xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachinePipeliner.cpp (revision a3266ba2697a383d2ede56803320d941866c7e76)
1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
10 //
11 // This SMS implementation is a target-independent back-end pass. When enabled,
12 // the pass runs just prior to the register allocation pass, while the machine
13 // IR is in SSA form. If software pipelining is successful, then the original
14 // loop is replaced by the optimized loop. The optimized loop contains one or
15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16 // the instructions cannot be scheduled in a given MII, we increase the MII by
17 // one and try again.
18 //
19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20 // represent loop carried dependences in the DAG as order edges to the Phi
21 // nodes. We also perform several passes over the DAG to eliminate unnecessary
22 // edges that inhibit the ability to pipeline. The implementation uses the
23 // DFAPacketizer class to compute the minimum initiation interval and the check
24 // where an instruction may be inserted in the pipelined schedule.
25 //
26 // In order for the SMS pass to work, several target specific hooks need to be
27 // implemented to get information about the loop structure and to rewrite
28 // instructions.
29 //
30 //===----------------------------------------------------------------------===//
31 
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/BitVector.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/MapVector.h"
36 #include "llvm/ADT/PriorityQueue.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Analysis/AliasAnalysis.h"
44 #include "llvm/Analysis/MemoryLocation.h"
45 #include "llvm/Analysis/ValueTracking.h"
46 #include "llvm/CodeGen/DFAPacketizer.h"
47 #include "llvm/CodeGen/LiveIntervals.h"
48 #include "llvm/CodeGen/MachineBasicBlock.h"
49 #include "llvm/CodeGen/MachineDominators.h"
50 #include "llvm/CodeGen/MachineFunction.h"
51 #include "llvm/CodeGen/MachineFunctionPass.h"
52 #include "llvm/CodeGen/MachineInstr.h"
53 #include "llvm/CodeGen/MachineInstrBuilder.h"
54 #include "llvm/CodeGen/MachineLoopInfo.h"
55 #include "llvm/CodeGen/MachineMemOperand.h"
56 #include "llvm/CodeGen/MachineOperand.h"
57 #include "llvm/CodeGen/MachinePipeliner.h"
58 #include "llvm/CodeGen/MachineRegisterInfo.h"
59 #include "llvm/CodeGen/ModuloSchedule.h"
60 #include "llvm/CodeGen/RegisterPressure.h"
61 #include "llvm/CodeGen/ScheduleDAG.h"
62 #include "llvm/CodeGen/ScheduleDAGMutation.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/CodeGen/TargetSubtargetInfo.h"
66 #include "llvm/Config/llvm-config.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/DebugLoc.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/MC/LaneBitmask.h"
71 #include "llvm/MC/MCInstrDesc.h"
72 #include "llvm/MC/MCInstrItineraries.h"
73 #include "llvm/MC/MCRegisterInfo.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/CommandLine.h"
76 #include "llvm/Support/Compiler.h"
77 #include "llvm/Support/Debug.h"
78 #include "llvm/Support/MathExtras.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <climits>
83 #include <cstdint>
84 #include <deque>
85 #include <functional>
86 #include <iterator>
87 #include <map>
88 #include <memory>
89 #include <tuple>
90 #include <utility>
91 #include <vector>
92 
93 using namespace llvm;
94 
95 #define DEBUG_TYPE "pipeliner"
96 
97 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
98 STATISTIC(NumPipelined, "Number of loops software pipelined");
99 STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
100 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
101 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
102 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
103 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
104 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
105 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
106 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
107 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
108 
109 /// A command line option to turn software pipelining on or off.
110 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
111                                cl::ZeroOrMore,
112                                cl::desc("Enable Software Pipelining"));
113 
114 /// A command line option to enable SWP at -Os.
115 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
116                                       cl::desc("Enable SWP at Os."), cl::Hidden,
117                                       cl::init(false));
118 
119 /// A command line argument to limit minimum initial interval for pipelining.
120 static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
121                               cl::desc("Size limit for the MII."),
122                               cl::Hidden, cl::init(27));
123 
124 /// A command line argument to limit the number of stages in the pipeline.
125 static cl::opt<int>
126     SwpMaxStages("pipeliner-max-stages",
127                  cl::desc("Maximum stages allowed in the generated scheduled."),
128                  cl::Hidden, cl::init(3));
129 
130 /// A command line option to disable the pruning of chain dependences due to
131 /// an unrelated Phi.
132 static cl::opt<bool>
133     SwpPruneDeps("pipeliner-prune-deps",
134                  cl::desc("Prune dependences between unrelated Phi nodes."),
135                  cl::Hidden, cl::init(true));
136 
137 /// A command line option to disable the pruning of loop carried order
138 /// dependences.
139 static cl::opt<bool>
140     SwpPruneLoopCarried("pipeliner-prune-loop-carried",
141                         cl::desc("Prune loop carried order dependences."),
142                         cl::Hidden, cl::init(true));
143 
144 #ifndef NDEBUG
145 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
146 #endif
147 
148 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
149                                      cl::ReallyHidden, cl::init(false),
150                                      cl::ZeroOrMore, cl::desc("Ignore RecMII"));
151 
152 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
153                                     cl::init(false));
154 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
155                                       cl::init(false));
156 
157 static cl::opt<bool> EmitTestAnnotations(
158     "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false),
159     cl::desc("Instead of emitting the pipelined code, annotate instructions "
160              "with the generated schedule for feeding into the "
161              "-modulo-schedule-test pass"));
162 
163 static cl::opt<bool> ExperimentalCodeGen(
164     "pipeliner-experimental-cg", cl::Hidden, cl::init(false),
165     cl::desc(
166         "Use the experimental peeling code generator for software pipelining"));
167 
168 namespace llvm {
169 
170 // A command line option to enable the CopyToPhi DAG mutation.
171 cl::opt<bool>
172     SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
173                        cl::init(true), cl::ZeroOrMore,
174                        cl::desc("Enable CopyToPhi DAG Mutation"));
175 
176 } // end namespace llvm
177 
178 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
179 char MachinePipeliner::ID = 0;
180 #ifndef NDEBUG
181 int MachinePipeliner::NumTries = 0;
182 #endif
183 char &llvm::MachinePipelinerID = MachinePipeliner::ID;
184 
185 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
186                       "Modulo Software Pipelining", false, false)
187 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
188 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
189 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
190 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
191 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
192                     "Modulo Software Pipelining", false, false)
193 
194 /// The "main" function for implementing Swing Modulo Scheduling.
195 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
196   if (skipFunction(mf.getFunction()))
197     return false;
198 
199   if (!EnableSWP)
200     return false;
201 
202   if (mf.getFunction().getAttributes().hasAttribute(
203           AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
204       !EnableSWPOptSize.getPosition())
205     return false;
206 
207   if (!mf.getSubtarget().enableMachinePipeliner())
208     return false;
209 
210   // Cannot pipeline loops without instruction itineraries if we are using
211   // DFA for the pipeliner.
212   if (mf.getSubtarget().useDFAforSMS() &&
213       (!mf.getSubtarget().getInstrItineraryData() ||
214        mf.getSubtarget().getInstrItineraryData()->isEmpty()))
215     return false;
216 
217   MF = &mf;
218   MLI = &getAnalysis<MachineLoopInfo>();
219   MDT = &getAnalysis<MachineDominatorTree>();
220   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
221   TII = MF->getSubtarget().getInstrInfo();
222   RegClassInfo.runOnMachineFunction(*MF);
223 
224   for (auto &L : *MLI)
225     scheduleLoop(*L);
226 
227   return false;
228 }
229 
230 /// Attempt to perform the SMS algorithm on the specified loop. This function is
231 /// the main entry point for the algorithm.  The function identifies candidate
232 /// loops, calculates the minimum initiation interval, and attempts to schedule
233 /// the loop.
234 bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
235   bool Changed = false;
236   for (auto &InnerLoop : L)
237     Changed |= scheduleLoop(*InnerLoop);
238 
239 #ifndef NDEBUG
240   // Stop trying after reaching the limit (if any).
241   int Limit = SwpLoopLimit;
242   if (Limit >= 0) {
243     if (NumTries >= SwpLoopLimit)
244       return Changed;
245     NumTries++;
246   }
247 #endif
248 
249   setPragmaPipelineOptions(L);
250   if (!canPipelineLoop(L)) {
251     LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
252     ORE->emit([&]() {
253       return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop",
254                                              L.getStartLoc(), L.getHeader())
255              << "Failed to pipeline loop";
256     });
257 
258     return Changed;
259   }
260 
261   ++NumTrytoPipeline;
262 
263   Changed = swingModuloScheduler(L);
264 
265   return Changed;
266 }
267 
268 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
269   // Reset the pragma for the next loop in iteration.
270   disabledByPragma = false;
271   II_setByPragma = 0;
272 
273   MachineBasicBlock *LBLK = L.getTopBlock();
274 
275   if (LBLK == nullptr)
276     return;
277 
278   const BasicBlock *BBLK = LBLK->getBasicBlock();
279   if (BBLK == nullptr)
280     return;
281 
282   const Instruction *TI = BBLK->getTerminator();
283   if (TI == nullptr)
284     return;
285 
286   MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
287   if (LoopID == nullptr)
288     return;
289 
290   assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
291   assert(LoopID->getOperand(0) == LoopID && "invalid loop");
292 
293   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
294     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
295 
296     if (MD == nullptr)
297       continue;
298 
299     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
300 
301     if (S == nullptr)
302       continue;
303 
304     if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
305       assert(MD->getNumOperands() == 2 &&
306              "Pipeline initiation interval hint metadata should have two operands.");
307       II_setByPragma =
308           mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
309       assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
310     } else if (S->getString() == "llvm.loop.pipeline.disable") {
311       disabledByPragma = true;
312     }
313   }
314 }
315 
316 /// Return true if the loop can be software pipelined.  The algorithm is
317 /// restricted to loops with a single basic block.  Make sure that the
318 /// branch in the loop can be analyzed.
319 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
320   if (L.getNumBlocks() != 1) {
321     ORE->emit([&]() {
322       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
323                                                L.getStartLoc(), L.getHeader())
324              << "Not a single basic block: "
325              << ore::NV("NumBlocks", L.getNumBlocks());
326     });
327     return false;
328   }
329 
330   if (disabledByPragma) {
331     ORE->emit([&]() {
332       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
333                                                L.getStartLoc(), L.getHeader())
334              << "Disabled by Pragma.";
335     });
336     return false;
337   }
338 
339   // Check if the branch can't be understood because we can't do pipelining
340   // if that's the case.
341   LI.TBB = nullptr;
342   LI.FBB = nullptr;
343   LI.BrCond.clear();
344   if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
345     LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n");
346     NumFailBranch++;
347     ORE->emit([&]() {
348       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
349                                                L.getStartLoc(), L.getHeader())
350              << "The branch can't be understood";
351     });
352     return false;
353   }
354 
355   LI.LoopInductionVar = nullptr;
356   LI.LoopCompare = nullptr;
357   if (!TII->analyzeLoopForPipelining(L.getTopBlock())) {
358     LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n");
359     NumFailLoop++;
360     ORE->emit([&]() {
361       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
362                                                L.getStartLoc(), L.getHeader())
363              << "The loop structure is not supported";
364     });
365     return false;
366   }
367 
368   if (!L.getLoopPreheader()) {
369     LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n");
370     NumFailPreheader++;
371     ORE->emit([&]() {
372       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
373                                                L.getStartLoc(), L.getHeader())
374              << "No loop preheader found";
375     });
376     return false;
377   }
378 
379   // Remove any subregisters from inputs to phi nodes.
380   preprocessPhiNodes(*L.getHeader());
381   return true;
382 }
383 
384 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
385   MachineRegisterInfo &MRI = MF->getRegInfo();
386   SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
387 
388   for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
389     MachineOperand &DefOp = PI.getOperand(0);
390     assert(DefOp.getSubReg() == 0);
391     auto *RC = MRI.getRegClass(DefOp.getReg());
392 
393     for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
394       MachineOperand &RegOp = PI.getOperand(i);
395       if (RegOp.getSubReg() == 0)
396         continue;
397 
398       // If the operand uses a subregister, replace it with a new register
399       // without subregisters, and generate a copy to the new register.
400       Register NewReg = MRI.createVirtualRegister(RC);
401       MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
402       MachineBasicBlock::iterator At = PredB.getFirstTerminator();
403       const DebugLoc &DL = PredB.findDebugLoc(At);
404       auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
405                     .addReg(RegOp.getReg(), getRegState(RegOp),
406                             RegOp.getSubReg());
407       Slots.insertMachineInstrInMaps(*Copy);
408       RegOp.setReg(NewReg);
409       RegOp.setSubReg(0);
410     }
411   }
412 }
413 
414 /// The SMS algorithm consists of the following main steps:
415 /// 1. Computation and analysis of the dependence graph.
416 /// 2. Ordering of the nodes (instructions).
417 /// 3. Attempt to Schedule the loop.
418 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
419   assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
420 
421   SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
422                         II_setByPragma);
423 
424   MachineBasicBlock *MBB = L.getHeader();
425   // The kernel should not include any terminator instructions.  These
426   // will be added back later.
427   SMS.startBlock(MBB);
428 
429   // Compute the number of 'real' instructions in the basic block by
430   // ignoring terminators.
431   unsigned size = MBB->size();
432   for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
433                                    E = MBB->instr_end();
434        I != E; ++I, --size)
435     ;
436 
437   SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
438   SMS.schedule();
439   SMS.exitRegion();
440 
441   SMS.finishBlock();
442   return SMS.hasNewSchedule();
443 }
444 
445 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const {
446   AU.addRequired<AAResultsWrapperPass>();
447   AU.addPreserved<AAResultsWrapperPass>();
448   AU.addRequired<MachineLoopInfo>();
449   AU.addRequired<MachineDominatorTree>();
450   AU.addRequired<LiveIntervals>();
451   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
452   MachineFunctionPass::getAnalysisUsage(AU);
453 }
454 
455 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
456   if (II_setByPragma > 0)
457     MII = II_setByPragma;
458   else
459     MII = std::max(ResMII, RecMII);
460 }
461 
462 void SwingSchedulerDAG::setMAX_II() {
463   if (II_setByPragma > 0)
464     MAX_II = II_setByPragma;
465   else
466     MAX_II = MII + 10;
467 }
468 
469 /// We override the schedule function in ScheduleDAGInstrs to implement the
470 /// scheduling part of the Swing Modulo Scheduling algorithm.
471 void SwingSchedulerDAG::schedule() {
472   AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
473   buildSchedGraph(AA);
474   addLoopCarriedDependences(AA);
475   updatePhiDependences();
476   Topo.InitDAGTopologicalSorting();
477   changeDependences();
478   postprocessDAG();
479   LLVM_DEBUG(dump());
480 
481   NodeSetType NodeSets;
482   findCircuits(NodeSets);
483   NodeSetType Circuits = NodeSets;
484 
485   // Calculate the MII.
486   unsigned ResMII = calculateResMII();
487   unsigned RecMII = calculateRecMII(NodeSets);
488 
489   fuseRecs(NodeSets);
490 
491   // This flag is used for testing and can cause correctness problems.
492   if (SwpIgnoreRecMII)
493     RecMII = 0;
494 
495   setMII(ResMII, RecMII);
496   setMAX_II();
497 
498   LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
499                     << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
500 
501   // Can't schedule a loop without a valid MII.
502   if (MII == 0) {
503     LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n");
504     NumFailZeroMII++;
505     Pass.ORE->emit([&]() {
506       return MachineOptimizationRemarkAnalysis(
507                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
508              << "Invalid Minimal Initiation Interval: 0";
509     });
510     return;
511   }
512 
513   // Don't pipeline large loops.
514   if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
515     LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
516                       << ", we don't pipleline large loops\n");
517     NumFailLargeMaxMII++;
518     Pass.ORE->emit([&]() {
519       return MachineOptimizationRemarkAnalysis(
520                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
521              << "Minimal Initiation Interval too large: "
522              << ore::NV("MII", (int)MII) << " > "
523              << ore::NV("SwpMaxMii", SwpMaxMii) << "."
524              << "Refer to -pipeliner-max-mii.";
525     });
526     return;
527   }
528 
529   computeNodeFunctions(NodeSets);
530 
531   registerPressureFilter(NodeSets);
532 
533   colocateNodeSets(NodeSets);
534 
535   checkNodeSets(NodeSets);
536 
537   LLVM_DEBUG({
538     for (auto &I : NodeSets) {
539       dbgs() << "  Rec NodeSet ";
540       I.dump();
541     }
542   });
543 
544   llvm::stable_sort(NodeSets, std::greater<NodeSet>());
545 
546   groupRemainingNodes(NodeSets);
547 
548   removeDuplicateNodes(NodeSets);
549 
550   LLVM_DEBUG({
551     for (auto &I : NodeSets) {
552       dbgs() << "  NodeSet ";
553       I.dump();
554     }
555   });
556 
557   computeNodeOrder(NodeSets);
558 
559   // check for node order issues
560   checkValidNodeOrder(Circuits);
561 
562   SMSchedule Schedule(Pass.MF);
563   Scheduled = schedulePipeline(Schedule);
564 
565   if (!Scheduled){
566     LLVM_DEBUG(dbgs() << "No schedule found, return\n");
567     NumFailNoSchedule++;
568     Pass.ORE->emit([&]() {
569       return MachineOptimizationRemarkAnalysis(
570                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
571              << "Unable to find schedule";
572     });
573     return;
574   }
575 
576   unsigned numStages = Schedule.getMaxStageCount();
577   // No need to generate pipeline if there are no overlapped iterations.
578   if (numStages == 0) {
579     LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n");
580     NumFailZeroStage++;
581     Pass.ORE->emit([&]() {
582       return MachineOptimizationRemarkAnalysis(
583                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
584              << "No need to pipeline - no overlapped iterations in schedule.";
585     });
586     return;
587   }
588   // Check that the maximum stage count is less than user-defined limit.
589   if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
590     LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
591                       << " : too many stages, abort\n");
592     NumFailLargeMaxStage++;
593     Pass.ORE->emit([&]() {
594       return MachineOptimizationRemarkAnalysis(
595                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
596              << "Too many stages in schedule: "
597              << ore::NV("numStages", (int)numStages) << " > "
598              << ore::NV("SwpMaxStages", SwpMaxStages)
599              << ". Refer to -pipeliner-max-stages.";
600     });
601     return;
602   }
603 
604   Pass.ORE->emit([&]() {
605     return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(),
606                                      Loop.getHeader())
607            << "Pipelined succesfully!";
608   });
609 
610   // Generate the schedule as a ModuloSchedule.
611   DenseMap<MachineInstr *, int> Cycles, Stages;
612   std::vector<MachineInstr *> OrderedInsts;
613   for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
614        ++Cycle) {
615     for (SUnit *SU : Schedule.getInstructions(Cycle)) {
616       OrderedInsts.push_back(SU->getInstr());
617       Cycles[SU->getInstr()] = Cycle;
618       Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
619     }
620   }
621   DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
622   for (auto &KV : NewMIs) {
623     Cycles[KV.first] = Cycles[KV.second];
624     Stages[KV.first] = Stages[KV.second];
625     NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
626   }
627 
628   ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
629                     std::move(Stages));
630   if (EmitTestAnnotations) {
631     assert(NewInstrChanges.empty() &&
632            "Cannot serialize a schedule with InstrChanges!");
633     ModuloScheduleTestAnnotater MSTI(MF, MS);
634     MSTI.annotate();
635     return;
636   }
637   // The experimental code generator can't work if there are InstChanges.
638   if (ExperimentalCodeGen && NewInstrChanges.empty()) {
639     PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
640     MSE.expand();
641   } else {
642     ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
643     MSE.expand();
644     MSE.cleanup();
645   }
646   ++NumPipelined;
647 }
648 
649 /// Clean up after the software pipeliner runs.
650 void SwingSchedulerDAG::finishBlock() {
651   for (auto &KV : NewMIs)
652     MF.DeleteMachineInstr(KV.second);
653   NewMIs.clear();
654 
655   // Call the superclass.
656   ScheduleDAGInstrs::finishBlock();
657 }
658 
659 /// Return the register values for  the operands of a Phi instruction.
660 /// This function assume the instruction is a Phi.
661 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
662                        unsigned &InitVal, unsigned &LoopVal) {
663   assert(Phi.isPHI() && "Expecting a Phi.");
664 
665   InitVal = 0;
666   LoopVal = 0;
667   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
668     if (Phi.getOperand(i + 1).getMBB() != Loop)
669       InitVal = Phi.getOperand(i).getReg();
670     else
671       LoopVal = Phi.getOperand(i).getReg();
672 
673   assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
674 }
675 
676 /// Return the Phi register value that comes the loop block.
677 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
678   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
679     if (Phi.getOperand(i + 1).getMBB() == LoopBB)
680       return Phi.getOperand(i).getReg();
681   return 0;
682 }
683 
684 /// Return true if SUb can be reached from SUa following the chain edges.
685 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
686   SmallPtrSet<SUnit *, 8> Visited;
687   SmallVector<SUnit *, 8> Worklist;
688   Worklist.push_back(SUa);
689   while (!Worklist.empty()) {
690     const SUnit *SU = Worklist.pop_back_val();
691     for (auto &SI : SU->Succs) {
692       SUnit *SuccSU = SI.getSUnit();
693       if (SI.getKind() == SDep::Order) {
694         if (Visited.count(SuccSU))
695           continue;
696         if (SuccSU == SUb)
697           return true;
698         Worklist.push_back(SuccSU);
699         Visited.insert(SuccSU);
700       }
701     }
702   }
703   return false;
704 }
705 
706 /// Return true if the instruction causes a chain between memory
707 /// references before and after it.
708 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
709   return MI.isCall() || MI.mayRaiseFPException() ||
710          MI.hasUnmodeledSideEffects() ||
711          (MI.hasOrderedMemoryRef() &&
712           (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
713 }
714 
715 /// Return the underlying objects for the memory references of an instruction.
716 /// This function calls the code in ValueTracking, but first checks that the
717 /// instruction has a memory operand.
718 static void getUnderlyingObjects(const MachineInstr *MI,
719                                  SmallVectorImpl<const Value *> &Objs) {
720   if (!MI->hasOneMemOperand())
721     return;
722   MachineMemOperand *MM = *MI->memoperands_begin();
723   if (!MM->getValue())
724     return;
725   getUnderlyingObjects(MM->getValue(), Objs);
726   for (const Value *V : Objs) {
727     if (!isIdentifiedObject(V)) {
728       Objs.clear();
729       return;
730     }
731     Objs.push_back(V);
732   }
733 }
734 
735 /// Add a chain edge between a load and store if the store can be an
736 /// alias of the load on a subsequent iteration, i.e., a loop carried
737 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
738 /// but that code doesn't create loop carried dependences.
739 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
740   MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
741   Value *UnknownValue =
742     UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
743   for (auto &SU : SUnits) {
744     MachineInstr &MI = *SU.getInstr();
745     if (isDependenceBarrier(MI, AA))
746       PendingLoads.clear();
747     else if (MI.mayLoad()) {
748       SmallVector<const Value *, 4> Objs;
749       ::getUnderlyingObjects(&MI, Objs);
750       if (Objs.empty())
751         Objs.push_back(UnknownValue);
752       for (auto V : Objs) {
753         SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
754         SUs.push_back(&SU);
755       }
756     } else if (MI.mayStore()) {
757       SmallVector<const Value *, 4> Objs;
758       ::getUnderlyingObjects(&MI, Objs);
759       if (Objs.empty())
760         Objs.push_back(UnknownValue);
761       for (auto V : Objs) {
762         MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
763             PendingLoads.find(V);
764         if (I == PendingLoads.end())
765           continue;
766         for (auto Load : I->second) {
767           if (isSuccOrder(Load, &SU))
768             continue;
769           MachineInstr &LdMI = *Load->getInstr();
770           // First, perform the cheaper check that compares the base register.
771           // If they are the same and the load offset is less than the store
772           // offset, then mark the dependence as loop carried potentially.
773           const MachineOperand *BaseOp1, *BaseOp2;
774           int64_t Offset1, Offset2;
775           bool Offset1IsScalable, Offset2IsScalable;
776           if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1,
777                                            Offset1IsScalable, TRI) &&
778               TII->getMemOperandWithOffset(MI, BaseOp2, Offset2,
779                                            Offset2IsScalable, TRI)) {
780             if (BaseOp1->isIdenticalTo(*BaseOp2) &&
781                 Offset1IsScalable == Offset2IsScalable &&
782                 (int)Offset1 < (int)Offset2) {
783               assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&
784                      "What happened to the chain edge?");
785               SDep Dep(Load, SDep::Barrier);
786               Dep.setLatency(1);
787               SU.addPred(Dep);
788               continue;
789             }
790           }
791           // Second, the more expensive check that uses alias analysis on the
792           // base registers. If they alias, and the load offset is less than
793           // the store offset, the mark the dependence as loop carried.
794           if (!AA) {
795             SDep Dep(Load, SDep::Barrier);
796             Dep.setLatency(1);
797             SU.addPred(Dep);
798             continue;
799           }
800           MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
801           MachineMemOperand *MMO2 = *MI.memoperands_begin();
802           if (!MMO1->getValue() || !MMO2->getValue()) {
803             SDep Dep(Load, SDep::Barrier);
804             Dep.setLatency(1);
805             SU.addPred(Dep);
806             continue;
807           }
808           if (MMO1->getValue() == MMO2->getValue() &&
809               MMO1->getOffset() <= MMO2->getOffset()) {
810             SDep Dep(Load, SDep::Barrier);
811             Dep.setLatency(1);
812             SU.addPred(Dep);
813             continue;
814           }
815           AliasResult AAResult = AA->alias(
816               MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
817               MemoryLocation::getAfter(MMO2->getValue(), MMO2->getAAInfo()));
818 
819           if (AAResult != NoAlias) {
820             SDep Dep(Load, SDep::Barrier);
821             Dep.setLatency(1);
822             SU.addPred(Dep);
823           }
824         }
825       }
826     }
827   }
828 }
829 
830 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
831 /// processes dependences for PHIs. This function adds true dependences
832 /// from a PHI to a use, and a loop carried dependence from the use to the
833 /// PHI. The loop carried dependence is represented as an anti dependence
834 /// edge. This function also removes chain dependences between unrelated
835 /// PHIs.
836 void SwingSchedulerDAG::updatePhiDependences() {
837   SmallVector<SDep, 4> RemoveDeps;
838   const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
839 
840   // Iterate over each DAG node.
841   for (SUnit &I : SUnits) {
842     RemoveDeps.clear();
843     // Set to true if the instruction has an operand defined by a Phi.
844     unsigned HasPhiUse = 0;
845     unsigned HasPhiDef = 0;
846     MachineInstr *MI = I.getInstr();
847     // Iterate over each operand, and we process the definitions.
848     for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
849                                     MOE = MI->operands_end();
850          MOI != MOE; ++MOI) {
851       if (!MOI->isReg())
852         continue;
853       Register Reg = MOI->getReg();
854       if (MOI->isDef()) {
855         // If the register is used by a Phi, then create an anti dependence.
856         for (MachineRegisterInfo::use_instr_iterator
857                  UI = MRI.use_instr_begin(Reg),
858                  UE = MRI.use_instr_end();
859              UI != UE; ++UI) {
860           MachineInstr *UseMI = &*UI;
861           SUnit *SU = getSUnit(UseMI);
862           if (SU != nullptr && UseMI->isPHI()) {
863             if (!MI->isPHI()) {
864               SDep Dep(SU, SDep::Anti, Reg);
865               Dep.setLatency(1);
866               I.addPred(Dep);
867             } else {
868               HasPhiDef = Reg;
869               // Add a chain edge to a dependent Phi that isn't an existing
870               // predecessor.
871               if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
872                 I.addPred(SDep(SU, SDep::Barrier));
873             }
874           }
875         }
876       } else if (MOI->isUse()) {
877         // If the register is defined by a Phi, then create a true dependence.
878         MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
879         if (DefMI == nullptr)
880           continue;
881         SUnit *SU = getSUnit(DefMI);
882         if (SU != nullptr && DefMI->isPHI()) {
883           if (!MI->isPHI()) {
884             SDep Dep(SU, SDep::Data, Reg);
885             Dep.setLatency(0);
886             ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep);
887             I.addPred(Dep);
888           } else {
889             HasPhiUse = Reg;
890             // Add a chain edge to a dependent Phi that isn't an existing
891             // predecessor.
892             if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
893               I.addPred(SDep(SU, SDep::Barrier));
894           }
895         }
896       }
897     }
898     // Remove order dependences from an unrelated Phi.
899     if (!SwpPruneDeps)
900       continue;
901     for (auto &PI : I.Preds) {
902       MachineInstr *PMI = PI.getSUnit()->getInstr();
903       if (PMI->isPHI() && PI.getKind() == SDep::Order) {
904         if (I.getInstr()->isPHI()) {
905           if (PMI->getOperand(0).getReg() == HasPhiUse)
906             continue;
907           if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
908             continue;
909         }
910         RemoveDeps.push_back(PI);
911       }
912     }
913     for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
914       I.removePred(RemoveDeps[i]);
915   }
916 }
917 
918 /// Iterate over each DAG node and see if we can change any dependences
919 /// in order to reduce the recurrence MII.
920 void SwingSchedulerDAG::changeDependences() {
921   // See if an instruction can use a value from the previous iteration.
922   // If so, we update the base and offset of the instruction and change
923   // the dependences.
924   for (SUnit &I : SUnits) {
925     unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
926     int64_t NewOffset = 0;
927     if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
928                                NewOffset))
929       continue;
930 
931     // Get the MI and SUnit for the instruction that defines the original base.
932     Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
933     MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
934     if (!DefMI)
935       continue;
936     SUnit *DefSU = getSUnit(DefMI);
937     if (!DefSU)
938       continue;
939     // Get the MI and SUnit for the instruction that defins the new base.
940     MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
941     if (!LastMI)
942       continue;
943     SUnit *LastSU = getSUnit(LastMI);
944     if (!LastSU)
945       continue;
946 
947     if (Topo.IsReachable(&I, LastSU))
948       continue;
949 
950     // Remove the dependence. The value now depends on a prior iteration.
951     SmallVector<SDep, 4> Deps;
952     for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
953          ++P)
954       if (P->getSUnit() == DefSU)
955         Deps.push_back(*P);
956     for (int i = 0, e = Deps.size(); i != e; i++) {
957       Topo.RemovePred(&I, Deps[i].getSUnit());
958       I.removePred(Deps[i]);
959     }
960     // Remove the chain dependence between the instructions.
961     Deps.clear();
962     for (auto &P : LastSU->Preds)
963       if (P.getSUnit() == &I && P.getKind() == SDep::Order)
964         Deps.push_back(P);
965     for (int i = 0, e = Deps.size(); i != e; i++) {
966       Topo.RemovePred(LastSU, Deps[i].getSUnit());
967       LastSU->removePred(Deps[i]);
968     }
969 
970     // Add a dependence between the new instruction and the instruction
971     // that defines the new base.
972     SDep Dep(&I, SDep::Anti, NewBase);
973     Topo.AddPred(LastSU, &I);
974     LastSU->addPred(Dep);
975 
976     // Remember the base and offset information so that we can update the
977     // instruction during code generation.
978     InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
979   }
980 }
981 
982 namespace {
983 
984 // FuncUnitSorter - Comparison operator used to sort instructions by
985 // the number of functional unit choices.
986 struct FuncUnitSorter {
987   const InstrItineraryData *InstrItins;
988   const MCSubtargetInfo *STI;
989   DenseMap<InstrStage::FuncUnits, unsigned> Resources;
990 
991   FuncUnitSorter(const TargetSubtargetInfo &TSI)
992       : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
993 
994   // Compute the number of functional unit alternatives needed
995   // at each stage, and take the minimum value. We prioritize the
996   // instructions by the least number of choices first.
997   unsigned minFuncUnits(const MachineInstr *Inst,
998                         InstrStage::FuncUnits &F) const {
999     unsigned SchedClass = Inst->getDesc().getSchedClass();
1000     unsigned min = UINT_MAX;
1001     if (InstrItins && !InstrItins->isEmpty()) {
1002       for (const InstrStage &IS :
1003            make_range(InstrItins->beginStage(SchedClass),
1004                       InstrItins->endStage(SchedClass))) {
1005         InstrStage::FuncUnits funcUnits = IS.getUnits();
1006         unsigned numAlternatives = countPopulation(funcUnits);
1007         if (numAlternatives < min) {
1008           min = numAlternatives;
1009           F = funcUnits;
1010         }
1011       }
1012       return min;
1013     }
1014     if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1015       const MCSchedClassDesc *SCDesc =
1016           STI->getSchedModel().getSchedClassDesc(SchedClass);
1017       if (!SCDesc->isValid())
1018         // No valid Schedule Class Desc for schedClass, should be
1019         // Pseudo/PostRAPseudo
1020         return min;
1021 
1022       for (const MCWriteProcResEntry &PRE :
1023            make_range(STI->getWriteProcResBegin(SCDesc),
1024                       STI->getWriteProcResEnd(SCDesc))) {
1025         if (!PRE.Cycles)
1026           continue;
1027         const MCProcResourceDesc *ProcResource =
1028             STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
1029         unsigned NumUnits = ProcResource->NumUnits;
1030         if (NumUnits < min) {
1031           min = NumUnits;
1032           F = PRE.ProcResourceIdx;
1033         }
1034       }
1035       return min;
1036     }
1037     llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1038   }
1039 
1040   // Compute the critical resources needed by the instruction. This
1041   // function records the functional units needed by instructions that
1042   // must use only one functional unit. We use this as a tie breaker
1043   // for computing the resource MII. The instrutions that require
1044   // the same, highly used, functional unit have high priority.
1045   void calcCriticalResources(MachineInstr &MI) {
1046     unsigned SchedClass = MI.getDesc().getSchedClass();
1047     if (InstrItins && !InstrItins->isEmpty()) {
1048       for (const InstrStage &IS :
1049            make_range(InstrItins->beginStage(SchedClass),
1050                       InstrItins->endStage(SchedClass))) {
1051         InstrStage::FuncUnits FuncUnits = IS.getUnits();
1052         if (countPopulation(FuncUnits) == 1)
1053           Resources[FuncUnits]++;
1054       }
1055       return;
1056     }
1057     if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1058       const MCSchedClassDesc *SCDesc =
1059           STI->getSchedModel().getSchedClassDesc(SchedClass);
1060       if (!SCDesc->isValid())
1061         // No valid Schedule Class Desc for schedClass, should be
1062         // Pseudo/PostRAPseudo
1063         return;
1064 
1065       for (const MCWriteProcResEntry &PRE :
1066            make_range(STI->getWriteProcResBegin(SCDesc),
1067                       STI->getWriteProcResEnd(SCDesc))) {
1068         if (!PRE.Cycles)
1069           continue;
1070         Resources[PRE.ProcResourceIdx]++;
1071       }
1072       return;
1073     }
1074     llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1075   }
1076 
1077   /// Return true if IS1 has less priority than IS2.
1078   bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1079     InstrStage::FuncUnits F1 = 0, F2 = 0;
1080     unsigned MFUs1 = minFuncUnits(IS1, F1);
1081     unsigned MFUs2 = minFuncUnits(IS2, F2);
1082     if (MFUs1 == MFUs2)
1083       return Resources.lookup(F1) < Resources.lookup(F2);
1084     return MFUs1 > MFUs2;
1085   }
1086 };
1087 
1088 } // end anonymous namespace
1089 
1090 /// Calculate the resource constrained minimum initiation interval for the
1091 /// specified loop. We use the DFA to model the resources needed for
1092 /// each instruction, and we ignore dependences. A different DFA is created
1093 /// for each cycle that is required. When adding a new instruction, we attempt
1094 /// to add it to each existing DFA, until a legal space is found. If the
1095 /// instruction cannot be reserved in an existing DFA, we create a new one.
1096 unsigned SwingSchedulerDAG::calculateResMII() {
1097 
1098   LLVM_DEBUG(dbgs() << "calculateResMII:\n");
1099   SmallVector<ResourceManager*, 8> Resources;
1100   MachineBasicBlock *MBB = Loop.getHeader();
1101   Resources.push_back(new ResourceManager(&MF.getSubtarget()));
1102 
1103   // Sort the instructions by the number of available choices for scheduling,
1104   // least to most. Use the number of critical resources as the tie breaker.
1105   FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget());
1106   for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1107                                    E = MBB->getFirstTerminator();
1108        I != E; ++I)
1109     FUS.calcCriticalResources(*I);
1110   PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1111       FuncUnitOrder(FUS);
1112 
1113   for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1114                                    E = MBB->getFirstTerminator();
1115        I != E; ++I)
1116     FuncUnitOrder.push(&*I);
1117 
1118   while (!FuncUnitOrder.empty()) {
1119     MachineInstr *MI = FuncUnitOrder.top();
1120     FuncUnitOrder.pop();
1121     if (TII->isZeroCost(MI->getOpcode()))
1122       continue;
1123     // Attempt to reserve the instruction in an existing DFA. At least one
1124     // DFA is needed for each cycle.
1125     unsigned NumCycles = getSUnit(MI)->Latency;
1126     unsigned ReservedCycles = 0;
1127     SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin();
1128     SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end();
1129     LLVM_DEBUG({
1130       dbgs() << "Trying to reserve resource for " << NumCycles
1131              << " cycles for \n";
1132       MI->dump();
1133     });
1134     for (unsigned C = 0; C < NumCycles; ++C)
1135       while (RI != RE) {
1136         if ((*RI)->canReserveResources(*MI)) {
1137           (*RI)->reserveResources(*MI);
1138           ++ReservedCycles;
1139           break;
1140         }
1141         RI++;
1142       }
1143     LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
1144                       << ", NumCycles:" << NumCycles << "\n");
1145     // Add new DFAs, if needed, to reserve resources.
1146     for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1147       LLVM_DEBUG(if (SwpDebugResource) dbgs()
1148                  << "NewResource created to reserve resources"
1149                  << "\n");
1150       ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget());
1151       assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1152       NewResource->reserveResources(*MI);
1153       Resources.push_back(NewResource);
1154     }
1155   }
1156   int Resmii = Resources.size();
1157   LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n");
1158   // Delete the memory for each of the DFAs that were created earlier.
1159   for (ResourceManager *RI : Resources) {
1160     ResourceManager *D = RI;
1161     delete D;
1162   }
1163   Resources.clear();
1164   return Resmii;
1165 }
1166 
1167 /// Calculate the recurrence-constrainted minimum initiation interval.
1168 /// Iterate over each circuit.  Compute the delay(c) and distance(c)
1169 /// for each circuit. The II needs to satisfy the inequality
1170 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1171 /// II that satisfies the inequality, and the RecMII is the maximum
1172 /// of those values.
1173 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1174   unsigned RecMII = 0;
1175 
1176   for (NodeSet &Nodes : NodeSets) {
1177     if (Nodes.empty())
1178       continue;
1179 
1180     unsigned Delay = Nodes.getLatency();
1181     unsigned Distance = 1;
1182 
1183     // ii = ceil(delay / distance)
1184     unsigned CurMII = (Delay + Distance - 1) / Distance;
1185     Nodes.setRecMII(CurMII);
1186     if (CurMII > RecMII)
1187       RecMII = CurMII;
1188   }
1189 
1190   return RecMII;
1191 }
1192 
1193 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1194 /// but we do this to find the circuits, and then change them back.
1195 static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1196   SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1197   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1198     SUnit *SU = &SUnits[i];
1199     for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1200          IP != EP; ++IP) {
1201       if (IP->getKind() != SDep::Anti)
1202         continue;
1203       DepsAdded.push_back(std::make_pair(SU, *IP));
1204     }
1205   }
1206   for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
1207                                                           E = DepsAdded.end();
1208        I != E; ++I) {
1209     // Remove this anti dependency and add one in the reverse direction.
1210     SUnit *SU = I->first;
1211     SDep &D = I->second;
1212     SUnit *TargetSU = D.getSUnit();
1213     unsigned Reg = D.getReg();
1214     unsigned Lat = D.getLatency();
1215     SU->removePred(D);
1216     SDep Dep(SU, SDep::Anti, Reg);
1217     Dep.setLatency(Lat);
1218     TargetSU->addPred(Dep);
1219   }
1220 }
1221 
1222 /// Create the adjacency structure of the nodes in the graph.
1223 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1224     SwingSchedulerDAG *DAG) {
1225   BitVector Added(SUnits.size());
1226   DenseMap<int, int> OutputDeps;
1227   for (int i = 0, e = SUnits.size(); i != e; ++i) {
1228     Added.reset();
1229     // Add any successor to the adjacency matrix and exclude duplicates.
1230     for (auto &SI : SUnits[i].Succs) {
1231       // Only create a back-edge on the first and last nodes of a dependence
1232       // chain. This records any chains and adds them later.
1233       if (SI.getKind() == SDep::Output) {
1234         int N = SI.getSUnit()->NodeNum;
1235         int BackEdge = i;
1236         auto Dep = OutputDeps.find(BackEdge);
1237         if (Dep != OutputDeps.end()) {
1238           BackEdge = Dep->second;
1239           OutputDeps.erase(Dep);
1240         }
1241         OutputDeps[N] = BackEdge;
1242       }
1243       // Do not process a boundary node, an artificial node.
1244       // A back-edge is processed only if it goes to a Phi.
1245       if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
1246           (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1247         continue;
1248       int N = SI.getSUnit()->NodeNum;
1249       if (!Added.test(N)) {
1250         AdjK[i].push_back(N);
1251         Added.set(N);
1252       }
1253     }
1254     // A chain edge between a store and a load is treated as a back-edge in the
1255     // adjacency matrix.
1256     for (auto &PI : SUnits[i].Preds) {
1257       if (!SUnits[i].getInstr()->mayStore() ||
1258           !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
1259         continue;
1260       if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1261         int N = PI.getSUnit()->NodeNum;
1262         if (!Added.test(N)) {
1263           AdjK[i].push_back(N);
1264           Added.set(N);
1265         }
1266       }
1267     }
1268   }
1269   // Add back-edges in the adjacency matrix for the output dependences.
1270   for (auto &OD : OutputDeps)
1271     if (!Added.test(OD.second)) {
1272       AdjK[OD.first].push_back(OD.second);
1273       Added.set(OD.second);
1274     }
1275 }
1276 
1277 /// Identify an elementary circuit in the dependence graph starting at the
1278 /// specified node.
1279 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1280                                           bool HasBackedge) {
1281   SUnit *SV = &SUnits[V];
1282   bool F = false;
1283   Stack.insert(SV);
1284   Blocked.set(V);
1285 
1286   for (auto W : AdjK[V]) {
1287     if (NumPaths > MaxPaths)
1288       break;
1289     if (W < S)
1290       continue;
1291     if (W == S) {
1292       if (!HasBackedge)
1293         NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1294       F = true;
1295       ++NumPaths;
1296       break;
1297     } else if (!Blocked.test(W)) {
1298       if (circuit(W, S, NodeSets,
1299                   Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
1300         F = true;
1301     }
1302   }
1303 
1304   if (F)
1305     unblock(V);
1306   else {
1307     for (auto W : AdjK[V]) {
1308       if (W < S)
1309         continue;
1310       if (B[W].count(SV) == 0)
1311         B[W].insert(SV);
1312     }
1313   }
1314   Stack.pop_back();
1315   return F;
1316 }
1317 
1318 /// Unblock a node in the circuit finding algorithm.
1319 void SwingSchedulerDAG::Circuits::unblock(int U) {
1320   Blocked.reset(U);
1321   SmallPtrSet<SUnit *, 4> &BU = B[U];
1322   while (!BU.empty()) {
1323     SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1324     assert(SI != BU.end() && "Invalid B set.");
1325     SUnit *W = *SI;
1326     BU.erase(W);
1327     if (Blocked.test(W->NodeNum))
1328       unblock(W->NodeNum);
1329   }
1330 }
1331 
1332 /// Identify all the elementary circuits in the dependence graph using
1333 /// Johnson's circuit algorithm.
1334 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1335   // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1336   // but we do this to find the circuits, and then change them back.
1337   swapAntiDependences(SUnits);
1338 
1339   Circuits Cir(SUnits, Topo);
1340   // Create the adjacency structure.
1341   Cir.createAdjacencyStructure(this);
1342   for (int i = 0, e = SUnits.size(); i != e; ++i) {
1343     Cir.reset();
1344     Cir.circuit(i, i, NodeSets);
1345   }
1346 
1347   // Change the dependences back so that we've created a DAG again.
1348   swapAntiDependences(SUnits);
1349 }
1350 
1351 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1352 // is loop-carried to the USE in next iteration. This will help pipeliner avoid
1353 // additional copies that are needed across iterations. An artificial dependence
1354 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1355 
1356 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1357 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1358 // PHI-------True-Dep------> USEOfPhi
1359 
1360 // The mutation creates
1361 // USEOfPHI -------Artificial-Dep---> SRCOfCopy
1362 
1363 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1364 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1365 // late  to avoid additional copies across iterations. The possible scheduling
1366 // order would be
1367 // USEOfPHI --- SRCOfCopy---  COPY/REG_SEQUENCE.
1368 
1369 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1370   for (SUnit &SU : DAG->SUnits) {
1371     // Find the COPY/REG_SEQUENCE instruction.
1372     if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1373       continue;
1374 
1375     // Record the loop carried PHIs.
1376     SmallVector<SUnit *, 4> PHISUs;
1377     // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1378     SmallVector<SUnit *, 4> SrcSUs;
1379 
1380     for (auto &Dep : SU.Preds) {
1381       SUnit *TmpSU = Dep.getSUnit();
1382       MachineInstr *TmpMI = TmpSU->getInstr();
1383       SDep::Kind DepKind = Dep.getKind();
1384       // Save the loop carried PHI.
1385       if (DepKind == SDep::Anti && TmpMI->isPHI())
1386         PHISUs.push_back(TmpSU);
1387       // Save the source of COPY/REG_SEQUENCE.
1388       // If the source has no pre-decessors, we will end up creating cycles.
1389       else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1390         SrcSUs.push_back(TmpSU);
1391     }
1392 
1393     if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1394       continue;
1395 
1396     // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1397     // SUnit to the container.
1398     SmallVector<SUnit *, 8> UseSUs;
1399     // Do not use iterator based loop here as we are updating the container.
1400     for (size_t Index = 0; Index < PHISUs.size(); ++Index) {
1401       for (auto &Dep : PHISUs[Index]->Succs) {
1402         if (Dep.getKind() != SDep::Data)
1403           continue;
1404 
1405         SUnit *TmpSU = Dep.getSUnit();
1406         MachineInstr *TmpMI = TmpSU->getInstr();
1407         if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1408           PHISUs.push_back(TmpSU);
1409           continue;
1410         }
1411         UseSUs.push_back(TmpSU);
1412       }
1413     }
1414 
1415     if (UseSUs.size() == 0)
1416       continue;
1417 
1418     SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
1419     // Add the artificial dependencies if it does not form a cycle.
1420     for (auto I : UseSUs) {
1421       for (auto Src : SrcSUs) {
1422         if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
1423           Src->addPred(SDep(I, SDep::Artificial));
1424           SDAG->Topo.AddPred(Src, I);
1425         }
1426       }
1427     }
1428   }
1429 }
1430 
1431 /// Return true for DAG nodes that we ignore when computing the cost functions.
1432 /// We ignore the back-edge recurrence in order to avoid unbounded recursion
1433 /// in the calculation of the ASAP, ALAP, etc functions.
1434 static bool ignoreDependence(const SDep &D, bool isPred) {
1435   if (D.isArtificial())
1436     return true;
1437   return D.getKind() == SDep::Anti && isPred;
1438 }
1439 
1440 /// Compute several functions need to order the nodes for scheduling.
1441 ///  ASAP - Earliest time to schedule a node.
1442 ///  ALAP - Latest time to schedule a node.
1443 ///  MOV - Mobility function, difference between ALAP and ASAP.
1444 ///  D - Depth of each node.
1445 ///  H - Height of each node.
1446 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1447   ScheduleInfo.resize(SUnits.size());
1448 
1449   LLVM_DEBUG({
1450     for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1451                                                     E = Topo.end();
1452          I != E; ++I) {
1453       const SUnit &SU = SUnits[*I];
1454       dumpNode(SU);
1455     }
1456   });
1457 
1458   int maxASAP = 0;
1459   // Compute ASAP and ZeroLatencyDepth.
1460   for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1461                                                   E = Topo.end();
1462        I != E; ++I) {
1463     int asap = 0;
1464     int zeroLatencyDepth = 0;
1465     SUnit *SU = &SUnits[*I];
1466     for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1467                                     EP = SU->Preds.end();
1468          IP != EP; ++IP) {
1469       SUnit *pred = IP->getSUnit();
1470       if (IP->getLatency() == 0)
1471         zeroLatencyDepth =
1472             std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
1473       if (ignoreDependence(*IP, true))
1474         continue;
1475       asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
1476                                   getDistance(pred, SU, *IP) * MII));
1477     }
1478     maxASAP = std::max(maxASAP, asap);
1479     ScheduleInfo[*I].ASAP = asap;
1480     ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth;
1481   }
1482 
1483   // Compute ALAP, ZeroLatencyHeight, and MOV.
1484   for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1485                                                           E = Topo.rend();
1486        I != E; ++I) {
1487     int alap = maxASAP;
1488     int zeroLatencyHeight = 0;
1489     SUnit *SU = &SUnits[*I];
1490     for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1491                                     ES = SU->Succs.end();
1492          IS != ES; ++IS) {
1493       SUnit *succ = IS->getSUnit();
1494       if (IS->getLatency() == 0)
1495         zeroLatencyHeight =
1496             std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
1497       if (ignoreDependence(*IS, true))
1498         continue;
1499       alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
1500                                   getDistance(SU, succ, *IS) * MII));
1501     }
1502 
1503     ScheduleInfo[*I].ALAP = alap;
1504     ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
1505   }
1506 
1507   // After computing the node functions, compute the summary for each node set.
1508   for (NodeSet &I : NodeSets)
1509     I.computeNodeSetInfo(this);
1510 
1511   LLVM_DEBUG({
1512     for (unsigned i = 0; i < SUnits.size(); i++) {
1513       dbgs() << "\tNode " << i << ":\n";
1514       dbgs() << "\t   ASAP = " << getASAP(&SUnits[i]) << "\n";
1515       dbgs() << "\t   ALAP = " << getALAP(&SUnits[i]) << "\n";
1516       dbgs() << "\t   MOV  = " << getMOV(&SUnits[i]) << "\n";
1517       dbgs() << "\t   D    = " << getDepth(&SUnits[i]) << "\n";
1518       dbgs() << "\t   H    = " << getHeight(&SUnits[i]) << "\n";
1519       dbgs() << "\t   ZLD  = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1520       dbgs() << "\t   ZLH  = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
1521     }
1522   });
1523 }
1524 
1525 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1526 /// as the predecessors of the elements of NodeOrder that are not also in
1527 /// NodeOrder.
1528 static bool pred_L(SetVector<SUnit *> &NodeOrder,
1529                    SmallSetVector<SUnit *, 8> &Preds,
1530                    const NodeSet *S = nullptr) {
1531   Preds.clear();
1532   for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1533        I != E; ++I) {
1534     for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1535          PI != PE; ++PI) {
1536       if (S && S->count(PI->getSUnit()) == 0)
1537         continue;
1538       if (ignoreDependence(*PI, true))
1539         continue;
1540       if (NodeOrder.count(PI->getSUnit()) == 0)
1541         Preds.insert(PI->getSUnit());
1542     }
1543     // Back-edges are predecessors with an anti-dependence.
1544     for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1545                                     ES = (*I)->Succs.end();
1546          IS != ES; ++IS) {
1547       if (IS->getKind() != SDep::Anti)
1548         continue;
1549       if (S && S->count(IS->getSUnit()) == 0)
1550         continue;
1551       if (NodeOrder.count(IS->getSUnit()) == 0)
1552         Preds.insert(IS->getSUnit());
1553     }
1554   }
1555   return !Preds.empty();
1556 }
1557 
1558 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1559 /// as the successors of the elements of NodeOrder that are not also in
1560 /// NodeOrder.
1561 static bool succ_L(SetVector<SUnit *> &NodeOrder,
1562                    SmallSetVector<SUnit *, 8> &Succs,
1563                    const NodeSet *S = nullptr) {
1564   Succs.clear();
1565   for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1566        I != E; ++I) {
1567     for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1568          SI != SE; ++SI) {
1569       if (S && S->count(SI->getSUnit()) == 0)
1570         continue;
1571       if (ignoreDependence(*SI, false))
1572         continue;
1573       if (NodeOrder.count(SI->getSUnit()) == 0)
1574         Succs.insert(SI->getSUnit());
1575     }
1576     for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1577                                     PE = (*I)->Preds.end();
1578          PI != PE; ++PI) {
1579       if (PI->getKind() != SDep::Anti)
1580         continue;
1581       if (S && S->count(PI->getSUnit()) == 0)
1582         continue;
1583       if (NodeOrder.count(PI->getSUnit()) == 0)
1584         Succs.insert(PI->getSUnit());
1585     }
1586   }
1587   return !Succs.empty();
1588 }
1589 
1590 /// Return true if there is a path from the specified node to any of the nodes
1591 /// in DestNodes. Keep track and return the nodes in any path.
1592 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1593                         SetVector<SUnit *> &DestNodes,
1594                         SetVector<SUnit *> &Exclude,
1595                         SmallPtrSet<SUnit *, 8> &Visited) {
1596   if (Cur->isBoundaryNode())
1597     return false;
1598   if (Exclude.contains(Cur))
1599     return false;
1600   if (DestNodes.contains(Cur))
1601     return true;
1602   if (!Visited.insert(Cur).second)
1603     return Path.contains(Cur);
1604   bool FoundPath = false;
1605   for (auto &SI : Cur->Succs)
1606     FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1607   for (auto &PI : Cur->Preds)
1608     if (PI.getKind() == SDep::Anti)
1609       FoundPath |=
1610           computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1611   if (FoundPath)
1612     Path.insert(Cur);
1613   return FoundPath;
1614 }
1615 
1616 /// Return true if Set1 is a subset of Set2.
1617 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1618   for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1619     if (Set2.count(*I) == 0)
1620       return false;
1621   return true;
1622 }
1623 
1624 /// Compute the live-out registers for the instructions in a node-set.
1625 /// The live-out registers are those that are defined in the node-set,
1626 /// but not used. Except for use operands of Phis.
1627 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1628                             NodeSet &NS) {
1629   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1630   MachineRegisterInfo &MRI = MF.getRegInfo();
1631   SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1632   SmallSet<unsigned, 4> Uses;
1633   for (SUnit *SU : NS) {
1634     const MachineInstr *MI = SU->getInstr();
1635     if (MI->isPHI())
1636       continue;
1637     for (const MachineOperand &MO : MI->operands())
1638       if (MO.isReg() && MO.isUse()) {
1639         Register Reg = MO.getReg();
1640         if (Register::isVirtualRegister(Reg))
1641           Uses.insert(Reg);
1642         else if (MRI.isAllocatable(Reg))
1643           for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1644                ++Units)
1645             Uses.insert(*Units);
1646       }
1647   }
1648   for (SUnit *SU : NS)
1649     for (const MachineOperand &MO : SU->getInstr()->operands())
1650       if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1651         Register Reg = MO.getReg();
1652         if (Register::isVirtualRegister(Reg)) {
1653           if (!Uses.count(Reg))
1654             LiveOutRegs.push_back(RegisterMaskPair(Reg,
1655                                                    LaneBitmask::getNone()));
1656         } else if (MRI.isAllocatable(Reg)) {
1657           for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1658                ++Units)
1659             if (!Uses.count(*Units))
1660               LiveOutRegs.push_back(RegisterMaskPair(*Units,
1661                                                      LaneBitmask::getNone()));
1662         }
1663       }
1664   RPTracker.addLiveRegs(LiveOutRegs);
1665 }
1666 
1667 /// A heuristic to filter nodes in recurrent node-sets if the register
1668 /// pressure of a set is too high.
1669 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1670   for (auto &NS : NodeSets) {
1671     // Skip small node-sets since they won't cause register pressure problems.
1672     if (NS.size() <= 2)
1673       continue;
1674     IntervalPressure RecRegPressure;
1675     RegPressureTracker RecRPTracker(RecRegPressure);
1676     RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1677     computeLiveOuts(MF, RecRPTracker, NS);
1678     RecRPTracker.closeBottom();
1679 
1680     std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1681     llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
1682       return A->NodeNum > B->NodeNum;
1683     });
1684 
1685     for (auto &SU : SUnits) {
1686       // Since we're computing the register pressure for a subset of the
1687       // instructions in a block, we need to set the tracker for each
1688       // instruction in the node-set. The tracker is set to the instruction
1689       // just after the one we're interested in.
1690       MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1691       RecRPTracker.setPos(std::next(CurInstI));
1692 
1693       RegPressureDelta RPDelta;
1694       ArrayRef<PressureChange> CriticalPSets;
1695       RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1696                                              CriticalPSets,
1697                                              RecRegPressure.MaxSetPressure);
1698       if (RPDelta.Excess.isValid()) {
1699         LLVM_DEBUG(
1700             dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1701                    << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1702                    << ":" << RPDelta.Excess.getUnitInc());
1703         NS.setExceedPressure(SU);
1704         break;
1705       }
1706       RecRPTracker.recede();
1707     }
1708   }
1709 }
1710 
1711 /// A heuristic to colocate node sets that have the same set of
1712 /// successors.
1713 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1714   unsigned Colocate = 0;
1715   for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1716     NodeSet &N1 = NodeSets[i];
1717     SmallSetVector<SUnit *, 8> S1;
1718     if (N1.empty() || !succ_L(N1, S1))
1719       continue;
1720     for (int j = i + 1; j < e; ++j) {
1721       NodeSet &N2 = NodeSets[j];
1722       if (N1.compareRecMII(N2) != 0)
1723         continue;
1724       SmallSetVector<SUnit *, 8> S2;
1725       if (N2.empty() || !succ_L(N2, S2))
1726         continue;
1727       if (isSubset(S1, S2) && S1.size() == S2.size()) {
1728         N1.setColocate(++Colocate);
1729         N2.setColocate(Colocate);
1730         break;
1731       }
1732     }
1733   }
1734 }
1735 
1736 /// Check if the existing node-sets are profitable. If not, then ignore the
1737 /// recurrent node-sets, and attempt to schedule all nodes together. This is
1738 /// a heuristic. If the MII is large and all the recurrent node-sets are small,
1739 /// then it's best to try to schedule all instructions together instead of
1740 /// starting with the recurrent node-sets.
1741 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1742   // Look for loops with a large MII.
1743   if (MII < 17)
1744     return;
1745   // Check if the node-set contains only a simple add recurrence.
1746   for (auto &NS : NodeSets) {
1747     if (NS.getRecMII() > 2)
1748       return;
1749     if (NS.getMaxDepth() > MII)
1750       return;
1751   }
1752   NodeSets.clear();
1753   LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
1754 }
1755 
1756 /// Add the nodes that do not belong to a recurrence set into groups
1757 /// based upon connected componenets.
1758 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1759   SetVector<SUnit *> NodesAdded;
1760   SmallPtrSet<SUnit *, 8> Visited;
1761   // Add the nodes that are on a path between the previous node sets and
1762   // the current node set.
1763   for (NodeSet &I : NodeSets) {
1764     SmallSetVector<SUnit *, 8> N;
1765     // Add the nodes from the current node set to the previous node set.
1766     if (succ_L(I, N)) {
1767       SetVector<SUnit *> Path;
1768       for (SUnit *NI : N) {
1769         Visited.clear();
1770         computePath(NI, Path, NodesAdded, I, Visited);
1771       }
1772       if (!Path.empty())
1773         I.insert(Path.begin(), Path.end());
1774     }
1775     // Add the nodes from the previous node set to the current node set.
1776     N.clear();
1777     if (succ_L(NodesAdded, N)) {
1778       SetVector<SUnit *> Path;
1779       for (SUnit *NI : N) {
1780         Visited.clear();
1781         computePath(NI, Path, I, NodesAdded, Visited);
1782       }
1783       if (!Path.empty())
1784         I.insert(Path.begin(), Path.end());
1785     }
1786     NodesAdded.insert(I.begin(), I.end());
1787   }
1788 
1789   // Create a new node set with the connected nodes of any successor of a node
1790   // in a recurrent set.
1791   NodeSet NewSet;
1792   SmallSetVector<SUnit *, 8> N;
1793   if (succ_L(NodesAdded, N))
1794     for (SUnit *I : N)
1795       addConnectedNodes(I, NewSet, NodesAdded);
1796   if (!NewSet.empty())
1797     NodeSets.push_back(NewSet);
1798 
1799   // Create a new node set with the connected nodes of any predecessor of a node
1800   // in a recurrent set.
1801   NewSet.clear();
1802   if (pred_L(NodesAdded, N))
1803     for (SUnit *I : N)
1804       addConnectedNodes(I, NewSet, NodesAdded);
1805   if (!NewSet.empty())
1806     NodeSets.push_back(NewSet);
1807 
1808   // Create new nodes sets with the connected nodes any remaining node that
1809   // has no predecessor.
1810   for (unsigned i = 0; i < SUnits.size(); ++i) {
1811     SUnit *SU = &SUnits[i];
1812     if (NodesAdded.count(SU) == 0) {
1813       NewSet.clear();
1814       addConnectedNodes(SU, NewSet, NodesAdded);
1815       if (!NewSet.empty())
1816         NodeSets.push_back(NewSet);
1817     }
1818   }
1819 }
1820 
1821 /// Add the node to the set, and add all of its connected nodes to the set.
1822 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1823                                           SetVector<SUnit *> &NodesAdded) {
1824   NewSet.insert(SU);
1825   NodesAdded.insert(SU);
1826   for (auto &SI : SU->Succs) {
1827     SUnit *Successor = SI.getSUnit();
1828     if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
1829       addConnectedNodes(Successor, NewSet, NodesAdded);
1830   }
1831   for (auto &PI : SU->Preds) {
1832     SUnit *Predecessor = PI.getSUnit();
1833     if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1834       addConnectedNodes(Predecessor, NewSet, NodesAdded);
1835   }
1836 }
1837 
1838 /// Return true if Set1 contains elements in Set2. The elements in common
1839 /// are returned in a different container.
1840 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1841                         SmallSetVector<SUnit *, 8> &Result) {
1842   Result.clear();
1843   for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
1844     SUnit *SU = Set1[i];
1845     if (Set2.count(SU) != 0)
1846       Result.insert(SU);
1847   }
1848   return !Result.empty();
1849 }
1850 
1851 /// Merge the recurrence node sets that have the same initial node.
1852 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1853   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1854        ++I) {
1855     NodeSet &NI = *I;
1856     for (NodeSetType::iterator J = I + 1; J != E;) {
1857       NodeSet &NJ = *J;
1858       if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1859         if (NJ.compareRecMII(NI) > 0)
1860           NI.setRecMII(NJ.getRecMII());
1861         for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
1862              ++NII)
1863           I->insert(*NII);
1864         NodeSets.erase(J);
1865         E = NodeSets.end();
1866       } else {
1867         ++J;
1868       }
1869     }
1870   }
1871 }
1872 
1873 /// Remove nodes that have been scheduled in previous NodeSets.
1874 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1875   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1876        ++I)
1877     for (NodeSetType::iterator J = I + 1; J != E;) {
1878       J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1879 
1880       if (J->empty()) {
1881         NodeSets.erase(J);
1882         E = NodeSets.end();
1883       } else {
1884         ++J;
1885       }
1886     }
1887 }
1888 
1889 /// Compute an ordered list of the dependence graph nodes, which
1890 /// indicates the order that the nodes will be scheduled.  This is a
1891 /// two-level algorithm. First, a partial order is created, which
1892 /// consists of a list of sets ordered from highest to lowest priority.
1893 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1894   SmallSetVector<SUnit *, 8> R;
1895   NodeOrder.clear();
1896 
1897   for (auto &Nodes : NodeSets) {
1898     LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
1899     OrderKind Order;
1900     SmallSetVector<SUnit *, 8> N;
1901     if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
1902       R.insert(N.begin(), N.end());
1903       Order = BottomUp;
1904       LLVM_DEBUG(dbgs() << "  Bottom up (preds) ");
1905     } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
1906       R.insert(N.begin(), N.end());
1907       Order = TopDown;
1908       LLVM_DEBUG(dbgs() << "  Top down (succs) ");
1909     } else if (isIntersect(N, Nodes, R)) {
1910       // If some of the successors are in the existing node-set, then use the
1911       // top-down ordering.
1912       Order = TopDown;
1913       LLVM_DEBUG(dbgs() << "  Top down (intersect) ");
1914     } else if (NodeSets.size() == 1) {
1915       for (auto &N : Nodes)
1916         if (N->Succs.size() == 0)
1917           R.insert(N);
1918       Order = BottomUp;
1919       LLVM_DEBUG(dbgs() << "  Bottom up (all) ");
1920     } else {
1921       // Find the node with the highest ASAP.
1922       SUnit *maxASAP = nullptr;
1923       for (SUnit *SU : Nodes) {
1924         if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
1925             (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
1926           maxASAP = SU;
1927       }
1928       R.insert(maxASAP);
1929       Order = BottomUp;
1930       LLVM_DEBUG(dbgs() << "  Bottom up (default) ");
1931     }
1932 
1933     while (!R.empty()) {
1934       if (Order == TopDown) {
1935         // Choose the node with the maximum height.  If more than one, choose
1936         // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
1937         // choose the node with the lowest MOV.
1938         while (!R.empty()) {
1939           SUnit *maxHeight = nullptr;
1940           for (SUnit *I : R) {
1941             if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
1942               maxHeight = I;
1943             else if (getHeight(I) == getHeight(maxHeight) &&
1944                      getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
1945               maxHeight = I;
1946             else if (getHeight(I) == getHeight(maxHeight) &&
1947                      getZeroLatencyHeight(I) ==
1948                          getZeroLatencyHeight(maxHeight) &&
1949                      getMOV(I) < getMOV(maxHeight))
1950               maxHeight = I;
1951           }
1952           NodeOrder.insert(maxHeight);
1953           LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
1954           R.remove(maxHeight);
1955           for (const auto &I : maxHeight->Succs) {
1956             if (Nodes.count(I.getSUnit()) == 0)
1957               continue;
1958             if (NodeOrder.contains(I.getSUnit()))
1959               continue;
1960             if (ignoreDependence(I, false))
1961               continue;
1962             R.insert(I.getSUnit());
1963           }
1964           // Back-edges are predecessors with an anti-dependence.
1965           for (const auto &I : maxHeight->Preds) {
1966             if (I.getKind() != SDep::Anti)
1967               continue;
1968             if (Nodes.count(I.getSUnit()) == 0)
1969               continue;
1970             if (NodeOrder.contains(I.getSUnit()))
1971               continue;
1972             R.insert(I.getSUnit());
1973           }
1974         }
1975         Order = BottomUp;
1976         LLVM_DEBUG(dbgs() << "\n   Switching order to bottom up ");
1977         SmallSetVector<SUnit *, 8> N;
1978         if (pred_L(NodeOrder, N, &Nodes))
1979           R.insert(N.begin(), N.end());
1980       } else {
1981         // Choose the node with the maximum depth.  If more than one, choose
1982         // the node with the maximum ZeroLatencyDepth. If still more than one,
1983         // choose the node with the lowest MOV.
1984         while (!R.empty()) {
1985           SUnit *maxDepth = nullptr;
1986           for (SUnit *I : R) {
1987             if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
1988               maxDepth = I;
1989             else if (getDepth(I) == getDepth(maxDepth) &&
1990                      getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
1991               maxDepth = I;
1992             else if (getDepth(I) == getDepth(maxDepth) &&
1993                      getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
1994                      getMOV(I) < getMOV(maxDepth))
1995               maxDepth = I;
1996           }
1997           NodeOrder.insert(maxDepth);
1998           LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
1999           R.remove(maxDepth);
2000           if (Nodes.isExceedSU(maxDepth)) {
2001             Order = TopDown;
2002             R.clear();
2003             R.insert(Nodes.getNode(0));
2004             break;
2005           }
2006           for (const auto &I : maxDepth->Preds) {
2007             if (Nodes.count(I.getSUnit()) == 0)
2008               continue;
2009             if (NodeOrder.contains(I.getSUnit()))
2010               continue;
2011             R.insert(I.getSUnit());
2012           }
2013           // Back-edges are predecessors with an anti-dependence.
2014           for (const auto &I : maxDepth->Succs) {
2015             if (I.getKind() != SDep::Anti)
2016               continue;
2017             if (Nodes.count(I.getSUnit()) == 0)
2018               continue;
2019             if (NodeOrder.contains(I.getSUnit()))
2020               continue;
2021             R.insert(I.getSUnit());
2022           }
2023         }
2024         Order = TopDown;
2025         LLVM_DEBUG(dbgs() << "\n   Switching order to top down ");
2026         SmallSetVector<SUnit *, 8> N;
2027         if (succ_L(NodeOrder, N, &Nodes))
2028           R.insert(N.begin(), N.end());
2029       }
2030     }
2031     LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
2032   }
2033 
2034   LLVM_DEBUG({
2035     dbgs() << "Node order: ";
2036     for (SUnit *I : NodeOrder)
2037       dbgs() << " " << I->NodeNum << " ";
2038     dbgs() << "\n";
2039   });
2040 }
2041 
2042 /// Process the nodes in the computed order and create the pipelined schedule
2043 /// of the instructions, if possible. Return true if a schedule is found.
2044 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
2045 
2046   if (NodeOrder.empty()){
2047     LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
2048     return false;
2049   }
2050 
2051   bool scheduleFound = false;
2052   unsigned II = 0;
2053   // Keep increasing II until a valid schedule is found.
2054   for (II = MII; II <= MAX_II && !scheduleFound; ++II) {
2055     Schedule.reset();
2056     Schedule.setInitiationInterval(II);
2057     LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2058 
2059     SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2060     SetVector<SUnit *>::iterator NE = NodeOrder.end();
2061     do {
2062       SUnit *SU = *NI;
2063 
2064       // Compute the schedule time for the instruction, which is based
2065       // upon the scheduled time for any predecessors/successors.
2066       int EarlyStart = INT_MIN;
2067       int LateStart = INT_MAX;
2068       // These values are set when the size of the schedule window is limited
2069       // due to chain dependences.
2070       int SchedEnd = INT_MAX;
2071       int SchedStart = INT_MIN;
2072       Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2073                             II, this);
2074       LLVM_DEBUG({
2075         dbgs() << "\n";
2076         dbgs() << "Inst (" << SU->NodeNum << ") ";
2077         SU->getInstr()->dump();
2078         dbgs() << "\n";
2079       });
2080       LLVM_DEBUG({
2081         dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,
2082                          LateStart, SchedEnd, SchedStart);
2083       });
2084 
2085       if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2086           SchedStart > LateStart)
2087         scheduleFound = false;
2088       else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2089         SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2090         scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2091       } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2092         SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2093         scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2094       } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2095         SchedEnd =
2096             std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2097         // When scheduling a Phi it is better to start at the late cycle and go
2098         // backwards. The default order may insert the Phi too far away from
2099         // its first dependence.
2100         if (SU->getInstr()->isPHI())
2101           scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2102         else
2103           scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2104       } else {
2105         int FirstCycle = Schedule.getFirstCycle();
2106         scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2107                                         FirstCycle + getASAP(SU) + II - 1, II);
2108       }
2109       // Even if we find a schedule, make sure the schedule doesn't exceed the
2110       // allowable number of stages. We keep trying if this happens.
2111       if (scheduleFound)
2112         if (SwpMaxStages > -1 &&
2113             Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2114           scheduleFound = false;
2115 
2116       LLVM_DEBUG({
2117         if (!scheduleFound)
2118           dbgs() << "\tCan't schedule\n";
2119       });
2120     } while (++NI != NE && scheduleFound);
2121 
2122     // If a schedule is found, check if it is a valid schedule too.
2123     if (scheduleFound)
2124       scheduleFound = Schedule.isValidSchedule(this);
2125   }
2126 
2127   LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II
2128                     << ")\n");
2129 
2130   if (scheduleFound) {
2131     Schedule.finalizeSchedule(this);
2132     Pass.ORE->emit([&]() {
2133       return MachineOptimizationRemarkAnalysis(
2134                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
2135              << "Schedule found with Initiation Interval: " << ore::NV("II", II)
2136              << ", MaxStageCount: "
2137              << ore::NV("MaxStageCount", Schedule.getMaxStageCount());
2138     });
2139   } else
2140     Schedule.reset();
2141 
2142   return scheduleFound && Schedule.getMaxStageCount() > 0;
2143 }
2144 
2145 /// Return true if we can compute the amount the instruction changes
2146 /// during each iteration. Set Delta to the amount of the change.
2147 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
2148   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2149   const MachineOperand *BaseOp;
2150   int64_t Offset;
2151   bool OffsetIsScalable;
2152   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
2153     return false;
2154 
2155   // FIXME: This algorithm assumes instructions have fixed-size offsets.
2156   if (OffsetIsScalable)
2157     return false;
2158 
2159   if (!BaseOp->isReg())
2160     return false;
2161 
2162   Register BaseReg = BaseOp->getReg();
2163 
2164   MachineRegisterInfo &MRI = MF.getRegInfo();
2165   // Check if there is a Phi. If so, get the definition in the loop.
2166   MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
2167   if (BaseDef && BaseDef->isPHI()) {
2168     BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
2169     BaseDef = MRI.getVRegDef(BaseReg);
2170   }
2171   if (!BaseDef)
2172     return false;
2173 
2174   int D = 0;
2175   if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
2176     return false;
2177 
2178   Delta = D;
2179   return true;
2180 }
2181 
2182 /// Check if we can change the instruction to use an offset value from the
2183 /// previous iteration. If so, return true and set the base and offset values
2184 /// so that we can rewrite the load, if necessary.
2185 ///   v1 = Phi(v0, v3)
2186 ///   v2 = load v1, 0
2187 ///   v3 = post_store v1, 4, x
2188 /// This function enables the load to be rewritten as v2 = load v3, 4.
2189 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
2190                                               unsigned &BasePos,
2191                                               unsigned &OffsetPos,
2192                                               unsigned &NewBase,
2193                                               int64_t &Offset) {
2194   // Get the load instruction.
2195   if (TII->isPostIncrement(*MI))
2196     return false;
2197   unsigned BasePosLd, OffsetPosLd;
2198   if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
2199     return false;
2200   Register BaseReg = MI->getOperand(BasePosLd).getReg();
2201 
2202   // Look for the Phi instruction.
2203   MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
2204   MachineInstr *Phi = MRI.getVRegDef(BaseReg);
2205   if (!Phi || !Phi->isPHI())
2206     return false;
2207   // Get the register defined in the loop block.
2208   unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
2209   if (!PrevReg)
2210     return false;
2211 
2212   // Check for the post-increment load/store instruction.
2213   MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
2214   if (!PrevDef || PrevDef == MI)
2215     return false;
2216 
2217   if (!TII->isPostIncrement(*PrevDef))
2218     return false;
2219 
2220   unsigned BasePos1 = 0, OffsetPos1 = 0;
2221   if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
2222     return false;
2223 
2224   // Make sure that the instructions do not access the same memory location in
2225   // the next iteration.
2226   int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
2227   int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
2228   MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2229   NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
2230   bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
2231   MF.DeleteMachineInstr(NewMI);
2232   if (!Disjoint)
2233     return false;
2234 
2235   // Set the return value once we determine that we return true.
2236   BasePos = BasePosLd;
2237   OffsetPos = OffsetPosLd;
2238   NewBase = PrevReg;
2239   Offset = StoreOffset;
2240   return true;
2241 }
2242 
2243 /// Apply changes to the instruction if needed. The changes are need
2244 /// to improve the scheduling and depend up on the final schedule.
2245 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
2246                                          SMSchedule &Schedule) {
2247   SUnit *SU = getSUnit(MI);
2248   DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2249       InstrChanges.find(SU);
2250   if (It != InstrChanges.end()) {
2251     std::pair<unsigned, int64_t> RegAndOffset = It->second;
2252     unsigned BasePos, OffsetPos;
2253     if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2254       return;
2255     Register BaseReg = MI->getOperand(BasePos).getReg();
2256     MachineInstr *LoopDef = findDefInLoop(BaseReg);
2257     int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
2258     int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
2259     int BaseStageNum = Schedule.stageScheduled(SU);
2260     int BaseCycleNum = Schedule.cycleScheduled(SU);
2261     if (BaseStageNum < DefStageNum) {
2262       MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2263       int OffsetDiff = DefStageNum - BaseStageNum;
2264       if (DefCycleNum < BaseCycleNum) {
2265         NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
2266         if (OffsetDiff > 0)
2267           --OffsetDiff;
2268       }
2269       int64_t NewOffset =
2270           MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
2271       NewMI->getOperand(OffsetPos).setImm(NewOffset);
2272       SU->setInstr(NewMI);
2273       MISUnitMap[NewMI] = SU;
2274       NewMIs[MI] = NewMI;
2275     }
2276   }
2277 }
2278 
2279 /// Return the instruction in the loop that defines the register.
2280 /// If the definition is a Phi, then follow the Phi operand to
2281 /// the instruction in the loop.
2282 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) {
2283   SmallPtrSet<MachineInstr *, 8> Visited;
2284   MachineInstr *Def = MRI.getVRegDef(Reg);
2285   while (Def->isPHI()) {
2286     if (!Visited.insert(Def).second)
2287       break;
2288     for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
2289       if (Def->getOperand(i + 1).getMBB() == BB) {
2290         Def = MRI.getVRegDef(Def->getOperand(i).getReg());
2291         break;
2292       }
2293   }
2294   return Def;
2295 }
2296 
2297 /// Return true for an order or output dependence that is loop carried
2298 /// potentially. A dependence is loop carried if the destination defines a valu
2299 /// that may be used or defined by the source in a subsequent iteration.
2300 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
2301                                          bool isSucc) {
2302   if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
2303       Dep.isArtificial())
2304     return false;
2305 
2306   if (!SwpPruneLoopCarried)
2307     return true;
2308 
2309   if (Dep.getKind() == SDep::Output)
2310     return true;
2311 
2312   MachineInstr *SI = Source->getInstr();
2313   MachineInstr *DI = Dep.getSUnit()->getInstr();
2314   if (!isSucc)
2315     std::swap(SI, DI);
2316   assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
2317 
2318   // Assume ordered loads and stores may have a loop carried dependence.
2319   if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
2320       SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
2321       SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
2322     return true;
2323 
2324   // Only chain dependences between a load and store can be loop carried.
2325   if (!DI->mayStore() || !SI->mayLoad())
2326     return false;
2327 
2328   unsigned DeltaS, DeltaD;
2329   if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
2330     return true;
2331 
2332   const MachineOperand *BaseOpS, *BaseOpD;
2333   int64_t OffsetS, OffsetD;
2334   bool OffsetSIsScalable, OffsetDIsScalable;
2335   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2336   if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable,
2337                                     TRI) ||
2338       !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable,
2339                                     TRI))
2340     return true;
2341 
2342   assert(!OffsetSIsScalable && !OffsetDIsScalable &&
2343          "Expected offsets to be byte offsets");
2344 
2345   if (!BaseOpS->isIdenticalTo(*BaseOpD))
2346     return true;
2347 
2348   // Check that the base register is incremented by a constant value for each
2349   // iteration.
2350   MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg());
2351   if (!Def || !Def->isPHI())
2352     return true;
2353   unsigned InitVal = 0;
2354   unsigned LoopVal = 0;
2355   getPhiRegs(*Def, BB, InitVal, LoopVal);
2356   MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
2357   int D = 0;
2358   if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
2359     return true;
2360 
2361   uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
2362   uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
2363 
2364   // This is the main test, which checks the offset values and the loop
2365   // increment value to determine if the accesses may be loop carried.
2366   if (AccessSizeS == MemoryLocation::UnknownSize ||
2367       AccessSizeD == MemoryLocation::UnknownSize)
2368     return true;
2369 
2370   if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
2371     return true;
2372 
2373   return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
2374 }
2375 
2376 void SwingSchedulerDAG::postprocessDAG() {
2377   for (auto &M : Mutations)
2378     M->apply(this);
2379 }
2380 
2381 /// Try to schedule the node at the specified StartCycle and continue
2382 /// until the node is schedule or the EndCycle is reached.  This function
2383 /// returns true if the node is scheduled.  This routine may search either
2384 /// forward or backward for a place to insert the instruction based upon
2385 /// the relative values of StartCycle and EndCycle.
2386 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
2387   bool forward = true;
2388   LLVM_DEBUG({
2389     dbgs() << "Trying to insert node between " << StartCycle << " and "
2390            << EndCycle << " II: " << II << "\n";
2391   });
2392   if (StartCycle > EndCycle)
2393     forward = false;
2394 
2395   // The terminating condition depends on the direction.
2396   int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
2397   for (int curCycle = StartCycle; curCycle != termCycle;
2398        forward ? ++curCycle : --curCycle) {
2399 
2400     // Add the already scheduled instructions at the specified cycle to the
2401     // DFA.
2402     ProcItinResources.clearResources();
2403     for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
2404          checkCycle <= LastCycle; checkCycle += II) {
2405       std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
2406 
2407       for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
2408                                          E = cycleInstrs.end();
2409            I != E; ++I) {
2410         if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
2411           continue;
2412         assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) &&
2413                "These instructions have already been scheduled.");
2414         ProcItinResources.reserveResources(*(*I)->getInstr());
2415       }
2416     }
2417     if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
2418         ProcItinResources.canReserveResources(*SU->getInstr())) {
2419       LLVM_DEBUG({
2420         dbgs() << "\tinsert at cycle " << curCycle << " ";
2421         SU->getInstr()->dump();
2422       });
2423 
2424       ScheduledInstrs[curCycle].push_back(SU);
2425       InstrToCycle.insert(std::make_pair(SU, curCycle));
2426       if (curCycle > LastCycle)
2427         LastCycle = curCycle;
2428       if (curCycle < FirstCycle)
2429         FirstCycle = curCycle;
2430       return true;
2431     }
2432     LLVM_DEBUG({
2433       dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
2434       SU->getInstr()->dump();
2435     });
2436   }
2437   return false;
2438 }
2439 
2440 // Return the cycle of the earliest scheduled instruction in the chain.
2441 int SMSchedule::earliestCycleInChain(const SDep &Dep) {
2442   SmallPtrSet<SUnit *, 8> Visited;
2443   SmallVector<SDep, 8> Worklist;
2444   Worklist.push_back(Dep);
2445   int EarlyCycle = INT_MAX;
2446   while (!Worklist.empty()) {
2447     const SDep &Cur = Worklist.pop_back_val();
2448     SUnit *PrevSU = Cur.getSUnit();
2449     if (Visited.count(PrevSU))
2450       continue;
2451     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
2452     if (it == InstrToCycle.end())
2453       continue;
2454     EarlyCycle = std::min(EarlyCycle, it->second);
2455     for (const auto &PI : PrevSU->Preds)
2456       if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output)
2457         Worklist.push_back(PI);
2458     Visited.insert(PrevSU);
2459   }
2460   return EarlyCycle;
2461 }
2462 
2463 // Return the cycle of the latest scheduled instruction in the chain.
2464 int SMSchedule::latestCycleInChain(const SDep &Dep) {
2465   SmallPtrSet<SUnit *, 8> Visited;
2466   SmallVector<SDep, 8> Worklist;
2467   Worklist.push_back(Dep);
2468   int LateCycle = INT_MIN;
2469   while (!Worklist.empty()) {
2470     const SDep &Cur = Worklist.pop_back_val();
2471     SUnit *SuccSU = Cur.getSUnit();
2472     if (Visited.count(SuccSU))
2473       continue;
2474     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
2475     if (it == InstrToCycle.end())
2476       continue;
2477     LateCycle = std::max(LateCycle, it->second);
2478     for (const auto &SI : SuccSU->Succs)
2479       if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output)
2480         Worklist.push_back(SI);
2481     Visited.insert(SuccSU);
2482   }
2483   return LateCycle;
2484 }
2485 
2486 /// If an instruction has a use that spans multiple iterations, then
2487 /// return true. These instructions are characterized by having a back-ege
2488 /// to a Phi, which contains a reference to another Phi.
2489 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
2490   for (auto &P : SU->Preds)
2491     if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
2492       for (auto &S : P.getSUnit()->Succs)
2493         if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
2494           return P.getSUnit();
2495   return nullptr;
2496 }
2497 
2498 /// Compute the scheduling start slot for the instruction.  The start slot
2499 /// depends on any predecessor or successor nodes scheduled already.
2500 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
2501                               int *MinEnd, int *MaxStart, int II,
2502                               SwingSchedulerDAG *DAG) {
2503   // Iterate over each instruction that has been scheduled already.  The start
2504   // slot computation depends on whether the previously scheduled instruction
2505   // is a predecessor or successor of the specified instruction.
2506   for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
2507 
2508     // Iterate over each instruction in the current cycle.
2509     for (SUnit *I : getInstructions(cycle)) {
2510       // Because we're processing a DAG for the dependences, we recognize
2511       // the back-edge in recurrences by anti dependences.
2512       for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
2513         const SDep &Dep = SU->Preds[i];
2514         if (Dep.getSUnit() == I) {
2515           if (!DAG->isBackedge(SU, Dep)) {
2516             int EarlyStart = cycle + Dep.getLatency() -
2517                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2518             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2519             if (DAG->isLoopCarriedDep(SU, Dep, false)) {
2520               int End = earliestCycleInChain(Dep) + (II - 1);
2521               *MinEnd = std::min(*MinEnd, End);
2522             }
2523           } else {
2524             int LateStart = cycle - Dep.getLatency() +
2525                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2526             *MinLateStart = std::min(*MinLateStart, LateStart);
2527           }
2528         }
2529         // For instruction that requires multiple iterations, make sure that
2530         // the dependent instruction is not scheduled past the definition.
2531         SUnit *BE = multipleIterations(I, DAG);
2532         if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
2533             !SU->isPred(I))
2534           *MinLateStart = std::min(*MinLateStart, cycle);
2535       }
2536       for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
2537         if (SU->Succs[i].getSUnit() == I) {
2538           const SDep &Dep = SU->Succs[i];
2539           if (!DAG->isBackedge(SU, Dep)) {
2540             int LateStart = cycle - Dep.getLatency() +
2541                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2542             *MinLateStart = std::min(*MinLateStart, LateStart);
2543             if (DAG->isLoopCarriedDep(SU, Dep)) {
2544               int Start = latestCycleInChain(Dep) + 1 - II;
2545               *MaxStart = std::max(*MaxStart, Start);
2546             }
2547           } else {
2548             int EarlyStart = cycle + Dep.getLatency() -
2549                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2550             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2551           }
2552         }
2553       }
2554     }
2555   }
2556 }
2557 
2558 /// Order the instructions within a cycle so that the definitions occur
2559 /// before the uses. Returns true if the instruction is added to the start
2560 /// of the list, or false if added to the end.
2561 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
2562                                  std::deque<SUnit *> &Insts) {
2563   MachineInstr *MI = SU->getInstr();
2564   bool OrderBeforeUse = false;
2565   bool OrderAfterDef = false;
2566   bool OrderBeforeDef = false;
2567   unsigned MoveDef = 0;
2568   unsigned MoveUse = 0;
2569   int StageInst1 = stageScheduled(SU);
2570 
2571   unsigned Pos = 0;
2572   for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
2573        ++I, ++Pos) {
2574     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
2575       MachineOperand &MO = MI->getOperand(i);
2576       if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
2577         continue;
2578 
2579       Register Reg = MO.getReg();
2580       unsigned BasePos, OffsetPos;
2581       if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2582         if (MI->getOperand(BasePos).getReg() == Reg)
2583           if (unsigned NewReg = SSD->getInstrBaseReg(SU))
2584             Reg = NewReg;
2585       bool Reads, Writes;
2586       std::tie(Reads, Writes) =
2587           (*I)->getInstr()->readsWritesVirtualRegister(Reg);
2588       if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
2589         OrderBeforeUse = true;
2590         if (MoveUse == 0)
2591           MoveUse = Pos;
2592       } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
2593         // Add the instruction after the scheduled instruction.
2594         OrderAfterDef = true;
2595         MoveDef = Pos;
2596       } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
2597         if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
2598           OrderBeforeUse = true;
2599           if (MoveUse == 0)
2600             MoveUse = Pos;
2601         } else {
2602           OrderAfterDef = true;
2603           MoveDef = Pos;
2604         }
2605       } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
2606         OrderBeforeUse = true;
2607         if (MoveUse == 0)
2608           MoveUse = Pos;
2609         if (MoveUse != 0) {
2610           OrderAfterDef = true;
2611           MoveDef = Pos - 1;
2612         }
2613       } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
2614         // Add the instruction before the scheduled instruction.
2615         OrderBeforeUse = true;
2616         if (MoveUse == 0)
2617           MoveUse = Pos;
2618       } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
2619                  isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
2620         if (MoveUse == 0) {
2621           OrderBeforeDef = true;
2622           MoveUse = Pos;
2623         }
2624       }
2625     }
2626     // Check for order dependences between instructions. Make sure the source
2627     // is ordered before the destination.
2628     for (auto &S : SU->Succs) {
2629       if (S.getSUnit() != *I)
2630         continue;
2631       if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2632         OrderBeforeUse = true;
2633         if (Pos < MoveUse)
2634           MoveUse = Pos;
2635       }
2636       // We did not handle HW dependences in previous for loop,
2637       // and we normally set Latency = 0 for Anti deps,
2638       // so may have nodes in same cycle with Anti denpendent on HW regs.
2639       else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
2640         OrderBeforeUse = true;
2641         if ((MoveUse == 0) || (Pos < MoveUse))
2642           MoveUse = Pos;
2643       }
2644     }
2645     for (auto &P : SU->Preds) {
2646       if (P.getSUnit() != *I)
2647         continue;
2648       if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2649         OrderAfterDef = true;
2650         MoveDef = Pos;
2651       }
2652     }
2653   }
2654 
2655   // A circular dependence.
2656   if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
2657     OrderBeforeUse = false;
2658 
2659   // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
2660   // to a loop-carried dependence.
2661   if (OrderBeforeDef)
2662     OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
2663 
2664   // The uncommon case when the instruction order needs to be updated because
2665   // there is both a use and def.
2666   if (OrderBeforeUse && OrderAfterDef) {
2667     SUnit *UseSU = Insts.at(MoveUse);
2668     SUnit *DefSU = Insts.at(MoveDef);
2669     if (MoveUse > MoveDef) {
2670       Insts.erase(Insts.begin() + MoveUse);
2671       Insts.erase(Insts.begin() + MoveDef);
2672     } else {
2673       Insts.erase(Insts.begin() + MoveDef);
2674       Insts.erase(Insts.begin() + MoveUse);
2675     }
2676     orderDependence(SSD, UseSU, Insts);
2677     orderDependence(SSD, SU, Insts);
2678     orderDependence(SSD, DefSU, Insts);
2679     return;
2680   }
2681   // Put the new instruction first if there is a use in the list. Otherwise,
2682   // put it at the end of the list.
2683   if (OrderBeforeUse)
2684     Insts.push_front(SU);
2685   else
2686     Insts.push_back(SU);
2687 }
2688 
2689 /// Return true if the scheduled Phi has a loop carried operand.
2690 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
2691   if (!Phi.isPHI())
2692     return false;
2693   assert(Phi.isPHI() && "Expecting a Phi.");
2694   SUnit *DefSU = SSD->getSUnit(&Phi);
2695   unsigned DefCycle = cycleScheduled(DefSU);
2696   int DefStage = stageScheduled(DefSU);
2697 
2698   unsigned InitVal = 0;
2699   unsigned LoopVal = 0;
2700   getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
2701   SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
2702   if (!UseSU)
2703     return true;
2704   if (UseSU->getInstr()->isPHI())
2705     return true;
2706   unsigned LoopCycle = cycleScheduled(UseSU);
2707   int LoopStage = stageScheduled(UseSU);
2708   return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
2709 }
2710 
2711 /// Return true if the instruction is a definition that is loop carried
2712 /// and defines the use on the next iteration.
2713 ///        v1 = phi(v2, v3)
2714 ///  (Def) v3 = op v1
2715 ///  (MO)   = v1
2716 /// If MO appears before Def, then then v1 and v3 may get assigned to the same
2717 /// register.
2718 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
2719                                        MachineInstr *Def, MachineOperand &MO) {
2720   if (!MO.isReg())
2721     return false;
2722   if (Def->isPHI())
2723     return false;
2724   MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
2725   if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
2726     return false;
2727   if (!isLoopCarried(SSD, *Phi))
2728     return false;
2729   unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
2730   for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
2731     MachineOperand &DMO = Def->getOperand(i);
2732     if (!DMO.isReg() || !DMO.isDef())
2733       continue;
2734     if (DMO.getReg() == LoopReg)
2735       return true;
2736   }
2737   return false;
2738 }
2739 
2740 // Check if the generated schedule is valid. This function checks if
2741 // an instruction that uses a physical register is scheduled in a
2742 // different stage than the definition. The pipeliner does not handle
2743 // physical register values that may cross a basic block boundary.
2744 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
2745   for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
2746     SUnit &SU = SSD->SUnits[i];
2747     if (!SU.hasPhysRegDefs)
2748       continue;
2749     int StageDef = stageScheduled(&SU);
2750     assert(StageDef != -1 && "Instruction should have been scheduled.");
2751     for (auto &SI : SU.Succs)
2752       if (SI.isAssignedRegDep())
2753         if (Register::isPhysicalRegister(SI.getReg()))
2754           if (stageScheduled(SI.getSUnit()) != StageDef)
2755             return false;
2756   }
2757   return true;
2758 }
2759 
2760 /// A property of the node order in swing-modulo-scheduling is
2761 /// that for nodes outside circuits the following holds:
2762 /// none of them is scheduled after both a successor and a
2763 /// predecessor.
2764 /// The method below checks whether the property is met.
2765 /// If not, debug information is printed and statistics information updated.
2766 /// Note that we do not use an assert statement.
2767 /// The reason is that although an invalid node oder may prevent
2768 /// the pipeliner from finding a pipelined schedule for arbitrary II,
2769 /// it does not lead to the generation of incorrect code.
2770 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
2771 
2772   // a sorted vector that maps each SUnit to its index in the NodeOrder
2773   typedef std::pair<SUnit *, unsigned> UnitIndex;
2774   std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
2775 
2776   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
2777     Indices.push_back(std::make_pair(NodeOrder[i], i));
2778 
2779   auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
2780     return std::get<0>(i1) < std::get<0>(i2);
2781   };
2782 
2783   // sort, so that we can perform a binary search
2784   llvm::sort(Indices, CompareKey);
2785 
2786   bool Valid = true;
2787   (void)Valid;
2788   // for each SUnit in the NodeOrder, check whether
2789   // it appears after both a successor and a predecessor
2790   // of the SUnit. If this is the case, and the SUnit
2791   // is not part of circuit, then the NodeOrder is not
2792   // valid.
2793   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
2794     SUnit *SU = NodeOrder[i];
2795     unsigned Index = i;
2796 
2797     bool PredBefore = false;
2798     bool SuccBefore = false;
2799 
2800     SUnit *Succ;
2801     SUnit *Pred;
2802     (void)Succ;
2803     (void)Pred;
2804 
2805     for (SDep &PredEdge : SU->Preds) {
2806       SUnit *PredSU = PredEdge.getSUnit();
2807       unsigned PredIndex = std::get<1>(
2808           *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
2809       if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
2810         PredBefore = true;
2811         Pred = PredSU;
2812         break;
2813       }
2814     }
2815 
2816     for (SDep &SuccEdge : SU->Succs) {
2817       SUnit *SuccSU = SuccEdge.getSUnit();
2818       // Do not process a boundary node, it was not included in NodeOrder,
2819       // hence not in Indices either, call to std::lower_bound() below will
2820       // return Indices.end().
2821       if (SuccSU->isBoundaryNode())
2822         continue;
2823       unsigned SuccIndex = std::get<1>(
2824           *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
2825       if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
2826         SuccBefore = true;
2827         Succ = SuccSU;
2828         break;
2829       }
2830     }
2831 
2832     if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
2833       // instructions in circuits are allowed to be scheduled
2834       // after both a successor and predecessor.
2835       bool InCircuit = llvm::any_of(
2836           Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
2837       if (InCircuit)
2838         LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
2839       else {
2840         Valid = false;
2841         NumNodeOrderIssues++;
2842         LLVM_DEBUG(dbgs() << "Predecessor ";);
2843       }
2844       LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
2845                         << " are scheduled before node " << SU->NodeNum
2846                         << "\n";);
2847     }
2848   }
2849 
2850   LLVM_DEBUG({
2851     if (!Valid)
2852       dbgs() << "Invalid node order found!\n";
2853   });
2854 }
2855 
2856 /// Attempt to fix the degenerate cases when the instruction serialization
2857 /// causes the register lifetimes to overlap. For example,
2858 ///   p' = store_pi(p, b)
2859 ///      = load p, offset
2860 /// In this case p and p' overlap, which means that two registers are needed.
2861 /// Instead, this function changes the load to use p' and updates the offset.
2862 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
2863   unsigned OverlapReg = 0;
2864   unsigned NewBaseReg = 0;
2865   for (SUnit *SU : Instrs) {
2866     MachineInstr *MI = SU->getInstr();
2867     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
2868       const MachineOperand &MO = MI->getOperand(i);
2869       // Look for an instruction that uses p. The instruction occurs in the
2870       // same cycle but occurs later in the serialized order.
2871       if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
2872         // Check that the instruction appears in the InstrChanges structure,
2873         // which contains instructions that can have the offset updated.
2874         DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2875           InstrChanges.find(SU);
2876         if (It != InstrChanges.end()) {
2877           unsigned BasePos, OffsetPos;
2878           // Update the base register and adjust the offset.
2879           if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
2880             MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2881             NewMI->getOperand(BasePos).setReg(NewBaseReg);
2882             int64_t NewOffset =
2883                 MI->getOperand(OffsetPos).getImm() - It->second.second;
2884             NewMI->getOperand(OffsetPos).setImm(NewOffset);
2885             SU->setInstr(NewMI);
2886             MISUnitMap[NewMI] = SU;
2887             NewMIs[MI] = NewMI;
2888           }
2889         }
2890         OverlapReg = 0;
2891         NewBaseReg = 0;
2892         break;
2893       }
2894       // Look for an instruction of the form p' = op(p), which uses and defines
2895       // two virtual registers that get allocated to the same physical register.
2896       unsigned TiedUseIdx = 0;
2897       if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
2898         // OverlapReg is p in the example above.
2899         OverlapReg = MI->getOperand(TiedUseIdx).getReg();
2900         // NewBaseReg is p' in the example above.
2901         NewBaseReg = MI->getOperand(i).getReg();
2902         break;
2903       }
2904     }
2905   }
2906 }
2907 
2908 /// After the schedule has been formed, call this function to combine
2909 /// the instructions from the different stages/cycles.  That is, this
2910 /// function creates a schedule that represents a single iteration.
2911 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
2912   // Move all instructions to the first stage from later stages.
2913   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2914     for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
2915          ++stage) {
2916       std::deque<SUnit *> &cycleInstrs =
2917           ScheduledInstrs[cycle + (stage * InitiationInterval)];
2918       for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
2919                                                  E = cycleInstrs.rend();
2920            I != E; ++I)
2921         ScheduledInstrs[cycle].push_front(*I);
2922     }
2923   }
2924 
2925   // Erase all the elements in the later stages. Only one iteration should
2926   // remain in the scheduled list, and it contains all the instructions.
2927   for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
2928     ScheduledInstrs.erase(cycle);
2929 
2930   // Change the registers in instruction as specified in the InstrChanges
2931   // map. We need to use the new registers to create the correct order.
2932   for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
2933     SUnit *SU = &SSD->SUnits[i];
2934     SSD->applyInstrChange(SU->getInstr(), *this);
2935   }
2936 
2937   // Reorder the instructions in each cycle to fix and improve the
2938   // generated code.
2939   for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
2940     std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
2941     std::deque<SUnit *> newOrderPhi;
2942     for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
2943       SUnit *SU = cycleInstrs[i];
2944       if (SU->getInstr()->isPHI())
2945         newOrderPhi.push_back(SU);
2946     }
2947     std::deque<SUnit *> newOrderI;
2948     for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
2949       SUnit *SU = cycleInstrs[i];
2950       if (!SU->getInstr()->isPHI())
2951         orderDependence(SSD, SU, newOrderI);
2952     }
2953     // Replace the old order with the new order.
2954     cycleInstrs.swap(newOrderPhi);
2955     llvm::append_range(cycleInstrs, newOrderI);
2956     SSD->fixupRegisterOverlaps(cycleInstrs);
2957   }
2958 
2959   LLVM_DEBUG(dump(););
2960 }
2961 
2962 void NodeSet::print(raw_ostream &os) const {
2963   os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
2964      << " depth " << MaxDepth << " col " << Colocate << "\n";
2965   for (const auto &I : Nodes)
2966     os << "   SU(" << I->NodeNum << ") " << *(I->getInstr());
2967   os << "\n";
2968 }
2969 
2970 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2971 /// Print the schedule information to the given output.
2972 void SMSchedule::print(raw_ostream &os) const {
2973   // Iterate over each cycle.
2974   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2975     // Iterate over each instruction in the cycle.
2976     const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
2977     for (SUnit *CI : cycleInstrs->second) {
2978       os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
2979       os << "(" << CI->NodeNum << ") ";
2980       CI->getInstr()->print(os);
2981       os << "\n";
2982     }
2983   }
2984 }
2985 
2986 /// Utility function used for debugging to print the schedule.
2987 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
2988 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
2989 
2990 #endif
2991 
2992 void ResourceManager::initProcResourceVectors(
2993     const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
2994   unsigned ProcResourceID = 0;
2995 
2996   // We currently limit the resource kinds to 64 and below so that we can use
2997   // uint64_t for Masks
2998   assert(SM.getNumProcResourceKinds() < 64 &&
2999          "Too many kinds of resources, unsupported");
3000   // Create a unique bitmask for every processor resource unit.
3001   // Skip resource at index 0, since it always references 'InvalidUnit'.
3002   Masks.resize(SM.getNumProcResourceKinds());
3003   for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3004     const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3005     if (Desc.SubUnitsIdxBegin)
3006       continue;
3007     Masks[I] = 1ULL << ProcResourceID;
3008     ProcResourceID++;
3009   }
3010   // Create a unique bitmask for every processor resource group.
3011   for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3012     const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3013     if (!Desc.SubUnitsIdxBegin)
3014       continue;
3015     Masks[I] = 1ULL << ProcResourceID;
3016     for (unsigned U = 0; U < Desc.NumUnits; ++U)
3017       Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
3018     ProcResourceID++;
3019   }
3020   LLVM_DEBUG({
3021     if (SwpShowResMask) {
3022       dbgs() << "ProcResourceDesc:\n";
3023       for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3024         const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
3025         dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
3026                          ProcResource->Name, I, Masks[I],
3027                          ProcResource->NumUnits);
3028       }
3029       dbgs() << " -----------------\n";
3030     }
3031   });
3032 }
3033 
3034 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const {
3035 
3036   LLVM_DEBUG({
3037     if (SwpDebugResource)
3038       dbgs() << "canReserveResources:\n";
3039   });
3040   if (UseDFA)
3041     return DFAResources->canReserveResources(MID);
3042 
3043   unsigned InsnClass = MID->getSchedClass();
3044   const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
3045   if (!SCDesc->isValid()) {
3046     LLVM_DEBUG({
3047       dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3048       dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
3049     });
3050     return true;
3051   }
3052 
3053   const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc);
3054   const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc);
3055   for (; I != E; ++I) {
3056     if (!I->Cycles)
3057       continue;
3058     const MCProcResourceDesc *ProcResource =
3059         SM.getProcResource(I->ProcResourceIdx);
3060     unsigned NumUnits = ProcResource->NumUnits;
3061     LLVM_DEBUG({
3062       if (SwpDebugResource)
3063         dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
3064                          ProcResource->Name, I->ProcResourceIdx,
3065                          ProcResourceCount[I->ProcResourceIdx], NumUnits,
3066                          I->Cycles);
3067     });
3068     if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits)
3069       return false;
3070   }
3071   LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";);
3072   return true;
3073 }
3074 
3075 void ResourceManager::reserveResources(const MCInstrDesc *MID) {
3076   LLVM_DEBUG({
3077     if (SwpDebugResource)
3078       dbgs() << "reserveResources:\n";
3079   });
3080   if (UseDFA)
3081     return DFAResources->reserveResources(MID);
3082 
3083   unsigned InsnClass = MID->getSchedClass();
3084   const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
3085   if (!SCDesc->isValid()) {
3086     LLVM_DEBUG({
3087       dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3088       dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
3089     });
3090     return;
3091   }
3092   for (const MCWriteProcResEntry &PRE :
3093        make_range(STI->getWriteProcResBegin(SCDesc),
3094                   STI->getWriteProcResEnd(SCDesc))) {
3095     if (!PRE.Cycles)
3096       continue;
3097     ++ProcResourceCount[PRE.ProcResourceIdx];
3098     LLVM_DEBUG({
3099       if (SwpDebugResource) {
3100         const MCProcResourceDesc *ProcResource =
3101             SM.getProcResource(PRE.ProcResourceIdx);
3102         dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
3103                          ProcResource->Name, PRE.ProcResourceIdx,
3104                          ProcResourceCount[PRE.ProcResourceIdx],
3105                          ProcResource->NumUnits, PRE.Cycles);
3106       }
3107     });
3108   }
3109   LLVM_DEBUG({
3110     if (SwpDebugResource)
3111       dbgs() << "reserveResources: done!\n\n";
3112   });
3113 }
3114 
3115 bool ResourceManager::canReserveResources(const MachineInstr &MI) const {
3116   return canReserveResources(&MI.getDesc());
3117 }
3118 
3119 void ResourceManager::reserveResources(const MachineInstr &MI) {
3120   return reserveResources(&MI.getDesc());
3121 }
3122 
3123 void ResourceManager::clearResources() {
3124   if (UseDFA)
3125     return DFAResources->clearResources();
3126   std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0);
3127 }
3128