1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/ADT/ArrayRef.h" 33 #include "llvm/ADT/BitVector.h" 34 #include "llvm/ADT/DenseMap.h" 35 #include "llvm/ADT/MapVector.h" 36 #include "llvm/ADT/PriorityQueue.h" 37 #include "llvm/ADT/SetVector.h" 38 #include "llvm/ADT/SmallPtrSet.h" 39 #include "llvm/ADT/SmallSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/MemoryLocation.h" 45 #include "llvm/Analysis/ValueTracking.h" 46 #include "llvm/CodeGen/DFAPacketizer.h" 47 #include "llvm/CodeGen/LiveIntervals.h" 48 #include "llvm/CodeGen/MachineBasicBlock.h" 49 #include "llvm/CodeGen/MachineDominators.h" 50 #include "llvm/CodeGen/MachineFunction.h" 51 #include "llvm/CodeGen/MachineFunctionPass.h" 52 #include "llvm/CodeGen/MachineInstr.h" 53 #include "llvm/CodeGen/MachineInstrBuilder.h" 54 #include "llvm/CodeGen/MachineLoopInfo.h" 55 #include "llvm/CodeGen/MachineMemOperand.h" 56 #include "llvm/CodeGen/MachineOperand.h" 57 #include "llvm/CodeGen/MachinePipeliner.h" 58 #include "llvm/CodeGen/MachineRegisterInfo.h" 59 #include "llvm/CodeGen/RegisterPressure.h" 60 #include "llvm/CodeGen/ScheduleDAG.h" 61 #include "llvm/CodeGen/ScheduleDAGMutation.h" 62 #include "llvm/CodeGen/TargetOpcodes.h" 63 #include "llvm/CodeGen/TargetRegisterInfo.h" 64 #include "llvm/CodeGen/TargetSubtargetInfo.h" 65 #include "llvm/Config/llvm-config.h" 66 #include "llvm/IR/Attributes.h" 67 #include "llvm/IR/DebugLoc.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/MC/LaneBitmask.h" 70 #include "llvm/MC/MCInstrDesc.h" 71 #include "llvm/MC/MCInstrItineraries.h" 72 #include "llvm/MC/MCRegisterInfo.h" 73 #include "llvm/Pass.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Compiler.h" 76 #include "llvm/Support/Debug.h" 77 #include "llvm/Support/MathExtras.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <climits> 82 #include <cstdint> 83 #include <deque> 84 #include <functional> 85 #include <iterator> 86 #include <map> 87 #include <memory> 88 #include <tuple> 89 #include <utility> 90 #include <vector> 91 92 using namespace llvm; 93 94 #define DEBUG_TYPE "pipeliner" 95 96 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 97 STATISTIC(NumPipelined, "Number of loops software pipelined"); 98 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 99 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 100 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 101 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 102 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 103 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 104 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 105 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 106 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 107 108 /// A command line option to turn software pipelining on or off. 109 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 110 cl::ZeroOrMore, 111 cl::desc("Enable Software Pipelining")); 112 113 /// A command line option to enable SWP at -Os. 114 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 115 cl::desc("Enable SWP at Os."), cl::Hidden, 116 cl::init(false)); 117 118 /// A command line argument to limit minimum initial interval for pipelining. 119 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 120 cl::desc("Size limit for the MII."), 121 cl::Hidden, cl::init(27)); 122 123 /// A command line argument to limit the number of stages in the pipeline. 124 static cl::opt<int> 125 SwpMaxStages("pipeliner-max-stages", 126 cl::desc("Maximum stages allowed in the generated scheduled."), 127 cl::Hidden, cl::init(3)); 128 129 /// A command line option to disable the pruning of chain dependences due to 130 /// an unrelated Phi. 131 static cl::opt<bool> 132 SwpPruneDeps("pipeliner-prune-deps", 133 cl::desc("Prune dependences between unrelated Phi nodes."), 134 cl::Hidden, cl::init(true)); 135 136 /// A command line option to disable the pruning of loop carried order 137 /// dependences. 138 static cl::opt<bool> 139 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 140 cl::desc("Prune loop carried order dependences."), 141 cl::Hidden, cl::init(true)); 142 143 #ifndef NDEBUG 144 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 145 #endif 146 147 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 148 cl::ReallyHidden, cl::init(false), 149 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 150 151 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, 152 cl::init(false)); 153 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, 154 cl::init(false)); 155 156 namespace llvm { 157 158 // A command line option to enable the CopyToPhi DAG mutation. 159 cl::opt<bool> 160 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 161 cl::init(true), cl::ZeroOrMore, 162 cl::desc("Enable CopyToPhi DAG Mutation")); 163 164 } // end namespace llvm 165 166 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 167 char MachinePipeliner::ID = 0; 168 #ifndef NDEBUG 169 int MachinePipeliner::NumTries = 0; 170 #endif 171 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 172 173 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 174 "Modulo Software Pipelining", false, false) 175 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 176 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 177 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 178 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 179 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 180 "Modulo Software Pipelining", false, false) 181 182 /// The "main" function for implementing Swing Modulo Scheduling. 183 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 184 if (skipFunction(mf.getFunction())) 185 return false; 186 187 if (!EnableSWP) 188 return false; 189 190 if (mf.getFunction().getAttributes().hasAttribute( 191 AttributeList::FunctionIndex, Attribute::OptimizeForSize) && 192 !EnableSWPOptSize.getPosition()) 193 return false; 194 195 if (!mf.getSubtarget().enableMachinePipeliner()) 196 return false; 197 198 // Cannot pipeline loops without instruction itineraries if we are using 199 // DFA for the pipeliner. 200 if (mf.getSubtarget().useDFAforSMS() && 201 (!mf.getSubtarget().getInstrItineraryData() || 202 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 203 return false; 204 205 MF = &mf; 206 MLI = &getAnalysis<MachineLoopInfo>(); 207 MDT = &getAnalysis<MachineDominatorTree>(); 208 TII = MF->getSubtarget().getInstrInfo(); 209 RegClassInfo.runOnMachineFunction(*MF); 210 211 for (auto &L : *MLI) 212 scheduleLoop(*L); 213 214 return false; 215 } 216 217 /// Attempt to perform the SMS algorithm on the specified loop. This function is 218 /// the main entry point for the algorithm. The function identifies candidate 219 /// loops, calculates the minimum initiation interval, and attempts to schedule 220 /// the loop. 221 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 222 bool Changed = false; 223 for (auto &InnerLoop : L) 224 Changed |= scheduleLoop(*InnerLoop); 225 226 #ifndef NDEBUG 227 // Stop trying after reaching the limit (if any). 228 int Limit = SwpLoopLimit; 229 if (Limit >= 0) { 230 if (NumTries >= SwpLoopLimit) 231 return Changed; 232 NumTries++; 233 } 234 #endif 235 236 setPragmaPipelineOptions(L); 237 if (!canPipelineLoop(L)) { 238 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 239 return Changed; 240 } 241 242 ++NumTrytoPipeline; 243 244 Changed = swingModuloScheduler(L); 245 246 return Changed; 247 } 248 249 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 250 MachineBasicBlock *LBLK = L.getTopBlock(); 251 252 if (LBLK == nullptr) 253 return; 254 255 const BasicBlock *BBLK = LBLK->getBasicBlock(); 256 if (BBLK == nullptr) 257 return; 258 259 const Instruction *TI = BBLK->getTerminator(); 260 if (TI == nullptr) 261 return; 262 263 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 264 if (LoopID == nullptr) 265 return; 266 267 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 268 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 269 270 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 271 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 272 273 if (MD == nullptr) 274 continue; 275 276 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 277 278 if (S == nullptr) 279 continue; 280 281 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 282 assert(MD->getNumOperands() == 2 && 283 "Pipeline initiation interval hint metadata should have two operands."); 284 II_setByPragma = 285 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 286 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 287 } else if (S->getString() == "llvm.loop.pipeline.disable") { 288 disabledByPragma = true; 289 } 290 } 291 } 292 293 /// Return true if the loop can be software pipelined. The algorithm is 294 /// restricted to loops with a single basic block. Make sure that the 295 /// branch in the loop can be analyzed. 296 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 297 if (L.getNumBlocks() != 1) 298 return false; 299 300 if (disabledByPragma) 301 return false; 302 303 // Check if the branch can't be understood because we can't do pipelining 304 // if that's the case. 305 LI.TBB = nullptr; 306 LI.FBB = nullptr; 307 LI.BrCond.clear(); 308 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 309 LLVM_DEBUG( 310 dbgs() << "Unable to analyzeBranch, can NOT pipeline current Loop\n"); 311 NumFailBranch++; 312 return false; 313 } 314 315 LI.LoopInductionVar = nullptr; 316 LI.LoopCompare = nullptr; 317 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) { 318 LLVM_DEBUG( 319 dbgs() << "Unable to analyzeLoop, can NOT pipeline current Loop\n"); 320 NumFailLoop++; 321 return false; 322 } 323 324 if (!L.getLoopPreheader()) { 325 LLVM_DEBUG( 326 dbgs() << "Preheader not found, can NOT pipeline current Loop\n"); 327 NumFailPreheader++; 328 return false; 329 } 330 331 // Remove any subregisters from inputs to phi nodes. 332 preprocessPhiNodes(*L.getHeader()); 333 return true; 334 } 335 336 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 337 MachineRegisterInfo &MRI = MF->getRegInfo(); 338 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 339 340 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { 341 MachineOperand &DefOp = PI.getOperand(0); 342 assert(DefOp.getSubReg() == 0); 343 auto *RC = MRI.getRegClass(DefOp.getReg()); 344 345 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 346 MachineOperand &RegOp = PI.getOperand(i); 347 if (RegOp.getSubReg() == 0) 348 continue; 349 350 // If the operand uses a subregister, replace it with a new register 351 // without subregisters, and generate a copy to the new register. 352 unsigned NewReg = MRI.createVirtualRegister(RC); 353 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 354 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 355 const DebugLoc &DL = PredB.findDebugLoc(At); 356 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 357 .addReg(RegOp.getReg(), getRegState(RegOp), 358 RegOp.getSubReg()); 359 Slots.insertMachineInstrInMaps(*Copy); 360 RegOp.setReg(NewReg); 361 RegOp.setSubReg(0); 362 } 363 } 364 } 365 366 /// The SMS algorithm consists of the following main steps: 367 /// 1. Computation and analysis of the dependence graph. 368 /// 2. Ordering of the nodes (instructions). 369 /// 3. Attempt to Schedule the loop. 370 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 371 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 372 373 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, 374 II_setByPragma); 375 376 MachineBasicBlock *MBB = L.getHeader(); 377 // The kernel should not include any terminator instructions. These 378 // will be added back later. 379 SMS.startBlock(MBB); 380 381 // Compute the number of 'real' instructions in the basic block by 382 // ignoring terminators. 383 unsigned size = MBB->size(); 384 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 385 E = MBB->instr_end(); 386 I != E; ++I, --size) 387 ; 388 389 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 390 SMS.schedule(); 391 SMS.exitRegion(); 392 393 SMS.finishBlock(); 394 return SMS.hasNewSchedule(); 395 } 396 397 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 398 if (II_setByPragma > 0) 399 MII = II_setByPragma; 400 else 401 MII = std::max(ResMII, RecMII); 402 } 403 404 void SwingSchedulerDAG::setMAX_II() { 405 if (II_setByPragma > 0) 406 MAX_II = II_setByPragma; 407 else 408 MAX_II = MII + 10; 409 } 410 411 /// We override the schedule function in ScheduleDAGInstrs to implement the 412 /// scheduling part of the Swing Modulo Scheduling algorithm. 413 void SwingSchedulerDAG::schedule() { 414 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 415 buildSchedGraph(AA); 416 addLoopCarriedDependences(AA); 417 updatePhiDependences(); 418 Topo.InitDAGTopologicalSorting(); 419 changeDependences(); 420 postprocessDAG(); 421 LLVM_DEBUG(dump()); 422 423 NodeSetType NodeSets; 424 findCircuits(NodeSets); 425 NodeSetType Circuits = NodeSets; 426 427 // Calculate the MII. 428 unsigned ResMII = calculateResMII(); 429 unsigned RecMII = calculateRecMII(NodeSets); 430 431 fuseRecs(NodeSets); 432 433 // This flag is used for testing and can cause correctness problems. 434 if (SwpIgnoreRecMII) 435 RecMII = 0; 436 437 setMII(ResMII, RecMII); 438 setMAX_II(); 439 440 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 441 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 442 443 // Can't schedule a loop without a valid MII. 444 if (MII == 0) { 445 LLVM_DEBUG( 446 dbgs() 447 << "0 is not a valid Minimal Initiation Interval, can NOT schedule\n"); 448 NumFailZeroMII++; 449 return; 450 } 451 452 // Don't pipeline large loops. 453 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 454 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 455 << ", we don't pipleline large loops\n"); 456 NumFailLargeMaxMII++; 457 return; 458 } 459 460 computeNodeFunctions(NodeSets); 461 462 registerPressureFilter(NodeSets); 463 464 colocateNodeSets(NodeSets); 465 466 checkNodeSets(NodeSets); 467 468 LLVM_DEBUG({ 469 for (auto &I : NodeSets) { 470 dbgs() << " Rec NodeSet "; 471 I.dump(); 472 } 473 }); 474 475 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 476 477 groupRemainingNodes(NodeSets); 478 479 removeDuplicateNodes(NodeSets); 480 481 LLVM_DEBUG({ 482 for (auto &I : NodeSets) { 483 dbgs() << " NodeSet "; 484 I.dump(); 485 } 486 }); 487 488 computeNodeOrder(NodeSets); 489 490 // check for node order issues 491 checkValidNodeOrder(Circuits); 492 493 SMSchedule Schedule(Pass.MF); 494 Scheduled = schedulePipeline(Schedule); 495 496 if (!Scheduled){ 497 LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 498 NumFailNoSchedule++; 499 return; 500 } 501 502 unsigned numStages = Schedule.getMaxStageCount(); 503 // No need to generate pipeline if there are no overlapped iterations. 504 if (numStages == 0) { 505 LLVM_DEBUG( 506 dbgs() << "No overlapped iterations, no need to generate pipeline\n"); 507 NumFailZeroStage++; 508 return; 509 } 510 // Check that the maximum stage count is less than user-defined limit. 511 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 512 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 513 << " : too many stages, abort\n"); 514 NumFailLargeMaxStage++; 515 return; 516 } 517 518 generatePipelinedLoop(Schedule); 519 ++NumPipelined; 520 } 521 522 /// Clean up after the software pipeliner runs. 523 void SwingSchedulerDAG::finishBlock() { 524 for (MachineInstr *I : NewMIs) 525 MF.DeleteMachineInstr(I); 526 NewMIs.clear(); 527 528 // Call the superclass. 529 ScheduleDAGInstrs::finishBlock(); 530 } 531 532 /// Return the register values for the operands of a Phi instruction. 533 /// This function assume the instruction is a Phi. 534 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 535 unsigned &InitVal, unsigned &LoopVal) { 536 assert(Phi.isPHI() && "Expecting a Phi."); 537 538 InitVal = 0; 539 LoopVal = 0; 540 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 541 if (Phi.getOperand(i + 1).getMBB() != Loop) 542 InitVal = Phi.getOperand(i).getReg(); 543 else 544 LoopVal = Phi.getOperand(i).getReg(); 545 546 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 547 } 548 549 /// Return the Phi register value that comes from the incoming block. 550 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 551 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 552 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 553 return Phi.getOperand(i).getReg(); 554 return 0; 555 } 556 557 /// Return the Phi register value that comes the loop block. 558 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 559 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 560 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 561 return Phi.getOperand(i).getReg(); 562 return 0; 563 } 564 565 /// Return true if SUb can be reached from SUa following the chain edges. 566 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 567 SmallPtrSet<SUnit *, 8> Visited; 568 SmallVector<SUnit *, 8> Worklist; 569 Worklist.push_back(SUa); 570 while (!Worklist.empty()) { 571 const SUnit *SU = Worklist.pop_back_val(); 572 for (auto &SI : SU->Succs) { 573 SUnit *SuccSU = SI.getSUnit(); 574 if (SI.getKind() == SDep::Order) { 575 if (Visited.count(SuccSU)) 576 continue; 577 if (SuccSU == SUb) 578 return true; 579 Worklist.push_back(SuccSU); 580 Visited.insert(SuccSU); 581 } 582 } 583 } 584 return false; 585 } 586 587 /// Return true if the instruction causes a chain between memory 588 /// references before and after it. 589 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 590 return MI.isCall() || MI.mayRaiseFPException() || 591 MI.hasUnmodeledSideEffects() || 592 (MI.hasOrderedMemoryRef() && 593 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 594 } 595 596 /// Return the underlying objects for the memory references of an instruction. 597 /// This function calls the code in ValueTracking, but first checks that the 598 /// instruction has a memory operand. 599 static void getUnderlyingObjects(const MachineInstr *MI, 600 SmallVectorImpl<const Value *> &Objs, 601 const DataLayout &DL) { 602 if (!MI->hasOneMemOperand()) 603 return; 604 MachineMemOperand *MM = *MI->memoperands_begin(); 605 if (!MM->getValue()) 606 return; 607 GetUnderlyingObjects(MM->getValue(), Objs, DL); 608 for (const Value *V : Objs) { 609 if (!isIdentifiedObject(V)) { 610 Objs.clear(); 611 return; 612 } 613 Objs.push_back(V); 614 } 615 } 616 617 /// Add a chain edge between a load and store if the store can be an 618 /// alias of the load on a subsequent iteration, i.e., a loop carried 619 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 620 /// but that code doesn't create loop carried dependences. 621 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 622 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 623 Value *UnknownValue = 624 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 625 for (auto &SU : SUnits) { 626 MachineInstr &MI = *SU.getInstr(); 627 if (isDependenceBarrier(MI, AA)) 628 PendingLoads.clear(); 629 else if (MI.mayLoad()) { 630 SmallVector<const Value *, 4> Objs; 631 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 632 if (Objs.empty()) 633 Objs.push_back(UnknownValue); 634 for (auto V : Objs) { 635 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 636 SUs.push_back(&SU); 637 } 638 } else if (MI.mayStore()) { 639 SmallVector<const Value *, 4> Objs; 640 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 641 if (Objs.empty()) 642 Objs.push_back(UnknownValue); 643 for (auto V : Objs) { 644 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 645 PendingLoads.find(V); 646 if (I == PendingLoads.end()) 647 continue; 648 for (auto Load : I->second) { 649 if (isSuccOrder(Load, &SU)) 650 continue; 651 MachineInstr &LdMI = *Load->getInstr(); 652 // First, perform the cheaper check that compares the base register. 653 // If they are the same and the load offset is less than the store 654 // offset, then mark the dependence as loop carried potentially. 655 const MachineOperand *BaseOp1, *BaseOp2; 656 int64_t Offset1, Offset2; 657 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, TRI) && 658 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, TRI)) { 659 if (BaseOp1->isIdenticalTo(*BaseOp2) && 660 (int)Offset1 < (int)Offset2) { 661 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && 662 "What happened to the chain edge?"); 663 SDep Dep(Load, SDep::Barrier); 664 Dep.setLatency(1); 665 SU.addPred(Dep); 666 continue; 667 } 668 } 669 // Second, the more expensive check that uses alias analysis on the 670 // base registers. If they alias, and the load offset is less than 671 // the store offset, the mark the dependence as loop carried. 672 if (!AA) { 673 SDep Dep(Load, SDep::Barrier); 674 Dep.setLatency(1); 675 SU.addPred(Dep); 676 continue; 677 } 678 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 679 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 680 if (!MMO1->getValue() || !MMO2->getValue()) { 681 SDep Dep(Load, SDep::Barrier); 682 Dep.setLatency(1); 683 SU.addPred(Dep); 684 continue; 685 } 686 if (MMO1->getValue() == MMO2->getValue() && 687 MMO1->getOffset() <= MMO2->getOffset()) { 688 SDep Dep(Load, SDep::Barrier); 689 Dep.setLatency(1); 690 SU.addPred(Dep); 691 continue; 692 } 693 AliasResult AAResult = AA->alias( 694 MemoryLocation(MMO1->getValue(), LocationSize::unknown(), 695 MMO1->getAAInfo()), 696 MemoryLocation(MMO2->getValue(), LocationSize::unknown(), 697 MMO2->getAAInfo())); 698 699 if (AAResult != NoAlias) { 700 SDep Dep(Load, SDep::Barrier); 701 Dep.setLatency(1); 702 SU.addPred(Dep); 703 } 704 } 705 } 706 } 707 } 708 } 709 710 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 711 /// processes dependences for PHIs. This function adds true dependences 712 /// from a PHI to a use, and a loop carried dependence from the use to the 713 /// PHI. The loop carried dependence is represented as an anti dependence 714 /// edge. This function also removes chain dependences between unrelated 715 /// PHIs. 716 void SwingSchedulerDAG::updatePhiDependences() { 717 SmallVector<SDep, 4> RemoveDeps; 718 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 719 720 // Iterate over each DAG node. 721 for (SUnit &I : SUnits) { 722 RemoveDeps.clear(); 723 // Set to true if the instruction has an operand defined by a Phi. 724 unsigned HasPhiUse = 0; 725 unsigned HasPhiDef = 0; 726 MachineInstr *MI = I.getInstr(); 727 // Iterate over each operand, and we process the definitions. 728 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 729 MOE = MI->operands_end(); 730 MOI != MOE; ++MOI) { 731 if (!MOI->isReg()) 732 continue; 733 unsigned Reg = MOI->getReg(); 734 if (MOI->isDef()) { 735 // If the register is used by a Phi, then create an anti dependence. 736 for (MachineRegisterInfo::use_instr_iterator 737 UI = MRI.use_instr_begin(Reg), 738 UE = MRI.use_instr_end(); 739 UI != UE; ++UI) { 740 MachineInstr *UseMI = &*UI; 741 SUnit *SU = getSUnit(UseMI); 742 if (SU != nullptr && UseMI->isPHI()) { 743 if (!MI->isPHI()) { 744 SDep Dep(SU, SDep::Anti, Reg); 745 Dep.setLatency(1); 746 I.addPred(Dep); 747 } else { 748 HasPhiDef = Reg; 749 // Add a chain edge to a dependent Phi that isn't an existing 750 // predecessor. 751 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 752 I.addPred(SDep(SU, SDep::Barrier)); 753 } 754 } 755 } 756 } else if (MOI->isUse()) { 757 // If the register is defined by a Phi, then create a true dependence. 758 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 759 if (DefMI == nullptr) 760 continue; 761 SUnit *SU = getSUnit(DefMI); 762 if (SU != nullptr && DefMI->isPHI()) { 763 if (!MI->isPHI()) { 764 SDep Dep(SU, SDep::Data, Reg); 765 Dep.setLatency(0); 766 ST.adjustSchedDependency(SU, &I, Dep); 767 I.addPred(Dep); 768 } else { 769 HasPhiUse = Reg; 770 // Add a chain edge to a dependent Phi that isn't an existing 771 // predecessor. 772 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 773 I.addPred(SDep(SU, SDep::Barrier)); 774 } 775 } 776 } 777 } 778 // Remove order dependences from an unrelated Phi. 779 if (!SwpPruneDeps) 780 continue; 781 for (auto &PI : I.Preds) { 782 MachineInstr *PMI = PI.getSUnit()->getInstr(); 783 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 784 if (I.getInstr()->isPHI()) { 785 if (PMI->getOperand(0).getReg() == HasPhiUse) 786 continue; 787 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 788 continue; 789 } 790 RemoveDeps.push_back(PI); 791 } 792 } 793 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 794 I.removePred(RemoveDeps[i]); 795 } 796 } 797 798 /// Iterate over each DAG node and see if we can change any dependences 799 /// in order to reduce the recurrence MII. 800 void SwingSchedulerDAG::changeDependences() { 801 // See if an instruction can use a value from the previous iteration. 802 // If so, we update the base and offset of the instruction and change 803 // the dependences. 804 for (SUnit &I : SUnits) { 805 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 806 int64_t NewOffset = 0; 807 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 808 NewOffset)) 809 continue; 810 811 // Get the MI and SUnit for the instruction that defines the original base. 812 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 813 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 814 if (!DefMI) 815 continue; 816 SUnit *DefSU = getSUnit(DefMI); 817 if (!DefSU) 818 continue; 819 // Get the MI and SUnit for the instruction that defins the new base. 820 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 821 if (!LastMI) 822 continue; 823 SUnit *LastSU = getSUnit(LastMI); 824 if (!LastSU) 825 continue; 826 827 if (Topo.IsReachable(&I, LastSU)) 828 continue; 829 830 // Remove the dependence. The value now depends on a prior iteration. 831 SmallVector<SDep, 4> Deps; 832 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 833 ++P) 834 if (P->getSUnit() == DefSU) 835 Deps.push_back(*P); 836 for (int i = 0, e = Deps.size(); i != e; i++) { 837 Topo.RemovePred(&I, Deps[i].getSUnit()); 838 I.removePred(Deps[i]); 839 } 840 // Remove the chain dependence between the instructions. 841 Deps.clear(); 842 for (auto &P : LastSU->Preds) 843 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 844 Deps.push_back(P); 845 for (int i = 0, e = Deps.size(); i != e; i++) { 846 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 847 LastSU->removePred(Deps[i]); 848 } 849 850 // Add a dependence between the new instruction and the instruction 851 // that defines the new base. 852 SDep Dep(&I, SDep::Anti, NewBase); 853 Topo.AddPred(LastSU, &I); 854 LastSU->addPred(Dep); 855 856 // Remember the base and offset information so that we can update the 857 // instruction during code generation. 858 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 859 } 860 } 861 862 namespace { 863 864 // FuncUnitSorter - Comparison operator used to sort instructions by 865 // the number of functional unit choices. 866 struct FuncUnitSorter { 867 const InstrItineraryData *InstrItins; 868 const MCSubtargetInfo *STI; 869 DenseMap<unsigned, unsigned> Resources; 870 871 FuncUnitSorter(const TargetSubtargetInfo &TSI) 872 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 873 874 // Compute the number of functional unit alternatives needed 875 // at each stage, and take the minimum value. We prioritize the 876 // instructions by the least number of choices first. 877 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { 878 unsigned SchedClass = Inst->getDesc().getSchedClass(); 879 unsigned min = UINT_MAX; 880 if (InstrItins && !InstrItins->isEmpty()) { 881 for (const InstrStage &IS : 882 make_range(InstrItins->beginStage(SchedClass), 883 InstrItins->endStage(SchedClass))) { 884 unsigned funcUnits = IS.getUnits(); 885 unsigned numAlternatives = countPopulation(funcUnits); 886 if (numAlternatives < min) { 887 min = numAlternatives; 888 F = funcUnits; 889 } 890 } 891 return min; 892 } 893 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 894 const MCSchedClassDesc *SCDesc = 895 STI->getSchedModel().getSchedClassDesc(SchedClass); 896 if (!SCDesc->isValid()) 897 // No valid Schedule Class Desc for schedClass, should be 898 // Pseudo/PostRAPseudo 899 return min; 900 901 for (const MCWriteProcResEntry &PRE : 902 make_range(STI->getWriteProcResBegin(SCDesc), 903 STI->getWriteProcResEnd(SCDesc))) { 904 if (!PRE.Cycles) 905 continue; 906 const MCProcResourceDesc *ProcResource = 907 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 908 unsigned NumUnits = ProcResource->NumUnits; 909 if (NumUnits < min) { 910 min = NumUnits; 911 F = PRE.ProcResourceIdx; 912 } 913 } 914 return min; 915 } 916 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 917 } 918 919 // Compute the critical resources needed by the instruction. This 920 // function records the functional units needed by instructions that 921 // must use only one functional unit. We use this as a tie breaker 922 // for computing the resource MII. The instrutions that require 923 // the same, highly used, functional unit have high priority. 924 void calcCriticalResources(MachineInstr &MI) { 925 unsigned SchedClass = MI.getDesc().getSchedClass(); 926 if (InstrItins && !InstrItins->isEmpty()) { 927 for (const InstrStage &IS : 928 make_range(InstrItins->beginStage(SchedClass), 929 InstrItins->endStage(SchedClass))) { 930 unsigned FuncUnits = IS.getUnits(); 931 if (countPopulation(FuncUnits) == 1) 932 Resources[FuncUnits]++; 933 } 934 return; 935 } 936 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 937 const MCSchedClassDesc *SCDesc = 938 STI->getSchedModel().getSchedClassDesc(SchedClass); 939 if (!SCDesc->isValid()) 940 // No valid Schedule Class Desc for schedClass, should be 941 // Pseudo/PostRAPseudo 942 return; 943 944 for (const MCWriteProcResEntry &PRE : 945 make_range(STI->getWriteProcResBegin(SCDesc), 946 STI->getWriteProcResEnd(SCDesc))) { 947 if (!PRE.Cycles) 948 continue; 949 Resources[PRE.ProcResourceIdx]++; 950 } 951 return; 952 } 953 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 954 } 955 956 /// Return true if IS1 has less priority than IS2. 957 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 958 unsigned F1 = 0, F2 = 0; 959 unsigned MFUs1 = minFuncUnits(IS1, F1); 960 unsigned MFUs2 = minFuncUnits(IS2, F2); 961 if (MFUs1 == 1 && MFUs2 == 1) 962 return Resources.lookup(F1) < Resources.lookup(F2); 963 return MFUs1 > MFUs2; 964 } 965 }; 966 967 } // end anonymous namespace 968 969 /// Calculate the resource constrained minimum initiation interval for the 970 /// specified loop. We use the DFA to model the resources needed for 971 /// each instruction, and we ignore dependences. A different DFA is created 972 /// for each cycle that is required. When adding a new instruction, we attempt 973 /// to add it to each existing DFA, until a legal space is found. If the 974 /// instruction cannot be reserved in an existing DFA, we create a new one. 975 unsigned SwingSchedulerDAG::calculateResMII() { 976 977 LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 978 SmallVector<ResourceManager*, 8> Resources; 979 MachineBasicBlock *MBB = Loop.getHeader(); 980 Resources.push_back(new ResourceManager(&MF.getSubtarget())); 981 982 // Sort the instructions by the number of available choices for scheduling, 983 // least to most. Use the number of critical resources as the tie breaker. 984 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget()); 985 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 986 E = MBB->getFirstTerminator(); 987 I != E; ++I) 988 FUS.calcCriticalResources(*I); 989 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 990 FuncUnitOrder(FUS); 991 992 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 993 E = MBB->getFirstTerminator(); 994 I != E; ++I) 995 FuncUnitOrder.push(&*I); 996 997 while (!FuncUnitOrder.empty()) { 998 MachineInstr *MI = FuncUnitOrder.top(); 999 FuncUnitOrder.pop(); 1000 if (TII->isZeroCost(MI->getOpcode())) 1001 continue; 1002 // Attempt to reserve the instruction in an existing DFA. At least one 1003 // DFA is needed for each cycle. 1004 unsigned NumCycles = getSUnit(MI)->Latency; 1005 unsigned ReservedCycles = 0; 1006 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin(); 1007 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end(); 1008 LLVM_DEBUG({ 1009 dbgs() << "Trying to reserve resource for " << NumCycles 1010 << " cycles for \n"; 1011 MI->dump(); 1012 }); 1013 for (unsigned C = 0; C < NumCycles; ++C) 1014 while (RI != RE) { 1015 if ((*RI)->canReserveResources(*MI)) { 1016 (*RI)->reserveResources(*MI); 1017 ++ReservedCycles; 1018 break; 1019 } 1020 RI++; 1021 } 1022 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 1023 << ", NumCycles:" << NumCycles << "\n"); 1024 // Add new DFAs, if needed, to reserve resources. 1025 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1026 LLVM_DEBUG(if (SwpDebugResource) dbgs() 1027 << "NewResource created to reserve resources" 1028 << "\n"); 1029 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget()); 1030 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1031 NewResource->reserveResources(*MI); 1032 Resources.push_back(NewResource); 1033 } 1034 } 1035 int Resmii = Resources.size(); 1036 LLVM_DEBUG(dbgs() << "Retrun Res MII:" << Resmii << "\n"); 1037 // Delete the memory for each of the DFAs that were created earlier. 1038 for (ResourceManager *RI : Resources) { 1039 ResourceManager *D = RI; 1040 delete D; 1041 } 1042 Resources.clear(); 1043 return Resmii; 1044 } 1045 1046 /// Calculate the recurrence-constrainted minimum initiation interval. 1047 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1048 /// for each circuit. The II needs to satisfy the inequality 1049 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1050 /// II that satisfies the inequality, and the RecMII is the maximum 1051 /// of those values. 1052 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1053 unsigned RecMII = 0; 1054 1055 for (NodeSet &Nodes : NodeSets) { 1056 if (Nodes.empty()) 1057 continue; 1058 1059 unsigned Delay = Nodes.getLatency(); 1060 unsigned Distance = 1; 1061 1062 // ii = ceil(delay / distance) 1063 unsigned CurMII = (Delay + Distance - 1) / Distance; 1064 Nodes.setRecMII(CurMII); 1065 if (CurMII > RecMII) 1066 RecMII = CurMII; 1067 } 1068 1069 return RecMII; 1070 } 1071 1072 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1073 /// but we do this to find the circuits, and then change them back. 1074 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1075 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1076 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1077 SUnit *SU = &SUnits[i]; 1078 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1079 IP != EP; ++IP) { 1080 if (IP->getKind() != SDep::Anti) 1081 continue; 1082 DepsAdded.push_back(std::make_pair(SU, *IP)); 1083 } 1084 } 1085 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 1086 E = DepsAdded.end(); 1087 I != E; ++I) { 1088 // Remove this anti dependency and add one in the reverse direction. 1089 SUnit *SU = I->first; 1090 SDep &D = I->second; 1091 SUnit *TargetSU = D.getSUnit(); 1092 unsigned Reg = D.getReg(); 1093 unsigned Lat = D.getLatency(); 1094 SU->removePred(D); 1095 SDep Dep(SU, SDep::Anti, Reg); 1096 Dep.setLatency(Lat); 1097 TargetSU->addPred(Dep); 1098 } 1099 } 1100 1101 /// Create the adjacency structure of the nodes in the graph. 1102 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1103 SwingSchedulerDAG *DAG) { 1104 BitVector Added(SUnits.size()); 1105 DenseMap<int, int> OutputDeps; 1106 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1107 Added.reset(); 1108 // Add any successor to the adjacency matrix and exclude duplicates. 1109 for (auto &SI : SUnits[i].Succs) { 1110 // Only create a back-edge on the first and last nodes of a dependence 1111 // chain. This records any chains and adds them later. 1112 if (SI.getKind() == SDep::Output) { 1113 int N = SI.getSUnit()->NodeNum; 1114 int BackEdge = i; 1115 auto Dep = OutputDeps.find(BackEdge); 1116 if (Dep != OutputDeps.end()) { 1117 BackEdge = Dep->second; 1118 OutputDeps.erase(Dep); 1119 } 1120 OutputDeps[N] = BackEdge; 1121 } 1122 // Do not process a boundary node, an artificial node. 1123 // A back-edge is processed only if it goes to a Phi. 1124 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1125 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1126 continue; 1127 int N = SI.getSUnit()->NodeNum; 1128 if (!Added.test(N)) { 1129 AdjK[i].push_back(N); 1130 Added.set(N); 1131 } 1132 } 1133 // A chain edge between a store and a load is treated as a back-edge in the 1134 // adjacency matrix. 1135 for (auto &PI : SUnits[i].Preds) { 1136 if (!SUnits[i].getInstr()->mayStore() || 1137 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1138 continue; 1139 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1140 int N = PI.getSUnit()->NodeNum; 1141 if (!Added.test(N)) { 1142 AdjK[i].push_back(N); 1143 Added.set(N); 1144 } 1145 } 1146 } 1147 } 1148 // Add back-edges in the adjacency matrix for the output dependences. 1149 for (auto &OD : OutputDeps) 1150 if (!Added.test(OD.second)) { 1151 AdjK[OD.first].push_back(OD.second); 1152 Added.set(OD.second); 1153 } 1154 } 1155 1156 /// Identify an elementary circuit in the dependence graph starting at the 1157 /// specified node. 1158 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1159 bool HasBackedge) { 1160 SUnit *SV = &SUnits[V]; 1161 bool F = false; 1162 Stack.insert(SV); 1163 Blocked.set(V); 1164 1165 for (auto W : AdjK[V]) { 1166 if (NumPaths > MaxPaths) 1167 break; 1168 if (W < S) 1169 continue; 1170 if (W == S) { 1171 if (!HasBackedge) 1172 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1173 F = true; 1174 ++NumPaths; 1175 break; 1176 } else if (!Blocked.test(W)) { 1177 if (circuit(W, S, NodeSets, 1178 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1179 F = true; 1180 } 1181 } 1182 1183 if (F) 1184 unblock(V); 1185 else { 1186 for (auto W : AdjK[V]) { 1187 if (W < S) 1188 continue; 1189 if (B[W].count(SV) == 0) 1190 B[W].insert(SV); 1191 } 1192 } 1193 Stack.pop_back(); 1194 return F; 1195 } 1196 1197 /// Unblock a node in the circuit finding algorithm. 1198 void SwingSchedulerDAG::Circuits::unblock(int U) { 1199 Blocked.reset(U); 1200 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1201 while (!BU.empty()) { 1202 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1203 assert(SI != BU.end() && "Invalid B set."); 1204 SUnit *W = *SI; 1205 BU.erase(W); 1206 if (Blocked.test(W->NodeNum)) 1207 unblock(W->NodeNum); 1208 } 1209 } 1210 1211 /// Identify all the elementary circuits in the dependence graph using 1212 /// Johnson's circuit algorithm. 1213 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1214 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1215 // but we do this to find the circuits, and then change them back. 1216 swapAntiDependences(SUnits); 1217 1218 Circuits Cir(SUnits, Topo); 1219 // Create the adjacency structure. 1220 Cir.createAdjacencyStructure(this); 1221 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1222 Cir.reset(); 1223 Cir.circuit(i, i, NodeSets); 1224 } 1225 1226 // Change the dependences back so that we've created a DAG again. 1227 swapAntiDependences(SUnits); 1228 } 1229 1230 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1231 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1232 // additional copies that are needed across iterations. An artificial dependence 1233 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1234 1235 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1236 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1237 // PHI-------True-Dep------> USEOfPhi 1238 1239 // The mutation creates 1240 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1241 1242 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1243 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1244 // late to avoid additional copies across iterations. The possible scheduling 1245 // order would be 1246 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1247 1248 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1249 for (SUnit &SU : DAG->SUnits) { 1250 // Find the COPY/REG_SEQUENCE instruction. 1251 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1252 continue; 1253 1254 // Record the loop carried PHIs. 1255 SmallVector<SUnit *, 4> PHISUs; 1256 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1257 SmallVector<SUnit *, 4> SrcSUs; 1258 1259 for (auto &Dep : SU.Preds) { 1260 SUnit *TmpSU = Dep.getSUnit(); 1261 MachineInstr *TmpMI = TmpSU->getInstr(); 1262 SDep::Kind DepKind = Dep.getKind(); 1263 // Save the loop carried PHI. 1264 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1265 PHISUs.push_back(TmpSU); 1266 // Save the source of COPY/REG_SEQUENCE. 1267 // If the source has no pre-decessors, we will end up creating cycles. 1268 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1269 SrcSUs.push_back(TmpSU); 1270 } 1271 1272 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1273 continue; 1274 1275 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1276 // SUnit to the container. 1277 SmallVector<SUnit *, 8> UseSUs; 1278 for (auto I = PHISUs.begin(); I != PHISUs.end(); ++I) { 1279 for (auto &Dep : (*I)->Succs) { 1280 if (Dep.getKind() != SDep::Data) 1281 continue; 1282 1283 SUnit *TmpSU = Dep.getSUnit(); 1284 MachineInstr *TmpMI = TmpSU->getInstr(); 1285 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1286 PHISUs.push_back(TmpSU); 1287 continue; 1288 } 1289 UseSUs.push_back(TmpSU); 1290 } 1291 } 1292 1293 if (UseSUs.size() == 0) 1294 continue; 1295 1296 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1297 // Add the artificial dependencies if it does not form a cycle. 1298 for (auto I : UseSUs) { 1299 for (auto Src : SrcSUs) { 1300 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1301 Src->addPred(SDep(I, SDep::Artificial)); 1302 SDAG->Topo.AddPred(Src, I); 1303 } 1304 } 1305 } 1306 } 1307 } 1308 1309 /// Return true for DAG nodes that we ignore when computing the cost functions. 1310 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1311 /// in the calculation of the ASAP, ALAP, etc functions. 1312 static bool ignoreDependence(const SDep &D, bool isPred) { 1313 if (D.isArtificial()) 1314 return true; 1315 return D.getKind() == SDep::Anti && isPred; 1316 } 1317 1318 /// Compute several functions need to order the nodes for scheduling. 1319 /// ASAP - Earliest time to schedule a node. 1320 /// ALAP - Latest time to schedule a node. 1321 /// MOV - Mobility function, difference between ALAP and ASAP. 1322 /// D - Depth of each node. 1323 /// H - Height of each node. 1324 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1325 ScheduleInfo.resize(SUnits.size()); 1326 1327 LLVM_DEBUG({ 1328 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1329 E = Topo.end(); 1330 I != E; ++I) { 1331 const SUnit &SU = SUnits[*I]; 1332 dumpNode(SU); 1333 } 1334 }); 1335 1336 int maxASAP = 0; 1337 // Compute ASAP and ZeroLatencyDepth. 1338 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1339 E = Topo.end(); 1340 I != E; ++I) { 1341 int asap = 0; 1342 int zeroLatencyDepth = 0; 1343 SUnit *SU = &SUnits[*I]; 1344 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1345 EP = SU->Preds.end(); 1346 IP != EP; ++IP) { 1347 SUnit *pred = IP->getSUnit(); 1348 if (IP->getLatency() == 0) 1349 zeroLatencyDepth = 1350 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1351 if (ignoreDependence(*IP, true)) 1352 continue; 1353 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - 1354 getDistance(pred, SU, *IP) * MII)); 1355 } 1356 maxASAP = std::max(maxASAP, asap); 1357 ScheduleInfo[*I].ASAP = asap; 1358 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; 1359 } 1360 1361 // Compute ALAP, ZeroLatencyHeight, and MOV. 1362 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1363 E = Topo.rend(); 1364 I != E; ++I) { 1365 int alap = maxASAP; 1366 int zeroLatencyHeight = 0; 1367 SUnit *SU = &SUnits[*I]; 1368 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1369 ES = SU->Succs.end(); 1370 IS != ES; ++IS) { 1371 SUnit *succ = IS->getSUnit(); 1372 if (IS->getLatency() == 0) 1373 zeroLatencyHeight = 1374 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1375 if (ignoreDependence(*IS, true)) 1376 continue; 1377 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + 1378 getDistance(SU, succ, *IS) * MII)); 1379 } 1380 1381 ScheduleInfo[*I].ALAP = alap; 1382 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; 1383 } 1384 1385 // After computing the node functions, compute the summary for each node set. 1386 for (NodeSet &I : NodeSets) 1387 I.computeNodeSetInfo(this); 1388 1389 LLVM_DEBUG({ 1390 for (unsigned i = 0; i < SUnits.size(); i++) { 1391 dbgs() << "\tNode " << i << ":\n"; 1392 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1393 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1394 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1395 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1396 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1397 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1398 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1399 } 1400 }); 1401 } 1402 1403 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1404 /// as the predecessors of the elements of NodeOrder that are not also in 1405 /// NodeOrder. 1406 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1407 SmallSetVector<SUnit *, 8> &Preds, 1408 const NodeSet *S = nullptr) { 1409 Preds.clear(); 1410 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1411 I != E; ++I) { 1412 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1413 PI != PE; ++PI) { 1414 if (S && S->count(PI->getSUnit()) == 0) 1415 continue; 1416 if (ignoreDependence(*PI, true)) 1417 continue; 1418 if (NodeOrder.count(PI->getSUnit()) == 0) 1419 Preds.insert(PI->getSUnit()); 1420 } 1421 // Back-edges are predecessors with an anti-dependence. 1422 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1423 ES = (*I)->Succs.end(); 1424 IS != ES; ++IS) { 1425 if (IS->getKind() != SDep::Anti) 1426 continue; 1427 if (S && S->count(IS->getSUnit()) == 0) 1428 continue; 1429 if (NodeOrder.count(IS->getSUnit()) == 0) 1430 Preds.insert(IS->getSUnit()); 1431 } 1432 } 1433 return !Preds.empty(); 1434 } 1435 1436 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1437 /// as the successors of the elements of NodeOrder that are not also in 1438 /// NodeOrder. 1439 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1440 SmallSetVector<SUnit *, 8> &Succs, 1441 const NodeSet *S = nullptr) { 1442 Succs.clear(); 1443 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1444 I != E; ++I) { 1445 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1446 SI != SE; ++SI) { 1447 if (S && S->count(SI->getSUnit()) == 0) 1448 continue; 1449 if (ignoreDependence(*SI, false)) 1450 continue; 1451 if (NodeOrder.count(SI->getSUnit()) == 0) 1452 Succs.insert(SI->getSUnit()); 1453 } 1454 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1455 PE = (*I)->Preds.end(); 1456 PI != PE; ++PI) { 1457 if (PI->getKind() != SDep::Anti) 1458 continue; 1459 if (S && S->count(PI->getSUnit()) == 0) 1460 continue; 1461 if (NodeOrder.count(PI->getSUnit()) == 0) 1462 Succs.insert(PI->getSUnit()); 1463 } 1464 } 1465 return !Succs.empty(); 1466 } 1467 1468 /// Return true if there is a path from the specified node to any of the nodes 1469 /// in DestNodes. Keep track and return the nodes in any path. 1470 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1471 SetVector<SUnit *> &DestNodes, 1472 SetVector<SUnit *> &Exclude, 1473 SmallPtrSet<SUnit *, 8> &Visited) { 1474 if (Cur->isBoundaryNode()) 1475 return false; 1476 if (Exclude.count(Cur) != 0) 1477 return false; 1478 if (DestNodes.count(Cur) != 0) 1479 return true; 1480 if (!Visited.insert(Cur).second) 1481 return Path.count(Cur) != 0; 1482 bool FoundPath = false; 1483 for (auto &SI : Cur->Succs) 1484 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1485 for (auto &PI : Cur->Preds) 1486 if (PI.getKind() == SDep::Anti) 1487 FoundPath |= 1488 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1489 if (FoundPath) 1490 Path.insert(Cur); 1491 return FoundPath; 1492 } 1493 1494 /// Return true if Set1 is a subset of Set2. 1495 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1496 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1497 if (Set2.count(*I) == 0) 1498 return false; 1499 return true; 1500 } 1501 1502 /// Compute the live-out registers for the instructions in a node-set. 1503 /// The live-out registers are those that are defined in the node-set, 1504 /// but not used. Except for use operands of Phis. 1505 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1506 NodeSet &NS) { 1507 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1508 MachineRegisterInfo &MRI = MF.getRegInfo(); 1509 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1510 SmallSet<unsigned, 4> Uses; 1511 for (SUnit *SU : NS) { 1512 const MachineInstr *MI = SU->getInstr(); 1513 if (MI->isPHI()) 1514 continue; 1515 for (const MachineOperand &MO : MI->operands()) 1516 if (MO.isReg() && MO.isUse()) { 1517 unsigned Reg = MO.getReg(); 1518 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1519 Uses.insert(Reg); 1520 else if (MRI.isAllocatable(Reg)) 1521 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1522 Uses.insert(*Units); 1523 } 1524 } 1525 for (SUnit *SU : NS) 1526 for (const MachineOperand &MO : SU->getInstr()->operands()) 1527 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1528 unsigned Reg = MO.getReg(); 1529 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1530 if (!Uses.count(Reg)) 1531 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1532 LaneBitmask::getNone())); 1533 } else if (MRI.isAllocatable(Reg)) { 1534 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1535 if (!Uses.count(*Units)) 1536 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1537 LaneBitmask::getNone())); 1538 } 1539 } 1540 RPTracker.addLiveRegs(LiveOutRegs); 1541 } 1542 1543 /// A heuristic to filter nodes in recurrent node-sets if the register 1544 /// pressure of a set is too high. 1545 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1546 for (auto &NS : NodeSets) { 1547 // Skip small node-sets since they won't cause register pressure problems. 1548 if (NS.size() <= 2) 1549 continue; 1550 IntervalPressure RecRegPressure; 1551 RegPressureTracker RecRPTracker(RecRegPressure); 1552 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1553 computeLiveOuts(MF, RecRPTracker, NS); 1554 RecRPTracker.closeBottom(); 1555 1556 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1557 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 1558 return A->NodeNum > B->NodeNum; 1559 }); 1560 1561 for (auto &SU : SUnits) { 1562 // Since we're computing the register pressure for a subset of the 1563 // instructions in a block, we need to set the tracker for each 1564 // instruction in the node-set. The tracker is set to the instruction 1565 // just after the one we're interested in. 1566 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1567 RecRPTracker.setPos(std::next(CurInstI)); 1568 1569 RegPressureDelta RPDelta; 1570 ArrayRef<PressureChange> CriticalPSets; 1571 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1572 CriticalPSets, 1573 RecRegPressure.MaxSetPressure); 1574 if (RPDelta.Excess.isValid()) { 1575 LLVM_DEBUG( 1576 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1577 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1578 << ":" << RPDelta.Excess.getUnitInc()); 1579 NS.setExceedPressure(SU); 1580 break; 1581 } 1582 RecRPTracker.recede(); 1583 } 1584 } 1585 } 1586 1587 /// A heuristic to colocate node sets that have the same set of 1588 /// successors. 1589 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1590 unsigned Colocate = 0; 1591 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1592 NodeSet &N1 = NodeSets[i]; 1593 SmallSetVector<SUnit *, 8> S1; 1594 if (N1.empty() || !succ_L(N1, S1)) 1595 continue; 1596 for (int j = i + 1; j < e; ++j) { 1597 NodeSet &N2 = NodeSets[j]; 1598 if (N1.compareRecMII(N2) != 0) 1599 continue; 1600 SmallSetVector<SUnit *, 8> S2; 1601 if (N2.empty() || !succ_L(N2, S2)) 1602 continue; 1603 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1604 N1.setColocate(++Colocate); 1605 N2.setColocate(Colocate); 1606 break; 1607 } 1608 } 1609 } 1610 } 1611 1612 /// Check if the existing node-sets are profitable. If not, then ignore the 1613 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1614 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 1615 /// then it's best to try to schedule all instructions together instead of 1616 /// starting with the recurrent node-sets. 1617 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1618 // Look for loops with a large MII. 1619 if (MII < 17) 1620 return; 1621 // Check if the node-set contains only a simple add recurrence. 1622 for (auto &NS : NodeSets) { 1623 if (NS.getRecMII() > 2) 1624 return; 1625 if (NS.getMaxDepth() > MII) 1626 return; 1627 } 1628 NodeSets.clear(); 1629 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1630 return; 1631 } 1632 1633 /// Add the nodes that do not belong to a recurrence set into groups 1634 /// based upon connected componenets. 1635 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1636 SetVector<SUnit *> NodesAdded; 1637 SmallPtrSet<SUnit *, 8> Visited; 1638 // Add the nodes that are on a path between the previous node sets and 1639 // the current node set. 1640 for (NodeSet &I : NodeSets) { 1641 SmallSetVector<SUnit *, 8> N; 1642 // Add the nodes from the current node set to the previous node set. 1643 if (succ_L(I, N)) { 1644 SetVector<SUnit *> Path; 1645 for (SUnit *NI : N) { 1646 Visited.clear(); 1647 computePath(NI, Path, NodesAdded, I, Visited); 1648 } 1649 if (!Path.empty()) 1650 I.insert(Path.begin(), Path.end()); 1651 } 1652 // Add the nodes from the previous node set to the current node set. 1653 N.clear(); 1654 if (succ_L(NodesAdded, N)) { 1655 SetVector<SUnit *> Path; 1656 for (SUnit *NI : N) { 1657 Visited.clear(); 1658 computePath(NI, Path, I, NodesAdded, Visited); 1659 } 1660 if (!Path.empty()) 1661 I.insert(Path.begin(), Path.end()); 1662 } 1663 NodesAdded.insert(I.begin(), I.end()); 1664 } 1665 1666 // Create a new node set with the connected nodes of any successor of a node 1667 // in a recurrent set. 1668 NodeSet NewSet; 1669 SmallSetVector<SUnit *, 8> N; 1670 if (succ_L(NodesAdded, N)) 1671 for (SUnit *I : N) 1672 addConnectedNodes(I, NewSet, NodesAdded); 1673 if (!NewSet.empty()) 1674 NodeSets.push_back(NewSet); 1675 1676 // Create a new node set with the connected nodes of any predecessor of a node 1677 // in a recurrent set. 1678 NewSet.clear(); 1679 if (pred_L(NodesAdded, N)) 1680 for (SUnit *I : N) 1681 addConnectedNodes(I, NewSet, NodesAdded); 1682 if (!NewSet.empty()) 1683 NodeSets.push_back(NewSet); 1684 1685 // Create new nodes sets with the connected nodes any remaining node that 1686 // has no predecessor. 1687 for (unsigned i = 0; i < SUnits.size(); ++i) { 1688 SUnit *SU = &SUnits[i]; 1689 if (NodesAdded.count(SU) == 0) { 1690 NewSet.clear(); 1691 addConnectedNodes(SU, NewSet, NodesAdded); 1692 if (!NewSet.empty()) 1693 NodeSets.push_back(NewSet); 1694 } 1695 } 1696 } 1697 1698 /// Add the node to the set, and add all of its connected nodes to the set. 1699 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1700 SetVector<SUnit *> &NodesAdded) { 1701 NewSet.insert(SU); 1702 NodesAdded.insert(SU); 1703 for (auto &SI : SU->Succs) { 1704 SUnit *Successor = SI.getSUnit(); 1705 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1706 addConnectedNodes(Successor, NewSet, NodesAdded); 1707 } 1708 for (auto &PI : SU->Preds) { 1709 SUnit *Predecessor = PI.getSUnit(); 1710 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1711 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1712 } 1713 } 1714 1715 /// Return true if Set1 contains elements in Set2. The elements in common 1716 /// are returned in a different container. 1717 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1718 SmallSetVector<SUnit *, 8> &Result) { 1719 Result.clear(); 1720 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1721 SUnit *SU = Set1[i]; 1722 if (Set2.count(SU) != 0) 1723 Result.insert(SU); 1724 } 1725 return !Result.empty(); 1726 } 1727 1728 /// Merge the recurrence node sets that have the same initial node. 1729 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1730 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1731 ++I) { 1732 NodeSet &NI = *I; 1733 for (NodeSetType::iterator J = I + 1; J != E;) { 1734 NodeSet &NJ = *J; 1735 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1736 if (NJ.compareRecMII(NI) > 0) 1737 NI.setRecMII(NJ.getRecMII()); 1738 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 1739 ++NII) 1740 I->insert(*NII); 1741 NodeSets.erase(J); 1742 E = NodeSets.end(); 1743 } else { 1744 ++J; 1745 } 1746 } 1747 } 1748 } 1749 1750 /// Remove nodes that have been scheduled in previous NodeSets. 1751 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1752 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1753 ++I) 1754 for (NodeSetType::iterator J = I + 1; J != E;) { 1755 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1756 1757 if (J->empty()) { 1758 NodeSets.erase(J); 1759 E = NodeSets.end(); 1760 } else { 1761 ++J; 1762 } 1763 } 1764 } 1765 1766 /// Compute an ordered list of the dependence graph nodes, which 1767 /// indicates the order that the nodes will be scheduled. This is a 1768 /// two-level algorithm. First, a partial order is created, which 1769 /// consists of a list of sets ordered from highest to lowest priority. 1770 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 1771 SmallSetVector<SUnit *, 8> R; 1772 NodeOrder.clear(); 1773 1774 for (auto &Nodes : NodeSets) { 1775 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 1776 OrderKind Order; 1777 SmallSetVector<SUnit *, 8> N; 1778 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 1779 R.insert(N.begin(), N.end()); 1780 Order = BottomUp; 1781 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 1782 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 1783 R.insert(N.begin(), N.end()); 1784 Order = TopDown; 1785 LLVM_DEBUG(dbgs() << " Top down (succs) "); 1786 } else if (isIntersect(N, Nodes, R)) { 1787 // If some of the successors are in the existing node-set, then use the 1788 // top-down ordering. 1789 Order = TopDown; 1790 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 1791 } else if (NodeSets.size() == 1) { 1792 for (auto &N : Nodes) 1793 if (N->Succs.size() == 0) 1794 R.insert(N); 1795 Order = BottomUp; 1796 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 1797 } else { 1798 // Find the node with the highest ASAP. 1799 SUnit *maxASAP = nullptr; 1800 for (SUnit *SU : Nodes) { 1801 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 1802 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 1803 maxASAP = SU; 1804 } 1805 R.insert(maxASAP); 1806 Order = BottomUp; 1807 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 1808 } 1809 1810 while (!R.empty()) { 1811 if (Order == TopDown) { 1812 // Choose the node with the maximum height. If more than one, choose 1813 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 1814 // choose the node with the lowest MOV. 1815 while (!R.empty()) { 1816 SUnit *maxHeight = nullptr; 1817 for (SUnit *I : R) { 1818 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 1819 maxHeight = I; 1820 else if (getHeight(I) == getHeight(maxHeight) && 1821 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 1822 maxHeight = I; 1823 else if (getHeight(I) == getHeight(maxHeight) && 1824 getZeroLatencyHeight(I) == 1825 getZeroLatencyHeight(maxHeight) && 1826 getMOV(I) < getMOV(maxHeight)) 1827 maxHeight = I; 1828 } 1829 NodeOrder.insert(maxHeight); 1830 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 1831 R.remove(maxHeight); 1832 for (const auto &I : maxHeight->Succs) { 1833 if (Nodes.count(I.getSUnit()) == 0) 1834 continue; 1835 if (NodeOrder.count(I.getSUnit()) != 0) 1836 continue; 1837 if (ignoreDependence(I, false)) 1838 continue; 1839 R.insert(I.getSUnit()); 1840 } 1841 // Back-edges are predecessors with an anti-dependence. 1842 for (const auto &I : maxHeight->Preds) { 1843 if (I.getKind() != SDep::Anti) 1844 continue; 1845 if (Nodes.count(I.getSUnit()) == 0) 1846 continue; 1847 if (NodeOrder.count(I.getSUnit()) != 0) 1848 continue; 1849 R.insert(I.getSUnit()); 1850 } 1851 } 1852 Order = BottomUp; 1853 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 1854 SmallSetVector<SUnit *, 8> N; 1855 if (pred_L(NodeOrder, N, &Nodes)) 1856 R.insert(N.begin(), N.end()); 1857 } else { 1858 // Choose the node with the maximum depth. If more than one, choose 1859 // the node with the maximum ZeroLatencyDepth. If still more than one, 1860 // choose the node with the lowest MOV. 1861 while (!R.empty()) { 1862 SUnit *maxDepth = nullptr; 1863 for (SUnit *I : R) { 1864 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 1865 maxDepth = I; 1866 else if (getDepth(I) == getDepth(maxDepth) && 1867 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 1868 maxDepth = I; 1869 else if (getDepth(I) == getDepth(maxDepth) && 1870 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 1871 getMOV(I) < getMOV(maxDepth)) 1872 maxDepth = I; 1873 } 1874 NodeOrder.insert(maxDepth); 1875 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 1876 R.remove(maxDepth); 1877 if (Nodes.isExceedSU(maxDepth)) { 1878 Order = TopDown; 1879 R.clear(); 1880 R.insert(Nodes.getNode(0)); 1881 break; 1882 } 1883 for (const auto &I : maxDepth->Preds) { 1884 if (Nodes.count(I.getSUnit()) == 0) 1885 continue; 1886 if (NodeOrder.count(I.getSUnit()) != 0) 1887 continue; 1888 R.insert(I.getSUnit()); 1889 } 1890 // Back-edges are predecessors with an anti-dependence. 1891 for (const auto &I : maxDepth->Succs) { 1892 if (I.getKind() != SDep::Anti) 1893 continue; 1894 if (Nodes.count(I.getSUnit()) == 0) 1895 continue; 1896 if (NodeOrder.count(I.getSUnit()) != 0) 1897 continue; 1898 R.insert(I.getSUnit()); 1899 } 1900 } 1901 Order = TopDown; 1902 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 1903 SmallSetVector<SUnit *, 8> N; 1904 if (succ_L(NodeOrder, N, &Nodes)) 1905 R.insert(N.begin(), N.end()); 1906 } 1907 } 1908 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 1909 } 1910 1911 LLVM_DEBUG({ 1912 dbgs() << "Node order: "; 1913 for (SUnit *I : NodeOrder) 1914 dbgs() << " " << I->NodeNum << " "; 1915 dbgs() << "\n"; 1916 }); 1917 } 1918 1919 /// Process the nodes in the computed order and create the pipelined schedule 1920 /// of the instructions, if possible. Return true if a schedule is found. 1921 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 1922 1923 if (NodeOrder.empty()){ 1924 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 1925 return false; 1926 } 1927 1928 bool scheduleFound = false; 1929 unsigned II = 0; 1930 // Keep increasing II until a valid schedule is found. 1931 for (II = MII; II <= MAX_II && !scheduleFound; ++II) { 1932 Schedule.reset(); 1933 Schedule.setInitiationInterval(II); 1934 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 1935 1936 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 1937 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 1938 do { 1939 SUnit *SU = *NI; 1940 1941 // Compute the schedule time for the instruction, which is based 1942 // upon the scheduled time for any predecessors/successors. 1943 int EarlyStart = INT_MIN; 1944 int LateStart = INT_MAX; 1945 // These values are set when the size of the schedule window is limited 1946 // due to chain dependences. 1947 int SchedEnd = INT_MAX; 1948 int SchedStart = INT_MIN; 1949 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 1950 II, this); 1951 LLVM_DEBUG({ 1952 dbgs() << "\n"; 1953 dbgs() << "Inst (" << SU->NodeNum << ") "; 1954 SU->getInstr()->dump(); 1955 dbgs() << "\n"; 1956 }); 1957 LLVM_DEBUG({ 1958 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, 1959 LateStart, SchedEnd, SchedStart); 1960 }); 1961 1962 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 1963 SchedStart > LateStart) 1964 scheduleFound = false; 1965 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 1966 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 1967 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 1968 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 1969 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 1970 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 1971 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 1972 SchedEnd = 1973 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 1974 // When scheduling a Phi it is better to start at the late cycle and go 1975 // backwards. The default order may insert the Phi too far away from 1976 // its first dependence. 1977 if (SU->getInstr()->isPHI()) 1978 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 1979 else 1980 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 1981 } else { 1982 int FirstCycle = Schedule.getFirstCycle(); 1983 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 1984 FirstCycle + getASAP(SU) + II - 1, II); 1985 } 1986 // Even if we find a schedule, make sure the schedule doesn't exceed the 1987 // allowable number of stages. We keep trying if this happens. 1988 if (scheduleFound) 1989 if (SwpMaxStages > -1 && 1990 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 1991 scheduleFound = false; 1992 1993 LLVM_DEBUG({ 1994 if (!scheduleFound) 1995 dbgs() << "\tCan't schedule\n"; 1996 }); 1997 } while (++NI != NE && scheduleFound); 1998 1999 // If a schedule is found, check if it is a valid schedule too. 2000 if (scheduleFound) 2001 scheduleFound = Schedule.isValidSchedule(this); 2002 } 2003 2004 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II 2005 << ")\n"); 2006 2007 if (scheduleFound) 2008 Schedule.finalizeSchedule(this); 2009 else 2010 Schedule.reset(); 2011 2012 return scheduleFound && Schedule.getMaxStageCount() > 0; 2013 } 2014 2015 /// Given a schedule for the loop, generate a new version of the loop, 2016 /// and replace the old version. This function generates a prolog 2017 /// that contains the initial iterations in the pipeline, and kernel 2018 /// loop, and the epilogue that contains the code for the final 2019 /// iterations. 2020 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { 2021 // Create a new basic block for the kernel and add it to the CFG. 2022 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2023 2024 unsigned MaxStageCount = Schedule.getMaxStageCount(); 2025 2026 // Remember the registers that are used in different stages. The index is 2027 // the iteration, or stage, that the instruction is scheduled in. This is 2028 // a map between register names in the original block and the names created 2029 // in each stage of the pipelined loop. 2030 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 2031 InstrMapTy InstrMap; 2032 2033 SmallVector<MachineBasicBlock *, 4> PrologBBs; 2034 2035 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); 2036 assert(PreheaderBB != nullptr && 2037 "Need to add code to handle loops w/o preheader"); 2038 // Generate the prolog instructions that set up the pipeline. 2039 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); 2040 MF.insert(BB->getIterator(), KernelBB); 2041 2042 // Rearrange the instructions to generate the new, pipelined loop, 2043 // and update register names as needed. 2044 for (int Cycle = Schedule.getFirstCycle(), 2045 LastCycle = Schedule.getFinalCycle(); 2046 Cycle <= LastCycle; ++Cycle) { 2047 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); 2048 // This inner loop schedules each instruction in the cycle. 2049 for (SUnit *CI : CycleInstrs) { 2050 if (CI->getInstr()->isPHI()) 2051 continue; 2052 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); 2053 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); 2054 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); 2055 KernelBB->push_back(NewMI); 2056 InstrMap[NewMI] = CI->getInstr(); 2057 } 2058 } 2059 2060 // Copy any terminator instructions to the new kernel, and update 2061 // names as needed. 2062 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 2063 E = BB->instr_end(); 2064 I != E; ++I) { 2065 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 2066 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); 2067 KernelBB->push_back(NewMI); 2068 InstrMap[NewMI] = &*I; 2069 } 2070 2071 KernelBB->transferSuccessors(BB); 2072 KernelBB->replaceSuccessor(BB, KernelBB); 2073 2074 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, 2075 VRMap, InstrMap, MaxStageCount, MaxStageCount, false); 2076 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, 2077 InstrMap, MaxStageCount, MaxStageCount, false); 2078 2079 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 2080 2081 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 2082 // Generate the epilog instructions to complete the pipeline. 2083 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, 2084 PrologBBs); 2085 2086 // We need this step because the register allocation doesn't handle some 2087 // situations well, so we insert copies to help out. 2088 splitLifetimes(KernelBB, EpilogBBs, Schedule); 2089 2090 // Remove dead instructions due to loop induction variables. 2091 removeDeadInstructions(KernelBB, EpilogBBs); 2092 2093 // Add branches between prolog and epilog blocks. 2094 addBranches(*PreheaderBB, PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); 2095 2096 // Remove the original loop since it's no longer referenced. 2097 for (auto &I : *BB) 2098 LIS.RemoveMachineInstrFromMaps(I); 2099 BB->clear(); 2100 BB->eraseFromParent(); 2101 2102 delete[] VRMap; 2103 } 2104 2105 /// Generate the pipeline prolog code. 2106 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, 2107 MachineBasicBlock *KernelBB, 2108 ValueMapTy *VRMap, 2109 MBBVectorTy &PrologBBs) { 2110 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); 2111 assert(PreheaderBB != nullptr && 2112 "Need to add code to handle loops w/o preheader"); 2113 MachineBasicBlock *PredBB = PreheaderBB; 2114 InstrMapTy InstrMap; 2115 2116 // Generate a basic block for each stage, not including the last stage, 2117 // which will be generated in the kernel. Each basic block may contain 2118 // instructions from multiple stages/iterations. 2119 for (unsigned i = 0; i < LastStage; ++i) { 2120 // Create and insert the prolog basic block prior to the original loop 2121 // basic block. The original loop is removed later. 2122 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2123 PrologBBs.push_back(NewBB); 2124 MF.insert(BB->getIterator(), NewBB); 2125 NewBB->transferSuccessors(PredBB); 2126 PredBB->addSuccessor(NewBB); 2127 PredBB = NewBB; 2128 2129 // Generate instructions for each appropriate stage. Process instructions 2130 // in original program order. 2131 for (int StageNum = i; StageNum >= 0; --StageNum) { 2132 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2133 BBE = BB->getFirstTerminator(); 2134 BBI != BBE; ++BBI) { 2135 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { 2136 if (BBI->isPHI()) 2137 continue; 2138 MachineInstr *NewMI = 2139 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); 2140 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, 2141 VRMap); 2142 NewBB->push_back(NewMI); 2143 InstrMap[NewMI] = &*BBI; 2144 } 2145 } 2146 } 2147 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); 2148 LLVM_DEBUG({ 2149 dbgs() << "prolog:\n"; 2150 NewBB->dump(); 2151 }); 2152 } 2153 2154 PredBB->replaceSuccessor(BB, KernelBB); 2155 2156 // Check if we need to remove the branch from the preheader to the original 2157 // loop, and replace it with a branch to the new loop. 2158 unsigned numBranches = TII->removeBranch(*PreheaderBB); 2159 if (numBranches) { 2160 SmallVector<MachineOperand, 0> Cond; 2161 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); 2162 } 2163 } 2164 2165 /// Generate the pipeline epilog code. The epilog code finishes the iterations 2166 /// that were started in either the prolog or the kernel. We create a basic 2167 /// block for each stage that needs to complete. 2168 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, 2169 MachineBasicBlock *KernelBB, 2170 ValueMapTy *VRMap, 2171 MBBVectorTy &EpilogBBs, 2172 MBBVectorTy &PrologBBs) { 2173 // We need to change the branch from the kernel to the first epilog block, so 2174 // this call to analyze branch uses the kernel rather than the original BB. 2175 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2176 SmallVector<MachineOperand, 4> Cond; 2177 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 2178 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 2179 if (checkBranch) 2180 return; 2181 2182 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 2183 if (*LoopExitI == KernelBB) 2184 ++LoopExitI; 2185 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 2186 MachineBasicBlock *LoopExitBB = *LoopExitI; 2187 2188 MachineBasicBlock *PredBB = KernelBB; 2189 MachineBasicBlock *EpilogStart = LoopExitBB; 2190 InstrMapTy InstrMap; 2191 2192 // Generate a basic block for each stage, not including the last stage, 2193 // which was generated for the kernel. Each basic block may contain 2194 // instructions from multiple stages/iterations. 2195 int EpilogStage = LastStage + 1; 2196 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 2197 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 2198 EpilogBBs.push_back(NewBB); 2199 MF.insert(BB->getIterator(), NewBB); 2200 2201 PredBB->replaceSuccessor(LoopExitBB, NewBB); 2202 NewBB->addSuccessor(LoopExitBB); 2203 2204 if (EpilogStart == LoopExitBB) 2205 EpilogStart = NewBB; 2206 2207 // Add instructions to the epilog depending on the current block. 2208 // Process instructions in original program order. 2209 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 2210 for (auto &BBI : *BB) { 2211 if (BBI.isPHI()) 2212 continue; 2213 MachineInstr *In = &BBI; 2214 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { 2215 // Instructions with memoperands in the epilog are updated with 2216 // conservative values. 2217 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 2218 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); 2219 NewBB->push_back(NewMI); 2220 InstrMap[NewMI] = In; 2221 } 2222 } 2223 } 2224 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, 2225 VRMap, InstrMap, LastStage, EpilogStage, i == 1); 2226 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, 2227 InstrMap, LastStage, EpilogStage, i == 1); 2228 PredBB = NewBB; 2229 2230 LLVM_DEBUG({ 2231 dbgs() << "epilog:\n"; 2232 NewBB->dump(); 2233 }); 2234 } 2235 2236 // Fix any Phi nodes in the loop exit block. 2237 for (MachineInstr &MI : *LoopExitBB) { 2238 if (!MI.isPHI()) 2239 break; 2240 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 2241 MachineOperand &MO = MI.getOperand(i); 2242 if (MO.getMBB() == BB) 2243 MO.setMBB(PredBB); 2244 } 2245 } 2246 2247 // Create a branch to the new epilog from the kernel. 2248 // Remove the original branch and add a new branch to the epilog. 2249 TII->removeBranch(*KernelBB); 2250 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 2251 // Add a branch to the loop exit. 2252 if (EpilogBBs.size() > 0) { 2253 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 2254 SmallVector<MachineOperand, 4> Cond1; 2255 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 2256 } 2257 } 2258 2259 /// Replace all uses of FromReg that appear outside the specified 2260 /// basic block with ToReg. 2261 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 2262 MachineBasicBlock *MBB, 2263 MachineRegisterInfo &MRI, 2264 LiveIntervals &LIS) { 2265 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 2266 E = MRI.use_end(); 2267 I != E;) { 2268 MachineOperand &O = *I; 2269 ++I; 2270 if (O.getParent()->getParent() != MBB) 2271 O.setReg(ToReg); 2272 } 2273 if (!LIS.hasInterval(ToReg)) 2274 LIS.createEmptyInterval(ToReg); 2275 } 2276 2277 /// Return true if the register has a use that occurs outside the 2278 /// specified loop. 2279 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 2280 MachineRegisterInfo &MRI) { 2281 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 2282 E = MRI.use_end(); 2283 I != E; ++I) 2284 if (I->getParent()->getParent() != BB) 2285 return true; 2286 return false; 2287 } 2288 2289 /// Generate Phis for the specific block in the generated pipelined code. 2290 /// This function looks at the Phis from the original code to guide the 2291 /// creation of new Phis. 2292 void SwingSchedulerDAG::generateExistingPhis( 2293 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2294 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2295 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2296 bool IsLast) { 2297 // Compute the stage number for the initial value of the Phi, which 2298 // comes from the prolog. The prolog to use depends on to which kernel/ 2299 // epilog that we're adding the Phi. 2300 unsigned PrologStage = 0; 2301 unsigned PrevStage = 0; 2302 bool InKernel = (LastStageNum == CurStageNum); 2303 if (InKernel) { 2304 PrologStage = LastStageNum - 1; 2305 PrevStage = CurStageNum; 2306 } else { 2307 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 2308 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 2309 } 2310 2311 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2312 BBE = BB->getFirstNonPHI(); 2313 BBI != BBE; ++BBI) { 2314 unsigned Def = BBI->getOperand(0).getReg(); 2315 2316 unsigned InitVal = 0; 2317 unsigned LoopVal = 0; 2318 getPhiRegs(*BBI, BB, InitVal, LoopVal); 2319 2320 unsigned PhiOp1 = 0; 2321 // The Phi value from the loop body typically is defined in the loop, but 2322 // not always. So, we need to check if the value is defined in the loop. 2323 unsigned PhiOp2 = LoopVal; 2324 if (VRMap[LastStageNum].count(LoopVal)) 2325 PhiOp2 = VRMap[LastStageNum][LoopVal]; 2326 2327 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2328 int LoopValStage = 2329 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 2330 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); 2331 if (NumStages == 0) { 2332 // We don't need to generate a Phi anymore, but we need to rename any uses 2333 // of the Phi value. 2334 unsigned NewReg = VRMap[PrevStage][LoopVal]; 2335 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, 2336 Def, InitVal, NewReg); 2337 if (VRMap[CurStageNum].count(LoopVal)) 2338 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 2339 } 2340 // Adjust the number of Phis needed depending on the number of prologs left, 2341 // and the distance from where the Phi is first scheduled. The number of 2342 // Phis cannot exceed the number of prolog stages. Each stage can 2343 // potentially define two values. 2344 unsigned MaxPhis = PrologStage + 2; 2345 if (!InKernel && (int)PrologStage <= LoopValStage) 2346 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 2347 unsigned NumPhis = std::min(NumStages, MaxPhis); 2348 2349 unsigned NewReg = 0; 2350 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 2351 // In the epilog, we may need to look back one stage to get the correct 2352 // Phi name because the epilog and prolog blocks execute the same stage. 2353 // The correct name is from the previous block only when the Phi has 2354 // been completely scheduled prior to the epilog, and Phi value is not 2355 // needed in multiple stages. 2356 int StageDiff = 0; 2357 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 2358 NumPhis == 1) 2359 StageDiff = 1; 2360 // Adjust the computations below when the phi and the loop definition 2361 // are scheduled in different stages. 2362 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 2363 StageDiff = StageScheduled - LoopValStage; 2364 for (unsigned np = 0; np < NumPhis; ++np) { 2365 // If the Phi hasn't been scheduled, then use the initial Phi operand 2366 // value. Otherwise, use the scheduled version of the instruction. This 2367 // is a little complicated when a Phi references another Phi. 2368 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 2369 PhiOp1 = InitVal; 2370 // Check if the Phi has already been scheduled in a prolog stage. 2371 else if (PrologStage >= AccessStage + StageDiff + np && 2372 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 2373 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 2374 // Check if the Phi has already been scheduled, but the loop instruction 2375 // is either another Phi, or doesn't occur in the loop. 2376 else if (PrologStage >= AccessStage + StageDiff + np) { 2377 // If the Phi references another Phi, we need to examine the other 2378 // Phi to get the correct value. 2379 PhiOp1 = LoopVal; 2380 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 2381 int Indirects = 1; 2382 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 2383 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2384 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 2385 PhiOp1 = getInitPhiReg(*InstOp1, BB); 2386 else 2387 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 2388 InstOp1 = MRI.getVRegDef(PhiOp1); 2389 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2390 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 2391 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 2392 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 2393 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 2394 break; 2395 } 2396 ++Indirects; 2397 } 2398 } else 2399 PhiOp1 = InitVal; 2400 // If this references a generated Phi in the kernel, get the Phi operand 2401 // from the incoming block. 2402 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 2403 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2404 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2405 2406 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 2407 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 2408 // In the epilog, a map lookup is needed to get the value from the kernel, 2409 // or previous epilog block. How is does this depends on if the 2410 // instruction is scheduled in the previous block. 2411 if (!InKernel) { 2412 int StageDiffAdj = 0; 2413 if (LoopValStage != -1 && StageScheduled > LoopValStage) 2414 StageDiffAdj = StageScheduled - LoopValStage; 2415 // Use the loop value defined in the kernel, unless the kernel 2416 // contains the last definition of the Phi. 2417 if (np == 0 && PrevStage == LastStageNum && 2418 (StageScheduled != 0 || LoopValStage != 0) && 2419 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 2420 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 2421 // Use the value defined by the Phi. We add one because we switch 2422 // from looking at the loop value to the Phi definition. 2423 else if (np > 0 && PrevStage == LastStageNum && 2424 VRMap[PrevStage - np + 1].count(Def)) 2425 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 2426 // Use the loop value defined in the kernel. 2427 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 2428 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 2429 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 2430 // Use the value defined by the Phi, unless we're generating the first 2431 // epilog and the Phi refers to a Phi in a different stage. 2432 else if (VRMap[PrevStage - np].count(Def) && 2433 (!LoopDefIsPhi || (PrevStage != LastStageNum) || (LoopValStage == StageScheduled))) 2434 PhiOp2 = VRMap[PrevStage - np][Def]; 2435 } 2436 2437 // Check if we can reuse an existing Phi. This occurs when a Phi 2438 // references another Phi, and the other Phi is scheduled in an 2439 // earlier stage. We can try to reuse an existing Phi up until the last 2440 // stage of the current Phi. 2441 if (LoopDefIsPhi) { 2442 if (static_cast<int>(PrologStage - np) >= StageScheduled) { 2443 int LVNumStages = Schedule.getStagesForPhi(LoopVal); 2444 int StageDiff = (StageScheduled - LoopValStage); 2445 LVNumStages -= StageDiff; 2446 // Make sure the loop value Phi has been processed already. 2447 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 2448 NewReg = PhiOp2; 2449 unsigned ReuseStage = CurStageNum; 2450 if (Schedule.isLoopCarried(this, *PhiInst)) 2451 ReuseStage -= LVNumStages; 2452 // Check if the Phi to reuse has been generated yet. If not, then 2453 // there is nothing to reuse. 2454 if (VRMap[ReuseStage - np].count(LoopVal)) { 2455 NewReg = VRMap[ReuseStage - np][LoopVal]; 2456 2457 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2458 &*BBI, Def, NewReg); 2459 // Update the map with the new Phi name. 2460 VRMap[CurStageNum - np][Def] = NewReg; 2461 PhiOp2 = NewReg; 2462 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 2463 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 2464 2465 if (IsLast && np == NumPhis - 1) 2466 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2467 continue; 2468 } 2469 } 2470 } 2471 if (InKernel && StageDiff > 0 && 2472 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 2473 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 2474 } 2475 2476 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2477 NewReg = MRI.createVirtualRegister(RC); 2478 2479 MachineInstrBuilder NewPhi = 2480 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2481 TII->get(TargetOpcode::PHI), NewReg); 2482 NewPhi.addReg(PhiOp1).addMBB(BB1); 2483 NewPhi.addReg(PhiOp2).addMBB(BB2); 2484 if (np == 0) 2485 InstrMap[NewPhi] = &*BBI; 2486 2487 // We define the Phis after creating the new pipelined code, so 2488 // we need to rename the Phi values in scheduled instructions. 2489 2490 unsigned PrevReg = 0; 2491 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 2492 PrevReg = VRMap[PrevStage - np][LoopVal]; 2493 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2494 Def, NewReg, PrevReg); 2495 // If the Phi has been scheduled, use the new name for rewriting. 2496 if (VRMap[CurStageNum - np].count(Def)) { 2497 unsigned R = VRMap[CurStageNum - np][Def]; 2498 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2499 R, NewReg); 2500 } 2501 2502 // Check if we need to rename any uses that occurs after the loop. The 2503 // register to replace depends on whether the Phi is scheduled in the 2504 // epilog. 2505 if (IsLast && np == NumPhis - 1) 2506 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2507 2508 // In the kernel, a dependent Phi uses the value from this Phi. 2509 if (InKernel) 2510 PhiOp2 = NewReg; 2511 2512 // Update the map with the new Phi name. 2513 VRMap[CurStageNum - np][Def] = NewReg; 2514 } 2515 2516 while (NumPhis++ < NumStages) { 2517 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, 2518 &*BBI, Def, NewReg, 0); 2519 } 2520 2521 // Check if we need to rename a Phi that has been eliminated due to 2522 // scheduling. 2523 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 2524 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 2525 } 2526 } 2527 2528 /// Generate Phis for the specified block in the generated pipelined code. 2529 /// These are new Phis needed because the definition is scheduled after the 2530 /// use in the pipelined sequence. 2531 void SwingSchedulerDAG::generatePhis( 2532 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2533 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2534 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2535 bool IsLast) { 2536 // Compute the stage number that contains the initial Phi value, and 2537 // the Phi from the previous stage. 2538 unsigned PrologStage = 0; 2539 unsigned PrevStage = 0; 2540 unsigned StageDiff = CurStageNum - LastStageNum; 2541 bool InKernel = (StageDiff == 0); 2542 if (InKernel) { 2543 PrologStage = LastStageNum - 1; 2544 PrevStage = CurStageNum; 2545 } else { 2546 PrologStage = LastStageNum - StageDiff; 2547 PrevStage = LastStageNum + StageDiff - 1; 2548 } 2549 2550 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 2551 BBE = BB->instr_end(); 2552 BBI != BBE; ++BBI) { 2553 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 2554 MachineOperand &MO = BBI->getOperand(i); 2555 if (!MO.isReg() || !MO.isDef() || 2556 !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2557 continue; 2558 2559 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2560 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 2561 unsigned Def = MO.getReg(); 2562 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); 2563 // An instruction scheduled in stage 0 and is used after the loop 2564 // requires a phi in the epilog for the last definition from either 2565 // the kernel or prolog. 2566 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 2567 hasUseAfterLoop(Def, BB, MRI)) 2568 NumPhis = 1; 2569 if (!InKernel && (unsigned)StageScheduled > PrologStage) 2570 continue; 2571 2572 unsigned PhiOp2 = VRMap[PrevStage][Def]; 2573 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 2574 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 2575 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 2576 // The number of Phis can't exceed the number of prolog stages. The 2577 // prolog stage number is zero based. 2578 if (NumPhis > PrologStage + 1 - StageScheduled) 2579 NumPhis = PrologStage + 1 - StageScheduled; 2580 for (unsigned np = 0; np < NumPhis; ++np) { 2581 unsigned PhiOp1 = VRMap[PrologStage][Def]; 2582 if (np <= PrologStage) 2583 PhiOp1 = VRMap[PrologStage - np][Def]; 2584 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 2585 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2586 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2587 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 2588 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 2589 } 2590 if (!InKernel) 2591 PhiOp2 = VRMap[PrevStage - np][Def]; 2592 2593 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2594 unsigned NewReg = MRI.createVirtualRegister(RC); 2595 2596 MachineInstrBuilder NewPhi = 2597 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2598 TII->get(TargetOpcode::PHI), NewReg); 2599 NewPhi.addReg(PhiOp1).addMBB(BB1); 2600 NewPhi.addReg(PhiOp2).addMBB(BB2); 2601 if (np == 0) 2602 InstrMap[NewPhi] = &*BBI; 2603 2604 // Rewrite uses and update the map. The actions depend upon whether 2605 // we generating code for the kernel or epilog blocks. 2606 if (InKernel) { 2607 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2608 &*BBI, PhiOp1, NewReg); 2609 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2610 &*BBI, PhiOp2, NewReg); 2611 2612 PhiOp2 = NewReg; 2613 VRMap[PrevStage - np - 1][Def] = NewReg; 2614 } else { 2615 VRMap[CurStageNum - np][Def] = NewReg; 2616 if (np == NumPhis - 1) 2617 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2618 &*BBI, Def, NewReg); 2619 } 2620 if (IsLast && np == NumPhis - 1) 2621 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2622 } 2623 } 2624 } 2625 } 2626 2627 /// Remove instructions that generate values with no uses. 2628 /// Typically, these are induction variable operations that generate values 2629 /// used in the loop itself. A dead instruction has a definition with 2630 /// no uses, or uses that occur in the original loop only. 2631 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, 2632 MBBVectorTy &EpilogBBs) { 2633 // For each epilog block, check that the value defined by each instruction 2634 // is used. If not, delete it. 2635 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 2636 MBE = EpilogBBs.rend(); 2637 MBB != MBE; ++MBB) 2638 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 2639 ME = (*MBB)->instr_rend(); 2640 MI != ME;) { 2641 // From DeadMachineInstructionElem. Don't delete inline assembly. 2642 if (MI->isInlineAsm()) { 2643 ++MI; 2644 continue; 2645 } 2646 bool SawStore = false; 2647 // Check if it's safe to remove the instruction due to side effects. 2648 // We can, and want to, remove Phis here. 2649 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 2650 ++MI; 2651 continue; 2652 } 2653 bool used = true; 2654 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 2655 MOE = MI->operands_end(); 2656 MOI != MOE; ++MOI) { 2657 if (!MOI->isReg() || !MOI->isDef()) 2658 continue; 2659 unsigned reg = MOI->getReg(); 2660 // Assume physical registers are used, unless they are marked dead. 2661 if (TargetRegisterInfo::isPhysicalRegister(reg)) { 2662 used = !MOI->isDead(); 2663 if (used) 2664 break; 2665 continue; 2666 } 2667 unsigned realUses = 0; 2668 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 2669 EI = MRI.use_end(); 2670 UI != EI; ++UI) { 2671 // Check if there are any uses that occur only in the original 2672 // loop. If so, that's not a real use. 2673 if (UI->getParent()->getParent() != BB) { 2674 realUses++; 2675 used = true; 2676 break; 2677 } 2678 } 2679 if (realUses > 0) 2680 break; 2681 used = false; 2682 } 2683 if (!used) { 2684 LIS.RemoveMachineInstrFromMaps(*MI); 2685 MI++->eraseFromParent(); 2686 continue; 2687 } 2688 ++MI; 2689 } 2690 // In the kernel block, check if we can remove a Phi that generates a value 2691 // used in an instruction removed in the epilog block. 2692 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2693 BBE = KernelBB->getFirstNonPHI(); 2694 BBI != BBE;) { 2695 MachineInstr *MI = &*BBI; 2696 ++BBI; 2697 unsigned reg = MI->getOperand(0).getReg(); 2698 if (MRI.use_begin(reg) == MRI.use_end()) { 2699 LIS.RemoveMachineInstrFromMaps(*MI); 2700 MI->eraseFromParent(); 2701 } 2702 } 2703 } 2704 2705 /// For loop carried definitions, we split the lifetime of a virtual register 2706 /// that has uses past the definition in the next iteration. A copy with a new 2707 /// virtual register is inserted before the definition, which helps with 2708 /// generating a better register assignment. 2709 /// 2710 /// v1 = phi(a, v2) v1 = phi(a, v2) 2711 /// v2 = phi(b, v3) v2 = phi(b, v3) 2712 /// v3 = .. v4 = copy v1 2713 /// .. = V1 v3 = .. 2714 /// .. = v4 2715 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, 2716 MBBVectorTy &EpilogBBs, 2717 SMSchedule &Schedule) { 2718 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2719 for (auto &PHI : KernelBB->phis()) { 2720 unsigned Def = PHI.getOperand(0).getReg(); 2721 // Check for any Phi definition that used as an operand of another Phi 2722 // in the same block. 2723 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 2724 E = MRI.use_instr_end(); 2725 I != E; ++I) { 2726 if (I->isPHI() && I->getParent() == KernelBB) { 2727 // Get the loop carried definition. 2728 unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 2729 if (!LCDef) 2730 continue; 2731 MachineInstr *MI = MRI.getVRegDef(LCDef); 2732 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 2733 continue; 2734 // Search through the rest of the block looking for uses of the Phi 2735 // definition. If one occurs, then split the lifetime. 2736 unsigned SplitReg = 0; 2737 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 2738 KernelBB->instr_end())) 2739 if (BBJ.readsRegister(Def)) { 2740 // We split the lifetime when we find the first use. 2741 if (SplitReg == 0) { 2742 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 2743 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 2744 TII->get(TargetOpcode::COPY), SplitReg) 2745 .addReg(Def); 2746 } 2747 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 2748 } 2749 if (!SplitReg) 2750 continue; 2751 // Search through each of the epilog blocks for any uses to be renamed. 2752 for (auto &Epilog : EpilogBBs) 2753 for (auto &I : *Epilog) 2754 if (I.readsRegister(Def)) 2755 I.substituteRegister(Def, SplitReg, 0, *TRI); 2756 break; 2757 } 2758 } 2759 } 2760 } 2761 2762 /// Remove the incoming block from the Phis in a basic block. 2763 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 2764 for (MachineInstr &MI : *BB) { 2765 if (!MI.isPHI()) 2766 break; 2767 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 2768 if (MI.getOperand(i + 1).getMBB() == Incoming) { 2769 MI.RemoveOperand(i + 1); 2770 MI.RemoveOperand(i); 2771 break; 2772 } 2773 } 2774 } 2775 2776 /// Create branches from each prolog basic block to the appropriate epilog 2777 /// block. These edges are needed if the loop ends before reaching the 2778 /// kernel. 2779 void SwingSchedulerDAG::addBranches(MachineBasicBlock &PreheaderBB, 2780 MBBVectorTy &PrologBBs, 2781 MachineBasicBlock *KernelBB, 2782 MBBVectorTy &EpilogBBs, 2783 SMSchedule &Schedule, ValueMapTy *VRMap) { 2784 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 2785 MachineInstr *IndVar = Pass.LI.LoopInductionVar; 2786 MachineInstr *Cmp = Pass.LI.LoopCompare; 2787 MachineBasicBlock *LastPro = KernelBB; 2788 MachineBasicBlock *LastEpi = KernelBB; 2789 2790 // Start from the blocks connected to the kernel and work "out" 2791 // to the first prolog and the last epilog blocks. 2792 SmallVector<MachineInstr *, 4> PrevInsts; 2793 unsigned MaxIter = PrologBBs.size() - 1; 2794 unsigned LC = UINT_MAX; 2795 unsigned LCMin = UINT_MAX; 2796 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 2797 // Add branches to the prolog that go to the corresponding 2798 // epilog, and the fall-thru prolog/kernel block. 2799 MachineBasicBlock *Prolog = PrologBBs[j]; 2800 MachineBasicBlock *Epilog = EpilogBBs[i]; 2801 // We've executed one iteration, so decrement the loop count and check for 2802 // the loop end. 2803 SmallVector<MachineOperand, 4> Cond; 2804 // Check if the LOOP0 has already been removed. If so, then there is no need 2805 // to reduce the trip count. 2806 if (LC != 0) 2807 LC = TII->reduceLoopCount(*Prolog, PreheaderBB, IndVar, *Cmp, Cond, 2808 PrevInsts, j, MaxIter); 2809 2810 // Record the value of the first trip count, which is used to determine if 2811 // branches and blocks can be removed for constant trip counts. 2812 if (LCMin == UINT_MAX) 2813 LCMin = LC; 2814 2815 unsigned numAdded = 0; 2816 if (TargetRegisterInfo::isVirtualRegister(LC)) { 2817 Prolog->addSuccessor(Epilog); 2818 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 2819 } else if (j >= LCMin) { 2820 Prolog->addSuccessor(Epilog); 2821 Prolog->removeSuccessor(LastPro); 2822 LastEpi->removeSuccessor(Epilog); 2823 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 2824 removePhis(Epilog, LastEpi); 2825 // Remove the blocks that are no longer referenced. 2826 if (LastPro != LastEpi) { 2827 LastEpi->clear(); 2828 LastEpi->eraseFromParent(); 2829 } 2830 LastPro->clear(); 2831 LastPro->eraseFromParent(); 2832 } else { 2833 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 2834 removePhis(Epilog, Prolog); 2835 } 2836 LastPro = Prolog; 2837 LastEpi = Epilog; 2838 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 2839 E = Prolog->instr_rend(); 2840 I != E && numAdded > 0; ++I, --numAdded) 2841 updateInstruction(&*I, false, j, 0, Schedule, VRMap); 2842 } 2843 } 2844 2845 /// Return true if we can compute the amount the instruction changes 2846 /// during each iteration. Set Delta to the amount of the change. 2847 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 2848 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2849 const MachineOperand *BaseOp; 2850 int64_t Offset; 2851 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI)) 2852 return false; 2853 2854 if (!BaseOp->isReg()) 2855 return false; 2856 2857 unsigned BaseReg = BaseOp->getReg(); 2858 2859 MachineRegisterInfo &MRI = MF.getRegInfo(); 2860 // Check if there is a Phi. If so, get the definition in the loop. 2861 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2862 if (BaseDef && BaseDef->isPHI()) { 2863 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2864 BaseDef = MRI.getVRegDef(BaseReg); 2865 } 2866 if (!BaseDef) 2867 return false; 2868 2869 int D = 0; 2870 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2871 return false; 2872 2873 Delta = D; 2874 return true; 2875 } 2876 2877 /// Update the memory operand with a new offset when the pipeliner 2878 /// generates a new copy of the instruction that refers to a 2879 /// different memory location. 2880 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, 2881 MachineInstr &OldMI, unsigned Num) { 2882 if (Num == 0) 2883 return; 2884 // If the instruction has memory operands, then adjust the offset 2885 // when the instruction appears in different stages. 2886 if (NewMI.memoperands_empty()) 2887 return; 2888 SmallVector<MachineMemOperand *, 2> NewMMOs; 2889 for (MachineMemOperand *MMO : NewMI.memoperands()) { 2890 // TODO: Figure out whether isAtomic is really necessary (see D57601). 2891 if (MMO->isVolatile() || MMO->isAtomic() || 2892 (MMO->isInvariant() && MMO->isDereferenceable()) || 2893 (!MMO->getValue())) { 2894 NewMMOs.push_back(MMO); 2895 continue; 2896 } 2897 unsigned Delta; 2898 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 2899 int64_t AdjOffset = Delta * Num; 2900 NewMMOs.push_back( 2901 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 2902 } else { 2903 NewMMOs.push_back( 2904 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); 2905 } 2906 } 2907 NewMI.setMemRefs(MF, NewMMOs); 2908 } 2909 2910 /// Clone the instruction for the new pipelined loop and update the 2911 /// memory operands, if needed. 2912 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, 2913 unsigned CurStageNum, 2914 unsigned InstStageNum) { 2915 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 2916 // Check for tied operands in inline asm instructions. This should be handled 2917 // elsewhere, but I'm not sure of the best solution. 2918 if (OldMI->isInlineAsm()) 2919 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 2920 const auto &MO = OldMI->getOperand(i); 2921 if (MO.isReg() && MO.isUse()) 2922 break; 2923 unsigned UseIdx; 2924 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 2925 NewMI->tieOperands(i, UseIdx); 2926 } 2927 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 2928 return NewMI; 2929 } 2930 2931 /// Clone the instruction for the new pipelined loop. If needed, this 2932 /// function updates the instruction using the values saved in the 2933 /// InstrChanges structure. 2934 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, 2935 unsigned CurStageNum, 2936 unsigned InstStageNum, 2937 SMSchedule &Schedule) { 2938 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 2939 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2940 InstrChanges.find(getSUnit(OldMI)); 2941 if (It != InstrChanges.end()) { 2942 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2943 unsigned BasePos, OffsetPos; 2944 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 2945 return nullptr; 2946 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 2947 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 2948 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) 2949 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 2950 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2951 } 2952 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 2953 return NewMI; 2954 } 2955 2956 /// Update the machine instruction with new virtual registers. This 2957 /// function may change the defintions and/or uses. 2958 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, 2959 unsigned CurStageNum, 2960 unsigned InstrStageNum, 2961 SMSchedule &Schedule, 2962 ValueMapTy *VRMap) { 2963 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 2964 MachineOperand &MO = NewMI->getOperand(i); 2965 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2966 continue; 2967 unsigned reg = MO.getReg(); 2968 if (MO.isDef()) { 2969 // Create a new virtual register for the definition. 2970 const TargetRegisterClass *RC = MRI.getRegClass(reg); 2971 unsigned NewReg = MRI.createVirtualRegister(RC); 2972 MO.setReg(NewReg); 2973 VRMap[CurStageNum][reg] = NewReg; 2974 if (LastDef) 2975 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 2976 } else if (MO.isUse()) { 2977 MachineInstr *Def = MRI.getVRegDef(reg); 2978 // Compute the stage that contains the last definition for instruction. 2979 int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); 2980 unsigned StageNum = CurStageNum; 2981 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 2982 // Compute the difference in stages between the defintion and the use. 2983 unsigned StageDiff = (InstrStageNum - DefStageNum); 2984 // Make an adjustment to get the last definition. 2985 StageNum -= StageDiff; 2986 } 2987 if (VRMap[StageNum].count(reg)) 2988 MO.setReg(VRMap[StageNum][reg]); 2989 } 2990 } 2991 } 2992 2993 /// Return the instruction in the loop that defines the register. 2994 /// If the definition is a Phi, then follow the Phi operand to 2995 /// the instruction in the loop. 2996 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 2997 SmallPtrSet<MachineInstr *, 8> Visited; 2998 MachineInstr *Def = MRI.getVRegDef(Reg); 2999 while (Def->isPHI()) { 3000 if (!Visited.insert(Def).second) 3001 break; 3002 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 3003 if (Def->getOperand(i + 1).getMBB() == BB) { 3004 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 3005 break; 3006 } 3007 } 3008 return Def; 3009 } 3010 3011 /// Return the new name for the value from the previous stage. 3012 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, 3013 unsigned LoopVal, unsigned LoopStage, 3014 ValueMapTy *VRMap, 3015 MachineBasicBlock *BB) { 3016 unsigned PrevVal = 0; 3017 if (StageNum > PhiStage) { 3018 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 3019 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 3020 // The name is defined in the previous stage. 3021 PrevVal = VRMap[StageNum - 1][LoopVal]; 3022 else if (VRMap[StageNum].count(LoopVal)) 3023 // The previous name is defined in the current stage when the instruction 3024 // order is swapped. 3025 PrevVal = VRMap[StageNum][LoopVal]; 3026 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 3027 // The loop value hasn't yet been scheduled. 3028 PrevVal = LoopVal; 3029 else if (StageNum == PhiStage + 1) 3030 // The loop value is another phi, which has not been scheduled. 3031 PrevVal = getInitPhiReg(*LoopInst, BB); 3032 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 3033 // The loop value is another phi, which has been scheduled. 3034 PrevVal = 3035 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 3036 LoopStage, VRMap, BB); 3037 } 3038 return PrevVal; 3039 } 3040 3041 /// Rewrite the Phi values in the specified block to use the mappings 3042 /// from the initial operand. Once the Phi is scheduled, we switch 3043 /// to using the loop value instead of the Phi value, so those names 3044 /// do not need to be rewritten. 3045 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, 3046 unsigned StageNum, 3047 SMSchedule &Schedule, 3048 ValueMapTy *VRMap, 3049 InstrMapTy &InstrMap) { 3050 for (auto &PHI : BB->phis()) { 3051 unsigned InitVal = 0; 3052 unsigned LoopVal = 0; 3053 getPhiRegs(PHI, BB, InitVal, LoopVal); 3054 unsigned PhiDef = PHI.getOperand(0).getReg(); 3055 3056 unsigned PhiStage = 3057 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); 3058 unsigned LoopStage = 3059 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 3060 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); 3061 if (NumPhis > StageNum) 3062 NumPhis = StageNum; 3063 for (unsigned np = 0; np <= NumPhis; ++np) { 3064 unsigned NewVal = 3065 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 3066 if (!NewVal) 3067 NewVal = InitVal; 3068 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI, 3069 PhiDef, NewVal); 3070 } 3071 } 3072 } 3073 3074 /// Rewrite a previously scheduled instruction to use the register value 3075 /// from the new instruction. Make sure the instruction occurs in the 3076 /// basic block, and we don't change the uses in the new instruction. 3077 void SwingSchedulerDAG::rewriteScheduledInstr( 3078 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, 3079 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, 3080 unsigned NewReg, unsigned PrevReg) { 3081 bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); 3082 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; 3083 // Rewrite uses that have been scheduled already to use the new 3084 // Phi register. 3085 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 3086 EI = MRI.use_end(); 3087 UI != EI;) { 3088 MachineOperand &UseOp = *UI; 3089 MachineInstr *UseMI = UseOp.getParent(); 3090 ++UI; 3091 if (UseMI->getParent() != BB) 3092 continue; 3093 if (UseMI->isPHI()) { 3094 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 3095 continue; 3096 if (getLoopPhiReg(*UseMI, BB) != OldReg) 3097 continue; 3098 } 3099 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 3100 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 3101 SUnit *OrigMISU = getSUnit(OrigInstr->second); 3102 int StageSched = Schedule.stageScheduled(OrigMISU); 3103 int CycleSched = Schedule.cycleScheduled(OrigMISU); 3104 unsigned ReplaceReg = 0; 3105 // This is the stage for the scheduled instruction. 3106 if (StagePhi == StageSched && Phi->isPHI()) { 3107 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); 3108 if (PrevReg && InProlog) 3109 ReplaceReg = PrevReg; 3110 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && 3111 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) 3112 ReplaceReg = PrevReg; 3113 else 3114 ReplaceReg = NewReg; 3115 } 3116 // The scheduled instruction occurs before the scheduled Phi, and the 3117 // Phi is not loop carried. 3118 if (!InProlog && StagePhi + 1 == StageSched && 3119 !Schedule.isLoopCarried(this, *Phi)) 3120 ReplaceReg = NewReg; 3121 if (StagePhi > StageSched && Phi->isPHI()) 3122 ReplaceReg = NewReg; 3123 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 3124 ReplaceReg = NewReg; 3125 if (ReplaceReg) { 3126 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 3127 UseOp.setReg(ReplaceReg); 3128 } 3129 } 3130 } 3131 3132 /// Check if we can change the instruction to use an offset value from the 3133 /// previous iteration. If so, return true and set the base and offset values 3134 /// so that we can rewrite the load, if necessary. 3135 /// v1 = Phi(v0, v3) 3136 /// v2 = load v1, 0 3137 /// v3 = post_store v1, 4, x 3138 /// This function enables the load to be rewritten as v2 = load v3, 4. 3139 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 3140 unsigned &BasePos, 3141 unsigned &OffsetPos, 3142 unsigned &NewBase, 3143 int64_t &Offset) { 3144 // Get the load instruction. 3145 if (TII->isPostIncrement(*MI)) 3146 return false; 3147 unsigned BasePosLd, OffsetPosLd; 3148 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 3149 return false; 3150 unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); 3151 3152 // Look for the Phi instruction. 3153 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 3154 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 3155 if (!Phi || !Phi->isPHI()) 3156 return false; 3157 // Get the register defined in the loop block. 3158 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 3159 if (!PrevReg) 3160 return false; 3161 3162 // Check for the post-increment load/store instruction. 3163 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 3164 if (!PrevDef || PrevDef == MI) 3165 return false; 3166 3167 if (!TII->isPostIncrement(*PrevDef)) 3168 return false; 3169 3170 unsigned BasePos1 = 0, OffsetPos1 = 0; 3171 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 3172 return false; 3173 3174 // Make sure that the instructions do not access the same memory location in 3175 // the next iteration. 3176 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 3177 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 3178 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3179 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 3180 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 3181 MF.DeleteMachineInstr(NewMI); 3182 if (!Disjoint) 3183 return false; 3184 3185 // Set the return value once we determine that we return true. 3186 BasePos = BasePosLd; 3187 OffsetPos = OffsetPosLd; 3188 NewBase = PrevReg; 3189 Offset = StoreOffset; 3190 return true; 3191 } 3192 3193 /// Apply changes to the instruction if needed. The changes are need 3194 /// to improve the scheduling and depend up on the final schedule. 3195 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 3196 SMSchedule &Schedule) { 3197 SUnit *SU = getSUnit(MI); 3198 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3199 InstrChanges.find(SU); 3200 if (It != InstrChanges.end()) { 3201 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3202 unsigned BasePos, OffsetPos; 3203 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3204 return; 3205 unsigned BaseReg = MI->getOperand(BasePos).getReg(); 3206 MachineInstr *LoopDef = findDefInLoop(BaseReg); 3207 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 3208 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 3209 int BaseStageNum = Schedule.stageScheduled(SU); 3210 int BaseCycleNum = Schedule.cycleScheduled(SU); 3211 if (BaseStageNum < DefStageNum) { 3212 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3213 int OffsetDiff = DefStageNum - BaseStageNum; 3214 if (DefCycleNum < BaseCycleNum) { 3215 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 3216 if (OffsetDiff > 0) 3217 --OffsetDiff; 3218 } 3219 int64_t NewOffset = 3220 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 3221 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3222 SU->setInstr(NewMI); 3223 MISUnitMap[NewMI] = SU; 3224 NewMIs.insert(NewMI); 3225 } 3226 } 3227 } 3228 3229 /// Return true for an order or output dependence that is loop carried 3230 /// potentially. A dependence is loop carried if the destination defines a valu 3231 /// that may be used or defined by the source in a subsequent iteration. 3232 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 3233 bool isSucc) { 3234 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 3235 Dep.isArtificial()) 3236 return false; 3237 3238 if (!SwpPruneLoopCarried) 3239 return true; 3240 3241 if (Dep.getKind() == SDep::Output) 3242 return true; 3243 3244 MachineInstr *SI = Source->getInstr(); 3245 MachineInstr *DI = Dep.getSUnit()->getInstr(); 3246 if (!isSucc) 3247 std::swap(SI, DI); 3248 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 3249 3250 // Assume ordered loads and stores may have a loop carried dependence. 3251 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 3252 SI->mayRaiseFPException() || DI->mayRaiseFPException() || 3253 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 3254 return true; 3255 3256 // Only chain dependences between a load and store can be loop carried. 3257 if (!DI->mayStore() || !SI->mayLoad()) 3258 return false; 3259 3260 unsigned DeltaS, DeltaD; 3261 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 3262 return true; 3263 3264 const MachineOperand *BaseOpS, *BaseOpD; 3265 int64_t OffsetS, OffsetD; 3266 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3267 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, TRI) || 3268 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, TRI)) 3269 return true; 3270 3271 if (!BaseOpS->isIdenticalTo(*BaseOpD)) 3272 return true; 3273 3274 // Check that the base register is incremented by a constant value for each 3275 // iteration. 3276 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); 3277 if (!Def || !Def->isPHI()) 3278 return true; 3279 unsigned InitVal = 0; 3280 unsigned LoopVal = 0; 3281 getPhiRegs(*Def, BB, InitVal, LoopVal); 3282 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); 3283 int D = 0; 3284 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) 3285 return true; 3286 3287 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 3288 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 3289 3290 // This is the main test, which checks the offset values and the loop 3291 // increment value to determine if the accesses may be loop carried. 3292 if (AccessSizeS == MemoryLocation::UnknownSize || 3293 AccessSizeD == MemoryLocation::UnknownSize) 3294 return true; 3295 3296 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) 3297 return true; 3298 3299 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); 3300 } 3301 3302 void SwingSchedulerDAG::postprocessDAG() { 3303 for (auto &M : Mutations) 3304 M->apply(this); 3305 } 3306 3307 /// Try to schedule the node at the specified StartCycle and continue 3308 /// until the node is schedule or the EndCycle is reached. This function 3309 /// returns true if the node is scheduled. This routine may search either 3310 /// forward or backward for a place to insert the instruction based upon 3311 /// the relative values of StartCycle and EndCycle. 3312 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 3313 bool forward = true; 3314 LLVM_DEBUG({ 3315 dbgs() << "Trying to insert node between " << StartCycle << " and " 3316 << EndCycle << " II: " << II << "\n"; 3317 }); 3318 if (StartCycle > EndCycle) 3319 forward = false; 3320 3321 // The terminating condition depends on the direction. 3322 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 3323 for (int curCycle = StartCycle; curCycle != termCycle; 3324 forward ? ++curCycle : --curCycle) { 3325 3326 // Add the already scheduled instructions at the specified cycle to the 3327 // DFA. 3328 ProcItinResources.clearResources(); 3329 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 3330 checkCycle <= LastCycle; checkCycle += II) { 3331 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 3332 3333 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 3334 E = cycleInstrs.end(); 3335 I != E; ++I) { 3336 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 3337 continue; 3338 assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) && 3339 "These instructions have already been scheduled."); 3340 ProcItinResources.reserveResources(*(*I)->getInstr()); 3341 } 3342 } 3343 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 3344 ProcItinResources.canReserveResources(*SU->getInstr())) { 3345 LLVM_DEBUG({ 3346 dbgs() << "\tinsert at cycle " << curCycle << " "; 3347 SU->getInstr()->dump(); 3348 }); 3349 3350 ScheduledInstrs[curCycle].push_back(SU); 3351 InstrToCycle.insert(std::make_pair(SU, curCycle)); 3352 if (curCycle > LastCycle) 3353 LastCycle = curCycle; 3354 if (curCycle < FirstCycle) 3355 FirstCycle = curCycle; 3356 return true; 3357 } 3358 LLVM_DEBUG({ 3359 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 3360 SU->getInstr()->dump(); 3361 }); 3362 } 3363 return false; 3364 } 3365 3366 // Return the cycle of the earliest scheduled instruction in the chain. 3367 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 3368 SmallPtrSet<SUnit *, 8> Visited; 3369 SmallVector<SDep, 8> Worklist; 3370 Worklist.push_back(Dep); 3371 int EarlyCycle = INT_MAX; 3372 while (!Worklist.empty()) { 3373 const SDep &Cur = Worklist.pop_back_val(); 3374 SUnit *PrevSU = Cur.getSUnit(); 3375 if (Visited.count(PrevSU)) 3376 continue; 3377 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 3378 if (it == InstrToCycle.end()) 3379 continue; 3380 EarlyCycle = std::min(EarlyCycle, it->second); 3381 for (const auto &PI : PrevSU->Preds) 3382 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 3383 Worklist.push_back(PI); 3384 Visited.insert(PrevSU); 3385 } 3386 return EarlyCycle; 3387 } 3388 3389 // Return the cycle of the latest scheduled instruction in the chain. 3390 int SMSchedule::latestCycleInChain(const SDep &Dep) { 3391 SmallPtrSet<SUnit *, 8> Visited; 3392 SmallVector<SDep, 8> Worklist; 3393 Worklist.push_back(Dep); 3394 int LateCycle = INT_MIN; 3395 while (!Worklist.empty()) { 3396 const SDep &Cur = Worklist.pop_back_val(); 3397 SUnit *SuccSU = Cur.getSUnit(); 3398 if (Visited.count(SuccSU)) 3399 continue; 3400 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 3401 if (it == InstrToCycle.end()) 3402 continue; 3403 LateCycle = std::max(LateCycle, it->second); 3404 for (const auto &SI : SuccSU->Succs) 3405 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) 3406 Worklist.push_back(SI); 3407 Visited.insert(SuccSU); 3408 } 3409 return LateCycle; 3410 } 3411 3412 /// If an instruction has a use that spans multiple iterations, then 3413 /// return true. These instructions are characterized by having a back-ege 3414 /// to a Phi, which contains a reference to another Phi. 3415 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 3416 for (auto &P : SU->Preds) 3417 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 3418 for (auto &S : P.getSUnit()->Succs) 3419 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 3420 return P.getSUnit(); 3421 return nullptr; 3422 } 3423 3424 /// Compute the scheduling start slot for the instruction. The start slot 3425 /// depends on any predecessor or successor nodes scheduled already. 3426 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 3427 int *MinEnd, int *MaxStart, int II, 3428 SwingSchedulerDAG *DAG) { 3429 // Iterate over each instruction that has been scheduled already. The start 3430 // slot computation depends on whether the previously scheduled instruction 3431 // is a predecessor or successor of the specified instruction. 3432 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 3433 3434 // Iterate over each instruction in the current cycle. 3435 for (SUnit *I : getInstructions(cycle)) { 3436 // Because we're processing a DAG for the dependences, we recognize 3437 // the back-edge in recurrences by anti dependences. 3438 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 3439 const SDep &Dep = SU->Preds[i]; 3440 if (Dep.getSUnit() == I) { 3441 if (!DAG->isBackedge(SU, Dep)) { 3442 int EarlyStart = cycle + Dep.getLatency() - 3443 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3444 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3445 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 3446 int End = earliestCycleInChain(Dep) + (II - 1); 3447 *MinEnd = std::min(*MinEnd, End); 3448 } 3449 } else { 3450 int LateStart = cycle - Dep.getLatency() + 3451 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3452 *MinLateStart = std::min(*MinLateStart, LateStart); 3453 } 3454 } 3455 // For instruction that requires multiple iterations, make sure that 3456 // the dependent instruction is not scheduled past the definition. 3457 SUnit *BE = multipleIterations(I, DAG); 3458 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 3459 !SU->isPred(I)) 3460 *MinLateStart = std::min(*MinLateStart, cycle); 3461 } 3462 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 3463 if (SU->Succs[i].getSUnit() == I) { 3464 const SDep &Dep = SU->Succs[i]; 3465 if (!DAG->isBackedge(SU, Dep)) { 3466 int LateStart = cycle - Dep.getLatency() + 3467 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3468 *MinLateStart = std::min(*MinLateStart, LateStart); 3469 if (DAG->isLoopCarriedDep(SU, Dep)) { 3470 int Start = latestCycleInChain(Dep) + 1 - II; 3471 *MaxStart = std::max(*MaxStart, Start); 3472 } 3473 } else { 3474 int EarlyStart = cycle + Dep.getLatency() - 3475 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3476 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3477 } 3478 } 3479 } 3480 } 3481 } 3482 } 3483 3484 /// Order the instructions within a cycle so that the definitions occur 3485 /// before the uses. Returns true if the instruction is added to the start 3486 /// of the list, or false if added to the end. 3487 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 3488 std::deque<SUnit *> &Insts) { 3489 MachineInstr *MI = SU->getInstr(); 3490 bool OrderBeforeUse = false; 3491 bool OrderAfterDef = false; 3492 bool OrderBeforeDef = false; 3493 unsigned MoveDef = 0; 3494 unsigned MoveUse = 0; 3495 int StageInst1 = stageScheduled(SU); 3496 3497 unsigned Pos = 0; 3498 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 3499 ++I, ++Pos) { 3500 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3501 MachineOperand &MO = MI->getOperand(i); 3502 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3503 continue; 3504 3505 unsigned Reg = MO.getReg(); 3506 unsigned BasePos, OffsetPos; 3507 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 3508 if (MI->getOperand(BasePos).getReg() == Reg) 3509 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 3510 Reg = NewReg; 3511 bool Reads, Writes; 3512 std::tie(Reads, Writes) = 3513 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 3514 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 3515 OrderBeforeUse = true; 3516 if (MoveUse == 0) 3517 MoveUse = Pos; 3518 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3519 // Add the instruction after the scheduled instruction. 3520 OrderAfterDef = true; 3521 MoveDef = Pos; 3522 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3523 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3524 OrderBeforeUse = true; 3525 if (MoveUse == 0) 3526 MoveUse = Pos; 3527 } else { 3528 OrderAfterDef = true; 3529 MoveDef = Pos; 3530 } 3531 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3532 OrderBeforeUse = true; 3533 if (MoveUse == 0) 3534 MoveUse = Pos; 3535 if (MoveUse != 0) { 3536 OrderAfterDef = true; 3537 MoveDef = Pos - 1; 3538 } 3539 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3540 // Add the instruction before the scheduled instruction. 3541 OrderBeforeUse = true; 3542 if (MoveUse == 0) 3543 MoveUse = Pos; 3544 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3545 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3546 if (MoveUse == 0) { 3547 OrderBeforeDef = true; 3548 MoveUse = Pos; 3549 } 3550 } 3551 } 3552 // Check for order dependences between instructions. Make sure the source 3553 // is ordered before the destination. 3554 for (auto &S : SU->Succs) { 3555 if (S.getSUnit() != *I) 3556 continue; 3557 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3558 OrderBeforeUse = true; 3559 if (Pos < MoveUse) 3560 MoveUse = Pos; 3561 } 3562 // We did not handle HW dependences in previous for loop, 3563 // and we normally set Latency = 0 for Anti deps, 3564 // so may have nodes in same cycle with Anti denpendent on HW regs. 3565 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { 3566 OrderBeforeUse = true; 3567 if ((MoveUse == 0) || (Pos < MoveUse)) 3568 MoveUse = Pos; 3569 } 3570 } 3571 for (auto &P : SU->Preds) { 3572 if (P.getSUnit() != *I) 3573 continue; 3574 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3575 OrderAfterDef = true; 3576 MoveDef = Pos; 3577 } 3578 } 3579 } 3580 3581 // A circular dependence. 3582 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3583 OrderBeforeUse = false; 3584 3585 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3586 // to a loop-carried dependence. 3587 if (OrderBeforeDef) 3588 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3589 3590 // The uncommon case when the instruction order needs to be updated because 3591 // there is both a use and def. 3592 if (OrderBeforeUse && OrderAfterDef) { 3593 SUnit *UseSU = Insts.at(MoveUse); 3594 SUnit *DefSU = Insts.at(MoveDef); 3595 if (MoveUse > MoveDef) { 3596 Insts.erase(Insts.begin() + MoveUse); 3597 Insts.erase(Insts.begin() + MoveDef); 3598 } else { 3599 Insts.erase(Insts.begin() + MoveDef); 3600 Insts.erase(Insts.begin() + MoveUse); 3601 } 3602 orderDependence(SSD, UseSU, Insts); 3603 orderDependence(SSD, SU, Insts); 3604 orderDependence(SSD, DefSU, Insts); 3605 return; 3606 } 3607 // Put the new instruction first if there is a use in the list. Otherwise, 3608 // put it at the end of the list. 3609 if (OrderBeforeUse) 3610 Insts.push_front(SU); 3611 else 3612 Insts.push_back(SU); 3613 } 3614 3615 /// Return true if the scheduled Phi has a loop carried operand. 3616 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 3617 if (!Phi.isPHI()) 3618 return false; 3619 assert(Phi.isPHI() && "Expecting a Phi."); 3620 SUnit *DefSU = SSD->getSUnit(&Phi); 3621 unsigned DefCycle = cycleScheduled(DefSU); 3622 int DefStage = stageScheduled(DefSU); 3623 3624 unsigned InitVal = 0; 3625 unsigned LoopVal = 0; 3626 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3627 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3628 if (!UseSU) 3629 return true; 3630 if (UseSU->getInstr()->isPHI()) 3631 return true; 3632 unsigned LoopCycle = cycleScheduled(UseSU); 3633 int LoopStage = stageScheduled(UseSU); 3634 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 3635 } 3636 3637 /// Return true if the instruction is a definition that is loop carried 3638 /// and defines the use on the next iteration. 3639 /// v1 = phi(v2, v3) 3640 /// (Def) v3 = op v1 3641 /// (MO) = v1 3642 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 3643 /// register. 3644 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 3645 MachineInstr *Def, MachineOperand &MO) { 3646 if (!MO.isReg()) 3647 return false; 3648 if (Def->isPHI()) 3649 return false; 3650 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3651 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3652 return false; 3653 if (!isLoopCarried(SSD, *Phi)) 3654 return false; 3655 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3656 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 3657 MachineOperand &DMO = Def->getOperand(i); 3658 if (!DMO.isReg() || !DMO.isDef()) 3659 continue; 3660 if (DMO.getReg() == LoopReg) 3661 return true; 3662 } 3663 return false; 3664 } 3665 3666 // Check if the generated schedule is valid. This function checks if 3667 // an instruction that uses a physical register is scheduled in a 3668 // different stage than the definition. The pipeliner does not handle 3669 // physical register values that may cross a basic block boundary. 3670 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3671 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 3672 SUnit &SU = SSD->SUnits[i]; 3673 if (!SU.hasPhysRegDefs) 3674 continue; 3675 int StageDef = stageScheduled(&SU); 3676 assert(StageDef != -1 && "Instruction should have been scheduled."); 3677 for (auto &SI : SU.Succs) 3678 if (SI.isAssignedRegDep()) 3679 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) 3680 if (stageScheduled(SI.getSUnit()) != StageDef) 3681 return false; 3682 } 3683 return true; 3684 } 3685 3686 /// A property of the node order in swing-modulo-scheduling is 3687 /// that for nodes outside circuits the following holds: 3688 /// none of them is scheduled after both a successor and a 3689 /// predecessor. 3690 /// The method below checks whether the property is met. 3691 /// If not, debug information is printed and statistics information updated. 3692 /// Note that we do not use an assert statement. 3693 /// The reason is that although an invalid node oder may prevent 3694 /// the pipeliner from finding a pipelined schedule for arbitrary II, 3695 /// it does not lead to the generation of incorrect code. 3696 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 3697 3698 // a sorted vector that maps each SUnit to its index in the NodeOrder 3699 typedef std::pair<SUnit *, unsigned> UnitIndex; 3700 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 3701 3702 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 3703 Indices.push_back(std::make_pair(NodeOrder[i], i)); 3704 3705 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 3706 return std::get<0>(i1) < std::get<0>(i2); 3707 }; 3708 3709 // sort, so that we can perform a binary search 3710 llvm::sort(Indices, CompareKey); 3711 3712 bool Valid = true; 3713 (void)Valid; 3714 // for each SUnit in the NodeOrder, check whether 3715 // it appears after both a successor and a predecessor 3716 // of the SUnit. If this is the case, and the SUnit 3717 // is not part of circuit, then the NodeOrder is not 3718 // valid. 3719 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 3720 SUnit *SU = NodeOrder[i]; 3721 unsigned Index = i; 3722 3723 bool PredBefore = false; 3724 bool SuccBefore = false; 3725 3726 SUnit *Succ; 3727 SUnit *Pred; 3728 (void)Succ; 3729 (void)Pred; 3730 3731 for (SDep &PredEdge : SU->Preds) { 3732 SUnit *PredSU = PredEdge.getSUnit(); 3733 unsigned PredIndex = std::get<1>( 3734 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); 3735 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 3736 PredBefore = true; 3737 Pred = PredSU; 3738 break; 3739 } 3740 } 3741 3742 for (SDep &SuccEdge : SU->Succs) { 3743 SUnit *SuccSU = SuccEdge.getSUnit(); 3744 // Do not process a boundary node, it was not included in NodeOrder, 3745 // hence not in Indices either, call to std::lower_bound() below will 3746 // return Indices.end(). 3747 if (SuccSU->isBoundaryNode()) 3748 continue; 3749 unsigned SuccIndex = std::get<1>( 3750 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); 3751 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 3752 SuccBefore = true; 3753 Succ = SuccSU; 3754 break; 3755 } 3756 } 3757 3758 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 3759 // instructions in circuits are allowed to be scheduled 3760 // after both a successor and predecessor. 3761 bool InCircuit = llvm::any_of( 3762 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 3763 if (InCircuit) 3764 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 3765 else { 3766 Valid = false; 3767 NumNodeOrderIssues++; 3768 LLVM_DEBUG(dbgs() << "Predecessor ";); 3769 } 3770 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 3771 << " are scheduled before node " << SU->NodeNum 3772 << "\n";); 3773 } 3774 } 3775 3776 LLVM_DEBUG({ 3777 if (!Valid) 3778 dbgs() << "Invalid node order found!\n"; 3779 }); 3780 } 3781 3782 /// Attempt to fix the degenerate cases when the instruction serialization 3783 /// causes the register lifetimes to overlap. For example, 3784 /// p' = store_pi(p, b) 3785 /// = load p, offset 3786 /// In this case p and p' overlap, which means that two registers are needed. 3787 /// Instead, this function changes the load to use p' and updates the offset. 3788 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 3789 unsigned OverlapReg = 0; 3790 unsigned NewBaseReg = 0; 3791 for (SUnit *SU : Instrs) { 3792 MachineInstr *MI = SU->getInstr(); 3793 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3794 const MachineOperand &MO = MI->getOperand(i); 3795 // Look for an instruction that uses p. The instruction occurs in the 3796 // same cycle but occurs later in the serialized order. 3797 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 3798 // Check that the instruction appears in the InstrChanges structure, 3799 // which contains instructions that can have the offset updated. 3800 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3801 InstrChanges.find(SU); 3802 if (It != InstrChanges.end()) { 3803 unsigned BasePos, OffsetPos; 3804 // Update the base register and adjust the offset. 3805 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 3806 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3807 NewMI->getOperand(BasePos).setReg(NewBaseReg); 3808 int64_t NewOffset = 3809 MI->getOperand(OffsetPos).getImm() - It->second.second; 3810 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3811 SU->setInstr(NewMI); 3812 MISUnitMap[NewMI] = SU; 3813 NewMIs.insert(NewMI); 3814 } 3815 } 3816 OverlapReg = 0; 3817 NewBaseReg = 0; 3818 break; 3819 } 3820 // Look for an instruction of the form p' = op(p), which uses and defines 3821 // two virtual registers that get allocated to the same physical register. 3822 unsigned TiedUseIdx = 0; 3823 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 3824 // OverlapReg is p in the example above. 3825 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 3826 // NewBaseReg is p' in the example above. 3827 NewBaseReg = MI->getOperand(i).getReg(); 3828 break; 3829 } 3830 } 3831 } 3832 } 3833 3834 /// After the schedule has been formed, call this function to combine 3835 /// the instructions from the different stages/cycles. That is, this 3836 /// function creates a schedule that represents a single iteration. 3837 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 3838 // Move all instructions to the first stage from later stages. 3839 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3840 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 3841 ++stage) { 3842 std::deque<SUnit *> &cycleInstrs = 3843 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 3844 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 3845 E = cycleInstrs.rend(); 3846 I != E; ++I) 3847 ScheduledInstrs[cycle].push_front(*I); 3848 } 3849 } 3850 // Iterate over the definitions in each instruction, and compute the 3851 // stage difference for each use. Keep the maximum value. 3852 for (auto &I : InstrToCycle) { 3853 int DefStage = stageScheduled(I.first); 3854 MachineInstr *MI = I.first->getInstr(); 3855 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3856 MachineOperand &Op = MI->getOperand(i); 3857 if (!Op.isReg() || !Op.isDef()) 3858 continue; 3859 3860 unsigned Reg = Op.getReg(); 3861 unsigned MaxDiff = 0; 3862 bool PhiIsSwapped = false; 3863 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 3864 EI = MRI.use_end(); 3865 UI != EI; ++UI) { 3866 MachineOperand &UseOp = *UI; 3867 MachineInstr *UseMI = UseOp.getParent(); 3868 SUnit *SUnitUse = SSD->getSUnit(UseMI); 3869 int UseStage = stageScheduled(SUnitUse); 3870 unsigned Diff = 0; 3871 if (UseStage != -1 && UseStage >= DefStage) 3872 Diff = UseStage - DefStage; 3873 if (MI->isPHI()) { 3874 if (isLoopCarried(SSD, *MI)) 3875 ++Diff; 3876 else 3877 PhiIsSwapped = true; 3878 } 3879 MaxDiff = std::max(Diff, MaxDiff); 3880 } 3881 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 3882 } 3883 } 3884 3885 // Erase all the elements in the later stages. Only one iteration should 3886 // remain in the scheduled list, and it contains all the instructions. 3887 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 3888 ScheduledInstrs.erase(cycle); 3889 3890 // Change the registers in instruction as specified in the InstrChanges 3891 // map. We need to use the new registers to create the correct order. 3892 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 3893 SUnit *SU = &SSD->SUnits[i]; 3894 SSD->applyInstrChange(SU->getInstr(), *this); 3895 } 3896 3897 // Reorder the instructions in each cycle to fix and improve the 3898 // generated code. 3899 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 3900 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 3901 std::deque<SUnit *> newOrderPhi; 3902 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3903 SUnit *SU = cycleInstrs[i]; 3904 if (SU->getInstr()->isPHI()) 3905 newOrderPhi.push_back(SU); 3906 } 3907 std::deque<SUnit *> newOrderI; 3908 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3909 SUnit *SU = cycleInstrs[i]; 3910 if (!SU->getInstr()->isPHI()) 3911 orderDependence(SSD, SU, newOrderI); 3912 } 3913 // Replace the old order with the new order. 3914 cycleInstrs.swap(newOrderPhi); 3915 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 3916 SSD->fixupRegisterOverlaps(cycleInstrs); 3917 } 3918 3919 LLVM_DEBUG(dump();); 3920 } 3921 3922 void NodeSet::print(raw_ostream &os) const { 3923 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 3924 << " depth " << MaxDepth << " col " << Colocate << "\n"; 3925 for (const auto &I : Nodes) 3926 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 3927 os << "\n"; 3928 } 3929 3930 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3931 /// Print the schedule information to the given output. 3932 void SMSchedule::print(raw_ostream &os) const { 3933 // Iterate over each cycle. 3934 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3935 // Iterate over each instruction in the cycle. 3936 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 3937 for (SUnit *CI : cycleInstrs->second) { 3938 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 3939 os << "(" << CI->NodeNum << ") "; 3940 CI->getInstr()->print(os); 3941 os << "\n"; 3942 } 3943 } 3944 } 3945 3946 /// Utility function used for debugging to print the schedule. 3947 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 3948 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 3949 3950 #endif 3951 3952 void ResourceManager::initProcResourceVectors( 3953 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 3954 unsigned ProcResourceID = 0; 3955 3956 // We currently limit the resource kinds to 64 and below so that we can use 3957 // uint64_t for Masks 3958 assert(SM.getNumProcResourceKinds() < 64 && 3959 "Too many kinds of resources, unsupported"); 3960 // Create a unique bitmask for every processor resource unit. 3961 // Skip resource at index 0, since it always references 'InvalidUnit'. 3962 Masks.resize(SM.getNumProcResourceKinds()); 3963 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3964 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3965 if (Desc.SubUnitsIdxBegin) 3966 continue; 3967 Masks[I] = 1ULL << ProcResourceID; 3968 ProcResourceID++; 3969 } 3970 // Create a unique bitmask for every processor resource group. 3971 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3972 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3973 if (!Desc.SubUnitsIdxBegin) 3974 continue; 3975 Masks[I] = 1ULL << ProcResourceID; 3976 for (unsigned U = 0; U < Desc.NumUnits; ++U) 3977 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 3978 ProcResourceID++; 3979 } 3980 LLVM_DEBUG({ 3981 if (SwpShowResMask) { 3982 dbgs() << "ProcResourceDesc:\n"; 3983 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3984 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 3985 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 3986 ProcResource->Name, I, Masks[I], 3987 ProcResource->NumUnits); 3988 } 3989 dbgs() << " -----------------\n"; 3990 } 3991 }); 3992 } 3993 3994 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const { 3995 3996 LLVM_DEBUG({ 3997 if (SwpDebugResource) 3998 dbgs() << "canReserveResources:\n"; 3999 }); 4000 if (UseDFA) 4001 return DFAResources->canReserveResources(MID); 4002 4003 unsigned InsnClass = MID->getSchedClass(); 4004 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 4005 if (!SCDesc->isValid()) { 4006 LLVM_DEBUG({ 4007 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 4008 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 4009 }); 4010 return true; 4011 } 4012 4013 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc); 4014 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc); 4015 for (; I != E; ++I) { 4016 if (!I->Cycles) 4017 continue; 4018 const MCProcResourceDesc *ProcResource = 4019 SM.getProcResource(I->ProcResourceIdx); 4020 unsigned NumUnits = ProcResource->NumUnits; 4021 LLVM_DEBUG({ 4022 if (SwpDebugResource) 4023 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 4024 ProcResource->Name, I->ProcResourceIdx, 4025 ProcResourceCount[I->ProcResourceIdx], NumUnits, 4026 I->Cycles); 4027 }); 4028 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits) 4029 return false; 4030 } 4031 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";); 4032 return true; 4033 } 4034 4035 void ResourceManager::reserveResources(const MCInstrDesc *MID) { 4036 LLVM_DEBUG({ 4037 if (SwpDebugResource) 4038 dbgs() << "reserveResources:\n"; 4039 }); 4040 if (UseDFA) 4041 return DFAResources->reserveResources(MID); 4042 4043 unsigned InsnClass = MID->getSchedClass(); 4044 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 4045 if (!SCDesc->isValid()) { 4046 LLVM_DEBUG({ 4047 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 4048 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 4049 }); 4050 return; 4051 } 4052 for (const MCWriteProcResEntry &PRE : 4053 make_range(STI->getWriteProcResBegin(SCDesc), 4054 STI->getWriteProcResEnd(SCDesc))) { 4055 if (!PRE.Cycles) 4056 continue; 4057 ++ProcResourceCount[PRE.ProcResourceIdx]; 4058 LLVM_DEBUG({ 4059 if (SwpDebugResource) { 4060 const MCProcResourceDesc *ProcResource = 4061 SM.getProcResource(PRE.ProcResourceIdx); 4062 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 4063 ProcResource->Name, PRE.ProcResourceIdx, 4064 ProcResourceCount[PRE.ProcResourceIdx], 4065 ProcResource->NumUnits, PRE.Cycles); 4066 } 4067 }); 4068 } 4069 LLVM_DEBUG({ 4070 if (SwpDebugResource) 4071 dbgs() << "reserveResources: done!\n\n"; 4072 }); 4073 } 4074 4075 bool ResourceManager::canReserveResources(const MachineInstr &MI) const { 4076 return canReserveResources(&MI.getDesc()); 4077 } 4078 4079 void ResourceManager::reserveResources(const MachineInstr &MI) { 4080 return reserveResources(&MI.getDesc()); 4081 } 4082 4083 void ResourceManager::clearResources() { 4084 if (UseDFA) 4085 return DFAResources->clearResources(); 4086 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0); 4087 } 4088 4089