xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachinePipeliner.cpp (revision ec0ea6efa1ad229d75c394c1a9b9cac33af2b1d3)
1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
10 //
11 // This SMS implementation is a target-independent back-end pass. When enabled,
12 // the pass runs just prior to the register allocation pass, while the machine
13 // IR is in SSA form. If software pipelining is successful, then the original
14 // loop is replaced by the optimized loop. The optimized loop contains one or
15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16 // the instructions cannot be scheduled in a given MII, we increase the MII by
17 // one and try again.
18 //
19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20 // represent loop carried dependences in the DAG as order edges to the Phi
21 // nodes. We also perform several passes over the DAG to eliminate unnecessary
22 // edges that inhibit the ability to pipeline. The implementation uses the
23 // DFAPacketizer class to compute the minimum initiation interval and the check
24 // where an instruction may be inserted in the pipelined schedule.
25 //
26 // In order for the SMS pass to work, several target specific hooks need to be
27 // implemented to get information about the loop structure and to rewrite
28 // instructions.
29 //
30 //===----------------------------------------------------------------------===//
31 
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/BitVector.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/MapVector.h"
36 #include "llvm/ADT/PriorityQueue.h"
37 #include "llvm/ADT/SetOperations.h"
38 #include "llvm/ADT/SetVector.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/ADT/iterator_range.h"
44 #include "llvm/Analysis/AliasAnalysis.h"
45 #include "llvm/Analysis/MemoryLocation.h"
46 #include "llvm/Analysis/ValueTracking.h"
47 #include "llvm/CodeGen/DFAPacketizer.h"
48 #include "llvm/CodeGen/LiveIntervals.h"
49 #include "llvm/CodeGen/MachineBasicBlock.h"
50 #include "llvm/CodeGen/MachineDominators.h"
51 #include "llvm/CodeGen/MachineFunction.h"
52 #include "llvm/CodeGen/MachineFunctionPass.h"
53 #include "llvm/CodeGen/MachineInstr.h"
54 #include "llvm/CodeGen/MachineInstrBuilder.h"
55 #include "llvm/CodeGen/MachineLoopInfo.h"
56 #include "llvm/CodeGen/MachineMemOperand.h"
57 #include "llvm/CodeGen/MachineOperand.h"
58 #include "llvm/CodeGen/MachinePipeliner.h"
59 #include "llvm/CodeGen/MachineRegisterInfo.h"
60 #include "llvm/CodeGen/ModuloSchedule.h"
61 #include "llvm/CodeGen/RegisterPressure.h"
62 #include "llvm/CodeGen/ScheduleDAG.h"
63 #include "llvm/CodeGen/ScheduleDAGMutation.h"
64 #include "llvm/CodeGen/TargetOpcodes.h"
65 #include "llvm/CodeGen/TargetRegisterInfo.h"
66 #include "llvm/CodeGen/TargetSubtargetInfo.h"
67 #include "llvm/Config/llvm-config.h"
68 #include "llvm/IR/Attributes.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/MC/LaneBitmask.h"
72 #include "llvm/MC/MCInstrDesc.h"
73 #include "llvm/MC/MCInstrItineraries.h"
74 #include "llvm/MC/MCRegisterInfo.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Compiler.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <climits>
84 #include <cstdint>
85 #include <deque>
86 #include <functional>
87 #include <iterator>
88 #include <map>
89 #include <memory>
90 #include <tuple>
91 #include <utility>
92 #include <vector>
93 
94 using namespace llvm;
95 
96 #define DEBUG_TYPE "pipeliner"
97 
98 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
99 STATISTIC(NumPipelined, "Number of loops software pipelined");
100 STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
101 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
102 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
103 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
104 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
105 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
106 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
107 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
108 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
109 
110 /// A command line option to turn software pipelining on or off.
111 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
112                                cl::ZeroOrMore,
113                                cl::desc("Enable Software Pipelining"));
114 
115 /// A command line option to enable SWP at -Os.
116 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
117                                       cl::desc("Enable SWP at Os."), cl::Hidden,
118                                       cl::init(false));
119 
120 /// A command line argument to limit minimum initial interval for pipelining.
121 static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
122                               cl::desc("Size limit for the MII."),
123                               cl::Hidden, cl::init(27));
124 
125 /// A command line argument to limit the number of stages in the pipeline.
126 static cl::opt<int>
127     SwpMaxStages("pipeliner-max-stages",
128                  cl::desc("Maximum stages allowed in the generated scheduled."),
129                  cl::Hidden, cl::init(3));
130 
131 /// A command line option to disable the pruning of chain dependences due to
132 /// an unrelated Phi.
133 static cl::opt<bool>
134     SwpPruneDeps("pipeliner-prune-deps",
135                  cl::desc("Prune dependences between unrelated Phi nodes."),
136                  cl::Hidden, cl::init(true));
137 
138 /// A command line option to disable the pruning of loop carried order
139 /// dependences.
140 static cl::opt<bool>
141     SwpPruneLoopCarried("pipeliner-prune-loop-carried",
142                         cl::desc("Prune loop carried order dependences."),
143                         cl::Hidden, cl::init(true));
144 
145 #ifndef NDEBUG
146 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
147 #endif
148 
149 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
150                                      cl::ReallyHidden, cl::init(false),
151                                      cl::ZeroOrMore, cl::desc("Ignore RecMII"));
152 
153 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
154                                     cl::init(false));
155 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
156                                       cl::init(false));
157 
158 static cl::opt<bool> EmitTestAnnotations(
159     "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false),
160     cl::desc("Instead of emitting the pipelined code, annotate instructions "
161              "with the generated schedule for feeding into the "
162              "-modulo-schedule-test pass"));
163 
164 static cl::opt<bool> ExperimentalCodeGen(
165     "pipeliner-experimental-cg", cl::Hidden, cl::init(false),
166     cl::desc(
167         "Use the experimental peeling code generator for software pipelining"));
168 
169 namespace llvm {
170 
171 // A command line option to enable the CopyToPhi DAG mutation.
172 cl::opt<bool>
173     SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
174                        cl::init(true), cl::ZeroOrMore,
175                        cl::desc("Enable CopyToPhi DAG Mutation"));
176 
177 } // end namespace llvm
178 
179 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
180 char MachinePipeliner::ID = 0;
181 #ifndef NDEBUG
182 int MachinePipeliner::NumTries = 0;
183 #endif
184 char &llvm::MachinePipelinerID = MachinePipeliner::ID;
185 
186 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
187                       "Modulo Software Pipelining", false, false)
188 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
189 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
190 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
191 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
192 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
193                     "Modulo Software Pipelining", false, false)
194 
195 /// The "main" function for implementing Swing Modulo Scheduling.
196 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
197   if (skipFunction(mf.getFunction()))
198     return false;
199 
200   if (!EnableSWP)
201     return false;
202 
203   if (mf.getFunction().getAttributes().hasAttribute(
204           AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
205       !EnableSWPOptSize.getPosition())
206     return false;
207 
208   if (!mf.getSubtarget().enableMachinePipeliner())
209     return false;
210 
211   // Cannot pipeline loops without instruction itineraries if we are using
212   // DFA for the pipeliner.
213   if (mf.getSubtarget().useDFAforSMS() &&
214       (!mf.getSubtarget().getInstrItineraryData() ||
215        mf.getSubtarget().getInstrItineraryData()->isEmpty()))
216     return false;
217 
218   MF = &mf;
219   MLI = &getAnalysis<MachineLoopInfo>();
220   MDT = &getAnalysis<MachineDominatorTree>();
221   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
222   TII = MF->getSubtarget().getInstrInfo();
223   RegClassInfo.runOnMachineFunction(*MF);
224 
225   for (auto &L : *MLI)
226     scheduleLoop(*L);
227 
228   return false;
229 }
230 
231 /// Attempt to perform the SMS algorithm on the specified loop. This function is
232 /// the main entry point for the algorithm.  The function identifies candidate
233 /// loops, calculates the minimum initiation interval, and attempts to schedule
234 /// the loop.
235 bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
236   bool Changed = false;
237   for (auto &InnerLoop : L)
238     Changed |= scheduleLoop(*InnerLoop);
239 
240 #ifndef NDEBUG
241   // Stop trying after reaching the limit (if any).
242   int Limit = SwpLoopLimit;
243   if (Limit >= 0) {
244     if (NumTries >= SwpLoopLimit)
245       return Changed;
246     NumTries++;
247   }
248 #endif
249 
250   setPragmaPipelineOptions(L);
251   if (!canPipelineLoop(L)) {
252     LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
253     ORE->emit([&]() {
254       return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop",
255                                              L.getStartLoc(), L.getHeader())
256              << "Failed to pipeline loop";
257     });
258 
259     return Changed;
260   }
261 
262   ++NumTrytoPipeline;
263 
264   Changed = swingModuloScheduler(L);
265 
266   return Changed;
267 }
268 
269 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
270   // Reset the pragma for the next loop in iteration.
271   disabledByPragma = false;
272   II_setByPragma = 0;
273 
274   MachineBasicBlock *LBLK = L.getTopBlock();
275 
276   if (LBLK == nullptr)
277     return;
278 
279   const BasicBlock *BBLK = LBLK->getBasicBlock();
280   if (BBLK == nullptr)
281     return;
282 
283   const Instruction *TI = BBLK->getTerminator();
284   if (TI == nullptr)
285     return;
286 
287   MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
288   if (LoopID == nullptr)
289     return;
290 
291   assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
292   assert(LoopID->getOperand(0) == LoopID && "invalid loop");
293 
294   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
295     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
296 
297     if (MD == nullptr)
298       continue;
299 
300     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
301 
302     if (S == nullptr)
303       continue;
304 
305     if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
306       assert(MD->getNumOperands() == 2 &&
307              "Pipeline initiation interval hint metadata should have two operands.");
308       II_setByPragma =
309           mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
310       assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
311     } else if (S->getString() == "llvm.loop.pipeline.disable") {
312       disabledByPragma = true;
313     }
314   }
315 }
316 
317 /// Return true if the loop can be software pipelined.  The algorithm is
318 /// restricted to loops with a single basic block.  Make sure that the
319 /// branch in the loop can be analyzed.
320 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
321   if (L.getNumBlocks() != 1) {
322     ORE->emit([&]() {
323       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
324                                                L.getStartLoc(), L.getHeader())
325              << "Not a single basic block: "
326              << ore::NV("NumBlocks", L.getNumBlocks());
327     });
328     return false;
329   }
330 
331   if (disabledByPragma) {
332     ORE->emit([&]() {
333       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
334                                                L.getStartLoc(), L.getHeader())
335              << "Disabled by Pragma.";
336     });
337     return false;
338   }
339 
340   // Check if the branch can't be understood because we can't do pipelining
341   // if that's the case.
342   LI.TBB = nullptr;
343   LI.FBB = nullptr;
344   LI.BrCond.clear();
345   if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
346     LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n");
347     NumFailBranch++;
348     ORE->emit([&]() {
349       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
350                                                L.getStartLoc(), L.getHeader())
351              << "The branch can't be understood";
352     });
353     return false;
354   }
355 
356   LI.LoopInductionVar = nullptr;
357   LI.LoopCompare = nullptr;
358   if (!TII->analyzeLoopForPipelining(L.getTopBlock())) {
359     LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n");
360     NumFailLoop++;
361     ORE->emit([&]() {
362       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
363                                                L.getStartLoc(), L.getHeader())
364              << "The loop structure is not supported";
365     });
366     return false;
367   }
368 
369   if (!L.getLoopPreheader()) {
370     LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n");
371     NumFailPreheader++;
372     ORE->emit([&]() {
373       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
374                                                L.getStartLoc(), L.getHeader())
375              << "No loop preheader found";
376     });
377     return false;
378   }
379 
380   // Remove any subregisters from inputs to phi nodes.
381   preprocessPhiNodes(*L.getHeader());
382   return true;
383 }
384 
385 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
386   MachineRegisterInfo &MRI = MF->getRegInfo();
387   SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
388 
389   for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
390     MachineOperand &DefOp = PI.getOperand(0);
391     assert(DefOp.getSubReg() == 0);
392     auto *RC = MRI.getRegClass(DefOp.getReg());
393 
394     for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
395       MachineOperand &RegOp = PI.getOperand(i);
396       if (RegOp.getSubReg() == 0)
397         continue;
398 
399       // If the operand uses a subregister, replace it with a new register
400       // without subregisters, and generate a copy to the new register.
401       Register NewReg = MRI.createVirtualRegister(RC);
402       MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
403       MachineBasicBlock::iterator At = PredB.getFirstTerminator();
404       const DebugLoc &DL = PredB.findDebugLoc(At);
405       auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
406                     .addReg(RegOp.getReg(), getRegState(RegOp),
407                             RegOp.getSubReg());
408       Slots.insertMachineInstrInMaps(*Copy);
409       RegOp.setReg(NewReg);
410       RegOp.setSubReg(0);
411     }
412   }
413 }
414 
415 /// The SMS algorithm consists of the following main steps:
416 /// 1. Computation and analysis of the dependence graph.
417 /// 2. Ordering of the nodes (instructions).
418 /// 3. Attempt to Schedule the loop.
419 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
420   assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
421 
422   SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
423                         II_setByPragma);
424 
425   MachineBasicBlock *MBB = L.getHeader();
426   // The kernel should not include any terminator instructions.  These
427   // will be added back later.
428   SMS.startBlock(MBB);
429 
430   // Compute the number of 'real' instructions in the basic block by
431   // ignoring terminators.
432   unsigned size = MBB->size();
433   for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
434                                    E = MBB->instr_end();
435        I != E; ++I, --size)
436     ;
437 
438   SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
439   SMS.schedule();
440   SMS.exitRegion();
441 
442   SMS.finishBlock();
443   return SMS.hasNewSchedule();
444 }
445 
446 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const {
447   AU.addRequired<AAResultsWrapperPass>();
448   AU.addPreserved<AAResultsWrapperPass>();
449   AU.addRequired<MachineLoopInfo>();
450   AU.addRequired<MachineDominatorTree>();
451   AU.addRequired<LiveIntervals>();
452   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
453   MachineFunctionPass::getAnalysisUsage(AU);
454 }
455 
456 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
457   if (II_setByPragma > 0)
458     MII = II_setByPragma;
459   else
460     MII = std::max(ResMII, RecMII);
461 }
462 
463 void SwingSchedulerDAG::setMAX_II() {
464   if (II_setByPragma > 0)
465     MAX_II = II_setByPragma;
466   else
467     MAX_II = MII + 10;
468 }
469 
470 /// We override the schedule function in ScheduleDAGInstrs to implement the
471 /// scheduling part of the Swing Modulo Scheduling algorithm.
472 void SwingSchedulerDAG::schedule() {
473   AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
474   buildSchedGraph(AA);
475   addLoopCarriedDependences(AA);
476   updatePhiDependences();
477   Topo.InitDAGTopologicalSorting();
478   changeDependences();
479   postprocessDAG();
480   LLVM_DEBUG(dump());
481 
482   NodeSetType NodeSets;
483   findCircuits(NodeSets);
484   NodeSetType Circuits = NodeSets;
485 
486   // Calculate the MII.
487   unsigned ResMII = calculateResMII();
488   unsigned RecMII = calculateRecMII(NodeSets);
489 
490   fuseRecs(NodeSets);
491 
492   // This flag is used for testing and can cause correctness problems.
493   if (SwpIgnoreRecMII)
494     RecMII = 0;
495 
496   setMII(ResMII, RecMII);
497   setMAX_II();
498 
499   LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
500                     << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
501 
502   // Can't schedule a loop without a valid MII.
503   if (MII == 0) {
504     LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n");
505     NumFailZeroMII++;
506     Pass.ORE->emit([&]() {
507       return MachineOptimizationRemarkAnalysis(
508                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
509              << "Invalid Minimal Initiation Interval: 0";
510     });
511     return;
512   }
513 
514   // Don't pipeline large loops.
515   if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
516     LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
517                       << ", we don't pipleline large loops\n");
518     NumFailLargeMaxMII++;
519     Pass.ORE->emit([&]() {
520       return MachineOptimizationRemarkAnalysis(
521                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
522              << "Minimal Initiation Interval too large: "
523              << ore::NV("MII", (int)MII) << " > "
524              << ore::NV("SwpMaxMii", SwpMaxMii) << "."
525              << "Refer to -pipeliner-max-mii.";
526     });
527     return;
528   }
529 
530   computeNodeFunctions(NodeSets);
531 
532   registerPressureFilter(NodeSets);
533 
534   colocateNodeSets(NodeSets);
535 
536   checkNodeSets(NodeSets);
537 
538   LLVM_DEBUG({
539     for (auto &I : NodeSets) {
540       dbgs() << "  Rec NodeSet ";
541       I.dump();
542     }
543   });
544 
545   llvm::stable_sort(NodeSets, std::greater<NodeSet>());
546 
547   groupRemainingNodes(NodeSets);
548 
549   removeDuplicateNodes(NodeSets);
550 
551   LLVM_DEBUG({
552     for (auto &I : NodeSets) {
553       dbgs() << "  NodeSet ";
554       I.dump();
555     }
556   });
557 
558   computeNodeOrder(NodeSets);
559 
560   // check for node order issues
561   checkValidNodeOrder(Circuits);
562 
563   SMSchedule Schedule(Pass.MF);
564   Scheduled = schedulePipeline(Schedule);
565 
566   if (!Scheduled){
567     LLVM_DEBUG(dbgs() << "No schedule found, return\n");
568     NumFailNoSchedule++;
569     Pass.ORE->emit([&]() {
570       return MachineOptimizationRemarkAnalysis(
571                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
572              << "Unable to find schedule";
573     });
574     return;
575   }
576 
577   unsigned numStages = Schedule.getMaxStageCount();
578   // No need to generate pipeline if there are no overlapped iterations.
579   if (numStages == 0) {
580     LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n");
581     NumFailZeroStage++;
582     Pass.ORE->emit([&]() {
583       return MachineOptimizationRemarkAnalysis(
584                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
585              << "No need to pipeline - no overlapped iterations in schedule.";
586     });
587     return;
588   }
589   // Check that the maximum stage count is less than user-defined limit.
590   if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
591     LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
592                       << " : too many stages, abort\n");
593     NumFailLargeMaxStage++;
594     Pass.ORE->emit([&]() {
595       return MachineOptimizationRemarkAnalysis(
596                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
597              << "Too many stages in schedule: "
598              << ore::NV("numStages", (int)numStages) << " > "
599              << ore::NV("SwpMaxStages", SwpMaxStages)
600              << ". Refer to -pipeliner-max-stages.";
601     });
602     return;
603   }
604 
605   Pass.ORE->emit([&]() {
606     return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(),
607                                      Loop.getHeader())
608            << "Pipelined succesfully!";
609   });
610 
611   // Generate the schedule as a ModuloSchedule.
612   DenseMap<MachineInstr *, int> Cycles, Stages;
613   std::vector<MachineInstr *> OrderedInsts;
614   for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
615        ++Cycle) {
616     for (SUnit *SU : Schedule.getInstructions(Cycle)) {
617       OrderedInsts.push_back(SU->getInstr());
618       Cycles[SU->getInstr()] = Cycle;
619       Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
620     }
621   }
622   DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
623   for (auto &KV : NewMIs) {
624     Cycles[KV.first] = Cycles[KV.second];
625     Stages[KV.first] = Stages[KV.second];
626     NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
627   }
628 
629   ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
630                     std::move(Stages));
631   if (EmitTestAnnotations) {
632     assert(NewInstrChanges.empty() &&
633            "Cannot serialize a schedule with InstrChanges!");
634     ModuloScheduleTestAnnotater MSTI(MF, MS);
635     MSTI.annotate();
636     return;
637   }
638   // The experimental code generator can't work if there are InstChanges.
639   if (ExperimentalCodeGen && NewInstrChanges.empty()) {
640     PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
641     MSE.expand();
642   } else {
643     ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
644     MSE.expand();
645     MSE.cleanup();
646   }
647   ++NumPipelined;
648 }
649 
650 /// Clean up after the software pipeliner runs.
651 void SwingSchedulerDAG::finishBlock() {
652   for (auto &KV : NewMIs)
653     MF.DeleteMachineInstr(KV.second);
654   NewMIs.clear();
655 
656   // Call the superclass.
657   ScheduleDAGInstrs::finishBlock();
658 }
659 
660 /// Return the register values for  the operands of a Phi instruction.
661 /// This function assume the instruction is a Phi.
662 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
663                        unsigned &InitVal, unsigned &LoopVal) {
664   assert(Phi.isPHI() && "Expecting a Phi.");
665 
666   InitVal = 0;
667   LoopVal = 0;
668   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
669     if (Phi.getOperand(i + 1).getMBB() != Loop)
670       InitVal = Phi.getOperand(i).getReg();
671     else
672       LoopVal = Phi.getOperand(i).getReg();
673 
674   assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
675 }
676 
677 /// Return the Phi register value that comes the loop block.
678 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
679   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
680     if (Phi.getOperand(i + 1).getMBB() == LoopBB)
681       return Phi.getOperand(i).getReg();
682   return 0;
683 }
684 
685 /// Return true if SUb can be reached from SUa following the chain edges.
686 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
687   SmallPtrSet<SUnit *, 8> Visited;
688   SmallVector<SUnit *, 8> Worklist;
689   Worklist.push_back(SUa);
690   while (!Worklist.empty()) {
691     const SUnit *SU = Worklist.pop_back_val();
692     for (auto &SI : SU->Succs) {
693       SUnit *SuccSU = SI.getSUnit();
694       if (SI.getKind() == SDep::Order) {
695         if (Visited.count(SuccSU))
696           continue;
697         if (SuccSU == SUb)
698           return true;
699         Worklist.push_back(SuccSU);
700         Visited.insert(SuccSU);
701       }
702     }
703   }
704   return false;
705 }
706 
707 /// Return true if the instruction causes a chain between memory
708 /// references before and after it.
709 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
710   return MI.isCall() || MI.mayRaiseFPException() ||
711          MI.hasUnmodeledSideEffects() ||
712          (MI.hasOrderedMemoryRef() &&
713           (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
714 }
715 
716 /// Return the underlying objects for the memory references of an instruction.
717 /// This function calls the code in ValueTracking, but first checks that the
718 /// instruction has a memory operand.
719 static void getUnderlyingObjects(const MachineInstr *MI,
720                                  SmallVectorImpl<const Value *> &Objs) {
721   if (!MI->hasOneMemOperand())
722     return;
723   MachineMemOperand *MM = *MI->memoperands_begin();
724   if (!MM->getValue())
725     return;
726   getUnderlyingObjects(MM->getValue(), Objs);
727   for (const Value *V : Objs) {
728     if (!isIdentifiedObject(V)) {
729       Objs.clear();
730       return;
731     }
732     Objs.push_back(V);
733   }
734 }
735 
736 /// Add a chain edge between a load and store if the store can be an
737 /// alias of the load on a subsequent iteration, i.e., a loop carried
738 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
739 /// but that code doesn't create loop carried dependences.
740 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
741   MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
742   Value *UnknownValue =
743     UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
744   for (auto &SU : SUnits) {
745     MachineInstr &MI = *SU.getInstr();
746     if (isDependenceBarrier(MI, AA))
747       PendingLoads.clear();
748     else if (MI.mayLoad()) {
749       SmallVector<const Value *, 4> Objs;
750       ::getUnderlyingObjects(&MI, Objs);
751       if (Objs.empty())
752         Objs.push_back(UnknownValue);
753       for (auto V : Objs) {
754         SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
755         SUs.push_back(&SU);
756       }
757     } else if (MI.mayStore()) {
758       SmallVector<const Value *, 4> Objs;
759       ::getUnderlyingObjects(&MI, Objs);
760       if (Objs.empty())
761         Objs.push_back(UnknownValue);
762       for (auto V : Objs) {
763         MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
764             PendingLoads.find(V);
765         if (I == PendingLoads.end())
766           continue;
767         for (auto Load : I->second) {
768           if (isSuccOrder(Load, &SU))
769             continue;
770           MachineInstr &LdMI = *Load->getInstr();
771           // First, perform the cheaper check that compares the base register.
772           // If they are the same and the load offset is less than the store
773           // offset, then mark the dependence as loop carried potentially.
774           const MachineOperand *BaseOp1, *BaseOp2;
775           int64_t Offset1, Offset2;
776           bool Offset1IsScalable, Offset2IsScalable;
777           if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1,
778                                            Offset1IsScalable, TRI) &&
779               TII->getMemOperandWithOffset(MI, BaseOp2, Offset2,
780                                            Offset2IsScalable, TRI)) {
781             if (BaseOp1->isIdenticalTo(*BaseOp2) &&
782                 Offset1IsScalable == Offset2IsScalable &&
783                 (int)Offset1 < (int)Offset2) {
784               assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&
785                      "What happened to the chain edge?");
786               SDep Dep(Load, SDep::Barrier);
787               Dep.setLatency(1);
788               SU.addPred(Dep);
789               continue;
790             }
791           }
792           // Second, the more expensive check that uses alias analysis on the
793           // base registers. If they alias, and the load offset is less than
794           // the store offset, the mark the dependence as loop carried.
795           if (!AA) {
796             SDep Dep(Load, SDep::Barrier);
797             Dep.setLatency(1);
798             SU.addPred(Dep);
799             continue;
800           }
801           MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
802           MachineMemOperand *MMO2 = *MI.memoperands_begin();
803           if (!MMO1->getValue() || !MMO2->getValue()) {
804             SDep Dep(Load, SDep::Barrier);
805             Dep.setLatency(1);
806             SU.addPred(Dep);
807             continue;
808           }
809           if (MMO1->getValue() == MMO2->getValue() &&
810               MMO1->getOffset() <= MMO2->getOffset()) {
811             SDep Dep(Load, SDep::Barrier);
812             Dep.setLatency(1);
813             SU.addPred(Dep);
814             continue;
815           }
816           if (!AA->isNoAlias(
817                   MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
818                   MemoryLocation::getAfter(MMO2->getValue(),
819                                            MMO2->getAAInfo()))) {
820             SDep Dep(Load, SDep::Barrier);
821             Dep.setLatency(1);
822             SU.addPred(Dep);
823           }
824         }
825       }
826     }
827   }
828 }
829 
830 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
831 /// processes dependences for PHIs. This function adds true dependences
832 /// from a PHI to a use, and a loop carried dependence from the use to the
833 /// PHI. The loop carried dependence is represented as an anti dependence
834 /// edge. This function also removes chain dependences between unrelated
835 /// PHIs.
836 void SwingSchedulerDAG::updatePhiDependences() {
837   SmallVector<SDep, 4> RemoveDeps;
838   const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
839 
840   // Iterate over each DAG node.
841   for (SUnit &I : SUnits) {
842     RemoveDeps.clear();
843     // Set to true if the instruction has an operand defined by a Phi.
844     unsigned HasPhiUse = 0;
845     unsigned HasPhiDef = 0;
846     MachineInstr *MI = I.getInstr();
847     // Iterate over each operand, and we process the definitions.
848     for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
849                                     MOE = MI->operands_end();
850          MOI != MOE; ++MOI) {
851       if (!MOI->isReg())
852         continue;
853       Register Reg = MOI->getReg();
854       if (MOI->isDef()) {
855         // If the register is used by a Phi, then create an anti dependence.
856         for (MachineRegisterInfo::use_instr_iterator
857                  UI = MRI.use_instr_begin(Reg),
858                  UE = MRI.use_instr_end();
859              UI != UE; ++UI) {
860           MachineInstr *UseMI = &*UI;
861           SUnit *SU = getSUnit(UseMI);
862           if (SU != nullptr && UseMI->isPHI()) {
863             if (!MI->isPHI()) {
864               SDep Dep(SU, SDep::Anti, Reg);
865               Dep.setLatency(1);
866               I.addPred(Dep);
867             } else {
868               HasPhiDef = Reg;
869               // Add a chain edge to a dependent Phi that isn't an existing
870               // predecessor.
871               if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
872                 I.addPred(SDep(SU, SDep::Barrier));
873             }
874           }
875         }
876       } else if (MOI->isUse()) {
877         // If the register is defined by a Phi, then create a true dependence.
878         MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
879         if (DefMI == nullptr)
880           continue;
881         SUnit *SU = getSUnit(DefMI);
882         if (SU != nullptr && DefMI->isPHI()) {
883           if (!MI->isPHI()) {
884             SDep Dep(SU, SDep::Data, Reg);
885             Dep.setLatency(0);
886             ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep);
887             I.addPred(Dep);
888           } else {
889             HasPhiUse = Reg;
890             // Add a chain edge to a dependent Phi that isn't an existing
891             // predecessor.
892             if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
893               I.addPred(SDep(SU, SDep::Barrier));
894           }
895         }
896       }
897     }
898     // Remove order dependences from an unrelated Phi.
899     if (!SwpPruneDeps)
900       continue;
901     for (auto &PI : I.Preds) {
902       MachineInstr *PMI = PI.getSUnit()->getInstr();
903       if (PMI->isPHI() && PI.getKind() == SDep::Order) {
904         if (I.getInstr()->isPHI()) {
905           if (PMI->getOperand(0).getReg() == HasPhiUse)
906             continue;
907           if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
908             continue;
909         }
910         RemoveDeps.push_back(PI);
911       }
912     }
913     for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
914       I.removePred(RemoveDeps[i]);
915   }
916 }
917 
918 /// Iterate over each DAG node and see if we can change any dependences
919 /// in order to reduce the recurrence MII.
920 void SwingSchedulerDAG::changeDependences() {
921   // See if an instruction can use a value from the previous iteration.
922   // If so, we update the base and offset of the instruction and change
923   // the dependences.
924   for (SUnit &I : SUnits) {
925     unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
926     int64_t NewOffset = 0;
927     if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
928                                NewOffset))
929       continue;
930 
931     // Get the MI and SUnit for the instruction that defines the original base.
932     Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
933     MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
934     if (!DefMI)
935       continue;
936     SUnit *DefSU = getSUnit(DefMI);
937     if (!DefSU)
938       continue;
939     // Get the MI and SUnit for the instruction that defins the new base.
940     MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
941     if (!LastMI)
942       continue;
943     SUnit *LastSU = getSUnit(LastMI);
944     if (!LastSU)
945       continue;
946 
947     if (Topo.IsReachable(&I, LastSU))
948       continue;
949 
950     // Remove the dependence. The value now depends on a prior iteration.
951     SmallVector<SDep, 4> Deps;
952     for (const SDep &P : I.Preds)
953       if (P.getSUnit() == DefSU)
954         Deps.push_back(P);
955     for (int i = 0, e = Deps.size(); i != e; i++) {
956       Topo.RemovePred(&I, Deps[i].getSUnit());
957       I.removePred(Deps[i]);
958     }
959     // Remove the chain dependence between the instructions.
960     Deps.clear();
961     for (auto &P : LastSU->Preds)
962       if (P.getSUnit() == &I && P.getKind() == SDep::Order)
963         Deps.push_back(P);
964     for (int i = 0, e = Deps.size(); i != e; i++) {
965       Topo.RemovePred(LastSU, Deps[i].getSUnit());
966       LastSU->removePred(Deps[i]);
967     }
968 
969     // Add a dependence between the new instruction and the instruction
970     // that defines the new base.
971     SDep Dep(&I, SDep::Anti, NewBase);
972     Topo.AddPred(LastSU, &I);
973     LastSU->addPred(Dep);
974 
975     // Remember the base and offset information so that we can update the
976     // instruction during code generation.
977     InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
978   }
979 }
980 
981 namespace {
982 
983 // FuncUnitSorter - Comparison operator used to sort instructions by
984 // the number of functional unit choices.
985 struct FuncUnitSorter {
986   const InstrItineraryData *InstrItins;
987   const MCSubtargetInfo *STI;
988   DenseMap<InstrStage::FuncUnits, unsigned> Resources;
989 
990   FuncUnitSorter(const TargetSubtargetInfo &TSI)
991       : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
992 
993   // Compute the number of functional unit alternatives needed
994   // at each stage, and take the minimum value. We prioritize the
995   // instructions by the least number of choices first.
996   unsigned minFuncUnits(const MachineInstr *Inst,
997                         InstrStage::FuncUnits &F) const {
998     unsigned SchedClass = Inst->getDesc().getSchedClass();
999     unsigned min = UINT_MAX;
1000     if (InstrItins && !InstrItins->isEmpty()) {
1001       for (const InstrStage &IS :
1002            make_range(InstrItins->beginStage(SchedClass),
1003                       InstrItins->endStage(SchedClass))) {
1004         InstrStage::FuncUnits funcUnits = IS.getUnits();
1005         unsigned numAlternatives = countPopulation(funcUnits);
1006         if (numAlternatives < min) {
1007           min = numAlternatives;
1008           F = funcUnits;
1009         }
1010       }
1011       return min;
1012     }
1013     if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1014       const MCSchedClassDesc *SCDesc =
1015           STI->getSchedModel().getSchedClassDesc(SchedClass);
1016       if (!SCDesc->isValid())
1017         // No valid Schedule Class Desc for schedClass, should be
1018         // Pseudo/PostRAPseudo
1019         return min;
1020 
1021       for (const MCWriteProcResEntry &PRE :
1022            make_range(STI->getWriteProcResBegin(SCDesc),
1023                       STI->getWriteProcResEnd(SCDesc))) {
1024         if (!PRE.Cycles)
1025           continue;
1026         const MCProcResourceDesc *ProcResource =
1027             STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
1028         unsigned NumUnits = ProcResource->NumUnits;
1029         if (NumUnits < min) {
1030           min = NumUnits;
1031           F = PRE.ProcResourceIdx;
1032         }
1033       }
1034       return min;
1035     }
1036     llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1037   }
1038 
1039   // Compute the critical resources needed by the instruction. This
1040   // function records the functional units needed by instructions that
1041   // must use only one functional unit. We use this as a tie breaker
1042   // for computing the resource MII. The instrutions that require
1043   // the same, highly used, functional unit have high priority.
1044   void calcCriticalResources(MachineInstr &MI) {
1045     unsigned SchedClass = MI.getDesc().getSchedClass();
1046     if (InstrItins && !InstrItins->isEmpty()) {
1047       for (const InstrStage &IS :
1048            make_range(InstrItins->beginStage(SchedClass),
1049                       InstrItins->endStage(SchedClass))) {
1050         InstrStage::FuncUnits FuncUnits = IS.getUnits();
1051         if (countPopulation(FuncUnits) == 1)
1052           Resources[FuncUnits]++;
1053       }
1054       return;
1055     }
1056     if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1057       const MCSchedClassDesc *SCDesc =
1058           STI->getSchedModel().getSchedClassDesc(SchedClass);
1059       if (!SCDesc->isValid())
1060         // No valid Schedule Class Desc for schedClass, should be
1061         // Pseudo/PostRAPseudo
1062         return;
1063 
1064       for (const MCWriteProcResEntry &PRE :
1065            make_range(STI->getWriteProcResBegin(SCDesc),
1066                       STI->getWriteProcResEnd(SCDesc))) {
1067         if (!PRE.Cycles)
1068           continue;
1069         Resources[PRE.ProcResourceIdx]++;
1070       }
1071       return;
1072     }
1073     llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1074   }
1075 
1076   /// Return true if IS1 has less priority than IS2.
1077   bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1078     InstrStage::FuncUnits F1 = 0, F2 = 0;
1079     unsigned MFUs1 = minFuncUnits(IS1, F1);
1080     unsigned MFUs2 = minFuncUnits(IS2, F2);
1081     if (MFUs1 == MFUs2)
1082       return Resources.lookup(F1) < Resources.lookup(F2);
1083     return MFUs1 > MFUs2;
1084   }
1085 };
1086 
1087 } // end anonymous namespace
1088 
1089 /// Calculate the resource constrained minimum initiation interval for the
1090 /// specified loop. We use the DFA to model the resources needed for
1091 /// each instruction, and we ignore dependences. A different DFA is created
1092 /// for each cycle that is required. When adding a new instruction, we attempt
1093 /// to add it to each existing DFA, until a legal space is found. If the
1094 /// instruction cannot be reserved in an existing DFA, we create a new one.
1095 unsigned SwingSchedulerDAG::calculateResMII() {
1096 
1097   LLVM_DEBUG(dbgs() << "calculateResMII:\n");
1098   SmallVector<ResourceManager*, 8> Resources;
1099   MachineBasicBlock *MBB = Loop.getHeader();
1100   Resources.push_back(new ResourceManager(&MF.getSubtarget()));
1101 
1102   // Sort the instructions by the number of available choices for scheduling,
1103   // least to most. Use the number of critical resources as the tie breaker.
1104   FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget());
1105   for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1106                                    E = MBB->getFirstTerminator();
1107        I != E; ++I)
1108     FUS.calcCriticalResources(*I);
1109   PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1110       FuncUnitOrder(FUS);
1111 
1112   for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1113                                    E = MBB->getFirstTerminator();
1114        I != E; ++I)
1115     FuncUnitOrder.push(&*I);
1116 
1117   while (!FuncUnitOrder.empty()) {
1118     MachineInstr *MI = FuncUnitOrder.top();
1119     FuncUnitOrder.pop();
1120     if (TII->isZeroCost(MI->getOpcode()))
1121       continue;
1122     // Attempt to reserve the instruction in an existing DFA. At least one
1123     // DFA is needed for each cycle.
1124     unsigned NumCycles = getSUnit(MI)->Latency;
1125     unsigned ReservedCycles = 0;
1126     SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin();
1127     SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end();
1128     LLVM_DEBUG({
1129       dbgs() << "Trying to reserve resource for " << NumCycles
1130              << " cycles for \n";
1131       MI->dump();
1132     });
1133     for (unsigned C = 0; C < NumCycles; ++C)
1134       while (RI != RE) {
1135         if ((*RI)->canReserveResources(*MI)) {
1136           (*RI)->reserveResources(*MI);
1137           ++ReservedCycles;
1138           break;
1139         }
1140         RI++;
1141       }
1142     LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
1143                       << ", NumCycles:" << NumCycles << "\n");
1144     // Add new DFAs, if needed, to reserve resources.
1145     for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1146       LLVM_DEBUG(if (SwpDebugResource) dbgs()
1147                  << "NewResource created to reserve resources"
1148                  << "\n");
1149       ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget());
1150       assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1151       NewResource->reserveResources(*MI);
1152       Resources.push_back(NewResource);
1153     }
1154   }
1155   int Resmii = Resources.size();
1156   LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n");
1157   // Delete the memory for each of the DFAs that were created earlier.
1158   for (ResourceManager *RI : Resources) {
1159     ResourceManager *D = RI;
1160     delete D;
1161   }
1162   Resources.clear();
1163   return Resmii;
1164 }
1165 
1166 /// Calculate the recurrence-constrainted minimum initiation interval.
1167 /// Iterate over each circuit.  Compute the delay(c) and distance(c)
1168 /// for each circuit. The II needs to satisfy the inequality
1169 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1170 /// II that satisfies the inequality, and the RecMII is the maximum
1171 /// of those values.
1172 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1173   unsigned RecMII = 0;
1174 
1175   for (NodeSet &Nodes : NodeSets) {
1176     if (Nodes.empty())
1177       continue;
1178 
1179     unsigned Delay = Nodes.getLatency();
1180     unsigned Distance = 1;
1181 
1182     // ii = ceil(delay / distance)
1183     unsigned CurMII = (Delay + Distance - 1) / Distance;
1184     Nodes.setRecMII(CurMII);
1185     if (CurMII > RecMII)
1186       RecMII = CurMII;
1187   }
1188 
1189   return RecMII;
1190 }
1191 
1192 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1193 /// but we do this to find the circuits, and then change them back.
1194 static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1195   SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1196   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1197     SUnit *SU = &SUnits[i];
1198     for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1199          IP != EP; ++IP) {
1200       if (IP->getKind() != SDep::Anti)
1201         continue;
1202       DepsAdded.push_back(std::make_pair(SU, *IP));
1203     }
1204   }
1205   for (std::pair<SUnit *, SDep> &P : DepsAdded) {
1206     // Remove this anti dependency and add one in the reverse direction.
1207     SUnit *SU = P.first;
1208     SDep &D = P.second;
1209     SUnit *TargetSU = D.getSUnit();
1210     unsigned Reg = D.getReg();
1211     unsigned Lat = D.getLatency();
1212     SU->removePred(D);
1213     SDep Dep(SU, SDep::Anti, Reg);
1214     Dep.setLatency(Lat);
1215     TargetSU->addPred(Dep);
1216   }
1217 }
1218 
1219 /// Create the adjacency structure of the nodes in the graph.
1220 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1221     SwingSchedulerDAG *DAG) {
1222   BitVector Added(SUnits.size());
1223   DenseMap<int, int> OutputDeps;
1224   for (int i = 0, e = SUnits.size(); i != e; ++i) {
1225     Added.reset();
1226     // Add any successor to the adjacency matrix and exclude duplicates.
1227     for (auto &SI : SUnits[i].Succs) {
1228       // Only create a back-edge on the first and last nodes of a dependence
1229       // chain. This records any chains and adds them later.
1230       if (SI.getKind() == SDep::Output) {
1231         int N = SI.getSUnit()->NodeNum;
1232         int BackEdge = i;
1233         auto Dep = OutputDeps.find(BackEdge);
1234         if (Dep != OutputDeps.end()) {
1235           BackEdge = Dep->second;
1236           OutputDeps.erase(Dep);
1237         }
1238         OutputDeps[N] = BackEdge;
1239       }
1240       // Do not process a boundary node, an artificial node.
1241       // A back-edge is processed only if it goes to a Phi.
1242       if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
1243           (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1244         continue;
1245       int N = SI.getSUnit()->NodeNum;
1246       if (!Added.test(N)) {
1247         AdjK[i].push_back(N);
1248         Added.set(N);
1249       }
1250     }
1251     // A chain edge between a store and a load is treated as a back-edge in the
1252     // adjacency matrix.
1253     for (auto &PI : SUnits[i].Preds) {
1254       if (!SUnits[i].getInstr()->mayStore() ||
1255           !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
1256         continue;
1257       if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1258         int N = PI.getSUnit()->NodeNum;
1259         if (!Added.test(N)) {
1260           AdjK[i].push_back(N);
1261           Added.set(N);
1262         }
1263       }
1264     }
1265   }
1266   // Add back-edges in the adjacency matrix for the output dependences.
1267   for (auto &OD : OutputDeps)
1268     if (!Added.test(OD.second)) {
1269       AdjK[OD.first].push_back(OD.second);
1270       Added.set(OD.second);
1271     }
1272 }
1273 
1274 /// Identify an elementary circuit in the dependence graph starting at the
1275 /// specified node.
1276 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1277                                           bool HasBackedge) {
1278   SUnit *SV = &SUnits[V];
1279   bool F = false;
1280   Stack.insert(SV);
1281   Blocked.set(V);
1282 
1283   for (auto W : AdjK[V]) {
1284     if (NumPaths > MaxPaths)
1285       break;
1286     if (W < S)
1287       continue;
1288     if (W == S) {
1289       if (!HasBackedge)
1290         NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1291       F = true;
1292       ++NumPaths;
1293       break;
1294     } else if (!Blocked.test(W)) {
1295       if (circuit(W, S, NodeSets,
1296                   Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
1297         F = true;
1298     }
1299   }
1300 
1301   if (F)
1302     unblock(V);
1303   else {
1304     for (auto W : AdjK[V]) {
1305       if (W < S)
1306         continue;
1307       if (B[W].count(SV) == 0)
1308         B[W].insert(SV);
1309     }
1310   }
1311   Stack.pop_back();
1312   return F;
1313 }
1314 
1315 /// Unblock a node in the circuit finding algorithm.
1316 void SwingSchedulerDAG::Circuits::unblock(int U) {
1317   Blocked.reset(U);
1318   SmallPtrSet<SUnit *, 4> &BU = B[U];
1319   while (!BU.empty()) {
1320     SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1321     assert(SI != BU.end() && "Invalid B set.");
1322     SUnit *W = *SI;
1323     BU.erase(W);
1324     if (Blocked.test(W->NodeNum))
1325       unblock(W->NodeNum);
1326   }
1327 }
1328 
1329 /// Identify all the elementary circuits in the dependence graph using
1330 /// Johnson's circuit algorithm.
1331 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1332   // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1333   // but we do this to find the circuits, and then change them back.
1334   swapAntiDependences(SUnits);
1335 
1336   Circuits Cir(SUnits, Topo);
1337   // Create the adjacency structure.
1338   Cir.createAdjacencyStructure(this);
1339   for (int i = 0, e = SUnits.size(); i != e; ++i) {
1340     Cir.reset();
1341     Cir.circuit(i, i, NodeSets);
1342   }
1343 
1344   // Change the dependences back so that we've created a DAG again.
1345   swapAntiDependences(SUnits);
1346 }
1347 
1348 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1349 // is loop-carried to the USE in next iteration. This will help pipeliner avoid
1350 // additional copies that are needed across iterations. An artificial dependence
1351 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1352 
1353 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1354 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1355 // PHI-------True-Dep------> USEOfPhi
1356 
1357 // The mutation creates
1358 // USEOfPHI -------Artificial-Dep---> SRCOfCopy
1359 
1360 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1361 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1362 // late  to avoid additional copies across iterations. The possible scheduling
1363 // order would be
1364 // USEOfPHI --- SRCOfCopy---  COPY/REG_SEQUENCE.
1365 
1366 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1367   for (SUnit &SU : DAG->SUnits) {
1368     // Find the COPY/REG_SEQUENCE instruction.
1369     if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1370       continue;
1371 
1372     // Record the loop carried PHIs.
1373     SmallVector<SUnit *, 4> PHISUs;
1374     // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1375     SmallVector<SUnit *, 4> SrcSUs;
1376 
1377     for (auto &Dep : SU.Preds) {
1378       SUnit *TmpSU = Dep.getSUnit();
1379       MachineInstr *TmpMI = TmpSU->getInstr();
1380       SDep::Kind DepKind = Dep.getKind();
1381       // Save the loop carried PHI.
1382       if (DepKind == SDep::Anti && TmpMI->isPHI())
1383         PHISUs.push_back(TmpSU);
1384       // Save the source of COPY/REG_SEQUENCE.
1385       // If the source has no pre-decessors, we will end up creating cycles.
1386       else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1387         SrcSUs.push_back(TmpSU);
1388     }
1389 
1390     if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1391       continue;
1392 
1393     // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1394     // SUnit to the container.
1395     SmallVector<SUnit *, 8> UseSUs;
1396     // Do not use iterator based loop here as we are updating the container.
1397     for (size_t Index = 0; Index < PHISUs.size(); ++Index) {
1398       for (auto &Dep : PHISUs[Index]->Succs) {
1399         if (Dep.getKind() != SDep::Data)
1400           continue;
1401 
1402         SUnit *TmpSU = Dep.getSUnit();
1403         MachineInstr *TmpMI = TmpSU->getInstr();
1404         if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1405           PHISUs.push_back(TmpSU);
1406           continue;
1407         }
1408         UseSUs.push_back(TmpSU);
1409       }
1410     }
1411 
1412     if (UseSUs.size() == 0)
1413       continue;
1414 
1415     SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
1416     // Add the artificial dependencies if it does not form a cycle.
1417     for (auto I : UseSUs) {
1418       for (auto Src : SrcSUs) {
1419         if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
1420           Src->addPred(SDep(I, SDep::Artificial));
1421           SDAG->Topo.AddPred(Src, I);
1422         }
1423       }
1424     }
1425   }
1426 }
1427 
1428 /// Return true for DAG nodes that we ignore when computing the cost functions.
1429 /// We ignore the back-edge recurrence in order to avoid unbounded recursion
1430 /// in the calculation of the ASAP, ALAP, etc functions.
1431 static bool ignoreDependence(const SDep &D, bool isPred) {
1432   if (D.isArtificial())
1433     return true;
1434   return D.getKind() == SDep::Anti && isPred;
1435 }
1436 
1437 /// Compute several functions need to order the nodes for scheduling.
1438 ///  ASAP - Earliest time to schedule a node.
1439 ///  ALAP - Latest time to schedule a node.
1440 ///  MOV - Mobility function, difference between ALAP and ASAP.
1441 ///  D - Depth of each node.
1442 ///  H - Height of each node.
1443 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1444   ScheduleInfo.resize(SUnits.size());
1445 
1446   LLVM_DEBUG({
1447     for (int I : Topo) {
1448       const SUnit &SU = SUnits[I];
1449       dumpNode(SU);
1450     }
1451   });
1452 
1453   int maxASAP = 0;
1454   // Compute ASAP and ZeroLatencyDepth.
1455   for (int I : Topo) {
1456     int asap = 0;
1457     int zeroLatencyDepth = 0;
1458     SUnit *SU = &SUnits[I];
1459     for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1460                                     EP = SU->Preds.end();
1461          IP != EP; ++IP) {
1462       SUnit *pred = IP->getSUnit();
1463       if (IP->getLatency() == 0)
1464         zeroLatencyDepth =
1465             std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
1466       if (ignoreDependence(*IP, true))
1467         continue;
1468       asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
1469                                   getDistance(pred, SU, *IP) * MII));
1470     }
1471     maxASAP = std::max(maxASAP, asap);
1472     ScheduleInfo[I].ASAP = asap;
1473     ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth;
1474   }
1475 
1476   // Compute ALAP, ZeroLatencyHeight, and MOV.
1477   for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1478                                                           E = Topo.rend();
1479        I != E; ++I) {
1480     int alap = maxASAP;
1481     int zeroLatencyHeight = 0;
1482     SUnit *SU = &SUnits[*I];
1483     for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1484                                     ES = SU->Succs.end();
1485          IS != ES; ++IS) {
1486       SUnit *succ = IS->getSUnit();
1487       if (IS->getLatency() == 0)
1488         zeroLatencyHeight =
1489             std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
1490       if (ignoreDependence(*IS, true))
1491         continue;
1492       alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
1493                                   getDistance(SU, succ, *IS) * MII));
1494     }
1495 
1496     ScheduleInfo[*I].ALAP = alap;
1497     ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
1498   }
1499 
1500   // After computing the node functions, compute the summary for each node set.
1501   for (NodeSet &I : NodeSets)
1502     I.computeNodeSetInfo(this);
1503 
1504   LLVM_DEBUG({
1505     for (unsigned i = 0; i < SUnits.size(); i++) {
1506       dbgs() << "\tNode " << i << ":\n";
1507       dbgs() << "\t   ASAP = " << getASAP(&SUnits[i]) << "\n";
1508       dbgs() << "\t   ALAP = " << getALAP(&SUnits[i]) << "\n";
1509       dbgs() << "\t   MOV  = " << getMOV(&SUnits[i]) << "\n";
1510       dbgs() << "\t   D    = " << getDepth(&SUnits[i]) << "\n";
1511       dbgs() << "\t   H    = " << getHeight(&SUnits[i]) << "\n";
1512       dbgs() << "\t   ZLD  = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1513       dbgs() << "\t   ZLH  = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
1514     }
1515   });
1516 }
1517 
1518 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1519 /// as the predecessors of the elements of NodeOrder that are not also in
1520 /// NodeOrder.
1521 static bool pred_L(SetVector<SUnit *> &NodeOrder,
1522                    SmallSetVector<SUnit *, 8> &Preds,
1523                    const NodeSet *S = nullptr) {
1524   Preds.clear();
1525   for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1526        I != E; ++I) {
1527     for (const SDep &Pred : (*I)->Preds) {
1528       if (S && S->count(Pred.getSUnit()) == 0)
1529         continue;
1530       if (ignoreDependence(Pred, true))
1531         continue;
1532       if (NodeOrder.count(Pred.getSUnit()) == 0)
1533         Preds.insert(Pred.getSUnit());
1534     }
1535     // Back-edges are predecessors with an anti-dependence.
1536     for (const SDep &Succ : (*I)->Succs) {
1537       if (Succ.getKind() != SDep::Anti)
1538         continue;
1539       if (S && S->count(Succ.getSUnit()) == 0)
1540         continue;
1541       if (NodeOrder.count(Succ.getSUnit()) == 0)
1542         Preds.insert(Succ.getSUnit());
1543     }
1544   }
1545   return !Preds.empty();
1546 }
1547 
1548 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1549 /// as the successors of the elements of NodeOrder that are not also in
1550 /// NodeOrder.
1551 static bool succ_L(SetVector<SUnit *> &NodeOrder,
1552                    SmallSetVector<SUnit *, 8> &Succs,
1553                    const NodeSet *S = nullptr) {
1554   Succs.clear();
1555   for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1556        I != E; ++I) {
1557     for (SDep &Succ : (*I)->Succs) {
1558       if (S && S->count(Succ.getSUnit()) == 0)
1559         continue;
1560       if (ignoreDependence(Succ, false))
1561         continue;
1562       if (NodeOrder.count(Succ.getSUnit()) == 0)
1563         Succs.insert(Succ.getSUnit());
1564     }
1565     for (SDep &Pred : (*I)->Preds) {
1566       if (Pred.getKind() != SDep::Anti)
1567         continue;
1568       if (S && S->count(Pred.getSUnit()) == 0)
1569         continue;
1570       if (NodeOrder.count(Pred.getSUnit()) == 0)
1571         Succs.insert(Pred.getSUnit());
1572     }
1573   }
1574   return !Succs.empty();
1575 }
1576 
1577 /// Return true if there is a path from the specified node to any of the nodes
1578 /// in DestNodes. Keep track and return the nodes in any path.
1579 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1580                         SetVector<SUnit *> &DestNodes,
1581                         SetVector<SUnit *> &Exclude,
1582                         SmallPtrSet<SUnit *, 8> &Visited) {
1583   if (Cur->isBoundaryNode())
1584     return false;
1585   if (Exclude.contains(Cur))
1586     return false;
1587   if (DestNodes.contains(Cur))
1588     return true;
1589   if (!Visited.insert(Cur).second)
1590     return Path.contains(Cur);
1591   bool FoundPath = false;
1592   for (auto &SI : Cur->Succs)
1593     FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1594   for (auto &PI : Cur->Preds)
1595     if (PI.getKind() == SDep::Anti)
1596       FoundPath |=
1597           computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1598   if (FoundPath)
1599     Path.insert(Cur);
1600   return FoundPath;
1601 }
1602 
1603 /// Compute the live-out registers for the instructions in a node-set.
1604 /// The live-out registers are those that are defined in the node-set,
1605 /// but not used. Except for use operands of Phis.
1606 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1607                             NodeSet &NS) {
1608   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1609   MachineRegisterInfo &MRI = MF.getRegInfo();
1610   SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1611   SmallSet<unsigned, 4> Uses;
1612   for (SUnit *SU : NS) {
1613     const MachineInstr *MI = SU->getInstr();
1614     if (MI->isPHI())
1615       continue;
1616     for (const MachineOperand &MO : MI->operands())
1617       if (MO.isReg() && MO.isUse()) {
1618         Register Reg = MO.getReg();
1619         if (Register::isVirtualRegister(Reg))
1620           Uses.insert(Reg);
1621         else if (MRI.isAllocatable(Reg))
1622           for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1623                ++Units)
1624             Uses.insert(*Units);
1625       }
1626   }
1627   for (SUnit *SU : NS)
1628     for (const MachineOperand &MO : SU->getInstr()->operands())
1629       if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1630         Register Reg = MO.getReg();
1631         if (Register::isVirtualRegister(Reg)) {
1632           if (!Uses.count(Reg))
1633             LiveOutRegs.push_back(RegisterMaskPair(Reg,
1634                                                    LaneBitmask::getNone()));
1635         } else if (MRI.isAllocatable(Reg)) {
1636           for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1637                ++Units)
1638             if (!Uses.count(*Units))
1639               LiveOutRegs.push_back(RegisterMaskPair(*Units,
1640                                                      LaneBitmask::getNone()));
1641         }
1642       }
1643   RPTracker.addLiveRegs(LiveOutRegs);
1644 }
1645 
1646 /// A heuristic to filter nodes in recurrent node-sets if the register
1647 /// pressure of a set is too high.
1648 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1649   for (auto &NS : NodeSets) {
1650     // Skip small node-sets since they won't cause register pressure problems.
1651     if (NS.size() <= 2)
1652       continue;
1653     IntervalPressure RecRegPressure;
1654     RegPressureTracker RecRPTracker(RecRegPressure);
1655     RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1656     computeLiveOuts(MF, RecRPTracker, NS);
1657     RecRPTracker.closeBottom();
1658 
1659     std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1660     llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
1661       return A->NodeNum > B->NodeNum;
1662     });
1663 
1664     for (auto &SU : SUnits) {
1665       // Since we're computing the register pressure for a subset of the
1666       // instructions in a block, we need to set the tracker for each
1667       // instruction in the node-set. The tracker is set to the instruction
1668       // just after the one we're interested in.
1669       MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1670       RecRPTracker.setPos(std::next(CurInstI));
1671 
1672       RegPressureDelta RPDelta;
1673       ArrayRef<PressureChange> CriticalPSets;
1674       RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1675                                              CriticalPSets,
1676                                              RecRegPressure.MaxSetPressure);
1677       if (RPDelta.Excess.isValid()) {
1678         LLVM_DEBUG(
1679             dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1680                    << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1681                    << ":" << RPDelta.Excess.getUnitInc());
1682         NS.setExceedPressure(SU);
1683         break;
1684       }
1685       RecRPTracker.recede();
1686     }
1687   }
1688 }
1689 
1690 /// A heuristic to colocate node sets that have the same set of
1691 /// successors.
1692 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1693   unsigned Colocate = 0;
1694   for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1695     NodeSet &N1 = NodeSets[i];
1696     SmallSetVector<SUnit *, 8> S1;
1697     if (N1.empty() || !succ_L(N1, S1))
1698       continue;
1699     for (int j = i + 1; j < e; ++j) {
1700       NodeSet &N2 = NodeSets[j];
1701       if (N1.compareRecMII(N2) != 0)
1702         continue;
1703       SmallSetVector<SUnit *, 8> S2;
1704       if (N2.empty() || !succ_L(N2, S2))
1705         continue;
1706       if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) {
1707         N1.setColocate(++Colocate);
1708         N2.setColocate(Colocate);
1709         break;
1710       }
1711     }
1712   }
1713 }
1714 
1715 /// Check if the existing node-sets are profitable. If not, then ignore the
1716 /// recurrent node-sets, and attempt to schedule all nodes together. This is
1717 /// a heuristic. If the MII is large and all the recurrent node-sets are small,
1718 /// then it's best to try to schedule all instructions together instead of
1719 /// starting with the recurrent node-sets.
1720 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1721   // Look for loops with a large MII.
1722   if (MII < 17)
1723     return;
1724   // Check if the node-set contains only a simple add recurrence.
1725   for (auto &NS : NodeSets) {
1726     if (NS.getRecMII() > 2)
1727       return;
1728     if (NS.getMaxDepth() > MII)
1729       return;
1730   }
1731   NodeSets.clear();
1732   LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
1733 }
1734 
1735 /// Add the nodes that do not belong to a recurrence set into groups
1736 /// based upon connected componenets.
1737 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1738   SetVector<SUnit *> NodesAdded;
1739   SmallPtrSet<SUnit *, 8> Visited;
1740   // Add the nodes that are on a path between the previous node sets and
1741   // the current node set.
1742   for (NodeSet &I : NodeSets) {
1743     SmallSetVector<SUnit *, 8> N;
1744     // Add the nodes from the current node set to the previous node set.
1745     if (succ_L(I, N)) {
1746       SetVector<SUnit *> Path;
1747       for (SUnit *NI : N) {
1748         Visited.clear();
1749         computePath(NI, Path, NodesAdded, I, Visited);
1750       }
1751       if (!Path.empty())
1752         I.insert(Path.begin(), Path.end());
1753     }
1754     // Add the nodes from the previous node set to the current node set.
1755     N.clear();
1756     if (succ_L(NodesAdded, N)) {
1757       SetVector<SUnit *> Path;
1758       for (SUnit *NI : N) {
1759         Visited.clear();
1760         computePath(NI, Path, I, NodesAdded, Visited);
1761       }
1762       if (!Path.empty())
1763         I.insert(Path.begin(), Path.end());
1764     }
1765     NodesAdded.insert(I.begin(), I.end());
1766   }
1767 
1768   // Create a new node set with the connected nodes of any successor of a node
1769   // in a recurrent set.
1770   NodeSet NewSet;
1771   SmallSetVector<SUnit *, 8> N;
1772   if (succ_L(NodesAdded, N))
1773     for (SUnit *I : N)
1774       addConnectedNodes(I, NewSet, NodesAdded);
1775   if (!NewSet.empty())
1776     NodeSets.push_back(NewSet);
1777 
1778   // Create a new node set with the connected nodes of any predecessor of a node
1779   // in a recurrent set.
1780   NewSet.clear();
1781   if (pred_L(NodesAdded, N))
1782     for (SUnit *I : N)
1783       addConnectedNodes(I, NewSet, NodesAdded);
1784   if (!NewSet.empty())
1785     NodeSets.push_back(NewSet);
1786 
1787   // Create new nodes sets with the connected nodes any remaining node that
1788   // has no predecessor.
1789   for (SUnit &SU : SUnits) {
1790     if (NodesAdded.count(&SU) == 0) {
1791       NewSet.clear();
1792       addConnectedNodes(&SU, NewSet, NodesAdded);
1793       if (!NewSet.empty())
1794         NodeSets.push_back(NewSet);
1795     }
1796   }
1797 }
1798 
1799 /// Add the node to the set, and add all of its connected nodes to the set.
1800 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1801                                           SetVector<SUnit *> &NodesAdded) {
1802   NewSet.insert(SU);
1803   NodesAdded.insert(SU);
1804   for (auto &SI : SU->Succs) {
1805     SUnit *Successor = SI.getSUnit();
1806     if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
1807       addConnectedNodes(Successor, NewSet, NodesAdded);
1808   }
1809   for (auto &PI : SU->Preds) {
1810     SUnit *Predecessor = PI.getSUnit();
1811     if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1812       addConnectedNodes(Predecessor, NewSet, NodesAdded);
1813   }
1814 }
1815 
1816 /// Return true if Set1 contains elements in Set2. The elements in common
1817 /// are returned in a different container.
1818 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1819                         SmallSetVector<SUnit *, 8> &Result) {
1820   Result.clear();
1821   for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
1822     SUnit *SU = Set1[i];
1823     if (Set2.count(SU) != 0)
1824       Result.insert(SU);
1825   }
1826   return !Result.empty();
1827 }
1828 
1829 /// Merge the recurrence node sets that have the same initial node.
1830 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1831   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1832        ++I) {
1833     NodeSet &NI = *I;
1834     for (NodeSetType::iterator J = I + 1; J != E;) {
1835       NodeSet &NJ = *J;
1836       if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1837         if (NJ.compareRecMII(NI) > 0)
1838           NI.setRecMII(NJ.getRecMII());
1839         for (SUnit *SU : *J)
1840           I->insert(SU);
1841         NodeSets.erase(J);
1842         E = NodeSets.end();
1843       } else {
1844         ++J;
1845       }
1846     }
1847   }
1848 }
1849 
1850 /// Remove nodes that have been scheduled in previous NodeSets.
1851 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1852   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1853        ++I)
1854     for (NodeSetType::iterator J = I + 1; J != E;) {
1855       J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1856 
1857       if (J->empty()) {
1858         NodeSets.erase(J);
1859         E = NodeSets.end();
1860       } else {
1861         ++J;
1862       }
1863     }
1864 }
1865 
1866 /// Compute an ordered list of the dependence graph nodes, which
1867 /// indicates the order that the nodes will be scheduled.  This is a
1868 /// two-level algorithm. First, a partial order is created, which
1869 /// consists of a list of sets ordered from highest to lowest priority.
1870 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1871   SmallSetVector<SUnit *, 8> R;
1872   NodeOrder.clear();
1873 
1874   for (auto &Nodes : NodeSets) {
1875     LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
1876     OrderKind Order;
1877     SmallSetVector<SUnit *, 8> N;
1878     if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
1879       R.insert(N.begin(), N.end());
1880       Order = BottomUp;
1881       LLVM_DEBUG(dbgs() << "  Bottom up (preds) ");
1882     } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
1883       R.insert(N.begin(), N.end());
1884       Order = TopDown;
1885       LLVM_DEBUG(dbgs() << "  Top down (succs) ");
1886     } else if (isIntersect(N, Nodes, R)) {
1887       // If some of the successors are in the existing node-set, then use the
1888       // top-down ordering.
1889       Order = TopDown;
1890       LLVM_DEBUG(dbgs() << "  Top down (intersect) ");
1891     } else if (NodeSets.size() == 1) {
1892       for (auto &N : Nodes)
1893         if (N->Succs.size() == 0)
1894           R.insert(N);
1895       Order = BottomUp;
1896       LLVM_DEBUG(dbgs() << "  Bottom up (all) ");
1897     } else {
1898       // Find the node with the highest ASAP.
1899       SUnit *maxASAP = nullptr;
1900       for (SUnit *SU : Nodes) {
1901         if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
1902             (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
1903           maxASAP = SU;
1904       }
1905       R.insert(maxASAP);
1906       Order = BottomUp;
1907       LLVM_DEBUG(dbgs() << "  Bottom up (default) ");
1908     }
1909 
1910     while (!R.empty()) {
1911       if (Order == TopDown) {
1912         // Choose the node with the maximum height.  If more than one, choose
1913         // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
1914         // choose the node with the lowest MOV.
1915         while (!R.empty()) {
1916           SUnit *maxHeight = nullptr;
1917           for (SUnit *I : R) {
1918             if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
1919               maxHeight = I;
1920             else if (getHeight(I) == getHeight(maxHeight) &&
1921                      getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
1922               maxHeight = I;
1923             else if (getHeight(I) == getHeight(maxHeight) &&
1924                      getZeroLatencyHeight(I) ==
1925                          getZeroLatencyHeight(maxHeight) &&
1926                      getMOV(I) < getMOV(maxHeight))
1927               maxHeight = I;
1928           }
1929           NodeOrder.insert(maxHeight);
1930           LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
1931           R.remove(maxHeight);
1932           for (const auto &I : maxHeight->Succs) {
1933             if (Nodes.count(I.getSUnit()) == 0)
1934               continue;
1935             if (NodeOrder.contains(I.getSUnit()))
1936               continue;
1937             if (ignoreDependence(I, false))
1938               continue;
1939             R.insert(I.getSUnit());
1940           }
1941           // Back-edges are predecessors with an anti-dependence.
1942           for (const auto &I : maxHeight->Preds) {
1943             if (I.getKind() != SDep::Anti)
1944               continue;
1945             if (Nodes.count(I.getSUnit()) == 0)
1946               continue;
1947             if (NodeOrder.contains(I.getSUnit()))
1948               continue;
1949             R.insert(I.getSUnit());
1950           }
1951         }
1952         Order = BottomUp;
1953         LLVM_DEBUG(dbgs() << "\n   Switching order to bottom up ");
1954         SmallSetVector<SUnit *, 8> N;
1955         if (pred_L(NodeOrder, N, &Nodes))
1956           R.insert(N.begin(), N.end());
1957       } else {
1958         // Choose the node with the maximum depth.  If more than one, choose
1959         // the node with the maximum ZeroLatencyDepth. If still more than one,
1960         // choose the node with the lowest MOV.
1961         while (!R.empty()) {
1962           SUnit *maxDepth = nullptr;
1963           for (SUnit *I : R) {
1964             if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
1965               maxDepth = I;
1966             else if (getDepth(I) == getDepth(maxDepth) &&
1967                      getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
1968               maxDepth = I;
1969             else if (getDepth(I) == getDepth(maxDepth) &&
1970                      getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
1971                      getMOV(I) < getMOV(maxDepth))
1972               maxDepth = I;
1973           }
1974           NodeOrder.insert(maxDepth);
1975           LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
1976           R.remove(maxDepth);
1977           if (Nodes.isExceedSU(maxDepth)) {
1978             Order = TopDown;
1979             R.clear();
1980             R.insert(Nodes.getNode(0));
1981             break;
1982           }
1983           for (const auto &I : maxDepth->Preds) {
1984             if (Nodes.count(I.getSUnit()) == 0)
1985               continue;
1986             if (NodeOrder.contains(I.getSUnit()))
1987               continue;
1988             R.insert(I.getSUnit());
1989           }
1990           // Back-edges are predecessors with an anti-dependence.
1991           for (const auto &I : maxDepth->Succs) {
1992             if (I.getKind() != SDep::Anti)
1993               continue;
1994             if (Nodes.count(I.getSUnit()) == 0)
1995               continue;
1996             if (NodeOrder.contains(I.getSUnit()))
1997               continue;
1998             R.insert(I.getSUnit());
1999           }
2000         }
2001         Order = TopDown;
2002         LLVM_DEBUG(dbgs() << "\n   Switching order to top down ");
2003         SmallSetVector<SUnit *, 8> N;
2004         if (succ_L(NodeOrder, N, &Nodes))
2005           R.insert(N.begin(), N.end());
2006       }
2007     }
2008     LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
2009   }
2010 
2011   LLVM_DEBUG({
2012     dbgs() << "Node order: ";
2013     for (SUnit *I : NodeOrder)
2014       dbgs() << " " << I->NodeNum << " ";
2015     dbgs() << "\n";
2016   });
2017 }
2018 
2019 /// Process the nodes in the computed order and create the pipelined schedule
2020 /// of the instructions, if possible. Return true if a schedule is found.
2021 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
2022 
2023   if (NodeOrder.empty()){
2024     LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
2025     return false;
2026   }
2027 
2028   bool scheduleFound = false;
2029   // Keep increasing II until a valid schedule is found.
2030   for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) {
2031     Schedule.reset();
2032     Schedule.setInitiationInterval(II);
2033     LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2034 
2035     SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2036     SetVector<SUnit *>::iterator NE = NodeOrder.end();
2037     do {
2038       SUnit *SU = *NI;
2039 
2040       // Compute the schedule time for the instruction, which is based
2041       // upon the scheduled time for any predecessors/successors.
2042       int EarlyStart = INT_MIN;
2043       int LateStart = INT_MAX;
2044       // These values are set when the size of the schedule window is limited
2045       // due to chain dependences.
2046       int SchedEnd = INT_MAX;
2047       int SchedStart = INT_MIN;
2048       Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2049                             II, this);
2050       LLVM_DEBUG({
2051         dbgs() << "\n";
2052         dbgs() << "Inst (" << SU->NodeNum << ") ";
2053         SU->getInstr()->dump();
2054         dbgs() << "\n";
2055       });
2056       LLVM_DEBUG({
2057         dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,
2058                          LateStart, SchedEnd, SchedStart);
2059       });
2060 
2061       if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2062           SchedStart > LateStart)
2063         scheduleFound = false;
2064       else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2065         SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2066         scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2067       } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2068         SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2069         scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2070       } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2071         SchedEnd =
2072             std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2073         // When scheduling a Phi it is better to start at the late cycle and go
2074         // backwards. The default order may insert the Phi too far away from
2075         // its first dependence.
2076         if (SU->getInstr()->isPHI())
2077           scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2078         else
2079           scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2080       } else {
2081         int FirstCycle = Schedule.getFirstCycle();
2082         scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2083                                         FirstCycle + getASAP(SU) + II - 1, II);
2084       }
2085       // Even if we find a schedule, make sure the schedule doesn't exceed the
2086       // allowable number of stages. We keep trying if this happens.
2087       if (scheduleFound)
2088         if (SwpMaxStages > -1 &&
2089             Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2090           scheduleFound = false;
2091 
2092       LLVM_DEBUG({
2093         if (!scheduleFound)
2094           dbgs() << "\tCan't schedule\n";
2095       });
2096     } while (++NI != NE && scheduleFound);
2097 
2098     // If a schedule is found, check if it is a valid schedule too.
2099     if (scheduleFound)
2100       scheduleFound = Schedule.isValidSchedule(this);
2101   }
2102 
2103   LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound
2104                     << " (II=" << Schedule.getInitiationInterval()
2105                     << ")\n");
2106 
2107   if (scheduleFound) {
2108     Schedule.finalizeSchedule(this);
2109     Pass.ORE->emit([&]() {
2110       return MachineOptimizationRemarkAnalysis(
2111                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
2112              << "Schedule found with Initiation Interval: "
2113              << ore::NV("II", Schedule.getInitiationInterval())
2114              << ", MaxStageCount: "
2115              << ore::NV("MaxStageCount", Schedule.getMaxStageCount());
2116     });
2117   } else
2118     Schedule.reset();
2119 
2120   return scheduleFound && Schedule.getMaxStageCount() > 0;
2121 }
2122 
2123 /// Return true if we can compute the amount the instruction changes
2124 /// during each iteration. Set Delta to the amount of the change.
2125 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
2126   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2127   const MachineOperand *BaseOp;
2128   int64_t Offset;
2129   bool OffsetIsScalable;
2130   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
2131     return false;
2132 
2133   // FIXME: This algorithm assumes instructions have fixed-size offsets.
2134   if (OffsetIsScalable)
2135     return false;
2136 
2137   if (!BaseOp->isReg())
2138     return false;
2139 
2140   Register BaseReg = BaseOp->getReg();
2141 
2142   MachineRegisterInfo &MRI = MF.getRegInfo();
2143   // Check if there is a Phi. If so, get the definition in the loop.
2144   MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
2145   if (BaseDef && BaseDef->isPHI()) {
2146     BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
2147     BaseDef = MRI.getVRegDef(BaseReg);
2148   }
2149   if (!BaseDef)
2150     return false;
2151 
2152   int D = 0;
2153   if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
2154     return false;
2155 
2156   Delta = D;
2157   return true;
2158 }
2159 
2160 /// Check if we can change the instruction to use an offset value from the
2161 /// previous iteration. If so, return true and set the base and offset values
2162 /// so that we can rewrite the load, if necessary.
2163 ///   v1 = Phi(v0, v3)
2164 ///   v2 = load v1, 0
2165 ///   v3 = post_store v1, 4, x
2166 /// This function enables the load to be rewritten as v2 = load v3, 4.
2167 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
2168                                               unsigned &BasePos,
2169                                               unsigned &OffsetPos,
2170                                               unsigned &NewBase,
2171                                               int64_t &Offset) {
2172   // Get the load instruction.
2173   if (TII->isPostIncrement(*MI))
2174     return false;
2175   unsigned BasePosLd, OffsetPosLd;
2176   if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
2177     return false;
2178   Register BaseReg = MI->getOperand(BasePosLd).getReg();
2179 
2180   // Look for the Phi instruction.
2181   MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
2182   MachineInstr *Phi = MRI.getVRegDef(BaseReg);
2183   if (!Phi || !Phi->isPHI())
2184     return false;
2185   // Get the register defined in the loop block.
2186   unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
2187   if (!PrevReg)
2188     return false;
2189 
2190   // Check for the post-increment load/store instruction.
2191   MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
2192   if (!PrevDef || PrevDef == MI)
2193     return false;
2194 
2195   if (!TII->isPostIncrement(*PrevDef))
2196     return false;
2197 
2198   unsigned BasePos1 = 0, OffsetPos1 = 0;
2199   if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
2200     return false;
2201 
2202   // Make sure that the instructions do not access the same memory location in
2203   // the next iteration.
2204   int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
2205   int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
2206   MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2207   NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
2208   bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
2209   MF.DeleteMachineInstr(NewMI);
2210   if (!Disjoint)
2211     return false;
2212 
2213   // Set the return value once we determine that we return true.
2214   BasePos = BasePosLd;
2215   OffsetPos = OffsetPosLd;
2216   NewBase = PrevReg;
2217   Offset = StoreOffset;
2218   return true;
2219 }
2220 
2221 /// Apply changes to the instruction if needed. The changes are need
2222 /// to improve the scheduling and depend up on the final schedule.
2223 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
2224                                          SMSchedule &Schedule) {
2225   SUnit *SU = getSUnit(MI);
2226   DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2227       InstrChanges.find(SU);
2228   if (It != InstrChanges.end()) {
2229     std::pair<unsigned, int64_t> RegAndOffset = It->second;
2230     unsigned BasePos, OffsetPos;
2231     if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2232       return;
2233     Register BaseReg = MI->getOperand(BasePos).getReg();
2234     MachineInstr *LoopDef = findDefInLoop(BaseReg);
2235     int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
2236     int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
2237     int BaseStageNum = Schedule.stageScheduled(SU);
2238     int BaseCycleNum = Schedule.cycleScheduled(SU);
2239     if (BaseStageNum < DefStageNum) {
2240       MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2241       int OffsetDiff = DefStageNum - BaseStageNum;
2242       if (DefCycleNum < BaseCycleNum) {
2243         NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
2244         if (OffsetDiff > 0)
2245           --OffsetDiff;
2246       }
2247       int64_t NewOffset =
2248           MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
2249       NewMI->getOperand(OffsetPos).setImm(NewOffset);
2250       SU->setInstr(NewMI);
2251       MISUnitMap[NewMI] = SU;
2252       NewMIs[MI] = NewMI;
2253     }
2254   }
2255 }
2256 
2257 /// Return the instruction in the loop that defines the register.
2258 /// If the definition is a Phi, then follow the Phi operand to
2259 /// the instruction in the loop.
2260 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) {
2261   SmallPtrSet<MachineInstr *, 8> Visited;
2262   MachineInstr *Def = MRI.getVRegDef(Reg);
2263   while (Def->isPHI()) {
2264     if (!Visited.insert(Def).second)
2265       break;
2266     for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
2267       if (Def->getOperand(i + 1).getMBB() == BB) {
2268         Def = MRI.getVRegDef(Def->getOperand(i).getReg());
2269         break;
2270       }
2271   }
2272   return Def;
2273 }
2274 
2275 /// Return true for an order or output dependence that is loop carried
2276 /// potentially. A dependence is loop carried if the destination defines a valu
2277 /// that may be used or defined by the source in a subsequent iteration.
2278 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
2279                                          bool isSucc) {
2280   if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
2281       Dep.isArtificial())
2282     return false;
2283 
2284   if (!SwpPruneLoopCarried)
2285     return true;
2286 
2287   if (Dep.getKind() == SDep::Output)
2288     return true;
2289 
2290   MachineInstr *SI = Source->getInstr();
2291   MachineInstr *DI = Dep.getSUnit()->getInstr();
2292   if (!isSucc)
2293     std::swap(SI, DI);
2294   assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
2295 
2296   // Assume ordered loads and stores may have a loop carried dependence.
2297   if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
2298       SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
2299       SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
2300     return true;
2301 
2302   // Only chain dependences between a load and store can be loop carried.
2303   if (!DI->mayStore() || !SI->mayLoad())
2304     return false;
2305 
2306   unsigned DeltaS, DeltaD;
2307   if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
2308     return true;
2309 
2310   const MachineOperand *BaseOpS, *BaseOpD;
2311   int64_t OffsetS, OffsetD;
2312   bool OffsetSIsScalable, OffsetDIsScalable;
2313   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2314   if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable,
2315                                     TRI) ||
2316       !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable,
2317                                     TRI))
2318     return true;
2319 
2320   assert(!OffsetSIsScalable && !OffsetDIsScalable &&
2321          "Expected offsets to be byte offsets");
2322 
2323   if (!BaseOpS->isIdenticalTo(*BaseOpD))
2324     return true;
2325 
2326   // Check that the base register is incremented by a constant value for each
2327   // iteration.
2328   MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg());
2329   if (!Def || !Def->isPHI())
2330     return true;
2331   unsigned InitVal = 0;
2332   unsigned LoopVal = 0;
2333   getPhiRegs(*Def, BB, InitVal, LoopVal);
2334   MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
2335   int D = 0;
2336   if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
2337     return true;
2338 
2339   uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
2340   uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
2341 
2342   // This is the main test, which checks the offset values and the loop
2343   // increment value to determine if the accesses may be loop carried.
2344   if (AccessSizeS == MemoryLocation::UnknownSize ||
2345       AccessSizeD == MemoryLocation::UnknownSize)
2346     return true;
2347 
2348   if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
2349     return true;
2350 
2351   return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
2352 }
2353 
2354 void SwingSchedulerDAG::postprocessDAG() {
2355   for (auto &M : Mutations)
2356     M->apply(this);
2357 }
2358 
2359 /// Try to schedule the node at the specified StartCycle and continue
2360 /// until the node is schedule or the EndCycle is reached.  This function
2361 /// returns true if the node is scheduled.  This routine may search either
2362 /// forward or backward for a place to insert the instruction based upon
2363 /// the relative values of StartCycle and EndCycle.
2364 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
2365   bool forward = true;
2366   LLVM_DEBUG({
2367     dbgs() << "Trying to insert node between " << StartCycle << " and "
2368            << EndCycle << " II: " << II << "\n";
2369   });
2370   if (StartCycle > EndCycle)
2371     forward = false;
2372 
2373   // The terminating condition depends on the direction.
2374   int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
2375   for (int curCycle = StartCycle; curCycle != termCycle;
2376        forward ? ++curCycle : --curCycle) {
2377 
2378     // Add the already scheduled instructions at the specified cycle to the
2379     // DFA.
2380     ProcItinResources.clearResources();
2381     for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
2382          checkCycle <= LastCycle; checkCycle += II) {
2383       std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
2384 
2385       for (SUnit *CI : cycleInstrs) {
2386         if (ST.getInstrInfo()->isZeroCost(CI->getInstr()->getOpcode()))
2387           continue;
2388         assert(ProcItinResources.canReserveResources(*CI->getInstr()) &&
2389                "These instructions have already been scheduled.");
2390         ProcItinResources.reserveResources(*CI->getInstr());
2391       }
2392     }
2393     if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
2394         ProcItinResources.canReserveResources(*SU->getInstr())) {
2395       LLVM_DEBUG({
2396         dbgs() << "\tinsert at cycle " << curCycle << " ";
2397         SU->getInstr()->dump();
2398       });
2399 
2400       ScheduledInstrs[curCycle].push_back(SU);
2401       InstrToCycle.insert(std::make_pair(SU, curCycle));
2402       if (curCycle > LastCycle)
2403         LastCycle = curCycle;
2404       if (curCycle < FirstCycle)
2405         FirstCycle = curCycle;
2406       return true;
2407     }
2408     LLVM_DEBUG({
2409       dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
2410       SU->getInstr()->dump();
2411     });
2412   }
2413   return false;
2414 }
2415 
2416 // Return the cycle of the earliest scheduled instruction in the chain.
2417 int SMSchedule::earliestCycleInChain(const SDep &Dep) {
2418   SmallPtrSet<SUnit *, 8> Visited;
2419   SmallVector<SDep, 8> Worklist;
2420   Worklist.push_back(Dep);
2421   int EarlyCycle = INT_MAX;
2422   while (!Worklist.empty()) {
2423     const SDep &Cur = Worklist.pop_back_val();
2424     SUnit *PrevSU = Cur.getSUnit();
2425     if (Visited.count(PrevSU))
2426       continue;
2427     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
2428     if (it == InstrToCycle.end())
2429       continue;
2430     EarlyCycle = std::min(EarlyCycle, it->second);
2431     for (const auto &PI : PrevSU->Preds)
2432       if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output)
2433         Worklist.push_back(PI);
2434     Visited.insert(PrevSU);
2435   }
2436   return EarlyCycle;
2437 }
2438 
2439 // Return the cycle of the latest scheduled instruction in the chain.
2440 int SMSchedule::latestCycleInChain(const SDep &Dep) {
2441   SmallPtrSet<SUnit *, 8> Visited;
2442   SmallVector<SDep, 8> Worklist;
2443   Worklist.push_back(Dep);
2444   int LateCycle = INT_MIN;
2445   while (!Worklist.empty()) {
2446     const SDep &Cur = Worklist.pop_back_val();
2447     SUnit *SuccSU = Cur.getSUnit();
2448     if (Visited.count(SuccSU))
2449       continue;
2450     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
2451     if (it == InstrToCycle.end())
2452       continue;
2453     LateCycle = std::max(LateCycle, it->second);
2454     for (const auto &SI : SuccSU->Succs)
2455       if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output)
2456         Worklist.push_back(SI);
2457     Visited.insert(SuccSU);
2458   }
2459   return LateCycle;
2460 }
2461 
2462 /// If an instruction has a use that spans multiple iterations, then
2463 /// return true. These instructions are characterized by having a back-ege
2464 /// to a Phi, which contains a reference to another Phi.
2465 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
2466   for (auto &P : SU->Preds)
2467     if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
2468       for (auto &S : P.getSUnit()->Succs)
2469         if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
2470           return P.getSUnit();
2471   return nullptr;
2472 }
2473 
2474 /// Compute the scheduling start slot for the instruction.  The start slot
2475 /// depends on any predecessor or successor nodes scheduled already.
2476 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
2477                               int *MinEnd, int *MaxStart, int II,
2478                               SwingSchedulerDAG *DAG) {
2479   // Iterate over each instruction that has been scheduled already.  The start
2480   // slot computation depends on whether the previously scheduled instruction
2481   // is a predecessor or successor of the specified instruction.
2482   for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
2483 
2484     // Iterate over each instruction in the current cycle.
2485     for (SUnit *I : getInstructions(cycle)) {
2486       // Because we're processing a DAG for the dependences, we recognize
2487       // the back-edge in recurrences by anti dependences.
2488       for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
2489         const SDep &Dep = SU->Preds[i];
2490         if (Dep.getSUnit() == I) {
2491           if (!DAG->isBackedge(SU, Dep)) {
2492             int EarlyStart = cycle + Dep.getLatency() -
2493                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2494             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2495             if (DAG->isLoopCarriedDep(SU, Dep, false)) {
2496               int End = earliestCycleInChain(Dep) + (II - 1);
2497               *MinEnd = std::min(*MinEnd, End);
2498             }
2499           } else {
2500             int LateStart = cycle - Dep.getLatency() +
2501                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2502             *MinLateStart = std::min(*MinLateStart, LateStart);
2503           }
2504         }
2505         // For instruction that requires multiple iterations, make sure that
2506         // the dependent instruction is not scheduled past the definition.
2507         SUnit *BE = multipleIterations(I, DAG);
2508         if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
2509             !SU->isPred(I))
2510           *MinLateStart = std::min(*MinLateStart, cycle);
2511       }
2512       for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
2513         if (SU->Succs[i].getSUnit() == I) {
2514           const SDep &Dep = SU->Succs[i];
2515           if (!DAG->isBackedge(SU, Dep)) {
2516             int LateStart = cycle - Dep.getLatency() +
2517                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2518             *MinLateStart = std::min(*MinLateStart, LateStart);
2519             if (DAG->isLoopCarriedDep(SU, Dep)) {
2520               int Start = latestCycleInChain(Dep) + 1 - II;
2521               *MaxStart = std::max(*MaxStart, Start);
2522             }
2523           } else {
2524             int EarlyStart = cycle + Dep.getLatency() -
2525                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2526             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2527           }
2528         }
2529       }
2530     }
2531   }
2532 }
2533 
2534 /// Order the instructions within a cycle so that the definitions occur
2535 /// before the uses. Returns true if the instruction is added to the start
2536 /// of the list, or false if added to the end.
2537 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
2538                                  std::deque<SUnit *> &Insts) {
2539   MachineInstr *MI = SU->getInstr();
2540   bool OrderBeforeUse = false;
2541   bool OrderAfterDef = false;
2542   bool OrderBeforeDef = false;
2543   unsigned MoveDef = 0;
2544   unsigned MoveUse = 0;
2545   int StageInst1 = stageScheduled(SU);
2546 
2547   unsigned Pos = 0;
2548   for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
2549        ++I, ++Pos) {
2550     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
2551       MachineOperand &MO = MI->getOperand(i);
2552       if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
2553         continue;
2554 
2555       Register Reg = MO.getReg();
2556       unsigned BasePos, OffsetPos;
2557       if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2558         if (MI->getOperand(BasePos).getReg() == Reg)
2559           if (unsigned NewReg = SSD->getInstrBaseReg(SU))
2560             Reg = NewReg;
2561       bool Reads, Writes;
2562       std::tie(Reads, Writes) =
2563           (*I)->getInstr()->readsWritesVirtualRegister(Reg);
2564       if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
2565         OrderBeforeUse = true;
2566         if (MoveUse == 0)
2567           MoveUse = Pos;
2568       } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
2569         // Add the instruction after the scheduled instruction.
2570         OrderAfterDef = true;
2571         MoveDef = Pos;
2572       } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
2573         if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
2574           OrderBeforeUse = true;
2575           if (MoveUse == 0)
2576             MoveUse = Pos;
2577         } else {
2578           OrderAfterDef = true;
2579           MoveDef = Pos;
2580         }
2581       } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
2582         OrderBeforeUse = true;
2583         if (MoveUse == 0)
2584           MoveUse = Pos;
2585         if (MoveUse != 0) {
2586           OrderAfterDef = true;
2587           MoveDef = Pos - 1;
2588         }
2589       } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
2590         // Add the instruction before the scheduled instruction.
2591         OrderBeforeUse = true;
2592         if (MoveUse == 0)
2593           MoveUse = Pos;
2594       } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
2595                  isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
2596         if (MoveUse == 0) {
2597           OrderBeforeDef = true;
2598           MoveUse = Pos;
2599         }
2600       }
2601     }
2602     // Check for order dependences between instructions. Make sure the source
2603     // is ordered before the destination.
2604     for (auto &S : SU->Succs) {
2605       if (S.getSUnit() != *I)
2606         continue;
2607       if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2608         OrderBeforeUse = true;
2609         if (Pos < MoveUse)
2610           MoveUse = Pos;
2611       }
2612       // We did not handle HW dependences in previous for loop,
2613       // and we normally set Latency = 0 for Anti deps,
2614       // so may have nodes in same cycle with Anti denpendent on HW regs.
2615       else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
2616         OrderBeforeUse = true;
2617         if ((MoveUse == 0) || (Pos < MoveUse))
2618           MoveUse = Pos;
2619       }
2620     }
2621     for (auto &P : SU->Preds) {
2622       if (P.getSUnit() != *I)
2623         continue;
2624       if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2625         OrderAfterDef = true;
2626         MoveDef = Pos;
2627       }
2628     }
2629   }
2630 
2631   // A circular dependence.
2632   if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
2633     OrderBeforeUse = false;
2634 
2635   // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
2636   // to a loop-carried dependence.
2637   if (OrderBeforeDef)
2638     OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
2639 
2640   // The uncommon case when the instruction order needs to be updated because
2641   // there is both a use and def.
2642   if (OrderBeforeUse && OrderAfterDef) {
2643     SUnit *UseSU = Insts.at(MoveUse);
2644     SUnit *DefSU = Insts.at(MoveDef);
2645     if (MoveUse > MoveDef) {
2646       Insts.erase(Insts.begin() + MoveUse);
2647       Insts.erase(Insts.begin() + MoveDef);
2648     } else {
2649       Insts.erase(Insts.begin() + MoveDef);
2650       Insts.erase(Insts.begin() + MoveUse);
2651     }
2652     orderDependence(SSD, UseSU, Insts);
2653     orderDependence(SSD, SU, Insts);
2654     orderDependence(SSD, DefSU, Insts);
2655     return;
2656   }
2657   // Put the new instruction first if there is a use in the list. Otherwise,
2658   // put it at the end of the list.
2659   if (OrderBeforeUse)
2660     Insts.push_front(SU);
2661   else
2662     Insts.push_back(SU);
2663 }
2664 
2665 /// Return true if the scheduled Phi has a loop carried operand.
2666 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
2667   if (!Phi.isPHI())
2668     return false;
2669   assert(Phi.isPHI() && "Expecting a Phi.");
2670   SUnit *DefSU = SSD->getSUnit(&Phi);
2671   unsigned DefCycle = cycleScheduled(DefSU);
2672   int DefStage = stageScheduled(DefSU);
2673 
2674   unsigned InitVal = 0;
2675   unsigned LoopVal = 0;
2676   getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
2677   SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
2678   if (!UseSU)
2679     return true;
2680   if (UseSU->getInstr()->isPHI())
2681     return true;
2682   unsigned LoopCycle = cycleScheduled(UseSU);
2683   int LoopStage = stageScheduled(UseSU);
2684   return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
2685 }
2686 
2687 /// Return true if the instruction is a definition that is loop carried
2688 /// and defines the use on the next iteration.
2689 ///        v1 = phi(v2, v3)
2690 ///  (Def) v3 = op v1
2691 ///  (MO)   = v1
2692 /// If MO appears before Def, then then v1 and v3 may get assigned to the same
2693 /// register.
2694 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
2695                                        MachineInstr *Def, MachineOperand &MO) {
2696   if (!MO.isReg())
2697     return false;
2698   if (Def->isPHI())
2699     return false;
2700   MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
2701   if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
2702     return false;
2703   if (!isLoopCarried(SSD, *Phi))
2704     return false;
2705   unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
2706   for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
2707     MachineOperand &DMO = Def->getOperand(i);
2708     if (!DMO.isReg() || !DMO.isDef())
2709       continue;
2710     if (DMO.getReg() == LoopReg)
2711       return true;
2712   }
2713   return false;
2714 }
2715 
2716 // Check if the generated schedule is valid. This function checks if
2717 // an instruction that uses a physical register is scheduled in a
2718 // different stage than the definition. The pipeliner does not handle
2719 // physical register values that may cross a basic block boundary.
2720 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
2721   for (SUnit &SU : SSD->SUnits) {
2722     if (!SU.hasPhysRegDefs)
2723       continue;
2724     int StageDef = stageScheduled(&SU);
2725     assert(StageDef != -1 && "Instruction should have been scheduled.");
2726     for (auto &SI : SU.Succs)
2727       if (SI.isAssignedRegDep())
2728         if (Register::isPhysicalRegister(SI.getReg()))
2729           if (stageScheduled(SI.getSUnit()) != StageDef)
2730             return false;
2731   }
2732   return true;
2733 }
2734 
2735 /// A property of the node order in swing-modulo-scheduling is
2736 /// that for nodes outside circuits the following holds:
2737 /// none of them is scheduled after both a successor and a
2738 /// predecessor.
2739 /// The method below checks whether the property is met.
2740 /// If not, debug information is printed and statistics information updated.
2741 /// Note that we do not use an assert statement.
2742 /// The reason is that although an invalid node oder may prevent
2743 /// the pipeliner from finding a pipelined schedule for arbitrary II,
2744 /// it does not lead to the generation of incorrect code.
2745 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
2746 
2747   // a sorted vector that maps each SUnit to its index in the NodeOrder
2748   typedef std::pair<SUnit *, unsigned> UnitIndex;
2749   std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
2750 
2751   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
2752     Indices.push_back(std::make_pair(NodeOrder[i], i));
2753 
2754   auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
2755     return std::get<0>(i1) < std::get<0>(i2);
2756   };
2757 
2758   // sort, so that we can perform a binary search
2759   llvm::sort(Indices, CompareKey);
2760 
2761   bool Valid = true;
2762   (void)Valid;
2763   // for each SUnit in the NodeOrder, check whether
2764   // it appears after both a successor and a predecessor
2765   // of the SUnit. If this is the case, and the SUnit
2766   // is not part of circuit, then the NodeOrder is not
2767   // valid.
2768   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
2769     SUnit *SU = NodeOrder[i];
2770     unsigned Index = i;
2771 
2772     bool PredBefore = false;
2773     bool SuccBefore = false;
2774 
2775     SUnit *Succ;
2776     SUnit *Pred;
2777     (void)Succ;
2778     (void)Pred;
2779 
2780     for (SDep &PredEdge : SU->Preds) {
2781       SUnit *PredSU = PredEdge.getSUnit();
2782       unsigned PredIndex = std::get<1>(
2783           *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
2784       if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
2785         PredBefore = true;
2786         Pred = PredSU;
2787         break;
2788       }
2789     }
2790 
2791     for (SDep &SuccEdge : SU->Succs) {
2792       SUnit *SuccSU = SuccEdge.getSUnit();
2793       // Do not process a boundary node, it was not included in NodeOrder,
2794       // hence not in Indices either, call to std::lower_bound() below will
2795       // return Indices.end().
2796       if (SuccSU->isBoundaryNode())
2797         continue;
2798       unsigned SuccIndex = std::get<1>(
2799           *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
2800       if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
2801         SuccBefore = true;
2802         Succ = SuccSU;
2803         break;
2804       }
2805     }
2806 
2807     if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
2808       // instructions in circuits are allowed to be scheduled
2809       // after both a successor and predecessor.
2810       bool InCircuit = llvm::any_of(
2811           Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
2812       if (InCircuit)
2813         LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
2814       else {
2815         Valid = false;
2816         NumNodeOrderIssues++;
2817         LLVM_DEBUG(dbgs() << "Predecessor ";);
2818       }
2819       LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
2820                         << " are scheduled before node " << SU->NodeNum
2821                         << "\n";);
2822     }
2823   }
2824 
2825   LLVM_DEBUG({
2826     if (!Valid)
2827       dbgs() << "Invalid node order found!\n";
2828   });
2829 }
2830 
2831 /// Attempt to fix the degenerate cases when the instruction serialization
2832 /// causes the register lifetimes to overlap. For example,
2833 ///   p' = store_pi(p, b)
2834 ///      = load p, offset
2835 /// In this case p and p' overlap, which means that two registers are needed.
2836 /// Instead, this function changes the load to use p' and updates the offset.
2837 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
2838   unsigned OverlapReg = 0;
2839   unsigned NewBaseReg = 0;
2840   for (SUnit *SU : Instrs) {
2841     MachineInstr *MI = SU->getInstr();
2842     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
2843       const MachineOperand &MO = MI->getOperand(i);
2844       // Look for an instruction that uses p. The instruction occurs in the
2845       // same cycle but occurs later in the serialized order.
2846       if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
2847         // Check that the instruction appears in the InstrChanges structure,
2848         // which contains instructions that can have the offset updated.
2849         DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2850           InstrChanges.find(SU);
2851         if (It != InstrChanges.end()) {
2852           unsigned BasePos, OffsetPos;
2853           // Update the base register and adjust the offset.
2854           if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
2855             MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2856             NewMI->getOperand(BasePos).setReg(NewBaseReg);
2857             int64_t NewOffset =
2858                 MI->getOperand(OffsetPos).getImm() - It->second.second;
2859             NewMI->getOperand(OffsetPos).setImm(NewOffset);
2860             SU->setInstr(NewMI);
2861             MISUnitMap[NewMI] = SU;
2862             NewMIs[MI] = NewMI;
2863           }
2864         }
2865         OverlapReg = 0;
2866         NewBaseReg = 0;
2867         break;
2868       }
2869       // Look for an instruction of the form p' = op(p), which uses and defines
2870       // two virtual registers that get allocated to the same physical register.
2871       unsigned TiedUseIdx = 0;
2872       if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
2873         // OverlapReg is p in the example above.
2874         OverlapReg = MI->getOperand(TiedUseIdx).getReg();
2875         // NewBaseReg is p' in the example above.
2876         NewBaseReg = MI->getOperand(i).getReg();
2877         break;
2878       }
2879     }
2880   }
2881 }
2882 
2883 /// After the schedule has been formed, call this function to combine
2884 /// the instructions from the different stages/cycles.  That is, this
2885 /// function creates a schedule that represents a single iteration.
2886 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
2887   // Move all instructions to the first stage from later stages.
2888   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2889     for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
2890          ++stage) {
2891       std::deque<SUnit *> &cycleInstrs =
2892           ScheduledInstrs[cycle + (stage * InitiationInterval)];
2893       for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
2894                                                  E = cycleInstrs.rend();
2895            I != E; ++I)
2896         ScheduledInstrs[cycle].push_front(*I);
2897     }
2898   }
2899 
2900   // Erase all the elements in the later stages. Only one iteration should
2901   // remain in the scheduled list, and it contains all the instructions.
2902   for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
2903     ScheduledInstrs.erase(cycle);
2904 
2905   // Change the registers in instruction as specified in the InstrChanges
2906   // map. We need to use the new registers to create the correct order.
2907   for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
2908     SUnit *SU = &SSD->SUnits[i];
2909     SSD->applyInstrChange(SU->getInstr(), *this);
2910   }
2911 
2912   // Reorder the instructions in each cycle to fix and improve the
2913   // generated code.
2914   for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
2915     std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
2916     std::deque<SUnit *> newOrderPhi;
2917     for (SUnit *SU : cycleInstrs) {
2918       if (SU->getInstr()->isPHI())
2919         newOrderPhi.push_back(SU);
2920     }
2921     std::deque<SUnit *> newOrderI;
2922     for (SUnit *SU : cycleInstrs) {
2923       if (!SU->getInstr()->isPHI())
2924         orderDependence(SSD, SU, newOrderI);
2925     }
2926     // Replace the old order with the new order.
2927     cycleInstrs.swap(newOrderPhi);
2928     llvm::append_range(cycleInstrs, newOrderI);
2929     SSD->fixupRegisterOverlaps(cycleInstrs);
2930   }
2931 
2932   LLVM_DEBUG(dump(););
2933 }
2934 
2935 void NodeSet::print(raw_ostream &os) const {
2936   os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
2937      << " depth " << MaxDepth << " col " << Colocate << "\n";
2938   for (const auto &I : Nodes)
2939     os << "   SU(" << I->NodeNum << ") " << *(I->getInstr());
2940   os << "\n";
2941 }
2942 
2943 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2944 /// Print the schedule information to the given output.
2945 void SMSchedule::print(raw_ostream &os) const {
2946   // Iterate over each cycle.
2947   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2948     // Iterate over each instruction in the cycle.
2949     const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
2950     for (SUnit *CI : cycleInstrs->second) {
2951       os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
2952       os << "(" << CI->NodeNum << ") ";
2953       CI->getInstr()->print(os);
2954       os << "\n";
2955     }
2956   }
2957 }
2958 
2959 /// Utility function used for debugging to print the schedule.
2960 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
2961 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
2962 
2963 #endif
2964 
2965 void ResourceManager::initProcResourceVectors(
2966     const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
2967   unsigned ProcResourceID = 0;
2968 
2969   // We currently limit the resource kinds to 64 and below so that we can use
2970   // uint64_t for Masks
2971   assert(SM.getNumProcResourceKinds() < 64 &&
2972          "Too many kinds of resources, unsupported");
2973   // Create a unique bitmask for every processor resource unit.
2974   // Skip resource at index 0, since it always references 'InvalidUnit'.
2975   Masks.resize(SM.getNumProcResourceKinds());
2976   for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
2977     const MCProcResourceDesc &Desc = *SM.getProcResource(I);
2978     if (Desc.SubUnitsIdxBegin)
2979       continue;
2980     Masks[I] = 1ULL << ProcResourceID;
2981     ProcResourceID++;
2982   }
2983   // Create a unique bitmask for every processor resource group.
2984   for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
2985     const MCProcResourceDesc &Desc = *SM.getProcResource(I);
2986     if (!Desc.SubUnitsIdxBegin)
2987       continue;
2988     Masks[I] = 1ULL << ProcResourceID;
2989     for (unsigned U = 0; U < Desc.NumUnits; ++U)
2990       Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
2991     ProcResourceID++;
2992   }
2993   LLVM_DEBUG({
2994     if (SwpShowResMask) {
2995       dbgs() << "ProcResourceDesc:\n";
2996       for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
2997         const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
2998         dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
2999                          ProcResource->Name, I, Masks[I],
3000                          ProcResource->NumUnits);
3001       }
3002       dbgs() << " -----------------\n";
3003     }
3004   });
3005 }
3006 
3007 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const {
3008 
3009   LLVM_DEBUG({
3010     if (SwpDebugResource)
3011       dbgs() << "canReserveResources:\n";
3012   });
3013   if (UseDFA)
3014     return DFAResources->canReserveResources(MID);
3015 
3016   unsigned InsnClass = MID->getSchedClass();
3017   const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
3018   if (!SCDesc->isValid()) {
3019     LLVM_DEBUG({
3020       dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3021       dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
3022     });
3023     return true;
3024   }
3025 
3026   const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc);
3027   const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc);
3028   for (; I != E; ++I) {
3029     if (!I->Cycles)
3030       continue;
3031     const MCProcResourceDesc *ProcResource =
3032         SM.getProcResource(I->ProcResourceIdx);
3033     unsigned NumUnits = ProcResource->NumUnits;
3034     LLVM_DEBUG({
3035       if (SwpDebugResource)
3036         dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
3037                          ProcResource->Name, I->ProcResourceIdx,
3038                          ProcResourceCount[I->ProcResourceIdx], NumUnits,
3039                          I->Cycles);
3040     });
3041     if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits)
3042       return false;
3043   }
3044   LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";);
3045   return true;
3046 }
3047 
3048 void ResourceManager::reserveResources(const MCInstrDesc *MID) {
3049   LLVM_DEBUG({
3050     if (SwpDebugResource)
3051       dbgs() << "reserveResources:\n";
3052   });
3053   if (UseDFA)
3054     return DFAResources->reserveResources(MID);
3055 
3056   unsigned InsnClass = MID->getSchedClass();
3057   const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
3058   if (!SCDesc->isValid()) {
3059     LLVM_DEBUG({
3060       dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3061       dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
3062     });
3063     return;
3064   }
3065   for (const MCWriteProcResEntry &PRE :
3066        make_range(STI->getWriteProcResBegin(SCDesc),
3067                   STI->getWriteProcResEnd(SCDesc))) {
3068     if (!PRE.Cycles)
3069       continue;
3070     ++ProcResourceCount[PRE.ProcResourceIdx];
3071     LLVM_DEBUG({
3072       if (SwpDebugResource) {
3073         const MCProcResourceDesc *ProcResource =
3074             SM.getProcResource(PRE.ProcResourceIdx);
3075         dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
3076                          ProcResource->Name, PRE.ProcResourceIdx,
3077                          ProcResourceCount[PRE.ProcResourceIdx],
3078                          ProcResource->NumUnits, PRE.Cycles);
3079       }
3080     });
3081   }
3082   LLVM_DEBUG({
3083     if (SwpDebugResource)
3084       dbgs() << "reserveResources: done!\n\n";
3085   });
3086 }
3087 
3088 bool ResourceManager::canReserveResources(const MachineInstr &MI) const {
3089   return canReserveResources(&MI.getDesc());
3090 }
3091 
3092 void ResourceManager::reserveResources(const MachineInstr &MI) {
3093   return reserveResources(&MI.getDesc());
3094 }
3095 
3096 void ResourceManager::clearResources() {
3097   if (UseDFA)
3098     return DFAResources->clearResources();
3099   std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0);
3100 }
3101