1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // MachineScheduler schedules machine instructions after phi elimination. It 10 // preserves LiveIntervals so it can be invoked before register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineScheduler.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachinePassRegistry.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/MachineValueType.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/RegisterPressure.h" 38 #include "llvm/CodeGen/ScheduleDAG.h" 39 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 40 #include "llvm/CodeGen/ScheduleDAGMutation.h" 41 #include "llvm/CodeGen/ScheduleDFS.h" 42 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 43 #include "llvm/CodeGen/SlotIndexes.h" 44 #include "llvm/CodeGen/TargetFrameLowering.h" 45 #include "llvm/CodeGen/TargetInstrInfo.h" 46 #include "llvm/CodeGen/TargetLowering.h" 47 #include "llvm/CodeGen/TargetPassConfig.h" 48 #include "llvm/CodeGen/TargetRegisterInfo.h" 49 #include "llvm/CodeGen/TargetSchedule.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/Config/llvm-config.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/MC/LaneBitmask.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/GraphWriter.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <limits> 66 #include <memory> 67 #include <string> 68 #include <tuple> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "machine-scheduler" 75 76 STATISTIC(NumClustered, "Number of load/store pairs clustered"); 77 78 namespace llvm { 79 80 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 81 cl::desc("Force top-down list scheduling")); 82 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 83 cl::desc("Force bottom-up list scheduling")); 84 cl::opt<bool> 85 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 86 cl::desc("Print critical path length to stdout")); 87 88 cl::opt<bool> VerifyScheduling( 89 "verify-misched", cl::Hidden, 90 cl::desc("Verify machine instrs before and after machine scheduling")); 91 92 #ifndef NDEBUG 93 cl::opt<bool> ViewMISchedDAGs( 94 "view-misched-dags", cl::Hidden, 95 cl::desc("Pop up a window to show MISched dags after they are processed")); 96 cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden, 97 cl::desc("Print schedule DAGs")); 98 cl::opt<bool> MISchedDumpReservedCycles( 99 "misched-dump-reserved-cycles", cl::Hidden, cl::init(false), 100 cl::desc("Dump resource usage at schedule boundary.")); 101 cl::opt<bool> MischedDetailResourceBooking( 102 "misched-detail-resource-booking", cl::Hidden, cl::init(false), 103 cl::desc("Show details of invoking getNextResoufceCycle.")); 104 #else 105 const bool ViewMISchedDAGs = false; 106 const bool PrintDAGs = false; 107 const bool MischedDetailResourceBooking = false; 108 #ifdef LLVM_ENABLE_DUMP 109 const bool MISchedDumpReservedCycles = false; 110 #endif // LLVM_ENABLE_DUMP 111 #endif // NDEBUG 112 113 } // end namespace llvm 114 115 #ifndef NDEBUG 116 /// In some situations a few uninteresting nodes depend on nearly all other 117 /// nodes in the graph, provide a cutoff to hide them. 118 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 119 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 120 121 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 122 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 123 124 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 125 cl::desc("Only schedule this function")); 126 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 127 cl::desc("Only schedule this MBB#")); 128 #endif // NDEBUG 129 130 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 131 /// size of the ready lists. 132 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 133 cl::desc("Limit ready list to N instructions"), cl::init(256)); 134 135 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 136 cl::desc("Enable register pressure scheduling."), cl::init(true)); 137 138 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 139 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 140 141 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 142 cl::desc("Enable memop clustering."), 143 cl::init(true)); 144 static cl::opt<bool> 145 ForceFastCluster("force-fast-cluster", cl::Hidden, 146 cl::desc("Switch to fast cluster algorithm with the lost " 147 "of some fusion opportunities"), 148 cl::init(false)); 149 static cl::opt<unsigned> 150 FastClusterThreshold("fast-cluster-threshold", cl::Hidden, 151 cl::desc("The threshold for fast cluster"), 152 cl::init(1000)); 153 154 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 155 static cl::opt<bool> MISchedDumpScheduleTrace( 156 "misched-dump-schedule-trace", cl::Hidden, cl::init(false), 157 cl::desc("Dump resource usage at schedule boundary.")); 158 static cl::opt<unsigned> 159 HeaderColWidth("misched-dump-schedule-trace-col-header-width", cl::Hidden, 160 cl::desc("Set width of the columns with " 161 "the resources and schedule units"), 162 cl::init(19)); 163 static cl::opt<unsigned> 164 ColWidth("misched-dump-schedule-trace-col-width", cl::Hidden, 165 cl::desc("Set width of the columns showing resource booking."), 166 cl::init(5)); 167 static cl::opt<bool> MISchedSortResourcesInTrace( 168 "misched-sort-resources-in-trace", cl::Hidden, cl::init(true), 169 cl::desc("Sort the resources printed in the dump trace")); 170 #endif 171 172 static cl::opt<unsigned> 173 MIResourceCutOff("misched-resource-cutoff", cl::Hidden, 174 cl::desc("Number of intervals to track"), cl::init(10)); 175 176 // DAG subtrees must have at least this many nodes. 177 static const unsigned MinSubtreeSize = 8; 178 179 // Pin the vtables to this file. 180 void MachineSchedStrategy::anchor() {} 181 182 void ScheduleDAGMutation::anchor() {} 183 184 //===----------------------------------------------------------------------===// 185 // Machine Instruction Scheduling Pass and Registry 186 //===----------------------------------------------------------------------===// 187 188 MachineSchedContext::MachineSchedContext() { 189 RegClassInfo = new RegisterClassInfo(); 190 } 191 192 MachineSchedContext::~MachineSchedContext() { 193 delete RegClassInfo; 194 } 195 196 namespace { 197 198 /// Base class for a machine scheduler class that can run at any point. 199 class MachineSchedulerBase : public MachineSchedContext, 200 public MachineFunctionPass { 201 public: 202 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 203 204 void print(raw_ostream &O, const Module* = nullptr) const override; 205 206 protected: 207 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 208 }; 209 210 /// MachineScheduler runs after coalescing and before register allocation. 211 class MachineScheduler : public MachineSchedulerBase { 212 public: 213 MachineScheduler(); 214 215 void getAnalysisUsage(AnalysisUsage &AU) const override; 216 217 bool runOnMachineFunction(MachineFunction&) override; 218 219 static char ID; // Class identification, replacement for typeinfo 220 221 protected: 222 ScheduleDAGInstrs *createMachineScheduler(); 223 }; 224 225 /// PostMachineScheduler runs after shortly before code emission. 226 class PostMachineScheduler : public MachineSchedulerBase { 227 public: 228 PostMachineScheduler(); 229 230 void getAnalysisUsage(AnalysisUsage &AU) const override; 231 232 bool runOnMachineFunction(MachineFunction&) override; 233 234 static char ID; // Class identification, replacement for typeinfo 235 236 protected: 237 ScheduleDAGInstrs *createPostMachineScheduler(); 238 }; 239 240 } // end anonymous namespace 241 242 char MachineScheduler::ID = 0; 243 244 char &llvm::MachineSchedulerID = MachineScheduler::ID; 245 246 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 247 "Machine Instruction Scheduler", false, false) 248 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 249 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 250 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 251 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 252 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 253 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 254 "Machine Instruction Scheduler", false, false) 255 256 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 257 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 258 } 259 260 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 261 AU.setPreservesCFG(); 262 AU.addRequired<MachineDominatorTree>(); 263 AU.addRequired<MachineLoopInfo>(); 264 AU.addRequired<AAResultsWrapperPass>(); 265 AU.addRequired<TargetPassConfig>(); 266 AU.addRequired<SlotIndexes>(); 267 AU.addPreserved<SlotIndexes>(); 268 AU.addRequired<LiveIntervals>(); 269 AU.addPreserved<LiveIntervals>(); 270 MachineFunctionPass::getAnalysisUsage(AU); 271 } 272 273 char PostMachineScheduler::ID = 0; 274 275 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 276 277 INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched", 278 "PostRA Machine Instruction Scheduler", false, false) 279 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 280 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 281 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 282 INITIALIZE_PASS_END(PostMachineScheduler, "postmisched", 283 "PostRA Machine Instruction Scheduler", false, false) 284 285 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 286 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 287 } 288 289 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 290 AU.setPreservesCFG(); 291 AU.addRequired<MachineDominatorTree>(); 292 AU.addRequired<MachineLoopInfo>(); 293 AU.addRequired<AAResultsWrapperPass>(); 294 AU.addRequired<TargetPassConfig>(); 295 MachineFunctionPass::getAnalysisUsage(AU); 296 } 297 298 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor> 299 MachineSchedRegistry::Registry; 300 301 /// A dummy default scheduler factory indicates whether the scheduler 302 /// is overridden on the command line. 303 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 304 return nullptr; 305 } 306 307 /// MachineSchedOpt allows command line selection of the scheduler. 308 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 309 RegisterPassParser<MachineSchedRegistry>> 310 MachineSchedOpt("misched", 311 cl::init(&useDefaultMachineSched), cl::Hidden, 312 cl::desc("Machine instruction scheduler to use")); 313 314 static MachineSchedRegistry 315 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 316 useDefaultMachineSched); 317 318 static cl::opt<bool> EnableMachineSched( 319 "enable-misched", 320 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 321 cl::Hidden); 322 323 static cl::opt<bool> EnablePostRAMachineSched( 324 "enable-post-misched", 325 cl::desc("Enable the post-ra machine instruction scheduling pass."), 326 cl::init(true), cl::Hidden); 327 328 /// Decrement this iterator until reaching the top or a non-debug instr. 329 static MachineBasicBlock::const_iterator 330 priorNonDebug(MachineBasicBlock::const_iterator I, 331 MachineBasicBlock::const_iterator Beg) { 332 assert(I != Beg && "reached the top of the region, cannot decrement"); 333 while (--I != Beg) { 334 if (!I->isDebugOrPseudoInstr()) 335 break; 336 } 337 return I; 338 } 339 340 /// Non-const version. 341 static MachineBasicBlock::iterator 342 priorNonDebug(MachineBasicBlock::iterator I, 343 MachineBasicBlock::const_iterator Beg) { 344 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 345 .getNonConstIterator(); 346 } 347 348 /// If this iterator is a debug value, increment until reaching the End or a 349 /// non-debug instruction. 350 static MachineBasicBlock::const_iterator 351 nextIfDebug(MachineBasicBlock::const_iterator I, 352 MachineBasicBlock::const_iterator End) { 353 for(; I != End; ++I) { 354 if (!I->isDebugOrPseudoInstr()) 355 break; 356 } 357 return I; 358 } 359 360 /// Non-const version. 361 static MachineBasicBlock::iterator 362 nextIfDebug(MachineBasicBlock::iterator I, 363 MachineBasicBlock::const_iterator End) { 364 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 365 .getNonConstIterator(); 366 } 367 368 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 369 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 370 // Select the scheduler, or set the default. 371 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 372 if (Ctor != useDefaultMachineSched) 373 return Ctor(this); 374 375 // Get the default scheduler set by the target for this function. 376 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 377 if (Scheduler) 378 return Scheduler; 379 380 // Default to GenericScheduler. 381 return createGenericSchedLive(this); 382 } 383 384 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 385 /// the caller. We don't have a command line option to override the postRA 386 /// scheduler. The Target must configure it. 387 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 388 // Get the postRA scheduler set by the target for this function. 389 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 390 if (Scheduler) 391 return Scheduler; 392 393 // Default to GenericScheduler. 394 return createGenericSchedPostRA(this); 395 } 396 397 /// Top-level MachineScheduler pass driver. 398 /// 399 /// Visit blocks in function order. Divide each block into scheduling regions 400 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 401 /// consistent with the DAG builder, which traverses the interior of the 402 /// scheduling regions bottom-up. 403 /// 404 /// This design avoids exposing scheduling boundaries to the DAG builder, 405 /// simplifying the DAG builder's support for "special" target instructions. 406 /// At the same time the design allows target schedulers to operate across 407 /// scheduling boundaries, for example to bundle the boundary instructions 408 /// without reordering them. This creates complexity, because the target 409 /// scheduler must update the RegionBegin and RegionEnd positions cached by 410 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 411 /// design would be to split blocks at scheduling boundaries, but LLVM has a 412 /// general bias against block splitting purely for implementation simplicity. 413 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 414 if (skipFunction(mf.getFunction())) 415 return false; 416 417 if (EnableMachineSched.getNumOccurrences()) { 418 if (!EnableMachineSched) 419 return false; 420 } else if (!mf.getSubtarget().enableMachineScheduler()) 421 return false; 422 423 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 424 425 // Initialize the context of the pass. 426 MF = &mf; 427 MLI = &getAnalysis<MachineLoopInfo>(); 428 MDT = &getAnalysis<MachineDominatorTree>(); 429 PassConfig = &getAnalysis<TargetPassConfig>(); 430 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 431 432 LIS = &getAnalysis<LiveIntervals>(); 433 434 if (VerifyScheduling) { 435 LLVM_DEBUG(LIS->dump()); 436 MF->verify(this, "Before machine scheduling."); 437 } 438 RegClassInfo->runOnMachineFunction(*MF); 439 440 // Instantiate the selected scheduler for this target, function, and 441 // optimization level. 442 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 443 scheduleRegions(*Scheduler, false); 444 445 LLVM_DEBUG(LIS->dump()); 446 if (VerifyScheduling) 447 MF->verify(this, "After machine scheduling."); 448 return true; 449 } 450 451 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 452 if (skipFunction(mf.getFunction())) 453 return false; 454 455 if (EnablePostRAMachineSched.getNumOccurrences()) { 456 if (!EnablePostRAMachineSched) 457 return false; 458 } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) { 459 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 460 return false; 461 } 462 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 463 464 // Initialize the context of the pass. 465 MF = &mf; 466 MLI = &getAnalysis<MachineLoopInfo>(); 467 PassConfig = &getAnalysis<TargetPassConfig>(); 468 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 469 470 if (VerifyScheduling) 471 MF->verify(this, "Before post machine scheduling."); 472 473 // Instantiate the selected scheduler for this target, function, and 474 // optimization level. 475 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 476 scheduleRegions(*Scheduler, true); 477 478 if (VerifyScheduling) 479 MF->verify(this, "After post machine scheduling."); 480 return true; 481 } 482 483 /// Return true of the given instruction should not be included in a scheduling 484 /// region. 485 /// 486 /// MachineScheduler does not currently support scheduling across calls. To 487 /// handle calls, the DAG builder needs to be modified to create register 488 /// anti/output dependencies on the registers clobbered by the call's regmask 489 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 490 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 491 /// the boundary, but there would be no benefit to postRA scheduling across 492 /// calls this late anyway. 493 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 494 MachineBasicBlock *MBB, 495 MachineFunction *MF, 496 const TargetInstrInfo *TII) { 497 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 498 } 499 500 /// A region of an MBB for scheduling. 501 namespace { 502 struct SchedRegion { 503 /// RegionBegin is the first instruction in the scheduling region, and 504 /// RegionEnd is either MBB->end() or the scheduling boundary after the 505 /// last instruction in the scheduling region. These iterators cannot refer 506 /// to instructions outside of the identified scheduling region because 507 /// those may be reordered before scheduling this region. 508 MachineBasicBlock::iterator RegionBegin; 509 MachineBasicBlock::iterator RegionEnd; 510 unsigned NumRegionInstrs; 511 512 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 513 unsigned N) : 514 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 515 }; 516 } // end anonymous namespace 517 518 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 519 520 static void 521 getSchedRegions(MachineBasicBlock *MBB, 522 MBBRegionsVector &Regions, 523 bool RegionsTopDown) { 524 MachineFunction *MF = MBB->getParent(); 525 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 526 527 MachineBasicBlock::iterator I = nullptr; 528 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 529 RegionEnd != MBB->begin(); RegionEnd = I) { 530 531 // Avoid decrementing RegionEnd for blocks with no terminator. 532 if (RegionEnd != MBB->end() || 533 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 534 --RegionEnd; 535 } 536 537 // The next region starts above the previous region. Look backward in the 538 // instruction stream until we find the nearest boundary. 539 unsigned NumRegionInstrs = 0; 540 I = RegionEnd; 541 for (;I != MBB->begin(); --I) { 542 MachineInstr &MI = *std::prev(I); 543 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 544 break; 545 if (!MI.isDebugOrPseudoInstr()) { 546 // MBB::size() uses instr_iterator to count. Here we need a bundle to 547 // count as a single instruction. 548 ++NumRegionInstrs; 549 } 550 } 551 552 // It's possible we found a scheduling region that only has debug 553 // instructions. Don't bother scheduling these. 554 if (NumRegionInstrs != 0) 555 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 556 } 557 558 if (RegionsTopDown) 559 std::reverse(Regions.begin(), Regions.end()); 560 } 561 562 /// Main driver for both MachineScheduler and PostMachineScheduler. 563 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 564 bool FixKillFlags) { 565 // Visit all machine basic blocks. 566 // 567 // TODO: Visit blocks in global postorder or postorder within the bottom-up 568 // loop tree. Then we can optionally compute global RegPressure. 569 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 570 MBB != MBBEnd; ++MBB) { 571 572 Scheduler.startBlock(&*MBB); 573 574 #ifndef NDEBUG 575 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 576 continue; 577 if (SchedOnlyBlock.getNumOccurrences() 578 && (int)SchedOnlyBlock != MBB->getNumber()) 579 continue; 580 #endif 581 582 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 583 // points to the scheduling boundary at the bottom of the region. The DAG 584 // does not include RegionEnd, but the region does (i.e. the next 585 // RegionEnd is above the previous RegionBegin). If the current block has 586 // no terminator then RegionEnd == MBB->end() for the bottom region. 587 // 588 // All the regions of MBB are first found and stored in MBBRegions, which 589 // will be processed (MBB) top-down if initialized with true. 590 // 591 // The Scheduler may insert instructions during either schedule() or 592 // exitRegion(), even for empty regions. So the local iterators 'I' and 593 // 'RegionEnd' are invalid across these calls. Instructions must not be 594 // added to other regions than the current one without updating MBBRegions. 595 596 MBBRegionsVector MBBRegions; 597 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 598 for (const SchedRegion &R : MBBRegions) { 599 MachineBasicBlock::iterator I = R.RegionBegin; 600 MachineBasicBlock::iterator RegionEnd = R.RegionEnd; 601 unsigned NumRegionInstrs = R.NumRegionInstrs; 602 603 // Notify the scheduler of the region, even if we may skip scheduling 604 // it. Perhaps it still needs to be bundled. 605 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 606 607 // Skip empty scheduling regions (0 or 1 schedulable instructions). 608 if (I == RegionEnd || I == std::prev(RegionEnd)) { 609 // Close the current region. Bundle the terminator if needed. 610 // This invalidates 'RegionEnd' and 'I'. 611 Scheduler.exitRegion(); 612 continue; 613 } 614 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 615 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) 616 << " " << MBB->getName() << "\n From: " << *I 617 << " To: "; 618 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 619 else dbgs() << "End\n"; 620 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 621 if (DumpCriticalPathLength) { 622 errs() << MF->getName(); 623 errs() << ":%bb. " << MBB->getNumber(); 624 errs() << " " << MBB->getName() << " \n"; 625 } 626 627 // Schedule a region: possibly reorder instructions. 628 // This invalidates the original region iterators. 629 Scheduler.schedule(); 630 631 // Close the current region. 632 Scheduler.exitRegion(); 633 } 634 Scheduler.finishBlock(); 635 // FIXME: Ideally, no further passes should rely on kill flags. However, 636 // thumb2 size reduction is currently an exception, so the PostMIScheduler 637 // needs to do this. 638 if (FixKillFlags) 639 Scheduler.fixupKills(*MBB); 640 } 641 Scheduler.finalizeSchedule(); 642 } 643 644 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 645 // unimplemented 646 } 647 648 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 649 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 650 dbgs() << "Queue " << Name << ": "; 651 for (const SUnit *SU : Queue) 652 dbgs() << SU->NodeNum << " "; 653 dbgs() << "\n"; 654 } 655 #endif 656 657 //===----------------------------------------------------------------------===// 658 // ScheduleDAGMI - Basic machine instruction scheduling. This is 659 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 660 // virtual registers. 661 // ===----------------------------------------------------------------------===/ 662 663 // Provide a vtable anchor. 664 ScheduleDAGMI::~ScheduleDAGMI() = default; 665 666 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 667 /// NumPredsLeft reaches zero, release the successor node. 668 /// 669 /// FIXME: Adjust SuccSU height based on MinLatency. 670 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 671 SUnit *SuccSU = SuccEdge->getSUnit(); 672 673 if (SuccEdge->isWeak()) { 674 --SuccSU->WeakPredsLeft; 675 if (SuccEdge->isCluster()) 676 NextClusterSucc = SuccSU; 677 return; 678 } 679 #ifndef NDEBUG 680 if (SuccSU->NumPredsLeft == 0) { 681 dbgs() << "*** Scheduling failed! ***\n"; 682 dumpNode(*SuccSU); 683 dbgs() << " has been released too many times!\n"; 684 llvm_unreachable(nullptr); 685 } 686 #endif 687 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 688 // CurrCycle may have advanced since then. 689 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 690 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 691 692 --SuccSU->NumPredsLeft; 693 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 694 SchedImpl->releaseTopNode(SuccSU); 695 } 696 697 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 698 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 699 for (SDep &Succ : SU->Succs) 700 releaseSucc(SU, &Succ); 701 } 702 703 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 704 /// NumSuccsLeft reaches zero, release the predecessor node. 705 /// 706 /// FIXME: Adjust PredSU height based on MinLatency. 707 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 708 SUnit *PredSU = PredEdge->getSUnit(); 709 710 if (PredEdge->isWeak()) { 711 --PredSU->WeakSuccsLeft; 712 if (PredEdge->isCluster()) 713 NextClusterPred = PredSU; 714 return; 715 } 716 #ifndef NDEBUG 717 if (PredSU->NumSuccsLeft == 0) { 718 dbgs() << "*** Scheduling failed! ***\n"; 719 dumpNode(*PredSU); 720 dbgs() << " has been released too many times!\n"; 721 llvm_unreachable(nullptr); 722 } 723 #endif 724 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 725 // CurrCycle may have advanced since then. 726 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 727 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 728 729 --PredSU->NumSuccsLeft; 730 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 731 SchedImpl->releaseBottomNode(PredSU); 732 } 733 734 /// releasePredecessors - Call releasePred on each of SU's predecessors. 735 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 736 for (SDep &Pred : SU->Preds) 737 releasePred(SU, &Pred); 738 } 739 740 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 741 ScheduleDAGInstrs::startBlock(bb); 742 SchedImpl->enterMBB(bb); 743 } 744 745 void ScheduleDAGMI::finishBlock() { 746 SchedImpl->leaveMBB(); 747 ScheduleDAGInstrs::finishBlock(); 748 } 749 750 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 751 /// crossing a scheduling boundary. [begin, end) includes all instructions in 752 /// the region, including the boundary itself and single-instruction regions 753 /// that don't get scheduled. 754 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 755 MachineBasicBlock::iterator begin, 756 MachineBasicBlock::iterator end, 757 unsigned regioninstrs) 758 { 759 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 760 761 SchedImpl->initPolicy(begin, end, regioninstrs); 762 } 763 764 /// This is normally called from the main scheduler loop but may also be invoked 765 /// by the scheduling strategy to perform additional code motion. 766 void ScheduleDAGMI::moveInstruction( 767 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 768 // Advance RegionBegin if the first instruction moves down. 769 if (&*RegionBegin == MI) 770 ++RegionBegin; 771 772 // Update the instruction stream. 773 BB->splice(InsertPos, BB, MI); 774 775 // Update LiveIntervals 776 if (LIS) 777 LIS->handleMove(*MI, /*UpdateFlags=*/true); 778 779 // Recede RegionBegin if an instruction moves above the first. 780 if (RegionBegin == InsertPos) 781 RegionBegin = MI; 782 } 783 784 bool ScheduleDAGMI::checkSchedLimit() { 785 #if LLVM_ENABLE_ABI_BREAKING_CHECKS && !defined(NDEBUG) 786 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 787 CurrentTop = CurrentBottom; 788 return false; 789 } 790 ++NumInstrsScheduled; 791 #endif 792 return true; 793 } 794 795 /// Per-region scheduling driver, called back from 796 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 797 /// does not consider liveness or register pressure. It is useful for PostRA 798 /// scheduling and potentially other custom schedulers. 799 void ScheduleDAGMI::schedule() { 800 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 801 LLVM_DEBUG(SchedImpl->dumpPolicy()); 802 803 // Build the DAG. 804 buildSchedGraph(AA); 805 806 postProcessDAG(); 807 808 SmallVector<SUnit*, 8> TopRoots, BotRoots; 809 findRootsAndBiasEdges(TopRoots, BotRoots); 810 811 LLVM_DEBUG(dump()); 812 if (PrintDAGs) dump(); 813 if (ViewMISchedDAGs) viewGraph(); 814 815 // Initialize the strategy before modifying the DAG. 816 // This may initialize a DFSResult to be used for queue priority. 817 SchedImpl->initialize(this); 818 819 // Initialize ready queues now that the DAG and priority data are finalized. 820 initQueues(TopRoots, BotRoots); 821 822 bool IsTopNode = false; 823 while (true) { 824 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 825 SUnit *SU = SchedImpl->pickNode(IsTopNode); 826 if (!SU) break; 827 828 assert(!SU->isScheduled && "Node already scheduled"); 829 if (!checkSchedLimit()) 830 break; 831 832 MachineInstr *MI = SU->getInstr(); 833 if (IsTopNode) { 834 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 835 if (&*CurrentTop == MI) 836 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 837 else 838 moveInstruction(MI, CurrentTop); 839 } else { 840 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 841 MachineBasicBlock::iterator priorII = 842 priorNonDebug(CurrentBottom, CurrentTop); 843 if (&*priorII == MI) 844 CurrentBottom = priorII; 845 else { 846 if (&*CurrentTop == MI) 847 CurrentTop = nextIfDebug(++CurrentTop, priorII); 848 moveInstruction(MI, CurrentBottom); 849 CurrentBottom = MI; 850 } 851 } 852 // Notify the scheduling strategy before updating the DAG. 853 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 854 // runs, it can then use the accurate ReadyCycle time to determine whether 855 // newly released nodes can move to the readyQ. 856 SchedImpl->schedNode(SU, IsTopNode); 857 858 updateQueues(SU, IsTopNode); 859 } 860 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 861 862 placeDebugValues(); 863 864 LLVM_DEBUG({ 865 dbgs() << "*** Final schedule for " 866 << printMBBReference(*begin()->getParent()) << " ***\n"; 867 dumpSchedule(); 868 dbgs() << '\n'; 869 }); 870 } 871 872 /// Apply each ScheduleDAGMutation step in order. 873 void ScheduleDAGMI::postProcessDAG() { 874 for (auto &m : Mutations) 875 m->apply(this); 876 } 877 878 void ScheduleDAGMI:: 879 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 880 SmallVectorImpl<SUnit*> &BotRoots) { 881 for (SUnit &SU : SUnits) { 882 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 883 884 // Order predecessors so DFSResult follows the critical path. 885 SU.biasCriticalPath(); 886 887 // A SUnit is ready to top schedule if it has no predecessors. 888 if (!SU.NumPredsLeft) 889 TopRoots.push_back(&SU); 890 // A SUnit is ready to bottom schedule if it has no successors. 891 if (!SU.NumSuccsLeft) 892 BotRoots.push_back(&SU); 893 } 894 ExitSU.biasCriticalPath(); 895 } 896 897 /// Identify DAG roots and setup scheduler queues. 898 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 899 ArrayRef<SUnit*> BotRoots) { 900 NextClusterSucc = nullptr; 901 NextClusterPred = nullptr; 902 903 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 904 // 905 // Nodes with unreleased weak edges can still be roots. 906 // Release top roots in forward order. 907 for (SUnit *SU : TopRoots) 908 SchedImpl->releaseTopNode(SU); 909 910 // Release bottom roots in reverse order so the higher priority nodes appear 911 // first. This is more natural and slightly more efficient. 912 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 913 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 914 SchedImpl->releaseBottomNode(*I); 915 } 916 917 releaseSuccessors(&EntrySU); 918 releasePredecessors(&ExitSU); 919 920 SchedImpl->registerRoots(); 921 922 // Advance past initial DebugValues. 923 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 924 CurrentBottom = RegionEnd; 925 } 926 927 /// Update scheduler queues after scheduling an instruction. 928 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 929 // Release dependent instructions for scheduling. 930 if (IsTopNode) 931 releaseSuccessors(SU); 932 else 933 releasePredecessors(SU); 934 935 SU->isScheduled = true; 936 } 937 938 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 939 void ScheduleDAGMI::placeDebugValues() { 940 // If first instruction was a DBG_VALUE then put it back. 941 if (FirstDbgValue) { 942 BB->splice(RegionBegin, BB, FirstDbgValue); 943 RegionBegin = FirstDbgValue; 944 } 945 946 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 947 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 948 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 949 MachineInstr *DbgValue = P.first; 950 MachineBasicBlock::iterator OrigPrevMI = P.second; 951 if (&*RegionBegin == DbgValue) 952 ++RegionBegin; 953 BB->splice(std::next(OrigPrevMI), BB, DbgValue); 954 if (RegionEnd != BB->end() && OrigPrevMI == &*RegionEnd) 955 RegionEnd = DbgValue; 956 } 957 } 958 959 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 960 static const char *scheduleTableLegend = " i: issue\n x: resource booked"; 961 962 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpScheduleTraceTopDown() const { 963 // Bail off when there is no schedule model to query. 964 if (!SchedModel.hasInstrSchedModel()) 965 return; 966 967 // Nothing to show if there is no or just one instruction. 968 if (BB->size() < 2) 969 return; 970 971 dbgs() << " * Schedule table (TopDown):\n"; 972 dbgs() << scheduleTableLegend << "\n"; 973 const unsigned FirstCycle = getSUnit(&*(std::begin(*this)))->TopReadyCycle; 974 unsigned LastCycle = getSUnit(&*(std::prev(std::end(*this))))->TopReadyCycle; 975 for (MachineInstr &MI : *this) { 976 SUnit *SU = getSUnit(&MI); 977 if (!SU) 978 continue; 979 const MCSchedClassDesc *SC = getSchedClass(SU); 980 for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC), 981 PE = SchedModel.getWriteProcResEnd(SC); 982 PI != PE; ++PI) { 983 if (SU->TopReadyCycle + PI->Cycles - 1 > LastCycle) 984 LastCycle = SU->TopReadyCycle + PI->Cycles - 1; 985 } 986 } 987 // Print the header with the cycles 988 dbgs() << llvm::left_justify("Cycle", HeaderColWidth); 989 for (unsigned C = FirstCycle; C <= LastCycle; ++C) 990 dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth); 991 dbgs() << "|\n"; 992 993 for (MachineInstr &MI : *this) { 994 SUnit *SU = getSUnit(&MI); 995 if (!SU) { 996 dbgs() << "Missing SUnit\n"; 997 continue; 998 } 999 std::string NodeName("SU("); 1000 NodeName += std::to_string(SU->NodeNum) + ")"; 1001 dbgs() << llvm::left_justify(NodeName, HeaderColWidth); 1002 unsigned C = FirstCycle; 1003 for (; C <= LastCycle; ++C) { 1004 if (C == SU->TopReadyCycle) 1005 dbgs() << llvm::left_justify("| i", ColWidth); 1006 else 1007 dbgs() << llvm::left_justify("|", ColWidth); 1008 } 1009 dbgs() << "|\n"; 1010 const MCSchedClassDesc *SC = getSchedClass(SU); 1011 1012 SmallVector<MCWriteProcResEntry, 4> ResourcesIt( 1013 make_range(SchedModel.getWriteProcResBegin(SC), 1014 SchedModel.getWriteProcResEnd(SC))); 1015 1016 if (MISchedSortResourcesInTrace) 1017 llvm::stable_sort(ResourcesIt, 1018 [](const MCWriteProcResEntry &LHS, 1019 const MCWriteProcResEntry &RHS) -> bool { 1020 return LHS.StartAtCycle < RHS.StartAtCycle || 1021 (LHS.StartAtCycle == RHS.StartAtCycle && 1022 LHS.Cycles < RHS.Cycles); 1023 }); 1024 for (const MCWriteProcResEntry &PI : ResourcesIt) { 1025 C = FirstCycle; 1026 const std::string ResName = 1027 SchedModel.getResourceName(PI.ProcResourceIdx); 1028 dbgs() << llvm::right_justify(ResName + " ", HeaderColWidth); 1029 for (; C < SU->TopReadyCycle + PI.StartAtCycle; ++C) { 1030 dbgs() << llvm::left_justify("|", ColWidth); 1031 } 1032 for (unsigned I = 0, E = PI.Cycles - PI.StartAtCycle; I != E; ++I, ++C) 1033 dbgs() << llvm::left_justify("| x", ColWidth); 1034 while (C++ <= LastCycle) 1035 dbgs() << llvm::left_justify("|", ColWidth); 1036 // Place end char 1037 dbgs() << "| \n"; 1038 } 1039 } 1040 } 1041 1042 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpScheduleTraceBottomUp() const { 1043 // Bail off when there is no schedule model to query. 1044 if (!SchedModel.hasInstrSchedModel()) 1045 return; 1046 1047 // Nothing to show if there is no or just one instruction. 1048 if (BB->size() < 2) 1049 return; 1050 1051 dbgs() << " * Schedule table (BottomUp):\n"; 1052 dbgs() << scheduleTableLegend << "\n"; 1053 1054 const int FirstCycle = getSUnit(&*(std::begin(*this)))->BotReadyCycle; 1055 int LastCycle = getSUnit(&*(std::prev(std::end(*this))))->BotReadyCycle; 1056 for (MachineInstr &MI : *this) { 1057 SUnit *SU = getSUnit(&MI); 1058 if (!SU) 1059 continue; 1060 const MCSchedClassDesc *SC = getSchedClass(SU); 1061 for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC), 1062 PE = SchedModel.getWriteProcResEnd(SC); 1063 PI != PE; ++PI) { 1064 if ((int)SU->BotReadyCycle - PI->Cycles + 1 < LastCycle) 1065 LastCycle = (int)SU->BotReadyCycle - PI->Cycles + 1; 1066 } 1067 } 1068 // Print the header with the cycles 1069 dbgs() << llvm::left_justify("Cycle", HeaderColWidth); 1070 for (int C = FirstCycle; C >= LastCycle; --C) 1071 dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth); 1072 dbgs() << "|\n"; 1073 1074 for (MachineInstr &MI : *this) { 1075 SUnit *SU = getSUnit(&MI); 1076 if (!SU) { 1077 dbgs() << "Missing SUnit\n"; 1078 continue; 1079 } 1080 std::string NodeName("SU("); 1081 NodeName += std::to_string(SU->NodeNum) + ")"; 1082 dbgs() << llvm::left_justify(NodeName, HeaderColWidth); 1083 int C = FirstCycle; 1084 for (; C >= LastCycle; --C) { 1085 if (C == (int)SU->BotReadyCycle) 1086 dbgs() << llvm::left_justify("| i", ColWidth); 1087 else 1088 dbgs() << llvm::left_justify("|", ColWidth); 1089 } 1090 dbgs() << "|\n"; 1091 const MCSchedClassDesc *SC = getSchedClass(SU); 1092 SmallVector<MCWriteProcResEntry, 4> ResourcesIt( 1093 make_range(SchedModel.getWriteProcResBegin(SC), 1094 SchedModel.getWriteProcResEnd(SC))); 1095 1096 if (MISchedSortResourcesInTrace) 1097 llvm::stable_sort(ResourcesIt, 1098 [](const MCWriteProcResEntry &LHS, 1099 const MCWriteProcResEntry &RHS) -> bool { 1100 return LHS.StartAtCycle < RHS.StartAtCycle || 1101 (LHS.StartAtCycle == RHS.StartAtCycle && 1102 LHS.Cycles < RHS.Cycles); 1103 }); 1104 for (const MCWriteProcResEntry &PI : ResourcesIt) { 1105 C = FirstCycle; 1106 const std::string ResName = 1107 SchedModel.getResourceName(PI.ProcResourceIdx); 1108 dbgs() << llvm::right_justify(ResName + " ", HeaderColWidth); 1109 for (; C > ((int)SU->BotReadyCycle - (int)PI.StartAtCycle); --C) { 1110 dbgs() << llvm::left_justify("|", ColWidth); 1111 } 1112 for (unsigned I = 0, E = PI.Cycles - PI.StartAtCycle; I != E; ++I, --C) 1113 dbgs() << llvm::left_justify("| x", ColWidth); 1114 while (C-- >= LastCycle) 1115 dbgs() << llvm::left_justify("|", ColWidth); 1116 // Place end char 1117 dbgs() << "| \n"; 1118 } 1119 } 1120 } 1121 #endif 1122 1123 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1124 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 1125 if (MISchedDumpScheduleTrace) { 1126 if (ForceTopDown) 1127 dumpScheduleTraceTopDown(); 1128 else if (ForceBottomUp) 1129 dumpScheduleTraceBottomUp(); 1130 else { 1131 dbgs() << "* Schedule table (Bidirectional): not implemented\n"; 1132 } 1133 } 1134 1135 for (MachineInstr &MI : *this) { 1136 if (SUnit *SU = getSUnit(&MI)) 1137 dumpNode(*SU); 1138 else 1139 dbgs() << "Missing SUnit\n"; 1140 } 1141 } 1142 #endif 1143 1144 //===----------------------------------------------------------------------===// 1145 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 1146 // preservation. 1147 //===----------------------------------------------------------------------===// 1148 1149 ScheduleDAGMILive::~ScheduleDAGMILive() { 1150 delete DFSResult; 1151 } 1152 1153 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 1154 const MachineInstr &MI = *SU.getInstr(); 1155 for (const MachineOperand &MO : MI.operands()) { 1156 if (!MO.isReg()) 1157 continue; 1158 if (!MO.readsReg()) 1159 continue; 1160 if (TrackLaneMasks && !MO.isUse()) 1161 continue; 1162 1163 Register Reg = MO.getReg(); 1164 if (!Reg.isVirtual()) 1165 continue; 1166 1167 // Ignore re-defs. 1168 if (TrackLaneMasks) { 1169 bool FoundDef = false; 1170 for (const MachineOperand &MO2 : MI.all_defs()) { 1171 if (MO2.getReg() == Reg && !MO2.isDead()) { 1172 FoundDef = true; 1173 break; 1174 } 1175 } 1176 if (FoundDef) 1177 continue; 1178 } 1179 1180 // Record this local VReg use. 1181 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 1182 for (; UI != VRegUses.end(); ++UI) { 1183 if (UI->SU == &SU) 1184 break; 1185 } 1186 if (UI == VRegUses.end()) 1187 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 1188 } 1189 } 1190 1191 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 1192 /// crossing a scheduling boundary. [begin, end) includes all instructions in 1193 /// the region, including the boundary itself and single-instruction regions 1194 /// that don't get scheduled. 1195 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 1196 MachineBasicBlock::iterator begin, 1197 MachineBasicBlock::iterator end, 1198 unsigned regioninstrs) 1199 { 1200 // ScheduleDAGMI initializes SchedImpl's per-region policy. 1201 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 1202 1203 // For convenience remember the end of the liveness region. 1204 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 1205 1206 SUPressureDiffs.clear(); 1207 1208 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 1209 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 1210 1211 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 1212 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 1213 } 1214 1215 // Setup the register pressure trackers for the top scheduled and bottom 1216 // scheduled regions. 1217 void ScheduleDAGMILive::initRegPressure() { 1218 VRegUses.clear(); 1219 VRegUses.setUniverse(MRI.getNumVirtRegs()); 1220 for (SUnit &SU : SUnits) 1221 collectVRegUses(SU); 1222 1223 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1224 ShouldTrackLaneMasks, false); 1225 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1226 ShouldTrackLaneMasks, false); 1227 1228 // Close the RPTracker to finalize live ins. 1229 RPTracker.closeRegion(); 1230 1231 LLVM_DEBUG(RPTracker.dump()); 1232 1233 // Initialize the live ins and live outs. 1234 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1235 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1236 1237 // Close one end of the tracker so we can call 1238 // getMaxUpward/DownwardPressureDelta before advancing across any 1239 // instructions. This converts currently live regs into live ins/outs. 1240 TopRPTracker.closeTop(); 1241 BotRPTracker.closeBottom(); 1242 1243 BotRPTracker.initLiveThru(RPTracker); 1244 if (!BotRPTracker.getLiveThru().empty()) { 1245 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1246 LLVM_DEBUG(dbgs() << "Live Thru: "; 1247 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1248 }; 1249 1250 // For each live out vreg reduce the pressure change associated with other 1251 // uses of the same vreg below the live-out reaching def. 1252 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1253 1254 // Account for liveness generated by the region boundary. 1255 if (LiveRegionEnd != RegionEnd) { 1256 SmallVector<RegisterMaskPair, 8> LiveUses; 1257 BotRPTracker.recede(&LiveUses); 1258 updatePressureDiffs(LiveUses); 1259 } 1260 1261 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; 1262 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1263 dbgs() << "Bottom Pressure:\n"; 1264 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);); 1265 1266 assert((BotRPTracker.getPos() == RegionEnd || 1267 (RegionEnd->isDebugInstr() && 1268 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && 1269 "Can't find the region bottom"); 1270 1271 // Cache the list of excess pressure sets in this region. This will also track 1272 // the max pressure in the scheduled code for these sets. 1273 RegionCriticalPSets.clear(); 1274 const std::vector<unsigned> &RegionPressure = 1275 RPTracker.getPressure().MaxSetPressure; 1276 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1277 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1278 if (RegionPressure[i] > Limit) { 1279 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit 1280 << " Actual " << RegionPressure[i] << "\n"); 1281 RegionCriticalPSets.push_back(PressureChange(i)); 1282 } 1283 } 1284 LLVM_DEBUG(dbgs() << "Excess PSets: "; 1285 for (const PressureChange &RCPS 1286 : RegionCriticalPSets) dbgs() 1287 << TRI->getRegPressureSetName(RCPS.getPSet()) << " "; 1288 dbgs() << "\n"); 1289 } 1290 1291 void ScheduleDAGMILive:: 1292 updateScheduledPressure(const SUnit *SU, 1293 const std::vector<unsigned> &NewMaxPressure) { 1294 const PressureDiff &PDiff = getPressureDiff(SU); 1295 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1296 for (const PressureChange &PC : PDiff) { 1297 if (!PC.isValid()) 1298 break; 1299 unsigned ID = PC.getPSet(); 1300 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1301 ++CritIdx; 1302 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1303 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1304 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1305 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1306 } 1307 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1308 if (NewMaxPressure[ID] >= Limit - 2) { 1309 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1310 << NewMaxPressure[ID] 1311 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") 1312 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID] 1313 << " livethru)\n"); 1314 } 1315 } 1316 } 1317 1318 /// Update the PressureDiff array for liveness after scheduling this 1319 /// instruction. 1320 void ScheduleDAGMILive::updatePressureDiffs( 1321 ArrayRef<RegisterMaskPair> LiveUses) { 1322 for (const RegisterMaskPair &P : LiveUses) { 1323 Register Reg = P.RegUnit; 1324 /// FIXME: Currently assuming single-use physregs. 1325 if (!Reg.isVirtual()) 1326 continue; 1327 1328 if (ShouldTrackLaneMasks) { 1329 // If the register has just become live then other uses won't change 1330 // this fact anymore => decrement pressure. 1331 // If the register has just become dead then other uses make it come 1332 // back to life => increment pressure. 1333 bool Decrement = P.LaneMask.any(); 1334 1335 for (const VReg2SUnit &V2SU 1336 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1337 SUnit &SU = *V2SU.SU; 1338 if (SU.isScheduled || &SU == &ExitSU) 1339 continue; 1340 1341 PressureDiff &PDiff = getPressureDiff(&SU); 1342 PDiff.addPressureChange(Reg, Decrement, &MRI); 1343 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1344 << printReg(Reg, TRI) << ':' 1345 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr(); 1346 dbgs() << " to "; PDiff.dump(*TRI);); 1347 } 1348 } else { 1349 assert(P.LaneMask.any()); 1350 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1351 // This may be called before CurrentBottom has been initialized. However, 1352 // BotRPTracker must have a valid position. We want the value live into the 1353 // instruction or live out of the block, so ask for the previous 1354 // instruction's live-out. 1355 const LiveInterval &LI = LIS->getInterval(Reg); 1356 VNInfo *VNI; 1357 MachineBasicBlock::const_iterator I = 1358 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1359 if (I == BB->end()) 1360 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1361 else { 1362 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1363 VNI = LRQ.valueIn(); 1364 } 1365 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1366 assert(VNI && "No live value at use."); 1367 for (const VReg2SUnit &V2SU 1368 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1369 SUnit *SU = V2SU.SU; 1370 // If this use comes before the reaching def, it cannot be a last use, 1371 // so decrease its pressure change. 1372 if (!SU->isScheduled && SU != &ExitSU) { 1373 LiveQueryResult LRQ = 1374 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1375 if (LRQ.valueIn() == VNI) { 1376 PressureDiff &PDiff = getPressureDiff(SU); 1377 PDiff.addPressureChange(Reg, true, &MRI); 1378 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1379 << *SU->getInstr(); 1380 dbgs() << " to "; PDiff.dump(*TRI);); 1381 } 1382 } 1383 } 1384 } 1385 } 1386 } 1387 1388 void ScheduleDAGMILive::dump() const { 1389 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1390 if (EntrySU.getInstr() != nullptr) 1391 dumpNodeAll(EntrySU); 1392 for (const SUnit &SU : SUnits) { 1393 dumpNodeAll(SU); 1394 if (ShouldTrackPressure) { 1395 dbgs() << " Pressure Diff : "; 1396 getPressureDiff(&SU).dump(*TRI); 1397 } 1398 dbgs() << " Single Issue : "; 1399 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1400 SchedModel.mustEndGroup(SU.getInstr())) 1401 dbgs() << "true;"; 1402 else 1403 dbgs() << "false;"; 1404 dbgs() << '\n'; 1405 } 1406 if (ExitSU.getInstr() != nullptr) 1407 dumpNodeAll(ExitSU); 1408 #endif 1409 } 1410 1411 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1412 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1413 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1414 /// 1415 /// This is a skeletal driver, with all the functionality pushed into helpers, 1416 /// so that it can be easily extended by experimental schedulers. Generally, 1417 /// implementing MachineSchedStrategy should be sufficient to implement a new 1418 /// scheduling algorithm. However, if a scheduler further subclasses 1419 /// ScheduleDAGMILive then it will want to override this virtual method in order 1420 /// to update any specialized state. 1421 void ScheduleDAGMILive::schedule() { 1422 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1423 LLVM_DEBUG(SchedImpl->dumpPolicy()); 1424 buildDAGWithRegPressure(); 1425 1426 postProcessDAG(); 1427 1428 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1429 findRootsAndBiasEdges(TopRoots, BotRoots); 1430 1431 // Initialize the strategy before modifying the DAG. 1432 // This may initialize a DFSResult to be used for queue priority. 1433 SchedImpl->initialize(this); 1434 1435 LLVM_DEBUG(dump()); 1436 if (PrintDAGs) dump(); 1437 if (ViewMISchedDAGs) viewGraph(); 1438 1439 // Initialize ready queues now that the DAG and priority data are finalized. 1440 initQueues(TopRoots, BotRoots); 1441 1442 bool IsTopNode = false; 1443 while (true) { 1444 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1445 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1446 if (!SU) break; 1447 1448 assert(!SU->isScheduled && "Node already scheduled"); 1449 if (!checkSchedLimit()) 1450 break; 1451 1452 scheduleMI(SU, IsTopNode); 1453 1454 if (DFSResult) { 1455 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1456 if (!ScheduledTrees.test(SubtreeID)) { 1457 ScheduledTrees.set(SubtreeID); 1458 DFSResult->scheduleTree(SubtreeID); 1459 SchedImpl->scheduleTree(SubtreeID); 1460 } 1461 } 1462 1463 // Notify the scheduling strategy after updating the DAG. 1464 SchedImpl->schedNode(SU, IsTopNode); 1465 1466 updateQueues(SU, IsTopNode); 1467 } 1468 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1469 1470 placeDebugValues(); 1471 1472 LLVM_DEBUG({ 1473 dbgs() << "*** Final schedule for " 1474 << printMBBReference(*begin()->getParent()) << " ***\n"; 1475 dumpSchedule(); 1476 dbgs() << '\n'; 1477 }); 1478 } 1479 1480 /// Build the DAG and setup three register pressure trackers. 1481 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1482 if (!ShouldTrackPressure) { 1483 RPTracker.reset(); 1484 RegionCriticalPSets.clear(); 1485 buildSchedGraph(AA); 1486 return; 1487 } 1488 1489 // Initialize the register pressure tracker used by buildSchedGraph. 1490 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1491 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1492 1493 // Account for liveness generate by the region boundary. 1494 if (LiveRegionEnd != RegionEnd) 1495 RPTracker.recede(); 1496 1497 // Build the DAG, and compute current register pressure. 1498 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1499 1500 // Initialize top/bottom trackers after computing region pressure. 1501 initRegPressure(); 1502 } 1503 1504 void ScheduleDAGMILive::computeDFSResult() { 1505 if (!DFSResult) 1506 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1507 DFSResult->clear(); 1508 ScheduledTrees.clear(); 1509 DFSResult->resize(SUnits.size()); 1510 DFSResult->compute(SUnits); 1511 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1512 } 1513 1514 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1515 /// only provides the critical path for single block loops. To handle loops that 1516 /// span blocks, we could use the vreg path latencies provided by 1517 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1518 /// available for use in the scheduler. 1519 /// 1520 /// The cyclic path estimation identifies a def-use pair that crosses the back 1521 /// edge and considers the depth and height of the nodes. For example, consider 1522 /// the following instruction sequence where each instruction has unit latency 1523 /// and defines an eponymous virtual register: 1524 /// 1525 /// a->b(a,c)->c(b)->d(c)->exit 1526 /// 1527 /// The cyclic critical path is a two cycles: b->c->b 1528 /// The acyclic critical path is four cycles: a->b->c->d->exit 1529 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1530 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1531 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1532 /// LiveInDepth = depth(b) = len(a->b) = 1 1533 /// 1534 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1535 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1536 /// CyclicCriticalPath = min(2, 2) = 2 1537 /// 1538 /// This could be relevant to PostRA scheduling, but is currently implemented 1539 /// assuming LiveIntervals. 1540 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1541 // This only applies to single block loop. 1542 if (!BB->isSuccessor(BB)) 1543 return 0; 1544 1545 unsigned MaxCyclicLatency = 0; 1546 // Visit each live out vreg def to find def/use pairs that cross iterations. 1547 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1548 Register Reg = P.RegUnit; 1549 if (!Reg.isVirtual()) 1550 continue; 1551 const LiveInterval &LI = LIS->getInterval(Reg); 1552 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1553 if (!DefVNI) 1554 continue; 1555 1556 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1557 const SUnit *DefSU = getSUnit(DefMI); 1558 if (!DefSU) 1559 continue; 1560 1561 unsigned LiveOutHeight = DefSU->getHeight(); 1562 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1563 // Visit all local users of the vreg def. 1564 for (const VReg2SUnit &V2SU 1565 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1566 SUnit *SU = V2SU.SU; 1567 if (SU == &ExitSU) 1568 continue; 1569 1570 // Only consider uses of the phi. 1571 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1572 if (!LRQ.valueIn()->isPHIDef()) 1573 continue; 1574 1575 // Assume that a path spanning two iterations is a cycle, which could 1576 // overestimate in strange cases. This allows cyclic latency to be 1577 // estimated as the minimum slack of the vreg's depth or height. 1578 unsigned CyclicLatency = 0; 1579 if (LiveOutDepth > SU->getDepth()) 1580 CyclicLatency = LiveOutDepth - SU->getDepth(); 1581 1582 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1583 if (LiveInHeight > LiveOutHeight) { 1584 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1585 CyclicLatency = LiveInHeight - LiveOutHeight; 1586 } else 1587 CyclicLatency = 0; 1588 1589 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1590 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1591 if (CyclicLatency > MaxCyclicLatency) 1592 MaxCyclicLatency = CyclicLatency; 1593 } 1594 } 1595 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1596 return MaxCyclicLatency; 1597 } 1598 1599 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1600 /// the Top RP tracker in case the region beginning has changed. 1601 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1602 ArrayRef<SUnit*> BotRoots) { 1603 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1604 if (ShouldTrackPressure) { 1605 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1606 TopRPTracker.setPos(CurrentTop); 1607 } 1608 } 1609 1610 /// Move an instruction and update register pressure. 1611 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1612 // Move the instruction to its new location in the instruction stream. 1613 MachineInstr *MI = SU->getInstr(); 1614 1615 if (IsTopNode) { 1616 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1617 if (&*CurrentTop == MI) 1618 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1619 else { 1620 moveInstruction(MI, CurrentTop); 1621 TopRPTracker.setPos(MI); 1622 } 1623 1624 if (ShouldTrackPressure) { 1625 // Update top scheduled pressure. 1626 RegisterOperands RegOpers; 1627 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1628 if (ShouldTrackLaneMasks) { 1629 // Adjust liveness and add missing dead+read-undef flags. 1630 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1631 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1632 } else { 1633 // Adjust for missing dead-def flags. 1634 RegOpers.detectDeadDefs(*MI, *LIS); 1635 } 1636 1637 TopRPTracker.advance(RegOpers); 1638 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1639 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure( 1640 TopRPTracker.getRegSetPressureAtPos(), TRI);); 1641 1642 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1643 } 1644 } else { 1645 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1646 MachineBasicBlock::iterator priorII = 1647 priorNonDebug(CurrentBottom, CurrentTop); 1648 if (&*priorII == MI) 1649 CurrentBottom = priorII; 1650 else { 1651 if (&*CurrentTop == MI) { 1652 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1653 TopRPTracker.setPos(CurrentTop); 1654 } 1655 moveInstruction(MI, CurrentBottom); 1656 CurrentBottom = MI; 1657 BotRPTracker.setPos(CurrentBottom); 1658 } 1659 if (ShouldTrackPressure) { 1660 RegisterOperands RegOpers; 1661 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1662 if (ShouldTrackLaneMasks) { 1663 // Adjust liveness and add missing dead+read-undef flags. 1664 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1665 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1666 } else { 1667 // Adjust for missing dead-def flags. 1668 RegOpers.detectDeadDefs(*MI, *LIS); 1669 } 1670 1671 if (BotRPTracker.getPos() != CurrentBottom) 1672 BotRPTracker.recedeSkipDebugValues(); 1673 SmallVector<RegisterMaskPair, 8> LiveUses; 1674 BotRPTracker.recede(RegOpers, &LiveUses); 1675 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1676 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure( 1677 BotRPTracker.getRegSetPressureAtPos(), TRI);); 1678 1679 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1680 updatePressureDiffs(LiveUses); 1681 } 1682 } 1683 } 1684 1685 //===----------------------------------------------------------------------===// 1686 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1687 //===----------------------------------------------------------------------===// 1688 1689 namespace { 1690 1691 /// Post-process the DAG to create cluster edges between neighboring 1692 /// loads or between neighboring stores. 1693 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1694 struct MemOpInfo { 1695 SUnit *SU; 1696 SmallVector<const MachineOperand *, 4> BaseOps; 1697 int64_t Offset; 1698 unsigned Width; 1699 1700 MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps, 1701 int64_t Offset, unsigned Width) 1702 : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset), 1703 Width(Width) {} 1704 1705 static bool Compare(const MachineOperand *const &A, 1706 const MachineOperand *const &B) { 1707 if (A->getType() != B->getType()) 1708 return A->getType() < B->getType(); 1709 if (A->isReg()) 1710 return A->getReg() < B->getReg(); 1711 if (A->isFI()) { 1712 const MachineFunction &MF = *A->getParent()->getParent()->getParent(); 1713 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); 1714 bool StackGrowsDown = TFI.getStackGrowthDirection() == 1715 TargetFrameLowering::StackGrowsDown; 1716 return StackGrowsDown ? A->getIndex() > B->getIndex() 1717 : A->getIndex() < B->getIndex(); 1718 } 1719 1720 llvm_unreachable("MemOpClusterMutation only supports register or frame " 1721 "index bases."); 1722 } 1723 1724 bool operator<(const MemOpInfo &RHS) const { 1725 // FIXME: Don't compare everything twice. Maybe use C++20 three way 1726 // comparison instead when it's available. 1727 if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(), 1728 RHS.BaseOps.begin(), RHS.BaseOps.end(), 1729 Compare)) 1730 return true; 1731 if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(), 1732 BaseOps.begin(), BaseOps.end(), Compare)) 1733 return false; 1734 if (Offset != RHS.Offset) 1735 return Offset < RHS.Offset; 1736 return SU->NodeNum < RHS.SU->NodeNum; 1737 } 1738 }; 1739 1740 const TargetInstrInfo *TII; 1741 const TargetRegisterInfo *TRI; 1742 bool IsLoad; 1743 1744 public: 1745 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1746 const TargetRegisterInfo *tri, bool IsLoad) 1747 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1748 1749 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1750 1751 protected: 1752 void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster, 1753 ScheduleDAGInstrs *DAG); 1754 void collectMemOpRecords(std::vector<SUnit> &SUnits, 1755 SmallVectorImpl<MemOpInfo> &MemOpRecords); 1756 bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG, 1757 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups); 1758 }; 1759 1760 class StoreClusterMutation : public BaseMemOpClusterMutation { 1761 public: 1762 StoreClusterMutation(const TargetInstrInfo *tii, 1763 const TargetRegisterInfo *tri) 1764 : BaseMemOpClusterMutation(tii, tri, false) {} 1765 }; 1766 1767 class LoadClusterMutation : public BaseMemOpClusterMutation { 1768 public: 1769 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1770 : BaseMemOpClusterMutation(tii, tri, true) {} 1771 }; 1772 1773 } // end anonymous namespace 1774 1775 namespace llvm { 1776 1777 std::unique_ptr<ScheduleDAGMutation> 1778 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1779 const TargetRegisterInfo *TRI) { 1780 return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI) 1781 : nullptr; 1782 } 1783 1784 std::unique_ptr<ScheduleDAGMutation> 1785 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1786 const TargetRegisterInfo *TRI) { 1787 return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI) 1788 : nullptr; 1789 } 1790 1791 } // end namespace llvm 1792 1793 // Sorting all the loads/stores first, then for each load/store, checking the 1794 // following load/store one by one, until reach the first non-dependent one and 1795 // call target hook to see if they can cluster. 1796 // If FastCluster is enabled, we assume that, all the loads/stores have been 1797 // preprocessed and now, they didn't have dependencies on each other. 1798 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1799 ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster, 1800 ScheduleDAGInstrs *DAG) { 1801 // Keep track of the current cluster length and bytes for each SUnit. 1802 DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo; 1803 1804 // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to 1805 // cluster mem ops collected within `MemOpRecords` array. 1806 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1807 // Decision to cluster mem ops is taken based on target dependent logic 1808 auto MemOpa = MemOpRecords[Idx]; 1809 1810 // Seek for the next load/store to do the cluster. 1811 unsigned NextIdx = Idx + 1; 1812 for (; NextIdx < End; ++NextIdx) 1813 // Skip if MemOpb has been clustered already or has dependency with 1814 // MemOpa. 1815 if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) && 1816 (FastCluster || 1817 (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) && 1818 !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU)))) 1819 break; 1820 if (NextIdx == End) 1821 continue; 1822 1823 auto MemOpb = MemOpRecords[NextIdx]; 1824 unsigned ClusterLength = 2; 1825 unsigned CurrentClusterBytes = MemOpa.Width + MemOpb.Width; 1826 if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) { 1827 ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1; 1828 CurrentClusterBytes = 1829 SUnit2ClusterInfo[MemOpa.SU->NodeNum].second + MemOpb.Width; 1830 } 1831 1832 if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpb.BaseOps, ClusterLength, 1833 CurrentClusterBytes)) 1834 continue; 1835 1836 SUnit *SUa = MemOpa.SU; 1837 SUnit *SUb = MemOpb.SU; 1838 if (SUa->NodeNum > SUb->NodeNum) 1839 std::swap(SUa, SUb); 1840 1841 // FIXME: Is this check really required? 1842 if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) 1843 continue; 1844 1845 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1846 << SUb->NodeNum << ")\n"); 1847 ++NumClustered; 1848 1849 if (IsLoad) { 1850 // Copy successor edges from SUa to SUb. Interleaving computation 1851 // dependent on SUa can prevent load combining due to register reuse. 1852 // Predecessor edges do not need to be copied from SUb to SUa since 1853 // nearby loads should have effectively the same inputs. 1854 for (const SDep &Succ : SUa->Succs) { 1855 if (Succ.getSUnit() == SUb) 1856 continue; 1857 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum 1858 << ")\n"); 1859 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1860 } 1861 } else { 1862 // Copy predecessor edges from SUb to SUa to avoid the SUnits that 1863 // SUb dependent on scheduled in-between SUb and SUa. Successor edges 1864 // do not need to be copied from SUa to SUb since no one will depend 1865 // on stores. 1866 // Notice that, we don't need to care about the memory dependency as 1867 // we won't try to cluster them if they have any memory dependency. 1868 for (const SDep &Pred : SUb->Preds) { 1869 if (Pred.getSUnit() == SUa) 1870 continue; 1871 LLVM_DEBUG(dbgs() << " Copy Pred SU(" << Pred.getSUnit()->NodeNum 1872 << ")\n"); 1873 DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial)); 1874 } 1875 } 1876 1877 SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength, 1878 CurrentClusterBytes}; 1879 1880 LLVM_DEBUG(dbgs() << " Curr cluster length: " << ClusterLength 1881 << ", Curr cluster bytes: " << CurrentClusterBytes 1882 << "\n"); 1883 } 1884 } 1885 1886 void BaseMemOpClusterMutation::collectMemOpRecords( 1887 std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) { 1888 for (auto &SU : SUnits) { 1889 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1890 (!IsLoad && !SU.getInstr()->mayStore())) 1891 continue; 1892 1893 const MachineInstr &MI = *SU.getInstr(); 1894 SmallVector<const MachineOperand *, 4> BaseOps; 1895 int64_t Offset; 1896 bool OffsetIsScalable; 1897 unsigned Width; 1898 if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, 1899 OffsetIsScalable, Width, TRI)) { 1900 MemOpRecords.push_back(MemOpInfo(&SU, BaseOps, Offset, Width)); 1901 1902 LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: " 1903 << Offset << ", OffsetIsScalable: " << OffsetIsScalable 1904 << ", Width: " << Width << "\n"); 1905 } 1906 #ifndef NDEBUG 1907 for (const auto *Op : BaseOps) 1908 assert(Op); 1909 #endif 1910 } 1911 } 1912 1913 bool BaseMemOpClusterMutation::groupMemOps( 1914 ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG, 1915 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups) { 1916 bool FastCluster = 1917 ForceFastCluster || 1918 MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold; 1919 1920 for (const auto &MemOp : MemOps) { 1921 unsigned ChainPredID = DAG->SUnits.size(); 1922 if (FastCluster) { 1923 for (const SDep &Pred : MemOp.SU->Preds) { 1924 // We only want to cluster the mem ops that have the same ctrl(non-data) 1925 // pred so that they didn't have ctrl dependency for each other. But for 1926 // store instrs, we can still cluster them if the pred is load instr. 1927 if ((Pred.isCtrl() && 1928 (IsLoad || 1929 (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) && 1930 !Pred.isArtificial()) { 1931 ChainPredID = Pred.getSUnit()->NodeNum; 1932 break; 1933 } 1934 } 1935 } else 1936 ChainPredID = 0; 1937 1938 Groups[ChainPredID].push_back(MemOp); 1939 } 1940 return FastCluster; 1941 } 1942 1943 /// Callback from DAG postProcessing to create cluster edges for loads/stores. 1944 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) { 1945 // Collect all the clusterable loads/stores 1946 SmallVector<MemOpInfo, 32> MemOpRecords; 1947 collectMemOpRecords(DAG->SUnits, MemOpRecords); 1948 1949 if (MemOpRecords.size() < 2) 1950 return; 1951 1952 // Put the loads/stores without dependency into the same group with some 1953 // heuristic if the DAG is too complex to avoid compiling time blow up. 1954 // Notice that, some fusion pair could be lost with this. 1955 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> Groups; 1956 bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups); 1957 1958 for (auto &Group : Groups) { 1959 // Sorting the loads/stores, so that, we can stop the cluster as early as 1960 // possible. 1961 llvm::sort(Group.second); 1962 1963 // Trying to cluster all the neighboring loads/stores. 1964 clusterNeighboringMemOps(Group.second, FastCluster, DAG); 1965 } 1966 } 1967 1968 //===----------------------------------------------------------------------===// 1969 // CopyConstrain - DAG post-processing to encourage copy elimination. 1970 //===----------------------------------------------------------------------===// 1971 1972 namespace { 1973 1974 /// Post-process the DAG to create weak edges from all uses of a copy to 1975 /// the one use that defines the copy's source vreg, most likely an induction 1976 /// variable increment. 1977 class CopyConstrain : public ScheduleDAGMutation { 1978 // Transient state. 1979 SlotIndex RegionBeginIdx; 1980 1981 // RegionEndIdx is the slot index of the last non-debug instruction in the 1982 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1983 SlotIndex RegionEndIdx; 1984 1985 public: 1986 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1987 1988 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1989 1990 protected: 1991 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1992 }; 1993 1994 } // end anonymous namespace 1995 1996 namespace llvm { 1997 1998 std::unique_ptr<ScheduleDAGMutation> 1999 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 2000 const TargetRegisterInfo *TRI) { 2001 return std::make_unique<CopyConstrain>(TII, TRI); 2002 } 2003 2004 } // end namespace llvm 2005 2006 /// constrainLocalCopy handles two possibilities: 2007 /// 1) Local src: 2008 /// I0: = dst 2009 /// I1: src = ... 2010 /// I2: = dst 2011 /// I3: dst = src (copy) 2012 /// (create pred->succ edges I0->I1, I2->I1) 2013 /// 2014 /// 2) Local copy: 2015 /// I0: dst = src (copy) 2016 /// I1: = dst 2017 /// I2: src = ... 2018 /// I3: = dst 2019 /// (create pred->succ edges I1->I2, I3->I2) 2020 /// 2021 /// Although the MachineScheduler is currently constrained to single blocks, 2022 /// this algorithm should handle extended blocks. An EBB is a set of 2023 /// contiguously numbered blocks such that the previous block in the EBB is 2024 /// always the single predecessor. 2025 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 2026 LiveIntervals *LIS = DAG->getLIS(); 2027 MachineInstr *Copy = CopySU->getInstr(); 2028 2029 // Check for pure vreg copies. 2030 const MachineOperand &SrcOp = Copy->getOperand(1); 2031 Register SrcReg = SrcOp.getReg(); 2032 if (!SrcReg.isVirtual() || !SrcOp.readsReg()) 2033 return; 2034 2035 const MachineOperand &DstOp = Copy->getOperand(0); 2036 Register DstReg = DstOp.getReg(); 2037 if (!DstReg.isVirtual() || DstOp.isDead()) 2038 return; 2039 2040 // Check if either the dest or source is local. If it's live across a back 2041 // edge, it's not local. Note that if both vregs are live across the back 2042 // edge, we cannot successfully contrain the copy without cyclic scheduling. 2043 // If both the copy's source and dest are local live intervals, then we 2044 // should treat the dest as the global for the purpose of adding 2045 // constraints. This adds edges from source's other uses to the copy. 2046 unsigned LocalReg = SrcReg; 2047 unsigned GlobalReg = DstReg; 2048 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 2049 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 2050 LocalReg = DstReg; 2051 GlobalReg = SrcReg; 2052 LocalLI = &LIS->getInterval(LocalReg); 2053 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 2054 return; 2055 } 2056 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 2057 2058 // Find the global segment after the start of the local LI. 2059 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 2060 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 2061 // local live range. We could create edges from other global uses to the local 2062 // start, but the coalescer should have already eliminated these cases, so 2063 // don't bother dealing with it. 2064 if (GlobalSegment == GlobalLI->end()) 2065 return; 2066 2067 // If GlobalSegment is killed at the LocalLI->start, the call to find() 2068 // returned the next global segment. But if GlobalSegment overlaps with 2069 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI 2070 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 2071 if (GlobalSegment->contains(LocalLI->beginIndex())) 2072 ++GlobalSegment; 2073 2074 if (GlobalSegment == GlobalLI->end()) 2075 return; 2076 2077 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 2078 if (GlobalSegment != GlobalLI->begin()) { 2079 // Two address defs have no hole. 2080 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 2081 GlobalSegment->start)) { 2082 return; 2083 } 2084 // If the prior global segment may be defined by the same two-address 2085 // instruction that also defines LocalLI, then can't make a hole here. 2086 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 2087 LocalLI->beginIndex())) { 2088 return; 2089 } 2090 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 2091 // it would be a disconnected component in the live range. 2092 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 2093 "Disconnected LRG within the scheduling region."); 2094 } 2095 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 2096 if (!GlobalDef) 2097 return; 2098 2099 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 2100 if (!GlobalSU) 2101 return; 2102 2103 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 2104 // constraining the uses of the last local def to precede GlobalDef. 2105 SmallVector<SUnit*,8> LocalUses; 2106 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 2107 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 2108 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 2109 for (const SDep &Succ : LastLocalSU->Succs) { 2110 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 2111 continue; 2112 if (Succ.getSUnit() == GlobalSU) 2113 continue; 2114 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 2115 return; 2116 LocalUses.push_back(Succ.getSUnit()); 2117 } 2118 // Open the top of the GlobalLI hole by constraining any earlier global uses 2119 // to precede the start of LocalLI. 2120 SmallVector<SUnit*,8> GlobalUses; 2121 MachineInstr *FirstLocalDef = 2122 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 2123 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 2124 for (const SDep &Pred : GlobalSU->Preds) { 2125 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 2126 continue; 2127 if (Pred.getSUnit() == FirstLocalSU) 2128 continue; 2129 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 2130 return; 2131 GlobalUses.push_back(Pred.getSUnit()); 2132 } 2133 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 2134 // Add the weak edges. 2135 for (SUnit *LU : LocalUses) { 2136 LLVM_DEBUG(dbgs() << " Local use SU(" << LU->NodeNum << ") -> SU(" 2137 << GlobalSU->NodeNum << ")\n"); 2138 DAG->addEdge(GlobalSU, SDep(LU, SDep::Weak)); 2139 } 2140 for (SUnit *GU : GlobalUses) { 2141 LLVM_DEBUG(dbgs() << " Global use SU(" << GU->NodeNum << ") -> SU(" 2142 << FirstLocalSU->NodeNum << ")\n"); 2143 DAG->addEdge(FirstLocalSU, SDep(GU, SDep::Weak)); 2144 } 2145 } 2146 2147 /// Callback from DAG postProcessing to create weak edges to encourage 2148 /// copy elimination. 2149 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 2150 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 2151 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 2152 2153 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 2154 if (FirstPos == DAG->end()) 2155 return; 2156 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 2157 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 2158 *priorNonDebug(DAG->end(), DAG->begin())); 2159 2160 for (SUnit &SU : DAG->SUnits) { 2161 if (!SU.getInstr()->isCopy()) 2162 continue; 2163 2164 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 2165 } 2166 } 2167 2168 //===----------------------------------------------------------------------===// 2169 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 2170 // and possibly other custom schedulers. 2171 //===----------------------------------------------------------------------===// 2172 2173 static const unsigned InvalidCycle = ~0U; 2174 2175 SchedBoundary::~SchedBoundary() { delete HazardRec; } 2176 2177 /// Given a Count of resource usage and a Latency value, return true if a 2178 /// SchedBoundary becomes resource limited. 2179 /// If we are checking after scheduling a node, we should return true when 2180 /// we just reach the resource limit. 2181 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 2182 unsigned Latency, bool AfterSchedNode) { 2183 int ResCntFactor = (int)(Count - (Latency * LFactor)); 2184 if (AfterSchedNode) 2185 return ResCntFactor >= (int)LFactor; 2186 else 2187 return ResCntFactor > (int)LFactor; 2188 } 2189 2190 void SchedBoundary::reset() { 2191 // A new HazardRec is created for each DAG and owned by SchedBoundary. 2192 // Destroying and reconstructing it is very expensive though. So keep 2193 // invalid, placeholder HazardRecs. 2194 if (HazardRec && HazardRec->isEnabled()) { 2195 delete HazardRec; 2196 HazardRec = nullptr; 2197 } 2198 Available.clear(); 2199 Pending.clear(); 2200 CheckPending = false; 2201 CurrCycle = 0; 2202 CurrMOps = 0; 2203 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2204 ExpectedLatency = 0; 2205 DependentLatency = 0; 2206 RetiredMOps = 0; 2207 MaxExecutedResCount = 0; 2208 ZoneCritResIdx = 0; 2209 IsResourceLimited = false; 2210 ReservedCycles.clear(); 2211 ReservedResourceSegments.clear(); 2212 ReservedCyclesIndex.clear(); 2213 ResourceGroupSubUnitMasks.clear(); 2214 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 2215 // Track the maximum number of stall cycles that could arise either from the 2216 // latency of a DAG edge or the number of cycles that a processor resource is 2217 // reserved (SchedBoundary::ReservedCycles). 2218 MaxObservedStall = 0; 2219 #endif 2220 // Reserve a zero-count for invalid CritResIdx. 2221 ExecutedResCounts.resize(1); 2222 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 2223 } 2224 2225 void SchedRemainder:: 2226 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 2227 reset(); 2228 if (!SchedModel->hasInstrSchedModel()) 2229 return; 2230 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 2231 for (SUnit &SU : DAG->SUnits) { 2232 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 2233 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 2234 * SchedModel->getMicroOpFactor(); 2235 for (TargetSchedModel::ProcResIter 2236 PI = SchedModel->getWriteProcResBegin(SC), 2237 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2238 unsigned PIdx = PI->ProcResourceIdx; 2239 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2240 assert(PI->Cycles >= PI->StartAtCycle); 2241 RemainingCounts[PIdx] += (Factor * (PI->Cycles - PI->StartAtCycle)); 2242 } 2243 } 2244 } 2245 2246 void SchedBoundary:: 2247 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 2248 reset(); 2249 DAG = dag; 2250 SchedModel = smodel; 2251 Rem = rem; 2252 if (SchedModel->hasInstrSchedModel()) { 2253 unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); 2254 ReservedCyclesIndex.resize(ResourceCount); 2255 ExecutedResCounts.resize(ResourceCount); 2256 ResourceGroupSubUnitMasks.resize(ResourceCount, APInt(ResourceCount, 0)); 2257 unsigned NumUnits = 0; 2258 2259 for (unsigned i = 0; i < ResourceCount; ++i) { 2260 ReservedCyclesIndex[i] = NumUnits; 2261 NumUnits += SchedModel->getProcResource(i)->NumUnits; 2262 if (isUnbufferedGroup(i)) { 2263 auto SubUnits = SchedModel->getProcResource(i)->SubUnitsIdxBegin; 2264 for (unsigned U = 0, UE = SchedModel->getProcResource(i)->NumUnits; 2265 U != UE; ++U) 2266 ResourceGroupSubUnitMasks[i].setBit(SubUnits[U]); 2267 } 2268 } 2269 2270 ReservedCycles.resize(NumUnits, InvalidCycle); 2271 } 2272 } 2273 2274 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 2275 /// these "soft stalls" differently than the hard stall cycles based on CPU 2276 /// resources and computed by checkHazard(). A fully in-order model 2277 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 2278 /// available for scheduling until they are ready. However, a weaker in-order 2279 /// model may use this for heuristics. For example, if a processor has in-order 2280 /// behavior when reading certain resources, this may come into play. 2281 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 2282 if (!SU->isUnbuffered) 2283 return 0; 2284 2285 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2286 if (ReadyCycle > CurrCycle) 2287 return ReadyCycle - CurrCycle; 2288 return 0; 2289 } 2290 2291 /// Compute the next cycle at which the given processor resource unit 2292 /// can be scheduled. 2293 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx, 2294 unsigned Cycles, 2295 unsigned StartAtCycle) { 2296 if (SchedModel && SchedModel->enableIntervals()) { 2297 if (isTop()) 2298 return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromTop( 2299 CurrCycle, StartAtCycle, Cycles); 2300 2301 return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromBottom( 2302 CurrCycle, StartAtCycle, Cycles); 2303 } 2304 2305 unsigned NextUnreserved = ReservedCycles[InstanceIdx]; 2306 // If this resource has never been used, always return cycle zero. 2307 if (NextUnreserved == InvalidCycle) 2308 return CurrCycle; 2309 // For bottom-up scheduling add the cycles needed for the current operation. 2310 if (!isTop()) 2311 NextUnreserved = std::max(CurrCycle, NextUnreserved + Cycles); 2312 return NextUnreserved; 2313 } 2314 2315 /// Compute the next cycle at which the given processor resource can be 2316 /// scheduled. Returns the next cycle and the index of the processor resource 2317 /// instance in the reserved cycles vector. 2318 std::pair<unsigned, unsigned> 2319 SchedBoundary::getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx, 2320 unsigned Cycles, unsigned StartAtCycle) { 2321 if (MischedDetailResourceBooking) { 2322 LLVM_DEBUG(dbgs() << " Resource booking (@" << CurrCycle << "c): \n"); 2323 LLVM_DEBUG(dumpReservedCycles()); 2324 LLVM_DEBUG(dbgs() << " getNextResourceCycle (@" << CurrCycle << "c): \n"); 2325 } 2326 unsigned MinNextUnreserved = InvalidCycle; 2327 unsigned InstanceIdx = 0; 2328 unsigned StartIndex = ReservedCyclesIndex[PIdx]; 2329 unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits; 2330 assert(NumberOfInstances > 0 && 2331 "Cannot have zero instances of a ProcResource"); 2332 2333 if (isUnbufferedGroup(PIdx)) { 2334 // If any subunits are used by the instruction, report that the resource 2335 // group is available at 0, effectively removing the group record from 2336 // hazarding and basing the hazarding decisions on the subunit records. 2337 // Otherwise, choose the first available instance from among the subunits. 2338 // Specifications which assign cycles to both the subunits and the group or 2339 // which use an unbuffered group with buffered subunits will appear to 2340 // schedule strangely. In the first case, the additional cycles for the 2341 // group will be ignored. In the second, the group will be ignored 2342 // entirely. 2343 for (const MCWriteProcResEntry &PE : 2344 make_range(SchedModel->getWriteProcResBegin(SC), 2345 SchedModel->getWriteProcResEnd(SC))) 2346 if (ResourceGroupSubUnitMasks[PIdx][PE.ProcResourceIdx]) 2347 return std::make_pair(0u, StartIndex); 2348 2349 auto SubUnits = SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin; 2350 for (unsigned I = 0, End = NumberOfInstances; I < End; ++I) { 2351 unsigned NextUnreserved, NextInstanceIdx; 2352 std::tie(NextUnreserved, NextInstanceIdx) = 2353 getNextResourceCycle(SC, SubUnits[I], Cycles, StartAtCycle); 2354 if (MinNextUnreserved > NextUnreserved) { 2355 InstanceIdx = NextInstanceIdx; 2356 MinNextUnreserved = NextUnreserved; 2357 } 2358 } 2359 return std::make_pair(MinNextUnreserved, InstanceIdx); 2360 } 2361 2362 for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End; 2363 ++I) { 2364 unsigned NextUnreserved = 2365 getNextResourceCycleByInstance(I, Cycles, StartAtCycle); 2366 if (MischedDetailResourceBooking) 2367 LLVM_DEBUG(dbgs() << " Instance " << I - StartIndex << " available @" 2368 << NextUnreserved << "c\n"); 2369 if (MinNextUnreserved > NextUnreserved) { 2370 InstanceIdx = I; 2371 MinNextUnreserved = NextUnreserved; 2372 } 2373 } 2374 if (MischedDetailResourceBooking) 2375 LLVM_DEBUG(dbgs() << " selecting " << SchedModel->getResourceName(PIdx) 2376 << "[" << InstanceIdx - StartIndex << "]" 2377 << " available @" << MinNextUnreserved << "c" 2378 << "\n"); 2379 return std::make_pair(MinNextUnreserved, InstanceIdx); 2380 } 2381 2382 /// Does this SU have a hazard within the current instruction group. 2383 /// 2384 /// The scheduler supports two modes of hazard recognition. The first is the 2385 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 2386 /// supports highly complicated in-order reservation tables 2387 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. 2388 /// 2389 /// The second is a streamlined mechanism that checks for hazards based on 2390 /// simple counters that the scheduler itself maintains. It explicitly checks 2391 /// for instruction dispatch limitations, including the number of micro-ops that 2392 /// can dispatch per cycle. 2393 /// 2394 /// TODO: Also check whether the SU must start a new group. 2395 bool SchedBoundary::checkHazard(SUnit *SU) { 2396 if (HazardRec->isEnabled() 2397 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 2398 return true; 2399 } 2400 2401 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 2402 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 2403 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 2404 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 2405 return true; 2406 } 2407 2408 if (CurrMOps > 0 && 2409 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 2410 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 2411 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 2412 << (isTop() ? "begin" : "end") << " group\n"); 2413 return true; 2414 } 2415 2416 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 2417 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2418 for (const MCWriteProcResEntry &PE : 2419 make_range(SchedModel->getWriteProcResBegin(SC), 2420 SchedModel->getWriteProcResEnd(SC))) { 2421 unsigned ResIdx = PE.ProcResourceIdx; 2422 unsigned Cycles = PE.Cycles; 2423 unsigned StartAtCycle = PE.StartAtCycle; 2424 unsigned NRCycle, InstanceIdx; 2425 std::tie(NRCycle, InstanceIdx) = 2426 getNextResourceCycle(SC, ResIdx, Cycles, StartAtCycle); 2427 if (NRCycle > CurrCycle) { 2428 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 2429 MaxObservedStall = std::max(Cycles, MaxObservedStall); 2430 #endif 2431 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 2432 << SchedModel->getResourceName(ResIdx) 2433 << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']' 2434 << "=" << NRCycle << "c\n"); 2435 return true; 2436 } 2437 } 2438 } 2439 return false; 2440 } 2441 2442 // Find the unscheduled node in ReadySUs with the highest latency. 2443 unsigned SchedBoundary:: 2444 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 2445 SUnit *LateSU = nullptr; 2446 unsigned RemLatency = 0; 2447 for (SUnit *SU : ReadySUs) { 2448 unsigned L = getUnscheduledLatency(SU); 2449 if (L > RemLatency) { 2450 RemLatency = L; 2451 LateSU = SU; 2452 } 2453 } 2454 if (LateSU) { 2455 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2456 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2457 } 2458 return RemLatency; 2459 } 2460 2461 // Count resources in this zone and the remaining unscheduled 2462 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2463 // resource index, or zero if the zone is issue limited. 2464 unsigned SchedBoundary:: 2465 getOtherResourceCount(unsigned &OtherCritIdx) { 2466 OtherCritIdx = 0; 2467 if (!SchedModel->hasInstrSchedModel()) 2468 return 0; 2469 2470 unsigned OtherCritCount = Rem->RemIssueCount 2471 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2472 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2473 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2474 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2475 PIdx != PEnd; ++PIdx) { 2476 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2477 if (OtherCount > OtherCritCount) { 2478 OtherCritCount = OtherCount; 2479 OtherCritIdx = PIdx; 2480 } 2481 } 2482 if (OtherCritIdx) { 2483 LLVM_DEBUG( 2484 dbgs() << " " << Available.getName() << " + Remain CritRes: " 2485 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2486 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2487 } 2488 return OtherCritCount; 2489 } 2490 2491 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue, 2492 unsigned Idx) { 2493 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2494 2495 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 2496 // ReadyCycle was been bumped up to the CurrCycle when this node was 2497 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2498 // scheduling, so may now be greater than ReadyCycle. 2499 if (ReadyCycle > CurrCycle) 2500 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2501 #endif 2502 2503 if (ReadyCycle < MinReadyCycle) 2504 MinReadyCycle = ReadyCycle; 2505 2506 // Check for interlocks first. For the purpose of other heuristics, an 2507 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2508 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2509 bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) || 2510 checkHazard(SU) || (Available.size() >= ReadyListLimit); 2511 2512 if (!HazardDetected) { 2513 Available.push(SU); 2514 2515 if (InPQueue) 2516 Pending.remove(Pending.begin() + Idx); 2517 return; 2518 } 2519 2520 if (!InPQueue) 2521 Pending.push(SU); 2522 } 2523 2524 /// Move the boundary of scheduled code by one cycle. 2525 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2526 if (SchedModel->getMicroOpBufferSize() == 0) { 2527 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2528 "MinReadyCycle uninitialized"); 2529 if (MinReadyCycle > NextCycle) 2530 NextCycle = MinReadyCycle; 2531 } 2532 // Update the current micro-ops, which will issue in the next cycle. 2533 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2534 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2535 2536 // Decrement DependentLatency based on the next cycle. 2537 if ((NextCycle - CurrCycle) > DependentLatency) 2538 DependentLatency = 0; 2539 else 2540 DependentLatency -= (NextCycle - CurrCycle); 2541 2542 if (!HazardRec->isEnabled()) { 2543 // Bypass HazardRec virtual calls. 2544 CurrCycle = NextCycle; 2545 } else { 2546 // Bypass getHazardType calls in case of long latency. 2547 for (; CurrCycle != NextCycle; ++CurrCycle) { 2548 if (isTop()) 2549 HazardRec->AdvanceCycle(); 2550 else 2551 HazardRec->RecedeCycle(); 2552 } 2553 } 2554 CheckPending = true; 2555 IsResourceLimited = 2556 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2557 getScheduledLatency(), true); 2558 2559 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() 2560 << '\n'); 2561 } 2562 2563 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2564 ExecutedResCounts[PIdx] += Count; 2565 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2566 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2567 } 2568 2569 /// Add the given processor resource to this scheduled zone. 2570 /// 2571 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2572 /// during which this resource is consumed. 2573 /// 2574 /// \return the next cycle at which the instruction may execute without 2575 /// oversubscribing resources. 2576 unsigned SchedBoundary::countResource(const MCSchedClassDesc *SC, unsigned PIdx, 2577 unsigned Cycles, unsigned NextCycle, 2578 unsigned StartAtCycle) { 2579 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2580 unsigned Count = Factor * (Cycles - StartAtCycle); 2581 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +" 2582 << Cycles << "x" << Factor << "u\n"); 2583 2584 // Update Executed resources counts. 2585 incExecutedResources(PIdx, Count); 2586 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2587 Rem->RemainingCounts[PIdx] -= Count; 2588 2589 // Check if this resource exceeds the current critical resource. If so, it 2590 // becomes the critical resource. 2591 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2592 ZoneCritResIdx = PIdx; 2593 LLVM_DEBUG(dbgs() << " *** Critical resource " 2594 << SchedModel->getResourceName(PIdx) << ": " 2595 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() 2596 << "c\n"); 2597 } 2598 // For reserved resources, record the highest cycle using the resource. 2599 unsigned NextAvailable, InstanceIdx; 2600 std::tie(NextAvailable, InstanceIdx) = 2601 getNextResourceCycle(SC, PIdx, Cycles, StartAtCycle); 2602 if (NextAvailable > CurrCycle) { 2603 LLVM_DEBUG(dbgs() << " Resource conflict: " 2604 << SchedModel->getResourceName(PIdx) 2605 << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']' 2606 << " reserved until @" << NextAvailable << "\n"); 2607 } 2608 return NextAvailable; 2609 } 2610 2611 /// Move the boundary of scheduled code by one SUnit. 2612 void SchedBoundary::bumpNode(SUnit *SU) { 2613 // Update the reservation table. 2614 if (HazardRec->isEnabled()) { 2615 if (!isTop() && SU->isCall) { 2616 // Calls are scheduled with their preceding instructions. For bottom-up 2617 // scheduling, clear the pipeline state before emitting. 2618 HazardRec->Reset(); 2619 } 2620 HazardRec->EmitInstruction(SU); 2621 // Scheduling an instruction may have made pending instructions available. 2622 CheckPending = true; 2623 } 2624 // checkHazard should prevent scheduling multiple instructions per cycle that 2625 // exceed the issue width. 2626 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2627 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2628 assert( 2629 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2630 "Cannot schedule this instruction's MicroOps in the current cycle."); 2631 2632 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2633 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2634 2635 unsigned NextCycle = CurrCycle; 2636 switch (SchedModel->getMicroOpBufferSize()) { 2637 case 0: 2638 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2639 break; 2640 case 1: 2641 if (ReadyCycle > NextCycle) { 2642 NextCycle = ReadyCycle; 2643 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2644 } 2645 break; 2646 default: 2647 // We don't currently model the OOO reorder buffer, so consider all 2648 // scheduled MOps to be "retired". We do loosely model in-order resource 2649 // latency. If this instruction uses an in-order resource, account for any 2650 // likely stall cycles. 2651 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2652 NextCycle = ReadyCycle; 2653 break; 2654 } 2655 RetiredMOps += IncMOps; 2656 2657 // Update resource counts and critical resource. 2658 if (SchedModel->hasInstrSchedModel()) { 2659 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2660 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2661 Rem->RemIssueCount -= DecRemIssue; 2662 if (ZoneCritResIdx) { 2663 // Scale scheduled micro-ops for comparing with the critical resource. 2664 unsigned ScaledMOps = 2665 RetiredMOps * SchedModel->getMicroOpFactor(); 2666 2667 // If scaled micro-ops are now more than the previous critical resource by 2668 // a full cycle, then micro-ops issue becomes critical. 2669 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2670 >= (int)SchedModel->getLatencyFactor()) { 2671 ZoneCritResIdx = 0; 2672 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2673 << ScaledMOps / SchedModel->getLatencyFactor() 2674 << "c\n"); 2675 } 2676 } 2677 for (TargetSchedModel::ProcResIter 2678 PI = SchedModel->getWriteProcResBegin(SC), 2679 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2680 unsigned RCycle = countResource(SC, PI->ProcResourceIdx, PI->Cycles, 2681 NextCycle, PI->StartAtCycle); 2682 if (RCycle > NextCycle) 2683 NextCycle = RCycle; 2684 } 2685 if (SU->hasReservedResource) { 2686 // For reserved resources, record the highest cycle using the resource. 2687 // For top-down scheduling, this is the cycle in which we schedule this 2688 // instruction plus the number of cycles the operations reserves the 2689 // resource. For bottom-up is it simply the instruction's cycle. 2690 for (TargetSchedModel::ProcResIter 2691 PI = SchedModel->getWriteProcResBegin(SC), 2692 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2693 unsigned PIdx = PI->ProcResourceIdx; 2694 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2695 2696 if (SchedModel && SchedModel->enableIntervals()) { 2697 unsigned ReservedUntil, InstanceIdx; 2698 std::tie(ReservedUntil, InstanceIdx) = 2699 getNextResourceCycle(SC, PIdx, PI->Cycles, PI->StartAtCycle); 2700 if (isTop()) { 2701 ReservedResourceSegments[InstanceIdx].add( 2702 ResourceSegments::getResourceIntervalTop( 2703 NextCycle, PI->StartAtCycle, PI->Cycles), 2704 MIResourceCutOff); 2705 } else { 2706 ReservedResourceSegments[InstanceIdx].add( 2707 ResourceSegments::getResourceIntervalBottom( 2708 NextCycle, PI->StartAtCycle, PI->Cycles), 2709 MIResourceCutOff); 2710 } 2711 } else { 2712 2713 unsigned ReservedUntil, InstanceIdx; 2714 std::tie(ReservedUntil, InstanceIdx) = 2715 getNextResourceCycle(SC, PIdx, PI->Cycles, PI->StartAtCycle); 2716 if (isTop()) { 2717 ReservedCycles[InstanceIdx] = 2718 std::max(ReservedUntil, NextCycle + PI->Cycles); 2719 } else 2720 ReservedCycles[InstanceIdx] = NextCycle; 2721 } 2722 } 2723 } 2724 } 2725 } 2726 // Update ExpectedLatency and DependentLatency. 2727 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2728 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2729 if (SU->getDepth() > TopLatency) { 2730 TopLatency = SU->getDepth(); 2731 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU(" 2732 << SU->NodeNum << ") " << TopLatency << "c\n"); 2733 } 2734 if (SU->getHeight() > BotLatency) { 2735 BotLatency = SU->getHeight(); 2736 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU(" 2737 << SU->NodeNum << ") " << BotLatency << "c\n"); 2738 } 2739 // If we stall for any reason, bump the cycle. 2740 if (NextCycle > CurrCycle) 2741 bumpCycle(NextCycle); 2742 else 2743 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2744 // resource limited. If a stall occurred, bumpCycle does this. 2745 IsResourceLimited = 2746 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2747 getScheduledLatency(), true); 2748 2749 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2750 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2751 // one cycle. Since we commonly reach the max MOps here, opportunistically 2752 // bump the cycle to avoid uselessly checking everything in the readyQ. 2753 CurrMOps += IncMOps; 2754 2755 // Bump the cycle count for issue group constraints. 2756 // This must be done after NextCycle has been adjust for all other stalls. 2757 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2758 // currCycle to X. 2759 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2760 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2761 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin") 2762 << " group\n"); 2763 bumpCycle(++NextCycle); 2764 } 2765 2766 while (CurrMOps >= SchedModel->getIssueWidth()) { 2767 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle " 2768 << CurrCycle << '\n'); 2769 bumpCycle(++NextCycle); 2770 } 2771 LLVM_DEBUG(dumpScheduledState()); 2772 } 2773 2774 /// Release pending ready nodes in to the available queue. This makes them 2775 /// visible to heuristics. 2776 void SchedBoundary::releasePending() { 2777 // If the available queue is empty, it is safe to reset MinReadyCycle. 2778 if (Available.empty()) 2779 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2780 2781 // Check to see if any of the pending instructions are ready to issue. If 2782 // so, add them to the available queue. 2783 for (unsigned I = 0, E = Pending.size(); I < E; ++I) { 2784 SUnit *SU = *(Pending.begin() + I); 2785 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2786 2787 if (ReadyCycle < MinReadyCycle) 2788 MinReadyCycle = ReadyCycle; 2789 2790 if (Available.size() >= ReadyListLimit) 2791 break; 2792 2793 releaseNode(SU, ReadyCycle, true, I); 2794 if (E != Pending.size()) { 2795 --I; 2796 --E; 2797 } 2798 } 2799 CheckPending = false; 2800 } 2801 2802 /// Remove SU from the ready set for this boundary. 2803 void SchedBoundary::removeReady(SUnit *SU) { 2804 if (Available.isInQueue(SU)) 2805 Available.remove(Available.find(SU)); 2806 else { 2807 assert(Pending.isInQueue(SU) && "bad ready count"); 2808 Pending.remove(Pending.find(SU)); 2809 } 2810 } 2811 2812 /// If this queue only has one ready candidate, return it. As a side effect, 2813 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2814 /// one node is ready. If multiple instructions are ready, return NULL. 2815 SUnit *SchedBoundary::pickOnlyChoice() { 2816 if (CheckPending) 2817 releasePending(); 2818 2819 // Defer any ready instrs that now have a hazard. 2820 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2821 if (checkHazard(*I)) { 2822 Pending.push(*I); 2823 I = Available.remove(I); 2824 continue; 2825 } 2826 ++I; 2827 } 2828 for (unsigned i = 0; Available.empty(); ++i) { 2829 // FIXME: Re-enable assert once PR20057 is resolved. 2830 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2831 // "permanent hazard"); 2832 (void)i; 2833 bumpCycle(CurrCycle + 1); 2834 releasePending(); 2835 } 2836 2837 LLVM_DEBUG(Pending.dump()); 2838 LLVM_DEBUG(Available.dump()); 2839 2840 if (Available.size() == 1) 2841 return *Available.begin(); 2842 return nullptr; 2843 } 2844 2845 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2846 2847 /// Dump the content of the \ref ReservedCycles vector for the 2848 /// resources that are used in the basic block. 2849 /// 2850 LLVM_DUMP_METHOD void SchedBoundary::dumpReservedCycles() const { 2851 if (!SchedModel->hasInstrSchedModel()) 2852 return; 2853 2854 unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); 2855 unsigned StartIdx = 0; 2856 2857 for (unsigned ResIdx = 0; ResIdx < ResourceCount; ++ResIdx) { 2858 const unsigned NumUnits = SchedModel->getProcResource(ResIdx)->NumUnits; 2859 std::string ResName = SchedModel->getResourceName(ResIdx); 2860 for (unsigned UnitIdx = 0; UnitIdx < NumUnits; ++UnitIdx) { 2861 dbgs() << ResName << "(" << UnitIdx << ") = "; 2862 if (SchedModel && SchedModel->enableIntervals()) { 2863 if (ReservedResourceSegments.count(StartIdx + UnitIdx)) 2864 dbgs() << ReservedResourceSegments.at(StartIdx + UnitIdx); 2865 else 2866 dbgs() << "{ }\n"; 2867 } else 2868 dbgs() << ReservedCycles[StartIdx + UnitIdx] << "\n"; 2869 } 2870 StartIdx += NumUnits; 2871 } 2872 } 2873 2874 // This is useful information to dump after bumpNode. 2875 // Note that the Queue contents are more useful before pickNodeFromQueue. 2876 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2877 unsigned ResFactor; 2878 unsigned ResCount; 2879 if (ZoneCritResIdx) { 2880 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2881 ResCount = getResourceCount(ZoneCritResIdx); 2882 } else { 2883 ResFactor = SchedModel->getMicroOpFactor(); 2884 ResCount = RetiredMOps * ResFactor; 2885 } 2886 unsigned LFactor = SchedModel->getLatencyFactor(); 2887 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2888 << " Retired: " << RetiredMOps; 2889 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2890 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2891 << ResCount / ResFactor << " " 2892 << SchedModel->getResourceName(ZoneCritResIdx) 2893 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2894 << (IsResourceLimited ? " - Resource" : " - Latency") 2895 << " limited.\n"; 2896 if (MISchedDumpReservedCycles) 2897 dumpReservedCycles(); 2898 } 2899 #endif 2900 2901 //===----------------------------------------------------------------------===// 2902 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2903 //===----------------------------------------------------------------------===// 2904 2905 void GenericSchedulerBase::SchedCandidate:: 2906 initResourceDelta(const ScheduleDAGMI *DAG, 2907 const TargetSchedModel *SchedModel) { 2908 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2909 return; 2910 2911 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2912 for (TargetSchedModel::ProcResIter 2913 PI = SchedModel->getWriteProcResBegin(SC), 2914 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2915 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2916 ResDelta.CritResources += PI->Cycles; 2917 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2918 ResDelta.DemandedResources += PI->Cycles; 2919 } 2920 } 2921 2922 /// Compute remaining latency. We need this both to determine whether the 2923 /// overall schedule has become latency-limited and whether the instructions 2924 /// outside this zone are resource or latency limited. 2925 /// 2926 /// The "dependent" latency is updated incrementally during scheduling as the 2927 /// max height/depth of scheduled nodes minus the cycles since it was 2928 /// scheduled: 2929 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2930 /// 2931 /// The "independent" latency is the max ready queue depth: 2932 /// ILat = max N.depth for N in Available|Pending 2933 /// 2934 /// RemainingLatency is the greater of independent and dependent latency. 2935 /// 2936 /// These computations are expensive, especially in DAGs with many edges, so 2937 /// only do them if necessary. 2938 static unsigned computeRemLatency(SchedBoundary &CurrZone) { 2939 unsigned RemLatency = CurrZone.getDependentLatency(); 2940 RemLatency = std::max(RemLatency, 2941 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2942 RemLatency = std::max(RemLatency, 2943 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2944 return RemLatency; 2945 } 2946 2947 /// Returns true if the current cycle plus remaning latency is greater than 2948 /// the critical path in the scheduling region. 2949 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy, 2950 SchedBoundary &CurrZone, 2951 bool ComputeRemLatency, 2952 unsigned &RemLatency) const { 2953 // The current cycle is already greater than the critical path, so we are 2954 // already latency limited and don't need to compute the remaining latency. 2955 if (CurrZone.getCurrCycle() > Rem.CriticalPath) 2956 return true; 2957 2958 // If we haven't scheduled anything yet, then we aren't latency limited. 2959 if (CurrZone.getCurrCycle() == 0) 2960 return false; 2961 2962 if (ComputeRemLatency) 2963 RemLatency = computeRemLatency(CurrZone); 2964 2965 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath; 2966 } 2967 2968 /// Set the CandPolicy given a scheduling zone given the current resources and 2969 /// latencies inside and outside the zone. 2970 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2971 SchedBoundary &CurrZone, 2972 SchedBoundary *OtherZone) { 2973 // Apply preemptive heuristics based on the total latency and resources 2974 // inside and outside this zone. Potential stalls should be considered before 2975 // following this policy. 2976 2977 // Compute the critical resource outside the zone. 2978 unsigned OtherCritIdx = 0; 2979 unsigned OtherCount = 2980 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2981 2982 bool OtherResLimited = false; 2983 unsigned RemLatency = 0; 2984 bool RemLatencyComputed = false; 2985 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) { 2986 RemLatency = computeRemLatency(CurrZone); 2987 RemLatencyComputed = true; 2988 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 2989 OtherCount, RemLatency, false); 2990 } 2991 2992 // Schedule aggressively for latency in PostRA mode. We don't check for 2993 // acyclic latency during PostRA, and highly out-of-order processors will 2994 // skip PostRA scheduling. 2995 if (!OtherResLimited && 2996 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed, 2997 RemLatency))) { 2998 Policy.ReduceLatency |= true; 2999 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName() 3000 << " RemainingLatency " << RemLatency << " + " 3001 << CurrZone.getCurrCycle() << "c > CritPath " 3002 << Rem.CriticalPath << "\n"); 3003 } 3004 // If the same resource is limiting inside and outside the zone, do nothing. 3005 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 3006 return; 3007 3008 LLVM_DEBUG(if (CurrZone.isResourceLimited()) { 3009 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 3010 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n"; 3011 } if (OtherResLimited) dbgs() 3012 << " RemainingLimit: " 3013 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 3014 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs() 3015 << " Latency limited both directions.\n"); 3016 3017 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 3018 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 3019 3020 if (OtherResLimited) 3021 Policy.DemandResIdx = OtherCritIdx; 3022 } 3023 3024 #ifndef NDEBUG 3025 const char *GenericSchedulerBase::getReasonStr( 3026 GenericSchedulerBase::CandReason Reason) { 3027 switch (Reason) { 3028 case NoCand: return "NOCAND "; 3029 case Only1: return "ONLY1 "; 3030 case PhysReg: return "PHYS-REG "; 3031 case RegExcess: return "REG-EXCESS"; 3032 case RegCritical: return "REG-CRIT "; 3033 case Stall: return "STALL "; 3034 case Cluster: return "CLUSTER "; 3035 case Weak: return "WEAK "; 3036 case RegMax: return "REG-MAX "; 3037 case ResourceReduce: return "RES-REDUCE"; 3038 case ResourceDemand: return "RES-DEMAND"; 3039 case TopDepthReduce: return "TOP-DEPTH "; 3040 case TopPathReduce: return "TOP-PATH "; 3041 case BotHeightReduce:return "BOT-HEIGHT"; 3042 case BotPathReduce: return "BOT-PATH "; 3043 case NextDefUse: return "DEF-USE "; 3044 case NodeOrder: return "ORDER "; 3045 }; 3046 llvm_unreachable("Unknown reason!"); 3047 } 3048 3049 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 3050 PressureChange P; 3051 unsigned ResIdx = 0; 3052 unsigned Latency = 0; 3053 switch (Cand.Reason) { 3054 default: 3055 break; 3056 case RegExcess: 3057 P = Cand.RPDelta.Excess; 3058 break; 3059 case RegCritical: 3060 P = Cand.RPDelta.CriticalMax; 3061 break; 3062 case RegMax: 3063 P = Cand.RPDelta.CurrentMax; 3064 break; 3065 case ResourceReduce: 3066 ResIdx = Cand.Policy.ReduceResIdx; 3067 break; 3068 case ResourceDemand: 3069 ResIdx = Cand.Policy.DemandResIdx; 3070 break; 3071 case TopDepthReduce: 3072 Latency = Cand.SU->getDepth(); 3073 break; 3074 case TopPathReduce: 3075 Latency = Cand.SU->getHeight(); 3076 break; 3077 case BotHeightReduce: 3078 Latency = Cand.SU->getHeight(); 3079 break; 3080 case BotPathReduce: 3081 Latency = Cand.SU->getDepth(); 3082 break; 3083 } 3084 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 3085 if (P.isValid()) 3086 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 3087 << ":" << P.getUnitInc() << " "; 3088 else 3089 dbgs() << " "; 3090 if (ResIdx) 3091 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 3092 else 3093 dbgs() << " "; 3094 if (Latency) 3095 dbgs() << " " << Latency << " cycles "; 3096 else 3097 dbgs() << " "; 3098 dbgs() << '\n'; 3099 } 3100 #endif 3101 3102 namespace llvm { 3103 /// Return true if this heuristic determines order. 3104 /// TODO: Consider refactor return type of these functions as integer or enum, 3105 /// as we may need to differentiate whether TryCand is better than Cand. 3106 bool tryLess(int TryVal, int CandVal, 3107 GenericSchedulerBase::SchedCandidate &TryCand, 3108 GenericSchedulerBase::SchedCandidate &Cand, 3109 GenericSchedulerBase::CandReason Reason) { 3110 if (TryVal < CandVal) { 3111 TryCand.Reason = Reason; 3112 return true; 3113 } 3114 if (TryVal > CandVal) { 3115 if (Cand.Reason > Reason) 3116 Cand.Reason = Reason; 3117 return true; 3118 } 3119 return false; 3120 } 3121 3122 bool tryGreater(int TryVal, int CandVal, 3123 GenericSchedulerBase::SchedCandidate &TryCand, 3124 GenericSchedulerBase::SchedCandidate &Cand, 3125 GenericSchedulerBase::CandReason Reason) { 3126 if (TryVal > CandVal) { 3127 TryCand.Reason = Reason; 3128 return true; 3129 } 3130 if (TryVal < CandVal) { 3131 if (Cand.Reason > Reason) 3132 Cand.Reason = Reason; 3133 return true; 3134 } 3135 return false; 3136 } 3137 3138 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 3139 GenericSchedulerBase::SchedCandidate &Cand, 3140 SchedBoundary &Zone) { 3141 if (Zone.isTop()) { 3142 // Prefer the candidate with the lesser depth, but only if one of them has 3143 // depth greater than the total latency scheduled so far, otherwise either 3144 // of them could be scheduled now with no stall. 3145 if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) > 3146 Zone.getScheduledLatency()) { 3147 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 3148 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 3149 return true; 3150 } 3151 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 3152 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 3153 return true; 3154 } else { 3155 // Prefer the candidate with the lesser height, but only if one of them has 3156 // height greater than the total latency scheduled so far, otherwise either 3157 // of them could be scheduled now with no stall. 3158 if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) > 3159 Zone.getScheduledLatency()) { 3160 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 3161 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 3162 return true; 3163 } 3164 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 3165 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 3166 return true; 3167 } 3168 return false; 3169 } 3170 } // end namespace llvm 3171 3172 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 3173 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 3174 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 3175 } 3176 3177 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 3178 tracePick(Cand.Reason, Cand.AtTop); 3179 } 3180 3181 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 3182 assert(dag->hasVRegLiveness() && 3183 "(PreRA)GenericScheduler needs vreg liveness"); 3184 DAG = static_cast<ScheduleDAGMILive*>(dag); 3185 SchedModel = DAG->getSchedModel(); 3186 TRI = DAG->TRI; 3187 3188 if (RegionPolicy.ComputeDFSResult) 3189 DAG->computeDFSResult(); 3190 3191 Rem.init(DAG, SchedModel); 3192 Top.init(DAG, SchedModel, &Rem); 3193 Bot.init(DAG, SchedModel, &Rem); 3194 3195 // Initialize resource counts. 3196 3197 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 3198 // are disabled, then these HazardRecs will be disabled. 3199 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3200 if (!Top.HazardRec) { 3201 Top.HazardRec = 3202 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3203 Itin, DAG); 3204 } 3205 if (!Bot.HazardRec) { 3206 Bot.HazardRec = 3207 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3208 Itin, DAG); 3209 } 3210 TopCand.SU = nullptr; 3211 BotCand.SU = nullptr; 3212 } 3213 3214 /// Initialize the per-region scheduling policy. 3215 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 3216 MachineBasicBlock::iterator End, 3217 unsigned NumRegionInstrs) { 3218 const MachineFunction &MF = *Begin->getMF(); 3219 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 3220 3221 // Avoid setting up the register pressure tracker for small regions to save 3222 // compile time. As a rough heuristic, only track pressure when the number of 3223 // schedulable instructions exceeds half the integer register file. 3224 RegionPolicy.ShouldTrackPressure = true; 3225 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 3226 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 3227 if (TLI->isTypeLegal(LegalIntVT)) { 3228 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 3229 TLI->getRegClassFor(LegalIntVT)); 3230 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 3231 } 3232 } 3233 3234 // For generic targets, we default to bottom-up, because it's simpler and more 3235 // compile-time optimizations have been implemented in that direction. 3236 RegionPolicy.OnlyBottomUp = true; 3237 3238 // Allow the subtarget to override default policy. 3239 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 3240 3241 // After subtarget overrides, apply command line options. 3242 if (!EnableRegPressure) { 3243 RegionPolicy.ShouldTrackPressure = false; 3244 RegionPolicy.ShouldTrackLaneMasks = false; 3245 } 3246 3247 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 3248 // e.g. -misched-bottomup=false allows scheduling in both directions. 3249 assert((!ForceTopDown || !ForceBottomUp) && 3250 "-misched-topdown incompatible with -misched-bottomup"); 3251 if (ForceBottomUp.getNumOccurrences() > 0) { 3252 RegionPolicy.OnlyBottomUp = ForceBottomUp; 3253 if (RegionPolicy.OnlyBottomUp) 3254 RegionPolicy.OnlyTopDown = false; 3255 } 3256 if (ForceTopDown.getNumOccurrences() > 0) { 3257 RegionPolicy.OnlyTopDown = ForceTopDown; 3258 if (RegionPolicy.OnlyTopDown) 3259 RegionPolicy.OnlyBottomUp = false; 3260 } 3261 } 3262 3263 void GenericScheduler::dumpPolicy() const { 3264 // Cannot completely remove virtual function even in release mode. 3265 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3266 dbgs() << "GenericScheduler RegionPolicy: " 3267 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 3268 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 3269 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 3270 << "\n"; 3271 #endif 3272 } 3273 3274 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 3275 /// critical path by more cycles than it takes to drain the instruction buffer. 3276 /// We estimate an upper bounds on in-flight instructions as: 3277 /// 3278 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 3279 /// InFlightIterations = AcyclicPath / CyclesPerIteration 3280 /// InFlightResources = InFlightIterations * LoopResources 3281 /// 3282 /// TODO: Check execution resources in addition to IssueCount. 3283 void GenericScheduler::checkAcyclicLatency() { 3284 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 3285 return; 3286 3287 // Scaled number of cycles per loop iteration. 3288 unsigned IterCount = 3289 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 3290 Rem.RemIssueCount); 3291 // Scaled acyclic critical path. 3292 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 3293 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 3294 unsigned InFlightCount = 3295 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 3296 unsigned BufferLimit = 3297 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 3298 3299 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 3300 3301 LLVM_DEBUG( 3302 dbgs() << "IssueCycles=" 3303 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 3304 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 3305 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount 3306 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 3307 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 3308 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n"); 3309 } 3310 3311 void GenericScheduler::registerRoots() { 3312 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3313 3314 // Some roots may not feed into ExitSU. Check all of them in case. 3315 for (const SUnit *SU : Bot.Available) { 3316 if (SU->getDepth() > Rem.CriticalPath) 3317 Rem.CriticalPath = SU->getDepth(); 3318 } 3319 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 3320 if (DumpCriticalPathLength) { 3321 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 3322 } 3323 3324 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 3325 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 3326 checkAcyclicLatency(); 3327 } 3328 } 3329 3330 namespace llvm { 3331 bool tryPressure(const PressureChange &TryP, 3332 const PressureChange &CandP, 3333 GenericSchedulerBase::SchedCandidate &TryCand, 3334 GenericSchedulerBase::SchedCandidate &Cand, 3335 GenericSchedulerBase::CandReason Reason, 3336 const TargetRegisterInfo *TRI, 3337 const MachineFunction &MF) { 3338 // If one candidate decreases and the other increases, go with it. 3339 // Invalid candidates have UnitInc==0. 3340 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 3341 Reason)) { 3342 return true; 3343 } 3344 // Do not compare the magnitude of pressure changes between top and bottom 3345 // boundary. 3346 if (Cand.AtTop != TryCand.AtTop) 3347 return false; 3348 3349 // If both candidates affect the same set in the same boundary, go with the 3350 // smallest increase. 3351 unsigned TryPSet = TryP.getPSetOrMax(); 3352 unsigned CandPSet = CandP.getPSetOrMax(); 3353 if (TryPSet == CandPSet) { 3354 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 3355 Reason); 3356 } 3357 3358 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 3359 std::numeric_limits<int>::max(); 3360 3361 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 3362 std::numeric_limits<int>::max(); 3363 3364 // If the candidates are decreasing pressure, reverse priority. 3365 if (TryP.getUnitInc() < 0) 3366 std::swap(TryRank, CandRank); 3367 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 3368 } 3369 3370 unsigned getWeakLeft(const SUnit *SU, bool isTop) { 3371 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 3372 } 3373 3374 /// Minimize physical register live ranges. Regalloc wants them adjacent to 3375 /// their physreg def/use. 3376 /// 3377 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 3378 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 3379 /// with the operation that produces or consumes the physreg. We'll do this when 3380 /// regalloc has support for parallel copies. 3381 int biasPhysReg(const SUnit *SU, bool isTop) { 3382 const MachineInstr *MI = SU->getInstr(); 3383 3384 if (MI->isCopy()) { 3385 unsigned ScheduledOper = isTop ? 1 : 0; 3386 unsigned UnscheduledOper = isTop ? 0 : 1; 3387 // If we have already scheduled the physreg produce/consumer, immediately 3388 // schedule the copy. 3389 if (MI->getOperand(ScheduledOper).getReg().isPhysical()) 3390 return 1; 3391 // If the physreg is at the boundary, defer it. Otherwise schedule it 3392 // immediately to free the dependent. We can hoist the copy later. 3393 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 3394 if (MI->getOperand(UnscheduledOper).getReg().isPhysical()) 3395 return AtBoundary ? -1 : 1; 3396 } 3397 3398 if (MI->isMoveImmediate()) { 3399 // If we have a move immediate and all successors have been assigned, bias 3400 // towards scheduling this later. Make sure all register defs are to 3401 // physical registers. 3402 bool DoBias = true; 3403 for (const MachineOperand &Op : MI->defs()) { 3404 if (Op.isReg() && !Op.getReg().isPhysical()) { 3405 DoBias = false; 3406 break; 3407 } 3408 } 3409 3410 if (DoBias) 3411 return isTop ? -1 : 1; 3412 } 3413 3414 return 0; 3415 } 3416 } // end namespace llvm 3417 3418 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 3419 bool AtTop, 3420 const RegPressureTracker &RPTracker, 3421 RegPressureTracker &TempTracker) { 3422 Cand.SU = SU; 3423 Cand.AtTop = AtTop; 3424 if (DAG->isTrackingPressure()) { 3425 if (AtTop) { 3426 TempTracker.getMaxDownwardPressureDelta( 3427 Cand.SU->getInstr(), 3428 Cand.RPDelta, 3429 DAG->getRegionCriticalPSets(), 3430 DAG->getRegPressure().MaxSetPressure); 3431 } else { 3432 if (VerifyScheduling) { 3433 TempTracker.getMaxUpwardPressureDelta( 3434 Cand.SU->getInstr(), 3435 &DAG->getPressureDiff(Cand.SU), 3436 Cand.RPDelta, 3437 DAG->getRegionCriticalPSets(), 3438 DAG->getRegPressure().MaxSetPressure); 3439 } else { 3440 RPTracker.getUpwardPressureDelta( 3441 Cand.SU->getInstr(), 3442 DAG->getPressureDiff(Cand.SU), 3443 Cand.RPDelta, 3444 DAG->getRegionCriticalPSets(), 3445 DAG->getRegPressure().MaxSetPressure); 3446 } 3447 } 3448 } 3449 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs() 3450 << " Try SU(" << Cand.SU->NodeNum << ") " 3451 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":" 3452 << Cand.RPDelta.Excess.getUnitInc() << "\n"); 3453 } 3454 3455 /// Apply a set of heuristics to a new candidate. Heuristics are currently 3456 /// hierarchical. This may be more efficient than a graduated cost model because 3457 /// we don't need to evaluate all aspects of the model for each node in the 3458 /// queue. But it's really done to make the heuristics easier to debug and 3459 /// statistically analyze. 3460 /// 3461 /// \param Cand provides the policy and current best candidate. 3462 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3463 /// \param Zone describes the scheduled zone that we are extending, or nullptr 3464 /// if Cand is from a different zone than TryCand. 3465 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand) 3466 bool GenericScheduler::tryCandidate(SchedCandidate &Cand, 3467 SchedCandidate &TryCand, 3468 SchedBoundary *Zone) const { 3469 // Initialize the candidate if needed. 3470 if (!Cand.isValid()) { 3471 TryCand.Reason = NodeOrder; 3472 return true; 3473 } 3474 3475 // Bias PhysReg Defs and copies to their uses and defined respectively. 3476 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop), 3477 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg)) 3478 return TryCand.Reason != NoCand; 3479 3480 // Avoid exceeding the target's limit. 3481 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 3482 Cand.RPDelta.Excess, 3483 TryCand, Cand, RegExcess, TRI, 3484 DAG->MF)) 3485 return TryCand.Reason != NoCand; 3486 3487 // Avoid increasing the max critical pressure in the scheduled region. 3488 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 3489 Cand.RPDelta.CriticalMax, 3490 TryCand, Cand, RegCritical, TRI, 3491 DAG->MF)) 3492 return TryCand.Reason != NoCand; 3493 3494 // We only compare a subset of features when comparing nodes between 3495 // Top and Bottom boundary. Some properties are simply incomparable, in many 3496 // other instances we should only override the other boundary if something 3497 // is a clear good pick on one boundary. Skip heuristics that are more 3498 // "tie-breaking" in nature. 3499 bool SameBoundary = Zone != nullptr; 3500 if (SameBoundary) { 3501 // For loops that are acyclic path limited, aggressively schedule for 3502 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 3503 // heuristics to take precedence. 3504 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 3505 tryLatency(TryCand, Cand, *Zone)) 3506 return TryCand.Reason != NoCand; 3507 3508 // Prioritize instructions that read unbuffered resources by stall cycles. 3509 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 3510 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3511 return TryCand.Reason != NoCand; 3512 } 3513 3514 // Keep clustered nodes together to encourage downstream peephole 3515 // optimizations which may reduce resource requirements. 3516 // 3517 // This is a best effort to set things up for a post-RA pass. Optimizations 3518 // like generating loads of multiple registers should ideally be done within 3519 // the scheduler pass by combining the loads during DAG postprocessing. 3520 const SUnit *CandNextClusterSU = 3521 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3522 const SUnit *TryCandNextClusterSU = 3523 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3524 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 3525 Cand.SU == CandNextClusterSU, 3526 TryCand, Cand, Cluster)) 3527 return TryCand.Reason != NoCand; 3528 3529 if (SameBoundary) { 3530 // Weak edges are for clustering and other constraints. 3531 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 3532 getWeakLeft(Cand.SU, Cand.AtTop), 3533 TryCand, Cand, Weak)) 3534 return TryCand.Reason != NoCand; 3535 } 3536 3537 // Avoid increasing the max pressure of the entire region. 3538 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 3539 Cand.RPDelta.CurrentMax, 3540 TryCand, Cand, RegMax, TRI, 3541 DAG->MF)) 3542 return TryCand.Reason != NoCand; 3543 3544 if (SameBoundary) { 3545 // Avoid critical resource consumption and balance the schedule. 3546 TryCand.initResourceDelta(DAG, SchedModel); 3547 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3548 TryCand, Cand, ResourceReduce)) 3549 return TryCand.Reason != NoCand; 3550 if (tryGreater(TryCand.ResDelta.DemandedResources, 3551 Cand.ResDelta.DemandedResources, 3552 TryCand, Cand, ResourceDemand)) 3553 return TryCand.Reason != NoCand; 3554 3555 // Avoid serializing long latency dependence chains. 3556 // For acyclic path limited loops, latency was already checked above. 3557 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 3558 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 3559 return TryCand.Reason != NoCand; 3560 3561 // Fall through to original instruction order. 3562 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 3563 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 3564 TryCand.Reason = NodeOrder; 3565 return true; 3566 } 3567 } 3568 3569 return false; 3570 } 3571 3572 /// Pick the best candidate from the queue. 3573 /// 3574 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 3575 /// DAG building. To adjust for the current scheduling location we need to 3576 /// maintain the number of vreg uses remaining to be top-scheduled. 3577 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3578 const CandPolicy &ZonePolicy, 3579 const RegPressureTracker &RPTracker, 3580 SchedCandidate &Cand) { 3581 // getMaxPressureDelta temporarily modifies the tracker. 3582 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3583 3584 ReadyQueue &Q = Zone.Available; 3585 for (SUnit *SU : Q) { 3586 3587 SchedCandidate TryCand(ZonePolicy); 3588 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3589 // Pass SchedBoundary only when comparing nodes from the same boundary. 3590 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3591 if (tryCandidate(Cand, TryCand, ZoneArg)) { 3592 // Initialize resource delta if needed in case future heuristics query it. 3593 if (TryCand.ResDelta == SchedResourceDelta()) 3594 TryCand.initResourceDelta(DAG, SchedModel); 3595 Cand.setBest(TryCand); 3596 LLVM_DEBUG(traceCandidate(Cand)); 3597 } 3598 } 3599 } 3600 3601 /// Pick the best candidate node from either the top or bottom queue. 3602 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3603 // Schedule as far as possible in the direction of no choice. This is most 3604 // efficient, but also provides the best heuristics for CriticalPSets. 3605 if (SUnit *SU = Bot.pickOnlyChoice()) { 3606 IsTopNode = false; 3607 tracePick(Only1, false); 3608 return SU; 3609 } 3610 if (SUnit *SU = Top.pickOnlyChoice()) { 3611 IsTopNode = true; 3612 tracePick(Only1, true); 3613 return SU; 3614 } 3615 // Set the bottom-up policy based on the state of the current bottom zone and 3616 // the instructions outside the zone, including the top zone. 3617 CandPolicy BotPolicy; 3618 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3619 // Set the top-down policy based on the state of the current top zone and 3620 // the instructions outside the zone, including the bottom zone. 3621 CandPolicy TopPolicy; 3622 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3623 3624 // See if BotCand is still valid (because we previously scheduled from Top). 3625 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 3626 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3627 BotCand.Policy != BotPolicy) { 3628 BotCand.reset(CandPolicy()); 3629 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3630 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3631 } else { 3632 LLVM_DEBUG(traceCandidate(BotCand)); 3633 #ifndef NDEBUG 3634 if (VerifyScheduling) { 3635 SchedCandidate TCand; 3636 TCand.reset(CandPolicy()); 3637 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3638 assert(TCand.SU == BotCand.SU && 3639 "Last pick result should correspond to re-picking right now"); 3640 } 3641 #endif 3642 } 3643 3644 // Check if the top Q has a better candidate. 3645 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 3646 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3647 TopCand.Policy != TopPolicy) { 3648 TopCand.reset(CandPolicy()); 3649 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3650 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3651 } else { 3652 LLVM_DEBUG(traceCandidate(TopCand)); 3653 #ifndef NDEBUG 3654 if (VerifyScheduling) { 3655 SchedCandidate TCand; 3656 TCand.reset(CandPolicy()); 3657 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3658 assert(TCand.SU == TopCand.SU && 3659 "Last pick result should correspond to re-picking right now"); 3660 } 3661 #endif 3662 } 3663 3664 // Pick best from BotCand and TopCand. 3665 assert(BotCand.isValid()); 3666 assert(TopCand.isValid()); 3667 SchedCandidate Cand = BotCand; 3668 TopCand.Reason = NoCand; 3669 if (tryCandidate(Cand, TopCand, nullptr)) { 3670 Cand.setBest(TopCand); 3671 LLVM_DEBUG(traceCandidate(Cand)); 3672 } 3673 3674 IsTopNode = Cand.AtTop; 3675 tracePick(Cand); 3676 return Cand.SU; 3677 } 3678 3679 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3680 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3681 if (DAG->top() == DAG->bottom()) { 3682 assert(Top.Available.empty() && Top.Pending.empty() && 3683 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3684 return nullptr; 3685 } 3686 SUnit *SU; 3687 do { 3688 if (RegionPolicy.OnlyTopDown) { 3689 SU = Top.pickOnlyChoice(); 3690 if (!SU) { 3691 CandPolicy NoPolicy; 3692 TopCand.reset(NoPolicy); 3693 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3694 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3695 tracePick(TopCand); 3696 SU = TopCand.SU; 3697 } 3698 IsTopNode = true; 3699 } else if (RegionPolicy.OnlyBottomUp) { 3700 SU = Bot.pickOnlyChoice(); 3701 if (!SU) { 3702 CandPolicy NoPolicy; 3703 BotCand.reset(NoPolicy); 3704 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3705 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3706 tracePick(BotCand); 3707 SU = BotCand.SU; 3708 } 3709 IsTopNode = false; 3710 } else { 3711 SU = pickNodeBidirectional(IsTopNode); 3712 } 3713 } while (SU->isScheduled); 3714 3715 if (SU->isTopReady()) 3716 Top.removeReady(SU); 3717 if (SU->isBottomReady()) 3718 Bot.removeReady(SU); 3719 3720 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3721 << *SU->getInstr()); 3722 return SU; 3723 } 3724 3725 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) { 3726 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3727 if (!isTop) 3728 ++InsertPos; 3729 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3730 3731 // Find already scheduled copies with a single physreg dependence and move 3732 // them just above the scheduled instruction. 3733 for (SDep &Dep : Deps) { 3734 if (Dep.getKind() != SDep::Data || 3735 !Register::isPhysicalRegister(Dep.getReg())) 3736 continue; 3737 SUnit *DepSU = Dep.getSUnit(); 3738 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3739 continue; 3740 MachineInstr *Copy = DepSU->getInstr(); 3741 if (!Copy->isCopy() && !Copy->isMoveImmediate()) 3742 continue; 3743 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy "; 3744 DAG->dumpNode(*Dep.getSUnit())); 3745 DAG->moveInstruction(Copy, InsertPos); 3746 } 3747 } 3748 3749 /// Update the scheduler's state after scheduling a node. This is the same node 3750 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3751 /// update it's state based on the current cycle before MachineSchedStrategy 3752 /// does. 3753 /// 3754 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3755 /// them here. See comments in biasPhysReg. 3756 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3757 if (IsTopNode) { 3758 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3759 Top.bumpNode(SU); 3760 if (SU->hasPhysRegUses) 3761 reschedulePhysReg(SU, true); 3762 } else { 3763 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3764 Bot.bumpNode(SU); 3765 if (SU->hasPhysRegDefs) 3766 reschedulePhysReg(SU, false); 3767 } 3768 } 3769 3770 /// Create the standard converging machine scheduler. This will be used as the 3771 /// default scheduler if the target does not set a default. 3772 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3773 ScheduleDAGMILive *DAG = 3774 new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)); 3775 // Register DAG post-processors. 3776 // 3777 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3778 // data and pass it to later mutations. Have a single mutation that gathers 3779 // the interesting nodes in one pass. 3780 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3781 return DAG; 3782 } 3783 3784 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { 3785 return createGenericSchedLive(C); 3786 } 3787 3788 static MachineSchedRegistry 3789 GenericSchedRegistry("converge", "Standard converging scheduler.", 3790 createConvergingSched); 3791 3792 //===----------------------------------------------------------------------===// 3793 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3794 //===----------------------------------------------------------------------===// 3795 3796 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3797 DAG = Dag; 3798 SchedModel = DAG->getSchedModel(); 3799 TRI = DAG->TRI; 3800 3801 Rem.init(DAG, SchedModel); 3802 Top.init(DAG, SchedModel, &Rem); 3803 BotRoots.clear(); 3804 3805 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3806 // or are disabled, then these HazardRecs will be disabled. 3807 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3808 if (!Top.HazardRec) { 3809 Top.HazardRec = 3810 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3811 Itin, DAG); 3812 } 3813 } 3814 3815 void PostGenericScheduler::registerRoots() { 3816 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3817 3818 // Some roots may not feed into ExitSU. Check all of them in case. 3819 for (const SUnit *SU : BotRoots) { 3820 if (SU->getDepth() > Rem.CriticalPath) 3821 Rem.CriticalPath = SU->getDepth(); 3822 } 3823 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3824 if (DumpCriticalPathLength) { 3825 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3826 } 3827 } 3828 3829 /// Apply a set of heuristics to a new candidate for PostRA scheduling. 3830 /// 3831 /// \param Cand provides the policy and current best candidate. 3832 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3833 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand) 3834 bool PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3835 SchedCandidate &TryCand) { 3836 // Initialize the candidate if needed. 3837 if (!Cand.isValid()) { 3838 TryCand.Reason = NodeOrder; 3839 return true; 3840 } 3841 3842 // Prioritize instructions that read unbuffered resources by stall cycles. 3843 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3844 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3845 return TryCand.Reason != NoCand; 3846 3847 // Keep clustered nodes together. 3848 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3849 Cand.SU == DAG->getNextClusterSucc(), 3850 TryCand, Cand, Cluster)) 3851 return TryCand.Reason != NoCand; 3852 3853 // Avoid critical resource consumption and balance the schedule. 3854 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3855 TryCand, Cand, ResourceReduce)) 3856 return TryCand.Reason != NoCand; 3857 if (tryGreater(TryCand.ResDelta.DemandedResources, 3858 Cand.ResDelta.DemandedResources, 3859 TryCand, Cand, ResourceDemand)) 3860 return TryCand.Reason != NoCand; 3861 3862 // Avoid serializing long latency dependence chains. 3863 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3864 return TryCand.Reason != NoCand; 3865 } 3866 3867 // Fall through to original instruction order. 3868 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) { 3869 TryCand.Reason = NodeOrder; 3870 return true; 3871 } 3872 3873 return false; 3874 } 3875 3876 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3877 ReadyQueue &Q = Top.Available; 3878 for (SUnit *SU : Q) { 3879 SchedCandidate TryCand(Cand.Policy); 3880 TryCand.SU = SU; 3881 TryCand.AtTop = true; 3882 TryCand.initResourceDelta(DAG, SchedModel); 3883 if (tryCandidate(Cand, TryCand)) { 3884 Cand.setBest(TryCand); 3885 LLVM_DEBUG(traceCandidate(Cand)); 3886 } 3887 } 3888 } 3889 3890 /// Pick the next node to schedule. 3891 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3892 if (DAG->top() == DAG->bottom()) { 3893 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3894 return nullptr; 3895 } 3896 SUnit *SU; 3897 do { 3898 SU = Top.pickOnlyChoice(); 3899 if (SU) { 3900 tracePick(Only1, true); 3901 } else { 3902 CandPolicy NoPolicy; 3903 SchedCandidate TopCand(NoPolicy); 3904 // Set the top-down policy based on the state of the current top zone and 3905 // the instructions outside the zone, including the bottom zone. 3906 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3907 pickNodeFromQueue(TopCand); 3908 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3909 tracePick(TopCand); 3910 SU = TopCand.SU; 3911 } 3912 } while (SU->isScheduled); 3913 3914 IsTopNode = true; 3915 Top.removeReady(SU); 3916 3917 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3918 << *SU->getInstr()); 3919 return SU; 3920 } 3921 3922 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3923 /// scheduled/remaining flags in the DAG nodes. 3924 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3925 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3926 Top.bumpNode(SU); 3927 } 3928 3929 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3930 return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C), 3931 /*RemoveKillFlags=*/true); 3932 } 3933 3934 //===----------------------------------------------------------------------===// 3935 // ILP Scheduler. Currently for experimental analysis of heuristics. 3936 //===----------------------------------------------------------------------===// 3937 3938 namespace { 3939 3940 /// Order nodes by the ILP metric. 3941 struct ILPOrder { 3942 const SchedDFSResult *DFSResult = nullptr; 3943 const BitVector *ScheduledTrees = nullptr; 3944 bool MaximizeILP; 3945 3946 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3947 3948 /// Apply a less-than relation on node priority. 3949 /// 3950 /// (Return true if A comes after B in the Q.) 3951 bool operator()(const SUnit *A, const SUnit *B) const { 3952 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3953 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3954 if (SchedTreeA != SchedTreeB) { 3955 // Unscheduled trees have lower priority. 3956 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3957 return ScheduledTrees->test(SchedTreeB); 3958 3959 // Trees with shallower connections have have lower priority. 3960 if (DFSResult->getSubtreeLevel(SchedTreeA) 3961 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3962 return DFSResult->getSubtreeLevel(SchedTreeA) 3963 < DFSResult->getSubtreeLevel(SchedTreeB); 3964 } 3965 } 3966 if (MaximizeILP) 3967 return DFSResult->getILP(A) < DFSResult->getILP(B); 3968 else 3969 return DFSResult->getILP(A) > DFSResult->getILP(B); 3970 } 3971 }; 3972 3973 /// Schedule based on the ILP metric. 3974 class ILPScheduler : public MachineSchedStrategy { 3975 ScheduleDAGMILive *DAG = nullptr; 3976 ILPOrder Cmp; 3977 3978 std::vector<SUnit*> ReadyQ; 3979 3980 public: 3981 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3982 3983 void initialize(ScheduleDAGMI *dag) override { 3984 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3985 DAG = static_cast<ScheduleDAGMILive*>(dag); 3986 DAG->computeDFSResult(); 3987 Cmp.DFSResult = DAG->getDFSResult(); 3988 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3989 ReadyQ.clear(); 3990 } 3991 3992 void registerRoots() override { 3993 // Restore the heap in ReadyQ with the updated DFS results. 3994 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3995 } 3996 3997 /// Implement MachineSchedStrategy interface. 3998 /// ----------------------------------------- 3999 4000 /// Callback to select the highest priority node from the ready Q. 4001 SUnit *pickNode(bool &IsTopNode) override { 4002 if (ReadyQ.empty()) return nullptr; 4003 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 4004 SUnit *SU = ReadyQ.back(); 4005 ReadyQ.pop_back(); 4006 IsTopNode = false; 4007 LLVM_DEBUG(dbgs() << "Pick node " 4008 << "SU(" << SU->NodeNum << ") " 4009 << " ILP: " << DAG->getDFSResult()->getILP(SU) 4010 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) 4011 << " @" 4012 << DAG->getDFSResult()->getSubtreeLevel( 4013 DAG->getDFSResult()->getSubtreeID(SU)) 4014 << '\n' 4015 << "Scheduling " << *SU->getInstr()); 4016 return SU; 4017 } 4018 4019 /// Scheduler callback to notify that a new subtree is scheduled. 4020 void scheduleTree(unsigned SubtreeID) override { 4021 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 4022 } 4023 4024 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 4025 /// DFSResults, and resort the priority Q. 4026 void schedNode(SUnit *SU, bool IsTopNode) override { 4027 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 4028 } 4029 4030 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 4031 4032 void releaseBottomNode(SUnit *SU) override { 4033 ReadyQ.push_back(SU); 4034 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 4035 } 4036 }; 4037 4038 } // end anonymous namespace 4039 4040 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 4041 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true)); 4042 } 4043 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 4044 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false)); 4045 } 4046 4047 static MachineSchedRegistry ILPMaxRegistry( 4048 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 4049 static MachineSchedRegistry ILPMinRegistry( 4050 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 4051 4052 //===----------------------------------------------------------------------===// 4053 // Machine Instruction Shuffler for Correctness Testing 4054 //===----------------------------------------------------------------------===// 4055 4056 #ifndef NDEBUG 4057 namespace { 4058 4059 /// Apply a less-than relation on the node order, which corresponds to the 4060 /// instruction order prior to scheduling. IsReverse implements greater-than. 4061 template<bool IsReverse> 4062 struct SUnitOrder { 4063 bool operator()(SUnit *A, SUnit *B) const { 4064 if (IsReverse) 4065 return A->NodeNum > B->NodeNum; 4066 else 4067 return A->NodeNum < B->NodeNum; 4068 } 4069 }; 4070 4071 /// Reorder instructions as much as possible. 4072 class InstructionShuffler : public MachineSchedStrategy { 4073 bool IsAlternating; 4074 bool IsTopDown; 4075 4076 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 4077 // gives nodes with a higher number higher priority causing the latest 4078 // instructions to be scheduled first. 4079 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 4080 TopQ; 4081 4082 // When scheduling bottom-up, use greater-than as the queue priority. 4083 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 4084 BottomQ; 4085 4086 public: 4087 InstructionShuffler(bool alternate, bool topdown) 4088 : IsAlternating(alternate), IsTopDown(topdown) {} 4089 4090 void initialize(ScheduleDAGMI*) override { 4091 TopQ.clear(); 4092 BottomQ.clear(); 4093 } 4094 4095 /// Implement MachineSchedStrategy interface. 4096 /// ----------------------------------------- 4097 4098 SUnit *pickNode(bool &IsTopNode) override { 4099 SUnit *SU; 4100 if (IsTopDown) { 4101 do { 4102 if (TopQ.empty()) return nullptr; 4103 SU = TopQ.top(); 4104 TopQ.pop(); 4105 } while (SU->isScheduled); 4106 IsTopNode = true; 4107 } else { 4108 do { 4109 if (BottomQ.empty()) return nullptr; 4110 SU = BottomQ.top(); 4111 BottomQ.pop(); 4112 } while (SU->isScheduled); 4113 IsTopNode = false; 4114 } 4115 if (IsAlternating) 4116 IsTopDown = !IsTopDown; 4117 return SU; 4118 } 4119 4120 void schedNode(SUnit *SU, bool IsTopNode) override {} 4121 4122 void releaseTopNode(SUnit *SU) override { 4123 TopQ.push(SU); 4124 } 4125 void releaseBottomNode(SUnit *SU) override { 4126 BottomQ.push(SU); 4127 } 4128 }; 4129 4130 } // end anonymous namespace 4131 4132 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 4133 bool Alternate = !ForceTopDown && !ForceBottomUp; 4134 bool TopDown = !ForceBottomUp; 4135 assert((TopDown || !ForceTopDown) && 4136 "-misched-topdown incompatible with -misched-bottomup"); 4137 return new ScheduleDAGMILive( 4138 C, std::make_unique<InstructionShuffler>(Alternate, TopDown)); 4139 } 4140 4141 static MachineSchedRegistry ShufflerRegistry( 4142 "shuffle", "Shuffle machine instructions alternating directions", 4143 createInstructionShuffler); 4144 #endif // !NDEBUG 4145 4146 //===----------------------------------------------------------------------===// 4147 // GraphWriter support for ScheduleDAGMILive. 4148 //===----------------------------------------------------------------------===// 4149 4150 #ifndef NDEBUG 4151 namespace llvm { 4152 4153 template<> struct GraphTraits< 4154 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 4155 4156 template<> 4157 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 4158 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 4159 4160 static std::string getGraphName(const ScheduleDAG *G) { 4161 return std::string(G->MF.getName()); 4162 } 4163 4164 static bool renderGraphFromBottomUp() { 4165 return true; 4166 } 4167 4168 static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) { 4169 if (ViewMISchedCutoff == 0) 4170 return false; 4171 return (Node->Preds.size() > ViewMISchedCutoff 4172 || Node->Succs.size() > ViewMISchedCutoff); 4173 } 4174 4175 /// If you want to override the dot attributes printed for a particular 4176 /// edge, override this method. 4177 static std::string getEdgeAttributes(const SUnit *Node, 4178 SUnitIterator EI, 4179 const ScheduleDAG *Graph) { 4180 if (EI.isArtificialDep()) 4181 return "color=cyan,style=dashed"; 4182 if (EI.isCtrlDep()) 4183 return "color=blue,style=dashed"; 4184 return ""; 4185 } 4186 4187 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 4188 std::string Str; 4189 raw_string_ostream SS(Str); 4190 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 4191 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 4192 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 4193 SS << "SU:" << SU->NodeNum; 4194 if (DFS) 4195 SS << " I:" << DFS->getNumInstrs(SU); 4196 return SS.str(); 4197 } 4198 4199 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 4200 return G->getGraphNodeLabel(SU); 4201 } 4202 4203 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 4204 std::string Str("shape=Mrecord"); 4205 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 4206 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 4207 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 4208 if (DFS) { 4209 Str += ",style=filled,fillcolor=\"#"; 4210 Str += DOT::getColorString(DFS->getSubtreeID(N)); 4211 Str += '"'; 4212 } 4213 return Str; 4214 } 4215 }; 4216 4217 } // end namespace llvm 4218 #endif // NDEBUG 4219 4220 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 4221 /// rendered using 'dot'. 4222 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 4223 #ifndef NDEBUG 4224 ViewGraph(this, Name, false, Title); 4225 #else 4226 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 4227 << "systems with Graphviz or gv!\n"; 4228 #endif // NDEBUG 4229 } 4230 4231 /// Out-of-line implementation with no arguments is handy for gdb. 4232 void ScheduleDAGMI::viewGraph() { 4233 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 4234 } 4235 4236 /// Sort predicate for the intervals stored in an instance of 4237 /// ResourceSegments. Intervals are always disjoint (no intersection 4238 /// for any pairs of intervals), therefore we can sort the totality of 4239 /// the intervals by looking only at the left boundary. 4240 static bool sortIntervals(const ResourceSegments::IntervalTy &A, 4241 const ResourceSegments::IntervalTy &B) { 4242 return A.first < B.first; 4243 } 4244 4245 unsigned ResourceSegments::getFirstAvailableAt( 4246 unsigned CurrCycle, unsigned StartAtCycle, unsigned Cycle, 4247 std::function<ResourceSegments::IntervalTy(unsigned, unsigned, unsigned)> 4248 IntervalBuilder) const { 4249 assert(std::is_sorted(std::begin(_Intervals), std::end(_Intervals), 4250 sortIntervals) && 4251 "Cannot execute on an un-sorted set of intervals."); 4252 unsigned RetCycle = CurrCycle; 4253 ResourceSegments::IntervalTy NewInterval = 4254 IntervalBuilder(RetCycle, StartAtCycle, Cycle); 4255 for (auto &Interval : _Intervals) { 4256 if (!intersects(NewInterval, Interval)) 4257 continue; 4258 4259 // Move the interval right next to the top of the one it 4260 // intersects. 4261 assert(Interval.second > NewInterval.first && 4262 "Invalid intervals configuration."); 4263 RetCycle += (unsigned)Interval.second - (unsigned)NewInterval.first; 4264 NewInterval = IntervalBuilder(RetCycle, StartAtCycle, Cycle); 4265 } 4266 return RetCycle; 4267 } 4268 4269 void ResourceSegments::add(ResourceSegments::IntervalTy A, 4270 const unsigned CutOff) { 4271 assert(A.first < A.second && "Cannot add empty resource usage"); 4272 assert(CutOff > 0 && "0-size interval history has no use."); 4273 assert(all_of(_Intervals, 4274 [&A](const ResourceSegments::IntervalTy &Interval) -> bool { 4275 return !intersects(A, Interval); 4276 }) && 4277 "A resource is being overwritten"); 4278 _Intervals.push_back(A); 4279 4280 sortAndMerge(); 4281 4282 // Do not keep the full history of the intervals, just the 4283 // latest #CutOff. 4284 while (_Intervals.size() > CutOff) 4285 _Intervals.pop_front(); 4286 } 4287 4288 bool ResourceSegments::intersects(ResourceSegments::IntervalTy A, 4289 ResourceSegments::IntervalTy B) { 4290 assert(A.first <= A.second && "Invalid interval"); 4291 assert(B.first <= B.second && "Invalid interval"); 4292 4293 // Share one boundary. 4294 if ((A.first == B.first) || (A.second == B.second)) 4295 return true; 4296 4297 // full intersersect: [ *** ) B 4298 // [***) A 4299 if ((A.first > B.first) && (A.second < B.second)) 4300 return true; 4301 4302 // right intersect: [ ***) B 4303 // [*** ) A 4304 if ((A.first > B.first) && (A.first < B.second) && (A.second > B.second)) 4305 return true; 4306 4307 // left intersect: [*** ) B 4308 // [ ***) A 4309 if ((A.first < B.first) && (B.first < A.second) && (B.second > B.first)) 4310 return true; 4311 4312 return false; 4313 } 4314 4315 void ResourceSegments::sortAndMerge() { 4316 if (_Intervals.size() <= 1) 4317 return; 4318 4319 // First sort the collection. 4320 _Intervals.sort(sortIntervals); 4321 4322 // can use next because I have at least 2 elements in the list 4323 auto next = std::next(std::begin(_Intervals)); 4324 auto E = std::end(_Intervals); 4325 for (; next != E; ++next) { 4326 if (std::prev(next)->second >= next->first) { 4327 next->first = std::prev(next)->first; 4328 _Intervals.erase(std::prev(next)); 4329 continue; 4330 } 4331 } 4332 } 4333