1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/CodeGen/MachinePipeliner.h" 33 #include "llvm/ADT/ArrayRef.h" 34 #include "llvm/ADT/BitVector.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/MapVector.h" 37 #include "llvm/ADT/PriorityQueue.h" 38 #include "llvm/ADT/SetOperations.h" 39 #include "llvm/ADT/SetVector.h" 40 #include "llvm/ADT/SmallPtrSet.h" 41 #include "llvm/ADT/SmallSet.h" 42 #include "llvm/ADT/SmallVector.h" 43 #include "llvm/ADT/Statistic.h" 44 #include "llvm/ADT/iterator_range.h" 45 #include "llvm/Analysis/AliasAnalysis.h" 46 #include "llvm/Analysis/CycleAnalysis.h" 47 #include "llvm/Analysis/MemoryLocation.h" 48 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/CodeGen/DFAPacketizer.h" 51 #include "llvm/CodeGen/LiveIntervals.h" 52 #include "llvm/CodeGen/MachineBasicBlock.h" 53 #include "llvm/CodeGen/MachineDominators.h" 54 #include "llvm/CodeGen/MachineFunction.h" 55 #include "llvm/CodeGen/MachineFunctionPass.h" 56 #include "llvm/CodeGen/MachineInstr.h" 57 #include "llvm/CodeGen/MachineInstrBuilder.h" 58 #include "llvm/CodeGen/MachineLoopInfo.h" 59 #include "llvm/CodeGen/MachineMemOperand.h" 60 #include "llvm/CodeGen/MachineOperand.h" 61 #include "llvm/CodeGen/MachineRegisterInfo.h" 62 #include "llvm/CodeGen/ModuloSchedule.h" 63 #include "llvm/CodeGen/RegisterPressure.h" 64 #include "llvm/CodeGen/ScheduleDAG.h" 65 #include "llvm/CodeGen/ScheduleDAGMutation.h" 66 #include "llvm/CodeGen/TargetOpcodes.h" 67 #include "llvm/CodeGen/TargetRegisterInfo.h" 68 #include "llvm/CodeGen/TargetSubtargetInfo.h" 69 #include "llvm/Config/llvm-config.h" 70 #include "llvm/IR/Attributes.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/MC/LaneBitmask.h" 73 #include "llvm/MC/MCInstrDesc.h" 74 #include "llvm/MC/MCInstrItineraries.h" 75 #include "llvm/MC/MCRegisterInfo.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/MathExtras.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include <algorithm> 83 #include <cassert> 84 #include <climits> 85 #include <cstdint> 86 #include <deque> 87 #include <functional> 88 #include <iomanip> 89 #include <iterator> 90 #include <map> 91 #include <memory> 92 #include <sstream> 93 #include <tuple> 94 #include <utility> 95 #include <vector> 96 97 using namespace llvm; 98 99 #define DEBUG_TYPE "pipeliner" 100 101 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 102 STATISTIC(NumPipelined, "Number of loops software pipelined"); 103 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 104 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 105 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 106 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 107 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 108 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 109 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 110 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 111 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 112 113 /// A command line option to turn software pipelining on or off. 114 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 115 cl::desc("Enable Software Pipelining")); 116 117 /// A command line option to enable SWP at -Os. 118 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 119 cl::desc("Enable SWP at Os."), cl::Hidden, 120 cl::init(false)); 121 122 /// A command line argument to limit minimum initial interval for pipelining. 123 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 124 cl::desc("Size limit for the MII."), 125 cl::Hidden, cl::init(27)); 126 127 /// A command line argument to force pipeliner to use specified initial 128 /// interval. 129 static cl::opt<int> SwpForceII("pipeliner-force-ii", 130 cl::desc("Force pipeliner to use specified II."), 131 cl::Hidden, cl::init(-1)); 132 133 /// A command line argument to limit the number of stages in the pipeline. 134 static cl::opt<int> 135 SwpMaxStages("pipeliner-max-stages", 136 cl::desc("Maximum stages allowed in the generated scheduled."), 137 cl::Hidden, cl::init(3)); 138 139 /// A command line option to disable the pruning of chain dependences due to 140 /// an unrelated Phi. 141 static cl::opt<bool> 142 SwpPruneDeps("pipeliner-prune-deps", 143 cl::desc("Prune dependences between unrelated Phi nodes."), 144 cl::Hidden, cl::init(true)); 145 146 /// A command line option to disable the pruning of loop carried order 147 /// dependences. 148 static cl::opt<bool> 149 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 150 cl::desc("Prune loop carried order dependences."), 151 cl::Hidden, cl::init(true)); 152 153 #ifndef NDEBUG 154 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 155 #endif 156 157 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 158 cl::ReallyHidden, 159 cl::desc("Ignore RecMII")); 160 161 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, 162 cl::init(false)); 163 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, 164 cl::init(false)); 165 166 static cl::opt<bool> EmitTestAnnotations( 167 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), 168 cl::desc("Instead of emitting the pipelined code, annotate instructions " 169 "with the generated schedule for feeding into the " 170 "-modulo-schedule-test pass")); 171 172 static cl::opt<bool> ExperimentalCodeGen( 173 "pipeliner-experimental-cg", cl::Hidden, cl::init(false), 174 cl::desc( 175 "Use the experimental peeling code generator for software pipelining")); 176 177 namespace llvm { 178 179 // A command line option to enable the CopyToPhi DAG mutation. 180 cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 181 cl::init(true), 182 cl::desc("Enable CopyToPhi DAG Mutation")); 183 184 /// A command line argument to force pipeliner to use specified issue 185 /// width. 186 cl::opt<int> SwpForceIssueWidth( 187 "pipeliner-force-issue-width", 188 cl::desc("Force pipeliner to use specified issue width."), cl::Hidden, 189 cl::init(-1)); 190 191 } // end namespace llvm 192 193 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 194 char MachinePipeliner::ID = 0; 195 #ifndef NDEBUG 196 int MachinePipeliner::NumTries = 0; 197 #endif 198 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 199 200 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 201 "Modulo Software Pipelining", false, false) 202 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 203 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 204 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 205 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 206 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 207 "Modulo Software Pipelining", false, false) 208 209 /// The "main" function for implementing Swing Modulo Scheduling. 210 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 211 if (skipFunction(mf.getFunction())) 212 return false; 213 214 if (!EnableSWP) 215 return false; 216 217 if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) && 218 !EnableSWPOptSize.getPosition()) 219 return false; 220 221 if (!mf.getSubtarget().enableMachinePipeliner()) 222 return false; 223 224 // Cannot pipeline loops without instruction itineraries if we are using 225 // DFA for the pipeliner. 226 if (mf.getSubtarget().useDFAforSMS() && 227 (!mf.getSubtarget().getInstrItineraryData() || 228 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 229 return false; 230 231 MF = &mf; 232 MLI = &getAnalysis<MachineLoopInfo>(); 233 MDT = &getAnalysis<MachineDominatorTree>(); 234 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 235 TII = MF->getSubtarget().getInstrInfo(); 236 RegClassInfo.runOnMachineFunction(*MF); 237 238 for (const auto &L : *MLI) 239 scheduleLoop(*L); 240 241 return false; 242 } 243 244 /// Attempt to perform the SMS algorithm on the specified loop. This function is 245 /// the main entry point for the algorithm. The function identifies candidate 246 /// loops, calculates the minimum initiation interval, and attempts to schedule 247 /// the loop. 248 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 249 bool Changed = false; 250 for (const auto &InnerLoop : L) 251 Changed |= scheduleLoop(*InnerLoop); 252 253 #ifndef NDEBUG 254 // Stop trying after reaching the limit (if any). 255 int Limit = SwpLoopLimit; 256 if (Limit >= 0) { 257 if (NumTries >= SwpLoopLimit) 258 return Changed; 259 NumTries++; 260 } 261 #endif 262 263 setPragmaPipelineOptions(L); 264 if (!canPipelineLoop(L)) { 265 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 266 ORE->emit([&]() { 267 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop", 268 L.getStartLoc(), L.getHeader()) 269 << "Failed to pipeline loop"; 270 }); 271 272 LI.LoopPipelinerInfo.reset(); 273 return Changed; 274 } 275 276 ++NumTrytoPipeline; 277 278 Changed = swingModuloScheduler(L); 279 280 LI.LoopPipelinerInfo.reset(); 281 return Changed; 282 } 283 284 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 285 // Reset the pragma for the next loop in iteration. 286 disabledByPragma = false; 287 II_setByPragma = 0; 288 289 MachineBasicBlock *LBLK = L.getTopBlock(); 290 291 if (LBLK == nullptr) 292 return; 293 294 const BasicBlock *BBLK = LBLK->getBasicBlock(); 295 if (BBLK == nullptr) 296 return; 297 298 const Instruction *TI = BBLK->getTerminator(); 299 if (TI == nullptr) 300 return; 301 302 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 303 if (LoopID == nullptr) 304 return; 305 306 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 307 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 308 309 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 310 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 311 312 if (MD == nullptr) 313 continue; 314 315 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 316 317 if (S == nullptr) 318 continue; 319 320 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 321 assert(MD->getNumOperands() == 2 && 322 "Pipeline initiation interval hint metadata should have two operands."); 323 II_setByPragma = 324 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 325 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 326 } else if (S->getString() == "llvm.loop.pipeline.disable") { 327 disabledByPragma = true; 328 } 329 } 330 } 331 332 /// Return true if the loop can be software pipelined. The algorithm is 333 /// restricted to loops with a single basic block. Make sure that the 334 /// branch in the loop can be analyzed. 335 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 336 if (L.getNumBlocks() != 1) { 337 ORE->emit([&]() { 338 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 339 L.getStartLoc(), L.getHeader()) 340 << "Not a single basic block: " 341 << ore::NV("NumBlocks", L.getNumBlocks()); 342 }); 343 return false; 344 } 345 346 if (disabledByPragma) { 347 ORE->emit([&]() { 348 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 349 L.getStartLoc(), L.getHeader()) 350 << "Disabled by Pragma."; 351 }); 352 return false; 353 } 354 355 // Check if the branch can't be understood because we can't do pipelining 356 // if that's the case. 357 LI.TBB = nullptr; 358 LI.FBB = nullptr; 359 LI.BrCond.clear(); 360 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 361 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n"); 362 NumFailBranch++; 363 ORE->emit([&]() { 364 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 365 L.getStartLoc(), L.getHeader()) 366 << "The branch can't be understood"; 367 }); 368 return false; 369 } 370 371 LI.LoopInductionVar = nullptr; 372 LI.LoopCompare = nullptr; 373 LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock()); 374 if (!LI.LoopPipelinerInfo) { 375 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n"); 376 NumFailLoop++; 377 ORE->emit([&]() { 378 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 379 L.getStartLoc(), L.getHeader()) 380 << "The loop structure is not supported"; 381 }); 382 return false; 383 } 384 385 if (!L.getLoopPreheader()) { 386 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n"); 387 NumFailPreheader++; 388 ORE->emit([&]() { 389 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 390 L.getStartLoc(), L.getHeader()) 391 << "No loop preheader found"; 392 }); 393 return false; 394 } 395 396 // Remove any subregisters from inputs to phi nodes. 397 preprocessPhiNodes(*L.getHeader()); 398 return true; 399 } 400 401 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 402 MachineRegisterInfo &MRI = MF->getRegInfo(); 403 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 404 405 for (MachineInstr &PI : B.phis()) { 406 MachineOperand &DefOp = PI.getOperand(0); 407 assert(DefOp.getSubReg() == 0); 408 auto *RC = MRI.getRegClass(DefOp.getReg()); 409 410 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 411 MachineOperand &RegOp = PI.getOperand(i); 412 if (RegOp.getSubReg() == 0) 413 continue; 414 415 // If the operand uses a subregister, replace it with a new register 416 // without subregisters, and generate a copy to the new register. 417 Register NewReg = MRI.createVirtualRegister(RC); 418 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 419 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 420 const DebugLoc &DL = PredB.findDebugLoc(At); 421 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 422 .addReg(RegOp.getReg(), getRegState(RegOp), 423 RegOp.getSubReg()); 424 Slots.insertMachineInstrInMaps(*Copy); 425 RegOp.setReg(NewReg); 426 RegOp.setSubReg(0); 427 } 428 } 429 } 430 431 /// The SMS algorithm consists of the following main steps: 432 /// 1. Computation and analysis of the dependence graph. 433 /// 2. Ordering of the nodes (instructions). 434 /// 3. Attempt to Schedule the loop. 435 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 436 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 437 438 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, 439 II_setByPragma, LI.LoopPipelinerInfo.get()); 440 441 MachineBasicBlock *MBB = L.getHeader(); 442 // The kernel should not include any terminator instructions. These 443 // will be added back later. 444 SMS.startBlock(MBB); 445 446 // Compute the number of 'real' instructions in the basic block by 447 // ignoring terminators. 448 unsigned size = MBB->size(); 449 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 450 E = MBB->instr_end(); 451 I != E; ++I, --size) 452 ; 453 454 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 455 SMS.schedule(); 456 SMS.exitRegion(); 457 458 SMS.finishBlock(); 459 return SMS.hasNewSchedule(); 460 } 461 462 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const { 463 AU.addRequired<AAResultsWrapperPass>(); 464 AU.addPreserved<AAResultsWrapperPass>(); 465 AU.addRequired<MachineLoopInfo>(); 466 AU.addRequired<MachineDominatorTree>(); 467 AU.addRequired<LiveIntervals>(); 468 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 469 MachineFunctionPass::getAnalysisUsage(AU); 470 } 471 472 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 473 if (SwpForceII > 0) 474 MII = SwpForceII; 475 else if (II_setByPragma > 0) 476 MII = II_setByPragma; 477 else 478 MII = std::max(ResMII, RecMII); 479 } 480 481 void SwingSchedulerDAG::setMAX_II() { 482 if (SwpForceII > 0) 483 MAX_II = SwpForceII; 484 else if (II_setByPragma > 0) 485 MAX_II = II_setByPragma; 486 else 487 MAX_II = MII + 10; 488 } 489 490 /// We override the schedule function in ScheduleDAGInstrs to implement the 491 /// scheduling part of the Swing Modulo Scheduling algorithm. 492 void SwingSchedulerDAG::schedule() { 493 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 494 buildSchedGraph(AA); 495 addLoopCarriedDependences(AA); 496 updatePhiDependences(); 497 Topo.InitDAGTopologicalSorting(); 498 changeDependences(); 499 postProcessDAG(); 500 LLVM_DEBUG(dump()); 501 502 NodeSetType NodeSets; 503 findCircuits(NodeSets); 504 NodeSetType Circuits = NodeSets; 505 506 // Calculate the MII. 507 unsigned ResMII = calculateResMII(); 508 unsigned RecMII = calculateRecMII(NodeSets); 509 510 fuseRecs(NodeSets); 511 512 // This flag is used for testing and can cause correctness problems. 513 if (SwpIgnoreRecMII) 514 RecMII = 0; 515 516 setMII(ResMII, RecMII); 517 setMAX_II(); 518 519 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 520 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 521 522 // Can't schedule a loop without a valid MII. 523 if (MII == 0) { 524 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n"); 525 NumFailZeroMII++; 526 Pass.ORE->emit([&]() { 527 return MachineOptimizationRemarkAnalysis( 528 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 529 << "Invalid Minimal Initiation Interval: 0"; 530 }); 531 return; 532 } 533 534 // Don't pipeline large loops. 535 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 536 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 537 << ", we don't pipeline large loops\n"); 538 NumFailLargeMaxMII++; 539 Pass.ORE->emit([&]() { 540 return MachineOptimizationRemarkAnalysis( 541 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 542 << "Minimal Initiation Interval too large: " 543 << ore::NV("MII", (int)MII) << " > " 544 << ore::NV("SwpMaxMii", SwpMaxMii) << "." 545 << "Refer to -pipeliner-max-mii."; 546 }); 547 return; 548 } 549 550 computeNodeFunctions(NodeSets); 551 552 registerPressureFilter(NodeSets); 553 554 colocateNodeSets(NodeSets); 555 556 checkNodeSets(NodeSets); 557 558 LLVM_DEBUG({ 559 for (auto &I : NodeSets) { 560 dbgs() << " Rec NodeSet "; 561 I.dump(); 562 } 563 }); 564 565 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 566 567 groupRemainingNodes(NodeSets); 568 569 removeDuplicateNodes(NodeSets); 570 571 LLVM_DEBUG({ 572 for (auto &I : NodeSets) { 573 dbgs() << " NodeSet "; 574 I.dump(); 575 } 576 }); 577 578 computeNodeOrder(NodeSets); 579 580 // check for node order issues 581 checkValidNodeOrder(Circuits); 582 583 SMSchedule Schedule(Pass.MF, this); 584 Scheduled = schedulePipeline(Schedule); 585 586 if (!Scheduled){ 587 LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 588 NumFailNoSchedule++; 589 Pass.ORE->emit([&]() { 590 return MachineOptimizationRemarkAnalysis( 591 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 592 << "Unable to find schedule"; 593 }); 594 return; 595 } 596 597 unsigned numStages = Schedule.getMaxStageCount(); 598 // No need to generate pipeline if there are no overlapped iterations. 599 if (numStages == 0) { 600 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n"); 601 NumFailZeroStage++; 602 Pass.ORE->emit([&]() { 603 return MachineOptimizationRemarkAnalysis( 604 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 605 << "No need to pipeline - no overlapped iterations in schedule."; 606 }); 607 return; 608 } 609 // Check that the maximum stage count is less than user-defined limit. 610 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 611 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 612 << " : too many stages, abort\n"); 613 NumFailLargeMaxStage++; 614 Pass.ORE->emit([&]() { 615 return MachineOptimizationRemarkAnalysis( 616 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 617 << "Too many stages in schedule: " 618 << ore::NV("numStages", (int)numStages) << " > " 619 << ore::NV("SwpMaxStages", SwpMaxStages) 620 << ". Refer to -pipeliner-max-stages."; 621 }); 622 return; 623 } 624 625 Pass.ORE->emit([&]() { 626 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(), 627 Loop.getHeader()) 628 << "Pipelined succesfully!"; 629 }); 630 631 // Generate the schedule as a ModuloSchedule. 632 DenseMap<MachineInstr *, int> Cycles, Stages; 633 std::vector<MachineInstr *> OrderedInsts; 634 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 635 ++Cycle) { 636 for (SUnit *SU : Schedule.getInstructions(Cycle)) { 637 OrderedInsts.push_back(SU->getInstr()); 638 Cycles[SU->getInstr()] = Cycle; 639 Stages[SU->getInstr()] = Schedule.stageScheduled(SU); 640 } 641 } 642 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; 643 for (auto &KV : NewMIs) { 644 Cycles[KV.first] = Cycles[KV.second]; 645 Stages[KV.first] = Stages[KV.second]; 646 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; 647 } 648 649 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), 650 std::move(Stages)); 651 if (EmitTestAnnotations) { 652 assert(NewInstrChanges.empty() && 653 "Cannot serialize a schedule with InstrChanges!"); 654 ModuloScheduleTestAnnotater MSTI(MF, MS); 655 MSTI.annotate(); 656 return; 657 } 658 // The experimental code generator can't work if there are InstChanges. 659 if (ExperimentalCodeGen && NewInstrChanges.empty()) { 660 PeelingModuloScheduleExpander MSE(MF, MS, &LIS); 661 MSE.expand(); 662 } else { 663 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); 664 MSE.expand(); 665 MSE.cleanup(); 666 } 667 ++NumPipelined; 668 } 669 670 /// Clean up after the software pipeliner runs. 671 void SwingSchedulerDAG::finishBlock() { 672 for (auto &KV : NewMIs) 673 MF.deleteMachineInstr(KV.second); 674 NewMIs.clear(); 675 676 // Call the superclass. 677 ScheduleDAGInstrs::finishBlock(); 678 } 679 680 /// Return the register values for the operands of a Phi instruction. 681 /// This function assume the instruction is a Phi. 682 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 683 unsigned &InitVal, unsigned &LoopVal) { 684 assert(Phi.isPHI() && "Expecting a Phi."); 685 686 InitVal = 0; 687 LoopVal = 0; 688 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 689 if (Phi.getOperand(i + 1).getMBB() != Loop) 690 InitVal = Phi.getOperand(i).getReg(); 691 else 692 LoopVal = Phi.getOperand(i).getReg(); 693 694 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 695 } 696 697 /// Return the Phi register value that comes the loop block. 698 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 699 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 700 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 701 return Phi.getOperand(i).getReg(); 702 return 0; 703 } 704 705 /// Return true if SUb can be reached from SUa following the chain edges. 706 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 707 SmallPtrSet<SUnit *, 8> Visited; 708 SmallVector<SUnit *, 8> Worklist; 709 Worklist.push_back(SUa); 710 while (!Worklist.empty()) { 711 const SUnit *SU = Worklist.pop_back_val(); 712 for (const auto &SI : SU->Succs) { 713 SUnit *SuccSU = SI.getSUnit(); 714 if (SI.getKind() == SDep::Order) { 715 if (Visited.count(SuccSU)) 716 continue; 717 if (SuccSU == SUb) 718 return true; 719 Worklist.push_back(SuccSU); 720 Visited.insert(SuccSU); 721 } 722 } 723 } 724 return false; 725 } 726 727 /// Return true if the instruction causes a chain between memory 728 /// references before and after it. 729 static bool isDependenceBarrier(MachineInstr &MI) { 730 return MI.isCall() || MI.mayRaiseFPException() || 731 MI.hasUnmodeledSideEffects() || 732 (MI.hasOrderedMemoryRef() && 733 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad())); 734 } 735 736 /// Return the underlying objects for the memory references of an instruction. 737 /// This function calls the code in ValueTracking, but first checks that the 738 /// instruction has a memory operand. 739 static void getUnderlyingObjects(const MachineInstr *MI, 740 SmallVectorImpl<const Value *> &Objs) { 741 if (!MI->hasOneMemOperand()) 742 return; 743 MachineMemOperand *MM = *MI->memoperands_begin(); 744 if (!MM->getValue()) 745 return; 746 getUnderlyingObjects(MM->getValue(), Objs); 747 for (const Value *V : Objs) { 748 if (!isIdentifiedObject(V)) { 749 Objs.clear(); 750 return; 751 } 752 Objs.push_back(V); 753 } 754 } 755 756 /// Add a chain edge between a load and store if the store can be an 757 /// alias of the load on a subsequent iteration, i.e., a loop carried 758 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 759 /// but that code doesn't create loop carried dependences. 760 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 761 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 762 Value *UnknownValue = 763 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 764 for (auto &SU : SUnits) { 765 MachineInstr &MI = *SU.getInstr(); 766 if (isDependenceBarrier(MI)) 767 PendingLoads.clear(); 768 else if (MI.mayLoad()) { 769 SmallVector<const Value *, 4> Objs; 770 ::getUnderlyingObjects(&MI, Objs); 771 if (Objs.empty()) 772 Objs.push_back(UnknownValue); 773 for (const auto *V : Objs) { 774 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 775 SUs.push_back(&SU); 776 } 777 } else if (MI.mayStore()) { 778 SmallVector<const Value *, 4> Objs; 779 ::getUnderlyingObjects(&MI, Objs); 780 if (Objs.empty()) 781 Objs.push_back(UnknownValue); 782 for (const auto *V : Objs) { 783 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 784 PendingLoads.find(V); 785 if (I == PendingLoads.end()) 786 continue; 787 for (auto *Load : I->second) { 788 if (isSuccOrder(Load, &SU)) 789 continue; 790 MachineInstr &LdMI = *Load->getInstr(); 791 // First, perform the cheaper check that compares the base register. 792 // If they are the same and the load offset is less than the store 793 // offset, then mark the dependence as loop carried potentially. 794 const MachineOperand *BaseOp1, *BaseOp2; 795 int64_t Offset1, Offset2; 796 bool Offset1IsScalable, Offset2IsScalable; 797 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, 798 Offset1IsScalable, TRI) && 799 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, 800 Offset2IsScalable, TRI)) { 801 if (BaseOp1->isIdenticalTo(*BaseOp2) && 802 Offset1IsScalable == Offset2IsScalable && 803 (int)Offset1 < (int)Offset2) { 804 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && 805 "What happened to the chain edge?"); 806 SDep Dep(Load, SDep::Barrier); 807 Dep.setLatency(1); 808 SU.addPred(Dep); 809 continue; 810 } 811 } 812 // Second, the more expensive check that uses alias analysis on the 813 // base registers. If they alias, and the load offset is less than 814 // the store offset, the mark the dependence as loop carried. 815 if (!AA) { 816 SDep Dep(Load, SDep::Barrier); 817 Dep.setLatency(1); 818 SU.addPred(Dep); 819 continue; 820 } 821 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 822 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 823 if (!MMO1->getValue() || !MMO2->getValue()) { 824 SDep Dep(Load, SDep::Barrier); 825 Dep.setLatency(1); 826 SU.addPred(Dep); 827 continue; 828 } 829 if (MMO1->getValue() == MMO2->getValue() && 830 MMO1->getOffset() <= MMO2->getOffset()) { 831 SDep Dep(Load, SDep::Barrier); 832 Dep.setLatency(1); 833 SU.addPred(Dep); 834 continue; 835 } 836 if (!AA->isNoAlias( 837 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()), 838 MemoryLocation::getAfter(MMO2->getValue(), 839 MMO2->getAAInfo()))) { 840 SDep Dep(Load, SDep::Barrier); 841 Dep.setLatency(1); 842 SU.addPred(Dep); 843 } 844 } 845 } 846 } 847 } 848 } 849 850 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 851 /// processes dependences for PHIs. This function adds true dependences 852 /// from a PHI to a use, and a loop carried dependence from the use to the 853 /// PHI. The loop carried dependence is represented as an anti dependence 854 /// edge. This function also removes chain dependences between unrelated 855 /// PHIs. 856 void SwingSchedulerDAG::updatePhiDependences() { 857 SmallVector<SDep, 4> RemoveDeps; 858 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 859 860 // Iterate over each DAG node. 861 for (SUnit &I : SUnits) { 862 RemoveDeps.clear(); 863 // Set to true if the instruction has an operand defined by a Phi. 864 unsigned HasPhiUse = 0; 865 unsigned HasPhiDef = 0; 866 MachineInstr *MI = I.getInstr(); 867 // Iterate over each operand, and we process the definitions. 868 for (const MachineOperand &MO : MI->operands()) { 869 if (!MO.isReg()) 870 continue; 871 Register Reg = MO.getReg(); 872 if (MO.isDef()) { 873 // If the register is used by a Phi, then create an anti dependence. 874 for (MachineRegisterInfo::use_instr_iterator 875 UI = MRI.use_instr_begin(Reg), 876 UE = MRI.use_instr_end(); 877 UI != UE; ++UI) { 878 MachineInstr *UseMI = &*UI; 879 SUnit *SU = getSUnit(UseMI); 880 if (SU != nullptr && UseMI->isPHI()) { 881 if (!MI->isPHI()) { 882 SDep Dep(SU, SDep::Anti, Reg); 883 Dep.setLatency(1); 884 I.addPred(Dep); 885 } else { 886 HasPhiDef = Reg; 887 // Add a chain edge to a dependent Phi that isn't an existing 888 // predecessor. 889 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 890 I.addPred(SDep(SU, SDep::Barrier)); 891 } 892 } 893 } 894 } else if (MO.isUse()) { 895 // If the register is defined by a Phi, then create a true dependence. 896 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 897 if (DefMI == nullptr) 898 continue; 899 SUnit *SU = getSUnit(DefMI); 900 if (SU != nullptr && DefMI->isPHI()) { 901 if (!MI->isPHI()) { 902 SDep Dep(SU, SDep::Data, Reg); 903 Dep.setLatency(0); 904 ST.adjustSchedDependency(SU, 0, &I, MO.getOperandNo(), Dep); 905 I.addPred(Dep); 906 } else { 907 HasPhiUse = Reg; 908 // Add a chain edge to a dependent Phi that isn't an existing 909 // predecessor. 910 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 911 I.addPred(SDep(SU, SDep::Barrier)); 912 } 913 } 914 } 915 } 916 // Remove order dependences from an unrelated Phi. 917 if (!SwpPruneDeps) 918 continue; 919 for (auto &PI : I.Preds) { 920 MachineInstr *PMI = PI.getSUnit()->getInstr(); 921 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 922 if (I.getInstr()->isPHI()) { 923 if (PMI->getOperand(0).getReg() == HasPhiUse) 924 continue; 925 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 926 continue; 927 } 928 RemoveDeps.push_back(PI); 929 } 930 } 931 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 932 I.removePred(RemoveDeps[i]); 933 } 934 } 935 936 /// Iterate over each DAG node and see if we can change any dependences 937 /// in order to reduce the recurrence MII. 938 void SwingSchedulerDAG::changeDependences() { 939 // See if an instruction can use a value from the previous iteration. 940 // If so, we update the base and offset of the instruction and change 941 // the dependences. 942 for (SUnit &I : SUnits) { 943 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 944 int64_t NewOffset = 0; 945 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 946 NewOffset)) 947 continue; 948 949 // Get the MI and SUnit for the instruction that defines the original base. 950 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 951 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 952 if (!DefMI) 953 continue; 954 SUnit *DefSU = getSUnit(DefMI); 955 if (!DefSU) 956 continue; 957 // Get the MI and SUnit for the instruction that defins the new base. 958 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 959 if (!LastMI) 960 continue; 961 SUnit *LastSU = getSUnit(LastMI); 962 if (!LastSU) 963 continue; 964 965 if (Topo.IsReachable(&I, LastSU)) 966 continue; 967 968 // Remove the dependence. The value now depends on a prior iteration. 969 SmallVector<SDep, 4> Deps; 970 for (const SDep &P : I.Preds) 971 if (P.getSUnit() == DefSU) 972 Deps.push_back(P); 973 for (int i = 0, e = Deps.size(); i != e; i++) { 974 Topo.RemovePred(&I, Deps[i].getSUnit()); 975 I.removePred(Deps[i]); 976 } 977 // Remove the chain dependence between the instructions. 978 Deps.clear(); 979 for (auto &P : LastSU->Preds) 980 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 981 Deps.push_back(P); 982 for (int i = 0, e = Deps.size(); i != e; i++) { 983 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 984 LastSU->removePred(Deps[i]); 985 } 986 987 // Add a dependence between the new instruction and the instruction 988 // that defines the new base. 989 SDep Dep(&I, SDep::Anti, NewBase); 990 Topo.AddPred(LastSU, &I); 991 LastSU->addPred(Dep); 992 993 // Remember the base and offset information so that we can update the 994 // instruction during code generation. 995 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 996 } 997 } 998 999 namespace { 1000 1001 // FuncUnitSorter - Comparison operator used to sort instructions by 1002 // the number of functional unit choices. 1003 struct FuncUnitSorter { 1004 const InstrItineraryData *InstrItins; 1005 const MCSubtargetInfo *STI; 1006 DenseMap<InstrStage::FuncUnits, unsigned> Resources; 1007 1008 FuncUnitSorter(const TargetSubtargetInfo &TSI) 1009 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 1010 1011 // Compute the number of functional unit alternatives needed 1012 // at each stage, and take the minimum value. We prioritize the 1013 // instructions by the least number of choices first. 1014 unsigned minFuncUnits(const MachineInstr *Inst, 1015 InstrStage::FuncUnits &F) const { 1016 unsigned SchedClass = Inst->getDesc().getSchedClass(); 1017 unsigned min = UINT_MAX; 1018 if (InstrItins && !InstrItins->isEmpty()) { 1019 for (const InstrStage &IS : 1020 make_range(InstrItins->beginStage(SchedClass), 1021 InstrItins->endStage(SchedClass))) { 1022 InstrStage::FuncUnits funcUnits = IS.getUnits(); 1023 unsigned numAlternatives = llvm::popcount(funcUnits); 1024 if (numAlternatives < min) { 1025 min = numAlternatives; 1026 F = funcUnits; 1027 } 1028 } 1029 return min; 1030 } 1031 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1032 const MCSchedClassDesc *SCDesc = 1033 STI->getSchedModel().getSchedClassDesc(SchedClass); 1034 if (!SCDesc->isValid()) 1035 // No valid Schedule Class Desc for schedClass, should be 1036 // Pseudo/PostRAPseudo 1037 return min; 1038 1039 for (const MCWriteProcResEntry &PRE : 1040 make_range(STI->getWriteProcResBegin(SCDesc), 1041 STI->getWriteProcResEnd(SCDesc))) { 1042 if (!PRE.ReleaseAtCycle) 1043 continue; 1044 const MCProcResourceDesc *ProcResource = 1045 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 1046 unsigned NumUnits = ProcResource->NumUnits; 1047 if (NumUnits < min) { 1048 min = NumUnits; 1049 F = PRE.ProcResourceIdx; 1050 } 1051 } 1052 return min; 1053 } 1054 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1055 } 1056 1057 // Compute the critical resources needed by the instruction. This 1058 // function records the functional units needed by instructions that 1059 // must use only one functional unit. We use this as a tie breaker 1060 // for computing the resource MII. The instrutions that require 1061 // the same, highly used, functional unit have high priority. 1062 void calcCriticalResources(MachineInstr &MI) { 1063 unsigned SchedClass = MI.getDesc().getSchedClass(); 1064 if (InstrItins && !InstrItins->isEmpty()) { 1065 for (const InstrStage &IS : 1066 make_range(InstrItins->beginStage(SchedClass), 1067 InstrItins->endStage(SchedClass))) { 1068 InstrStage::FuncUnits FuncUnits = IS.getUnits(); 1069 if (llvm::popcount(FuncUnits) == 1) 1070 Resources[FuncUnits]++; 1071 } 1072 return; 1073 } 1074 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1075 const MCSchedClassDesc *SCDesc = 1076 STI->getSchedModel().getSchedClassDesc(SchedClass); 1077 if (!SCDesc->isValid()) 1078 // No valid Schedule Class Desc for schedClass, should be 1079 // Pseudo/PostRAPseudo 1080 return; 1081 1082 for (const MCWriteProcResEntry &PRE : 1083 make_range(STI->getWriteProcResBegin(SCDesc), 1084 STI->getWriteProcResEnd(SCDesc))) { 1085 if (!PRE.ReleaseAtCycle) 1086 continue; 1087 Resources[PRE.ProcResourceIdx]++; 1088 } 1089 return; 1090 } 1091 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1092 } 1093 1094 /// Return true if IS1 has less priority than IS2. 1095 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1096 InstrStage::FuncUnits F1 = 0, F2 = 0; 1097 unsigned MFUs1 = minFuncUnits(IS1, F1); 1098 unsigned MFUs2 = minFuncUnits(IS2, F2); 1099 if (MFUs1 == MFUs2) 1100 return Resources.lookup(F1) < Resources.lookup(F2); 1101 return MFUs1 > MFUs2; 1102 } 1103 }; 1104 1105 } // end anonymous namespace 1106 1107 /// Calculate the resource constrained minimum initiation interval for the 1108 /// specified loop. We use the DFA to model the resources needed for 1109 /// each instruction, and we ignore dependences. A different DFA is created 1110 /// for each cycle that is required. When adding a new instruction, we attempt 1111 /// to add it to each existing DFA, until a legal space is found. If the 1112 /// instruction cannot be reserved in an existing DFA, we create a new one. 1113 unsigned SwingSchedulerDAG::calculateResMII() { 1114 LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 1115 ResourceManager RM(&MF.getSubtarget(), this); 1116 return RM.calculateResMII(); 1117 } 1118 1119 /// Calculate the recurrence-constrainted minimum initiation interval. 1120 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1121 /// for each circuit. The II needs to satisfy the inequality 1122 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1123 /// II that satisfies the inequality, and the RecMII is the maximum 1124 /// of those values. 1125 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1126 unsigned RecMII = 0; 1127 1128 for (NodeSet &Nodes : NodeSets) { 1129 if (Nodes.empty()) 1130 continue; 1131 1132 unsigned Delay = Nodes.getLatency(); 1133 unsigned Distance = 1; 1134 1135 // ii = ceil(delay / distance) 1136 unsigned CurMII = (Delay + Distance - 1) / Distance; 1137 Nodes.setRecMII(CurMII); 1138 if (CurMII > RecMII) 1139 RecMII = CurMII; 1140 } 1141 1142 return RecMII; 1143 } 1144 1145 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1146 /// but we do this to find the circuits, and then change them back. 1147 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1148 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1149 for (SUnit &SU : SUnits) { 1150 for (SDep &Pred : SU.Preds) 1151 if (Pred.getKind() == SDep::Anti) 1152 DepsAdded.push_back(std::make_pair(&SU, Pred)); 1153 } 1154 for (std::pair<SUnit *, SDep> &P : DepsAdded) { 1155 // Remove this anti dependency and add one in the reverse direction. 1156 SUnit *SU = P.first; 1157 SDep &D = P.second; 1158 SUnit *TargetSU = D.getSUnit(); 1159 unsigned Reg = D.getReg(); 1160 unsigned Lat = D.getLatency(); 1161 SU->removePred(D); 1162 SDep Dep(SU, SDep::Anti, Reg); 1163 Dep.setLatency(Lat); 1164 TargetSU->addPred(Dep); 1165 } 1166 } 1167 1168 /// Create the adjacency structure of the nodes in the graph. 1169 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1170 SwingSchedulerDAG *DAG) { 1171 BitVector Added(SUnits.size()); 1172 DenseMap<int, int> OutputDeps; 1173 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1174 Added.reset(); 1175 // Add any successor to the adjacency matrix and exclude duplicates. 1176 for (auto &SI : SUnits[i].Succs) { 1177 // Only create a back-edge on the first and last nodes of a dependence 1178 // chain. This records any chains and adds them later. 1179 if (SI.getKind() == SDep::Output) { 1180 int N = SI.getSUnit()->NodeNum; 1181 int BackEdge = i; 1182 auto Dep = OutputDeps.find(BackEdge); 1183 if (Dep != OutputDeps.end()) { 1184 BackEdge = Dep->second; 1185 OutputDeps.erase(Dep); 1186 } 1187 OutputDeps[N] = BackEdge; 1188 } 1189 // Do not process a boundary node, an artificial node. 1190 // A back-edge is processed only if it goes to a Phi. 1191 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1192 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1193 continue; 1194 int N = SI.getSUnit()->NodeNum; 1195 if (!Added.test(N)) { 1196 AdjK[i].push_back(N); 1197 Added.set(N); 1198 } 1199 } 1200 // A chain edge between a store and a load is treated as a back-edge in the 1201 // adjacency matrix. 1202 for (auto &PI : SUnits[i].Preds) { 1203 if (!SUnits[i].getInstr()->mayStore() || 1204 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1205 continue; 1206 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1207 int N = PI.getSUnit()->NodeNum; 1208 if (!Added.test(N)) { 1209 AdjK[i].push_back(N); 1210 Added.set(N); 1211 } 1212 } 1213 } 1214 } 1215 // Add back-edges in the adjacency matrix for the output dependences. 1216 for (auto &OD : OutputDeps) 1217 if (!Added.test(OD.second)) { 1218 AdjK[OD.first].push_back(OD.second); 1219 Added.set(OD.second); 1220 } 1221 } 1222 1223 /// Identify an elementary circuit in the dependence graph starting at the 1224 /// specified node. 1225 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1226 bool HasBackedge) { 1227 SUnit *SV = &SUnits[V]; 1228 bool F = false; 1229 Stack.insert(SV); 1230 Blocked.set(V); 1231 1232 for (auto W : AdjK[V]) { 1233 if (NumPaths > MaxPaths) 1234 break; 1235 if (W < S) 1236 continue; 1237 if (W == S) { 1238 if (!HasBackedge) 1239 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1240 F = true; 1241 ++NumPaths; 1242 break; 1243 } else if (!Blocked.test(W)) { 1244 if (circuit(W, S, NodeSets, 1245 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1246 F = true; 1247 } 1248 } 1249 1250 if (F) 1251 unblock(V); 1252 else { 1253 for (auto W : AdjK[V]) { 1254 if (W < S) 1255 continue; 1256 B[W].insert(SV); 1257 } 1258 } 1259 Stack.pop_back(); 1260 return F; 1261 } 1262 1263 /// Unblock a node in the circuit finding algorithm. 1264 void SwingSchedulerDAG::Circuits::unblock(int U) { 1265 Blocked.reset(U); 1266 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1267 while (!BU.empty()) { 1268 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1269 assert(SI != BU.end() && "Invalid B set."); 1270 SUnit *W = *SI; 1271 BU.erase(W); 1272 if (Blocked.test(W->NodeNum)) 1273 unblock(W->NodeNum); 1274 } 1275 } 1276 1277 /// Identify all the elementary circuits in the dependence graph using 1278 /// Johnson's circuit algorithm. 1279 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1280 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1281 // but we do this to find the circuits, and then change them back. 1282 swapAntiDependences(SUnits); 1283 1284 Circuits Cir(SUnits, Topo); 1285 // Create the adjacency structure. 1286 Cir.createAdjacencyStructure(this); 1287 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1288 Cir.reset(); 1289 Cir.circuit(i, i, NodeSets); 1290 } 1291 1292 // Change the dependences back so that we've created a DAG again. 1293 swapAntiDependences(SUnits); 1294 } 1295 1296 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1297 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1298 // additional copies that are needed across iterations. An artificial dependence 1299 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1300 1301 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1302 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1303 // PHI-------True-Dep------> USEOfPhi 1304 1305 // The mutation creates 1306 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1307 1308 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1309 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1310 // late to avoid additional copies across iterations. The possible scheduling 1311 // order would be 1312 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1313 1314 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1315 for (SUnit &SU : DAG->SUnits) { 1316 // Find the COPY/REG_SEQUENCE instruction. 1317 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1318 continue; 1319 1320 // Record the loop carried PHIs. 1321 SmallVector<SUnit *, 4> PHISUs; 1322 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1323 SmallVector<SUnit *, 4> SrcSUs; 1324 1325 for (auto &Dep : SU.Preds) { 1326 SUnit *TmpSU = Dep.getSUnit(); 1327 MachineInstr *TmpMI = TmpSU->getInstr(); 1328 SDep::Kind DepKind = Dep.getKind(); 1329 // Save the loop carried PHI. 1330 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1331 PHISUs.push_back(TmpSU); 1332 // Save the source of COPY/REG_SEQUENCE. 1333 // If the source has no pre-decessors, we will end up creating cycles. 1334 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1335 SrcSUs.push_back(TmpSU); 1336 } 1337 1338 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1339 continue; 1340 1341 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1342 // SUnit to the container. 1343 SmallVector<SUnit *, 8> UseSUs; 1344 // Do not use iterator based loop here as we are updating the container. 1345 for (size_t Index = 0; Index < PHISUs.size(); ++Index) { 1346 for (auto &Dep : PHISUs[Index]->Succs) { 1347 if (Dep.getKind() != SDep::Data) 1348 continue; 1349 1350 SUnit *TmpSU = Dep.getSUnit(); 1351 MachineInstr *TmpMI = TmpSU->getInstr(); 1352 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1353 PHISUs.push_back(TmpSU); 1354 continue; 1355 } 1356 UseSUs.push_back(TmpSU); 1357 } 1358 } 1359 1360 if (UseSUs.size() == 0) 1361 continue; 1362 1363 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1364 // Add the artificial dependencies if it does not form a cycle. 1365 for (auto *I : UseSUs) { 1366 for (auto *Src : SrcSUs) { 1367 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1368 Src->addPred(SDep(I, SDep::Artificial)); 1369 SDAG->Topo.AddPred(Src, I); 1370 } 1371 } 1372 } 1373 } 1374 } 1375 1376 /// Return true for DAG nodes that we ignore when computing the cost functions. 1377 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1378 /// in the calculation of the ASAP, ALAP, etc functions. 1379 static bool ignoreDependence(const SDep &D, bool isPred) { 1380 if (D.isArtificial() || D.getSUnit()->isBoundaryNode()) 1381 return true; 1382 return D.getKind() == SDep::Anti && isPred; 1383 } 1384 1385 /// Compute several functions need to order the nodes for scheduling. 1386 /// ASAP - Earliest time to schedule a node. 1387 /// ALAP - Latest time to schedule a node. 1388 /// MOV - Mobility function, difference between ALAP and ASAP. 1389 /// D - Depth of each node. 1390 /// H - Height of each node. 1391 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1392 ScheduleInfo.resize(SUnits.size()); 1393 1394 LLVM_DEBUG({ 1395 for (int I : Topo) { 1396 const SUnit &SU = SUnits[I]; 1397 dumpNode(SU); 1398 } 1399 }); 1400 1401 int maxASAP = 0; 1402 // Compute ASAP and ZeroLatencyDepth. 1403 for (int I : Topo) { 1404 int asap = 0; 1405 int zeroLatencyDepth = 0; 1406 SUnit *SU = &SUnits[I]; 1407 for (const SDep &P : SU->Preds) { 1408 SUnit *pred = P.getSUnit(); 1409 if (P.getLatency() == 0) 1410 zeroLatencyDepth = 1411 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1412 if (ignoreDependence(P, true)) 1413 continue; 1414 asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() - 1415 getDistance(pred, SU, P) * MII)); 1416 } 1417 maxASAP = std::max(maxASAP, asap); 1418 ScheduleInfo[I].ASAP = asap; 1419 ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth; 1420 } 1421 1422 // Compute ALAP, ZeroLatencyHeight, and MOV. 1423 for (int I : llvm::reverse(Topo)) { 1424 int alap = maxASAP; 1425 int zeroLatencyHeight = 0; 1426 SUnit *SU = &SUnits[I]; 1427 for (const SDep &S : SU->Succs) { 1428 SUnit *succ = S.getSUnit(); 1429 if (succ->isBoundaryNode()) 1430 continue; 1431 if (S.getLatency() == 0) 1432 zeroLatencyHeight = 1433 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1434 if (ignoreDependence(S, true)) 1435 continue; 1436 alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() + 1437 getDistance(SU, succ, S) * MII)); 1438 } 1439 1440 ScheduleInfo[I].ALAP = alap; 1441 ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight; 1442 } 1443 1444 // After computing the node functions, compute the summary for each node set. 1445 for (NodeSet &I : NodeSets) 1446 I.computeNodeSetInfo(this); 1447 1448 LLVM_DEBUG({ 1449 for (unsigned i = 0; i < SUnits.size(); i++) { 1450 dbgs() << "\tNode " << i << ":\n"; 1451 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1452 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1453 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1454 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1455 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1456 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1457 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1458 } 1459 }); 1460 } 1461 1462 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1463 /// as the predecessors of the elements of NodeOrder that are not also in 1464 /// NodeOrder. 1465 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1466 SmallSetVector<SUnit *, 8> &Preds, 1467 const NodeSet *S = nullptr) { 1468 Preds.clear(); 1469 for (const SUnit *SU : NodeOrder) { 1470 for (const SDep &Pred : SU->Preds) { 1471 if (S && S->count(Pred.getSUnit()) == 0) 1472 continue; 1473 if (ignoreDependence(Pred, true)) 1474 continue; 1475 if (NodeOrder.count(Pred.getSUnit()) == 0) 1476 Preds.insert(Pred.getSUnit()); 1477 } 1478 // Back-edges are predecessors with an anti-dependence. 1479 for (const SDep &Succ : SU->Succs) { 1480 if (Succ.getKind() != SDep::Anti) 1481 continue; 1482 if (S && S->count(Succ.getSUnit()) == 0) 1483 continue; 1484 if (NodeOrder.count(Succ.getSUnit()) == 0) 1485 Preds.insert(Succ.getSUnit()); 1486 } 1487 } 1488 return !Preds.empty(); 1489 } 1490 1491 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1492 /// as the successors of the elements of NodeOrder that are not also in 1493 /// NodeOrder. 1494 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1495 SmallSetVector<SUnit *, 8> &Succs, 1496 const NodeSet *S = nullptr) { 1497 Succs.clear(); 1498 for (const SUnit *SU : NodeOrder) { 1499 for (const SDep &Succ : SU->Succs) { 1500 if (S && S->count(Succ.getSUnit()) == 0) 1501 continue; 1502 if (ignoreDependence(Succ, false)) 1503 continue; 1504 if (NodeOrder.count(Succ.getSUnit()) == 0) 1505 Succs.insert(Succ.getSUnit()); 1506 } 1507 for (const SDep &Pred : SU->Preds) { 1508 if (Pred.getKind() != SDep::Anti) 1509 continue; 1510 if (S && S->count(Pred.getSUnit()) == 0) 1511 continue; 1512 if (NodeOrder.count(Pred.getSUnit()) == 0) 1513 Succs.insert(Pred.getSUnit()); 1514 } 1515 } 1516 return !Succs.empty(); 1517 } 1518 1519 /// Return true if there is a path from the specified node to any of the nodes 1520 /// in DestNodes. Keep track and return the nodes in any path. 1521 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1522 SetVector<SUnit *> &DestNodes, 1523 SetVector<SUnit *> &Exclude, 1524 SmallPtrSet<SUnit *, 8> &Visited) { 1525 if (Cur->isBoundaryNode()) 1526 return false; 1527 if (Exclude.contains(Cur)) 1528 return false; 1529 if (DestNodes.contains(Cur)) 1530 return true; 1531 if (!Visited.insert(Cur).second) 1532 return Path.contains(Cur); 1533 bool FoundPath = false; 1534 for (auto &SI : Cur->Succs) 1535 if (!ignoreDependence(SI, false)) 1536 FoundPath |= 1537 computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1538 for (auto &PI : Cur->Preds) 1539 if (PI.getKind() == SDep::Anti) 1540 FoundPath |= 1541 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1542 if (FoundPath) 1543 Path.insert(Cur); 1544 return FoundPath; 1545 } 1546 1547 /// Compute the live-out registers for the instructions in a node-set. 1548 /// The live-out registers are those that are defined in the node-set, 1549 /// but not used. Except for use operands of Phis. 1550 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1551 NodeSet &NS) { 1552 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1553 MachineRegisterInfo &MRI = MF.getRegInfo(); 1554 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1555 SmallSet<unsigned, 4> Uses; 1556 for (SUnit *SU : NS) { 1557 const MachineInstr *MI = SU->getInstr(); 1558 if (MI->isPHI()) 1559 continue; 1560 for (const MachineOperand &MO : MI->all_uses()) { 1561 Register Reg = MO.getReg(); 1562 if (Reg.isVirtual()) 1563 Uses.insert(Reg); 1564 else if (MRI.isAllocatable(Reg)) 1565 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) 1566 Uses.insert(Unit); 1567 } 1568 } 1569 for (SUnit *SU : NS) 1570 for (const MachineOperand &MO : SU->getInstr()->all_defs()) 1571 if (!MO.isDead()) { 1572 Register Reg = MO.getReg(); 1573 if (Reg.isVirtual()) { 1574 if (!Uses.count(Reg)) 1575 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1576 LaneBitmask::getNone())); 1577 } else if (MRI.isAllocatable(Reg)) { 1578 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) 1579 if (!Uses.count(Unit)) 1580 LiveOutRegs.push_back( 1581 RegisterMaskPair(Unit, LaneBitmask::getNone())); 1582 } 1583 } 1584 RPTracker.addLiveRegs(LiveOutRegs); 1585 } 1586 1587 /// A heuristic to filter nodes in recurrent node-sets if the register 1588 /// pressure of a set is too high. 1589 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1590 for (auto &NS : NodeSets) { 1591 // Skip small node-sets since they won't cause register pressure problems. 1592 if (NS.size() <= 2) 1593 continue; 1594 IntervalPressure RecRegPressure; 1595 RegPressureTracker RecRPTracker(RecRegPressure); 1596 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1597 computeLiveOuts(MF, RecRPTracker, NS); 1598 RecRPTracker.closeBottom(); 1599 1600 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1601 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 1602 return A->NodeNum > B->NodeNum; 1603 }); 1604 1605 for (auto &SU : SUnits) { 1606 // Since we're computing the register pressure for a subset of the 1607 // instructions in a block, we need to set the tracker for each 1608 // instruction in the node-set. The tracker is set to the instruction 1609 // just after the one we're interested in. 1610 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1611 RecRPTracker.setPos(std::next(CurInstI)); 1612 1613 RegPressureDelta RPDelta; 1614 ArrayRef<PressureChange> CriticalPSets; 1615 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1616 CriticalPSets, 1617 RecRegPressure.MaxSetPressure); 1618 if (RPDelta.Excess.isValid()) { 1619 LLVM_DEBUG( 1620 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1621 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1622 << ":" << RPDelta.Excess.getUnitInc() << "\n"); 1623 NS.setExceedPressure(SU); 1624 break; 1625 } 1626 RecRPTracker.recede(); 1627 } 1628 } 1629 } 1630 1631 /// A heuristic to colocate node sets that have the same set of 1632 /// successors. 1633 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1634 unsigned Colocate = 0; 1635 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1636 NodeSet &N1 = NodeSets[i]; 1637 SmallSetVector<SUnit *, 8> S1; 1638 if (N1.empty() || !succ_L(N1, S1)) 1639 continue; 1640 for (int j = i + 1; j < e; ++j) { 1641 NodeSet &N2 = NodeSets[j]; 1642 if (N1.compareRecMII(N2) != 0) 1643 continue; 1644 SmallSetVector<SUnit *, 8> S2; 1645 if (N2.empty() || !succ_L(N2, S2)) 1646 continue; 1647 if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) { 1648 N1.setColocate(++Colocate); 1649 N2.setColocate(Colocate); 1650 break; 1651 } 1652 } 1653 } 1654 } 1655 1656 /// Check if the existing node-sets are profitable. If not, then ignore the 1657 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1658 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 1659 /// then it's best to try to schedule all instructions together instead of 1660 /// starting with the recurrent node-sets. 1661 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1662 // Look for loops with a large MII. 1663 if (MII < 17) 1664 return; 1665 // Check if the node-set contains only a simple add recurrence. 1666 for (auto &NS : NodeSets) { 1667 if (NS.getRecMII() > 2) 1668 return; 1669 if (NS.getMaxDepth() > MII) 1670 return; 1671 } 1672 NodeSets.clear(); 1673 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1674 } 1675 1676 /// Add the nodes that do not belong to a recurrence set into groups 1677 /// based upon connected components. 1678 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1679 SetVector<SUnit *> NodesAdded; 1680 SmallPtrSet<SUnit *, 8> Visited; 1681 // Add the nodes that are on a path between the previous node sets and 1682 // the current node set. 1683 for (NodeSet &I : NodeSets) { 1684 SmallSetVector<SUnit *, 8> N; 1685 // Add the nodes from the current node set to the previous node set. 1686 if (succ_L(I, N)) { 1687 SetVector<SUnit *> Path; 1688 for (SUnit *NI : N) { 1689 Visited.clear(); 1690 computePath(NI, Path, NodesAdded, I, Visited); 1691 } 1692 if (!Path.empty()) 1693 I.insert(Path.begin(), Path.end()); 1694 } 1695 // Add the nodes from the previous node set to the current node set. 1696 N.clear(); 1697 if (succ_L(NodesAdded, N)) { 1698 SetVector<SUnit *> Path; 1699 for (SUnit *NI : N) { 1700 Visited.clear(); 1701 computePath(NI, Path, I, NodesAdded, Visited); 1702 } 1703 if (!Path.empty()) 1704 I.insert(Path.begin(), Path.end()); 1705 } 1706 NodesAdded.insert(I.begin(), I.end()); 1707 } 1708 1709 // Create a new node set with the connected nodes of any successor of a node 1710 // in a recurrent set. 1711 NodeSet NewSet; 1712 SmallSetVector<SUnit *, 8> N; 1713 if (succ_L(NodesAdded, N)) 1714 for (SUnit *I : N) 1715 addConnectedNodes(I, NewSet, NodesAdded); 1716 if (!NewSet.empty()) 1717 NodeSets.push_back(NewSet); 1718 1719 // Create a new node set with the connected nodes of any predecessor of a node 1720 // in a recurrent set. 1721 NewSet.clear(); 1722 if (pred_L(NodesAdded, N)) 1723 for (SUnit *I : N) 1724 addConnectedNodes(I, NewSet, NodesAdded); 1725 if (!NewSet.empty()) 1726 NodeSets.push_back(NewSet); 1727 1728 // Create new nodes sets with the connected nodes any remaining node that 1729 // has no predecessor. 1730 for (SUnit &SU : SUnits) { 1731 if (NodesAdded.count(&SU) == 0) { 1732 NewSet.clear(); 1733 addConnectedNodes(&SU, NewSet, NodesAdded); 1734 if (!NewSet.empty()) 1735 NodeSets.push_back(NewSet); 1736 } 1737 } 1738 } 1739 1740 /// Add the node to the set, and add all of its connected nodes to the set. 1741 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1742 SetVector<SUnit *> &NodesAdded) { 1743 NewSet.insert(SU); 1744 NodesAdded.insert(SU); 1745 for (auto &SI : SU->Succs) { 1746 SUnit *Successor = SI.getSUnit(); 1747 if (!SI.isArtificial() && !Successor->isBoundaryNode() && 1748 NodesAdded.count(Successor) == 0) 1749 addConnectedNodes(Successor, NewSet, NodesAdded); 1750 } 1751 for (auto &PI : SU->Preds) { 1752 SUnit *Predecessor = PI.getSUnit(); 1753 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1754 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1755 } 1756 } 1757 1758 /// Return true if Set1 contains elements in Set2. The elements in common 1759 /// are returned in a different container. 1760 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1761 SmallSetVector<SUnit *, 8> &Result) { 1762 Result.clear(); 1763 for (SUnit *SU : Set1) { 1764 if (Set2.count(SU) != 0) 1765 Result.insert(SU); 1766 } 1767 return !Result.empty(); 1768 } 1769 1770 /// Merge the recurrence node sets that have the same initial node. 1771 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1772 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1773 ++I) { 1774 NodeSet &NI = *I; 1775 for (NodeSetType::iterator J = I + 1; J != E;) { 1776 NodeSet &NJ = *J; 1777 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1778 if (NJ.compareRecMII(NI) > 0) 1779 NI.setRecMII(NJ.getRecMII()); 1780 for (SUnit *SU : *J) 1781 I->insert(SU); 1782 NodeSets.erase(J); 1783 E = NodeSets.end(); 1784 } else { 1785 ++J; 1786 } 1787 } 1788 } 1789 } 1790 1791 /// Remove nodes that have been scheduled in previous NodeSets. 1792 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1793 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1794 ++I) 1795 for (NodeSetType::iterator J = I + 1; J != E;) { 1796 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1797 1798 if (J->empty()) { 1799 NodeSets.erase(J); 1800 E = NodeSets.end(); 1801 } else { 1802 ++J; 1803 } 1804 } 1805 } 1806 1807 /// Compute an ordered list of the dependence graph nodes, which 1808 /// indicates the order that the nodes will be scheduled. This is a 1809 /// two-level algorithm. First, a partial order is created, which 1810 /// consists of a list of sets ordered from highest to lowest priority. 1811 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 1812 SmallSetVector<SUnit *, 8> R; 1813 NodeOrder.clear(); 1814 1815 for (auto &Nodes : NodeSets) { 1816 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 1817 OrderKind Order; 1818 SmallSetVector<SUnit *, 8> N; 1819 if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 1820 R.insert(N.begin(), N.end()); 1821 Order = BottomUp; 1822 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 1823 } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 1824 R.insert(N.begin(), N.end()); 1825 Order = TopDown; 1826 LLVM_DEBUG(dbgs() << " Top down (succs) "); 1827 } else if (isIntersect(N, Nodes, R)) { 1828 // If some of the successors are in the existing node-set, then use the 1829 // top-down ordering. 1830 Order = TopDown; 1831 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 1832 } else if (NodeSets.size() == 1) { 1833 for (const auto &N : Nodes) 1834 if (N->Succs.size() == 0) 1835 R.insert(N); 1836 Order = BottomUp; 1837 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 1838 } else { 1839 // Find the node with the highest ASAP. 1840 SUnit *maxASAP = nullptr; 1841 for (SUnit *SU : Nodes) { 1842 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 1843 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 1844 maxASAP = SU; 1845 } 1846 R.insert(maxASAP); 1847 Order = BottomUp; 1848 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 1849 } 1850 1851 while (!R.empty()) { 1852 if (Order == TopDown) { 1853 // Choose the node with the maximum height. If more than one, choose 1854 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 1855 // choose the node with the lowest MOV. 1856 while (!R.empty()) { 1857 SUnit *maxHeight = nullptr; 1858 for (SUnit *I : R) { 1859 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 1860 maxHeight = I; 1861 else if (getHeight(I) == getHeight(maxHeight) && 1862 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 1863 maxHeight = I; 1864 else if (getHeight(I) == getHeight(maxHeight) && 1865 getZeroLatencyHeight(I) == 1866 getZeroLatencyHeight(maxHeight) && 1867 getMOV(I) < getMOV(maxHeight)) 1868 maxHeight = I; 1869 } 1870 NodeOrder.insert(maxHeight); 1871 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 1872 R.remove(maxHeight); 1873 for (const auto &I : maxHeight->Succs) { 1874 if (Nodes.count(I.getSUnit()) == 0) 1875 continue; 1876 if (NodeOrder.contains(I.getSUnit())) 1877 continue; 1878 if (ignoreDependence(I, false)) 1879 continue; 1880 R.insert(I.getSUnit()); 1881 } 1882 // Back-edges are predecessors with an anti-dependence. 1883 for (const auto &I : maxHeight->Preds) { 1884 if (I.getKind() != SDep::Anti) 1885 continue; 1886 if (Nodes.count(I.getSUnit()) == 0) 1887 continue; 1888 if (NodeOrder.contains(I.getSUnit())) 1889 continue; 1890 R.insert(I.getSUnit()); 1891 } 1892 } 1893 Order = BottomUp; 1894 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 1895 SmallSetVector<SUnit *, 8> N; 1896 if (pred_L(NodeOrder, N, &Nodes)) 1897 R.insert(N.begin(), N.end()); 1898 } else { 1899 // Choose the node with the maximum depth. If more than one, choose 1900 // the node with the maximum ZeroLatencyDepth. If still more than one, 1901 // choose the node with the lowest MOV. 1902 while (!R.empty()) { 1903 SUnit *maxDepth = nullptr; 1904 for (SUnit *I : R) { 1905 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 1906 maxDepth = I; 1907 else if (getDepth(I) == getDepth(maxDepth) && 1908 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 1909 maxDepth = I; 1910 else if (getDepth(I) == getDepth(maxDepth) && 1911 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 1912 getMOV(I) < getMOV(maxDepth)) 1913 maxDepth = I; 1914 } 1915 NodeOrder.insert(maxDepth); 1916 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 1917 R.remove(maxDepth); 1918 if (Nodes.isExceedSU(maxDepth)) { 1919 Order = TopDown; 1920 R.clear(); 1921 R.insert(Nodes.getNode(0)); 1922 break; 1923 } 1924 for (const auto &I : maxDepth->Preds) { 1925 if (Nodes.count(I.getSUnit()) == 0) 1926 continue; 1927 if (NodeOrder.contains(I.getSUnit())) 1928 continue; 1929 R.insert(I.getSUnit()); 1930 } 1931 // Back-edges are predecessors with an anti-dependence. 1932 for (const auto &I : maxDepth->Succs) { 1933 if (I.getKind() != SDep::Anti) 1934 continue; 1935 if (Nodes.count(I.getSUnit()) == 0) 1936 continue; 1937 if (NodeOrder.contains(I.getSUnit())) 1938 continue; 1939 R.insert(I.getSUnit()); 1940 } 1941 } 1942 Order = TopDown; 1943 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 1944 SmallSetVector<SUnit *, 8> N; 1945 if (succ_L(NodeOrder, N, &Nodes)) 1946 R.insert(N.begin(), N.end()); 1947 } 1948 } 1949 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 1950 } 1951 1952 LLVM_DEBUG({ 1953 dbgs() << "Node order: "; 1954 for (SUnit *I : NodeOrder) 1955 dbgs() << " " << I->NodeNum << " "; 1956 dbgs() << "\n"; 1957 }); 1958 } 1959 1960 /// Process the nodes in the computed order and create the pipelined schedule 1961 /// of the instructions, if possible. Return true if a schedule is found. 1962 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 1963 1964 if (NodeOrder.empty()){ 1965 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 1966 return false; 1967 } 1968 1969 bool scheduleFound = false; 1970 // Keep increasing II until a valid schedule is found. 1971 for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) { 1972 Schedule.reset(); 1973 Schedule.setInitiationInterval(II); 1974 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 1975 1976 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 1977 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 1978 do { 1979 SUnit *SU = *NI; 1980 1981 // Compute the schedule time for the instruction, which is based 1982 // upon the scheduled time for any predecessors/successors. 1983 int EarlyStart = INT_MIN; 1984 int LateStart = INT_MAX; 1985 // These values are set when the size of the schedule window is limited 1986 // due to chain dependences. 1987 int SchedEnd = INT_MAX; 1988 int SchedStart = INT_MIN; 1989 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 1990 II, this); 1991 LLVM_DEBUG({ 1992 dbgs() << "\n"; 1993 dbgs() << "Inst (" << SU->NodeNum << ") "; 1994 SU->getInstr()->dump(); 1995 dbgs() << "\n"; 1996 }); 1997 LLVM_DEBUG({ 1998 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, 1999 LateStart, SchedEnd, SchedStart); 2000 }); 2001 2002 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2003 SchedStart > LateStart) 2004 scheduleFound = false; 2005 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2006 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2007 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2008 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2009 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2010 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2011 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2012 SchedEnd = 2013 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2014 // When scheduling a Phi it is better to start at the late cycle and go 2015 // backwards. The default order may insert the Phi too far away from 2016 // its first dependence. 2017 if (SU->getInstr()->isPHI()) 2018 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2019 else 2020 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2021 } else { 2022 int FirstCycle = Schedule.getFirstCycle(); 2023 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2024 FirstCycle + getASAP(SU) + II - 1, II); 2025 } 2026 // Even if we find a schedule, make sure the schedule doesn't exceed the 2027 // allowable number of stages. We keep trying if this happens. 2028 if (scheduleFound) 2029 if (SwpMaxStages > -1 && 2030 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2031 scheduleFound = false; 2032 2033 LLVM_DEBUG({ 2034 if (!scheduleFound) 2035 dbgs() << "\tCan't schedule\n"; 2036 }); 2037 } while (++NI != NE && scheduleFound); 2038 2039 // If a schedule is found, ensure non-pipelined instructions are in stage 0 2040 if (scheduleFound) 2041 scheduleFound = 2042 Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo); 2043 2044 // If a schedule is found, check if it is a valid schedule too. 2045 if (scheduleFound) 2046 scheduleFound = Schedule.isValidSchedule(this); 2047 } 2048 2049 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound 2050 << " (II=" << Schedule.getInitiationInterval() 2051 << ")\n"); 2052 2053 if (scheduleFound) { 2054 scheduleFound = LoopPipelinerInfo->shouldUseSchedule(*this, Schedule); 2055 if (!scheduleFound) 2056 LLVM_DEBUG(dbgs() << "Target rejected schedule\n"); 2057 } 2058 2059 if (scheduleFound) { 2060 Schedule.finalizeSchedule(this); 2061 Pass.ORE->emit([&]() { 2062 return MachineOptimizationRemarkAnalysis( 2063 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 2064 << "Schedule found with Initiation Interval: " 2065 << ore::NV("II", Schedule.getInitiationInterval()) 2066 << ", MaxStageCount: " 2067 << ore::NV("MaxStageCount", Schedule.getMaxStageCount()); 2068 }); 2069 } else 2070 Schedule.reset(); 2071 2072 return scheduleFound && Schedule.getMaxStageCount() > 0; 2073 } 2074 2075 /// Return true if we can compute the amount the instruction changes 2076 /// during each iteration. Set Delta to the amount of the change. 2077 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 2078 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2079 const MachineOperand *BaseOp; 2080 int64_t Offset; 2081 bool OffsetIsScalable; 2082 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 2083 return false; 2084 2085 // FIXME: This algorithm assumes instructions have fixed-size offsets. 2086 if (OffsetIsScalable) 2087 return false; 2088 2089 if (!BaseOp->isReg()) 2090 return false; 2091 2092 Register BaseReg = BaseOp->getReg(); 2093 2094 MachineRegisterInfo &MRI = MF.getRegInfo(); 2095 // Check if there is a Phi. If so, get the definition in the loop. 2096 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2097 if (BaseDef && BaseDef->isPHI()) { 2098 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2099 BaseDef = MRI.getVRegDef(BaseReg); 2100 } 2101 if (!BaseDef) 2102 return false; 2103 2104 int D = 0; 2105 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2106 return false; 2107 2108 Delta = D; 2109 return true; 2110 } 2111 2112 /// Check if we can change the instruction to use an offset value from the 2113 /// previous iteration. If so, return true and set the base and offset values 2114 /// so that we can rewrite the load, if necessary. 2115 /// v1 = Phi(v0, v3) 2116 /// v2 = load v1, 0 2117 /// v3 = post_store v1, 4, x 2118 /// This function enables the load to be rewritten as v2 = load v3, 4. 2119 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 2120 unsigned &BasePos, 2121 unsigned &OffsetPos, 2122 unsigned &NewBase, 2123 int64_t &Offset) { 2124 // Get the load instruction. 2125 if (TII->isPostIncrement(*MI)) 2126 return false; 2127 unsigned BasePosLd, OffsetPosLd; 2128 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 2129 return false; 2130 Register BaseReg = MI->getOperand(BasePosLd).getReg(); 2131 2132 // Look for the Phi instruction. 2133 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 2134 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 2135 if (!Phi || !Phi->isPHI()) 2136 return false; 2137 // Get the register defined in the loop block. 2138 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 2139 if (!PrevReg) 2140 return false; 2141 2142 // Check for the post-increment load/store instruction. 2143 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 2144 if (!PrevDef || PrevDef == MI) 2145 return false; 2146 2147 if (!TII->isPostIncrement(*PrevDef)) 2148 return false; 2149 2150 unsigned BasePos1 = 0, OffsetPos1 = 0; 2151 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 2152 return false; 2153 2154 // Make sure that the instructions do not access the same memory location in 2155 // the next iteration. 2156 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 2157 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 2158 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2159 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 2160 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 2161 MF.deleteMachineInstr(NewMI); 2162 if (!Disjoint) 2163 return false; 2164 2165 // Set the return value once we determine that we return true. 2166 BasePos = BasePosLd; 2167 OffsetPos = OffsetPosLd; 2168 NewBase = PrevReg; 2169 Offset = StoreOffset; 2170 return true; 2171 } 2172 2173 /// Apply changes to the instruction if needed. The changes are need 2174 /// to improve the scheduling and depend up on the final schedule. 2175 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 2176 SMSchedule &Schedule) { 2177 SUnit *SU = getSUnit(MI); 2178 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2179 InstrChanges.find(SU); 2180 if (It != InstrChanges.end()) { 2181 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2182 unsigned BasePos, OffsetPos; 2183 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2184 return; 2185 Register BaseReg = MI->getOperand(BasePos).getReg(); 2186 MachineInstr *LoopDef = findDefInLoop(BaseReg); 2187 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 2188 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 2189 int BaseStageNum = Schedule.stageScheduled(SU); 2190 int BaseCycleNum = Schedule.cycleScheduled(SU); 2191 if (BaseStageNum < DefStageNum) { 2192 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2193 int OffsetDiff = DefStageNum - BaseStageNum; 2194 if (DefCycleNum < BaseCycleNum) { 2195 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 2196 if (OffsetDiff > 0) 2197 --OffsetDiff; 2198 } 2199 int64_t NewOffset = 2200 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 2201 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2202 SU->setInstr(NewMI); 2203 MISUnitMap[NewMI] = SU; 2204 NewMIs[MI] = NewMI; 2205 } 2206 } 2207 } 2208 2209 /// Return the instruction in the loop that defines the register. 2210 /// If the definition is a Phi, then follow the Phi operand to 2211 /// the instruction in the loop. 2212 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) { 2213 SmallPtrSet<MachineInstr *, 8> Visited; 2214 MachineInstr *Def = MRI.getVRegDef(Reg); 2215 while (Def->isPHI()) { 2216 if (!Visited.insert(Def).second) 2217 break; 2218 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2219 if (Def->getOperand(i + 1).getMBB() == BB) { 2220 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2221 break; 2222 } 2223 } 2224 return Def; 2225 } 2226 2227 /// Return true for an order or output dependence that is loop carried 2228 /// potentially. A dependence is loop carried if the destination defines a value 2229 /// that may be used or defined by the source in a subsequent iteration. 2230 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 2231 bool isSucc) { 2232 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 2233 Dep.isArtificial() || Dep.getSUnit()->isBoundaryNode()) 2234 return false; 2235 2236 if (!SwpPruneLoopCarried) 2237 return true; 2238 2239 if (Dep.getKind() == SDep::Output) 2240 return true; 2241 2242 MachineInstr *SI = Source->getInstr(); 2243 MachineInstr *DI = Dep.getSUnit()->getInstr(); 2244 if (!isSucc) 2245 std::swap(SI, DI); 2246 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 2247 2248 // Assume ordered loads and stores may have a loop carried dependence. 2249 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 2250 SI->mayRaiseFPException() || DI->mayRaiseFPException() || 2251 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 2252 return true; 2253 2254 if (!DI->mayLoadOrStore() || !SI->mayLoadOrStore()) 2255 return false; 2256 2257 // The conservative assumption is that a dependence between memory operations 2258 // may be loop carried. The following code checks when it can be proved that 2259 // there is no loop carried dependence. 2260 unsigned DeltaS, DeltaD; 2261 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 2262 return true; 2263 2264 const MachineOperand *BaseOpS, *BaseOpD; 2265 int64_t OffsetS, OffsetD; 2266 bool OffsetSIsScalable, OffsetDIsScalable; 2267 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2268 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, 2269 TRI) || 2270 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, 2271 TRI)) 2272 return true; 2273 2274 assert(!OffsetSIsScalable && !OffsetDIsScalable && 2275 "Expected offsets to be byte offsets"); 2276 2277 MachineInstr *DefS = MRI.getVRegDef(BaseOpS->getReg()); 2278 MachineInstr *DefD = MRI.getVRegDef(BaseOpD->getReg()); 2279 if (!DefS || !DefD || !DefS->isPHI() || !DefD->isPHI()) 2280 return true; 2281 2282 unsigned InitValS = 0; 2283 unsigned LoopValS = 0; 2284 unsigned InitValD = 0; 2285 unsigned LoopValD = 0; 2286 getPhiRegs(*DefS, BB, InitValS, LoopValS); 2287 getPhiRegs(*DefD, BB, InitValD, LoopValD); 2288 MachineInstr *InitDefS = MRI.getVRegDef(InitValS); 2289 MachineInstr *InitDefD = MRI.getVRegDef(InitValD); 2290 2291 if (!InitDefS->isIdenticalTo(*InitDefD)) 2292 return true; 2293 2294 // Check that the base register is incremented by a constant value for each 2295 // iteration. 2296 MachineInstr *LoopDefS = MRI.getVRegDef(LoopValS); 2297 int D = 0; 2298 if (!LoopDefS || !TII->getIncrementValue(*LoopDefS, D)) 2299 return true; 2300 2301 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 2302 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 2303 2304 // This is the main test, which checks the offset values and the loop 2305 // increment value to determine if the accesses may be loop carried. 2306 if (AccessSizeS == MemoryLocation::UnknownSize || 2307 AccessSizeD == MemoryLocation::UnknownSize) 2308 return true; 2309 2310 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) 2311 return true; 2312 2313 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); 2314 } 2315 2316 void SwingSchedulerDAG::postProcessDAG() { 2317 for (auto &M : Mutations) 2318 M->apply(this); 2319 } 2320 2321 /// Try to schedule the node at the specified StartCycle and continue 2322 /// until the node is schedule or the EndCycle is reached. This function 2323 /// returns true if the node is scheduled. This routine may search either 2324 /// forward or backward for a place to insert the instruction based upon 2325 /// the relative values of StartCycle and EndCycle. 2326 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 2327 bool forward = true; 2328 LLVM_DEBUG({ 2329 dbgs() << "Trying to insert node between " << StartCycle << " and " 2330 << EndCycle << " II: " << II << "\n"; 2331 }); 2332 if (StartCycle > EndCycle) 2333 forward = false; 2334 2335 // The terminating condition depends on the direction. 2336 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 2337 for (int curCycle = StartCycle; curCycle != termCycle; 2338 forward ? ++curCycle : --curCycle) { 2339 2340 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 2341 ProcItinResources.canReserveResources(*SU, curCycle)) { 2342 LLVM_DEBUG({ 2343 dbgs() << "\tinsert at cycle " << curCycle << " "; 2344 SU->getInstr()->dump(); 2345 }); 2346 2347 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 2348 ProcItinResources.reserveResources(*SU, curCycle); 2349 ScheduledInstrs[curCycle].push_back(SU); 2350 InstrToCycle.insert(std::make_pair(SU, curCycle)); 2351 if (curCycle > LastCycle) 2352 LastCycle = curCycle; 2353 if (curCycle < FirstCycle) 2354 FirstCycle = curCycle; 2355 return true; 2356 } 2357 LLVM_DEBUG({ 2358 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 2359 SU->getInstr()->dump(); 2360 }); 2361 } 2362 return false; 2363 } 2364 2365 // Return the cycle of the earliest scheduled instruction in the chain. 2366 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 2367 SmallPtrSet<SUnit *, 8> Visited; 2368 SmallVector<SDep, 8> Worklist; 2369 Worklist.push_back(Dep); 2370 int EarlyCycle = INT_MAX; 2371 while (!Worklist.empty()) { 2372 const SDep &Cur = Worklist.pop_back_val(); 2373 SUnit *PrevSU = Cur.getSUnit(); 2374 if (Visited.count(PrevSU)) 2375 continue; 2376 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 2377 if (it == InstrToCycle.end()) 2378 continue; 2379 EarlyCycle = std::min(EarlyCycle, it->second); 2380 for (const auto &PI : PrevSU->Preds) 2381 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output) 2382 Worklist.push_back(PI); 2383 Visited.insert(PrevSU); 2384 } 2385 return EarlyCycle; 2386 } 2387 2388 // Return the cycle of the latest scheduled instruction in the chain. 2389 int SMSchedule::latestCycleInChain(const SDep &Dep) { 2390 SmallPtrSet<SUnit *, 8> Visited; 2391 SmallVector<SDep, 8> Worklist; 2392 Worklist.push_back(Dep); 2393 int LateCycle = INT_MIN; 2394 while (!Worklist.empty()) { 2395 const SDep &Cur = Worklist.pop_back_val(); 2396 SUnit *SuccSU = Cur.getSUnit(); 2397 if (Visited.count(SuccSU) || SuccSU->isBoundaryNode()) 2398 continue; 2399 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 2400 if (it == InstrToCycle.end()) 2401 continue; 2402 LateCycle = std::max(LateCycle, it->second); 2403 for (const auto &SI : SuccSU->Succs) 2404 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output) 2405 Worklist.push_back(SI); 2406 Visited.insert(SuccSU); 2407 } 2408 return LateCycle; 2409 } 2410 2411 /// If an instruction has a use that spans multiple iterations, then 2412 /// return true. These instructions are characterized by having a back-ege 2413 /// to a Phi, which contains a reference to another Phi. 2414 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 2415 for (auto &P : SU->Preds) 2416 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 2417 for (auto &S : P.getSUnit()->Succs) 2418 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 2419 return P.getSUnit(); 2420 return nullptr; 2421 } 2422 2423 /// Compute the scheduling start slot for the instruction. The start slot 2424 /// depends on any predecessor or successor nodes scheduled already. 2425 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 2426 int *MinEnd, int *MaxStart, int II, 2427 SwingSchedulerDAG *DAG) { 2428 // Iterate over each instruction that has been scheduled already. The start 2429 // slot computation depends on whether the previously scheduled instruction 2430 // is a predecessor or successor of the specified instruction. 2431 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 2432 2433 // Iterate over each instruction in the current cycle. 2434 for (SUnit *I : getInstructions(cycle)) { 2435 // Because we're processing a DAG for the dependences, we recognize 2436 // the back-edge in recurrences by anti dependences. 2437 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 2438 const SDep &Dep = SU->Preds[i]; 2439 if (Dep.getSUnit() == I) { 2440 if (!DAG->isBackedge(SU, Dep)) { 2441 int EarlyStart = cycle + Dep.getLatency() - 2442 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2443 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2444 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 2445 int End = earliestCycleInChain(Dep) + (II - 1); 2446 *MinEnd = std::min(*MinEnd, End); 2447 } 2448 } else { 2449 int LateStart = cycle - Dep.getLatency() + 2450 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2451 *MinLateStart = std::min(*MinLateStart, LateStart); 2452 } 2453 } 2454 // For instruction that requires multiple iterations, make sure that 2455 // the dependent instruction is not scheduled past the definition. 2456 SUnit *BE = multipleIterations(I, DAG); 2457 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 2458 !SU->isPred(I)) 2459 *MinLateStart = std::min(*MinLateStart, cycle); 2460 } 2461 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 2462 if (SU->Succs[i].getSUnit() == I) { 2463 const SDep &Dep = SU->Succs[i]; 2464 if (!DAG->isBackedge(SU, Dep)) { 2465 int LateStart = cycle - Dep.getLatency() + 2466 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2467 *MinLateStart = std::min(*MinLateStart, LateStart); 2468 if (DAG->isLoopCarriedDep(SU, Dep)) { 2469 int Start = latestCycleInChain(Dep) + 1 - II; 2470 *MaxStart = std::max(*MaxStart, Start); 2471 } 2472 } else { 2473 int EarlyStart = cycle + Dep.getLatency() - 2474 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2475 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2476 } 2477 } 2478 } 2479 } 2480 } 2481 } 2482 2483 /// Order the instructions within a cycle so that the definitions occur 2484 /// before the uses. Returns true if the instruction is added to the start 2485 /// of the list, or false if added to the end. 2486 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 2487 std::deque<SUnit *> &Insts) { 2488 MachineInstr *MI = SU->getInstr(); 2489 bool OrderBeforeUse = false; 2490 bool OrderAfterDef = false; 2491 bool OrderBeforeDef = false; 2492 unsigned MoveDef = 0; 2493 unsigned MoveUse = 0; 2494 int StageInst1 = stageScheduled(SU); 2495 2496 unsigned Pos = 0; 2497 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 2498 ++I, ++Pos) { 2499 for (MachineOperand &MO : MI->operands()) { 2500 if (!MO.isReg() || !MO.getReg().isVirtual()) 2501 continue; 2502 2503 Register Reg = MO.getReg(); 2504 unsigned BasePos, OffsetPos; 2505 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2506 if (MI->getOperand(BasePos).getReg() == Reg) 2507 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 2508 Reg = NewReg; 2509 bool Reads, Writes; 2510 std::tie(Reads, Writes) = 2511 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 2512 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 2513 OrderBeforeUse = true; 2514 if (MoveUse == 0) 2515 MoveUse = Pos; 2516 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 2517 // Add the instruction after the scheduled instruction. 2518 OrderAfterDef = true; 2519 MoveDef = Pos; 2520 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 2521 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 2522 OrderBeforeUse = true; 2523 if (MoveUse == 0) 2524 MoveUse = Pos; 2525 } else { 2526 OrderAfterDef = true; 2527 MoveDef = Pos; 2528 } 2529 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 2530 OrderBeforeUse = true; 2531 if (MoveUse == 0) 2532 MoveUse = Pos; 2533 if (MoveUse != 0) { 2534 OrderAfterDef = true; 2535 MoveDef = Pos - 1; 2536 } 2537 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 2538 // Add the instruction before the scheduled instruction. 2539 OrderBeforeUse = true; 2540 if (MoveUse == 0) 2541 MoveUse = Pos; 2542 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 2543 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 2544 if (MoveUse == 0) { 2545 OrderBeforeDef = true; 2546 MoveUse = Pos; 2547 } 2548 } 2549 } 2550 // Check for order dependences between instructions. Make sure the source 2551 // is ordered before the destination. 2552 for (auto &S : SU->Succs) { 2553 if (S.getSUnit() != *I) 2554 continue; 2555 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2556 OrderBeforeUse = true; 2557 if (Pos < MoveUse) 2558 MoveUse = Pos; 2559 } 2560 // We did not handle HW dependences in previous for loop, 2561 // and we normally set Latency = 0 for Anti deps, 2562 // so may have nodes in same cycle with Anti denpendent on HW regs. 2563 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { 2564 OrderBeforeUse = true; 2565 if ((MoveUse == 0) || (Pos < MoveUse)) 2566 MoveUse = Pos; 2567 } 2568 } 2569 for (auto &P : SU->Preds) { 2570 if (P.getSUnit() != *I) 2571 continue; 2572 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2573 OrderAfterDef = true; 2574 MoveDef = Pos; 2575 } 2576 } 2577 } 2578 2579 // A circular dependence. 2580 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 2581 OrderBeforeUse = false; 2582 2583 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 2584 // to a loop-carried dependence. 2585 if (OrderBeforeDef) 2586 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 2587 2588 // The uncommon case when the instruction order needs to be updated because 2589 // there is both a use and def. 2590 if (OrderBeforeUse && OrderAfterDef) { 2591 SUnit *UseSU = Insts.at(MoveUse); 2592 SUnit *DefSU = Insts.at(MoveDef); 2593 if (MoveUse > MoveDef) { 2594 Insts.erase(Insts.begin() + MoveUse); 2595 Insts.erase(Insts.begin() + MoveDef); 2596 } else { 2597 Insts.erase(Insts.begin() + MoveDef); 2598 Insts.erase(Insts.begin() + MoveUse); 2599 } 2600 orderDependence(SSD, UseSU, Insts); 2601 orderDependence(SSD, SU, Insts); 2602 orderDependence(SSD, DefSU, Insts); 2603 return; 2604 } 2605 // Put the new instruction first if there is a use in the list. Otherwise, 2606 // put it at the end of the list. 2607 if (OrderBeforeUse) 2608 Insts.push_front(SU); 2609 else 2610 Insts.push_back(SU); 2611 } 2612 2613 /// Return true if the scheduled Phi has a loop carried operand. 2614 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 2615 if (!Phi.isPHI()) 2616 return false; 2617 assert(Phi.isPHI() && "Expecting a Phi."); 2618 SUnit *DefSU = SSD->getSUnit(&Phi); 2619 unsigned DefCycle = cycleScheduled(DefSU); 2620 int DefStage = stageScheduled(DefSU); 2621 2622 unsigned InitVal = 0; 2623 unsigned LoopVal = 0; 2624 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 2625 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 2626 if (!UseSU) 2627 return true; 2628 if (UseSU->getInstr()->isPHI()) 2629 return true; 2630 unsigned LoopCycle = cycleScheduled(UseSU); 2631 int LoopStage = stageScheduled(UseSU); 2632 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 2633 } 2634 2635 /// Return true if the instruction is a definition that is loop carried 2636 /// and defines the use on the next iteration. 2637 /// v1 = phi(v2, v3) 2638 /// (Def) v3 = op v1 2639 /// (MO) = v1 2640 /// If MO appears before Def, then v1 and v3 may get assigned to the same 2641 /// register. 2642 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 2643 MachineInstr *Def, MachineOperand &MO) { 2644 if (!MO.isReg()) 2645 return false; 2646 if (Def->isPHI()) 2647 return false; 2648 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 2649 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 2650 return false; 2651 if (!isLoopCarried(SSD, *Phi)) 2652 return false; 2653 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 2654 for (MachineOperand &DMO : Def->all_defs()) { 2655 if (DMO.getReg() == LoopReg) 2656 return true; 2657 } 2658 return false; 2659 } 2660 2661 /// Determine transitive dependences of unpipelineable instructions 2662 SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes( 2663 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { 2664 SmallSet<SUnit *, 8> DoNotPipeline; 2665 SmallVector<SUnit *, 8> Worklist; 2666 2667 for (auto &SU : SSD->SUnits) 2668 if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr())) 2669 Worklist.push_back(&SU); 2670 2671 while (!Worklist.empty()) { 2672 auto SU = Worklist.pop_back_val(); 2673 if (DoNotPipeline.count(SU)) 2674 continue; 2675 LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n"); 2676 DoNotPipeline.insert(SU); 2677 for (auto &Dep : SU->Preds) 2678 Worklist.push_back(Dep.getSUnit()); 2679 if (SU->getInstr()->isPHI()) 2680 for (auto &Dep : SU->Succs) 2681 if (Dep.getKind() == SDep::Anti) 2682 Worklist.push_back(Dep.getSUnit()); 2683 } 2684 return DoNotPipeline; 2685 } 2686 2687 // Determine all instructions upon which any unpipelineable instruction depends 2688 // and ensure that they are in stage 0. If unable to do so, return false. 2689 bool SMSchedule::normalizeNonPipelinedInstructions( 2690 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { 2691 SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI); 2692 2693 int NewLastCycle = INT_MIN; 2694 for (SUnit &SU : SSD->SUnits) { 2695 if (!SU.isInstr()) 2696 continue; 2697 if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) { 2698 NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]); 2699 continue; 2700 } 2701 2702 // Put the non-pipelined instruction as early as possible in the schedule 2703 int NewCycle = getFirstCycle(); 2704 for (auto &Dep : SU.Preds) 2705 NewCycle = std::max(InstrToCycle[Dep.getSUnit()], NewCycle); 2706 2707 int OldCycle = InstrToCycle[&SU]; 2708 if (OldCycle != NewCycle) { 2709 InstrToCycle[&SU] = NewCycle; 2710 auto &OldS = getInstructions(OldCycle); 2711 llvm::erase(OldS, &SU); 2712 getInstructions(NewCycle).emplace_back(&SU); 2713 LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum 2714 << ") is not pipelined; moving from cycle " << OldCycle 2715 << " to " << NewCycle << " Instr:" << *SU.getInstr()); 2716 } 2717 NewLastCycle = std::max(NewLastCycle, NewCycle); 2718 } 2719 LastCycle = NewLastCycle; 2720 return true; 2721 } 2722 2723 // Check if the generated schedule is valid. This function checks if 2724 // an instruction that uses a physical register is scheduled in a 2725 // different stage than the definition. The pipeliner does not handle 2726 // physical register values that may cross a basic block boundary. 2727 // Furthermore, if a physical def/use pair is assigned to the same 2728 // cycle, orderDependence does not guarantee def/use ordering, so that 2729 // case should be considered invalid. (The test checks for both 2730 // earlier and same-cycle use to be more robust.) 2731 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 2732 for (SUnit &SU : SSD->SUnits) { 2733 if (!SU.hasPhysRegDefs) 2734 continue; 2735 int StageDef = stageScheduled(&SU); 2736 int CycleDef = InstrToCycle[&SU]; 2737 assert(StageDef != -1 && "Instruction should have been scheduled."); 2738 for (auto &SI : SU.Succs) 2739 if (SI.isAssignedRegDep() && !SI.getSUnit()->isBoundaryNode()) 2740 if (Register::isPhysicalRegister(SI.getReg())) { 2741 if (stageScheduled(SI.getSUnit()) != StageDef) 2742 return false; 2743 if (InstrToCycle[SI.getSUnit()] <= CycleDef) 2744 return false; 2745 } 2746 } 2747 return true; 2748 } 2749 2750 /// A property of the node order in swing-modulo-scheduling is 2751 /// that for nodes outside circuits the following holds: 2752 /// none of them is scheduled after both a successor and a 2753 /// predecessor. 2754 /// The method below checks whether the property is met. 2755 /// If not, debug information is printed and statistics information updated. 2756 /// Note that we do not use an assert statement. 2757 /// The reason is that although an invalid node oder may prevent 2758 /// the pipeliner from finding a pipelined schedule for arbitrary II, 2759 /// it does not lead to the generation of incorrect code. 2760 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 2761 2762 // a sorted vector that maps each SUnit to its index in the NodeOrder 2763 typedef std::pair<SUnit *, unsigned> UnitIndex; 2764 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 2765 2766 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 2767 Indices.push_back(std::make_pair(NodeOrder[i], i)); 2768 2769 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 2770 return std::get<0>(i1) < std::get<0>(i2); 2771 }; 2772 2773 // sort, so that we can perform a binary search 2774 llvm::sort(Indices, CompareKey); 2775 2776 bool Valid = true; 2777 (void)Valid; 2778 // for each SUnit in the NodeOrder, check whether 2779 // it appears after both a successor and a predecessor 2780 // of the SUnit. If this is the case, and the SUnit 2781 // is not part of circuit, then the NodeOrder is not 2782 // valid. 2783 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 2784 SUnit *SU = NodeOrder[i]; 2785 unsigned Index = i; 2786 2787 bool PredBefore = false; 2788 bool SuccBefore = false; 2789 2790 SUnit *Succ; 2791 SUnit *Pred; 2792 (void)Succ; 2793 (void)Pred; 2794 2795 for (SDep &PredEdge : SU->Preds) { 2796 SUnit *PredSU = PredEdge.getSUnit(); 2797 unsigned PredIndex = std::get<1>( 2798 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); 2799 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 2800 PredBefore = true; 2801 Pred = PredSU; 2802 break; 2803 } 2804 } 2805 2806 for (SDep &SuccEdge : SU->Succs) { 2807 SUnit *SuccSU = SuccEdge.getSUnit(); 2808 // Do not process a boundary node, it was not included in NodeOrder, 2809 // hence not in Indices either, call to std::lower_bound() below will 2810 // return Indices.end(). 2811 if (SuccSU->isBoundaryNode()) 2812 continue; 2813 unsigned SuccIndex = std::get<1>( 2814 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); 2815 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 2816 SuccBefore = true; 2817 Succ = SuccSU; 2818 break; 2819 } 2820 } 2821 2822 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 2823 // instructions in circuits are allowed to be scheduled 2824 // after both a successor and predecessor. 2825 bool InCircuit = llvm::any_of( 2826 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 2827 if (InCircuit) 2828 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 2829 else { 2830 Valid = false; 2831 NumNodeOrderIssues++; 2832 LLVM_DEBUG(dbgs() << "Predecessor ";); 2833 } 2834 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 2835 << " are scheduled before node " << SU->NodeNum 2836 << "\n";); 2837 } 2838 } 2839 2840 LLVM_DEBUG({ 2841 if (!Valid) 2842 dbgs() << "Invalid node order found!\n"; 2843 }); 2844 } 2845 2846 /// Attempt to fix the degenerate cases when the instruction serialization 2847 /// causes the register lifetimes to overlap. For example, 2848 /// p' = store_pi(p, b) 2849 /// = load p, offset 2850 /// In this case p and p' overlap, which means that two registers are needed. 2851 /// Instead, this function changes the load to use p' and updates the offset. 2852 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 2853 unsigned OverlapReg = 0; 2854 unsigned NewBaseReg = 0; 2855 for (SUnit *SU : Instrs) { 2856 MachineInstr *MI = SU->getInstr(); 2857 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 2858 const MachineOperand &MO = MI->getOperand(i); 2859 // Look for an instruction that uses p. The instruction occurs in the 2860 // same cycle but occurs later in the serialized order. 2861 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 2862 // Check that the instruction appears in the InstrChanges structure, 2863 // which contains instructions that can have the offset updated. 2864 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2865 InstrChanges.find(SU); 2866 if (It != InstrChanges.end()) { 2867 unsigned BasePos, OffsetPos; 2868 // Update the base register and adjust the offset. 2869 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 2870 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2871 NewMI->getOperand(BasePos).setReg(NewBaseReg); 2872 int64_t NewOffset = 2873 MI->getOperand(OffsetPos).getImm() - It->second.second; 2874 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2875 SU->setInstr(NewMI); 2876 MISUnitMap[NewMI] = SU; 2877 NewMIs[MI] = NewMI; 2878 } 2879 } 2880 OverlapReg = 0; 2881 NewBaseReg = 0; 2882 break; 2883 } 2884 // Look for an instruction of the form p' = op(p), which uses and defines 2885 // two virtual registers that get allocated to the same physical register. 2886 unsigned TiedUseIdx = 0; 2887 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 2888 // OverlapReg is p in the example above. 2889 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 2890 // NewBaseReg is p' in the example above. 2891 NewBaseReg = MI->getOperand(i).getReg(); 2892 break; 2893 } 2894 } 2895 } 2896 } 2897 2898 /// After the schedule has been formed, call this function to combine 2899 /// the instructions from the different stages/cycles. That is, this 2900 /// function creates a schedule that represents a single iteration. 2901 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 2902 // Move all instructions to the first stage from later stages. 2903 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 2904 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 2905 ++stage) { 2906 std::deque<SUnit *> &cycleInstrs = 2907 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 2908 for (SUnit *SU : llvm::reverse(cycleInstrs)) 2909 ScheduledInstrs[cycle].push_front(SU); 2910 } 2911 } 2912 2913 // Erase all the elements in the later stages. Only one iteration should 2914 // remain in the scheduled list, and it contains all the instructions. 2915 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 2916 ScheduledInstrs.erase(cycle); 2917 2918 // Change the registers in instruction as specified in the InstrChanges 2919 // map. We need to use the new registers to create the correct order. 2920 for (const SUnit &SU : SSD->SUnits) 2921 SSD->applyInstrChange(SU.getInstr(), *this); 2922 2923 // Reorder the instructions in each cycle to fix and improve the 2924 // generated code. 2925 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 2926 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 2927 std::deque<SUnit *> newOrderPhi; 2928 for (SUnit *SU : cycleInstrs) { 2929 if (SU->getInstr()->isPHI()) 2930 newOrderPhi.push_back(SU); 2931 } 2932 std::deque<SUnit *> newOrderI; 2933 for (SUnit *SU : cycleInstrs) { 2934 if (!SU->getInstr()->isPHI()) 2935 orderDependence(SSD, SU, newOrderI); 2936 } 2937 // Replace the old order with the new order. 2938 cycleInstrs.swap(newOrderPhi); 2939 llvm::append_range(cycleInstrs, newOrderI); 2940 SSD->fixupRegisterOverlaps(cycleInstrs); 2941 } 2942 2943 LLVM_DEBUG(dump();); 2944 } 2945 2946 void NodeSet::print(raw_ostream &os) const { 2947 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 2948 << " depth " << MaxDepth << " col " << Colocate << "\n"; 2949 for (const auto &I : Nodes) 2950 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 2951 os << "\n"; 2952 } 2953 2954 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2955 /// Print the schedule information to the given output. 2956 void SMSchedule::print(raw_ostream &os) const { 2957 // Iterate over each cycle. 2958 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 2959 // Iterate over each instruction in the cycle. 2960 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 2961 for (SUnit *CI : cycleInstrs->second) { 2962 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 2963 os << "(" << CI->NodeNum << ") "; 2964 CI->getInstr()->print(os); 2965 os << "\n"; 2966 } 2967 } 2968 } 2969 2970 /// Utility function used for debugging to print the schedule. 2971 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 2972 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 2973 2974 void ResourceManager::dumpMRT() const { 2975 LLVM_DEBUG({ 2976 if (UseDFA) 2977 return; 2978 std::stringstream SS; 2979 SS << "MRT:\n"; 2980 SS << std::setw(4) << "Slot"; 2981 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) 2982 SS << std::setw(3) << I; 2983 SS << std::setw(7) << "#Mops" 2984 << "\n"; 2985 for (int Slot = 0; Slot < InitiationInterval; ++Slot) { 2986 SS << std::setw(4) << Slot; 2987 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) 2988 SS << std::setw(3) << MRT[Slot][I]; 2989 SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; 2990 } 2991 dbgs() << SS.str(); 2992 }); 2993 } 2994 #endif 2995 2996 void ResourceManager::initProcResourceVectors( 2997 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 2998 unsigned ProcResourceID = 0; 2999 3000 // We currently limit the resource kinds to 64 and below so that we can use 3001 // uint64_t for Masks 3002 assert(SM.getNumProcResourceKinds() < 64 && 3003 "Too many kinds of resources, unsupported"); 3004 // Create a unique bitmask for every processor resource unit. 3005 // Skip resource at index 0, since it always references 'InvalidUnit'. 3006 Masks.resize(SM.getNumProcResourceKinds()); 3007 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3008 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3009 if (Desc.SubUnitsIdxBegin) 3010 continue; 3011 Masks[I] = 1ULL << ProcResourceID; 3012 ProcResourceID++; 3013 } 3014 // Create a unique bitmask for every processor resource group. 3015 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3016 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3017 if (!Desc.SubUnitsIdxBegin) 3018 continue; 3019 Masks[I] = 1ULL << ProcResourceID; 3020 for (unsigned U = 0; U < Desc.NumUnits; ++U) 3021 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 3022 ProcResourceID++; 3023 } 3024 LLVM_DEBUG({ 3025 if (SwpShowResMask) { 3026 dbgs() << "ProcResourceDesc:\n"; 3027 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3028 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 3029 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 3030 ProcResource->Name, I, Masks[I], 3031 ProcResource->NumUnits); 3032 } 3033 dbgs() << " -----------------\n"; 3034 } 3035 }); 3036 } 3037 3038 bool ResourceManager::canReserveResources(SUnit &SU, int Cycle) { 3039 LLVM_DEBUG({ 3040 if (SwpDebugResource) 3041 dbgs() << "canReserveResources:\n"; 3042 }); 3043 if (UseDFA) 3044 return DFAResources[positiveModulo(Cycle, InitiationInterval)] 3045 ->canReserveResources(&SU.getInstr()->getDesc()); 3046 3047 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3048 if (!SCDesc->isValid()) { 3049 LLVM_DEBUG({ 3050 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3051 dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n"; 3052 }); 3053 return true; 3054 } 3055 3056 reserveResources(SCDesc, Cycle); 3057 bool Result = !isOverbooked(); 3058 unreserveResources(SCDesc, Cycle); 3059 3060 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return " << Result << "\n\n";); 3061 return Result; 3062 } 3063 3064 void ResourceManager::reserveResources(SUnit &SU, int Cycle) { 3065 LLVM_DEBUG({ 3066 if (SwpDebugResource) 3067 dbgs() << "reserveResources:\n"; 3068 }); 3069 if (UseDFA) 3070 return DFAResources[positiveModulo(Cycle, InitiationInterval)] 3071 ->reserveResources(&SU.getInstr()->getDesc()); 3072 3073 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3074 if (!SCDesc->isValid()) { 3075 LLVM_DEBUG({ 3076 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3077 dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n"; 3078 }); 3079 return; 3080 } 3081 3082 reserveResources(SCDesc, Cycle); 3083 3084 LLVM_DEBUG({ 3085 if (SwpDebugResource) { 3086 dumpMRT(); 3087 dbgs() << "reserveResources: done!\n\n"; 3088 } 3089 }); 3090 } 3091 3092 void ResourceManager::reserveResources(const MCSchedClassDesc *SCDesc, 3093 int Cycle) { 3094 assert(!UseDFA); 3095 for (const MCWriteProcResEntry &PRE : make_range( 3096 STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) 3097 for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C) 3098 ++MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; 3099 3100 for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) 3101 ++NumScheduledMops[positiveModulo(C, InitiationInterval)]; 3102 } 3103 3104 void ResourceManager::unreserveResources(const MCSchedClassDesc *SCDesc, 3105 int Cycle) { 3106 assert(!UseDFA); 3107 for (const MCWriteProcResEntry &PRE : make_range( 3108 STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) 3109 for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C) 3110 --MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; 3111 3112 for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) 3113 --NumScheduledMops[positiveModulo(C, InitiationInterval)]; 3114 } 3115 3116 bool ResourceManager::isOverbooked() const { 3117 assert(!UseDFA); 3118 for (int Slot = 0; Slot < InitiationInterval; ++Slot) { 3119 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3120 const MCProcResourceDesc *Desc = SM.getProcResource(I); 3121 if (MRT[Slot][I] > Desc->NumUnits) 3122 return true; 3123 } 3124 if (NumScheduledMops[Slot] > IssueWidth) 3125 return true; 3126 } 3127 return false; 3128 } 3129 3130 int ResourceManager::calculateResMIIDFA() const { 3131 assert(UseDFA); 3132 3133 // Sort the instructions by the number of available choices for scheduling, 3134 // least to most. Use the number of critical resources as the tie breaker. 3135 FuncUnitSorter FUS = FuncUnitSorter(*ST); 3136 for (SUnit &SU : DAG->SUnits) 3137 FUS.calcCriticalResources(*SU.getInstr()); 3138 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 3139 FuncUnitOrder(FUS); 3140 3141 for (SUnit &SU : DAG->SUnits) 3142 FuncUnitOrder.push(SU.getInstr()); 3143 3144 SmallVector<std::unique_ptr<DFAPacketizer>, 8> Resources; 3145 Resources.push_back( 3146 std::unique_ptr<DFAPacketizer>(TII->CreateTargetScheduleState(*ST))); 3147 3148 while (!FuncUnitOrder.empty()) { 3149 MachineInstr *MI = FuncUnitOrder.top(); 3150 FuncUnitOrder.pop(); 3151 if (TII->isZeroCost(MI->getOpcode())) 3152 continue; 3153 3154 // Attempt to reserve the instruction in an existing DFA. At least one 3155 // DFA is needed for each cycle. 3156 unsigned NumCycles = DAG->getSUnit(MI)->Latency; 3157 unsigned ReservedCycles = 0; 3158 auto *RI = Resources.begin(); 3159 auto *RE = Resources.end(); 3160 LLVM_DEBUG({ 3161 dbgs() << "Trying to reserve resource for " << NumCycles 3162 << " cycles for \n"; 3163 MI->dump(); 3164 }); 3165 for (unsigned C = 0; C < NumCycles; ++C) 3166 while (RI != RE) { 3167 if ((*RI)->canReserveResources(*MI)) { 3168 (*RI)->reserveResources(*MI); 3169 ++ReservedCycles; 3170 break; 3171 } 3172 RI++; 3173 } 3174 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 3175 << ", NumCycles:" << NumCycles << "\n"); 3176 // Add new DFAs, if needed, to reserve resources. 3177 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 3178 LLVM_DEBUG(if (SwpDebugResource) dbgs() 3179 << "NewResource created to reserve resources" 3180 << "\n"); 3181 auto *NewResource = TII->CreateTargetScheduleState(*ST); 3182 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 3183 NewResource->reserveResources(*MI); 3184 Resources.push_back(std::unique_ptr<DFAPacketizer>(NewResource)); 3185 } 3186 } 3187 3188 int Resmii = Resources.size(); 3189 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n"); 3190 return Resmii; 3191 } 3192 3193 int ResourceManager::calculateResMII() const { 3194 if (UseDFA) 3195 return calculateResMIIDFA(); 3196 3197 // Count each resource consumption and divide it by the number of units. 3198 // ResMII is the max value among them. 3199 3200 int NumMops = 0; 3201 SmallVector<uint64_t> ResourceCount(SM.getNumProcResourceKinds()); 3202 for (SUnit &SU : DAG->SUnits) { 3203 if (TII->isZeroCost(SU.getInstr()->getOpcode())) 3204 continue; 3205 3206 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3207 if (!SCDesc->isValid()) 3208 continue; 3209 3210 LLVM_DEBUG({ 3211 if (SwpDebugResource) { 3212 DAG->dumpNode(SU); 3213 dbgs() << " #Mops: " << SCDesc->NumMicroOps << "\n" 3214 << " WriteProcRes: "; 3215 } 3216 }); 3217 NumMops += SCDesc->NumMicroOps; 3218 for (const MCWriteProcResEntry &PRE : 3219 make_range(STI->getWriteProcResBegin(SCDesc), 3220 STI->getWriteProcResEnd(SCDesc))) { 3221 LLVM_DEBUG({ 3222 if (SwpDebugResource) { 3223 const MCProcResourceDesc *Desc = 3224 SM.getProcResource(PRE.ProcResourceIdx); 3225 dbgs() << Desc->Name << ": " << PRE.ReleaseAtCycle << ", "; 3226 } 3227 }); 3228 ResourceCount[PRE.ProcResourceIdx] += PRE.ReleaseAtCycle; 3229 } 3230 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "\n"); 3231 } 3232 3233 int Result = (NumMops + IssueWidth - 1) / IssueWidth; 3234 LLVM_DEBUG({ 3235 if (SwpDebugResource) 3236 dbgs() << "#Mops: " << NumMops << ", " 3237 << "IssueWidth: " << IssueWidth << ", " 3238 << "Cycles: " << Result << "\n"; 3239 }); 3240 3241 LLVM_DEBUG({ 3242 if (SwpDebugResource) { 3243 std::stringstream SS; 3244 SS << std::setw(2) << "ID" << std::setw(16) << "Name" << std::setw(10) 3245 << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles" 3246 << "\n"; 3247 dbgs() << SS.str(); 3248 } 3249 }); 3250 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3251 const MCProcResourceDesc *Desc = SM.getProcResource(I); 3252 int Cycles = (ResourceCount[I] + Desc->NumUnits - 1) / Desc->NumUnits; 3253 LLVM_DEBUG({ 3254 if (SwpDebugResource) { 3255 std::stringstream SS; 3256 SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10) 3257 << Desc->NumUnits << std::setw(10) << ResourceCount[I] 3258 << std::setw(10) << Cycles << "\n"; 3259 dbgs() << SS.str(); 3260 } 3261 }); 3262 if (Cycles > Result) 3263 Result = Cycles; 3264 } 3265 return Result; 3266 } 3267 3268 void ResourceManager::init(int II) { 3269 InitiationInterval = II; 3270 DFAResources.clear(); 3271 DFAResources.resize(II); 3272 for (auto &I : DFAResources) 3273 I.reset(ST->getInstrInfo()->CreateTargetScheduleState(*ST)); 3274 MRT.clear(); 3275 MRT.resize(II, SmallVector<uint64_t>(SM.getNumProcResourceKinds())); 3276 NumScheduledMops.clear(); 3277 NumScheduledMops.resize(II); 3278 } 3279