidCycle);
2064   }
2065 }
2066 
2067 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
2068 /// these "soft stalls" differently than the hard stall cycles based on CPU
2069 /// resources and computed by checkHazard(). A fully in-order model
2070 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
2071 /// available for scheduling until they are ready. However, a weaker in-order
2072 /// model may use this for heuristics. For example, if a processor has in-order
2073 /// behavior when reading certain resources, this may come into play.
2074 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
2075   if (!SU->isUnbuffered)
2076     return 0;
2077 
2078   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2079   if (ReadyCycle > CurrCycle)
2080     return ReadyCycle - CurrCycle;
2081   return 0;
2082 }
2083 
2084 /// Compute the next cycle at which the given processor resource unit
2085 /// can be scheduled.
2086 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx,
2087                                                        unsigned Cycles) {
2088   unsigned NextUnreserved = ReservedCycles[InstanceIdx];
2089   // If this resource has never been used, always return cycle zero.
2090   if (NextUnreserved == InvalidCycle)
2091     return 0;
2092   // For bottom-up scheduling add the cycles needed for the current operation.
2093   if (!isTop())
2094     NextUnreserved += Cycles;
2095   return NextUnreserved;
2096 }
2097 
2098 /// Compute the next cycle at which the given processor resource can be
2099 /// scheduled.  Returns the next cycle and the index of the processor resource
2100 /// instance in the reserved cycles vector.
2101 std::pair<unsigned, unsigned>
2102 SchedBoundary::getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx,
2103                                     unsigned Cycles) {
2104 
2105   unsigned MinNextUnreserved = InvalidCycle;
2106   unsigned InstanceIdx = 0;
2107   unsigned StartIndex = ReservedCyclesIndex[PIdx];
2108   unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
2109   assert(NumberOfInstances > 0 &&
2110          "Cannot have zero instances of a ProcResource");
2111 
2112   if (isUnbufferedGroup(PIdx)) {
2113     // If any subunits are used by the instruction, report that the resource
2114     // group is available at 0, effectively removing the group record from
2115     // hazarding and basing the hazarding decisions on the subunit records.
2116     // Otherwise, choose the first available instance from among the subunits.
2117     // Specifications which assign cycles to both the subunits and the group or
2118     // which use an unbuffered group with buffered subunits will appear to
2119     // schedule strangely. In the first case, the additional cycles for the
2120     // group will be ignored.  In the second, the group will be ignored
2121     // entirely.
2122     for (const MCWriteProcResEntry &PE :
2123          make_range(SchedModel->getWriteProcResBegin(SC),
2124                     SchedModel->getWriteProcResEnd(SC)))
2125       if (ResourceGroupSubUnitMasks[PIdx][PE.ProcResourceIdx])
2126         return std::make_pair(0u, StartIndex);
2127 
2128     auto SubUnits = SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin;
2129     for (unsigned I = 0, End = NumberOfInstances; I < End; ++I) {
2130       unsigned NextUnreserved, NextInstanceIdx;
2131       std::tie(NextUnreserved, NextInstanceIdx) =
2132           getNextResourceCycle(SC, SubUnits[I], Cycles);
2133       if (MinNextUnreserved > NextUnreserved) {
2134         InstanceIdx = NextInstanceIdx;
2135         MinNextUnreserved = NextUnreserved;
2136       }
2137     }
2138     return std::make_pair(MinNextUnreserved, InstanceIdx);
2139   }
2140 
2141   for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
2142        ++I) {
2143     unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles);
2144     if (MinNextUnreserved > NextUnreserved) {
2145       InstanceIdx = I;
2146       MinNextUnreserved = NextUnreserved;
2147     }
2148   }
2149   return std::make_pair(MinNextUnreserved, InstanceIdx);
2150 }
2151 
2152 /// Does this SU have a hazard within the current instruction group.
2153 ///
2154 /// The scheduler supports two modes of hazard recognition. The first is the
2155 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
2156 /// supports highly complicated in-order reservation tables
2157 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
2158 ///
2159 /// The second is a streamlined mechanism that checks for hazards based on
2160 /// simple counters that the scheduler itself maintains. It explicitly checks
2161 /// for instruction dispatch limitations, including the number of micro-ops that
2162 /// can dispatch per cycle.
2163 ///
2164 /// TODO: Also check whether the SU must start a new group.
2165 bool SchedBoundary::checkHazard(SUnit *SU) {
2166   if (HazardRec->isEnabled()
2167       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
2168     return true;
2169   }
2170 
2171   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
2172   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
2173     LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
2174                       << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
2175     return true;
2176   }
2177 
2178   if (CurrMOps > 0 &&
2179       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
2180        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
2181     LLVM_DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
2182                       << (isTop() ? "begin" : "end") << " group\n");
2183     return true;
2184   }
2185 
2186   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
2187     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2188     for (const MCWriteProcResEntry &PE :
2189           make_range(SchedModel->getWriteProcResBegin(SC),
2190                      SchedModel->getWriteProcResEnd(SC))) {
2191       unsigned ResIdx = PE.ProcResourceIdx;
2192       unsigned Cycles = PE.Cycles;
2193       unsigned NRCycle, InstanceIdx;
2194       std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(SC, ResIdx, Cycles);
2195       if (NRCycle > CurrCycle) {
2196 #ifndef NDEBUG
2197         MaxObservedStall = std::max(Cycles, MaxObservedStall);
2198 #endif
2199         LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
2200                           << SchedModel->getResourceName(ResIdx)
2201                           << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx]  << ']'
2202                           << "=" << NRCycle << "c\n");
2203         return true;
2204       }
2205     }
2206   }
2207   return false;
2208 }
2209 
2210 // Find the unscheduled node in ReadySUs with the highest latency.
2211 unsigned SchedBoundary::
2212 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
2213   SUnit *LateSU = nullptr;
2214   unsigned RemLatency = 0;
2215   for (SUnit *SU : ReadySUs) {
2216     unsigned L = getUnscheduledLatency(SU);
2217     if (L > RemLatency) {
2218       RemLatency = L;
2219       LateSU = SU;
2220     }
2221   }
2222   if (LateSU) {
2223     LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2224                       << LateSU->NodeNum << ") " << RemLatency << "c\n");
2225   }
2226   return RemLatency;
2227 }
2228 
2229 // Count resources in this zone and the remaining unscheduled
2230 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2231 // resource index, or zero if the zone is issue limited.
2232 unsigned SchedBoundary::
2233 getOtherResourceCount(unsigned &OtherCritIdx) {
2234   OtherCritIdx = 0;
2235   if (!SchedModel->hasInstrSchedModel())
2236     return 0;
2237 
2238   unsigned OtherCritCount = Rem->RemIssueCount
2239     + (RetiredMOps * SchedModel->getMicroOpFactor());
2240   LLVM_DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2241                     << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2242   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2243        PIdx != PEnd; ++PIdx) {
2244     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2245     if (OtherCount > OtherCritCount) {
2246       OtherCritCount = OtherCount;
2247       OtherCritIdx = PIdx;
2248     }
2249   }
2250   if (OtherCritIdx) {
2251     LLVM_DEBUG(
2252         dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2253                << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2254                << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2255   }
2256   return OtherCritCount;
2257 }
2258 
2259 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue,
2260                                 unsigned Idx) {
2261   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2262 
2263 #ifndef NDEBUG
2264   // ReadyCycle was been bumped up to the CurrCycle when this node was
2265   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2266   // scheduling, so may now be greater than ReadyCycle.
2267   if (ReadyCycle > CurrCycle)
2268     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2269 #endif
2270 
2271   if (ReadyCycle < MinReadyCycle)
2272     MinReadyCycle = ReadyCycle;
2273 
2274   // Check for interlocks first. For the purpose of other heuristics, an
2275   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2276   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2277   bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) ||
2278                         checkHazard(SU) || (Available.size() >= ReadyListLimit);
2279 
2280   if (!HazardDetected) {
2281     Available.push(SU);
2282 
2283     if (InPQueue)
2284       Pending.remove(Pending.begin() + Idx);
2285     return;
2286   }
2287 
2288   if (!InPQueue)
2289     Pending.push(SU);
2290 }
2291 
2292 /// Move the boundary of scheduled code by one cycle.
2293 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2294   if (SchedModel->getMicroOpBufferSize() == 0) {
2295     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2296            "MinReadyCycle uninitialized");
2297     if (MinReadyCycle > NextCycle)
2298       NextCycle = MinReadyCycle;
2299   }
2300   // Update the current micro-ops, which will issue in the next cycle.
2301   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2302   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2303 
2304   // Decrement DependentLatency based on the next cycle.
2305   if ((NextCycle - CurrCycle) > DependentLatency)
2306     DependentLatency = 0;
2307   else
2308     DependentLatency -= (NextCycle - CurrCycle);
2309 
2310   if (!HazardRec->isEnabled()) {
2311     // Bypass HazardRec virtual calls.
2312     CurrCycle = NextCycle;
2313   } else {
2314     // Bypass getHazardType calls in case of long latency.
2315     for (; CurrCycle != NextCycle; ++CurrCycle) {
2316       if (isTop())
2317         HazardRec->AdvanceCycle();
2318       else
2319         HazardRec->RecedeCycle();
2320     }
2321   }
2322   CheckPending = true;
2323   IsResourceLimited =
2324       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2325                          getScheduledLatency(), true);
2326 
2327   LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2328                     << '\n');
2329 }
2330 
2331 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2332   ExecutedResCounts[PIdx] += Count;
2333   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2334     MaxExecutedResCount = ExecutedResCounts[PIdx];
2335 }
2336 
2337 /// Add the given processor resource to this scheduled zone.
2338 ///
2339 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2340 /// during which this resource is consumed.
2341 ///
2342 /// \return the next cycle at which the instruction may execute without
2343 /// oversubscribing resources.
2344 unsigned SchedBoundary::countResource(const MCSchedClassDesc *SC, unsigned PIdx,
2345                                       unsigned Cycles, unsigned NextCycle) {
2346   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2347   unsigned Count = Factor * Cycles;
2348   LLVM_DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) << " +"
2349                     << Cycles << "x" << Factor << "u\n");
2350 
2351   // Update Executed resources counts.
2352   incExecutedResources(PIdx, Count);
2353   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2354   Rem->RemainingCounts[PIdx] -= Count;
2355 
2356   // Check if this resource exceeds the current critical resource. If so, it
2357   // becomes the critical resource.
2358   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2359     ZoneCritResIdx = PIdx;
2360     LLVM_DEBUG(dbgs() << "  *** Critical resource "
2361                       << SchedModel->getResourceName(PIdx) << ": "
2362                       << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2363                       << "c\n");
2364   }
2365   // For reserved resources, record the highest cycle using the resource.
2366   unsigned NextAvailable, InstanceIdx;
2367   std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(SC, PIdx, Cycles);
2368   if (NextAvailable > CurrCycle) {
2369     LLVM_DEBUG(dbgs() << "  Resource conflict: "
2370                       << SchedModel->getResourceName(PIdx)
2371                       << '[' << InstanceIdx - ReservedCyclesIndex[PIdx]  << ']'
2372                       << " reserved until @" << NextAvailable << "\n");
2373   }
2374   return NextAvailable;
2375 }
2376 
2377 /// Move the boundary of scheduled code by one SUnit.
2378 void SchedBoundary::bumpNode(SUnit *SU) {
2379   // Update the reservation table.
2380   if (HazardRec->isEnabled()) {
2381     if (!isTop() && SU->isCall) {
2382       // Calls are scheduled with their preceding instructions. For bottom-up
2383       // scheduling, clear the pipeline state before emitting.
2384       HazardRec->Reset();
2385     }
2386     HazardRec->EmitInstruction(SU);
2387     // Scheduling an instruction may have made pending instructions available.
2388     CheckPending = true;
2389   }
2390   // checkHazard should prevent scheduling multiple instructions per cycle that
2391   // exceed the issue width.
2392   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2393   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2394   assert(
2395       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2396       "Cannot schedule this instruction's MicroOps in the current cycle.");
2397 
2398   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2399   LLVM_DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2400 
2401   unsigned NextCycle = CurrCycle;
2402   switch (SchedModel->getMicroOpBufferSize()) {
2403   case 0:
2404     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2405     break;
2406   case 1:
2407     if (ReadyCycle > NextCycle) {
2408       NextCycle = ReadyCycle;
2409       LLVM_DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2410     }
2411     break;
2412   default:
2413     // We don't currently model the OOO reorder buffer, so consider all
2414     // scheduled MOps to be "retired". We do loosely model in-order resource
2415     // latency. If this instruction uses an in-order resource, account for any
2416     // likely stall cycles.
2417     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2418       NextCycle = ReadyCycle;
2419     break;
2420   }
2421   RetiredMOps += IncMOps;
2422 
2423   // Update resource counts and critical resource.
2424   if (SchedModel->hasInstrSchedModel()) {
2425     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2426     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2427     Rem->RemIssueCount -= DecRemIssue;
2428     if (ZoneCritResIdx) {
2429       // Scale scheduled micro-ops for comparing with the critical resource.
2430       unsigned ScaledMOps =
2431         RetiredMOps * SchedModel->getMicroOpFactor();
2432 
2433       // If scaled micro-ops are now more than the previous critical resource by
2434       // a full cycle, then micro-ops issue becomes critical.
2435       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2436           >= (int)SchedModel->getLatencyFactor()) {
2437         ZoneCritResIdx = 0;
2438         LLVM_DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2439                           << ScaledMOps / SchedModel->getLatencyFactor()
2440                           << "c\n");
2441       }
2442     }
2443     for (TargetSchedModel::ProcResIter
2444            PI = SchedModel->getWriteProcResBegin(SC),
2445            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2446       unsigned RCycle =
2447         countResource(SC, PI->ProcResourceIdx, PI->Cycles, NextCycle);
2448       if (RCycle > NextCycle)
2449         NextCycle = RCycle;
2450     }
2451     if (SU->hasReservedResource) {
2452       // For reserved resources, record the highest cycle using the resource.
2453       // For top-down scheduling, this is the cycle in which we schedule this
2454       // instruction plus the number of cycles the operations reserves the
2455       // resource. For bottom-up is it simply the instruction's cycle.
2456       for (TargetSchedModel::ProcResIter
2457              PI = SchedModel->getWriteProcResBegin(SC),
2458              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2459         unsigned PIdx = PI->ProcResourceIdx;
2460         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2461           unsigned ReservedUntil, InstanceIdx;
2462           std::tie(ReservedUntil, InstanceIdx) =
2463               getNextResourceCycle(SC, PIdx, 0);
2464           if (isTop()) {
2465             ReservedCycles[InstanceIdx] =
2466                 std::max(ReservedUntil, NextCycle + PI->Cycles);
2467           } else
2468             ReservedCycles[InstanceIdx] = NextCycle;
2469         }
2470       }
2471     }
2472   }
2473   // Update ExpectedLatency and DependentLatency.
2474   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2475   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2476   if (SU->getDepth() > TopLatency) {
2477     TopLatency = SU->getDepth();
2478     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " TopLatency SU("
2479                       << SU->NodeNum << ") " << TopLatency << "c\n");
2480   }
2481   if (SU->getHeight() > BotLatency) {
2482     BotLatency = SU->getHeight();
2483     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " BotLatency SU("
2484                       << SU->NodeNum << ") " << BotLatency << "c\n");
2485   }
2486   // If we stall for any reason, bump the cycle.
2487   if (NextCycle > CurrCycle)
2488     bumpCycle(NextCycle);
2489   else
2490     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2491     // resource limited. If a stall occurred, bumpCycle does this.
2492     IsResourceLimited =
2493         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2494                            getScheduledLatency(), true);
2495 
2496   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2497   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2498   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2499   // bump the cycle to avoid uselessly checking everything in the readyQ.
2500   CurrMOps += IncMOps;
2501 
2502   // Bump the cycle count for issue group constraints.
2503   // This must be done after NextCycle has been adjust for all other stalls.
2504   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2505   // currCycle to X.
2506   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2507       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2508     LLVM_DEBUG(dbgs() << "  Bump cycle to " << (isTop() ? "end" : "begin")
2509                       << " group\n");
2510     bumpCycle(++NextCycle);
2511   }
2512 
2513   while (CurrMOps >= SchedModel->getIssueWidth()) {
2514     LLVM_DEBUG(dbgs() << "  *** Max MOps " << CurrMOps << " at cycle "
2515                       << CurrCycle << '\n');
2516     bumpCycle(++NextCycle);
2517   }
2518   LLVM_DEBUG(dumpScheduledState());
2519 }
2520 
2521 /// Release pending ready nodes in to the available queue. This makes them
2522 /// visible to heuristics.
2523 void SchedBoundary::releasePending() {
2524   // If the available queue is empty, it is safe to reset MinReadyCycle.
2525   if (Available.empty())
2526     MinReadyCycle = std::numeric_limits<unsigned>::max();
2527 
2528   // Check to see if any of the pending instructions are ready to issue.  If
2529   // so, add them to the available queue.
2530   for (unsigned I = 0, E = Pending.size(); I < E; ++I) {
2531     SUnit *SU = *(Pending.begin() + I);
2532     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2533 
2534     if (ReadyCycle < MinReadyCycle)
2535       MinReadyCycle = ReadyCycle;
2536 
2537     if (Available.size() >= ReadyListLimit)
2538       break;
2539 
2540     releaseNode(SU, ReadyCycle, true, I);
2541     if (E != Pending.size()) {
2542       --I;
2543       --E;
2544     }
2545   }
2546   CheckPending = false;
2547 }
2548 
2549 /// Remove SU from the ready set for this boundary.
2550 void SchedBoundary::removeReady(SUnit *SU) {
2551   if (Available.isInQueue(SU))
2552     Available.remove(Available.find(SU));
2553   else {
2554     assert(Pending.isInQueue(SU) && "bad ready count");
2555     Pending.remove(Pending.find(SU));
2556   }
2557 }
2558 
2559 /// If this queue only has one ready candidate, return it. As a side effect,
2560 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2561 /// one node is ready. If multiple instructions are ready, return NULL.
2562 SUnit *SchedBoundary::pickOnlyChoice() {
2563   if (CheckPending)
2564     releasePending();
2565 
2566   // Defer any ready instrs that now have a hazard.
2567   for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2568     if (checkHazard(*I)) {
2569       Pending.push(*I);
2570       I = Available.remove(I);
2571       continue;
2572     }
2573     ++I;
2574   }
2575   for (unsigned i = 0; Available.empty(); ++i) {
2576 //  FIXME: Re-enable assert once PR20057 is resolved.
2577 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2578 //           "permanent hazard");
2579     (void)i;
2580     bumpCycle(CurrCycle + 1);
2581     releasePending();
2582   }
2583 
2584   LLVM_DEBUG(Pending.dump());
2585   LLVM_DEBUG(Available.dump());
2586 
2587   if (Available.size() == 1)
2588     return *Available.begin();
2589   return nullptr;
2590 }
2591 
2592 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2593 // This is useful information to dump after bumpNode.
2594 // Note that the Queue contents are more useful before pickNodeFromQueue.
2595 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2596   unsigned ResFactor;
2597   unsigned ResCount;
2598   if (ZoneCritResIdx) {
2599     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2600     ResCount = getResourceCount(ZoneCritResIdx);
2601   } else {
2602     ResFactor = SchedModel->getMicroOpFactor();
2603     ResCount = RetiredMOps * ResFactor;
2604   }
2605   unsigned LFactor = SchedModel->getLatencyFactor();
2606   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2607          << "  Retired: " << RetiredMOps;
2608   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2609   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2610          << ResCount / ResFactor << " "
2611          << SchedModel->getResourceName(ZoneCritResIdx)
2612          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2613          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2614          << " limited.\n";
2615 }
2616 #endif
2617 
2618 //===----------------------------------------------------------------------===//
2619 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2620 //===----------------------------------------------------------------------===//
2621 
2622 void GenericSchedulerBase::SchedCandidate::
2623 initResourceDelta(const ScheduleDAGMI *DAG,
2624                   const TargetSchedModel *SchedModel) {
2625   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2626     return;
2627 
2628   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2629   for (TargetSchedModel::ProcResIter
2630          PI = SchedModel->getWriteProcResBegin(SC),
2631          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2632     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2633       ResDelta.CritResources += PI->Cycles;
2634     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2635       ResDelta.DemandedResources += PI->Cycles;
2636   }
2637 }
2638 
2639 /// Compute remaining latency. We need this both to determine whether the
2640 /// overall schedule has become latency-limited and whether the instructions
2641 /// outside this zone are resource or latency limited.
2642 ///
2643 /// The "dependent" latency is updated incrementally during scheduling as the
2644 /// max height/depth of scheduled nodes minus the cycles since it was
2645 /// scheduled:
2646 ///   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2647 ///
2648 /// The "independent" latency is the max ready queue depth:
2649 ///   ILat = max N.depth for N in Available|Pending
2650 ///
2651 /// RemainingLatency is the greater of independent and dependent latency.
2652 ///
2653 /// These computations are expensive, especially in DAGs with many edges, so
2654 /// only do them if necessary.
2655 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2656   unsigned RemLatency = CurrZone.getDependentLatency();
2657   RemLatency = std::max(RemLatency,
2658                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2659   RemLatency = std::max(RemLatency,
2660                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2661   return RemLatency;
2662 }
2663 
2664 /// Returns true if the current cycle plus remaning latency is greater than
2665 /// the critical path in the scheduling region.
2666 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2667                                                SchedBoundary &CurrZone,
2668                                                bool ComputeRemLatency,
2669                                                unsigned &RemLatency) const {
2670   // The current cycle is already greater than the critical path, so we are
2671   // already latency limited and don't need to compute the remaining latency.
2672   if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2673     return true;
2674 
2675   // If we haven't scheduled anything yet, then we aren't latency limited.
2676   if (CurrZone.getCurrCycle() == 0)
2677     return false;
2678 
2679   if (ComputeRemLatency)
2680     RemLatency = computeRemLatency(CurrZone);
2681 
2682   return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2683 }
2684 
2685 /// Set the CandPolicy given a scheduling zone given the current resources and
2686 /// latencies inside and outside the zone.
2687 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2688                                      SchedBoundary &CurrZone,
2689                                      SchedBoundary *OtherZone) {
2690   // Apply preemptive heuristics based on the total latency and resources
2691   // inside and outside this zone. Potential stalls should be considered before
2692   // following this policy.
2693 
2694   // Compute the critical resource outside the zone.
2695   unsigned OtherCritIdx = 0;
2696   unsigned OtherCount =
2697     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2698 
2699   bool OtherResLimited = false;
2700   unsigned RemLatency = 0;
2701   bool RemLatencyComputed = false;
2702   if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
2703     RemLatency = computeRemLatency(CurrZone);
2704     RemLatencyComputed = true;
2705     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2706                                          OtherCount, RemLatency, false);
2707   }
2708 
2709   // Schedule aggressively for latency in PostRA mode. We don't check for
2710   // acyclic latency during PostRA, and highly out-of-order processors will
2711   // skip PostRA scheduling.
2712   if (!OtherResLimited &&
2713       (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
2714                                        RemLatency))) {
2715     Policy.ReduceLatency |= true;
2716     LLVM_DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2717                       << " RemainingLatency " << RemLatency << " + "
2718                       << CurrZone.getCurrCycle() << "c > CritPath "
2719                       << Rem.CriticalPath << "\n");
2720   }
2721   // If the same resource is limiting inside and outside the zone, do nothing.
2722   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2723     return;
2724 
2725   LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
2726     dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2727            << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
2728   } if (OtherResLimited) dbgs()
2729                  << "  RemainingLimit: "
2730                  << SchedModel->getResourceName(OtherCritIdx) << "\n";
2731              if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
2732              << "  Latency limited both directions.\n");
2733 
2734   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2735     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2736 
2737   if (OtherResLimited)
2738     Policy.DemandResIdx = OtherCritIdx;
2739 }
2740 
2741 #ifndef NDEBUG
2742 const char *GenericSchedulerBase::getReasonStr(
2743   GenericSchedulerBase::CandReason Reason) {
2744   switch (Reason) {
2745   case NoCand:         return "NOCAND    ";
2746   case Only1:          return "ONLY1     ";
2747   case PhysReg:        return "PHYS-REG  ";
2748   case RegExcess:      return "REG-EXCESS";
2749   case RegCritical:    return "REG-CRIT  ";
2750   case Stall:          return "STALL     ";
2751   case Cluster:        return "CLUSTER   ";
2752   case Weak:           return "WEAK      ";
2753   case RegMax:         return "REG-MAX   ";
2754   case ResourceReduce: return "RES-REDUCE";
2755   case ResourceDemand: return "RES-DEMAND";
2756   case TopDepthReduce: return "TOP-DEPTH ";
2757   case TopPathReduce:  return "TOP-PATH  ";
2758   case BotHeightReduce:return "BOT-HEIGHT";
2759   case BotPathReduce:  return "BOT-PATH  ";
2760   case NextDefUse:     return "DEF-USE   ";
2761   case NodeOrder:      return "ORDER     ";
2762   };
2763   llvm_unreachable("Unknown reason!");
2764 }
2765 
2766 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2767   PressureChange P;
2768   unsigned ResIdx = 0;
2769   unsigned Latency = 0;
2770   switch (Cand.Reason) {
2771   default:
2772     break;
2773   case RegExcess:
2774     P = Cand.RPDelta.Excess;
2775     break;
2776   case RegCritical:
2777     P = Cand.RPDelta.CriticalMax;
2778     break;
2779   case RegMax:
2780     P = Cand.RPDelta.CurrentMax;
2781     break;
2782   case ResourceReduce:
2783     ResIdx = Cand.Policy.ReduceResIdx;
2784     break;
2785   case ResourceDemand:
2786     ResIdx = Cand.Policy.DemandResIdx;
2787     break;
2788   case TopDepthReduce:
2789     Latency = Cand.SU->getDepth();
2790     break;
2791   case TopPathReduce:
2792     Latency = Cand.SU->getHeight();
2793     break;
2794   case BotHeightReduce:
2795     Latency = Cand.SU->getHeight();
2796     break;
2797   case BotPathReduce:
2798     Latency = Cand.SU->getDepth();
2799     break;
2800   }
2801   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2802   if (P.isValid())
2803     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2804            << ":" << P.getUnitInc() << " ";
2805   else
2806     dbgs() << "      ";
2807   if (ResIdx)
2808     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2809   else
2810     dbgs() << "         ";
2811   if (Latency)
2812     dbgs() << " " << Latency << " cycles ";
2813   else
2814     dbgs() << "          ";
2815   dbgs() << '\n';
2816 }
2817 #endif
2818 
2819 namespace llvm {
2820 /// Return true if this heuristic determines order.
2821 /// TODO: Consider refactor return type of these functions as integer or enum,
2822 /// as we may need to differentiate whether TryCand is better than Cand.
2823 bool tryLess(int TryVal, int CandVal,
2824              GenericSchedulerBase::SchedCandidate &TryCand,
2825              GenericSchedulerBase::SchedCandidate &Cand,
2826              GenericSchedulerBase::CandReason Reason) {
2827   if (TryVal < CandVal) {
2828     TryCand.Reason = Reason;
2829     return true;
2830   }
2831   if (TryVal > CandVal) {
2832     if (Cand.Reason > Reason)
2833       Cand.Reason = Reason;
2834     return true;
2835   }
2836   return false;
2837 }
2838 
2839 bool tryGreater(int TryVal, int CandVal,
2840                 GenericSchedulerBase::SchedCandidate &TryCand,
2841                 GenericSchedulerBase::SchedCandidate &Cand,
2842                 GenericSchedulerBase::CandReason Reason) {
2843   if (TryVal > CandVal) {
2844     TryCand.Reason = Reason;
2845     return true;
2846   }
2847   if (TryVal < CandVal) {
2848     if (Cand.Reason > Reason)
2849       Cand.Reason = Reason;
2850     return true;
2851   }
2852   return false;
2853 }
2854 
2855 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2856                 GenericSchedulerBase::SchedCandidate &Cand,
2857                 SchedBoundary &Zone) {
2858   if (Zone.isTop()) {
2859     // Prefer the candidate with the lesser depth, but only if one of them has
2860     // depth greater than the total latency scheduled so far, otherwise either
2861     // of them could be scheduled now with no stall.
2862     if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) >
2863         Zone.getScheduledLatency()) {
2864       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2865                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2866         return true;
2867     }
2868     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2869                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2870       return true;
2871   } else {
2872     // Prefer the candidate with the lesser height, but only if one of them has
2873     // height greater than the total latency scheduled so far, otherwise either
2874     // of them could be scheduled now with no stall.
2875     if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) >
2876         Zone.getScheduledLatency()) {
2877       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2878                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2879         return true;
2880     }
2881     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2882                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2883       return true;
2884   }
2885   return false;
2886 }
2887 } // end namespace llvm
2888 
2889 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2890   LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2891                     << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2892 }
2893 
2894 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2895   tracePick(Cand.Reason, Cand.AtTop);
2896 }
2897 
2898 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2899   assert(dag->hasVRegLiveness() &&
2900          "(PreRA)GenericScheduler needs vreg liveness");
2901   DAG = static_cast<ScheduleDAGMILive*>(dag);
2902   SchedModel = DAG->getSchedModel();
2903   TRI = DAG->TRI;
2904 
2905   if (RegionPolicy.ComputeDFSResult)
2906     DAG->computeDFSResult();
2907 
2908   Rem.init(DAG, SchedModel);
2909   Top.init(DAG, SchedModel, &Rem);
2910   Bot.init(DAG, SchedModel, &Rem);
2911 
2912   // Initialize resource counts.
2913 
2914   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2915   // are disabled, then these HazardRecs will be disabled.
2916   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2917   if (!Top.HazardRec) {
2918     Top.HazardRec =
2919         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2920             Itin, DAG);
2921   }
2922   if (!Bot.HazardRec) {
2923     Bot.HazardRec =
2924         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2925             Itin, DAG);
2926   }
2927   TopCand.SU = nullptr;
2928   BotCand.SU = nullptr;
2929 }
2930 
2931 /// Initialize the per-region scheduling policy.
2932 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2933                                   MachineBasicBlock::iterator End,
2934                                   unsigned NumRegionInstrs) {
2935   const MachineFunction &MF = *Begin->getMF();
2936   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2937 
2938   // Avoid setting up the register pressure tracker for small regions to save
2939   // compile time. As a rough heuristic, only track pressure when the number of
2940   // schedulable instructions exceeds half the integer register file.
2941   RegionPolicy.ShouldTrackPressure = true;
2942   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2943     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2944     if (TLI->isTypeLegal(LegalIntVT)) {
2945       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2946         TLI->getRegClassFor(LegalIntVT));
2947       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2948     }
2949   }
2950 
2951   // For generic targets, we default to bottom-up, because it's simpler and more
2952   // compile-time optimizations have been implemented in that direction.
2953   RegionPolicy.OnlyBottomUp = true;
2954 
2955   // Allow the subtarget to override default policy.
2956   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2957 
2958   // After subtarget overrides, apply command line options.
2959   if (!EnableRegPressure) {
2960     RegionPolicy.ShouldTrackPressure = false;
2961     RegionPolicy.ShouldTrackLaneMasks = false;
2962   }
2963 
2964   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2965   // e.g. -misched-bottomup=false allows scheduling in both directions.
2966   assert((!ForceTopDown || !ForceBottomUp) &&
2967          "-misched-topdown incompatible with -misched-bottomup");
2968   if (ForceBottomUp.getNumOccurrences() > 0) {
2969     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2970     if (RegionPolicy.OnlyBottomUp)
2971       RegionPolicy.OnlyTopDown = false;
2972   }
2973   if (ForceTopDown.getNumOccurrences() > 0) {
2974     RegionPolicy.OnlyTopDown = ForceTopDown;
2975     if (RegionPolicy.OnlyTopDown)
2976       RegionPolicy.OnlyBottomUp = false;
2977   }
2978 }
2979 
2980 void GenericScheduler::dumpPolicy() const {
2981   // Cannot completely remove virtual function even in release mode.
2982 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2983   dbgs() << "GenericScheduler RegionPolicy: "
2984          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2985          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2986          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2987          << "\n";
2988 #endif
2989 }
2990 
2991 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2992 /// critical path by more cycles than it takes to drain the instruction buffer.
2993 /// We estimate an upper bounds on in-flight instructions as:
2994 ///
2995 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2996 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2997 /// InFlightResources = InFlightIterations * LoopResources
2998 ///
2999 /// TODO: Check execution resources in addition to IssueCount.
3000 void GenericScheduler::checkAcyclicLatency() {
3001   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
3002     return;
3003 
3004   // Scaled number of cycles per loop iteration.
3005   unsigned IterCount =
3006     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
3007              Rem.RemIssueCount);
3008   // Scaled acyclic critical path.
3009   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
3010   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
3011   unsigned InFlightCount =
3012     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
3013   unsigned BufferLimit =
3014     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
3015 
3016   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
3017 
3018   LLVM_DEBUG(
3019       dbgs() << "IssueCycles="
3020              << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
3021              << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
3022              << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
3023              << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
3024              << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
3025       if (Rem.IsAcyclicLatencyLimited) dbgs() << "  ACYCLIC LATENCY LIMIT\n");
3026 }
3027 
3028 void GenericScheduler::registerRoots() {
3029   Rem.CriticalPath = DAG->ExitSU.getDepth();
3030 
3031   // Some roots may not feed into ExitSU. Check all of them in case.
3032   for (const SUnit *SU : Bot.Available) {
3033     if (SU->getDepth() > Rem.CriticalPath)
3034       Rem.CriticalPath = SU->getDepth();
3035   }
3036   LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
3037   if (DumpCriticalPathLength) {
3038     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
3039   }
3040 
3041   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
3042     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
3043     checkAcyclicLatency();
3044   }
3045 }
3046 
3047 namespace llvm {
3048 bool tryPressure(const PressureChange &TryP,
3049                  const PressureChange &CandP,
3050                  GenericSchedulerBase::SchedCandidate &TryCand,
3051                  GenericSchedulerBase::SchedCandidate &Cand,
3052                  GenericSchedulerBase::CandReason Reason,
3053                  const TargetRegisterInfo *TRI,
3054                  const MachineFunction &MF) {
3055   // If one candidate decreases and the other increases, go with it.
3056   // Invalid candidates have UnitInc==0.
3057   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
3058                  Reason)) {
3059     return true;
3060   }
3061   // Do not compare the magnitude of pressure changes between top and bottom
3062   // boundary.
3063   if (Cand.AtTop != TryCand.AtTop)
3064     return false;
3065 
3066   // If both candidates affect the same set in the same boundary, go with the
3067   // smallest increase.
3068   unsigned TryPSet = TryP.getPSetOrMax();
3069   unsigned CandPSet = CandP.getPSetOrMax();
3070   if (TryPSet == CandPSet) {
3071     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
3072                    Reason);
3073   }
3074 
3075   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
3076                                  std::numeric_limits<int>::max();
3077 
3078   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
3079                                    std::numeric_limits<int>::max();
3080 
3081   // If the candidates are decreasing pressure, reverse priority.
3082   if (TryP.getUnitInc() < 0)
3083     std::swap(TryRank, CandRank);
3084   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
3085 }
3086 
3087 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
3088   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
3089 }
3090 
3091 /// Minimize physical register live ranges. Regalloc wants them adjacent to
3092 /// their physreg def/use.
3093 ///
3094 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
3095 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
3096 /// with the operation that produces or consumes the physreg. We'll do this when
3097 /// regalloc has support for parallel copies.
3098 int biasPhysReg(const SUnit *SU, bool isTop) {
3099   const MachineInstr *MI = SU->getInstr();
3100 
3101   if (MI->isCopy()) {
3102     unsigned ScheduledOper = isTop ? 1 : 0;
3103     unsigned UnscheduledOper = isTop ? 0 : 1;
3104     // If we have already scheduled the physreg produce/consumer, immediately
3105     // schedule the copy.
3106     if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg()))
3107       return 1;
3108     // If the physreg is at the boundary, defer it. Otherwise schedule it
3109     // immediately to free the dependent. We can hoist the copy later.
3110     bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
3111     if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg()))
3112       return AtBoundary ? -1 : 1;
3113   }
3114 
3115   if (MI->isMoveImmediate()) {
3116     // If we have a move immediate and all successors have been assigned, bias
3117     // towards scheduling this later. Make sure all register defs are to
3118     // physical registers.
3119     bool DoBias = true;
3120     for (const MachineOperand &Op : MI->defs()) {
3121       if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) {
3122         DoBias = false;
3123         break;
3124       }
3125     }
3126 
3127     if (DoBias)
3128       return isTop ? -1 : 1;
3129   }
3130 
3131   return 0;
3132 }
3133 } // end namespace llvm
3134 
3135 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
3136                                      bool AtTop,
3137                                      const RegPressureTracker &RPTracker,
3138                                      RegPressureTracker &TempTracker) {
3139   Cand.SU = SU;
3140   Cand.AtTop = AtTop;
3141   if (DAG->isTrackingPressure()) {
3142     if (AtTop) {
3143       TempTracker.getMaxDownwardPressureDelta(
3144         Cand.SU->getInstr(),
3145         Cand.RPDelta,
3146         DAG->getRegionCriticalPSets(),
3147         DAG->getRegPressure().MaxSetPressure);
3148     } else {
3149       if (VerifyScheduling) {
3150         TempTracker.getMaxUpwardPressureDelta(
3151           Cand.SU->getInstr(),
3152           &DAG->getPressureDiff(Cand.SU),
3153           Cand.RPDelta,
3154           DAG->getRegionCriticalPSets(),
3155           DAG->getRegPressure().MaxSetPressure);
3156       } else {
3157         RPTracker.getUpwardPressureDelta(
3158           Cand.SU->getInstr(),
3159           DAG->getPressureDiff(Cand.SU),
3160           Cand.RPDelta,
3161           DAG->getRegionCriticalPSets(),
3162           DAG->getRegPressure().MaxSetPressure);
3163       }
3164     }
3165   }
3166   LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
3167              << "  Try  SU(" << Cand.SU->NodeNum << ") "
3168              << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
3169              << Cand.RPDelta.Excess.getUnitInc() << "\n");
3170 }
3171 
3172 /// Apply a set of heuristics to a new candidate. Heuristics are currently
3173 /// hierarchical. This may be more efficient than a graduated cost model because
3174 /// we don't need to evaluate all aspects of the model for each node in the
3175 /// queue. But it's really done to make the heuristics easier to debug and
3176 /// statistically analyze.
3177 ///
3178 /// \param Cand provides the policy and current best candidate.
3179 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3180 /// \param Zone describes the scheduled zone that we are extending, or nullptr
3181 ///             if Cand is from a different zone than TryCand.
3182 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
3183 bool GenericScheduler::tryCandidate(SchedCandidate &Cand,
3184                                     SchedCandidate &TryCand,
3185                                     SchedBoundary *Zone) const {
3186   // Initialize the candidate if needed.
3187   if (!Cand.isValid()) {
3188     TryCand.Reason = NodeOrder;
3189     return true;
3190   }
3191 
3192   // Bias PhysReg Defs and copies to their uses and defined respectively.
3193   if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
3194                  biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
3195     return TryCand.Reason != NoCand;
3196 
3197   // Avoid exceeding the target's limit.
3198   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
3199                                                Cand.RPDelta.Excess,
3200                                                TryCand, Cand, RegExcess, TRI,
3201                                                DAG->MF))
3202     return TryCand.Reason != NoCand;
3203 
3204   // Avoid increasing the max critical pressure in the scheduled region.
3205   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
3206                                                Cand.RPDelta.CriticalMax,
3207                                                TryCand, Cand, RegCritical, TRI,
3208                                                DAG->MF))
3209     return TryCand.Reason != NoCand;
3210 
3211   // We only compare a subset of features when comparing nodes between
3212   // Top and Bottom boundary. Some properties are simply incomparable, in many
3213   // other instances we should only override the other boundary if something
3214   // is a clear good pick on one boundary. Skip heuristics that are more
3215   // "tie-breaking" in nature.
3216   bool SameBoundary = Zone != nullptr;
3217   if (SameBoundary) {
3218     // For loops that are acyclic path limited, aggressively schedule for
3219     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
3220     // heuristics to take precedence.
3221     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
3222         tryLatency(TryCand, Cand, *Zone))
3223       return TryCand.Reason != NoCand;
3224 
3225     // Prioritize instructions that read unbuffered resources by stall cycles.
3226     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
3227                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3228       return TryCand.Reason != NoCand;
3229   }
3230 
3231   // Keep clustered nodes together to encourage downstream peephole
3232   // optimizations which may reduce resource requirements.
3233   //
3234   // This is a best effort to set things up for a post-RA pass. Optimizations
3235   // like generating loads of multiple registers should ideally be done within
3236   // the scheduler pass by combining the loads during DAG postprocessing.
3237   const SUnit *CandNextClusterSU =
3238     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3239   const SUnit *TryCandNextClusterSU =
3240     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3241   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3242                  Cand.SU == CandNextClusterSU,
3243                  TryCand, Cand, Cluster))
3244     return TryCand.Reason != NoCand;
3245 
3246   if (SameBoundary) {
3247     // Weak edges are for clustering and other constraints.
3248     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3249                 getWeakLeft(Cand.SU, Cand.AtTop),
3250                 TryCand, Cand, Weak))
3251       return TryCand.Reason != NoCand;
3252   }
3253 
3254   // Avoid increasing the max pressure of the entire region.
3255   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3256                                                Cand.RPDelta.CurrentMax,
3257                                                TryCand, Cand, RegMax, TRI,
3258                                                DAG->MF))
3259     return TryCand.Reason != NoCand;
3260 
3261   if (SameBoundary) {
3262     // Avoid critical resource consumption and balance the schedule.
3263     TryCand.initResourceDelta(DAG, SchedModel);
3264     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3265                 TryCand, Cand, ResourceReduce))
3266       return TryCand.Reason != NoCand;
3267     if (tryGreater(TryCand.ResDelta.DemandedResources,
3268                    Cand.ResDelta.DemandedResources,
3269                    TryCand, Cand, ResourceDemand))
3270       return TryCand.Reason != NoCand;
3271 
3272     // Avoid serializing long latency dependence chains.
3273     // For acyclic path limited loops, latency was already checked above.
3274     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3275         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3276       return TryCand.Reason != NoCand;
3277 
3278     // Fall through to original instruction order.
3279     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3280         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3281       TryCand.Reason = NodeOrder;
3282       return true;
3283     }
3284   }
3285 
3286   return false;
3287 }
3288 
3289 /// Pick the best candidate from the queue.
3290 ///
3291 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3292 /// DAG building. To adjust for the current scheduling location we need to
3293 /// maintain the number of vreg uses remaining to be top-scheduled.
3294 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3295                                          const CandPolicy &ZonePolicy,
3296                                          const RegPressureTracker &RPTracker,
3297                                          SchedCandidate &Cand) {
3298   // getMaxPressureDelta temporarily modifies the tracker.
3299   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3300 
3301   ReadyQueue &Q = Zone.Available;
3302   for (SUnit *SU : Q) {
3303 
3304     SchedCandidate TryCand(ZonePolicy);
3305     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3306     // Pass SchedBoundary only when comparing nodes from the same boundary.
3307     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3308     if (tryCandidate(Cand, TryCand, ZoneArg)) {
3309       // Initialize resource delta if needed in case future heuristics query it.
3310       if (TryCand.ResDelta == SchedResourceDelta())
3311         TryCand.initResourceDelta(DAG, SchedModel);
3312       Cand.setBest(TryCand);
3313       LLVM_DEBUG(traceCandidate(Cand));
3314     }
3315   }
3316 }
3317 
3318 /// Pick the best candidate node from either the top or bottom queue.
3319 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3320   // Schedule as far as possible in the direction of no choice. This is most
3321   // efficient, but also provides the best heuristics for CriticalPSets.
3322   if (SUnit *SU = Bot.pickOnlyChoice()) {
3323     IsTopNode = false;
3324     tracePick(Only1, false);
3325     return SU;
3326   }
3327   if (SUnit *SU = Top.pickOnlyChoice()) {
3328     IsTopNode = true;
3329     tracePick(Only1, true);
3330     return SU;
3331   }
3332   // Set the bottom-up policy based on the state of the current bottom zone and
3333   // the instructions outside the zone, including the top zone.
3334   CandPolicy BotPolicy;
3335   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3336   // Set the top-down policy based on the state of the current top zone and
3337   // the instructions outside the zone, including the bottom zone.
3338   CandPolicy TopPolicy;
3339   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3340 
3341   // See if BotCand is still valid (because we previously scheduled from Top).
3342   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3343   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3344       BotCand.Policy != BotPolicy) {
3345     BotCand.reset(CandPolicy());
3346     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3347     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3348   } else {
3349     LLVM_DEBUG(traceCandidate(BotCand));
3350 #ifndef NDEBUG
3351     if (VerifyScheduling) {
3352       SchedCandidate TCand;
3353       TCand.reset(CandPolicy());
3354       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3355       assert(TCand.SU == BotCand.SU &&
3356              "Last pick result should correspond to re-picking right now");
3357     }
3358 #endif
3359   }
3360 
3361   // Check if the top Q has a better candidate.
3362   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3363   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3364       TopCand.Policy != TopPolicy) {
3365     TopCand.reset(CandPolicy());
3366     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3367     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3368   } else {
3369     LLVM_DEBUG(traceCandidate(TopCand));
3370 #ifndef NDEBUG
3371     if (VerifyScheduling) {
3372       SchedCandidate TCand;
3373       TCand.reset(CandPolicy());
3374       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3375       assert(TCand.SU == TopCand.SU &&
3376            "Last pick result should correspond to re-picking right now");
3377     }
3378 #endif
3379   }
3380 
3381   // Pick best from BotCand and TopCand.
3382   assert(BotCand.isValid());
3383   assert(TopCand.isValid());
3384   SchedCandidate Cand = BotCand;
3385   TopCand.Reason = NoCand;
3386   if (tryCandidate(Cand, TopCand, nullptr)) {
3387     Cand.setBest(TopCand);
3388     LLVM_DEBUG(traceCandidate(Cand));
3389   }
3390 
3391   IsTopNode = Cand.AtTop;
3392   tracePick(Cand);
3393   return Cand.SU;
3394 }
3395 
3396 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3397 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3398   if (DAG->top() == DAG->bottom()) {
3399     assert(Top.Available.empty() && Top.Pending.empty() &&
3400            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3401     return nullptr;
3402   }
3403   SUnit *SU;
3404   do {
3405     if (RegionPolicy.OnlyTopDown) {
3406       SU = Top.pickOnlyChoice();
3407       if (!SU) {
3408         CandPolicy NoPolicy;
3409         TopCand.reset(NoPolicy);
3410         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3411         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3412         tracePick(TopCand);
3413         SU = TopCand.SU;
3414       }
3415       IsTopNode = true;
3416     } else if (RegionPolicy.OnlyBottomUp) {
3417       SU = Bot.pickOnlyChoice();
3418       if (!SU) {
3419         CandPolicy NoPolicy;
3420         BotCand.reset(NoPolicy);
3421         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3422         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3423         tracePick(BotCand);
3424         SU = BotCand.SU;
3425       }
3426       IsTopNode = false;
3427     } else {
3428       SU = pickNodeBidirectional(IsTopNode);
3429     }
3430   } while (SU->isScheduled);
3431 
3432   if (SU->isTopReady())
3433     Top.removeReady(SU);
3434   if (SU->isBottomReady())
3435     Bot.removeReady(SU);
3436 
3437   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3438                     << *SU->getInstr());
3439   return SU;
3440 }
3441 
3442 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3443   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3444   if (!isTop)
3445     ++InsertPos;
3446   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3447 
3448   // Find already scheduled copies with a single physreg dependence and move
3449   // them just above the scheduled instruction.
3450   for (SDep &Dep : Deps) {
3451     if (Dep.getKind() != SDep::Data ||
3452         !Register::isPhysicalRegister(Dep.getReg()))
3453       continue;
3454     SUnit *DepSU = Dep.getSUnit();
3455     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3456       continue;
3457     MachineInstr *Copy = DepSU->getInstr();
3458     if (!Copy->isCopy() && !Copy->isMoveImmediate())
3459       continue;
3460     LLVM_DEBUG(dbgs() << "  Rescheduling physreg copy ";
3461                DAG->dumpNode(*Dep.getSUnit()));
3462     DAG->moveInstruction(Copy, InsertPos);
3463   }
3464 }
3465 
3466 /// Update the scheduler's state after scheduling a node. This is the same node
3467 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3468 /// update it's state based on the current cycle before MachineSchedStrategy
3469 /// does.
3470 ///
3471 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3472 /// them here. See comments in biasPhysReg.
3473 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3474   if (IsTopNode) {
3475     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3476     Top.bumpNode(SU);
3477     if (SU->hasPhysRegUses)
3478       reschedulePhysReg(SU, true);
3479   } else {
3480     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3481     Bot.bumpNode(SU);
3482     if (SU->hasPhysRegDefs)
3483       reschedulePhysReg(SU, false);
3484   }
3485 }
3486 
3487 /// Create the standard converging machine scheduler. This will be used as the
3488 /// default scheduler if the target does not set a default.
3489 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3490   ScheduleDAGMILive *DAG =
3491       new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C));
3492   // Register DAG post-processors.
3493   //
3494   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3495   // data and pass it to later mutations. Have a single mutation that gathers
3496   // the interesting nodes in one pass.
3497   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3498   return DAG;
3499 }
3500 
3501 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
3502   return createGenericSchedLive(C);
3503 }
3504 
3505 static MachineSchedRegistry
3506 GenericSchedRegistry("converge", "Standard converging scheduler.",
3507                      createConvergingSched);
3508 
3509 //===----------------------------------------------------------------------===//
3510 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3511 //===----------------------------------------------------------------------===//
3512 
3513 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3514   DAG = Dag;
3515   SchedModel = DAG->getSchedModel();
3516   TRI = DAG->TRI;
3517 
3518   Rem.init(DAG, SchedModel);
3519   Top.init(DAG, SchedModel, &Rem);
3520   BotRoots.clear();
3521 
3522   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3523   // or are disabled, then these HazardRecs will be disabled.
3524   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3525   if (!Top.HazardRec) {
3526     Top.HazardRec =
3527         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3528             Itin, DAG);
3529   }
3530 }
3531 
3532 void PostGenericScheduler::registerRoots() {
3533   Rem.CriticalPath = DAG->ExitSU.getDepth();
3534 
3535   // Some roots may not feed into ExitSU. Check all of them in case.
3536   for (const SUnit *SU : BotRoots) {
3537     if (SU->getDepth() > Rem.CriticalPath)
3538       Rem.CriticalPath = SU->getDepth();
3539   }
3540   LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3541   if (DumpCriticalPathLength) {
3542     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3543   }
3544 }
3545 
3546 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3547 ///
3548 /// \param Cand provides the policy and current best candidate.
3549 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3550 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
3551 bool PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3552                                         SchedCandidate &TryCand) {
3553   // Initialize the candidate if needed.
3554   if (!Cand.isValid()) {
3555     TryCand.Reason = NodeOrder;
3556     return true;
3557   }
3558 
3559   // Prioritize instructions that read unbuffered resources by stall cycles.
3560   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3561               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3562     return TryCand.Reason != NoCand;
3563 
3564   // Keep clustered nodes together.
3565   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3566                  Cand.SU == DAG->getNextClusterSucc(),
3567                  TryCand, Cand, Cluster))
3568     return TryCand.Reason != NoCand;
3569 
3570   // Avoid critical resource consumption and balance the schedule.
3571   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3572               TryCand, Cand, ResourceReduce))
3573     return TryCand.Reason != NoCand;
3574   if (tryGreater(TryCand.ResDelta.DemandedResources,
3575                  Cand.ResDelta.DemandedResources,
3576                  TryCand, Cand, ResourceDemand))
3577     return TryCand.Reason != NoCand;
3578 
3579   // Avoid serializing long latency dependence chains.
3580   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3581     return TryCand.Reason != NoCand;
3582   }
3583 
3584   // Fall through to original instruction order.
3585   if (TryCand.SU->NodeNum < Cand.SU->NodeNum) {
3586     TryCand.Reason = NodeOrder;
3587     return true;
3588   }
3589 
3590   return false;
3591 }
3592 
3593 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3594   ReadyQueue &Q = Top.Available;
3595   for (SUnit *SU : Q) {
3596     SchedCandidate TryCand(Cand.Policy);
3597     TryCand.SU = SU;
3598     TryCand.AtTop = true;
3599     TryCand.initResourceDelta(DAG, SchedModel);
3600     if (tryCandidate(Cand, TryCand)) {
3601       Cand.setBest(TryCand);
3602       LLVM_DEBUG(traceCandidate(Cand));
3603     }
3604   }
3605 }
3606 
3607 /// Pick the next node to schedule.
3608 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3609   if (DAG->top() == DAG->bottom()) {
3610     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3611     return nullptr;
3612   }
3613   SUnit *SU;
3614   do {
3615     SU = Top.pickOnlyChoice();
3616     if (SU) {
3617       tracePick(Only1, true);
3618     } else {
3619       CandPolicy NoPolicy;
3620       SchedCandidate TopCand(NoPolicy);
3621       // Set the top-down policy based on the state of the current top zone and
3622       // the instructions outside the zone, including the bottom zone.
3623       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3624       pickNodeFromQueue(TopCand);
3625       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3626       tracePick(TopCand);
3627       SU = TopCand.SU;
3628     }
3629   } while (SU->isScheduled);
3630 
3631   IsTopNode = true;
3632   Top.removeReady(SU);
3633 
3634   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3635                     << *SU->getInstr());
3636   return SU;
3637 }
3638 
3639 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3640 /// scheduled/remaining flags in the DAG nodes.
3641 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3642   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3643   Top.bumpNode(SU);
3644 }
3645 
3646 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3647   return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C),
3648                            /*RemoveKillFlags=*/true);
3649 }
3650 
3651 //===----------------------------------------------------------------------===//
3652 // ILP Scheduler. Currently for experimental analysis of heuristics.
3653 //===----------------------------------------------------------------------===//
3654 
3655 namespace {
3656 
3657 /// Order nodes by the ILP metric.
3658 struct ILPOrder {
3659   const SchedDFSResult *DFSResult = nullptr;
3660   const BitVector *ScheduledTrees = nullptr;
3661   bool MaximizeILP;
3662 
3663   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3664 
3665   /// Apply a less-than relation on node priority.
3666   ///
3667   /// (Return true if A comes after B in the Q.)
3668   bool operator()(const SUnit *A, const SUnit *B) const {
3669     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3670     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3671     if (SchedTreeA != SchedTreeB) {
3672       // Unscheduled trees have lower priority.
3673       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3674         return ScheduledTrees->test(SchedTreeB);
3675 
3676       // Trees with shallower connections have have lower priority.
3677       if (DFSResult->getSubtreeLevel(SchedTreeA)
3678           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3679         return DFSResult->getSubtreeLevel(SchedTreeA)
3680           < DFSResult->getSubtreeLevel(SchedTreeB);
3681       }
3682     }
3683     if (MaximizeILP)
3684       return DFSResult->getILP(A) < DFSResult->getILP(B);
3685     else
3686       return DFSResult->getILP(A) > DFSResult->getILP(B);
3687   }
3688 };
3689 
3690 /// Schedule based on the ILP metric.
3691 class ILPScheduler : public MachineSchedStrategy {
3692   ScheduleDAGMILive *DAG = nullptr;
3693   ILPOrder Cmp;
3694 
3695   std::vector<SUnit*> ReadyQ;
3696 
3697 public:
3698   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3699 
3700   void initialize(ScheduleDAGMI *dag) override {
3701     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3702     DAG = static_cast<ScheduleDAGMILive*>(dag);
3703     DAG->computeDFSResult();
3704     Cmp.DFSResult = DAG->getDFSResult();
3705     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3706     ReadyQ.clear();
3707   }
3708 
3709   void registerRoots() override {
3710     // Restore the heap in ReadyQ with the updated DFS results.
3711     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3712   }
3713 
3714   /// Implement MachineSchedStrategy interface.
3715   /// -----------------------------------------
3716 
3717   /// Callback to select the highest priority node from the ready Q.
3718   SUnit *pickNode(bool &IsTopNode) override {
3719     if (ReadyQ.empty()) return nullptr;
3720     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3721     SUnit *SU = ReadyQ.back();
3722     ReadyQ.pop_back();
3723     IsTopNode = false;
3724     LLVM_DEBUG(dbgs() << "Pick node "
3725                       << "SU(" << SU->NodeNum << ") "
3726                       << " ILP: " << DAG->getDFSResult()->getILP(SU)
3727                       << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
3728                       << " @"
3729                       << DAG->getDFSResult()->getSubtreeLevel(
3730                              DAG->getDFSResult()->getSubtreeID(SU))
3731                       << '\n'
3732                       << "Scheduling " << *SU->getInstr());
3733     return SU;
3734   }
3735 
3736   /// Scheduler callback to notify that a new subtree is scheduled.
3737   void scheduleTree(unsigned SubtreeID) override {
3738     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3739   }
3740 
3741   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3742   /// DFSResults, and resort the priority Q.
3743   void schedNode(SUnit *SU, bool IsTopNode) override {
3744     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3745   }
3746 
3747   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3748 
3749   void releaseBottomNode(SUnit *SU) override {
3750     ReadyQ.push_back(SU);
3751     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3752   }
3753 };
3754 
3755 } // end anonymous namespace
3756 
3757 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3758   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true));
3759 }
3760 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3761   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false));
3762 }
3763 
3764 static MachineSchedRegistry ILPMaxRegistry(
3765   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3766 static MachineSchedRegistry ILPMinRegistry(
3767   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3768 
3769 //===----------------------------------------------------------------------===//
3770 // Machine Instruction Shuffler for Correctness Testing
3771 //===----------------------------------------------------------------------===//
3772 
3773 #ifndef NDEBUG
3774 namespace {
3775 
3776 /// Apply a less-than relation on the node order, which corresponds to the
3777 /// instruction order prior to scheduling. IsReverse implements greater-than.
3778 template<bool IsReverse>
3779 struct SUnitOrder {
3780   bool operator()(SUnit *A, SUnit *B) const {
3781     if (IsReverse)
3782       return A->NodeNum > B->NodeNum;
3783     else
3784       return A->NodeNum < B->NodeNum;
3785   }
3786 };
3787 
3788 /// Reorder instructions as much as possible.
3789 class InstructionShuffler : public MachineSchedStrategy {
3790   bool IsAlternating;
3791   bool IsTopDown;
3792 
3793   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3794   // gives nodes with a higher number higher priority causing the latest
3795   // instructions to be scheduled first.
3796   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3797     TopQ;
3798 
3799   // When scheduling bottom-up, use greater-than as the queue priority.
3800   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3801     BottomQ;
3802 
3803 public:
3804   InstructionShuffler(bool alternate, bool topdown)
3805     : IsAlternating(alternate), IsTopDown(topdown) {}
3806 
3807   void initialize(ScheduleDAGMI*) override {
3808     TopQ.clear();
3809     BottomQ.clear();
3810   }
3811 
3812   /// Implement MachineSchedStrategy interface.
3813   /// -----------------------------------------
3814 
3815   SUnit *pickNode(bool &IsTopNode) override {
3816     SUnit *SU;
3817     if (IsTopDown) {
3818       do {
3819         if (TopQ.empty()) return nullptr;
3820         SU = TopQ.top();
3821         TopQ.pop();
3822       } while (SU->isScheduled);
3823       IsTopNode = true;
3824     } else {
3825       do {
3826         if (BottomQ.empty()) return nullptr;
3827         SU = BottomQ.top();
3828         BottomQ.pop();
3829       } while (SU->isScheduled);
3830       IsTopNode = false;
3831     }
3832     if (IsAlternating)
3833       IsTopDown = !IsTopDown;
3834     return SU;
3835   }
3836 
3837   void schedNode(SUnit *SU, bool IsTopNode) override {}
3838 
3839   void releaseTopNode(SUnit *SU) override {
3840     TopQ.push(SU);
3841   }
3842   void releaseBottomNode(SUnit *SU) override {
3843     BottomQ.push(SU);
3844   }
3845 };
3846 
3847 } // end anonymous namespace
3848 
3849 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3850   bool Alternate = !ForceTopDown && !ForceBottomUp;
3851   bool TopDown = !ForceBottomUp;
3852   assert((TopDown || !ForceTopDown) &&
3853          "-misched-topdown incompatible with -misched-bottomup");
3854   return new ScheduleDAGMILive(
3855       C, std::make_unique<InstructionShuffler>(Alternate, TopDown));
3856 }
3857 
3858 static MachineSchedRegistry ShufflerRegistry(
3859   "shuffle", "Shuffle machine instructions alternating directions",
3860   createInstructionShuffler);
3861 #endif // !NDEBUG
3862 
3863 //===----------------------------------------------------------------------===//
3864 // GraphWriter support for ScheduleDAGMILive.
3865 //===----------------------------------------------------------------------===//
3866 
3867 #ifndef NDEBUG
3868 namespace llvm {
3869 
3870 template<> struct GraphTraits<
3871   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3872 
3873 template<>
3874 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3875   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3876 
3877   static std::string getGraphName(const ScheduleDAG *G) {
3878     return std::string(G->MF.getName());
3879   }
3880 
3881   static bool renderGraphFromBottomUp() {
3882     return true;
3883   }
3884 
3885   static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) {
3886     if (ViewMISchedCutoff == 0)
3887       return false;
3888     return (Node->Preds.size() > ViewMISchedCutoff
3889          || Node->Succs.size() > ViewMISchedCutoff);
3890   }
3891 
3892   /// If you want to override the dot attributes printed for a particular
3893   /// edge, override this method.
3894   static std::string getEdgeAttributes(const SUnit *Node,
3895                                        SUnitIterator EI,
3896                                        const ScheduleDAG *Graph) {
3897     if (EI.isArtificialDep())
3898       return "color=cyan,style=dashed";
3899     if (EI.isCtrlDep())
3900       return "color=blue,style=dashed";
3901     return "";
3902   }
3903 
3904   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3905     std::string Str;
3906     raw_string_ostream SS(Str);
3907     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3908     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3909       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3910     SS << "SU:" << SU->NodeNum;
3911     if (DFS)
3912       SS << " I:" << DFS->getNumInstrs(SU);
3913     return SS.str();
3914   }
3915 
3916   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3917     return G->getGraphNodeLabel(SU);
3918   }
3919 
3920   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3921     std::string Str("shape=Mrecord");
3922     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3923     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3924       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3925     if (DFS) {
3926       Str += ",style=filled,fillcolor=\"#";
3927       Str += DOT::getColorString(DFS->getSubtreeID(N));
3928       Str += '"';
3929     }
3930     return Str;
3931   }
3932 };
3933 
3934 } // end namespace llvm
3935 #endif // NDEBUG
3936 
3937 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3938 /// rendered using 'dot'.
3939 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3940 #ifndef NDEBUG
3941   ViewGraph(this, Name, false, Title);
3942 #else
3943   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3944          << "systems with Graphviz or gv!\n";
3945 #endif  // NDEBUG
3946 }
3947 
3948 /// Out-of-line implementation with no arguments is handy for gdb.
3949 void ScheduleDAGMI::viewGraph() {
3950   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3951 }
3952