xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision 3a56015a2f5d630910177fa79a522bb95511ccf7)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachineScheduler schedules machine instructions after phi elimination. It
10 // preserves LiveIntervals so it can be invoked before register allocation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineScheduler.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePassRegistry.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/RegisterClassInfo.h"
36 #include "llvm/CodeGen/RegisterPressure.h"
37 #include "llvm/CodeGen/ScheduleDAG.h"
38 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
39 #include "llvm/CodeGen/ScheduleDAGMutation.h"
40 #include "llvm/CodeGen/ScheduleDFS.h"
41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42 #include "llvm/CodeGen/SlotIndexes.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSchedule.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/CodeGenTypes/MachineValueType.h"
51 #include "llvm/Config/llvm-config.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/MC/LaneBitmask.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/GraphWriter.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <limits>
66 #include <memory>
67 #include <string>
68 #include <tuple>
69 #include <utility>
70 #include <vector>
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "machine-scheduler"
75 
76 STATISTIC(NumClustered, "Number of load/store pairs clustered");
77 
78 namespace llvm {
79 
80 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
81                            cl::desc("Force top-down list scheduling"));
82 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
83                             cl::desc("Force bottom-up list scheduling"));
84 namespace MISchedPostRASched {
85 enum Direction {
86   TopDown,
87   BottomUp,
88   Bidirectional,
89 };
90 } // end namespace MISchedPostRASched
91 cl::opt<MISchedPostRASched::Direction> PostRADirection(
92     "misched-postra-direction", cl::Hidden,
93     cl::desc("Post reg-alloc list scheduling direction"),
94     // Default to top-down because it was implemented first and existing targets
95     // expect that behavior by default.
96     cl::init(MISchedPostRASched::TopDown),
97     cl::values(
98         clEnumValN(MISchedPostRASched::TopDown, "topdown",
99                    "Force top-down post reg-alloc list scheduling"),
100         clEnumValN(MISchedPostRASched::BottomUp, "bottomup",
101                    "Force bottom-up post reg-alloc list scheduling"),
102         clEnumValN(MISchedPostRASched::Bidirectional, "bidirectional",
103                    "Force bidirectional post reg-alloc list scheduling")));
104 cl::opt<bool>
105 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
106                        cl::desc("Print critical path length to stdout"));
107 
108 cl::opt<bool> VerifyScheduling(
109     "verify-misched", cl::Hidden,
110     cl::desc("Verify machine instrs before and after machine scheduling"));
111 
112 #ifndef NDEBUG
113 cl::opt<bool> ViewMISchedDAGs(
114     "view-misched-dags", cl::Hidden,
115     cl::desc("Pop up a window to show MISched dags after they are processed"));
116 cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
117                         cl::desc("Print schedule DAGs"));
118 cl::opt<bool> MISchedDumpReservedCycles(
119     "misched-dump-reserved-cycles", cl::Hidden, cl::init(false),
120     cl::desc("Dump resource usage at schedule boundary."));
121 cl::opt<bool> MischedDetailResourceBooking(
122     "misched-detail-resource-booking", cl::Hidden, cl::init(false),
123     cl::desc("Show details of invoking getNextResoufceCycle."));
124 #else
125 const bool ViewMISchedDAGs = false;
126 const bool PrintDAGs = false;
127 const bool MischedDetailResourceBooking = false;
128 #ifdef LLVM_ENABLE_DUMP
129 const bool MISchedDumpReservedCycles = false;
130 #endif // LLVM_ENABLE_DUMP
131 #endif // NDEBUG
132 
133 } // end namespace llvm
134 
135 #ifndef NDEBUG
136 /// In some situations a few uninteresting nodes depend on nearly all other
137 /// nodes in the graph, provide a cutoff to hide them.
138 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
139   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
140 
141 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
142   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
143 
144 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
145   cl::desc("Only schedule this function"));
146 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
147                                         cl::desc("Only schedule this MBB#"));
148 #endif // NDEBUG
149 
150 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
151 /// size of the ready lists.
152 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
153   cl::desc("Limit ready list to N instructions"), cl::init(256));
154 
155 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
156   cl::desc("Enable register pressure scheduling."), cl::init(true));
157 
158 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
159   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
160 
161 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
162                                         cl::desc("Enable memop clustering."),
163                                         cl::init(true));
164 static cl::opt<bool>
165     ForceFastCluster("force-fast-cluster", cl::Hidden,
166                      cl::desc("Switch to fast cluster algorithm with the lost "
167                               "of some fusion opportunities"),
168                      cl::init(false));
169 static cl::opt<unsigned>
170     FastClusterThreshold("fast-cluster-threshold", cl::Hidden,
171                          cl::desc("The threshold for fast cluster"),
172                          cl::init(1000));
173 
174 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
175 static cl::opt<bool> MISchedDumpScheduleTrace(
176     "misched-dump-schedule-trace", cl::Hidden, cl::init(false),
177     cl::desc("Dump resource usage at schedule boundary."));
178 static cl::opt<unsigned>
179     HeaderColWidth("misched-dump-schedule-trace-col-header-width", cl::Hidden,
180                    cl::desc("Set width of the columns with "
181                             "the resources and schedule units"),
182                    cl::init(19));
183 static cl::opt<unsigned>
184     ColWidth("misched-dump-schedule-trace-col-width", cl::Hidden,
185              cl::desc("Set width of the columns showing resource booking."),
186              cl::init(5));
187 static cl::opt<bool> MISchedSortResourcesInTrace(
188     "misched-sort-resources-in-trace", cl::Hidden, cl::init(true),
189     cl::desc("Sort the resources printed in the dump trace"));
190 #endif
191 
192 static cl::opt<unsigned>
193     MIResourceCutOff("misched-resource-cutoff", cl::Hidden,
194                      cl::desc("Number of intervals to track"), cl::init(10));
195 
196 // DAG subtrees must have at least this many nodes.
197 static const unsigned MinSubtreeSize = 8;
198 
199 // Pin the vtables to this file.
200 void MachineSchedStrategy::anchor() {}
201 
202 void ScheduleDAGMutation::anchor() {}
203 
204 //===----------------------------------------------------------------------===//
205 // Machine Instruction Scheduling Pass and Registry
206 //===----------------------------------------------------------------------===//
207 
208 MachineSchedContext::MachineSchedContext() {
209   RegClassInfo = new RegisterClassInfo();
210 }
211 
212 MachineSchedContext::~MachineSchedContext() {
213   delete RegClassInfo;
214 }
215 
216 namespace {
217 
218 /// Base class for a machine scheduler class that can run at any point.
219 class MachineSchedulerBase : public MachineSchedContext,
220                              public MachineFunctionPass {
221 public:
222   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
223 
224   void print(raw_ostream &O, const Module* = nullptr) const override;
225 
226 protected:
227   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
228 };
229 
230 /// MachineScheduler runs after coalescing and before register allocation.
231 class MachineScheduler : public MachineSchedulerBase {
232 public:
233   MachineScheduler();
234 
235   void getAnalysisUsage(AnalysisUsage &AU) const override;
236 
237   bool runOnMachineFunction(MachineFunction&) override;
238 
239   static char ID; // Class identification, replacement for typeinfo
240 
241 protected:
242   ScheduleDAGInstrs *createMachineScheduler();
243 };
244 
245 /// PostMachineScheduler runs after shortly before code emission.
246 class PostMachineScheduler : public MachineSchedulerBase {
247 public:
248   PostMachineScheduler();
249 
250   void getAnalysisUsage(AnalysisUsage &AU) const override;
251 
252   bool runOnMachineFunction(MachineFunction&) override;
253 
254   static char ID; // Class identification, replacement for typeinfo
255 
256 protected:
257   ScheduleDAGInstrs *createPostMachineScheduler();
258 };
259 
260 } // end anonymous namespace
261 
262 char MachineScheduler::ID = 0;
263 
264 char &llvm::MachineSchedulerID = MachineScheduler::ID;
265 
266 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
267                       "Machine Instruction Scheduler", false, false)
268 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
269 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
270 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
271 INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass)
272 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass)
273 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
274                     "Machine Instruction Scheduler", false, false)
275 
276 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
277   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
278 }
279 
280 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
281   AU.setPreservesCFG();
282   AU.addRequired<MachineDominatorTreeWrapperPass>();
283   AU.addRequired<MachineLoopInfoWrapperPass>();
284   AU.addRequired<AAResultsWrapperPass>();
285   AU.addRequired<TargetPassConfig>();
286   AU.addRequired<SlotIndexesWrapperPass>();
287   AU.addPreserved<SlotIndexesWrapperPass>();
288   AU.addRequired<LiveIntervalsWrapperPass>();
289   AU.addPreserved<LiveIntervalsWrapperPass>();
290   MachineFunctionPass::getAnalysisUsage(AU);
291 }
292 
293 char PostMachineScheduler::ID = 0;
294 
295 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
296 
297 INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched",
298                       "PostRA Machine Instruction Scheduler", false, false)
299 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
300 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
301 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
302 INITIALIZE_PASS_END(PostMachineScheduler, "postmisched",
303                     "PostRA Machine Instruction Scheduler", false, false)
304 
305 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
306   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
307 }
308 
309 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
310   AU.setPreservesCFG();
311   AU.addRequired<MachineDominatorTreeWrapperPass>();
312   AU.addRequired<MachineLoopInfoWrapperPass>();
313   AU.addRequired<AAResultsWrapperPass>();
314   AU.addRequired<TargetPassConfig>();
315   MachineFunctionPass::getAnalysisUsage(AU);
316 }
317 
318 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
319     MachineSchedRegistry::Registry;
320 
321 /// A dummy default scheduler factory indicates whether the scheduler
322 /// is overridden on the command line.
323 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
324   return nullptr;
325 }
326 
327 /// MachineSchedOpt allows command line selection of the scheduler.
328 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
329                RegisterPassParser<MachineSchedRegistry>>
330 MachineSchedOpt("misched",
331                 cl::init(&useDefaultMachineSched), cl::Hidden,
332                 cl::desc("Machine instruction scheduler to use"));
333 
334 static MachineSchedRegistry
335 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
336                      useDefaultMachineSched);
337 
338 static cl::opt<bool> EnableMachineSched(
339     "enable-misched",
340     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
341     cl::Hidden);
342 
343 static cl::opt<bool> EnablePostRAMachineSched(
344     "enable-post-misched",
345     cl::desc("Enable the post-ra machine instruction scheduling pass."),
346     cl::init(true), cl::Hidden);
347 
348 /// Decrement this iterator until reaching the top or a non-debug instr.
349 static MachineBasicBlock::const_iterator
350 priorNonDebug(MachineBasicBlock::const_iterator I,
351               MachineBasicBlock::const_iterator Beg) {
352   assert(I != Beg && "reached the top of the region, cannot decrement");
353   while (--I != Beg) {
354     if (!I->isDebugOrPseudoInstr())
355       break;
356   }
357   return I;
358 }
359 
360 /// Non-const version.
361 static MachineBasicBlock::iterator
362 priorNonDebug(MachineBasicBlock::iterator I,
363               MachineBasicBlock::const_iterator Beg) {
364   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
365       .getNonConstIterator();
366 }
367 
368 /// If this iterator is a debug value, increment until reaching the End or a
369 /// non-debug instruction.
370 static MachineBasicBlock::const_iterator
371 nextIfDebug(MachineBasicBlock::const_iterator I,
372             MachineBasicBlock::const_iterator End) {
373   for(; I != End; ++I) {
374     if (!I->isDebugOrPseudoInstr())
375       break;
376   }
377   return I;
378 }
379 
380 /// Non-const version.
381 static MachineBasicBlock::iterator
382 nextIfDebug(MachineBasicBlock::iterator I,
383             MachineBasicBlock::const_iterator End) {
384   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
385       .getNonConstIterator();
386 }
387 
388 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
389 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
390   // Select the scheduler, or set the default.
391   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
392   if (Ctor != useDefaultMachineSched)
393     return Ctor(this);
394 
395   // Get the default scheduler set by the target for this function.
396   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
397   if (Scheduler)
398     return Scheduler;
399 
400   // Default to GenericScheduler.
401   return createGenericSchedLive(this);
402 }
403 
404 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
405 /// the caller. We don't have a command line option to override the postRA
406 /// scheduler. The Target must configure it.
407 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
408   // Get the postRA scheduler set by the target for this function.
409   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
410   if (Scheduler)
411     return Scheduler;
412 
413   // Default to GenericScheduler.
414   return createGenericSchedPostRA(this);
415 }
416 
417 /// Top-level MachineScheduler pass driver.
418 ///
419 /// Visit blocks in function order. Divide each block into scheduling regions
420 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
421 /// consistent with the DAG builder, which traverses the interior of the
422 /// scheduling regions bottom-up.
423 ///
424 /// This design avoids exposing scheduling boundaries to the DAG builder,
425 /// simplifying the DAG builder's support for "special" target instructions.
426 /// At the same time the design allows target schedulers to operate across
427 /// scheduling boundaries, for example to bundle the boundary instructions
428 /// without reordering them. This creates complexity, because the target
429 /// scheduler must update the RegionBegin and RegionEnd positions cached by
430 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
431 /// design would be to split blocks at scheduling boundaries, but LLVM has a
432 /// general bias against block splitting purely for implementation simplicity.
433 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
434   if (skipFunction(mf.getFunction()))
435     return false;
436 
437   if (EnableMachineSched.getNumOccurrences()) {
438     if (!EnableMachineSched)
439       return false;
440   } else if (!mf.getSubtarget().enableMachineScheduler())
441     return false;
442 
443   LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
444 
445   // Initialize the context of the pass.
446   MF = &mf;
447   MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
448   MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
449   PassConfig = &getAnalysis<TargetPassConfig>();
450   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
451 
452   LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS();
453 
454   if (VerifyScheduling) {
455     LLVM_DEBUG(LIS->dump());
456     MF->verify(this, "Before machine scheduling.");
457   }
458   RegClassInfo->runOnMachineFunction(*MF);
459 
460   // Instantiate the selected scheduler for this target, function, and
461   // optimization level.
462   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
463   ScheduleDAGMI::DumpDirection D;
464   if (ForceTopDown)
465     D = ScheduleDAGMI::DumpDirection::TopDown;
466   else if (ForceBottomUp)
467     D = ScheduleDAGMI::DumpDirection::BottomUp;
468   else
469     D = ScheduleDAGMI::DumpDirection::Bidirectional;
470   Scheduler->setDumpDirection(D);
471   scheduleRegions(*Scheduler, false);
472 
473   LLVM_DEBUG(LIS->dump());
474   if (VerifyScheduling)
475     MF->verify(this, "After machine scheduling.");
476   return true;
477 }
478 
479 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
480   if (skipFunction(mf.getFunction()))
481     return false;
482 
483   if (EnablePostRAMachineSched.getNumOccurrences()) {
484     if (!EnablePostRAMachineSched)
485       return false;
486   } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) {
487     LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
488     return false;
489   }
490   LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
491 
492   // Initialize the context of the pass.
493   MF = &mf;
494   MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
495   PassConfig = &getAnalysis<TargetPassConfig>();
496   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
497 
498   if (VerifyScheduling)
499     MF->verify(this, "Before post machine scheduling.");
500 
501   // Instantiate the selected scheduler for this target, function, and
502   // optimization level.
503   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
504   ScheduleDAGMI::DumpDirection D;
505   if (PostRADirection == MISchedPostRASched::TopDown)
506     D = ScheduleDAGMI::DumpDirection::TopDown;
507   else if (PostRADirection == MISchedPostRASched::BottomUp)
508     D = ScheduleDAGMI::DumpDirection::BottomUp;
509   else
510     D = ScheduleDAGMI::DumpDirection::Bidirectional;
511   Scheduler->setDumpDirection(D);
512   scheduleRegions(*Scheduler, true);
513 
514   if (VerifyScheduling)
515     MF->verify(this, "After post machine scheduling.");
516   return true;
517 }
518 
519 /// Return true of the given instruction should not be included in a scheduling
520 /// region.
521 ///
522 /// MachineScheduler does not currently support scheduling across calls. To
523 /// handle calls, the DAG builder needs to be modified to create register
524 /// anti/output dependencies on the registers clobbered by the call's regmask
525 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
526 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
527 /// the boundary, but there would be no benefit to postRA scheduling across
528 /// calls this late anyway.
529 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
530                             MachineBasicBlock *MBB,
531                             MachineFunction *MF,
532                             const TargetInstrInfo *TII) {
533   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
534 }
535 
536 /// A region of an MBB for scheduling.
537 namespace {
538 struct SchedRegion {
539   /// RegionBegin is the first instruction in the scheduling region, and
540   /// RegionEnd is either MBB->end() or the scheduling boundary after the
541   /// last instruction in the scheduling region. These iterators cannot refer
542   /// to instructions outside of the identified scheduling region because
543   /// those may be reordered before scheduling this region.
544   MachineBasicBlock::iterator RegionBegin;
545   MachineBasicBlock::iterator RegionEnd;
546   unsigned NumRegionInstrs;
547 
548   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
549               unsigned N) :
550     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
551 };
552 } // end anonymous namespace
553 
554 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
555 
556 static void
557 getSchedRegions(MachineBasicBlock *MBB,
558                 MBBRegionsVector &Regions,
559                 bool RegionsTopDown) {
560   MachineFunction *MF = MBB->getParent();
561   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
562 
563   MachineBasicBlock::iterator I = nullptr;
564   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
565       RegionEnd != MBB->begin(); RegionEnd = I) {
566 
567     // Avoid decrementing RegionEnd for blocks with no terminator.
568     if (RegionEnd != MBB->end() ||
569         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
570       --RegionEnd;
571     }
572 
573     // The next region starts above the previous region. Look backward in the
574     // instruction stream until we find the nearest boundary.
575     unsigned NumRegionInstrs = 0;
576     I = RegionEnd;
577     for (;I != MBB->begin(); --I) {
578       MachineInstr &MI = *std::prev(I);
579       if (isSchedBoundary(&MI, &*MBB, MF, TII))
580         break;
581       if (!MI.isDebugOrPseudoInstr()) {
582         // MBB::size() uses instr_iterator to count. Here we need a bundle to
583         // count as a single instruction.
584         ++NumRegionInstrs;
585       }
586     }
587 
588     // It's possible we found a scheduling region that only has debug
589     // instructions. Don't bother scheduling these.
590     if (NumRegionInstrs != 0)
591       Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
592   }
593 
594   if (RegionsTopDown)
595     std::reverse(Regions.begin(), Regions.end());
596 }
597 
598 /// Main driver for both MachineScheduler and PostMachineScheduler.
599 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
600                                            bool FixKillFlags) {
601   // Visit all machine basic blocks.
602   //
603   // TODO: Visit blocks in global postorder or postorder within the bottom-up
604   // loop tree. Then we can optionally compute global RegPressure.
605   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
606        MBB != MBBEnd; ++MBB) {
607 
608     Scheduler.startBlock(&*MBB);
609 
610 #ifndef NDEBUG
611     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
612       continue;
613     if (SchedOnlyBlock.getNumOccurrences()
614         && (int)SchedOnlyBlock != MBB->getNumber())
615       continue;
616 #endif
617 
618     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
619     // points to the scheduling boundary at the bottom of the region. The DAG
620     // does not include RegionEnd, but the region does (i.e. the next
621     // RegionEnd is above the previous RegionBegin). If the current block has
622     // no terminator then RegionEnd == MBB->end() for the bottom region.
623     //
624     // All the regions of MBB are first found and stored in MBBRegions, which
625     // will be processed (MBB) top-down if initialized with true.
626     //
627     // The Scheduler may insert instructions during either schedule() or
628     // exitRegion(), even for empty regions. So the local iterators 'I' and
629     // 'RegionEnd' are invalid across these calls. Instructions must not be
630     // added to other regions than the current one without updating MBBRegions.
631 
632     MBBRegionsVector MBBRegions;
633     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
634     for (const SchedRegion &R : MBBRegions) {
635       MachineBasicBlock::iterator I = R.RegionBegin;
636       MachineBasicBlock::iterator RegionEnd = R.RegionEnd;
637       unsigned NumRegionInstrs = R.NumRegionInstrs;
638 
639       // Notify the scheduler of the region, even if we may skip scheduling
640       // it. Perhaps it still needs to be bundled.
641       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
642 
643       // Skip empty scheduling regions (0 or 1 schedulable instructions).
644       if (I == RegionEnd || I == std::prev(RegionEnd)) {
645         // Close the current region. Bundle the terminator if needed.
646         // This invalidates 'RegionEnd' and 'I'.
647         Scheduler.exitRegion();
648         continue;
649       }
650       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
651       LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
652                         << " " << MBB->getName() << "\n  From: " << *I
653                         << "    To: ";
654                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
655                  else dbgs() << "End\n";
656                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
657       if (DumpCriticalPathLength) {
658         errs() << MF->getName();
659         errs() << ":%bb. " << MBB->getNumber();
660         errs() << " " << MBB->getName() << " \n";
661       }
662 
663       // Schedule a region: possibly reorder instructions.
664       // This invalidates the original region iterators.
665       Scheduler.schedule();
666 
667       // Close the current region.
668       Scheduler.exitRegion();
669     }
670     Scheduler.finishBlock();
671     // FIXME: Ideally, no further passes should rely on kill flags. However,
672     // thumb2 size reduction is currently an exception, so the PostMIScheduler
673     // needs to do this.
674     if (FixKillFlags)
675       Scheduler.fixupKills(*MBB);
676   }
677   Scheduler.finalizeSchedule();
678 }
679 
680 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
681   // unimplemented
682 }
683 
684 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
685 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
686   dbgs() << "Queue " << Name << ": ";
687   for (const SUnit *SU : Queue)
688     dbgs() << SU->NodeNum << " ";
689   dbgs() << "\n";
690 }
691 #endif
692 
693 //===----------------------------------------------------------------------===//
694 // ScheduleDAGMI - Basic machine instruction scheduling. This is
695 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
696 // virtual registers.
697 // ===----------------------------------------------------------------------===/
698 
699 // Provide a vtable anchor.
700 ScheduleDAGMI::~ScheduleDAGMI() = default;
701 
702 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
703 /// NumPredsLeft reaches zero, release the successor node.
704 ///
705 /// FIXME: Adjust SuccSU height based on MinLatency.
706 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
707   SUnit *SuccSU = SuccEdge->getSUnit();
708 
709   if (SuccEdge->isWeak()) {
710     --SuccSU->WeakPredsLeft;
711     if (SuccEdge->isCluster())
712       NextClusterSucc = SuccSU;
713     return;
714   }
715 #ifndef NDEBUG
716   if (SuccSU->NumPredsLeft == 0) {
717     dbgs() << "*** Scheduling failed! ***\n";
718     dumpNode(*SuccSU);
719     dbgs() << " has been released too many times!\n";
720     llvm_unreachable(nullptr);
721   }
722 #endif
723   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
724   // CurrCycle may have advanced since then.
725   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
726     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
727 
728   --SuccSU->NumPredsLeft;
729   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
730     SchedImpl->releaseTopNode(SuccSU);
731 }
732 
733 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
734 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
735   for (SDep &Succ : SU->Succs)
736     releaseSucc(SU, &Succ);
737 }
738 
739 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
740 /// NumSuccsLeft reaches zero, release the predecessor node.
741 ///
742 /// FIXME: Adjust PredSU height based on MinLatency.
743 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
744   SUnit *PredSU = PredEdge->getSUnit();
745 
746   if (PredEdge->isWeak()) {
747     --PredSU->WeakSuccsLeft;
748     if (PredEdge->isCluster())
749       NextClusterPred = PredSU;
750     return;
751   }
752 #ifndef NDEBUG
753   if (PredSU->NumSuccsLeft == 0) {
754     dbgs() << "*** Scheduling failed! ***\n";
755     dumpNode(*PredSU);
756     dbgs() << " has been released too many times!\n";
757     llvm_unreachable(nullptr);
758   }
759 #endif
760   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
761   // CurrCycle may have advanced since then.
762   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
763     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
764 
765   --PredSU->NumSuccsLeft;
766   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
767     SchedImpl->releaseBottomNode(PredSU);
768 }
769 
770 /// releasePredecessors - Call releasePred on each of SU's predecessors.
771 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
772   for (SDep &Pred : SU->Preds)
773     releasePred(SU, &Pred);
774 }
775 
776 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
777   ScheduleDAGInstrs::startBlock(bb);
778   SchedImpl->enterMBB(bb);
779 }
780 
781 void ScheduleDAGMI::finishBlock() {
782   SchedImpl->leaveMBB();
783   ScheduleDAGInstrs::finishBlock();
784 }
785 
786 /// enterRegion - Called back from PostMachineScheduler::runOnMachineFunction
787 /// after crossing a scheduling boundary. [begin, end) includes all instructions
788 /// in the region, including the boundary itself and single-instruction regions
789 /// that don't get scheduled.
790 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
791                                      MachineBasicBlock::iterator begin,
792                                      MachineBasicBlock::iterator end,
793                                      unsigned regioninstrs)
794 {
795   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
796 
797   SchedImpl->initPolicy(begin, end, regioninstrs);
798 }
799 
800 /// This is normally called from the main scheduler loop but may also be invoked
801 /// by the scheduling strategy to perform additional code motion.
802 void ScheduleDAGMI::moveInstruction(
803   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
804   // Advance RegionBegin if the first instruction moves down.
805   if (&*RegionBegin == MI)
806     ++RegionBegin;
807 
808   // Update the instruction stream.
809   BB->splice(InsertPos, BB, MI);
810 
811   // Update LiveIntervals
812   if (LIS)
813     LIS->handleMove(*MI, /*UpdateFlags=*/true);
814 
815   // Recede RegionBegin if an instruction moves above the first.
816   if (RegionBegin == InsertPos)
817     RegionBegin = MI;
818 }
819 
820 bool ScheduleDAGMI::checkSchedLimit() {
821 #if LLVM_ENABLE_ABI_BREAKING_CHECKS && !defined(NDEBUG)
822   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
823     CurrentTop = CurrentBottom;
824     return false;
825   }
826   ++NumInstrsScheduled;
827 #endif
828   return true;
829 }
830 
831 /// Per-region scheduling driver, called back from
832 /// PostMachineScheduler::runOnMachineFunction. This is a simplified driver
833 /// that does not consider liveness or register pressure. It is useful for
834 /// PostRA scheduling and potentially other custom schedulers.
835 void ScheduleDAGMI::schedule() {
836   LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
837   LLVM_DEBUG(SchedImpl->dumpPolicy());
838 
839   // Build the DAG.
840   buildSchedGraph(AA);
841 
842   postProcessDAG();
843 
844   SmallVector<SUnit*, 8> TopRoots, BotRoots;
845   findRootsAndBiasEdges(TopRoots, BotRoots);
846 
847   LLVM_DEBUG(dump());
848   if (PrintDAGs) dump();
849   if (ViewMISchedDAGs) viewGraph();
850 
851   // Initialize the strategy before modifying the DAG.
852   // This may initialize a DFSResult to be used for queue priority.
853   SchedImpl->initialize(this);
854 
855   // Initialize ready queues now that the DAG and priority data are finalized.
856   initQueues(TopRoots, BotRoots);
857 
858   bool IsTopNode = false;
859   while (true) {
860     LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
861     SUnit *SU = SchedImpl->pickNode(IsTopNode);
862     if (!SU) break;
863 
864     assert(!SU->isScheduled && "Node already scheduled");
865     if (!checkSchedLimit())
866       break;
867 
868     MachineInstr *MI = SU->getInstr();
869     if (IsTopNode) {
870       assert(SU->isTopReady() && "node still has unscheduled dependencies");
871       if (&*CurrentTop == MI)
872         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
873       else
874         moveInstruction(MI, CurrentTop);
875     } else {
876       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
877       MachineBasicBlock::iterator priorII =
878         priorNonDebug(CurrentBottom, CurrentTop);
879       if (&*priorII == MI)
880         CurrentBottom = priorII;
881       else {
882         if (&*CurrentTop == MI)
883           CurrentTop = nextIfDebug(++CurrentTop, priorII);
884         moveInstruction(MI, CurrentBottom);
885         CurrentBottom = MI;
886       }
887     }
888     // Notify the scheduling strategy before updating the DAG.
889     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
890     // runs, it can then use the accurate ReadyCycle time to determine whether
891     // newly released nodes can move to the readyQ.
892     SchedImpl->schedNode(SU, IsTopNode);
893 
894     updateQueues(SU, IsTopNode);
895   }
896   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
897 
898   placeDebugValues();
899 
900   LLVM_DEBUG({
901     dbgs() << "*** Final schedule for "
902            << printMBBReference(*begin()->getParent()) << " ***\n";
903     dumpSchedule();
904     dbgs() << '\n';
905   });
906 }
907 
908 /// Apply each ScheduleDAGMutation step in order.
909 void ScheduleDAGMI::postProcessDAG() {
910   for (auto &m : Mutations)
911     m->apply(this);
912 }
913 
914 void ScheduleDAGMI::
915 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
916                       SmallVectorImpl<SUnit*> &BotRoots) {
917   for (SUnit &SU : SUnits) {
918     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
919 
920     // Order predecessors so DFSResult follows the critical path.
921     SU.biasCriticalPath();
922 
923     // A SUnit is ready to top schedule if it has no predecessors.
924     if (!SU.NumPredsLeft)
925       TopRoots.push_back(&SU);
926     // A SUnit is ready to bottom schedule if it has no successors.
927     if (!SU.NumSuccsLeft)
928       BotRoots.push_back(&SU);
929   }
930   ExitSU.biasCriticalPath();
931 }
932 
933 /// Identify DAG roots and setup scheduler queues.
934 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
935                                ArrayRef<SUnit*> BotRoots) {
936   NextClusterSucc = nullptr;
937   NextClusterPred = nullptr;
938 
939   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
940   //
941   // Nodes with unreleased weak edges can still be roots.
942   // Release top roots in forward order.
943   for (SUnit *SU : TopRoots)
944     SchedImpl->releaseTopNode(SU);
945 
946   // Release bottom roots in reverse order so the higher priority nodes appear
947   // first. This is more natural and slightly more efficient.
948   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
949          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
950     SchedImpl->releaseBottomNode(*I);
951   }
952 
953   releaseSuccessors(&EntrySU);
954   releasePredecessors(&ExitSU);
955 
956   SchedImpl->registerRoots();
957 
958   // Advance past initial DebugValues.
959   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
960   CurrentBottom = RegionEnd;
961 }
962 
963 /// Update scheduler queues after scheduling an instruction.
964 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
965   // Release dependent instructions for scheduling.
966   if (IsTopNode)
967     releaseSuccessors(SU);
968   else
969     releasePredecessors(SU);
970 
971   SU->isScheduled = true;
972 }
973 
974 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
975 void ScheduleDAGMI::placeDebugValues() {
976   // If first instruction was a DBG_VALUE then put it back.
977   if (FirstDbgValue) {
978     BB->splice(RegionBegin, BB, FirstDbgValue);
979     RegionBegin = FirstDbgValue;
980   }
981 
982   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
983          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
984     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
985     MachineInstr *DbgValue = P.first;
986     MachineBasicBlock::iterator OrigPrevMI = P.second;
987     if (&*RegionBegin == DbgValue)
988       ++RegionBegin;
989     BB->splice(std::next(OrigPrevMI), BB, DbgValue);
990     if (RegionEnd != BB->end() && OrigPrevMI == &*RegionEnd)
991       RegionEnd = DbgValue;
992   }
993 }
994 
995 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
996 static const char *scheduleTableLegend = "  i: issue\n  x: resource booked";
997 
998 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpScheduleTraceTopDown() const {
999   // Bail off when there is no schedule model to query.
1000   if (!SchedModel.hasInstrSchedModel())
1001     return;
1002 
1003   //  Nothing to show if there is no or just one instruction.
1004   if (BB->size() < 2)
1005     return;
1006 
1007   dbgs() << " * Schedule table (TopDown):\n";
1008   dbgs() << scheduleTableLegend << "\n";
1009   const unsigned FirstCycle = getSUnit(&*(std::begin(*this)))->TopReadyCycle;
1010   unsigned LastCycle = getSUnit(&*(std::prev(std::end(*this))))->TopReadyCycle;
1011   for (MachineInstr &MI : *this) {
1012     SUnit *SU = getSUnit(&MI);
1013     if (!SU)
1014       continue;
1015     const MCSchedClassDesc *SC = getSchedClass(SU);
1016     for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC),
1017                                        PE = SchedModel.getWriteProcResEnd(SC);
1018          PI != PE; ++PI) {
1019       if (SU->TopReadyCycle + PI->ReleaseAtCycle - 1 > LastCycle)
1020         LastCycle = SU->TopReadyCycle + PI->ReleaseAtCycle - 1;
1021     }
1022   }
1023   // Print the header with the cycles
1024   dbgs() << llvm::left_justify("Cycle", HeaderColWidth);
1025   for (unsigned C = FirstCycle; C <= LastCycle; ++C)
1026     dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth);
1027   dbgs() << "|\n";
1028 
1029   for (MachineInstr &MI : *this) {
1030     SUnit *SU = getSUnit(&MI);
1031     if (!SU) {
1032       dbgs() << "Missing SUnit\n";
1033       continue;
1034     }
1035     std::string NodeName("SU(");
1036     NodeName += std::to_string(SU->NodeNum) + ")";
1037     dbgs() << llvm::left_justify(NodeName, HeaderColWidth);
1038     unsigned C = FirstCycle;
1039     for (; C <= LastCycle; ++C) {
1040       if (C == SU->TopReadyCycle)
1041         dbgs() << llvm::left_justify("| i", ColWidth);
1042       else
1043         dbgs() << llvm::left_justify("|", ColWidth);
1044     }
1045     dbgs() << "|\n";
1046     const MCSchedClassDesc *SC = getSchedClass(SU);
1047 
1048     SmallVector<MCWriteProcResEntry, 4> ResourcesIt(
1049         make_range(SchedModel.getWriteProcResBegin(SC),
1050                    SchedModel.getWriteProcResEnd(SC)));
1051 
1052     if (MISchedSortResourcesInTrace)
1053       llvm::stable_sort(ResourcesIt,
1054                         [](const MCWriteProcResEntry &LHS,
1055                            const MCWriteProcResEntry &RHS) -> bool {
1056                           return LHS.AcquireAtCycle < RHS.AcquireAtCycle ||
1057                                  (LHS.AcquireAtCycle == RHS.AcquireAtCycle &&
1058                                   LHS.ReleaseAtCycle < RHS.ReleaseAtCycle);
1059                         });
1060     for (const MCWriteProcResEntry &PI : ResourcesIt) {
1061       C = FirstCycle;
1062       const std::string ResName =
1063           SchedModel.getResourceName(PI.ProcResourceIdx);
1064       dbgs() << llvm::right_justify(ResName + " ", HeaderColWidth);
1065       for (; C < SU->TopReadyCycle + PI.AcquireAtCycle; ++C) {
1066         dbgs() << llvm::left_justify("|", ColWidth);
1067       }
1068       for (unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle; I != E;
1069            ++I, ++C)
1070         dbgs() << llvm::left_justify("| x", ColWidth);
1071       while (C++ <= LastCycle)
1072         dbgs() << llvm::left_justify("|", ColWidth);
1073       // Place end char
1074       dbgs() << "| \n";
1075     }
1076   }
1077 }
1078 
1079 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpScheduleTraceBottomUp() const {
1080   // Bail off when there is no schedule model to query.
1081   if (!SchedModel.hasInstrSchedModel())
1082     return;
1083 
1084   //  Nothing to show if there is no or just one instruction.
1085   if (BB->size() < 2)
1086     return;
1087 
1088   dbgs() << " * Schedule table (BottomUp):\n";
1089   dbgs() << scheduleTableLegend << "\n";
1090 
1091   const int FirstCycle = getSUnit(&*(std::begin(*this)))->BotReadyCycle;
1092   int LastCycle = getSUnit(&*(std::prev(std::end(*this))))->BotReadyCycle;
1093   for (MachineInstr &MI : *this) {
1094     SUnit *SU = getSUnit(&MI);
1095     if (!SU)
1096       continue;
1097     const MCSchedClassDesc *SC = getSchedClass(SU);
1098     for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC),
1099                                        PE = SchedModel.getWriteProcResEnd(SC);
1100          PI != PE; ++PI) {
1101       if ((int)SU->BotReadyCycle - PI->ReleaseAtCycle + 1 < LastCycle)
1102         LastCycle = (int)SU->BotReadyCycle - PI->ReleaseAtCycle + 1;
1103     }
1104   }
1105   // Print the header with the cycles
1106   dbgs() << llvm::left_justify("Cycle", HeaderColWidth);
1107   for (int C = FirstCycle; C >= LastCycle; --C)
1108     dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth);
1109   dbgs() << "|\n";
1110 
1111   for (MachineInstr &MI : *this) {
1112     SUnit *SU = getSUnit(&MI);
1113     if (!SU) {
1114       dbgs() << "Missing SUnit\n";
1115       continue;
1116     }
1117     std::string NodeName("SU(");
1118     NodeName += std::to_string(SU->NodeNum) + ")";
1119     dbgs() << llvm::left_justify(NodeName, HeaderColWidth);
1120     int C = FirstCycle;
1121     for (; C >= LastCycle; --C) {
1122       if (C == (int)SU->BotReadyCycle)
1123         dbgs() << llvm::left_justify("| i", ColWidth);
1124       else
1125         dbgs() << llvm::left_justify("|", ColWidth);
1126     }
1127     dbgs() << "|\n";
1128     const MCSchedClassDesc *SC = getSchedClass(SU);
1129     SmallVector<MCWriteProcResEntry, 4> ResourcesIt(
1130         make_range(SchedModel.getWriteProcResBegin(SC),
1131                    SchedModel.getWriteProcResEnd(SC)));
1132 
1133     if (MISchedSortResourcesInTrace)
1134       llvm::stable_sort(ResourcesIt,
1135                         [](const MCWriteProcResEntry &LHS,
1136                            const MCWriteProcResEntry &RHS) -> bool {
1137                           return LHS.AcquireAtCycle < RHS.AcquireAtCycle ||
1138                                  (LHS.AcquireAtCycle == RHS.AcquireAtCycle &&
1139                                   LHS.ReleaseAtCycle < RHS.ReleaseAtCycle);
1140                         });
1141     for (const MCWriteProcResEntry &PI : ResourcesIt) {
1142       C = FirstCycle;
1143       const std::string ResName =
1144           SchedModel.getResourceName(PI.ProcResourceIdx);
1145       dbgs() << llvm::right_justify(ResName + " ", HeaderColWidth);
1146       for (; C > ((int)SU->BotReadyCycle - (int)PI.AcquireAtCycle); --C) {
1147         dbgs() << llvm::left_justify("|", ColWidth);
1148       }
1149       for (unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle; I != E;
1150            ++I, --C)
1151         dbgs() << llvm::left_justify("| x", ColWidth);
1152       while (C-- >= LastCycle)
1153         dbgs() << llvm::left_justify("|", ColWidth);
1154       // Place end char
1155       dbgs() << "| \n";
1156     }
1157   }
1158 }
1159 #endif
1160 
1161 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1162 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
1163   if (MISchedDumpScheduleTrace) {
1164     if (DumpDir == DumpDirection::TopDown)
1165       dumpScheduleTraceTopDown();
1166     else if (DumpDir == DumpDirection::BottomUp)
1167       dumpScheduleTraceBottomUp();
1168     else if (DumpDir == DumpDirection::Bidirectional) {
1169       dbgs() << "* Schedule table (Bidirectional): not implemented\n";
1170     } else {
1171       dbgs() << "* Schedule table: DumpDirection not set.\n";
1172     }
1173   }
1174 
1175   for (MachineInstr &MI : *this) {
1176     if (SUnit *SU = getSUnit(&MI))
1177       dumpNode(*SU);
1178     else
1179       dbgs() << "Missing SUnit\n";
1180   }
1181 }
1182 #endif
1183 
1184 //===----------------------------------------------------------------------===//
1185 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
1186 // preservation.
1187 //===----------------------------------------------------------------------===//
1188 
1189 ScheduleDAGMILive::~ScheduleDAGMILive() {
1190   delete DFSResult;
1191 }
1192 
1193 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
1194   const MachineInstr &MI = *SU.getInstr();
1195   for (const MachineOperand &MO : MI.operands()) {
1196     if (!MO.isReg())
1197       continue;
1198     if (!MO.readsReg())
1199       continue;
1200     if (TrackLaneMasks && !MO.isUse())
1201       continue;
1202 
1203     Register Reg = MO.getReg();
1204     if (!Reg.isVirtual())
1205       continue;
1206 
1207     // Ignore re-defs.
1208     if (TrackLaneMasks) {
1209       bool FoundDef = false;
1210       for (const MachineOperand &MO2 : MI.all_defs()) {
1211         if (MO2.getReg() == Reg && !MO2.isDead()) {
1212           FoundDef = true;
1213           break;
1214         }
1215       }
1216       if (FoundDef)
1217         continue;
1218     }
1219 
1220     // Record this local VReg use.
1221     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
1222     for (; UI != VRegUses.end(); ++UI) {
1223       if (UI->SU == &SU)
1224         break;
1225     }
1226     if (UI == VRegUses.end())
1227       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
1228   }
1229 }
1230 
1231 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
1232 /// crossing a scheduling boundary. [begin, end) includes all instructions in
1233 /// the region, including the boundary itself and single-instruction regions
1234 /// that don't get scheduled.
1235 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
1236                                 MachineBasicBlock::iterator begin,
1237                                 MachineBasicBlock::iterator end,
1238                                 unsigned regioninstrs)
1239 {
1240   // ScheduleDAGMI initializes SchedImpl's per-region policy.
1241   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
1242 
1243   // For convenience remember the end of the liveness region.
1244   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
1245 
1246   SUPressureDiffs.clear();
1247 
1248   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
1249   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
1250 
1251   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
1252          "ShouldTrackLaneMasks requires ShouldTrackPressure");
1253 }
1254 
1255 // Setup the register pressure trackers for the top scheduled and bottom
1256 // scheduled regions.
1257 void ScheduleDAGMILive::initRegPressure() {
1258   VRegUses.clear();
1259   VRegUses.setUniverse(MRI.getNumVirtRegs());
1260   for (SUnit &SU : SUnits)
1261     collectVRegUses(SU);
1262 
1263   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1264                     ShouldTrackLaneMasks, false);
1265   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1266                     ShouldTrackLaneMasks, false);
1267 
1268   // Close the RPTracker to finalize live ins.
1269   RPTracker.closeRegion();
1270 
1271   LLVM_DEBUG(RPTracker.dump());
1272 
1273   // Initialize the live ins and live outs.
1274   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1275   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1276 
1277   // Close one end of the tracker so we can call
1278   // getMaxUpward/DownwardPressureDelta before advancing across any
1279   // instructions. This converts currently live regs into live ins/outs.
1280   TopRPTracker.closeTop();
1281   BotRPTracker.closeBottom();
1282 
1283   BotRPTracker.initLiveThru(RPTracker);
1284   if (!BotRPTracker.getLiveThru().empty()) {
1285     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1286     LLVM_DEBUG(dbgs() << "Live Thru: ";
1287                dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1288   };
1289 
1290   // For each live out vreg reduce the pressure change associated with other
1291   // uses of the same vreg below the live-out reaching def.
1292   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1293 
1294   // Account for liveness generated by the region boundary.
1295   if (LiveRegionEnd != RegionEnd) {
1296     SmallVector<RegisterMaskPair, 8> LiveUses;
1297     BotRPTracker.recede(&LiveUses);
1298     updatePressureDiffs(LiveUses);
1299   }
1300 
1301   LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1302              dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1303              dbgs() << "Bottom Pressure:\n";
1304              dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1305 
1306   assert((BotRPTracker.getPos() == RegionEnd ||
1307           (RegionEnd->isDebugInstr() &&
1308            BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1309          "Can't find the region bottom");
1310 
1311   // Cache the list of excess pressure sets in this region. This will also track
1312   // the max pressure in the scheduled code for these sets.
1313   RegionCriticalPSets.clear();
1314   const std::vector<unsigned> &RegionPressure =
1315     RPTracker.getPressure().MaxSetPressure;
1316   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1317     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1318     if (RegionPressure[i] > Limit) {
1319       LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1320                         << " Actual " << RegionPressure[i] << "\n");
1321       RegionCriticalPSets.push_back(PressureChange(i));
1322     }
1323   }
1324   LLVM_DEBUG(dbgs() << "Excess PSets: ";
1325              for (const PressureChange &RCPS
1326                   : RegionCriticalPSets) dbgs()
1327              << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1328              dbgs() << "\n");
1329 }
1330 
1331 void ScheduleDAGMILive::
1332 updateScheduledPressure(const SUnit *SU,
1333                         const std::vector<unsigned> &NewMaxPressure) {
1334   const PressureDiff &PDiff = getPressureDiff(SU);
1335   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1336   for (const PressureChange &PC : PDiff) {
1337     if (!PC.isValid())
1338       break;
1339     unsigned ID = PC.getPSet();
1340     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1341       ++CritIdx;
1342     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1343       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1344           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1345         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1346     }
1347     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1348     if (NewMaxPressure[ID] >= Limit - 2) {
1349       LLVM_DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1350                         << NewMaxPressure[ID]
1351                         << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1352                         << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1353                         << " livethru)\n");
1354     }
1355   }
1356 }
1357 
1358 /// Update the PressureDiff array for liveness after scheduling this
1359 /// instruction.
1360 void ScheduleDAGMILive::updatePressureDiffs(
1361     ArrayRef<RegisterMaskPair> LiveUses) {
1362   for (const RegisterMaskPair &P : LiveUses) {
1363     Register Reg = P.RegUnit;
1364     /// FIXME: Currently assuming single-use physregs.
1365     if (!Reg.isVirtual())
1366       continue;
1367 
1368     if (ShouldTrackLaneMasks) {
1369       // If the register has just become live then other uses won't change
1370       // this fact anymore => decrement pressure.
1371       // If the register has just become dead then other uses make it come
1372       // back to life => increment pressure.
1373       bool Decrement = P.LaneMask.any();
1374 
1375       for (const VReg2SUnit &V2SU
1376            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1377         SUnit &SU = *V2SU.SU;
1378         if (SU.isScheduled || &SU == &ExitSU)
1379           continue;
1380 
1381         PressureDiff &PDiff = getPressureDiff(&SU);
1382         PDiff.addPressureChange(Reg, Decrement, &MRI);
1383         LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1384                           << printReg(Reg, TRI) << ':'
1385                           << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1386                    dbgs() << "              to "; PDiff.dump(*TRI););
1387       }
1388     } else {
1389       assert(P.LaneMask.any());
1390       LLVM_DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1391       // This may be called before CurrentBottom has been initialized. However,
1392       // BotRPTracker must have a valid position. We want the value live into the
1393       // instruction or live out of the block, so ask for the previous
1394       // instruction's live-out.
1395       const LiveInterval &LI = LIS->getInterval(Reg);
1396       VNInfo *VNI;
1397       MachineBasicBlock::const_iterator I =
1398         nextIfDebug(BotRPTracker.getPos(), BB->end());
1399       if (I == BB->end())
1400         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1401       else {
1402         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1403         VNI = LRQ.valueIn();
1404       }
1405       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1406       assert(VNI && "No live value at use.");
1407       for (const VReg2SUnit &V2SU
1408            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1409         SUnit *SU = V2SU.SU;
1410         // If this use comes before the reaching def, it cannot be a last use,
1411         // so decrease its pressure change.
1412         if (!SU->isScheduled && SU != &ExitSU) {
1413           LiveQueryResult LRQ =
1414               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1415           if (LRQ.valueIn() == VNI) {
1416             PressureDiff &PDiff = getPressureDiff(SU);
1417             PDiff.addPressureChange(Reg, true, &MRI);
1418             LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1419                               << *SU->getInstr();
1420                        dbgs() << "              to "; PDiff.dump(*TRI););
1421           }
1422         }
1423       }
1424     }
1425   }
1426 }
1427 
1428 void ScheduleDAGMILive::dump() const {
1429 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1430   if (EntrySU.getInstr() != nullptr)
1431     dumpNodeAll(EntrySU);
1432   for (const SUnit &SU : SUnits) {
1433     dumpNodeAll(SU);
1434     if (ShouldTrackPressure) {
1435       dbgs() << "  Pressure Diff      : ";
1436       getPressureDiff(&SU).dump(*TRI);
1437     }
1438     dbgs() << "  Single Issue       : ";
1439     if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1440         SchedModel.mustEndGroup(SU.getInstr()))
1441       dbgs() << "true;";
1442     else
1443       dbgs() << "false;";
1444     dbgs() << '\n';
1445   }
1446   if (ExitSU.getInstr() != nullptr)
1447     dumpNodeAll(ExitSU);
1448 #endif
1449 }
1450 
1451 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1452 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1453 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1454 ///
1455 /// This is a skeletal driver, with all the functionality pushed into helpers,
1456 /// so that it can be easily extended by experimental schedulers. Generally,
1457 /// implementing MachineSchedStrategy should be sufficient to implement a new
1458 /// scheduling algorithm. However, if a scheduler further subclasses
1459 /// ScheduleDAGMILive then it will want to override this virtual method in order
1460 /// to update any specialized state.
1461 void ScheduleDAGMILive::schedule() {
1462   LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1463   LLVM_DEBUG(SchedImpl->dumpPolicy());
1464   buildDAGWithRegPressure();
1465 
1466   postProcessDAG();
1467 
1468   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1469   findRootsAndBiasEdges(TopRoots, BotRoots);
1470 
1471   // Initialize the strategy before modifying the DAG.
1472   // This may initialize a DFSResult to be used for queue priority.
1473   SchedImpl->initialize(this);
1474 
1475   LLVM_DEBUG(dump());
1476   if (PrintDAGs) dump();
1477   if (ViewMISchedDAGs) viewGraph();
1478 
1479   // Initialize ready queues now that the DAG and priority data are finalized.
1480   initQueues(TopRoots, BotRoots);
1481 
1482   bool IsTopNode = false;
1483   while (true) {
1484     LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1485     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1486     if (!SU) break;
1487 
1488     assert(!SU->isScheduled && "Node already scheduled");
1489     if (!checkSchedLimit())
1490       break;
1491 
1492     scheduleMI(SU, IsTopNode);
1493 
1494     if (DFSResult) {
1495       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1496       if (!ScheduledTrees.test(SubtreeID)) {
1497         ScheduledTrees.set(SubtreeID);
1498         DFSResult->scheduleTree(SubtreeID);
1499         SchedImpl->scheduleTree(SubtreeID);
1500       }
1501     }
1502 
1503     // Notify the scheduling strategy after updating the DAG.
1504     SchedImpl->schedNode(SU, IsTopNode);
1505 
1506     updateQueues(SU, IsTopNode);
1507   }
1508   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1509 
1510   placeDebugValues();
1511 
1512   LLVM_DEBUG({
1513     dbgs() << "*** Final schedule for "
1514            << printMBBReference(*begin()->getParent()) << " ***\n";
1515     dumpSchedule();
1516     dbgs() << '\n';
1517   });
1518 }
1519 
1520 /// Build the DAG and setup three register pressure trackers.
1521 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1522   if (!ShouldTrackPressure) {
1523     RPTracker.reset();
1524     RegionCriticalPSets.clear();
1525     buildSchedGraph(AA);
1526     return;
1527   }
1528 
1529   // Initialize the register pressure tracker used by buildSchedGraph.
1530   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1531                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1532 
1533   // Account for liveness generate by the region boundary.
1534   if (LiveRegionEnd != RegionEnd)
1535     RPTracker.recede();
1536 
1537   // Build the DAG, and compute current register pressure.
1538   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1539 
1540   // Initialize top/bottom trackers after computing region pressure.
1541   initRegPressure();
1542 }
1543 
1544 void ScheduleDAGMILive::computeDFSResult() {
1545   if (!DFSResult)
1546     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1547   DFSResult->clear();
1548   ScheduledTrees.clear();
1549   DFSResult->resize(SUnits.size());
1550   DFSResult->compute(SUnits);
1551   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1552 }
1553 
1554 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1555 /// only provides the critical path for single block loops. To handle loops that
1556 /// span blocks, we could use the vreg path latencies provided by
1557 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1558 /// available for use in the scheduler.
1559 ///
1560 /// The cyclic path estimation identifies a def-use pair that crosses the back
1561 /// edge and considers the depth and height of the nodes. For example, consider
1562 /// the following instruction sequence where each instruction has unit latency
1563 /// and defines an eponymous virtual register:
1564 ///
1565 /// a->b(a,c)->c(b)->d(c)->exit
1566 ///
1567 /// The cyclic critical path is a two cycles: b->c->b
1568 /// The acyclic critical path is four cycles: a->b->c->d->exit
1569 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1570 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1571 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1572 /// LiveInDepth = depth(b) = len(a->b) = 1
1573 ///
1574 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1575 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1576 /// CyclicCriticalPath = min(2, 2) = 2
1577 ///
1578 /// This could be relevant to PostRA scheduling, but is currently implemented
1579 /// assuming LiveIntervals.
1580 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1581   // This only applies to single block loop.
1582   if (!BB->isSuccessor(BB))
1583     return 0;
1584 
1585   unsigned MaxCyclicLatency = 0;
1586   // Visit each live out vreg def to find def/use pairs that cross iterations.
1587   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1588     Register Reg = P.RegUnit;
1589     if (!Reg.isVirtual())
1590       continue;
1591     const LiveInterval &LI = LIS->getInterval(Reg);
1592     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1593     if (!DefVNI)
1594       continue;
1595 
1596     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1597     const SUnit *DefSU = getSUnit(DefMI);
1598     if (!DefSU)
1599       continue;
1600 
1601     unsigned LiveOutHeight = DefSU->getHeight();
1602     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1603     // Visit all local users of the vreg def.
1604     for (const VReg2SUnit &V2SU
1605          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1606       SUnit *SU = V2SU.SU;
1607       if (SU == &ExitSU)
1608         continue;
1609 
1610       // Only consider uses of the phi.
1611       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1612       if (!LRQ.valueIn()->isPHIDef())
1613         continue;
1614 
1615       // Assume that a path spanning two iterations is a cycle, which could
1616       // overestimate in strange cases. This allows cyclic latency to be
1617       // estimated as the minimum slack of the vreg's depth or height.
1618       unsigned CyclicLatency = 0;
1619       if (LiveOutDepth > SU->getDepth())
1620         CyclicLatency = LiveOutDepth - SU->getDepth();
1621 
1622       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1623       if (LiveInHeight > LiveOutHeight) {
1624         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1625           CyclicLatency = LiveInHeight - LiveOutHeight;
1626       } else
1627         CyclicLatency = 0;
1628 
1629       LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1630                         << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1631       if (CyclicLatency > MaxCyclicLatency)
1632         MaxCyclicLatency = CyclicLatency;
1633     }
1634   }
1635   LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1636   return MaxCyclicLatency;
1637 }
1638 
1639 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1640 /// the Top RP tracker in case the region beginning has changed.
1641 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1642                                    ArrayRef<SUnit*> BotRoots) {
1643   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1644   if (ShouldTrackPressure) {
1645     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1646     TopRPTracker.setPos(CurrentTop);
1647   }
1648 }
1649 
1650 /// Move an instruction and update register pressure.
1651 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1652   // Move the instruction to its new location in the instruction stream.
1653   MachineInstr *MI = SU->getInstr();
1654 
1655   if (IsTopNode) {
1656     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1657     if (&*CurrentTop == MI)
1658       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1659     else {
1660       moveInstruction(MI, CurrentTop);
1661       TopRPTracker.setPos(MI);
1662     }
1663 
1664     if (ShouldTrackPressure) {
1665       // Update top scheduled pressure.
1666       RegisterOperands RegOpers;
1667       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks,
1668                        /*IgnoreDead=*/false);
1669       if (ShouldTrackLaneMasks) {
1670         // Adjust liveness and add missing dead+read-undef flags.
1671         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1672         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1673       } else {
1674         // Adjust for missing dead-def flags.
1675         RegOpers.detectDeadDefs(*MI, *LIS);
1676       }
1677 
1678       TopRPTracker.advance(RegOpers);
1679       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1680       LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1681                      TopRPTracker.getRegSetPressureAtPos(), TRI););
1682 
1683       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1684     }
1685   } else {
1686     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1687     MachineBasicBlock::iterator priorII =
1688       priorNonDebug(CurrentBottom, CurrentTop);
1689     if (&*priorII == MI)
1690       CurrentBottom = priorII;
1691     else {
1692       if (&*CurrentTop == MI) {
1693         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1694         TopRPTracker.setPos(CurrentTop);
1695       }
1696       moveInstruction(MI, CurrentBottom);
1697       CurrentBottom = MI;
1698       BotRPTracker.setPos(CurrentBottom);
1699     }
1700     if (ShouldTrackPressure) {
1701       RegisterOperands RegOpers;
1702       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks,
1703                        /*IgnoreDead=*/false);
1704       if (ShouldTrackLaneMasks) {
1705         // Adjust liveness and add missing dead+read-undef flags.
1706         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1707         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1708       } else {
1709         // Adjust for missing dead-def flags.
1710         RegOpers.detectDeadDefs(*MI, *LIS);
1711       }
1712 
1713       if (BotRPTracker.getPos() != CurrentBottom)
1714         BotRPTracker.recedeSkipDebugValues();
1715       SmallVector<RegisterMaskPair, 8> LiveUses;
1716       BotRPTracker.recede(RegOpers, &LiveUses);
1717       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1718       LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1719                      BotRPTracker.getRegSetPressureAtPos(), TRI););
1720 
1721       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1722       updatePressureDiffs(LiveUses);
1723     }
1724   }
1725 }
1726 
1727 //===----------------------------------------------------------------------===//
1728 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1729 //===----------------------------------------------------------------------===//
1730 
1731 namespace {
1732 
1733 /// Post-process the DAG to create cluster edges between neighboring
1734 /// loads or between neighboring stores.
1735 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1736   struct MemOpInfo {
1737     SUnit *SU;
1738     SmallVector<const MachineOperand *, 4> BaseOps;
1739     int64_t Offset;
1740     LocationSize Width;
1741     bool OffsetIsScalable;
1742 
1743     MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps,
1744               int64_t Offset, bool OffsetIsScalable, LocationSize Width)
1745         : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset),
1746           Width(Width), OffsetIsScalable(OffsetIsScalable) {}
1747 
1748     static bool Compare(const MachineOperand *const &A,
1749                         const MachineOperand *const &B) {
1750       if (A->getType() != B->getType())
1751         return A->getType() < B->getType();
1752       if (A->isReg())
1753         return A->getReg() < B->getReg();
1754       if (A->isFI()) {
1755         const MachineFunction &MF = *A->getParent()->getParent()->getParent();
1756         const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
1757         bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1758                               TargetFrameLowering::StackGrowsDown;
1759         return StackGrowsDown ? A->getIndex() > B->getIndex()
1760                               : A->getIndex() < B->getIndex();
1761       }
1762 
1763       llvm_unreachable("MemOpClusterMutation only supports register or frame "
1764                        "index bases.");
1765     }
1766 
1767     bool operator<(const MemOpInfo &RHS) const {
1768       // FIXME: Don't compare everything twice. Maybe use C++20 three way
1769       // comparison instead when it's available.
1770       if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(),
1771                                        RHS.BaseOps.begin(), RHS.BaseOps.end(),
1772                                        Compare))
1773         return true;
1774       if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(),
1775                                        BaseOps.begin(), BaseOps.end(), Compare))
1776         return false;
1777       if (Offset != RHS.Offset)
1778         return Offset < RHS.Offset;
1779       return SU->NodeNum < RHS.SU->NodeNum;
1780     }
1781   };
1782 
1783   const TargetInstrInfo *TII;
1784   const TargetRegisterInfo *TRI;
1785   bool IsLoad;
1786   bool ReorderWhileClustering;
1787 
1788 public:
1789   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1790                            const TargetRegisterInfo *tri, bool IsLoad,
1791                            bool ReorderWhileClustering)
1792       : TII(tii), TRI(tri), IsLoad(IsLoad),
1793         ReorderWhileClustering(ReorderWhileClustering) {}
1794 
1795   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1796 
1797 protected:
1798   void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster,
1799                                 ScheduleDAGInstrs *DAG);
1800   void collectMemOpRecords(std::vector<SUnit> &SUnits,
1801                            SmallVectorImpl<MemOpInfo> &MemOpRecords);
1802   bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1803                    DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups);
1804 };
1805 
1806 class StoreClusterMutation : public BaseMemOpClusterMutation {
1807 public:
1808   StoreClusterMutation(const TargetInstrInfo *tii,
1809                        const TargetRegisterInfo *tri,
1810                        bool ReorderWhileClustering)
1811       : BaseMemOpClusterMutation(tii, tri, false, ReorderWhileClustering) {}
1812 };
1813 
1814 class LoadClusterMutation : public BaseMemOpClusterMutation {
1815 public:
1816   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri,
1817                       bool ReorderWhileClustering)
1818       : BaseMemOpClusterMutation(tii, tri, true, ReorderWhileClustering) {}
1819 };
1820 
1821 } // end anonymous namespace
1822 
1823 namespace llvm {
1824 
1825 std::unique_ptr<ScheduleDAGMutation>
1826 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1827                              const TargetRegisterInfo *TRI,
1828                              bool ReorderWhileClustering) {
1829   return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(
1830                                   TII, TRI, ReorderWhileClustering)
1831                             : nullptr;
1832 }
1833 
1834 std::unique_ptr<ScheduleDAGMutation>
1835 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1836                               const TargetRegisterInfo *TRI,
1837                               bool ReorderWhileClustering) {
1838   return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(
1839                                   TII, TRI, ReorderWhileClustering)
1840                             : nullptr;
1841 }
1842 
1843 } // end namespace llvm
1844 
1845 // Sorting all the loads/stores first, then for each load/store, checking the
1846 // following load/store one by one, until reach the first non-dependent one and
1847 // call target hook to see if they can cluster.
1848 // If FastCluster is enabled, we assume that, all the loads/stores have been
1849 // preprocessed and now, they didn't have dependencies on each other.
1850 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1851     ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster,
1852     ScheduleDAGInstrs *DAG) {
1853   // Keep track of the current cluster length and bytes for each SUnit.
1854   DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo;
1855 
1856   // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to
1857   // cluster mem ops collected within `MemOpRecords` array.
1858   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1859     // Decision to cluster mem ops is taken based on target dependent logic
1860     auto MemOpa = MemOpRecords[Idx];
1861 
1862     // Seek for the next load/store to do the cluster.
1863     unsigned NextIdx = Idx + 1;
1864     for (; NextIdx < End; ++NextIdx)
1865       // Skip if MemOpb has been clustered already or has dependency with
1866       // MemOpa.
1867       if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) &&
1868           (FastCluster ||
1869            (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) &&
1870             !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU))))
1871         break;
1872     if (NextIdx == End)
1873       continue;
1874 
1875     auto MemOpb = MemOpRecords[NextIdx];
1876     unsigned ClusterLength = 2;
1877     unsigned CurrentClusterBytes = MemOpa.Width.getValue().getKnownMinValue() +
1878                                    MemOpb.Width.getValue().getKnownMinValue();
1879     if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) {
1880       ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1;
1881       CurrentClusterBytes = SUnit2ClusterInfo[MemOpa.SU->NodeNum].second +
1882                             MemOpb.Width.getValue().getKnownMinValue();
1883     }
1884 
1885     if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpa.Offset,
1886                                   MemOpa.OffsetIsScalable, MemOpb.BaseOps,
1887                                   MemOpb.Offset, MemOpb.OffsetIsScalable,
1888                                   ClusterLength, CurrentClusterBytes))
1889       continue;
1890 
1891     SUnit *SUa = MemOpa.SU;
1892     SUnit *SUb = MemOpb.SU;
1893     if (!ReorderWhileClustering && SUa->NodeNum > SUb->NodeNum)
1894       std::swap(SUa, SUb);
1895 
1896     // FIXME: Is this check really required?
1897     if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster)))
1898       continue;
1899 
1900     LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1901                       << SUb->NodeNum << ")\n");
1902     ++NumClustered;
1903 
1904     if (IsLoad) {
1905       // Copy successor edges from SUa to SUb. Interleaving computation
1906       // dependent on SUa can prevent load combining due to register reuse.
1907       // Predecessor edges do not need to be copied from SUb to SUa since
1908       // nearby loads should have effectively the same inputs.
1909       for (const SDep &Succ : SUa->Succs) {
1910         if (Succ.getSUnit() == SUb)
1911           continue;
1912         LLVM_DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum
1913                           << ")\n");
1914         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1915       }
1916     } else {
1917       // Copy predecessor edges from SUb to SUa to avoid the SUnits that
1918       // SUb dependent on scheduled in-between SUb and SUa. Successor edges
1919       // do not need to be copied from SUa to SUb since no one will depend
1920       // on stores.
1921       // Notice that, we don't need to care about the memory dependency as
1922       // we won't try to cluster them if they have any memory dependency.
1923       for (const SDep &Pred : SUb->Preds) {
1924         if (Pred.getSUnit() == SUa)
1925           continue;
1926         LLVM_DEBUG(dbgs() << "  Copy Pred SU(" << Pred.getSUnit()->NodeNum
1927                           << ")\n");
1928         DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial));
1929       }
1930     }
1931 
1932     SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength,
1933                                              CurrentClusterBytes};
1934 
1935     LLVM_DEBUG(dbgs() << "  Curr cluster length: " << ClusterLength
1936                       << ", Curr cluster bytes: " << CurrentClusterBytes
1937                       << "\n");
1938   }
1939 }
1940 
1941 void BaseMemOpClusterMutation::collectMemOpRecords(
1942     std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) {
1943   for (auto &SU : SUnits) {
1944     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1945         (!IsLoad && !SU.getInstr()->mayStore()))
1946       continue;
1947 
1948     const MachineInstr &MI = *SU.getInstr();
1949     SmallVector<const MachineOperand *, 4> BaseOps;
1950     int64_t Offset;
1951     bool OffsetIsScalable;
1952     LocationSize Width = 0;
1953     if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset,
1954                                            OffsetIsScalable, Width, TRI)) {
1955       MemOpRecords.push_back(
1956           MemOpInfo(&SU, BaseOps, Offset, OffsetIsScalable, Width));
1957 
1958       LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: "
1959                         << Offset << ", OffsetIsScalable: " << OffsetIsScalable
1960                         << ", Width: " << Width << "\n");
1961     }
1962 #ifndef NDEBUG
1963     for (const auto *Op : BaseOps)
1964       assert(Op);
1965 #endif
1966   }
1967 }
1968 
1969 bool BaseMemOpClusterMutation::groupMemOps(
1970     ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1971     DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups) {
1972   bool FastCluster =
1973       ForceFastCluster ||
1974       MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold;
1975 
1976   for (const auto &MemOp : MemOps) {
1977     unsigned ChainPredID = DAG->SUnits.size();
1978     if (FastCluster) {
1979       for (const SDep &Pred : MemOp.SU->Preds) {
1980         // We only want to cluster the mem ops that have the same ctrl(non-data)
1981         // pred so that they didn't have ctrl dependency for each other. But for
1982         // store instrs, we can still cluster them if the pred is load instr.
1983         if ((Pred.isCtrl() &&
1984              (IsLoad ||
1985               (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) &&
1986             !Pred.isArtificial()) {
1987           ChainPredID = Pred.getSUnit()->NodeNum;
1988           break;
1989         }
1990       }
1991     } else
1992       ChainPredID = 0;
1993 
1994     Groups[ChainPredID].push_back(MemOp);
1995   }
1996   return FastCluster;
1997 }
1998 
1999 /// Callback from DAG postProcessing to create cluster edges for loads/stores.
2000 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
2001   // Collect all the clusterable loads/stores
2002   SmallVector<MemOpInfo, 32> MemOpRecords;
2003   collectMemOpRecords(DAG->SUnits, MemOpRecords);
2004 
2005   if (MemOpRecords.size() < 2)
2006     return;
2007 
2008   // Put the loads/stores without dependency into the same group with some
2009   // heuristic if the DAG is too complex to avoid compiling time blow up.
2010   // Notice that, some fusion pair could be lost with this.
2011   DenseMap<unsigned, SmallVector<MemOpInfo, 32>> Groups;
2012   bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups);
2013 
2014   for (auto &Group : Groups) {
2015     // Sorting the loads/stores, so that, we can stop the cluster as early as
2016     // possible.
2017     llvm::sort(Group.second);
2018 
2019     // Trying to cluster all the neighboring loads/stores.
2020     clusterNeighboringMemOps(Group.second, FastCluster, DAG);
2021   }
2022 }
2023 
2024 //===----------------------------------------------------------------------===//
2025 // CopyConstrain - DAG post-processing to encourage copy elimination.
2026 //===----------------------------------------------------------------------===//
2027 
2028 namespace {
2029 
2030 /// Post-process the DAG to create weak edges from all uses of a copy to
2031 /// the one use that defines the copy's source vreg, most likely an induction
2032 /// variable increment.
2033 class CopyConstrain : public ScheduleDAGMutation {
2034   // Transient state.
2035   SlotIndex RegionBeginIdx;
2036 
2037   // RegionEndIdx is the slot index of the last non-debug instruction in the
2038   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
2039   SlotIndex RegionEndIdx;
2040 
2041 public:
2042   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
2043 
2044   void apply(ScheduleDAGInstrs *DAGInstrs) override;
2045 
2046 protected:
2047   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
2048 };
2049 
2050 } // end anonymous namespace
2051 
2052 namespace llvm {
2053 
2054 std::unique_ptr<ScheduleDAGMutation>
2055 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
2056                                const TargetRegisterInfo *TRI) {
2057   return std::make_unique<CopyConstrain>(TII, TRI);
2058 }
2059 
2060 } // end namespace llvm
2061 
2062 /// constrainLocalCopy handles two possibilities:
2063 /// 1) Local src:
2064 /// I0:     = dst
2065 /// I1: src = ...
2066 /// I2:     = dst
2067 /// I3: dst = src (copy)
2068 /// (create pred->succ edges I0->I1, I2->I1)
2069 ///
2070 /// 2) Local copy:
2071 /// I0: dst = src (copy)
2072 /// I1:     = dst
2073 /// I2: src = ...
2074 /// I3:     = dst
2075 /// (create pred->succ edges I1->I2, I3->I2)
2076 ///
2077 /// Although the MachineScheduler is currently constrained to single blocks,
2078 /// this algorithm should handle extended blocks. An EBB is a set of
2079 /// contiguously numbered blocks such that the previous block in the EBB is
2080 /// always the single predecessor.
2081 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
2082   LiveIntervals *LIS = DAG->getLIS();
2083   MachineInstr *Copy = CopySU->getInstr();
2084 
2085   // Check for pure vreg copies.
2086   const MachineOperand &SrcOp = Copy->getOperand(1);
2087   Register SrcReg = SrcOp.getReg();
2088   if (!SrcReg.isVirtual() || !SrcOp.readsReg())
2089     return;
2090 
2091   const MachineOperand &DstOp = Copy->getOperand(0);
2092   Register DstReg = DstOp.getReg();
2093   if (!DstReg.isVirtual() || DstOp.isDead())
2094     return;
2095 
2096   // Check if either the dest or source is local. If it's live across a back
2097   // edge, it's not local. Note that if both vregs are live across the back
2098   // edge, we cannot successfully contrain the copy without cyclic scheduling.
2099   // If both the copy's source and dest are local live intervals, then we
2100   // should treat the dest as the global for the purpose of adding
2101   // constraints. This adds edges from source's other uses to the copy.
2102   unsigned LocalReg = SrcReg;
2103   unsigned GlobalReg = DstReg;
2104   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
2105   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
2106     LocalReg = DstReg;
2107     GlobalReg = SrcReg;
2108     LocalLI = &LIS->getInterval(LocalReg);
2109     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
2110       return;
2111   }
2112   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
2113 
2114   // Find the global segment after the start of the local LI.
2115   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
2116   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
2117   // local live range. We could create edges from other global uses to the local
2118   // start, but the coalescer should have already eliminated these cases, so
2119   // don't bother dealing with it.
2120   if (GlobalSegment == GlobalLI->end())
2121     return;
2122 
2123   // If GlobalSegment is killed at the LocalLI->start, the call to find()
2124   // returned the next global segment. But if GlobalSegment overlaps with
2125   // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
2126   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
2127   if (GlobalSegment->contains(LocalLI->beginIndex()))
2128     ++GlobalSegment;
2129 
2130   if (GlobalSegment == GlobalLI->end())
2131     return;
2132 
2133   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
2134   if (GlobalSegment != GlobalLI->begin()) {
2135     // Two address defs have no hole.
2136     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
2137                                GlobalSegment->start)) {
2138       return;
2139     }
2140     // If the prior global segment may be defined by the same two-address
2141     // instruction that also defines LocalLI, then can't make a hole here.
2142     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
2143                                LocalLI->beginIndex())) {
2144       return;
2145     }
2146     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
2147     // it would be a disconnected component in the live range.
2148     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
2149            "Disconnected LRG within the scheduling region.");
2150   }
2151   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
2152   if (!GlobalDef)
2153     return;
2154 
2155   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
2156   if (!GlobalSU)
2157     return;
2158 
2159   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
2160   // constraining the uses of the last local def to precede GlobalDef.
2161   SmallVector<SUnit*,8> LocalUses;
2162   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
2163   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
2164   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
2165   for (const SDep &Succ : LastLocalSU->Succs) {
2166     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
2167       continue;
2168     if (Succ.getSUnit() == GlobalSU)
2169       continue;
2170     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
2171       return;
2172     LocalUses.push_back(Succ.getSUnit());
2173   }
2174   // Open the top of the GlobalLI hole by constraining any earlier global uses
2175   // to precede the start of LocalLI.
2176   SmallVector<SUnit*,8> GlobalUses;
2177   MachineInstr *FirstLocalDef =
2178     LIS->getInstructionFromIndex(LocalLI->beginIndex());
2179   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
2180   for (const SDep &Pred : GlobalSU->Preds) {
2181     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
2182       continue;
2183     if (Pred.getSUnit() == FirstLocalSU)
2184       continue;
2185     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
2186       return;
2187     GlobalUses.push_back(Pred.getSUnit());
2188   }
2189   LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
2190   // Add the weak edges.
2191   for (SUnit *LU : LocalUses) {
2192     LLVM_DEBUG(dbgs() << "  Local use SU(" << LU->NodeNum << ") -> SU("
2193                       << GlobalSU->NodeNum << ")\n");
2194     DAG->addEdge(GlobalSU, SDep(LU, SDep::Weak));
2195   }
2196   for (SUnit *GU : GlobalUses) {
2197     LLVM_DEBUG(dbgs() << "  Global use SU(" << GU->NodeNum << ") -> SU("
2198                       << FirstLocalSU->NodeNum << ")\n");
2199     DAG->addEdge(FirstLocalSU, SDep(GU, SDep::Weak));
2200   }
2201 }
2202 
2203 /// Callback from DAG postProcessing to create weak edges to encourage
2204 /// copy elimination.
2205 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
2206   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
2207   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
2208 
2209   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
2210   if (FirstPos == DAG->end())
2211     return;
2212   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
2213   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
2214       *priorNonDebug(DAG->end(), DAG->begin()));
2215 
2216   for (SUnit &SU : DAG->SUnits) {
2217     if (!SU.getInstr()->isCopy())
2218       continue;
2219 
2220     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
2221   }
2222 }
2223 
2224 //===----------------------------------------------------------------------===//
2225 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
2226 // and possibly other custom schedulers.
2227 //===----------------------------------------------------------------------===//
2228 
2229 static const unsigned InvalidCycle = ~0U;
2230 
2231 SchedBoundary::~SchedBoundary() { delete HazardRec; }
2232 
2233 /// Given a Count of resource usage and a Latency value, return true if a
2234 /// SchedBoundary becomes resource limited.
2235 /// If we are checking after scheduling a node, we should return true when
2236 /// we just reach the resource limit.
2237 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
2238                                unsigned Latency, bool AfterSchedNode) {
2239   int ResCntFactor = (int)(Count - (Latency * LFactor));
2240   if (AfterSchedNode)
2241     return ResCntFactor >= (int)LFactor;
2242   else
2243     return ResCntFactor > (int)LFactor;
2244 }
2245 
2246 void SchedBoundary::reset() {
2247   // A new HazardRec is created for each DAG and owned by SchedBoundary.
2248   // Destroying and reconstructing it is very expensive though. So keep
2249   // invalid, placeholder HazardRecs.
2250   if (HazardRec && HazardRec->isEnabled()) {
2251     delete HazardRec;
2252     HazardRec = nullptr;
2253   }
2254   Available.clear();
2255   Pending.clear();
2256   CheckPending = false;
2257   CurrCycle = 0;
2258   CurrMOps = 0;
2259   MinReadyCycle = std::numeric_limits<unsigned>::max();
2260   ExpectedLatency = 0;
2261   DependentLatency = 0;
2262   RetiredMOps = 0;
2263   MaxExecutedResCount = 0;
2264   ZoneCritResIdx = 0;
2265   IsResourceLimited = false;
2266   ReservedCycles.clear();
2267   ReservedResourceSegments.clear();
2268   ReservedCyclesIndex.clear();
2269   ResourceGroupSubUnitMasks.clear();
2270 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
2271   // Track the maximum number of stall cycles that could arise either from the
2272   // latency of a DAG edge or the number of cycles that a processor resource is
2273   // reserved (SchedBoundary::ReservedCycles).
2274   MaxObservedStall = 0;
2275 #endif
2276   // Reserve a zero-count for invalid CritResIdx.
2277   ExecutedResCounts.resize(1);
2278   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
2279 }
2280 
2281 void SchedRemainder::
2282 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
2283   reset();
2284   if (!SchedModel->hasInstrSchedModel())
2285     return;
2286   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
2287   for (SUnit &SU : DAG->SUnits) {
2288     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
2289     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
2290       * SchedModel->getMicroOpFactor();
2291     for (TargetSchedModel::ProcResIter
2292            PI = SchedModel->getWriteProcResBegin(SC),
2293            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2294       unsigned PIdx = PI->ProcResourceIdx;
2295       unsigned Factor = SchedModel->getResourceFactor(PIdx);
2296       assert(PI->ReleaseAtCycle >= PI->AcquireAtCycle);
2297       RemainingCounts[PIdx] +=
2298           (Factor * (PI->ReleaseAtCycle - PI->AcquireAtCycle));
2299     }
2300   }
2301 }
2302 
2303 void SchedBoundary::
2304 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
2305   reset();
2306   DAG = dag;
2307   SchedModel = smodel;
2308   Rem = rem;
2309   if (SchedModel->hasInstrSchedModel()) {
2310     unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
2311     ReservedCyclesIndex.resize(ResourceCount);
2312     ExecutedResCounts.resize(ResourceCount);
2313     ResourceGroupSubUnitMasks.resize(ResourceCount, APInt(ResourceCount, 0));
2314     unsigned NumUnits = 0;
2315 
2316     for (unsigned i = 0; i < ResourceCount; ++i) {
2317       ReservedCyclesIndex[i] = NumUnits;
2318       NumUnits += SchedModel->getProcResource(i)->NumUnits;
2319       if (isUnbufferedGroup(i)) {
2320         auto SubUnits = SchedModel->getProcResource(i)->SubUnitsIdxBegin;
2321         for (unsigned U = 0, UE = SchedModel->getProcResource(i)->NumUnits;
2322              U != UE; ++U)
2323           ResourceGroupSubUnitMasks[i].setBit(SubUnits[U]);
2324       }
2325     }
2326 
2327     ReservedCycles.resize(NumUnits, InvalidCycle);
2328   }
2329 }
2330 
2331 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
2332 /// these "soft stalls" differently than the hard stall cycles based on CPU
2333 /// resources and computed by checkHazard(). A fully in-order model
2334 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
2335 /// available for scheduling until they are ready. However, a weaker in-order
2336 /// model may use this for heuristics. For example, if a processor has in-order
2337 /// behavior when reading certain resources, this may come into play.
2338 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
2339   if (!SU->isUnbuffered)
2340     return 0;
2341 
2342   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2343   if (ReadyCycle > CurrCycle)
2344     return ReadyCycle - CurrCycle;
2345   return 0;
2346 }
2347 
2348 /// Compute the next cycle at which the given processor resource unit
2349 /// can be scheduled.
2350 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx,
2351                                                        unsigned ReleaseAtCycle,
2352                                                        unsigned AcquireAtCycle) {
2353   if (SchedModel && SchedModel->enableIntervals()) {
2354     if (isTop())
2355       return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromTop(
2356           CurrCycle, AcquireAtCycle, ReleaseAtCycle);
2357 
2358     return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromBottom(
2359         CurrCycle, AcquireAtCycle, ReleaseAtCycle);
2360   }
2361 
2362   unsigned NextUnreserved = ReservedCycles[InstanceIdx];
2363   // If this resource has never been used, always return cycle zero.
2364   if (NextUnreserved == InvalidCycle)
2365     return CurrCycle;
2366   // For bottom-up scheduling add the cycles needed for the current operation.
2367   if (!isTop())
2368     NextUnreserved = std::max(CurrCycle, NextUnreserved + ReleaseAtCycle);
2369   return NextUnreserved;
2370 }
2371 
2372 /// Compute the next cycle at which the given processor resource can be
2373 /// scheduled.  Returns the next cycle and the index of the processor resource
2374 /// instance in the reserved cycles vector.
2375 std::pair<unsigned, unsigned>
2376 SchedBoundary::getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx,
2377                                     unsigned ReleaseAtCycle,
2378                                     unsigned AcquireAtCycle) {
2379   if (MischedDetailResourceBooking) {
2380     LLVM_DEBUG(dbgs() << "  Resource booking (@" << CurrCycle << "c): \n");
2381     LLVM_DEBUG(dumpReservedCycles());
2382     LLVM_DEBUG(dbgs() << "  getNextResourceCycle (@" << CurrCycle << "c): \n");
2383   }
2384   unsigned MinNextUnreserved = InvalidCycle;
2385   unsigned InstanceIdx = 0;
2386   unsigned StartIndex = ReservedCyclesIndex[PIdx];
2387   unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
2388   assert(NumberOfInstances > 0 &&
2389          "Cannot have zero instances of a ProcResource");
2390 
2391   if (isUnbufferedGroup(PIdx)) {
2392     // If any subunits are used by the instruction, report that the
2393     // subunits of the resource group are available at the first cycle
2394     // in which the unit is available, effectively removing the group
2395     // record from hazarding and basing the hazarding decisions on the
2396     // subunit records. Otherwise, choose the first available instance
2397     // from among the subunits.  Specifications which assign cycles to
2398     // both the subunits and the group or which use an unbuffered
2399     // group with buffered subunits will appear to schedule
2400     // strangely. In the first case, the additional cycles for the
2401     // group will be ignored.  In the second, the group will be
2402     // ignored entirely.
2403     for (const MCWriteProcResEntry &PE :
2404          make_range(SchedModel->getWriteProcResBegin(SC),
2405                     SchedModel->getWriteProcResEnd(SC)))
2406       if (ResourceGroupSubUnitMasks[PIdx][PE.ProcResourceIdx])
2407         return std::make_pair(getNextResourceCycleByInstance(
2408                                   StartIndex, ReleaseAtCycle, AcquireAtCycle),
2409                               StartIndex);
2410 
2411     auto SubUnits = SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin;
2412     for (unsigned I = 0, End = NumberOfInstances; I < End; ++I) {
2413       unsigned NextUnreserved, NextInstanceIdx;
2414       std::tie(NextUnreserved, NextInstanceIdx) =
2415           getNextResourceCycle(SC, SubUnits[I], ReleaseAtCycle, AcquireAtCycle);
2416       if (MinNextUnreserved > NextUnreserved) {
2417         InstanceIdx = NextInstanceIdx;
2418         MinNextUnreserved = NextUnreserved;
2419       }
2420     }
2421     return std::make_pair(MinNextUnreserved, InstanceIdx);
2422   }
2423 
2424   for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
2425        ++I) {
2426     unsigned NextUnreserved =
2427         getNextResourceCycleByInstance(I, ReleaseAtCycle, AcquireAtCycle);
2428     if (MischedDetailResourceBooking)
2429       LLVM_DEBUG(dbgs() << "    Instance " << I - StartIndex << " available @"
2430                         << NextUnreserved << "c\n");
2431     if (MinNextUnreserved > NextUnreserved) {
2432       InstanceIdx = I;
2433       MinNextUnreserved = NextUnreserved;
2434     }
2435   }
2436   if (MischedDetailResourceBooking)
2437     LLVM_DEBUG(dbgs() << "    selecting " << SchedModel->getResourceName(PIdx)
2438                       << "[" << InstanceIdx - StartIndex << "]"
2439                       << " available @" << MinNextUnreserved << "c"
2440                       << "\n");
2441   return std::make_pair(MinNextUnreserved, InstanceIdx);
2442 }
2443 
2444 /// Does this SU have a hazard within the current instruction group.
2445 ///
2446 /// The scheduler supports two modes of hazard recognition. The first is the
2447 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
2448 /// supports highly complicated in-order reservation tables
2449 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
2450 ///
2451 /// The second is a streamlined mechanism that checks for hazards based on
2452 /// simple counters that the scheduler itself maintains. It explicitly checks
2453 /// for instruction dispatch limitations, including the number of micro-ops that
2454 /// can dispatch per cycle.
2455 ///
2456 /// TODO: Also check whether the SU must start a new group.
2457 bool SchedBoundary::checkHazard(SUnit *SU) {
2458   if (HazardRec->isEnabled()
2459       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
2460     return true;
2461   }
2462 
2463   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
2464   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
2465     LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
2466                       << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
2467     return true;
2468   }
2469 
2470   if (CurrMOps > 0 &&
2471       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
2472        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
2473     LLVM_DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
2474                       << (isTop() ? "begin" : "end") << " group\n");
2475     return true;
2476   }
2477 
2478   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
2479     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2480     for (const MCWriteProcResEntry &PE :
2481           make_range(SchedModel->getWriteProcResBegin(SC),
2482                      SchedModel->getWriteProcResEnd(SC))) {
2483       unsigned ResIdx = PE.ProcResourceIdx;
2484       unsigned ReleaseAtCycle = PE.ReleaseAtCycle;
2485       unsigned AcquireAtCycle = PE.AcquireAtCycle;
2486       unsigned NRCycle, InstanceIdx;
2487       std::tie(NRCycle, InstanceIdx) =
2488           getNextResourceCycle(SC, ResIdx, ReleaseAtCycle, AcquireAtCycle);
2489       if (NRCycle > CurrCycle) {
2490 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
2491         MaxObservedStall = std::max(ReleaseAtCycle, MaxObservedStall);
2492 #endif
2493         LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
2494                           << SchedModel->getResourceName(ResIdx)
2495                           << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx]  << ']'
2496                           << "=" << NRCycle << "c\n");
2497         return true;
2498       }
2499     }
2500   }
2501   return false;
2502 }
2503 
2504 // Find the unscheduled node in ReadySUs with the highest latency.
2505 unsigned SchedBoundary::
2506 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
2507   SUnit *LateSU = nullptr;
2508   unsigned RemLatency = 0;
2509   for (SUnit *SU : ReadySUs) {
2510     unsigned L = getUnscheduledLatency(SU);
2511     if (L > RemLatency) {
2512       RemLatency = L;
2513       LateSU = SU;
2514     }
2515   }
2516   if (LateSU) {
2517     LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2518                       << LateSU->NodeNum << ") " << RemLatency << "c\n");
2519   }
2520   return RemLatency;
2521 }
2522 
2523 // Count resources in this zone and the remaining unscheduled
2524 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2525 // resource index, or zero if the zone is issue limited.
2526 unsigned SchedBoundary::
2527 getOtherResourceCount(unsigned &OtherCritIdx) {
2528   OtherCritIdx = 0;
2529   if (!SchedModel->hasInstrSchedModel())
2530     return 0;
2531 
2532   unsigned OtherCritCount = Rem->RemIssueCount
2533     + (RetiredMOps * SchedModel->getMicroOpFactor());
2534   LLVM_DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2535                     << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2536   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2537        PIdx != PEnd; ++PIdx) {
2538     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2539     if (OtherCount > OtherCritCount) {
2540       OtherCritCount = OtherCount;
2541       OtherCritIdx = PIdx;
2542     }
2543   }
2544   if (OtherCritIdx) {
2545     LLVM_DEBUG(
2546         dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2547                << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2548                << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2549   }
2550   return OtherCritCount;
2551 }
2552 
2553 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue,
2554                                 unsigned Idx) {
2555   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2556 
2557 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
2558   // ReadyCycle was been bumped up to the CurrCycle when this node was
2559   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2560   // scheduling, so may now be greater than ReadyCycle.
2561   if (ReadyCycle > CurrCycle)
2562     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2563 #endif
2564 
2565   if (ReadyCycle < MinReadyCycle)
2566     MinReadyCycle = ReadyCycle;
2567 
2568   // Check for interlocks first. For the purpose of other heuristics, an
2569   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2570   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2571   bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) ||
2572                         checkHazard(SU) || (Available.size() >= ReadyListLimit);
2573 
2574   if (!HazardDetected) {
2575     Available.push(SU);
2576 
2577     if (InPQueue)
2578       Pending.remove(Pending.begin() + Idx);
2579     return;
2580   }
2581 
2582   if (!InPQueue)
2583     Pending.push(SU);
2584 }
2585 
2586 /// Move the boundary of scheduled code by one cycle.
2587 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2588   if (SchedModel->getMicroOpBufferSize() == 0) {
2589     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2590            "MinReadyCycle uninitialized");
2591     if (MinReadyCycle > NextCycle)
2592       NextCycle = MinReadyCycle;
2593   }
2594   // Update the current micro-ops, which will issue in the next cycle.
2595   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2596   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2597 
2598   // Decrement DependentLatency based on the next cycle.
2599   if ((NextCycle - CurrCycle) > DependentLatency)
2600     DependentLatency = 0;
2601   else
2602     DependentLatency -= (NextCycle - CurrCycle);
2603 
2604   if (!HazardRec->isEnabled()) {
2605     // Bypass HazardRec virtual calls.
2606     CurrCycle = NextCycle;
2607   } else {
2608     // Bypass getHazardType calls in case of long latency.
2609     for (; CurrCycle != NextCycle; ++CurrCycle) {
2610       if (isTop())
2611         HazardRec->AdvanceCycle();
2612       else
2613         HazardRec->RecedeCycle();
2614     }
2615   }
2616   CheckPending = true;
2617   IsResourceLimited =
2618       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2619                          getScheduledLatency(), true);
2620 
2621   LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2622                     << '\n');
2623 }
2624 
2625 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2626   ExecutedResCounts[PIdx] += Count;
2627   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2628     MaxExecutedResCount = ExecutedResCounts[PIdx];
2629 }
2630 
2631 /// Add the given processor resource to this scheduled zone.
2632 ///
2633 /// \param ReleaseAtCycle indicates the number of consecutive (non-pipelined)
2634 /// cycles during which this resource is released.
2635 ///
2636 /// \param AcquireAtCycle indicates the number of consecutive (non-pipelined)
2637 /// cycles at which the resource is aquired after issue (assuming no stalls).
2638 ///
2639 /// \return the next cycle at which the instruction may execute without
2640 /// oversubscribing resources.
2641 unsigned SchedBoundary::countResource(const MCSchedClassDesc *SC, unsigned PIdx,
2642                                       unsigned ReleaseAtCycle,
2643                                       unsigned NextCycle,
2644                                       unsigned AcquireAtCycle) {
2645   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2646   unsigned Count = Factor * (ReleaseAtCycle- AcquireAtCycle);
2647   LLVM_DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) << " +"
2648                     << ReleaseAtCycle << "x" << Factor << "u\n");
2649 
2650   // Update Executed resources counts.
2651   incExecutedResources(PIdx, Count);
2652   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2653   Rem->RemainingCounts[PIdx] -= Count;
2654 
2655   // Check if this resource exceeds the current critical resource. If so, it
2656   // becomes the critical resource.
2657   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2658     ZoneCritResIdx = PIdx;
2659     LLVM_DEBUG(dbgs() << "  *** Critical resource "
2660                       << SchedModel->getResourceName(PIdx) << ": "
2661                       << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2662                       << "c\n");
2663   }
2664   // For reserved resources, record the highest cycle using the resource.
2665   unsigned NextAvailable, InstanceIdx;
2666   std::tie(NextAvailable, InstanceIdx) =
2667       getNextResourceCycle(SC, PIdx, ReleaseAtCycle, AcquireAtCycle);
2668   if (NextAvailable > CurrCycle) {
2669     LLVM_DEBUG(dbgs() << "  Resource conflict: "
2670                       << SchedModel->getResourceName(PIdx)
2671                       << '[' << InstanceIdx - ReservedCyclesIndex[PIdx]  << ']'
2672                       << " reserved until @" << NextAvailable << "\n");
2673   }
2674   return NextAvailable;
2675 }
2676 
2677 /// Move the boundary of scheduled code by one SUnit.
2678 void SchedBoundary::bumpNode(SUnit *SU) {
2679   // Update the reservation table.
2680   if (HazardRec->isEnabled()) {
2681     if (!isTop() && SU->isCall) {
2682       // Calls are scheduled with their preceding instructions. For bottom-up
2683       // scheduling, clear the pipeline state before emitting.
2684       HazardRec->Reset();
2685     }
2686     HazardRec->EmitInstruction(SU);
2687     // Scheduling an instruction may have made pending instructions available.
2688     CheckPending = true;
2689   }
2690   // checkHazard should prevent scheduling multiple instructions per cycle that
2691   // exceed the issue width.
2692   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2693   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2694   assert(
2695       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2696       "Cannot schedule this instruction's MicroOps in the current cycle.");
2697 
2698   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2699   LLVM_DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2700 
2701   unsigned NextCycle = CurrCycle;
2702   switch (SchedModel->getMicroOpBufferSize()) {
2703   case 0:
2704     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2705     break;
2706   case 1:
2707     if (ReadyCycle > NextCycle) {
2708       NextCycle = ReadyCycle;
2709       LLVM_DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2710     }
2711     break;
2712   default:
2713     // We don't currently model the OOO reorder buffer, so consider all
2714     // scheduled MOps to be "retired". We do loosely model in-order resource
2715     // latency. If this instruction uses an in-order resource, account for any
2716     // likely stall cycles.
2717     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2718       NextCycle = ReadyCycle;
2719     break;
2720   }
2721   RetiredMOps += IncMOps;
2722 
2723   // Update resource counts and critical resource.
2724   if (SchedModel->hasInstrSchedModel()) {
2725     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2726     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2727     Rem->RemIssueCount -= DecRemIssue;
2728     if (ZoneCritResIdx) {
2729       // Scale scheduled micro-ops for comparing with the critical resource.
2730       unsigned ScaledMOps =
2731         RetiredMOps * SchedModel->getMicroOpFactor();
2732 
2733       // If scaled micro-ops are now more than the previous critical resource by
2734       // a full cycle, then micro-ops issue becomes critical.
2735       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2736           >= (int)SchedModel->getLatencyFactor()) {
2737         ZoneCritResIdx = 0;
2738         LLVM_DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2739                           << ScaledMOps / SchedModel->getLatencyFactor()
2740                           << "c\n");
2741       }
2742     }
2743     for (TargetSchedModel::ProcResIter
2744            PI = SchedModel->getWriteProcResBegin(SC),
2745            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2746       unsigned RCycle =
2747           countResource(SC, PI->ProcResourceIdx, PI->ReleaseAtCycle, NextCycle,
2748                         PI->AcquireAtCycle);
2749       if (RCycle > NextCycle)
2750         NextCycle = RCycle;
2751     }
2752     if (SU->hasReservedResource) {
2753       // For reserved resources, record the highest cycle using the resource.
2754       // For top-down scheduling, this is the cycle in which we schedule this
2755       // instruction plus the number of cycles the operations reserves the
2756       // resource. For bottom-up is it simply the instruction's cycle.
2757       for (TargetSchedModel::ProcResIter
2758              PI = SchedModel->getWriteProcResBegin(SC),
2759              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2760         unsigned PIdx = PI->ProcResourceIdx;
2761         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2762 
2763           if (SchedModel && SchedModel->enableIntervals()) {
2764             unsigned ReservedUntil, InstanceIdx;
2765             std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(
2766                 SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle);
2767             if (isTop()) {
2768               ReservedResourceSegments[InstanceIdx].add(
2769                   ResourceSegments::getResourceIntervalTop(
2770                       NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle),
2771                   MIResourceCutOff);
2772             } else {
2773               ReservedResourceSegments[InstanceIdx].add(
2774                   ResourceSegments::getResourceIntervalBottom(
2775                       NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle),
2776                   MIResourceCutOff);
2777             }
2778           } else {
2779 
2780             unsigned ReservedUntil, InstanceIdx;
2781             std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(
2782                 SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle);
2783             if (isTop()) {
2784               ReservedCycles[InstanceIdx] =
2785                   std::max(ReservedUntil, NextCycle + PI->ReleaseAtCycle);
2786             } else
2787               ReservedCycles[InstanceIdx] = NextCycle;
2788           }
2789         }
2790       }
2791     }
2792   }
2793   // Update ExpectedLatency and DependentLatency.
2794   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2795   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2796   if (SU->getDepth() > TopLatency) {
2797     TopLatency = SU->getDepth();
2798     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " TopLatency SU("
2799                       << SU->NodeNum << ") " << TopLatency << "c\n");
2800   }
2801   if (SU->getHeight() > BotLatency) {
2802     BotLatency = SU->getHeight();
2803     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " BotLatency SU("
2804                       << SU->NodeNum << ") " << BotLatency << "c\n");
2805   }
2806   // If we stall for any reason, bump the cycle.
2807   if (NextCycle > CurrCycle)
2808     bumpCycle(NextCycle);
2809   else
2810     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2811     // resource limited. If a stall occurred, bumpCycle does this.
2812     IsResourceLimited =
2813         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2814                            getScheduledLatency(), true);
2815 
2816   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2817   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2818   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2819   // bump the cycle to avoid uselessly checking everything in the readyQ.
2820   CurrMOps += IncMOps;
2821 
2822   // Bump the cycle count for issue group constraints.
2823   // This must be done after NextCycle has been adjust for all other stalls.
2824   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2825   // currCycle to X.
2826   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2827       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2828     LLVM_DEBUG(dbgs() << "  Bump cycle to " << (isTop() ? "end" : "begin")
2829                       << " group\n");
2830     bumpCycle(++NextCycle);
2831   }
2832 
2833   while (CurrMOps >= SchedModel->getIssueWidth()) {
2834     LLVM_DEBUG(dbgs() << "  *** Max MOps " << CurrMOps << " at cycle "
2835                       << CurrCycle << '\n');
2836     bumpCycle(++NextCycle);
2837   }
2838   LLVM_DEBUG(dumpScheduledState());
2839 }
2840 
2841 /// Release pending ready nodes in to the available queue. This makes them
2842 /// visible to heuristics.
2843 void SchedBoundary::releasePending() {
2844   // If the available queue is empty, it is safe to reset MinReadyCycle.
2845   if (Available.empty())
2846     MinReadyCycle = std::numeric_limits<unsigned>::max();
2847 
2848   // Check to see if any of the pending instructions are ready to issue.  If
2849   // so, add them to the available queue.
2850   for (unsigned I = 0, E = Pending.size(); I < E; ++I) {
2851     SUnit *SU = *(Pending.begin() + I);
2852     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2853 
2854     if (ReadyCycle < MinReadyCycle)
2855       MinReadyCycle = ReadyCycle;
2856 
2857     if (Available.size() >= ReadyListLimit)
2858       break;
2859 
2860     releaseNode(SU, ReadyCycle, true, I);
2861     if (E != Pending.size()) {
2862       --I;
2863       --E;
2864     }
2865   }
2866   CheckPending = false;
2867 }
2868 
2869 /// Remove SU from the ready set for this boundary.
2870 void SchedBoundary::removeReady(SUnit *SU) {
2871   if (Available.isInQueue(SU))
2872     Available.remove(Available.find(SU));
2873   else {
2874     assert(Pending.isInQueue(SU) && "bad ready count");
2875     Pending.remove(Pending.find(SU));
2876   }
2877 }
2878 
2879 /// If this queue only has one ready candidate, return it. As a side effect,
2880 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2881 /// one node is ready. If multiple instructions are ready, return NULL.
2882 SUnit *SchedBoundary::pickOnlyChoice() {
2883   if (CheckPending)
2884     releasePending();
2885 
2886   // Defer any ready instrs that now have a hazard.
2887   for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2888     if (checkHazard(*I)) {
2889       Pending.push(*I);
2890       I = Available.remove(I);
2891       continue;
2892     }
2893     ++I;
2894   }
2895   for (unsigned i = 0; Available.empty(); ++i) {
2896 //  FIXME: Re-enable assert once PR20057 is resolved.
2897 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2898 //           "permanent hazard");
2899     (void)i;
2900     bumpCycle(CurrCycle + 1);
2901     releasePending();
2902   }
2903 
2904   LLVM_DEBUG(Pending.dump());
2905   LLVM_DEBUG(Available.dump());
2906 
2907   if (Available.size() == 1)
2908     return *Available.begin();
2909   return nullptr;
2910 }
2911 
2912 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2913 
2914 /// Dump the content of the \ref ReservedCycles vector for the
2915 /// resources that are used in the basic block.
2916 ///
2917 LLVM_DUMP_METHOD void SchedBoundary::dumpReservedCycles() const {
2918   if (!SchedModel->hasInstrSchedModel())
2919     return;
2920 
2921   unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
2922   unsigned StartIdx = 0;
2923 
2924   for (unsigned ResIdx = 0; ResIdx < ResourceCount; ++ResIdx) {
2925     const unsigned NumUnits = SchedModel->getProcResource(ResIdx)->NumUnits;
2926     std::string ResName = SchedModel->getResourceName(ResIdx);
2927     for (unsigned UnitIdx = 0; UnitIdx < NumUnits; ++UnitIdx) {
2928       dbgs() << ResName << "(" << UnitIdx << ") = ";
2929       if (SchedModel && SchedModel->enableIntervals()) {
2930         if (ReservedResourceSegments.count(StartIdx + UnitIdx))
2931           dbgs() << ReservedResourceSegments.at(StartIdx + UnitIdx);
2932         else
2933           dbgs() << "{ }\n";
2934       } else
2935         dbgs() << ReservedCycles[StartIdx + UnitIdx] << "\n";
2936     }
2937     StartIdx += NumUnits;
2938   }
2939 }
2940 
2941 // This is useful information to dump after bumpNode.
2942 // Note that the Queue contents are more useful before pickNodeFromQueue.
2943 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2944   unsigned ResFactor;
2945   unsigned ResCount;
2946   if (ZoneCritResIdx) {
2947     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2948     ResCount = getResourceCount(ZoneCritResIdx);
2949   } else {
2950     ResFactor = SchedModel->getMicroOpFactor();
2951     ResCount = RetiredMOps * ResFactor;
2952   }
2953   unsigned LFactor = SchedModel->getLatencyFactor();
2954   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2955          << "  Retired: " << RetiredMOps;
2956   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2957   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2958          << ResCount / ResFactor << " "
2959          << SchedModel->getResourceName(ZoneCritResIdx)
2960          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2961          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2962          << " limited.\n";
2963   if (MISchedDumpReservedCycles)
2964     dumpReservedCycles();
2965 }
2966 #endif
2967 
2968 //===----------------------------------------------------------------------===//
2969 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2970 //===----------------------------------------------------------------------===//
2971 
2972 void GenericSchedulerBase::SchedCandidate::
2973 initResourceDelta(const ScheduleDAGMI *DAG,
2974                   const TargetSchedModel *SchedModel) {
2975   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2976     return;
2977 
2978   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2979   for (TargetSchedModel::ProcResIter
2980          PI = SchedModel->getWriteProcResBegin(SC),
2981          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2982     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2983       ResDelta.CritResources += PI->ReleaseAtCycle;
2984     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2985       ResDelta.DemandedResources += PI->ReleaseAtCycle;
2986   }
2987 }
2988 
2989 /// Compute remaining latency. We need this both to determine whether the
2990 /// overall schedule has become latency-limited and whether the instructions
2991 /// outside this zone are resource or latency limited.
2992 ///
2993 /// The "dependent" latency is updated incrementally during scheduling as the
2994 /// max height/depth of scheduled nodes minus the cycles since it was
2995 /// scheduled:
2996 ///   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2997 ///
2998 /// The "independent" latency is the max ready queue depth:
2999 ///   ILat = max N.depth for N in Available|Pending
3000 ///
3001 /// RemainingLatency is the greater of independent and dependent latency.
3002 ///
3003 /// These computations are expensive, especially in DAGs with many edges, so
3004 /// only do them if necessary.
3005 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
3006   unsigned RemLatency = CurrZone.getDependentLatency();
3007   RemLatency = std::max(RemLatency,
3008                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
3009   RemLatency = std::max(RemLatency,
3010                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
3011   return RemLatency;
3012 }
3013 
3014 /// Returns true if the current cycle plus remaning latency is greater than
3015 /// the critical path in the scheduling region.
3016 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
3017                                                SchedBoundary &CurrZone,
3018                                                bool ComputeRemLatency,
3019                                                unsigned &RemLatency) const {
3020   // The current cycle is already greater than the critical path, so we are
3021   // already latency limited and don't need to compute the remaining latency.
3022   if (CurrZone.getCurrCycle() > Rem.CriticalPath)
3023     return true;
3024 
3025   // If we haven't scheduled anything yet, then we aren't latency limited.
3026   if (CurrZone.getCurrCycle() == 0)
3027     return false;
3028 
3029   if (ComputeRemLatency)
3030     RemLatency = computeRemLatency(CurrZone);
3031 
3032   return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
3033 }
3034 
3035 /// Set the CandPolicy given a scheduling zone given the current resources and
3036 /// latencies inside and outside the zone.
3037 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
3038                                      SchedBoundary &CurrZone,
3039                                      SchedBoundary *OtherZone) {
3040   // Apply preemptive heuristics based on the total latency and resources
3041   // inside and outside this zone. Potential stalls should be considered before
3042   // following this policy.
3043 
3044   // Compute the critical resource outside the zone.
3045   unsigned OtherCritIdx = 0;
3046   unsigned OtherCount =
3047     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
3048 
3049   bool OtherResLimited = false;
3050   unsigned RemLatency = 0;
3051   bool RemLatencyComputed = false;
3052   if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
3053     RemLatency = computeRemLatency(CurrZone);
3054     RemLatencyComputed = true;
3055     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
3056                                          OtherCount, RemLatency, false);
3057   }
3058 
3059   // Schedule aggressively for latency in PostRA mode. We don't check for
3060   // acyclic latency during PostRA, and highly out-of-order processors will
3061   // skip PostRA scheduling.
3062   if (!OtherResLimited &&
3063       (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
3064                                        RemLatency))) {
3065     Policy.ReduceLatency |= true;
3066     LLVM_DEBUG(dbgs() << "  " << CurrZone.Available.getName()
3067                       << " RemainingLatency " << RemLatency << " + "
3068                       << CurrZone.getCurrCycle() << "c > CritPath "
3069                       << Rem.CriticalPath << "\n");
3070   }
3071   // If the same resource is limiting inside and outside the zone, do nothing.
3072   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
3073     return;
3074 
3075   LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
3076     dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
3077            << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
3078   } if (OtherResLimited) dbgs()
3079                  << "  RemainingLimit: "
3080                  << SchedModel->getResourceName(OtherCritIdx) << "\n";
3081              if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
3082              << "  Latency limited both directions.\n");
3083 
3084   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
3085     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
3086 
3087   if (OtherResLimited)
3088     Policy.DemandResIdx = OtherCritIdx;
3089 }
3090 
3091 #ifndef NDEBUG
3092 const char *GenericSchedulerBase::getReasonStr(
3093   GenericSchedulerBase::CandReason Reason) {
3094   switch (Reason) {
3095   case NoCand:         return "NOCAND    ";
3096   case Only1:          return "ONLY1     ";
3097   case PhysReg:        return "PHYS-REG  ";
3098   case RegExcess:      return "REG-EXCESS";
3099   case RegCritical:    return "REG-CRIT  ";
3100   case Stall:          return "STALL     ";
3101   case Cluster:        return "CLUSTER   ";
3102   case Weak:           return "WEAK      ";
3103   case RegMax:         return "REG-MAX   ";
3104   case ResourceReduce: return "RES-REDUCE";
3105   case ResourceDemand: return "RES-DEMAND";
3106   case TopDepthReduce: return "TOP-DEPTH ";
3107   case TopPathReduce:  return "TOP-PATH  ";
3108   case BotHeightReduce:return "BOT-HEIGHT";
3109   case BotPathReduce:  return "BOT-PATH  ";
3110   case NextDefUse:     return "DEF-USE   ";
3111   case NodeOrder:      return "ORDER     ";
3112   };
3113   llvm_unreachable("Unknown reason!");
3114 }
3115 
3116 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
3117   PressureChange P;
3118   unsigned ResIdx = 0;
3119   unsigned Latency = 0;
3120   switch (Cand.Reason) {
3121   default:
3122     break;
3123   case RegExcess:
3124     P = Cand.RPDelta.Excess;
3125     break;
3126   case RegCritical:
3127     P = Cand.RPDelta.CriticalMax;
3128     break;
3129   case RegMax:
3130     P = Cand.RPDelta.CurrentMax;
3131     break;
3132   case ResourceReduce:
3133     ResIdx = Cand.Policy.ReduceResIdx;
3134     break;
3135   case ResourceDemand:
3136     ResIdx = Cand.Policy.DemandResIdx;
3137     break;
3138   case TopDepthReduce:
3139     Latency = Cand.SU->getDepth();
3140     break;
3141   case TopPathReduce:
3142     Latency = Cand.SU->getHeight();
3143     break;
3144   case BotHeightReduce:
3145     Latency = Cand.SU->getHeight();
3146     break;
3147   case BotPathReduce:
3148     Latency = Cand.SU->getDepth();
3149     break;
3150   }
3151   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
3152   if (P.isValid())
3153     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
3154            << ":" << P.getUnitInc() << " ";
3155   else
3156     dbgs() << "      ";
3157   if (ResIdx)
3158     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
3159   else
3160     dbgs() << "         ";
3161   if (Latency)
3162     dbgs() << " " << Latency << " cycles ";
3163   else
3164     dbgs() << "          ";
3165   dbgs() << '\n';
3166 }
3167 #endif
3168 
3169 namespace llvm {
3170 /// Return true if this heuristic determines order.
3171 /// TODO: Consider refactor return type of these functions as integer or enum,
3172 /// as we may need to differentiate whether TryCand is better than Cand.
3173 bool tryLess(int TryVal, int CandVal,
3174              GenericSchedulerBase::SchedCandidate &TryCand,
3175              GenericSchedulerBase::SchedCandidate &Cand,
3176              GenericSchedulerBase::CandReason Reason) {
3177   if (TryVal < CandVal) {
3178     TryCand.Reason = Reason;
3179     return true;
3180   }
3181   if (TryVal > CandVal) {
3182     if (Cand.Reason > Reason)
3183       Cand.Reason = Reason;
3184     return true;
3185   }
3186   return false;
3187 }
3188 
3189 bool tryGreater(int TryVal, int CandVal,
3190                 GenericSchedulerBase::SchedCandidate &TryCand,
3191                 GenericSchedulerBase::SchedCandidate &Cand,
3192                 GenericSchedulerBase::CandReason Reason) {
3193   if (TryVal > CandVal) {
3194     TryCand.Reason = Reason;
3195     return true;
3196   }
3197   if (TryVal < CandVal) {
3198     if (Cand.Reason > Reason)
3199       Cand.Reason = Reason;
3200     return true;
3201   }
3202   return false;
3203 }
3204 
3205 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
3206                 GenericSchedulerBase::SchedCandidate &Cand,
3207                 SchedBoundary &Zone) {
3208   if (Zone.isTop()) {
3209     // Prefer the candidate with the lesser depth, but only if one of them has
3210     // depth greater than the total latency scheduled so far, otherwise either
3211     // of them could be scheduled now with no stall.
3212     if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) >
3213         Zone.getScheduledLatency()) {
3214       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
3215                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
3216         return true;
3217     }
3218     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
3219                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
3220       return true;
3221   } else {
3222     // Prefer the candidate with the lesser height, but only if one of them has
3223     // height greater than the total latency scheduled so far, otherwise either
3224     // of them could be scheduled now with no stall.
3225     if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) >
3226         Zone.getScheduledLatency()) {
3227       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
3228                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
3229         return true;
3230     }
3231     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
3232                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
3233       return true;
3234   }
3235   return false;
3236 }
3237 } // end namespace llvm
3238 
3239 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
3240   LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
3241                     << GenericSchedulerBase::getReasonStr(Reason) << '\n');
3242 }
3243 
3244 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
3245   tracePick(Cand.Reason, Cand.AtTop);
3246 }
3247 
3248 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
3249   assert(dag->hasVRegLiveness() &&
3250          "(PreRA)GenericScheduler needs vreg liveness");
3251   DAG = static_cast<ScheduleDAGMILive*>(dag);
3252   SchedModel = DAG->getSchedModel();
3253   TRI = DAG->TRI;
3254 
3255   if (RegionPolicy.ComputeDFSResult)
3256     DAG->computeDFSResult();
3257 
3258   Rem.init(DAG, SchedModel);
3259   Top.init(DAG, SchedModel, &Rem);
3260   Bot.init(DAG, SchedModel, &Rem);
3261 
3262   // Initialize resource counts.
3263 
3264   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
3265   // are disabled, then these HazardRecs will be disabled.
3266   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3267   if (!Top.HazardRec) {
3268     Top.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG);
3269   }
3270   if (!Bot.HazardRec) {
3271     Bot.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG);
3272   }
3273   TopCand.SU = nullptr;
3274   BotCand.SU = nullptr;
3275 }
3276 
3277 /// Initialize the per-region scheduling policy.
3278 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
3279                                   MachineBasicBlock::iterator End,
3280                                   unsigned NumRegionInstrs) {
3281   const MachineFunction &MF = *Begin->getMF();
3282   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
3283 
3284   // Avoid setting up the register pressure tracker for small regions to save
3285   // compile time. As a rough heuristic, only track pressure when the number of
3286   // schedulable instructions exceeds half the allocatable integer register file
3287   // that is the largest legal integer regiser type.
3288   RegionPolicy.ShouldTrackPressure = true;
3289   for (unsigned VT = MVT::i64; VT > (unsigned)MVT::i1; --VT) {
3290     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
3291     if (TLI->isTypeLegal(LegalIntVT)) {
3292       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
3293         TLI->getRegClassFor(LegalIntVT));
3294       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
3295       break;
3296     }
3297   }
3298 
3299   // For generic targets, we default to bottom-up, because it's simpler and more
3300   // compile-time optimizations have been implemented in that direction.
3301   RegionPolicy.OnlyBottomUp = true;
3302 
3303   // Allow the subtarget to override default policy.
3304   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
3305 
3306   // After subtarget overrides, apply command line options.
3307   if (!EnableRegPressure) {
3308     RegionPolicy.ShouldTrackPressure = false;
3309     RegionPolicy.ShouldTrackLaneMasks = false;
3310   }
3311 
3312   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
3313   // e.g. -misched-bottomup=false allows scheduling in both directions.
3314   assert((!ForceTopDown || !ForceBottomUp) &&
3315          "-misched-topdown incompatible with -misched-bottomup");
3316   if (ForceBottomUp.getNumOccurrences() > 0) {
3317     RegionPolicy.OnlyBottomUp = ForceBottomUp;
3318     if (RegionPolicy.OnlyBottomUp)
3319       RegionPolicy.OnlyTopDown = false;
3320   }
3321   if (ForceTopDown.getNumOccurrences() > 0) {
3322     RegionPolicy.OnlyTopDown = ForceTopDown;
3323     if (RegionPolicy.OnlyTopDown)
3324       RegionPolicy.OnlyBottomUp = false;
3325   }
3326 }
3327 
3328 void GenericScheduler::dumpPolicy() const {
3329   // Cannot completely remove virtual function even in release mode.
3330 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3331   dbgs() << "GenericScheduler RegionPolicy: "
3332          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
3333          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
3334          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
3335          << "\n";
3336 #endif
3337 }
3338 
3339 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
3340 /// critical path by more cycles than it takes to drain the instruction buffer.
3341 /// We estimate an upper bounds on in-flight instructions as:
3342 ///
3343 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
3344 /// InFlightIterations = AcyclicPath / CyclesPerIteration
3345 /// InFlightResources = InFlightIterations * LoopResources
3346 ///
3347 /// TODO: Check execution resources in addition to IssueCount.
3348 void GenericScheduler::checkAcyclicLatency() {
3349   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
3350     return;
3351 
3352   // Scaled number of cycles per loop iteration.
3353   unsigned IterCount =
3354     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
3355              Rem.RemIssueCount);
3356   // Scaled acyclic critical path.
3357   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
3358   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
3359   unsigned InFlightCount =
3360     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
3361   unsigned BufferLimit =
3362     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
3363 
3364   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
3365 
3366   LLVM_DEBUG(
3367       dbgs() << "IssueCycles="
3368              << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
3369              << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
3370              << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
3371              << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
3372              << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
3373       if (Rem.IsAcyclicLatencyLimited) dbgs() << "  ACYCLIC LATENCY LIMIT\n");
3374 }
3375 
3376 void GenericScheduler::registerRoots() {
3377   Rem.CriticalPath = DAG->ExitSU.getDepth();
3378 
3379   // Some roots may not feed into ExitSU. Check all of them in case.
3380   for (const SUnit *SU : Bot.Available) {
3381     if (SU->getDepth() > Rem.CriticalPath)
3382       Rem.CriticalPath = SU->getDepth();
3383   }
3384   LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
3385   if (DumpCriticalPathLength) {
3386     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
3387   }
3388 
3389   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
3390     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
3391     checkAcyclicLatency();
3392   }
3393 }
3394 
3395 namespace llvm {
3396 bool tryPressure(const PressureChange &TryP,
3397                  const PressureChange &CandP,
3398                  GenericSchedulerBase::SchedCandidate &TryCand,
3399                  GenericSchedulerBase::SchedCandidate &Cand,
3400                  GenericSchedulerBase::CandReason Reason,
3401                  const TargetRegisterInfo *TRI,
3402                  const MachineFunction &MF) {
3403   // If one candidate decreases and the other increases, go with it.
3404   // Invalid candidates have UnitInc==0.
3405   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
3406                  Reason)) {
3407     return true;
3408   }
3409   // Do not compare the magnitude of pressure changes between top and bottom
3410   // boundary.
3411   if (Cand.AtTop != TryCand.AtTop)
3412     return false;
3413 
3414   // If both candidates affect the same set in the same boundary, go with the
3415   // smallest increase.
3416   unsigned TryPSet = TryP.getPSetOrMax();
3417   unsigned CandPSet = CandP.getPSetOrMax();
3418   if (TryPSet == CandPSet) {
3419     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
3420                    Reason);
3421   }
3422 
3423   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
3424                                  std::numeric_limits<int>::max();
3425 
3426   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
3427                                    std::numeric_limits<int>::max();
3428 
3429   // If the candidates are decreasing pressure, reverse priority.
3430   if (TryP.getUnitInc() < 0)
3431     std::swap(TryRank, CandRank);
3432   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
3433 }
3434 
3435 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
3436   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
3437 }
3438 
3439 /// Minimize physical register live ranges. Regalloc wants them adjacent to
3440 /// their physreg def/use.
3441 ///
3442 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
3443 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
3444 /// with the operation that produces or consumes the physreg. We'll do this when
3445 /// regalloc has support for parallel copies.
3446 int biasPhysReg(const SUnit *SU, bool isTop) {
3447   const MachineInstr *MI = SU->getInstr();
3448 
3449   if (MI->isCopy()) {
3450     unsigned ScheduledOper = isTop ? 1 : 0;
3451     unsigned UnscheduledOper = isTop ? 0 : 1;
3452     // If we have already scheduled the physreg produce/consumer, immediately
3453     // schedule the copy.
3454     if (MI->getOperand(ScheduledOper).getReg().isPhysical())
3455       return 1;
3456     // If the physreg is at the boundary, defer it. Otherwise schedule it
3457     // immediately to free the dependent. We can hoist the copy later.
3458     bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
3459     if (MI->getOperand(UnscheduledOper).getReg().isPhysical())
3460       return AtBoundary ? -1 : 1;
3461   }
3462 
3463   if (MI->isMoveImmediate()) {
3464     // If we have a move immediate and all successors have been assigned, bias
3465     // towards scheduling this later. Make sure all register defs are to
3466     // physical registers.
3467     bool DoBias = true;
3468     for (const MachineOperand &Op : MI->defs()) {
3469       if (Op.isReg() && !Op.getReg().isPhysical()) {
3470         DoBias = false;
3471         break;
3472       }
3473     }
3474 
3475     if (DoBias)
3476       return isTop ? -1 : 1;
3477   }
3478 
3479   return 0;
3480 }
3481 } // end namespace llvm
3482 
3483 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
3484                                      bool AtTop,
3485                                      const RegPressureTracker &RPTracker,
3486                                      RegPressureTracker &TempTracker) {
3487   Cand.SU = SU;
3488   Cand.AtTop = AtTop;
3489   if (DAG->isTrackingPressure()) {
3490     if (AtTop) {
3491       TempTracker.getMaxDownwardPressureDelta(
3492         Cand.SU->getInstr(),
3493         Cand.RPDelta,
3494         DAG->getRegionCriticalPSets(),
3495         DAG->getRegPressure().MaxSetPressure);
3496     } else {
3497       if (VerifyScheduling) {
3498         TempTracker.getMaxUpwardPressureDelta(
3499           Cand.SU->getInstr(),
3500           &DAG->getPressureDiff(Cand.SU),
3501           Cand.RPDelta,
3502           DAG->getRegionCriticalPSets(),
3503           DAG->getRegPressure().MaxSetPressure);
3504       } else {
3505         RPTracker.getUpwardPressureDelta(
3506           Cand.SU->getInstr(),
3507           DAG->getPressureDiff(Cand.SU),
3508           Cand.RPDelta,
3509           DAG->getRegionCriticalPSets(),
3510           DAG->getRegPressure().MaxSetPressure);
3511       }
3512     }
3513   }
3514   LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
3515              << "  Try  SU(" << Cand.SU->NodeNum << ") "
3516              << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
3517              << Cand.RPDelta.Excess.getUnitInc() << "\n");
3518 }
3519 
3520 /// Apply a set of heuristics to a new candidate. Heuristics are currently
3521 /// hierarchical. This may be more efficient than a graduated cost model because
3522 /// we don't need to evaluate all aspects of the model for each node in the
3523 /// queue. But it's really done to make the heuristics easier to debug and
3524 /// statistically analyze.
3525 ///
3526 /// \param Cand provides the policy and current best candidate.
3527 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3528 /// \param Zone describes the scheduled zone that we are extending, or nullptr
3529 ///             if Cand is from a different zone than TryCand.
3530 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
3531 bool GenericScheduler::tryCandidate(SchedCandidate &Cand,
3532                                     SchedCandidate &TryCand,
3533                                     SchedBoundary *Zone) const {
3534   // Initialize the candidate if needed.
3535   if (!Cand.isValid()) {
3536     TryCand.Reason = NodeOrder;
3537     return true;
3538   }
3539 
3540   // Bias PhysReg Defs and copies to their uses and defined respectively.
3541   if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
3542                  biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
3543     return TryCand.Reason != NoCand;
3544 
3545   // Avoid exceeding the target's limit.
3546   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
3547                                                Cand.RPDelta.Excess,
3548                                                TryCand, Cand, RegExcess, TRI,
3549                                                DAG->MF))
3550     return TryCand.Reason != NoCand;
3551 
3552   // Avoid increasing the max critical pressure in the scheduled region.
3553   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
3554                                                Cand.RPDelta.CriticalMax,
3555                                                TryCand, Cand, RegCritical, TRI,
3556                                                DAG->MF))
3557     return TryCand.Reason != NoCand;
3558 
3559   // We only compare a subset of features when comparing nodes between
3560   // Top and Bottom boundary. Some properties are simply incomparable, in many
3561   // other instances we should only override the other boundary if something
3562   // is a clear good pick on one boundary. Skip heuristics that are more
3563   // "tie-breaking" in nature.
3564   bool SameBoundary = Zone != nullptr;
3565   if (SameBoundary) {
3566     // For loops that are acyclic path limited, aggressively schedule for
3567     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
3568     // heuristics to take precedence.
3569     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
3570         tryLatency(TryCand, Cand, *Zone))
3571       return TryCand.Reason != NoCand;
3572 
3573     // Prioritize instructions that read unbuffered resources by stall cycles.
3574     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
3575                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3576       return TryCand.Reason != NoCand;
3577   }
3578 
3579   // Keep clustered nodes together to encourage downstream peephole
3580   // optimizations which may reduce resource requirements.
3581   //
3582   // This is a best effort to set things up for a post-RA pass. Optimizations
3583   // like generating loads of multiple registers should ideally be done within
3584   // the scheduler pass by combining the loads during DAG postprocessing.
3585   const SUnit *CandNextClusterSU =
3586     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3587   const SUnit *TryCandNextClusterSU =
3588     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3589   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3590                  Cand.SU == CandNextClusterSU,
3591                  TryCand, Cand, Cluster))
3592     return TryCand.Reason != NoCand;
3593 
3594   if (SameBoundary) {
3595     // Weak edges are for clustering and other constraints.
3596     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3597                 getWeakLeft(Cand.SU, Cand.AtTop),
3598                 TryCand, Cand, Weak))
3599       return TryCand.Reason != NoCand;
3600   }
3601 
3602   // Avoid increasing the max pressure of the entire region.
3603   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3604                                                Cand.RPDelta.CurrentMax,
3605                                                TryCand, Cand, RegMax, TRI,
3606                                                DAG->MF))
3607     return TryCand.Reason != NoCand;
3608 
3609   if (SameBoundary) {
3610     // Avoid critical resource consumption and balance the schedule.
3611     TryCand.initResourceDelta(DAG, SchedModel);
3612     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3613                 TryCand, Cand, ResourceReduce))
3614       return TryCand.Reason != NoCand;
3615     if (tryGreater(TryCand.ResDelta.DemandedResources,
3616                    Cand.ResDelta.DemandedResources,
3617                    TryCand, Cand, ResourceDemand))
3618       return TryCand.Reason != NoCand;
3619 
3620     // Avoid serializing long latency dependence chains.
3621     // For acyclic path limited loops, latency was already checked above.
3622     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3623         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3624       return TryCand.Reason != NoCand;
3625 
3626     // Fall through to original instruction order.
3627     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3628         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3629       TryCand.Reason = NodeOrder;
3630       return true;
3631     }
3632   }
3633 
3634   return false;
3635 }
3636 
3637 /// Pick the best candidate from the queue.
3638 ///
3639 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3640 /// DAG building. To adjust for the current scheduling location we need to
3641 /// maintain the number of vreg uses remaining to be top-scheduled.
3642 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3643                                          const CandPolicy &ZonePolicy,
3644                                          const RegPressureTracker &RPTracker,
3645                                          SchedCandidate &Cand) {
3646   // getMaxPressureDelta temporarily modifies the tracker.
3647   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3648 
3649   ReadyQueue &Q = Zone.Available;
3650   for (SUnit *SU : Q) {
3651 
3652     SchedCandidate TryCand(ZonePolicy);
3653     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3654     // Pass SchedBoundary only when comparing nodes from the same boundary.
3655     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3656     if (tryCandidate(Cand, TryCand, ZoneArg)) {
3657       // Initialize resource delta if needed in case future heuristics query it.
3658       if (TryCand.ResDelta == SchedResourceDelta())
3659         TryCand.initResourceDelta(DAG, SchedModel);
3660       Cand.setBest(TryCand);
3661       LLVM_DEBUG(traceCandidate(Cand));
3662     }
3663   }
3664 }
3665 
3666 /// Pick the best candidate node from either the top or bottom queue.
3667 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3668   // Schedule as far as possible in the direction of no choice. This is most
3669   // efficient, but also provides the best heuristics for CriticalPSets.
3670   if (SUnit *SU = Bot.pickOnlyChoice()) {
3671     IsTopNode = false;
3672     tracePick(Only1, false);
3673     return SU;
3674   }
3675   if (SUnit *SU = Top.pickOnlyChoice()) {
3676     IsTopNode = true;
3677     tracePick(Only1, true);
3678     return SU;
3679   }
3680   // Set the bottom-up policy based on the state of the current bottom zone and
3681   // the instructions outside the zone, including the top zone.
3682   CandPolicy BotPolicy;
3683   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3684   // Set the top-down policy based on the state of the current top zone and
3685   // the instructions outside the zone, including the bottom zone.
3686   CandPolicy TopPolicy;
3687   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3688 
3689   // See if BotCand is still valid (because we previously scheduled from Top).
3690   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3691   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3692       BotCand.Policy != BotPolicy) {
3693     BotCand.reset(CandPolicy());
3694     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3695     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3696   } else {
3697     LLVM_DEBUG(traceCandidate(BotCand));
3698 #ifndef NDEBUG
3699     if (VerifyScheduling) {
3700       SchedCandidate TCand;
3701       TCand.reset(CandPolicy());
3702       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3703       assert(TCand.SU == BotCand.SU &&
3704              "Last pick result should correspond to re-picking right now");
3705     }
3706 #endif
3707   }
3708 
3709   // Check if the top Q has a better candidate.
3710   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3711   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3712       TopCand.Policy != TopPolicy) {
3713     TopCand.reset(CandPolicy());
3714     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3715     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3716   } else {
3717     LLVM_DEBUG(traceCandidate(TopCand));
3718 #ifndef NDEBUG
3719     if (VerifyScheduling) {
3720       SchedCandidate TCand;
3721       TCand.reset(CandPolicy());
3722       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3723       assert(TCand.SU == TopCand.SU &&
3724              "Last pick result should correspond to re-picking right now");
3725     }
3726 #endif
3727   }
3728 
3729   // Pick best from BotCand and TopCand.
3730   assert(BotCand.isValid());
3731   assert(TopCand.isValid());
3732   SchedCandidate Cand = BotCand;
3733   TopCand.Reason = NoCand;
3734   if (tryCandidate(Cand, TopCand, nullptr)) {
3735     Cand.setBest(TopCand);
3736     LLVM_DEBUG(traceCandidate(Cand));
3737   }
3738 
3739   IsTopNode = Cand.AtTop;
3740   tracePick(Cand);
3741   return Cand.SU;
3742 }
3743 
3744 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3745 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3746   if (DAG->top() == DAG->bottom()) {
3747     assert(Top.Available.empty() && Top.Pending.empty() &&
3748            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3749     return nullptr;
3750   }
3751   SUnit *SU;
3752   do {
3753     if (RegionPolicy.OnlyTopDown) {
3754       SU = Top.pickOnlyChoice();
3755       if (!SU) {
3756         CandPolicy NoPolicy;
3757         TopCand.reset(NoPolicy);
3758         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3759         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3760         tracePick(TopCand);
3761         SU = TopCand.SU;
3762       }
3763       IsTopNode = true;
3764     } else if (RegionPolicy.OnlyBottomUp) {
3765       SU = Bot.pickOnlyChoice();
3766       if (!SU) {
3767         CandPolicy NoPolicy;
3768         BotCand.reset(NoPolicy);
3769         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3770         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3771         tracePick(BotCand);
3772         SU = BotCand.SU;
3773       }
3774       IsTopNode = false;
3775     } else {
3776       SU = pickNodeBidirectional(IsTopNode);
3777     }
3778   } while (SU->isScheduled);
3779 
3780   // If IsTopNode, then SU is in Top.Available and must be removed. Otherwise,
3781   // if isTopReady(), then SU is in either Top.Available or Top.Pending.
3782   // If !IsTopNode, then SU is in Bot.Available and must be removed. Otherwise,
3783   // if isBottomReady(), then SU is in either Bot.Available or Bot.Pending.
3784   //
3785   // It is coincidental when !IsTopNode && isTopReady or when IsTopNode &&
3786   // isBottomReady. That is, it didn't factor into the decision to choose SU
3787   // because it isTopReady or isBottomReady, respectively. In fact, if the
3788   // RegionPolicy is OnlyTopDown or OnlyBottomUp, then the Bot queues and Top
3789   // queues respectivley contain the original roots and don't get updated when
3790   // picking a node. So if SU isTopReady on a OnlyBottomUp pick, then it was
3791   // because we schduled everything but the top roots. Conversley, if SU
3792   // isBottomReady on OnlyTopDown, then it was because we scheduled everything
3793   // but the bottom roots. If its in a queue even coincidentally, it should be
3794   // removed so it does not get re-picked in a subsequent pickNode call.
3795   if (SU->isTopReady())
3796     Top.removeReady(SU);
3797   if (SU->isBottomReady())
3798     Bot.removeReady(SU);
3799 
3800   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3801                     << *SU->getInstr());
3802   return SU;
3803 }
3804 
3805 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3806   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3807   if (!isTop)
3808     ++InsertPos;
3809   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3810 
3811   // Find already scheduled copies with a single physreg dependence and move
3812   // them just above the scheduled instruction.
3813   for (SDep &Dep : Deps) {
3814     if (Dep.getKind() != SDep::Data ||
3815         !Register::isPhysicalRegister(Dep.getReg()))
3816       continue;
3817     SUnit *DepSU = Dep.getSUnit();
3818     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3819       continue;
3820     MachineInstr *Copy = DepSU->getInstr();
3821     if (!Copy->isCopy() && !Copy->isMoveImmediate())
3822       continue;
3823     LLVM_DEBUG(dbgs() << "  Rescheduling physreg copy ";
3824                DAG->dumpNode(*Dep.getSUnit()));
3825     DAG->moveInstruction(Copy, InsertPos);
3826   }
3827 }
3828 
3829 /// Update the scheduler's state after scheduling a node. This is the same node
3830 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3831 /// update it's state based on the current cycle before MachineSchedStrategy
3832 /// does.
3833 ///
3834 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3835 /// them here. See comments in biasPhysReg.
3836 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3837   if (IsTopNode) {
3838     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3839     Top.bumpNode(SU);
3840     if (SU->hasPhysRegUses)
3841       reschedulePhysReg(SU, true);
3842   } else {
3843     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3844     Bot.bumpNode(SU);
3845     if (SU->hasPhysRegDefs)
3846       reschedulePhysReg(SU, false);
3847   }
3848 }
3849 
3850 /// Create the standard converging machine scheduler. This will be used as the
3851 /// default scheduler if the target does not set a default.
3852 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3853   ScheduleDAGMILive *DAG =
3854       new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C));
3855   // Register DAG post-processors.
3856   //
3857   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3858   // data and pass it to later mutations. Have a single mutation that gathers
3859   // the interesting nodes in one pass.
3860   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3861 
3862   const TargetSubtargetInfo &STI = C->MF->getSubtarget();
3863   // Add MacroFusion mutation if fusions are not empty.
3864   const auto &MacroFusions = STI.getMacroFusions();
3865   if (!MacroFusions.empty())
3866     DAG->addMutation(createMacroFusionDAGMutation(MacroFusions));
3867   return DAG;
3868 }
3869 
3870 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
3871   return createGenericSchedLive(C);
3872 }
3873 
3874 static MachineSchedRegistry
3875 GenericSchedRegistry("converge", "Standard converging scheduler.",
3876                      createConvergingSched);
3877 
3878 //===----------------------------------------------------------------------===//
3879 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3880 //===----------------------------------------------------------------------===//
3881 
3882 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3883   DAG = Dag;
3884   SchedModel = DAG->getSchedModel();
3885   TRI = DAG->TRI;
3886 
3887   Rem.init(DAG, SchedModel);
3888   Top.init(DAG, SchedModel, &Rem);
3889   Bot.init(DAG, SchedModel, &Rem);
3890 
3891   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3892   // or are disabled, then these HazardRecs will be disabled.
3893   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3894   if (!Top.HazardRec) {
3895     Top.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG);
3896   }
3897   if (!Bot.HazardRec) {
3898     Bot.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG);
3899   }
3900 }
3901 
3902 void PostGenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
3903                                       MachineBasicBlock::iterator End,
3904                                       unsigned NumRegionInstrs) {
3905   if (PostRADirection == MISchedPostRASched::TopDown) {
3906     RegionPolicy.OnlyTopDown = true;
3907     RegionPolicy.OnlyBottomUp = false;
3908   } else if (PostRADirection == MISchedPostRASched::BottomUp) {
3909     RegionPolicy.OnlyTopDown = false;
3910     RegionPolicy.OnlyBottomUp = true;
3911   } else if (PostRADirection == MISchedPostRASched::Bidirectional) {
3912     RegionPolicy.OnlyBottomUp = false;
3913     RegionPolicy.OnlyTopDown = false;
3914   }
3915 }
3916 
3917 void PostGenericScheduler::registerRoots() {
3918   Rem.CriticalPath = DAG->ExitSU.getDepth();
3919 
3920   // Some roots may not feed into ExitSU. Check all of them in case.
3921   for (const SUnit *SU : Bot.Available) {
3922     if (SU->getDepth() > Rem.CriticalPath)
3923       Rem.CriticalPath = SU->getDepth();
3924   }
3925   LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3926   if (DumpCriticalPathLength) {
3927     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3928   }
3929 }
3930 
3931 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3932 ///
3933 /// \param Cand provides the policy and current best candidate.
3934 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3935 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
3936 bool PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3937                                         SchedCandidate &TryCand) {
3938   // Initialize the candidate if needed.
3939   if (!Cand.isValid()) {
3940     TryCand.Reason = NodeOrder;
3941     return true;
3942   }
3943 
3944   // Prioritize instructions that read unbuffered resources by stall cycles.
3945   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3946               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3947     return TryCand.Reason != NoCand;
3948 
3949   // Keep clustered nodes together.
3950   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3951                  Cand.SU == DAG->getNextClusterSucc(),
3952                  TryCand, Cand, Cluster))
3953     return TryCand.Reason != NoCand;
3954 
3955   // Avoid critical resource consumption and balance the schedule.
3956   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3957               TryCand, Cand, ResourceReduce))
3958     return TryCand.Reason != NoCand;
3959   if (tryGreater(TryCand.ResDelta.DemandedResources,
3960                  Cand.ResDelta.DemandedResources,
3961                  TryCand, Cand, ResourceDemand))
3962     return TryCand.Reason != NoCand;
3963 
3964   // Avoid serializing long latency dependence chains.
3965   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3966     return TryCand.Reason != NoCand;
3967   }
3968 
3969   // Fall through to original instruction order.
3970   if (TryCand.SU->NodeNum < Cand.SU->NodeNum) {
3971     TryCand.Reason = NodeOrder;
3972     return true;
3973   }
3974 
3975   return false;
3976 }
3977 
3978 void PostGenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3979                                              SchedCandidate &Cand) {
3980   ReadyQueue &Q = Zone.Available;
3981   for (SUnit *SU : Q) {
3982     SchedCandidate TryCand(Cand.Policy);
3983     TryCand.SU = SU;
3984     TryCand.AtTop = Zone.isTop();
3985     TryCand.initResourceDelta(DAG, SchedModel);
3986     if (tryCandidate(Cand, TryCand)) {
3987       Cand.setBest(TryCand);
3988       LLVM_DEBUG(traceCandidate(Cand));
3989     }
3990   }
3991 }
3992 
3993 /// Pick the best candidate node from either the top or bottom queue.
3994 SUnit *PostGenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3995   // FIXME: This is similiar to GenericScheduler::pickNodeBidirectional. Factor
3996   // out common parts.
3997 
3998   // Schedule as far as possible in the direction of no choice. This is most
3999   // efficient, but also provides the best heuristics for CriticalPSets.
4000   if (SUnit *SU = Bot.pickOnlyChoice()) {
4001     IsTopNode = false;
4002     tracePick(Only1, false);
4003     return SU;
4004   }
4005   if (SUnit *SU = Top.pickOnlyChoice()) {
4006     IsTopNode = true;
4007     tracePick(Only1, true);
4008     return SU;
4009   }
4010   // Set the bottom-up policy based on the state of the current bottom zone and
4011   // the instructions outside the zone, including the top zone.
4012   CandPolicy BotPolicy;
4013   setPolicy(BotPolicy, /*IsPostRA=*/true, Bot, &Top);
4014   // Set the top-down policy based on the state of the current top zone and
4015   // the instructions outside the zone, including the bottom zone.
4016   CandPolicy TopPolicy;
4017   setPolicy(TopPolicy, /*IsPostRA=*/true, Top, &Bot);
4018 
4019   // See if BotCand is still valid (because we previously scheduled from Top).
4020   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
4021   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
4022       BotCand.Policy != BotPolicy) {
4023     BotCand.reset(CandPolicy());
4024     pickNodeFromQueue(Bot, BotCand);
4025     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
4026   } else {
4027     LLVM_DEBUG(traceCandidate(BotCand));
4028 #ifndef NDEBUG
4029     if (VerifyScheduling) {
4030       SchedCandidate TCand;
4031       TCand.reset(CandPolicy());
4032       pickNodeFromQueue(Bot, BotCand);
4033       assert(TCand.SU == BotCand.SU &&
4034              "Last pick result should correspond to re-picking right now");
4035     }
4036 #endif
4037   }
4038 
4039   // Check if the top Q has a better candidate.
4040   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
4041   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
4042       TopCand.Policy != TopPolicy) {
4043     TopCand.reset(CandPolicy());
4044     pickNodeFromQueue(Top, TopCand);
4045     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
4046   } else {
4047     LLVM_DEBUG(traceCandidate(TopCand));
4048 #ifndef NDEBUG
4049     if (VerifyScheduling) {
4050       SchedCandidate TCand;
4051       TCand.reset(CandPolicy());
4052       pickNodeFromQueue(Top, TopCand);
4053       assert(TCand.SU == TopCand.SU &&
4054              "Last pick result should correspond to re-picking right now");
4055     }
4056 #endif
4057   }
4058 
4059   // Pick best from BotCand and TopCand.
4060   assert(BotCand.isValid());
4061   assert(TopCand.isValid());
4062   SchedCandidate Cand = BotCand;
4063   TopCand.Reason = NoCand;
4064   if (tryCandidate(Cand, TopCand)) {
4065     Cand.setBest(TopCand);
4066     LLVM_DEBUG(traceCandidate(Cand));
4067   }
4068 
4069   IsTopNode = Cand.AtTop;
4070   tracePick(Cand);
4071   return Cand.SU;
4072 }
4073 
4074 /// Pick the next node to schedule.
4075 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
4076   if (DAG->top() == DAG->bottom()) {
4077     assert(Top.Available.empty() && Top.Pending.empty() &&
4078            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
4079     return nullptr;
4080   }
4081   SUnit *SU;
4082   do {
4083     if (RegionPolicy.OnlyBottomUp) {
4084       SU = Bot.pickOnlyChoice();
4085       if (SU) {
4086         tracePick(Only1, true);
4087       } else {
4088         CandPolicy NoPolicy;
4089         BotCand.reset(NoPolicy);
4090         // Set the bottom-up policy based on the state of the current bottom
4091         // zone and the instructions outside the zone, including the top zone.
4092         setPolicy(BotCand.Policy, /*IsPostRA=*/true, Bot, nullptr);
4093         pickNodeFromQueue(Bot, BotCand);
4094         assert(BotCand.Reason != NoCand && "failed to find a candidate");
4095         tracePick(BotCand);
4096         SU = BotCand.SU;
4097       }
4098       IsTopNode = false;
4099     } else if (RegionPolicy.OnlyTopDown) {
4100       SU = Top.pickOnlyChoice();
4101       if (SU) {
4102         tracePick(Only1, true);
4103       } else {
4104         CandPolicy NoPolicy;
4105         TopCand.reset(NoPolicy);
4106         // Set the top-down policy based on the state of the current top zone
4107         // and the instructions outside the zone, including the bottom zone.
4108         setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
4109         pickNodeFromQueue(Top, TopCand);
4110         assert(TopCand.Reason != NoCand && "failed to find a candidate");
4111         tracePick(TopCand);
4112         SU = TopCand.SU;
4113       }
4114       IsTopNode = true;
4115     } else {
4116       SU = pickNodeBidirectional(IsTopNode);
4117     }
4118   } while (SU->isScheduled);
4119 
4120   if (SU->isTopReady())
4121     Top.removeReady(SU);
4122   if (SU->isBottomReady())
4123     Bot.removeReady(SU);
4124 
4125   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
4126                     << *SU->getInstr());
4127   return SU;
4128 }
4129 
4130 /// Called after ScheduleDAGMI has scheduled an instruction and updated
4131 /// scheduled/remaining flags in the DAG nodes.
4132 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
4133   if (IsTopNode) {
4134     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
4135     Top.bumpNode(SU);
4136   } else {
4137     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
4138     Bot.bumpNode(SU);
4139   }
4140 }
4141 
4142 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
4143   ScheduleDAGMI *DAG =
4144       new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C),
4145                         /*RemoveKillFlags=*/true);
4146   const TargetSubtargetInfo &STI = C->MF->getSubtarget();
4147   // Add MacroFusion mutation if fusions are not empty.
4148   const auto &MacroFusions = STI.getMacroFusions();
4149   if (!MacroFusions.empty())
4150     DAG->addMutation(createMacroFusionDAGMutation(MacroFusions));
4151   return DAG;
4152 }
4153 
4154 //===----------------------------------------------------------------------===//
4155 // ILP Scheduler. Currently for experimental analysis of heuristics.
4156 //===----------------------------------------------------------------------===//
4157 
4158 namespace {
4159 
4160 /// Order nodes by the ILP metric.
4161 struct ILPOrder {
4162   const SchedDFSResult *DFSResult = nullptr;
4163   const BitVector *ScheduledTrees = nullptr;
4164   bool MaximizeILP;
4165 
4166   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
4167 
4168   /// Apply a less-than relation on node priority.
4169   ///
4170   /// (Return true if A comes after B in the Q.)
4171   bool operator()(const SUnit *A, const SUnit *B) const {
4172     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
4173     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
4174     if (SchedTreeA != SchedTreeB) {
4175       // Unscheduled trees have lower priority.
4176       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
4177         return ScheduledTrees->test(SchedTreeB);
4178 
4179       // Trees with shallower connections have lower priority.
4180       if (DFSResult->getSubtreeLevel(SchedTreeA)
4181           != DFSResult->getSubtreeLevel(SchedTreeB)) {
4182         return DFSResult->getSubtreeLevel(SchedTreeA)
4183           < DFSResult->getSubtreeLevel(SchedTreeB);
4184       }
4185     }
4186     if (MaximizeILP)
4187       return DFSResult->getILP(A) < DFSResult->getILP(B);
4188     else
4189       return DFSResult->getILP(A) > DFSResult->getILP(B);
4190   }
4191 };
4192 
4193 /// Schedule based on the ILP metric.
4194 class ILPScheduler : public MachineSchedStrategy {
4195   ScheduleDAGMILive *DAG = nullptr;
4196   ILPOrder Cmp;
4197 
4198   std::vector<SUnit*> ReadyQ;
4199 
4200 public:
4201   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
4202 
4203   void initialize(ScheduleDAGMI *dag) override {
4204     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
4205     DAG = static_cast<ScheduleDAGMILive*>(dag);
4206     DAG->computeDFSResult();
4207     Cmp.DFSResult = DAG->getDFSResult();
4208     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
4209     ReadyQ.clear();
4210   }
4211 
4212   void registerRoots() override {
4213     // Restore the heap in ReadyQ with the updated DFS results.
4214     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4215   }
4216 
4217   /// Implement MachineSchedStrategy interface.
4218   /// -----------------------------------------
4219 
4220   /// Callback to select the highest priority node from the ready Q.
4221   SUnit *pickNode(bool &IsTopNode) override {
4222     if (ReadyQ.empty()) return nullptr;
4223     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4224     SUnit *SU = ReadyQ.back();
4225     ReadyQ.pop_back();
4226     IsTopNode = false;
4227     LLVM_DEBUG(dbgs() << "Pick node "
4228                       << "SU(" << SU->NodeNum << ") "
4229                       << " ILP: " << DAG->getDFSResult()->getILP(SU)
4230                       << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
4231                       << " @"
4232                       << DAG->getDFSResult()->getSubtreeLevel(
4233                              DAG->getDFSResult()->getSubtreeID(SU))
4234                       << '\n'
4235                       << "Scheduling " << *SU->getInstr());
4236     return SU;
4237   }
4238 
4239   /// Scheduler callback to notify that a new subtree is scheduled.
4240   void scheduleTree(unsigned SubtreeID) override {
4241     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4242   }
4243 
4244   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
4245   /// DFSResults, and resort the priority Q.
4246   void schedNode(SUnit *SU, bool IsTopNode) override {
4247     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
4248   }
4249 
4250   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
4251 
4252   void releaseBottomNode(SUnit *SU) override {
4253     ReadyQ.push_back(SU);
4254     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4255   }
4256 };
4257 
4258 } // end anonymous namespace
4259 
4260 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
4261   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true));
4262 }
4263 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
4264   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false));
4265 }
4266 
4267 static MachineSchedRegistry ILPMaxRegistry(
4268   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
4269 static MachineSchedRegistry ILPMinRegistry(
4270   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
4271 
4272 //===----------------------------------------------------------------------===//
4273 // Machine Instruction Shuffler for Correctness Testing
4274 //===----------------------------------------------------------------------===//
4275 
4276 #ifndef NDEBUG
4277 namespace {
4278 
4279 /// Apply a less-than relation on the node order, which corresponds to the
4280 /// instruction order prior to scheduling. IsReverse implements greater-than.
4281 template<bool IsReverse>
4282 struct SUnitOrder {
4283   bool operator()(SUnit *A, SUnit *B) const {
4284     if (IsReverse)
4285       return A->NodeNum > B->NodeNum;
4286     else
4287       return A->NodeNum < B->NodeNum;
4288   }
4289 };
4290 
4291 /// Reorder instructions as much as possible.
4292 class InstructionShuffler : public MachineSchedStrategy {
4293   bool IsAlternating;
4294   bool IsTopDown;
4295 
4296   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
4297   // gives nodes with a higher number higher priority causing the latest
4298   // instructions to be scheduled first.
4299   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
4300     TopQ;
4301 
4302   // When scheduling bottom-up, use greater-than as the queue priority.
4303   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
4304     BottomQ;
4305 
4306 public:
4307   InstructionShuffler(bool alternate, bool topdown)
4308     : IsAlternating(alternate), IsTopDown(topdown) {}
4309 
4310   void initialize(ScheduleDAGMI*) override {
4311     TopQ.clear();
4312     BottomQ.clear();
4313   }
4314 
4315   /// Implement MachineSchedStrategy interface.
4316   /// -----------------------------------------
4317 
4318   SUnit *pickNode(bool &IsTopNode) override {
4319     SUnit *SU;
4320     if (IsTopDown) {
4321       do {
4322         if (TopQ.empty()) return nullptr;
4323         SU = TopQ.top();
4324         TopQ.pop();
4325       } while (SU->isScheduled);
4326       IsTopNode = true;
4327     } else {
4328       do {
4329         if (BottomQ.empty()) return nullptr;
4330         SU = BottomQ.top();
4331         BottomQ.pop();
4332       } while (SU->isScheduled);
4333       IsTopNode = false;
4334     }
4335     if (IsAlternating)
4336       IsTopDown = !IsTopDown;
4337     return SU;
4338   }
4339 
4340   void schedNode(SUnit *SU, bool IsTopNode) override {}
4341 
4342   void releaseTopNode(SUnit *SU) override {
4343     TopQ.push(SU);
4344   }
4345   void releaseBottomNode(SUnit *SU) override {
4346     BottomQ.push(SU);
4347   }
4348 };
4349 
4350 } // end anonymous namespace
4351 
4352 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
4353   bool Alternate = !ForceTopDown && !ForceBottomUp;
4354   bool TopDown = !ForceBottomUp;
4355   assert((TopDown || !ForceTopDown) &&
4356          "-misched-topdown incompatible with -misched-bottomup");
4357   return new ScheduleDAGMILive(
4358       C, std::make_unique<InstructionShuffler>(Alternate, TopDown));
4359 }
4360 
4361 static MachineSchedRegistry ShufflerRegistry(
4362   "shuffle", "Shuffle machine instructions alternating directions",
4363   createInstructionShuffler);
4364 #endif // !NDEBUG
4365 
4366 //===----------------------------------------------------------------------===//
4367 // GraphWriter support for ScheduleDAGMILive.
4368 //===----------------------------------------------------------------------===//
4369 
4370 #ifndef NDEBUG
4371 namespace llvm {
4372 
4373 template<> struct GraphTraits<
4374   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
4375 
4376 template<>
4377 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
4378   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
4379 
4380   static std::string getGraphName(const ScheduleDAG *G) {
4381     return std::string(G->MF.getName());
4382   }
4383 
4384   static bool renderGraphFromBottomUp() {
4385     return true;
4386   }
4387 
4388   static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) {
4389     if (ViewMISchedCutoff == 0)
4390       return false;
4391     return (Node->Preds.size() > ViewMISchedCutoff
4392          || Node->Succs.size() > ViewMISchedCutoff);
4393   }
4394 
4395   /// If you want to override the dot attributes printed for a particular
4396   /// edge, override this method.
4397   static std::string getEdgeAttributes(const SUnit *Node,
4398                                        SUnitIterator EI,
4399                                        const ScheduleDAG *Graph) {
4400     if (EI.isArtificialDep())
4401       return "color=cyan,style=dashed";
4402     if (EI.isCtrlDep())
4403       return "color=blue,style=dashed";
4404     return "";
4405   }
4406 
4407   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
4408     std::string Str;
4409     raw_string_ostream SS(Str);
4410     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
4411     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
4412       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
4413     SS << "SU:" << SU->NodeNum;
4414     if (DFS)
4415       SS << " I:" << DFS->getNumInstrs(SU);
4416     return Str;
4417   }
4418 
4419   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
4420     return G->getGraphNodeLabel(SU);
4421   }
4422 
4423   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
4424     std::string Str("shape=Mrecord");
4425     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
4426     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
4427       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
4428     if (DFS) {
4429       Str += ",style=filled,fillcolor=\"#";
4430       Str += DOT::getColorString(DFS->getSubtreeID(N));
4431       Str += '"';
4432     }
4433     return Str;
4434   }
4435 };
4436 
4437 } // end namespace llvm
4438 #endif // NDEBUG
4439 
4440 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
4441 /// rendered using 'dot'.
4442 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
4443 #ifndef NDEBUG
4444   ViewGraph(this, Name, false, Title);
4445 #else
4446   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
4447          << "systems with Graphviz or gv!\n";
4448 #endif  // NDEBUG
4449 }
4450 
4451 /// Out-of-line implementation with no arguments is handy for gdb.
4452 void ScheduleDAGMI::viewGraph() {
4453   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
4454 }
4455 
4456 /// Sort predicate for the intervals stored in an instance of
4457 /// ResourceSegments. Intervals are always disjoint (no intersection
4458 /// for any pairs of intervals), therefore we can sort the totality of
4459 /// the intervals by looking only at the left boundary.
4460 static bool sortIntervals(const ResourceSegments::IntervalTy &A,
4461                           const ResourceSegments::IntervalTy &B) {
4462   return A.first < B.first;
4463 }
4464 
4465 unsigned ResourceSegments::getFirstAvailableAt(
4466     unsigned CurrCycle, unsigned AcquireAtCycle, unsigned ReleaseAtCycle,
4467     std::function<ResourceSegments::IntervalTy(unsigned, unsigned, unsigned)>
4468         IntervalBuilder) const {
4469   assert(std::is_sorted(std::begin(_Intervals), std::end(_Intervals),
4470                         sortIntervals) &&
4471          "Cannot execute on an un-sorted set of intervals.");
4472 
4473   // Zero resource usage is allowed by TargetSchedule.td but we do not construct
4474   // a ResourceSegment interval for that situation.
4475   if (AcquireAtCycle == ReleaseAtCycle)
4476     return CurrCycle;
4477 
4478   unsigned RetCycle = CurrCycle;
4479   ResourceSegments::IntervalTy NewInterval =
4480       IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle);
4481   for (auto &Interval : _Intervals) {
4482     if (!intersects(NewInterval, Interval))
4483       continue;
4484 
4485     // Move the interval right next to the top of the one it
4486     // intersects.
4487     assert(Interval.second > NewInterval.first &&
4488            "Invalid intervals configuration.");
4489     RetCycle += (unsigned)Interval.second - (unsigned)NewInterval.first;
4490     NewInterval = IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle);
4491   }
4492   return RetCycle;
4493 }
4494 
4495 void ResourceSegments::add(ResourceSegments::IntervalTy A,
4496                            const unsigned CutOff) {
4497   assert(A.first <= A.second && "Cannot add negative resource usage");
4498   assert(CutOff > 0 && "0-size interval history has no use.");
4499   // Zero resource usage is allowed by TargetSchedule.td, in the case that the
4500   // instruction needed the resource to be available but does not use it.
4501   // However, ResourceSegment represents an interval that is closed on the left
4502   // and open on the right. It is impossible to represent an empty interval when
4503   // the left is closed. Do not add it to Intervals.
4504   if (A.first == A.second)
4505     return;
4506 
4507   assert(all_of(_Intervals,
4508                 [&A](const ResourceSegments::IntervalTy &Interval) -> bool {
4509                   return !intersects(A, Interval);
4510                 }) &&
4511          "A resource is being overwritten");
4512   _Intervals.push_back(A);
4513 
4514   sortAndMerge();
4515 
4516   // Do not keep the full history of the intervals, just the
4517   // latest #CutOff.
4518   while (_Intervals.size() > CutOff)
4519     _Intervals.pop_front();
4520 }
4521 
4522 bool ResourceSegments::intersects(ResourceSegments::IntervalTy A,
4523                                   ResourceSegments::IntervalTy B) {
4524   assert(A.first <= A.second && "Invalid interval");
4525   assert(B.first <= B.second && "Invalid interval");
4526 
4527   // Share one boundary.
4528   if ((A.first == B.first) || (A.second == B.second))
4529     return true;
4530 
4531   // full intersersect: [    ***     )  B
4532   //                        [***)       A
4533   if ((A.first > B.first) && (A.second < B.second))
4534     return true;
4535 
4536   // right intersect: [     ***)        B
4537   //                       [***      )  A
4538   if ((A.first > B.first) && (A.first < B.second) && (A.second > B.second))
4539     return true;
4540 
4541   // left intersect:      [***      )  B
4542   //                 [     ***)        A
4543   if ((A.first < B.first) && (B.first < A.second) && (B.second > B.first))
4544     return true;
4545 
4546   return false;
4547 }
4548 
4549 void ResourceSegments::sortAndMerge() {
4550   if (_Intervals.size() <= 1)
4551     return;
4552 
4553   // First sort the collection.
4554   _Intervals.sort(sortIntervals);
4555 
4556   // can use next because I have at least 2 elements in the list
4557   auto next = std::next(std::begin(_Intervals));
4558   auto E = std::end(_Intervals);
4559   for (; next != E; ++next) {
4560     if (std::prev(next)->second >= next->first) {
4561       next->first = std::prev(next)->first;
4562       _Intervals.erase(std::prev(next));
4563       continue;
4564     }
4565   }
4566 }
4567