xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachinePipeliner.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
10 //
11 // This SMS implementation is a target-independent back-end pass. When enabled,
12 // the pass runs just prior to the register allocation pass, while the machine
13 // IR is in SSA form. If software pipelining is successful, then the original
14 // loop is replaced by the optimized loop. The optimized loop contains one or
15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16 // the instructions cannot be scheduled in a given MII, we increase the MII by
17 // one and try again.
18 //
19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20 // represent loop carried dependences in the DAG as order edges to the Phi
21 // nodes. We also perform several passes over the DAG to eliminate unnecessary
22 // edges that inhibit the ability to pipeline. The implementation uses the
23 // DFAPacketizer class to compute the minimum initiation interval and the check
24 // where an instruction may be inserted in the pipelined schedule.
25 //
26 // In order for the SMS pass to work, several target specific hooks need to be
27 // implemented to get information about the loop structure and to rewrite
28 // instructions.
29 //
30 //===----------------------------------------------------------------------===//
31 
32 #include "llvm/CodeGen/MachinePipeliner.h"
33 #include "llvm/ADT/ArrayRef.h"
34 #include "llvm/ADT/BitVector.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/MapVector.h"
37 #include "llvm/ADT/PriorityQueue.h"
38 #include "llvm/ADT/SetOperations.h"
39 #include "llvm/ADT/SetVector.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallSet.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/ADT/Statistic.h"
44 #include "llvm/ADT/iterator_range.h"
45 #include "llvm/Analysis/AliasAnalysis.h"
46 #include "llvm/Analysis/CycleAnalysis.h"
47 #include "llvm/Analysis/MemoryLocation.h"
48 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
49 #include "llvm/Analysis/ValueTracking.h"
50 #include "llvm/CodeGen/DFAPacketizer.h"
51 #include "llvm/CodeGen/LiveIntervals.h"
52 #include "llvm/CodeGen/MachineBasicBlock.h"
53 #include "llvm/CodeGen/MachineDominators.h"
54 #include "llvm/CodeGen/MachineFunction.h"
55 #include "llvm/CodeGen/MachineFunctionPass.h"
56 #include "llvm/CodeGen/MachineInstr.h"
57 #include "llvm/CodeGen/MachineInstrBuilder.h"
58 #include "llvm/CodeGen/MachineLoopInfo.h"
59 #include "llvm/CodeGen/MachineMemOperand.h"
60 #include "llvm/CodeGen/MachineOperand.h"
61 #include "llvm/CodeGen/MachineRegisterInfo.h"
62 #include "llvm/CodeGen/ModuloSchedule.h"
63 #include "llvm/CodeGen/RegisterPressure.h"
64 #include "llvm/CodeGen/ScheduleDAG.h"
65 #include "llvm/CodeGen/ScheduleDAGMutation.h"
66 #include "llvm/CodeGen/TargetOpcodes.h"
67 #include "llvm/CodeGen/TargetRegisterInfo.h"
68 #include "llvm/CodeGen/TargetSubtargetInfo.h"
69 #include "llvm/Config/llvm-config.h"
70 #include "llvm/IR/Attributes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/MC/LaneBitmask.h"
73 #include "llvm/MC/MCInstrDesc.h"
74 #include "llvm/MC/MCInstrItineraries.h"
75 #include "llvm/MC/MCRegisterInfo.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/MathExtras.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include <algorithm>
83 #include <cassert>
84 #include <climits>
85 #include <cstdint>
86 #include <deque>
87 #include <functional>
88 #include <iomanip>
89 #include <iterator>
90 #include <map>
91 #include <memory>
92 #include <sstream>
93 #include <tuple>
94 #include <utility>
95 #include <vector>
96 
97 using namespace llvm;
98 
99 #define DEBUG_TYPE "pipeliner"
100 
101 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
102 STATISTIC(NumPipelined, "Number of loops software pipelined");
103 STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
104 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
105 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
106 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
107 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
108 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
109 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
110 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
111 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
112 
113 /// A command line option to turn software pipelining on or off.
114 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
115                                cl::desc("Enable Software Pipelining"));
116 
117 /// A command line option to enable SWP at -Os.
118 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
119                                       cl::desc("Enable SWP at Os."), cl::Hidden,
120                                       cl::init(false));
121 
122 /// A command line argument to limit minimum initial interval for pipelining.
123 static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
124                               cl::desc("Size limit for the MII."),
125                               cl::Hidden, cl::init(27));
126 
127 /// A command line argument to force pipeliner to use specified initial
128 /// interval.
129 static cl::opt<int> SwpForceII("pipeliner-force-ii",
130                                cl::desc("Force pipeliner to use specified II."),
131                                cl::Hidden, cl::init(-1));
132 
133 /// A command line argument to limit the number of stages in the pipeline.
134 static cl::opt<int>
135     SwpMaxStages("pipeliner-max-stages",
136                  cl::desc("Maximum stages allowed in the generated scheduled."),
137                  cl::Hidden, cl::init(3));
138 
139 /// A command line option to disable the pruning of chain dependences due to
140 /// an unrelated Phi.
141 static cl::opt<bool>
142     SwpPruneDeps("pipeliner-prune-deps",
143                  cl::desc("Prune dependences between unrelated Phi nodes."),
144                  cl::Hidden, cl::init(true));
145 
146 /// A command line option to disable the pruning of loop carried order
147 /// dependences.
148 static cl::opt<bool>
149     SwpPruneLoopCarried("pipeliner-prune-loop-carried",
150                         cl::desc("Prune loop carried order dependences."),
151                         cl::Hidden, cl::init(true));
152 
153 #ifndef NDEBUG
154 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
155 #endif
156 
157 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
158                                      cl::ReallyHidden,
159                                      cl::desc("Ignore RecMII"));
160 
161 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
162                                     cl::init(false));
163 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
164                                       cl::init(false));
165 
166 static cl::opt<bool> EmitTestAnnotations(
167     "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false),
168     cl::desc("Instead of emitting the pipelined code, annotate instructions "
169              "with the generated schedule for feeding into the "
170              "-modulo-schedule-test pass"));
171 
172 static cl::opt<bool> ExperimentalCodeGen(
173     "pipeliner-experimental-cg", cl::Hidden, cl::init(false),
174     cl::desc(
175         "Use the experimental peeling code generator for software pipelining"));
176 
177 namespace llvm {
178 
179 // A command line option to enable the CopyToPhi DAG mutation.
180 cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
181                                  cl::init(true),
182                                  cl::desc("Enable CopyToPhi DAG Mutation"));
183 
184 /// A command line argument to force pipeliner to use specified issue
185 /// width.
186 cl::opt<int> SwpForceIssueWidth(
187     "pipeliner-force-issue-width",
188     cl::desc("Force pipeliner to use specified issue width."), cl::Hidden,
189     cl::init(-1));
190 
191 } // end namespace llvm
192 
193 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
194 char MachinePipeliner::ID = 0;
195 #ifndef NDEBUG
196 int MachinePipeliner::NumTries = 0;
197 #endif
198 char &llvm::MachinePipelinerID = MachinePipeliner::ID;
199 
200 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
201                       "Modulo Software Pipelining", false, false)
202 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
203 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
204 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
205 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
206 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
207                     "Modulo Software Pipelining", false, false)
208 
209 /// The "main" function for implementing Swing Modulo Scheduling.
210 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
211   if (skipFunction(mf.getFunction()))
212     return false;
213 
214   if (!EnableSWP)
215     return false;
216 
217   if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) &&
218       !EnableSWPOptSize.getPosition())
219     return false;
220 
221   if (!mf.getSubtarget().enableMachinePipeliner())
222     return false;
223 
224   // Cannot pipeline loops without instruction itineraries if we are using
225   // DFA for the pipeliner.
226   if (mf.getSubtarget().useDFAforSMS() &&
227       (!mf.getSubtarget().getInstrItineraryData() ||
228        mf.getSubtarget().getInstrItineraryData()->isEmpty()))
229     return false;
230 
231   MF = &mf;
232   MLI = &getAnalysis<MachineLoopInfo>();
233   MDT = &getAnalysis<MachineDominatorTree>();
234   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
235   TII = MF->getSubtarget().getInstrInfo();
236   RegClassInfo.runOnMachineFunction(*MF);
237 
238   for (const auto &L : *MLI)
239     scheduleLoop(*L);
240 
241   return false;
242 }
243 
244 /// Attempt to perform the SMS algorithm on the specified loop. This function is
245 /// the main entry point for the algorithm.  The function identifies candidate
246 /// loops, calculates the minimum initiation interval, and attempts to schedule
247 /// the loop.
248 bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
249   bool Changed = false;
250   for (const auto &InnerLoop : L)
251     Changed |= scheduleLoop(*InnerLoop);
252 
253 #ifndef NDEBUG
254   // Stop trying after reaching the limit (if any).
255   int Limit = SwpLoopLimit;
256   if (Limit >= 0) {
257     if (NumTries >= SwpLoopLimit)
258       return Changed;
259     NumTries++;
260   }
261 #endif
262 
263   setPragmaPipelineOptions(L);
264   if (!canPipelineLoop(L)) {
265     LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
266     ORE->emit([&]() {
267       return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop",
268                                              L.getStartLoc(), L.getHeader())
269              << "Failed to pipeline loop";
270     });
271 
272     LI.LoopPipelinerInfo.reset();
273     return Changed;
274   }
275 
276   ++NumTrytoPipeline;
277 
278   Changed = swingModuloScheduler(L);
279 
280   LI.LoopPipelinerInfo.reset();
281   return Changed;
282 }
283 
284 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
285   // Reset the pragma for the next loop in iteration.
286   disabledByPragma = false;
287   II_setByPragma = 0;
288 
289   MachineBasicBlock *LBLK = L.getTopBlock();
290 
291   if (LBLK == nullptr)
292     return;
293 
294   const BasicBlock *BBLK = LBLK->getBasicBlock();
295   if (BBLK == nullptr)
296     return;
297 
298   const Instruction *TI = BBLK->getTerminator();
299   if (TI == nullptr)
300     return;
301 
302   MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
303   if (LoopID == nullptr)
304     return;
305 
306   assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
307   assert(LoopID->getOperand(0) == LoopID && "invalid loop");
308 
309   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
310     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
311 
312     if (MD == nullptr)
313       continue;
314 
315     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
316 
317     if (S == nullptr)
318       continue;
319 
320     if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
321       assert(MD->getNumOperands() == 2 &&
322              "Pipeline initiation interval hint metadata should have two operands.");
323       II_setByPragma =
324           mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
325       assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
326     } else if (S->getString() == "llvm.loop.pipeline.disable") {
327       disabledByPragma = true;
328     }
329   }
330 }
331 
332 /// Return true if the loop can be software pipelined.  The algorithm is
333 /// restricted to loops with a single basic block.  Make sure that the
334 /// branch in the loop can be analyzed.
335 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
336   if (L.getNumBlocks() != 1) {
337     ORE->emit([&]() {
338       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
339                                                L.getStartLoc(), L.getHeader())
340              << "Not a single basic block: "
341              << ore::NV("NumBlocks", L.getNumBlocks());
342     });
343     return false;
344   }
345 
346   if (disabledByPragma) {
347     ORE->emit([&]() {
348       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
349                                                L.getStartLoc(), L.getHeader())
350              << "Disabled by Pragma.";
351     });
352     return false;
353   }
354 
355   // Check if the branch can't be understood because we can't do pipelining
356   // if that's the case.
357   LI.TBB = nullptr;
358   LI.FBB = nullptr;
359   LI.BrCond.clear();
360   if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
361     LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n");
362     NumFailBranch++;
363     ORE->emit([&]() {
364       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
365                                                L.getStartLoc(), L.getHeader())
366              << "The branch can't be understood";
367     });
368     return false;
369   }
370 
371   LI.LoopInductionVar = nullptr;
372   LI.LoopCompare = nullptr;
373   LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock());
374   if (!LI.LoopPipelinerInfo) {
375     LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n");
376     NumFailLoop++;
377     ORE->emit([&]() {
378       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
379                                                L.getStartLoc(), L.getHeader())
380              << "The loop structure is not supported";
381     });
382     return false;
383   }
384 
385   if (!L.getLoopPreheader()) {
386     LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n");
387     NumFailPreheader++;
388     ORE->emit([&]() {
389       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
390                                                L.getStartLoc(), L.getHeader())
391              << "No loop preheader found";
392     });
393     return false;
394   }
395 
396   // Remove any subregisters from inputs to phi nodes.
397   preprocessPhiNodes(*L.getHeader());
398   return true;
399 }
400 
401 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
402   MachineRegisterInfo &MRI = MF->getRegInfo();
403   SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
404 
405   for (MachineInstr &PI : B.phis()) {
406     MachineOperand &DefOp = PI.getOperand(0);
407     assert(DefOp.getSubReg() == 0);
408     auto *RC = MRI.getRegClass(DefOp.getReg());
409 
410     for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
411       MachineOperand &RegOp = PI.getOperand(i);
412       if (RegOp.getSubReg() == 0)
413         continue;
414 
415       // If the operand uses a subregister, replace it with a new register
416       // without subregisters, and generate a copy to the new register.
417       Register NewReg = MRI.createVirtualRegister(RC);
418       MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
419       MachineBasicBlock::iterator At = PredB.getFirstTerminator();
420       const DebugLoc &DL = PredB.findDebugLoc(At);
421       auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
422                     .addReg(RegOp.getReg(), getRegState(RegOp),
423                             RegOp.getSubReg());
424       Slots.insertMachineInstrInMaps(*Copy);
425       RegOp.setReg(NewReg);
426       RegOp.setSubReg(0);
427     }
428   }
429 }
430 
431 /// The SMS algorithm consists of the following main steps:
432 /// 1. Computation and analysis of the dependence graph.
433 /// 2. Ordering of the nodes (instructions).
434 /// 3. Attempt to Schedule the loop.
435 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
436   assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
437 
438   SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
439                         II_setByPragma, LI.LoopPipelinerInfo.get());
440 
441   MachineBasicBlock *MBB = L.getHeader();
442   // The kernel should not include any terminator instructions.  These
443   // will be added back later.
444   SMS.startBlock(MBB);
445 
446   // Compute the number of 'real' instructions in the basic block by
447   // ignoring terminators.
448   unsigned size = MBB->size();
449   for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
450                                    E = MBB->instr_end();
451        I != E; ++I, --size)
452     ;
453 
454   SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
455   SMS.schedule();
456   SMS.exitRegion();
457 
458   SMS.finishBlock();
459   return SMS.hasNewSchedule();
460 }
461 
462 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const {
463   AU.addRequired<AAResultsWrapperPass>();
464   AU.addPreserved<AAResultsWrapperPass>();
465   AU.addRequired<MachineLoopInfo>();
466   AU.addRequired<MachineDominatorTree>();
467   AU.addRequired<LiveIntervals>();
468   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
469   MachineFunctionPass::getAnalysisUsage(AU);
470 }
471 
472 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
473   if (SwpForceII > 0)
474     MII = SwpForceII;
475   else if (II_setByPragma > 0)
476     MII = II_setByPragma;
477   else
478     MII = std::max(ResMII, RecMII);
479 }
480 
481 void SwingSchedulerDAG::setMAX_II() {
482   if (SwpForceII > 0)
483     MAX_II = SwpForceII;
484   else if (II_setByPragma > 0)
485     MAX_II = II_setByPragma;
486   else
487     MAX_II = MII + 10;
488 }
489 
490 /// We override the schedule function in ScheduleDAGInstrs to implement the
491 /// scheduling part of the Swing Modulo Scheduling algorithm.
492 void SwingSchedulerDAG::schedule() {
493   AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
494   buildSchedGraph(AA);
495   addLoopCarriedDependences(AA);
496   updatePhiDependences();
497   Topo.InitDAGTopologicalSorting();
498   changeDependences();
499   postprocessDAG();
500   LLVM_DEBUG(dump());
501 
502   NodeSetType NodeSets;
503   findCircuits(NodeSets);
504   NodeSetType Circuits = NodeSets;
505 
506   // Calculate the MII.
507   unsigned ResMII = calculateResMII();
508   unsigned RecMII = calculateRecMII(NodeSets);
509 
510   fuseRecs(NodeSets);
511 
512   // This flag is used for testing and can cause correctness problems.
513   if (SwpIgnoreRecMII)
514     RecMII = 0;
515 
516   setMII(ResMII, RecMII);
517   setMAX_II();
518 
519   LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
520                     << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
521 
522   // Can't schedule a loop without a valid MII.
523   if (MII == 0) {
524     LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n");
525     NumFailZeroMII++;
526     Pass.ORE->emit([&]() {
527       return MachineOptimizationRemarkAnalysis(
528                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
529              << "Invalid Minimal Initiation Interval: 0";
530     });
531     return;
532   }
533 
534   // Don't pipeline large loops.
535   if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
536     LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
537                       << ", we don't pipeline large loops\n");
538     NumFailLargeMaxMII++;
539     Pass.ORE->emit([&]() {
540       return MachineOptimizationRemarkAnalysis(
541                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
542              << "Minimal Initiation Interval too large: "
543              << ore::NV("MII", (int)MII) << " > "
544              << ore::NV("SwpMaxMii", SwpMaxMii) << "."
545              << "Refer to -pipeliner-max-mii.";
546     });
547     return;
548   }
549 
550   computeNodeFunctions(NodeSets);
551 
552   registerPressureFilter(NodeSets);
553 
554   colocateNodeSets(NodeSets);
555 
556   checkNodeSets(NodeSets);
557 
558   LLVM_DEBUG({
559     for (auto &I : NodeSets) {
560       dbgs() << "  Rec NodeSet ";
561       I.dump();
562     }
563   });
564 
565   llvm::stable_sort(NodeSets, std::greater<NodeSet>());
566 
567   groupRemainingNodes(NodeSets);
568 
569   removeDuplicateNodes(NodeSets);
570 
571   LLVM_DEBUG({
572     for (auto &I : NodeSets) {
573       dbgs() << "  NodeSet ";
574       I.dump();
575     }
576   });
577 
578   computeNodeOrder(NodeSets);
579 
580   // check for node order issues
581   checkValidNodeOrder(Circuits);
582 
583   SMSchedule Schedule(Pass.MF, this);
584   Scheduled = schedulePipeline(Schedule);
585 
586   if (!Scheduled){
587     LLVM_DEBUG(dbgs() << "No schedule found, return\n");
588     NumFailNoSchedule++;
589     Pass.ORE->emit([&]() {
590       return MachineOptimizationRemarkAnalysis(
591                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
592              << "Unable to find schedule";
593     });
594     return;
595   }
596 
597   unsigned numStages = Schedule.getMaxStageCount();
598   // No need to generate pipeline if there are no overlapped iterations.
599   if (numStages == 0) {
600     LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n");
601     NumFailZeroStage++;
602     Pass.ORE->emit([&]() {
603       return MachineOptimizationRemarkAnalysis(
604                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
605              << "No need to pipeline - no overlapped iterations in schedule.";
606     });
607     return;
608   }
609   // Check that the maximum stage count is less than user-defined limit.
610   if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
611     LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
612                       << " : too many stages, abort\n");
613     NumFailLargeMaxStage++;
614     Pass.ORE->emit([&]() {
615       return MachineOptimizationRemarkAnalysis(
616                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
617              << "Too many stages in schedule: "
618              << ore::NV("numStages", (int)numStages) << " > "
619              << ore::NV("SwpMaxStages", SwpMaxStages)
620              << ". Refer to -pipeliner-max-stages.";
621     });
622     return;
623   }
624 
625   Pass.ORE->emit([&]() {
626     return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(),
627                                      Loop.getHeader())
628            << "Pipelined succesfully!";
629   });
630 
631   // Generate the schedule as a ModuloSchedule.
632   DenseMap<MachineInstr *, int> Cycles, Stages;
633   std::vector<MachineInstr *> OrderedInsts;
634   for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
635        ++Cycle) {
636     for (SUnit *SU : Schedule.getInstructions(Cycle)) {
637       OrderedInsts.push_back(SU->getInstr());
638       Cycles[SU->getInstr()] = Cycle;
639       Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
640     }
641   }
642   DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
643   for (auto &KV : NewMIs) {
644     Cycles[KV.first] = Cycles[KV.second];
645     Stages[KV.first] = Stages[KV.second];
646     NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
647   }
648 
649   ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
650                     std::move(Stages));
651   if (EmitTestAnnotations) {
652     assert(NewInstrChanges.empty() &&
653            "Cannot serialize a schedule with InstrChanges!");
654     ModuloScheduleTestAnnotater MSTI(MF, MS);
655     MSTI.annotate();
656     return;
657   }
658   // The experimental code generator can't work if there are InstChanges.
659   if (ExperimentalCodeGen && NewInstrChanges.empty()) {
660     PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
661     MSE.expand();
662   } else {
663     ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
664     MSE.expand();
665     MSE.cleanup();
666   }
667   ++NumPipelined;
668 }
669 
670 /// Clean up after the software pipeliner runs.
671 void SwingSchedulerDAG::finishBlock() {
672   for (auto &KV : NewMIs)
673     MF.deleteMachineInstr(KV.second);
674   NewMIs.clear();
675 
676   // Call the superclass.
677   ScheduleDAGInstrs::finishBlock();
678 }
679 
680 /// Return the register values for  the operands of a Phi instruction.
681 /// This function assume the instruction is a Phi.
682 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
683                        unsigned &InitVal, unsigned &LoopVal) {
684   assert(Phi.isPHI() && "Expecting a Phi.");
685 
686   InitVal = 0;
687   LoopVal = 0;
688   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
689     if (Phi.getOperand(i + 1).getMBB() != Loop)
690       InitVal = Phi.getOperand(i).getReg();
691     else
692       LoopVal = Phi.getOperand(i).getReg();
693 
694   assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
695 }
696 
697 /// Return the Phi register value that comes the loop block.
698 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
699   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
700     if (Phi.getOperand(i + 1).getMBB() == LoopBB)
701       return Phi.getOperand(i).getReg();
702   return 0;
703 }
704 
705 /// Return true if SUb can be reached from SUa following the chain edges.
706 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
707   SmallPtrSet<SUnit *, 8> Visited;
708   SmallVector<SUnit *, 8> Worklist;
709   Worklist.push_back(SUa);
710   while (!Worklist.empty()) {
711     const SUnit *SU = Worklist.pop_back_val();
712     for (const auto &SI : SU->Succs) {
713       SUnit *SuccSU = SI.getSUnit();
714       if (SI.getKind() == SDep::Order) {
715         if (Visited.count(SuccSU))
716           continue;
717         if (SuccSU == SUb)
718           return true;
719         Worklist.push_back(SuccSU);
720         Visited.insert(SuccSU);
721       }
722     }
723   }
724   return false;
725 }
726 
727 /// Return true if the instruction causes a chain between memory
728 /// references before and after it.
729 static bool isDependenceBarrier(MachineInstr &MI) {
730   return MI.isCall() || MI.mayRaiseFPException() ||
731          MI.hasUnmodeledSideEffects() ||
732          (MI.hasOrderedMemoryRef() &&
733           (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad()));
734 }
735 
736 /// Return the underlying objects for the memory references of an instruction.
737 /// This function calls the code in ValueTracking, but first checks that the
738 /// instruction has a memory operand.
739 static void getUnderlyingObjects(const MachineInstr *MI,
740                                  SmallVectorImpl<const Value *> &Objs) {
741   if (!MI->hasOneMemOperand())
742     return;
743   MachineMemOperand *MM = *MI->memoperands_begin();
744   if (!MM->getValue())
745     return;
746   getUnderlyingObjects(MM->getValue(), Objs);
747   for (const Value *V : Objs) {
748     if (!isIdentifiedObject(V)) {
749       Objs.clear();
750       return;
751     }
752     Objs.push_back(V);
753   }
754 }
755 
756 /// Add a chain edge between a load and store if the store can be an
757 /// alias of the load on a subsequent iteration, i.e., a loop carried
758 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
759 /// but that code doesn't create loop carried dependences.
760 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
761   MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
762   Value *UnknownValue =
763     UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
764   for (auto &SU : SUnits) {
765     MachineInstr &MI = *SU.getInstr();
766     if (isDependenceBarrier(MI))
767       PendingLoads.clear();
768     else if (MI.mayLoad()) {
769       SmallVector<const Value *, 4> Objs;
770       ::getUnderlyingObjects(&MI, Objs);
771       if (Objs.empty())
772         Objs.push_back(UnknownValue);
773       for (const auto *V : Objs) {
774         SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
775         SUs.push_back(&SU);
776       }
777     } else if (MI.mayStore()) {
778       SmallVector<const Value *, 4> Objs;
779       ::getUnderlyingObjects(&MI, Objs);
780       if (Objs.empty())
781         Objs.push_back(UnknownValue);
782       for (const auto *V : Objs) {
783         MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
784             PendingLoads.find(V);
785         if (I == PendingLoads.end())
786           continue;
787         for (auto *Load : I->second) {
788           if (isSuccOrder(Load, &SU))
789             continue;
790           MachineInstr &LdMI = *Load->getInstr();
791           // First, perform the cheaper check that compares the base register.
792           // If they are the same and the load offset is less than the store
793           // offset, then mark the dependence as loop carried potentially.
794           const MachineOperand *BaseOp1, *BaseOp2;
795           int64_t Offset1, Offset2;
796           bool Offset1IsScalable, Offset2IsScalable;
797           if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1,
798                                            Offset1IsScalable, TRI) &&
799               TII->getMemOperandWithOffset(MI, BaseOp2, Offset2,
800                                            Offset2IsScalable, TRI)) {
801             if (BaseOp1->isIdenticalTo(*BaseOp2) &&
802                 Offset1IsScalable == Offset2IsScalable &&
803                 (int)Offset1 < (int)Offset2) {
804               assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&
805                      "What happened to the chain edge?");
806               SDep Dep(Load, SDep::Barrier);
807               Dep.setLatency(1);
808               SU.addPred(Dep);
809               continue;
810             }
811           }
812           // Second, the more expensive check that uses alias analysis on the
813           // base registers. If they alias, and the load offset is less than
814           // the store offset, the mark the dependence as loop carried.
815           if (!AA) {
816             SDep Dep(Load, SDep::Barrier);
817             Dep.setLatency(1);
818             SU.addPred(Dep);
819             continue;
820           }
821           MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
822           MachineMemOperand *MMO2 = *MI.memoperands_begin();
823           if (!MMO1->getValue() || !MMO2->getValue()) {
824             SDep Dep(Load, SDep::Barrier);
825             Dep.setLatency(1);
826             SU.addPred(Dep);
827             continue;
828           }
829           if (MMO1->getValue() == MMO2->getValue() &&
830               MMO1->getOffset() <= MMO2->getOffset()) {
831             SDep Dep(Load, SDep::Barrier);
832             Dep.setLatency(1);
833             SU.addPred(Dep);
834             continue;
835           }
836           if (!AA->isNoAlias(
837                   MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
838                   MemoryLocation::getAfter(MMO2->getValue(),
839                                            MMO2->getAAInfo()))) {
840             SDep Dep(Load, SDep::Barrier);
841             Dep.setLatency(1);
842             SU.addPred(Dep);
843           }
844         }
845       }
846     }
847   }
848 }
849 
850 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
851 /// processes dependences for PHIs. This function adds true dependences
852 /// from a PHI to a use, and a loop carried dependence from the use to the
853 /// PHI. The loop carried dependence is represented as an anti dependence
854 /// edge. This function also removes chain dependences between unrelated
855 /// PHIs.
856 void SwingSchedulerDAG::updatePhiDependences() {
857   SmallVector<SDep, 4> RemoveDeps;
858   const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
859 
860   // Iterate over each DAG node.
861   for (SUnit &I : SUnits) {
862     RemoveDeps.clear();
863     // Set to true if the instruction has an operand defined by a Phi.
864     unsigned HasPhiUse = 0;
865     unsigned HasPhiDef = 0;
866     MachineInstr *MI = I.getInstr();
867     // Iterate over each operand, and we process the definitions.
868     for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
869                                     MOE = MI->operands_end();
870          MOI != MOE; ++MOI) {
871       if (!MOI->isReg())
872         continue;
873       Register Reg = MOI->getReg();
874       if (MOI->isDef()) {
875         // If the register is used by a Phi, then create an anti dependence.
876         for (MachineRegisterInfo::use_instr_iterator
877                  UI = MRI.use_instr_begin(Reg),
878                  UE = MRI.use_instr_end();
879              UI != UE; ++UI) {
880           MachineInstr *UseMI = &*UI;
881           SUnit *SU = getSUnit(UseMI);
882           if (SU != nullptr && UseMI->isPHI()) {
883             if (!MI->isPHI()) {
884               SDep Dep(SU, SDep::Anti, Reg);
885               Dep.setLatency(1);
886               I.addPred(Dep);
887             } else {
888               HasPhiDef = Reg;
889               // Add a chain edge to a dependent Phi that isn't an existing
890               // predecessor.
891               if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
892                 I.addPred(SDep(SU, SDep::Barrier));
893             }
894           }
895         }
896       } else if (MOI->isUse()) {
897         // If the register is defined by a Phi, then create a true dependence.
898         MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
899         if (DefMI == nullptr)
900           continue;
901         SUnit *SU = getSUnit(DefMI);
902         if (SU != nullptr && DefMI->isPHI()) {
903           if (!MI->isPHI()) {
904             SDep Dep(SU, SDep::Data, Reg);
905             Dep.setLatency(0);
906             ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep);
907             I.addPred(Dep);
908           } else {
909             HasPhiUse = Reg;
910             // Add a chain edge to a dependent Phi that isn't an existing
911             // predecessor.
912             if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
913               I.addPred(SDep(SU, SDep::Barrier));
914           }
915         }
916       }
917     }
918     // Remove order dependences from an unrelated Phi.
919     if (!SwpPruneDeps)
920       continue;
921     for (auto &PI : I.Preds) {
922       MachineInstr *PMI = PI.getSUnit()->getInstr();
923       if (PMI->isPHI() && PI.getKind() == SDep::Order) {
924         if (I.getInstr()->isPHI()) {
925           if (PMI->getOperand(0).getReg() == HasPhiUse)
926             continue;
927           if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
928             continue;
929         }
930         RemoveDeps.push_back(PI);
931       }
932     }
933     for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
934       I.removePred(RemoveDeps[i]);
935   }
936 }
937 
938 /// Iterate over each DAG node and see if we can change any dependences
939 /// in order to reduce the recurrence MII.
940 void SwingSchedulerDAG::changeDependences() {
941   // See if an instruction can use a value from the previous iteration.
942   // If so, we update the base and offset of the instruction and change
943   // the dependences.
944   for (SUnit &I : SUnits) {
945     unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
946     int64_t NewOffset = 0;
947     if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
948                                NewOffset))
949       continue;
950 
951     // Get the MI and SUnit for the instruction that defines the original base.
952     Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
953     MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
954     if (!DefMI)
955       continue;
956     SUnit *DefSU = getSUnit(DefMI);
957     if (!DefSU)
958       continue;
959     // Get the MI and SUnit for the instruction that defins the new base.
960     MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
961     if (!LastMI)
962       continue;
963     SUnit *LastSU = getSUnit(LastMI);
964     if (!LastSU)
965       continue;
966 
967     if (Topo.IsReachable(&I, LastSU))
968       continue;
969 
970     // Remove the dependence. The value now depends on a prior iteration.
971     SmallVector<SDep, 4> Deps;
972     for (const SDep &P : I.Preds)
973       if (P.getSUnit() == DefSU)
974         Deps.push_back(P);
975     for (int i = 0, e = Deps.size(); i != e; i++) {
976       Topo.RemovePred(&I, Deps[i].getSUnit());
977       I.removePred(Deps[i]);
978     }
979     // Remove the chain dependence between the instructions.
980     Deps.clear();
981     for (auto &P : LastSU->Preds)
982       if (P.getSUnit() == &I && P.getKind() == SDep::Order)
983         Deps.push_back(P);
984     for (int i = 0, e = Deps.size(); i != e; i++) {
985       Topo.RemovePred(LastSU, Deps[i].getSUnit());
986       LastSU->removePred(Deps[i]);
987     }
988 
989     // Add a dependence between the new instruction and the instruction
990     // that defines the new base.
991     SDep Dep(&I, SDep::Anti, NewBase);
992     Topo.AddPred(LastSU, &I);
993     LastSU->addPred(Dep);
994 
995     // Remember the base and offset information so that we can update the
996     // instruction during code generation.
997     InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
998   }
999 }
1000 
1001 namespace {
1002 
1003 // FuncUnitSorter - Comparison operator used to sort instructions by
1004 // the number of functional unit choices.
1005 struct FuncUnitSorter {
1006   const InstrItineraryData *InstrItins;
1007   const MCSubtargetInfo *STI;
1008   DenseMap<InstrStage::FuncUnits, unsigned> Resources;
1009 
1010   FuncUnitSorter(const TargetSubtargetInfo &TSI)
1011       : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
1012 
1013   // Compute the number of functional unit alternatives needed
1014   // at each stage, and take the minimum value. We prioritize the
1015   // instructions by the least number of choices first.
1016   unsigned minFuncUnits(const MachineInstr *Inst,
1017                         InstrStage::FuncUnits &F) const {
1018     unsigned SchedClass = Inst->getDesc().getSchedClass();
1019     unsigned min = UINT_MAX;
1020     if (InstrItins && !InstrItins->isEmpty()) {
1021       for (const InstrStage &IS :
1022            make_range(InstrItins->beginStage(SchedClass),
1023                       InstrItins->endStage(SchedClass))) {
1024         InstrStage::FuncUnits funcUnits = IS.getUnits();
1025         unsigned numAlternatives = llvm::popcount(funcUnits);
1026         if (numAlternatives < min) {
1027           min = numAlternatives;
1028           F = funcUnits;
1029         }
1030       }
1031       return min;
1032     }
1033     if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1034       const MCSchedClassDesc *SCDesc =
1035           STI->getSchedModel().getSchedClassDesc(SchedClass);
1036       if (!SCDesc->isValid())
1037         // No valid Schedule Class Desc for schedClass, should be
1038         // Pseudo/PostRAPseudo
1039         return min;
1040 
1041       for (const MCWriteProcResEntry &PRE :
1042            make_range(STI->getWriteProcResBegin(SCDesc),
1043                       STI->getWriteProcResEnd(SCDesc))) {
1044         if (!PRE.Cycles)
1045           continue;
1046         const MCProcResourceDesc *ProcResource =
1047             STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
1048         unsigned NumUnits = ProcResource->NumUnits;
1049         if (NumUnits < min) {
1050           min = NumUnits;
1051           F = PRE.ProcResourceIdx;
1052         }
1053       }
1054       return min;
1055     }
1056     llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1057   }
1058 
1059   // Compute the critical resources needed by the instruction. This
1060   // function records the functional units needed by instructions that
1061   // must use only one functional unit. We use this as a tie breaker
1062   // for computing the resource MII. The instrutions that require
1063   // the same, highly used, functional unit have high priority.
1064   void calcCriticalResources(MachineInstr &MI) {
1065     unsigned SchedClass = MI.getDesc().getSchedClass();
1066     if (InstrItins && !InstrItins->isEmpty()) {
1067       for (const InstrStage &IS :
1068            make_range(InstrItins->beginStage(SchedClass),
1069                       InstrItins->endStage(SchedClass))) {
1070         InstrStage::FuncUnits FuncUnits = IS.getUnits();
1071         if (llvm::popcount(FuncUnits) == 1)
1072           Resources[FuncUnits]++;
1073       }
1074       return;
1075     }
1076     if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1077       const MCSchedClassDesc *SCDesc =
1078           STI->getSchedModel().getSchedClassDesc(SchedClass);
1079       if (!SCDesc->isValid())
1080         // No valid Schedule Class Desc for schedClass, should be
1081         // Pseudo/PostRAPseudo
1082         return;
1083 
1084       for (const MCWriteProcResEntry &PRE :
1085            make_range(STI->getWriteProcResBegin(SCDesc),
1086                       STI->getWriteProcResEnd(SCDesc))) {
1087         if (!PRE.Cycles)
1088           continue;
1089         Resources[PRE.ProcResourceIdx]++;
1090       }
1091       return;
1092     }
1093     llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1094   }
1095 
1096   /// Return true if IS1 has less priority than IS2.
1097   bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1098     InstrStage::FuncUnits F1 = 0, F2 = 0;
1099     unsigned MFUs1 = minFuncUnits(IS1, F1);
1100     unsigned MFUs2 = minFuncUnits(IS2, F2);
1101     if (MFUs1 == MFUs2)
1102       return Resources.lookup(F1) < Resources.lookup(F2);
1103     return MFUs1 > MFUs2;
1104   }
1105 };
1106 
1107 } // end anonymous namespace
1108 
1109 /// Calculate the resource constrained minimum initiation interval for the
1110 /// specified loop. We use the DFA to model the resources needed for
1111 /// each instruction, and we ignore dependences. A different DFA is created
1112 /// for each cycle that is required. When adding a new instruction, we attempt
1113 /// to add it to each existing DFA, until a legal space is found. If the
1114 /// instruction cannot be reserved in an existing DFA, we create a new one.
1115 unsigned SwingSchedulerDAG::calculateResMII() {
1116   LLVM_DEBUG(dbgs() << "calculateResMII:\n");
1117   ResourceManager RM(&MF.getSubtarget(), this);
1118   return RM.calculateResMII();
1119 }
1120 
1121 /// Calculate the recurrence-constrainted minimum initiation interval.
1122 /// Iterate over each circuit.  Compute the delay(c) and distance(c)
1123 /// for each circuit. The II needs to satisfy the inequality
1124 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1125 /// II that satisfies the inequality, and the RecMII is the maximum
1126 /// of those values.
1127 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1128   unsigned RecMII = 0;
1129 
1130   for (NodeSet &Nodes : NodeSets) {
1131     if (Nodes.empty())
1132       continue;
1133 
1134     unsigned Delay = Nodes.getLatency();
1135     unsigned Distance = 1;
1136 
1137     // ii = ceil(delay / distance)
1138     unsigned CurMII = (Delay + Distance - 1) / Distance;
1139     Nodes.setRecMII(CurMII);
1140     if (CurMII > RecMII)
1141       RecMII = CurMII;
1142   }
1143 
1144   return RecMII;
1145 }
1146 
1147 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1148 /// but we do this to find the circuits, and then change them back.
1149 static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1150   SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1151   for (SUnit &SU : SUnits) {
1152     for (SDep &Pred : SU.Preds)
1153       if (Pred.getKind() == SDep::Anti)
1154         DepsAdded.push_back(std::make_pair(&SU, Pred));
1155   }
1156   for (std::pair<SUnit *, SDep> &P : DepsAdded) {
1157     // Remove this anti dependency and add one in the reverse direction.
1158     SUnit *SU = P.first;
1159     SDep &D = P.second;
1160     SUnit *TargetSU = D.getSUnit();
1161     unsigned Reg = D.getReg();
1162     unsigned Lat = D.getLatency();
1163     SU->removePred(D);
1164     SDep Dep(SU, SDep::Anti, Reg);
1165     Dep.setLatency(Lat);
1166     TargetSU->addPred(Dep);
1167   }
1168 }
1169 
1170 /// Create the adjacency structure of the nodes in the graph.
1171 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1172     SwingSchedulerDAG *DAG) {
1173   BitVector Added(SUnits.size());
1174   DenseMap<int, int> OutputDeps;
1175   for (int i = 0, e = SUnits.size(); i != e; ++i) {
1176     Added.reset();
1177     // Add any successor to the adjacency matrix and exclude duplicates.
1178     for (auto &SI : SUnits[i].Succs) {
1179       // Only create a back-edge on the first and last nodes of a dependence
1180       // chain. This records any chains and adds them later.
1181       if (SI.getKind() == SDep::Output) {
1182         int N = SI.getSUnit()->NodeNum;
1183         int BackEdge = i;
1184         auto Dep = OutputDeps.find(BackEdge);
1185         if (Dep != OutputDeps.end()) {
1186           BackEdge = Dep->second;
1187           OutputDeps.erase(Dep);
1188         }
1189         OutputDeps[N] = BackEdge;
1190       }
1191       // Do not process a boundary node, an artificial node.
1192       // A back-edge is processed only if it goes to a Phi.
1193       if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
1194           (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1195         continue;
1196       int N = SI.getSUnit()->NodeNum;
1197       if (!Added.test(N)) {
1198         AdjK[i].push_back(N);
1199         Added.set(N);
1200       }
1201     }
1202     // A chain edge between a store and a load is treated as a back-edge in the
1203     // adjacency matrix.
1204     for (auto &PI : SUnits[i].Preds) {
1205       if (!SUnits[i].getInstr()->mayStore() ||
1206           !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
1207         continue;
1208       if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1209         int N = PI.getSUnit()->NodeNum;
1210         if (!Added.test(N)) {
1211           AdjK[i].push_back(N);
1212           Added.set(N);
1213         }
1214       }
1215     }
1216   }
1217   // Add back-edges in the adjacency matrix for the output dependences.
1218   for (auto &OD : OutputDeps)
1219     if (!Added.test(OD.second)) {
1220       AdjK[OD.first].push_back(OD.second);
1221       Added.set(OD.second);
1222     }
1223 }
1224 
1225 /// Identify an elementary circuit in the dependence graph starting at the
1226 /// specified node.
1227 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1228                                           bool HasBackedge) {
1229   SUnit *SV = &SUnits[V];
1230   bool F = false;
1231   Stack.insert(SV);
1232   Blocked.set(V);
1233 
1234   for (auto W : AdjK[V]) {
1235     if (NumPaths > MaxPaths)
1236       break;
1237     if (W < S)
1238       continue;
1239     if (W == S) {
1240       if (!HasBackedge)
1241         NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1242       F = true;
1243       ++NumPaths;
1244       break;
1245     } else if (!Blocked.test(W)) {
1246       if (circuit(W, S, NodeSets,
1247                   Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
1248         F = true;
1249     }
1250   }
1251 
1252   if (F)
1253     unblock(V);
1254   else {
1255     for (auto W : AdjK[V]) {
1256       if (W < S)
1257         continue;
1258       B[W].insert(SV);
1259     }
1260   }
1261   Stack.pop_back();
1262   return F;
1263 }
1264 
1265 /// Unblock a node in the circuit finding algorithm.
1266 void SwingSchedulerDAG::Circuits::unblock(int U) {
1267   Blocked.reset(U);
1268   SmallPtrSet<SUnit *, 4> &BU = B[U];
1269   while (!BU.empty()) {
1270     SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1271     assert(SI != BU.end() && "Invalid B set.");
1272     SUnit *W = *SI;
1273     BU.erase(W);
1274     if (Blocked.test(W->NodeNum))
1275       unblock(W->NodeNum);
1276   }
1277 }
1278 
1279 /// Identify all the elementary circuits in the dependence graph using
1280 /// Johnson's circuit algorithm.
1281 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1282   // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1283   // but we do this to find the circuits, and then change them back.
1284   swapAntiDependences(SUnits);
1285 
1286   Circuits Cir(SUnits, Topo);
1287   // Create the adjacency structure.
1288   Cir.createAdjacencyStructure(this);
1289   for (int i = 0, e = SUnits.size(); i != e; ++i) {
1290     Cir.reset();
1291     Cir.circuit(i, i, NodeSets);
1292   }
1293 
1294   // Change the dependences back so that we've created a DAG again.
1295   swapAntiDependences(SUnits);
1296 }
1297 
1298 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1299 // is loop-carried to the USE in next iteration. This will help pipeliner avoid
1300 // additional copies that are needed across iterations. An artificial dependence
1301 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1302 
1303 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1304 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1305 // PHI-------True-Dep------> USEOfPhi
1306 
1307 // The mutation creates
1308 // USEOfPHI -------Artificial-Dep---> SRCOfCopy
1309 
1310 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1311 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1312 // late  to avoid additional copies across iterations. The possible scheduling
1313 // order would be
1314 // USEOfPHI --- SRCOfCopy---  COPY/REG_SEQUENCE.
1315 
1316 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1317   for (SUnit &SU : DAG->SUnits) {
1318     // Find the COPY/REG_SEQUENCE instruction.
1319     if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1320       continue;
1321 
1322     // Record the loop carried PHIs.
1323     SmallVector<SUnit *, 4> PHISUs;
1324     // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1325     SmallVector<SUnit *, 4> SrcSUs;
1326 
1327     for (auto &Dep : SU.Preds) {
1328       SUnit *TmpSU = Dep.getSUnit();
1329       MachineInstr *TmpMI = TmpSU->getInstr();
1330       SDep::Kind DepKind = Dep.getKind();
1331       // Save the loop carried PHI.
1332       if (DepKind == SDep::Anti && TmpMI->isPHI())
1333         PHISUs.push_back(TmpSU);
1334       // Save the source of COPY/REG_SEQUENCE.
1335       // If the source has no pre-decessors, we will end up creating cycles.
1336       else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1337         SrcSUs.push_back(TmpSU);
1338     }
1339 
1340     if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1341       continue;
1342 
1343     // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1344     // SUnit to the container.
1345     SmallVector<SUnit *, 8> UseSUs;
1346     // Do not use iterator based loop here as we are updating the container.
1347     for (size_t Index = 0; Index < PHISUs.size(); ++Index) {
1348       for (auto &Dep : PHISUs[Index]->Succs) {
1349         if (Dep.getKind() != SDep::Data)
1350           continue;
1351 
1352         SUnit *TmpSU = Dep.getSUnit();
1353         MachineInstr *TmpMI = TmpSU->getInstr();
1354         if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1355           PHISUs.push_back(TmpSU);
1356           continue;
1357         }
1358         UseSUs.push_back(TmpSU);
1359       }
1360     }
1361 
1362     if (UseSUs.size() == 0)
1363       continue;
1364 
1365     SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
1366     // Add the artificial dependencies if it does not form a cycle.
1367     for (auto *I : UseSUs) {
1368       for (auto *Src : SrcSUs) {
1369         if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
1370           Src->addPred(SDep(I, SDep::Artificial));
1371           SDAG->Topo.AddPred(Src, I);
1372         }
1373       }
1374     }
1375   }
1376 }
1377 
1378 /// Return true for DAG nodes that we ignore when computing the cost functions.
1379 /// We ignore the back-edge recurrence in order to avoid unbounded recursion
1380 /// in the calculation of the ASAP, ALAP, etc functions.
1381 static bool ignoreDependence(const SDep &D, bool isPred) {
1382   if (D.isArtificial() || D.getSUnit()->isBoundaryNode())
1383     return true;
1384   return D.getKind() == SDep::Anti && isPred;
1385 }
1386 
1387 /// Compute several functions need to order the nodes for scheduling.
1388 ///  ASAP - Earliest time to schedule a node.
1389 ///  ALAP - Latest time to schedule a node.
1390 ///  MOV - Mobility function, difference between ALAP and ASAP.
1391 ///  D - Depth of each node.
1392 ///  H - Height of each node.
1393 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1394   ScheduleInfo.resize(SUnits.size());
1395 
1396   LLVM_DEBUG({
1397     for (int I : Topo) {
1398       const SUnit &SU = SUnits[I];
1399       dumpNode(SU);
1400     }
1401   });
1402 
1403   int maxASAP = 0;
1404   // Compute ASAP and ZeroLatencyDepth.
1405   for (int I : Topo) {
1406     int asap = 0;
1407     int zeroLatencyDepth = 0;
1408     SUnit *SU = &SUnits[I];
1409     for (const SDep &P : SU->Preds) {
1410       SUnit *pred = P.getSUnit();
1411       if (P.getLatency() == 0)
1412         zeroLatencyDepth =
1413             std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
1414       if (ignoreDependence(P, true))
1415         continue;
1416       asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() -
1417                                   getDistance(pred, SU, P) * MII));
1418     }
1419     maxASAP = std::max(maxASAP, asap);
1420     ScheduleInfo[I].ASAP = asap;
1421     ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth;
1422   }
1423 
1424   // Compute ALAP, ZeroLatencyHeight, and MOV.
1425   for (int I : llvm::reverse(Topo)) {
1426     int alap = maxASAP;
1427     int zeroLatencyHeight = 0;
1428     SUnit *SU = &SUnits[I];
1429     for (const SDep &S : SU->Succs) {
1430       SUnit *succ = S.getSUnit();
1431       if (succ->isBoundaryNode())
1432         continue;
1433       if (S.getLatency() == 0)
1434         zeroLatencyHeight =
1435             std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
1436       if (ignoreDependence(S, true))
1437         continue;
1438       alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() +
1439                                   getDistance(SU, succ, S) * MII));
1440     }
1441 
1442     ScheduleInfo[I].ALAP = alap;
1443     ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight;
1444   }
1445 
1446   // After computing the node functions, compute the summary for each node set.
1447   for (NodeSet &I : NodeSets)
1448     I.computeNodeSetInfo(this);
1449 
1450   LLVM_DEBUG({
1451     for (unsigned i = 0; i < SUnits.size(); i++) {
1452       dbgs() << "\tNode " << i << ":\n";
1453       dbgs() << "\t   ASAP = " << getASAP(&SUnits[i]) << "\n";
1454       dbgs() << "\t   ALAP = " << getALAP(&SUnits[i]) << "\n";
1455       dbgs() << "\t   MOV  = " << getMOV(&SUnits[i]) << "\n";
1456       dbgs() << "\t   D    = " << getDepth(&SUnits[i]) << "\n";
1457       dbgs() << "\t   H    = " << getHeight(&SUnits[i]) << "\n";
1458       dbgs() << "\t   ZLD  = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1459       dbgs() << "\t   ZLH  = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
1460     }
1461   });
1462 }
1463 
1464 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1465 /// as the predecessors of the elements of NodeOrder that are not also in
1466 /// NodeOrder.
1467 static bool pred_L(SetVector<SUnit *> &NodeOrder,
1468                    SmallSetVector<SUnit *, 8> &Preds,
1469                    const NodeSet *S = nullptr) {
1470   Preds.clear();
1471   for (const SUnit *SU : NodeOrder) {
1472     for (const SDep &Pred : SU->Preds) {
1473       if (S && S->count(Pred.getSUnit()) == 0)
1474         continue;
1475       if (ignoreDependence(Pred, true))
1476         continue;
1477       if (NodeOrder.count(Pred.getSUnit()) == 0)
1478         Preds.insert(Pred.getSUnit());
1479     }
1480     // Back-edges are predecessors with an anti-dependence.
1481     for (const SDep &Succ : SU->Succs) {
1482       if (Succ.getKind() != SDep::Anti)
1483         continue;
1484       if (S && S->count(Succ.getSUnit()) == 0)
1485         continue;
1486       if (NodeOrder.count(Succ.getSUnit()) == 0)
1487         Preds.insert(Succ.getSUnit());
1488     }
1489   }
1490   return !Preds.empty();
1491 }
1492 
1493 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1494 /// as the successors of the elements of NodeOrder that are not also in
1495 /// NodeOrder.
1496 static bool succ_L(SetVector<SUnit *> &NodeOrder,
1497                    SmallSetVector<SUnit *, 8> &Succs,
1498                    const NodeSet *S = nullptr) {
1499   Succs.clear();
1500   for (const SUnit *SU : NodeOrder) {
1501     for (const SDep &Succ : SU->Succs) {
1502       if (S && S->count(Succ.getSUnit()) == 0)
1503         continue;
1504       if (ignoreDependence(Succ, false))
1505         continue;
1506       if (NodeOrder.count(Succ.getSUnit()) == 0)
1507         Succs.insert(Succ.getSUnit());
1508     }
1509     for (const SDep &Pred : SU->Preds) {
1510       if (Pred.getKind() != SDep::Anti)
1511         continue;
1512       if (S && S->count(Pred.getSUnit()) == 0)
1513         continue;
1514       if (NodeOrder.count(Pred.getSUnit()) == 0)
1515         Succs.insert(Pred.getSUnit());
1516     }
1517   }
1518   return !Succs.empty();
1519 }
1520 
1521 /// Return true if there is a path from the specified node to any of the nodes
1522 /// in DestNodes. Keep track and return the nodes in any path.
1523 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1524                         SetVector<SUnit *> &DestNodes,
1525                         SetVector<SUnit *> &Exclude,
1526                         SmallPtrSet<SUnit *, 8> &Visited) {
1527   if (Cur->isBoundaryNode())
1528     return false;
1529   if (Exclude.contains(Cur))
1530     return false;
1531   if (DestNodes.contains(Cur))
1532     return true;
1533   if (!Visited.insert(Cur).second)
1534     return Path.contains(Cur);
1535   bool FoundPath = false;
1536   for (auto &SI : Cur->Succs)
1537     if (!ignoreDependence(SI, false))
1538       FoundPath |=
1539           computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1540   for (auto &PI : Cur->Preds)
1541     if (PI.getKind() == SDep::Anti)
1542       FoundPath |=
1543           computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1544   if (FoundPath)
1545     Path.insert(Cur);
1546   return FoundPath;
1547 }
1548 
1549 /// Compute the live-out registers for the instructions in a node-set.
1550 /// The live-out registers are those that are defined in the node-set,
1551 /// but not used. Except for use operands of Phis.
1552 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1553                             NodeSet &NS) {
1554   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1555   MachineRegisterInfo &MRI = MF.getRegInfo();
1556   SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1557   SmallSet<unsigned, 4> Uses;
1558   for (SUnit *SU : NS) {
1559     const MachineInstr *MI = SU->getInstr();
1560     if (MI->isPHI())
1561       continue;
1562     for (const MachineOperand &MO : MI->operands())
1563       if (MO.isReg() && MO.isUse()) {
1564         Register Reg = MO.getReg();
1565         if (Reg.isVirtual())
1566           Uses.insert(Reg);
1567         else if (MRI.isAllocatable(Reg))
1568           for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1569                ++Units)
1570             Uses.insert(*Units);
1571       }
1572   }
1573   for (SUnit *SU : NS)
1574     for (const MachineOperand &MO : SU->getInstr()->operands())
1575       if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1576         Register Reg = MO.getReg();
1577         if (Reg.isVirtual()) {
1578           if (!Uses.count(Reg))
1579             LiveOutRegs.push_back(RegisterMaskPair(Reg,
1580                                                    LaneBitmask::getNone()));
1581         } else if (MRI.isAllocatable(Reg)) {
1582           for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1583                ++Units)
1584             if (!Uses.count(*Units))
1585               LiveOutRegs.push_back(RegisterMaskPair(*Units,
1586                                                      LaneBitmask::getNone()));
1587         }
1588       }
1589   RPTracker.addLiveRegs(LiveOutRegs);
1590 }
1591 
1592 /// A heuristic to filter nodes in recurrent node-sets if the register
1593 /// pressure of a set is too high.
1594 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1595   for (auto &NS : NodeSets) {
1596     // Skip small node-sets since they won't cause register pressure problems.
1597     if (NS.size() <= 2)
1598       continue;
1599     IntervalPressure RecRegPressure;
1600     RegPressureTracker RecRPTracker(RecRegPressure);
1601     RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1602     computeLiveOuts(MF, RecRPTracker, NS);
1603     RecRPTracker.closeBottom();
1604 
1605     std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1606     llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
1607       return A->NodeNum > B->NodeNum;
1608     });
1609 
1610     for (auto &SU : SUnits) {
1611       // Since we're computing the register pressure for a subset of the
1612       // instructions in a block, we need to set the tracker for each
1613       // instruction in the node-set. The tracker is set to the instruction
1614       // just after the one we're interested in.
1615       MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1616       RecRPTracker.setPos(std::next(CurInstI));
1617 
1618       RegPressureDelta RPDelta;
1619       ArrayRef<PressureChange> CriticalPSets;
1620       RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1621                                              CriticalPSets,
1622                                              RecRegPressure.MaxSetPressure);
1623       if (RPDelta.Excess.isValid()) {
1624         LLVM_DEBUG(
1625             dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1626                    << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1627                    << ":" << RPDelta.Excess.getUnitInc() << "\n");
1628         NS.setExceedPressure(SU);
1629         break;
1630       }
1631       RecRPTracker.recede();
1632     }
1633   }
1634 }
1635 
1636 /// A heuristic to colocate node sets that have the same set of
1637 /// successors.
1638 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1639   unsigned Colocate = 0;
1640   for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1641     NodeSet &N1 = NodeSets[i];
1642     SmallSetVector<SUnit *, 8> S1;
1643     if (N1.empty() || !succ_L(N1, S1))
1644       continue;
1645     for (int j = i + 1; j < e; ++j) {
1646       NodeSet &N2 = NodeSets[j];
1647       if (N1.compareRecMII(N2) != 0)
1648         continue;
1649       SmallSetVector<SUnit *, 8> S2;
1650       if (N2.empty() || !succ_L(N2, S2))
1651         continue;
1652       if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) {
1653         N1.setColocate(++Colocate);
1654         N2.setColocate(Colocate);
1655         break;
1656       }
1657     }
1658   }
1659 }
1660 
1661 /// Check if the existing node-sets are profitable. If not, then ignore the
1662 /// recurrent node-sets, and attempt to schedule all nodes together. This is
1663 /// a heuristic. If the MII is large and all the recurrent node-sets are small,
1664 /// then it's best to try to schedule all instructions together instead of
1665 /// starting with the recurrent node-sets.
1666 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1667   // Look for loops with a large MII.
1668   if (MII < 17)
1669     return;
1670   // Check if the node-set contains only a simple add recurrence.
1671   for (auto &NS : NodeSets) {
1672     if (NS.getRecMII() > 2)
1673       return;
1674     if (NS.getMaxDepth() > MII)
1675       return;
1676   }
1677   NodeSets.clear();
1678   LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
1679 }
1680 
1681 /// Add the nodes that do not belong to a recurrence set into groups
1682 /// based upon connected components.
1683 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1684   SetVector<SUnit *> NodesAdded;
1685   SmallPtrSet<SUnit *, 8> Visited;
1686   // Add the nodes that are on a path between the previous node sets and
1687   // the current node set.
1688   for (NodeSet &I : NodeSets) {
1689     SmallSetVector<SUnit *, 8> N;
1690     // Add the nodes from the current node set to the previous node set.
1691     if (succ_L(I, N)) {
1692       SetVector<SUnit *> Path;
1693       for (SUnit *NI : N) {
1694         Visited.clear();
1695         computePath(NI, Path, NodesAdded, I, Visited);
1696       }
1697       if (!Path.empty())
1698         I.insert(Path.begin(), Path.end());
1699     }
1700     // Add the nodes from the previous node set to the current node set.
1701     N.clear();
1702     if (succ_L(NodesAdded, N)) {
1703       SetVector<SUnit *> Path;
1704       for (SUnit *NI : N) {
1705         Visited.clear();
1706         computePath(NI, Path, I, NodesAdded, Visited);
1707       }
1708       if (!Path.empty())
1709         I.insert(Path.begin(), Path.end());
1710     }
1711     NodesAdded.insert(I.begin(), I.end());
1712   }
1713 
1714   // Create a new node set with the connected nodes of any successor of a node
1715   // in a recurrent set.
1716   NodeSet NewSet;
1717   SmallSetVector<SUnit *, 8> N;
1718   if (succ_L(NodesAdded, N))
1719     for (SUnit *I : N)
1720       addConnectedNodes(I, NewSet, NodesAdded);
1721   if (!NewSet.empty())
1722     NodeSets.push_back(NewSet);
1723 
1724   // Create a new node set with the connected nodes of any predecessor of a node
1725   // in a recurrent set.
1726   NewSet.clear();
1727   if (pred_L(NodesAdded, N))
1728     for (SUnit *I : N)
1729       addConnectedNodes(I, NewSet, NodesAdded);
1730   if (!NewSet.empty())
1731     NodeSets.push_back(NewSet);
1732 
1733   // Create new nodes sets with the connected nodes any remaining node that
1734   // has no predecessor.
1735   for (SUnit &SU : SUnits) {
1736     if (NodesAdded.count(&SU) == 0) {
1737       NewSet.clear();
1738       addConnectedNodes(&SU, NewSet, NodesAdded);
1739       if (!NewSet.empty())
1740         NodeSets.push_back(NewSet);
1741     }
1742   }
1743 }
1744 
1745 /// Add the node to the set, and add all of its connected nodes to the set.
1746 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1747                                           SetVector<SUnit *> &NodesAdded) {
1748   NewSet.insert(SU);
1749   NodesAdded.insert(SU);
1750   for (auto &SI : SU->Succs) {
1751     SUnit *Successor = SI.getSUnit();
1752     if (!SI.isArtificial() && !Successor->isBoundaryNode() &&
1753         NodesAdded.count(Successor) == 0)
1754       addConnectedNodes(Successor, NewSet, NodesAdded);
1755   }
1756   for (auto &PI : SU->Preds) {
1757     SUnit *Predecessor = PI.getSUnit();
1758     if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1759       addConnectedNodes(Predecessor, NewSet, NodesAdded);
1760   }
1761 }
1762 
1763 /// Return true if Set1 contains elements in Set2. The elements in common
1764 /// are returned in a different container.
1765 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1766                         SmallSetVector<SUnit *, 8> &Result) {
1767   Result.clear();
1768   for (SUnit *SU : Set1) {
1769     if (Set2.count(SU) != 0)
1770       Result.insert(SU);
1771   }
1772   return !Result.empty();
1773 }
1774 
1775 /// Merge the recurrence node sets that have the same initial node.
1776 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1777   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1778        ++I) {
1779     NodeSet &NI = *I;
1780     for (NodeSetType::iterator J = I + 1; J != E;) {
1781       NodeSet &NJ = *J;
1782       if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1783         if (NJ.compareRecMII(NI) > 0)
1784           NI.setRecMII(NJ.getRecMII());
1785         for (SUnit *SU : *J)
1786           I->insert(SU);
1787         NodeSets.erase(J);
1788         E = NodeSets.end();
1789       } else {
1790         ++J;
1791       }
1792     }
1793   }
1794 }
1795 
1796 /// Remove nodes that have been scheduled in previous NodeSets.
1797 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1798   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1799        ++I)
1800     for (NodeSetType::iterator J = I + 1; J != E;) {
1801       J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1802 
1803       if (J->empty()) {
1804         NodeSets.erase(J);
1805         E = NodeSets.end();
1806       } else {
1807         ++J;
1808       }
1809     }
1810 }
1811 
1812 /// Compute an ordered list of the dependence graph nodes, which
1813 /// indicates the order that the nodes will be scheduled.  This is a
1814 /// two-level algorithm. First, a partial order is created, which
1815 /// consists of a list of sets ordered from highest to lowest priority.
1816 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1817   SmallSetVector<SUnit *, 8> R;
1818   NodeOrder.clear();
1819 
1820   for (auto &Nodes : NodeSets) {
1821     LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
1822     OrderKind Order;
1823     SmallSetVector<SUnit *, 8> N;
1824     if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
1825       R.insert(N.begin(), N.end());
1826       Order = BottomUp;
1827       LLVM_DEBUG(dbgs() << "  Bottom up (preds) ");
1828     } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
1829       R.insert(N.begin(), N.end());
1830       Order = TopDown;
1831       LLVM_DEBUG(dbgs() << "  Top down (succs) ");
1832     } else if (isIntersect(N, Nodes, R)) {
1833       // If some of the successors are in the existing node-set, then use the
1834       // top-down ordering.
1835       Order = TopDown;
1836       LLVM_DEBUG(dbgs() << "  Top down (intersect) ");
1837     } else if (NodeSets.size() == 1) {
1838       for (const auto &N : Nodes)
1839         if (N->Succs.size() == 0)
1840           R.insert(N);
1841       Order = BottomUp;
1842       LLVM_DEBUG(dbgs() << "  Bottom up (all) ");
1843     } else {
1844       // Find the node with the highest ASAP.
1845       SUnit *maxASAP = nullptr;
1846       for (SUnit *SU : Nodes) {
1847         if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
1848             (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
1849           maxASAP = SU;
1850       }
1851       R.insert(maxASAP);
1852       Order = BottomUp;
1853       LLVM_DEBUG(dbgs() << "  Bottom up (default) ");
1854     }
1855 
1856     while (!R.empty()) {
1857       if (Order == TopDown) {
1858         // Choose the node with the maximum height.  If more than one, choose
1859         // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
1860         // choose the node with the lowest MOV.
1861         while (!R.empty()) {
1862           SUnit *maxHeight = nullptr;
1863           for (SUnit *I : R) {
1864             if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
1865               maxHeight = I;
1866             else if (getHeight(I) == getHeight(maxHeight) &&
1867                      getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
1868               maxHeight = I;
1869             else if (getHeight(I) == getHeight(maxHeight) &&
1870                      getZeroLatencyHeight(I) ==
1871                          getZeroLatencyHeight(maxHeight) &&
1872                      getMOV(I) < getMOV(maxHeight))
1873               maxHeight = I;
1874           }
1875           NodeOrder.insert(maxHeight);
1876           LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
1877           R.remove(maxHeight);
1878           for (const auto &I : maxHeight->Succs) {
1879             if (Nodes.count(I.getSUnit()) == 0)
1880               continue;
1881             if (NodeOrder.contains(I.getSUnit()))
1882               continue;
1883             if (ignoreDependence(I, false))
1884               continue;
1885             R.insert(I.getSUnit());
1886           }
1887           // Back-edges are predecessors with an anti-dependence.
1888           for (const auto &I : maxHeight->Preds) {
1889             if (I.getKind() != SDep::Anti)
1890               continue;
1891             if (Nodes.count(I.getSUnit()) == 0)
1892               continue;
1893             if (NodeOrder.contains(I.getSUnit()))
1894               continue;
1895             R.insert(I.getSUnit());
1896           }
1897         }
1898         Order = BottomUp;
1899         LLVM_DEBUG(dbgs() << "\n   Switching order to bottom up ");
1900         SmallSetVector<SUnit *, 8> N;
1901         if (pred_L(NodeOrder, N, &Nodes))
1902           R.insert(N.begin(), N.end());
1903       } else {
1904         // Choose the node with the maximum depth.  If more than one, choose
1905         // the node with the maximum ZeroLatencyDepth. If still more than one,
1906         // choose the node with the lowest MOV.
1907         while (!R.empty()) {
1908           SUnit *maxDepth = nullptr;
1909           for (SUnit *I : R) {
1910             if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
1911               maxDepth = I;
1912             else if (getDepth(I) == getDepth(maxDepth) &&
1913                      getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
1914               maxDepth = I;
1915             else if (getDepth(I) == getDepth(maxDepth) &&
1916                      getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
1917                      getMOV(I) < getMOV(maxDepth))
1918               maxDepth = I;
1919           }
1920           NodeOrder.insert(maxDepth);
1921           LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
1922           R.remove(maxDepth);
1923           if (Nodes.isExceedSU(maxDepth)) {
1924             Order = TopDown;
1925             R.clear();
1926             R.insert(Nodes.getNode(0));
1927             break;
1928           }
1929           for (const auto &I : maxDepth->Preds) {
1930             if (Nodes.count(I.getSUnit()) == 0)
1931               continue;
1932             if (NodeOrder.contains(I.getSUnit()))
1933               continue;
1934             R.insert(I.getSUnit());
1935           }
1936           // Back-edges are predecessors with an anti-dependence.
1937           for (const auto &I : maxDepth->Succs) {
1938             if (I.getKind() != SDep::Anti)
1939               continue;
1940             if (Nodes.count(I.getSUnit()) == 0)
1941               continue;
1942             if (NodeOrder.contains(I.getSUnit()))
1943               continue;
1944             R.insert(I.getSUnit());
1945           }
1946         }
1947         Order = TopDown;
1948         LLVM_DEBUG(dbgs() << "\n   Switching order to top down ");
1949         SmallSetVector<SUnit *, 8> N;
1950         if (succ_L(NodeOrder, N, &Nodes))
1951           R.insert(N.begin(), N.end());
1952       }
1953     }
1954     LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
1955   }
1956 
1957   LLVM_DEBUG({
1958     dbgs() << "Node order: ";
1959     for (SUnit *I : NodeOrder)
1960       dbgs() << " " << I->NodeNum << " ";
1961     dbgs() << "\n";
1962   });
1963 }
1964 
1965 /// Process the nodes in the computed order and create the pipelined schedule
1966 /// of the instructions, if possible. Return true if a schedule is found.
1967 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
1968 
1969   if (NodeOrder.empty()){
1970     LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
1971     return false;
1972   }
1973 
1974   bool scheduleFound = false;
1975   // Keep increasing II until a valid schedule is found.
1976   for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) {
1977     Schedule.reset();
1978     Schedule.setInitiationInterval(II);
1979     LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
1980 
1981     SetVector<SUnit *>::iterator NI = NodeOrder.begin();
1982     SetVector<SUnit *>::iterator NE = NodeOrder.end();
1983     do {
1984       SUnit *SU = *NI;
1985 
1986       // Compute the schedule time for the instruction, which is based
1987       // upon the scheduled time for any predecessors/successors.
1988       int EarlyStart = INT_MIN;
1989       int LateStart = INT_MAX;
1990       // These values are set when the size of the schedule window is limited
1991       // due to chain dependences.
1992       int SchedEnd = INT_MAX;
1993       int SchedStart = INT_MIN;
1994       Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
1995                             II, this);
1996       LLVM_DEBUG({
1997         dbgs() << "\n";
1998         dbgs() << "Inst (" << SU->NodeNum << ") ";
1999         SU->getInstr()->dump();
2000         dbgs() << "\n";
2001       });
2002       LLVM_DEBUG({
2003         dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,
2004                          LateStart, SchedEnd, SchedStart);
2005       });
2006 
2007       if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2008           SchedStart > LateStart)
2009         scheduleFound = false;
2010       else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2011         SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2012         scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2013       } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2014         SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2015         scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2016       } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2017         SchedEnd =
2018             std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2019         // When scheduling a Phi it is better to start at the late cycle and go
2020         // backwards. The default order may insert the Phi too far away from
2021         // its first dependence.
2022         if (SU->getInstr()->isPHI())
2023           scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2024         else
2025           scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2026       } else {
2027         int FirstCycle = Schedule.getFirstCycle();
2028         scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2029                                         FirstCycle + getASAP(SU) + II - 1, II);
2030       }
2031       // Even if we find a schedule, make sure the schedule doesn't exceed the
2032       // allowable number of stages. We keep trying if this happens.
2033       if (scheduleFound)
2034         if (SwpMaxStages > -1 &&
2035             Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2036           scheduleFound = false;
2037 
2038       LLVM_DEBUG({
2039         if (!scheduleFound)
2040           dbgs() << "\tCan't schedule\n";
2041       });
2042     } while (++NI != NE && scheduleFound);
2043 
2044     // If a schedule is found, ensure non-pipelined instructions are in stage 0
2045     if (scheduleFound)
2046       scheduleFound =
2047           Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo);
2048 
2049     // If a schedule is found, check if it is a valid schedule too.
2050     if (scheduleFound)
2051       scheduleFound = Schedule.isValidSchedule(this);
2052   }
2053 
2054   LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound
2055                     << " (II=" << Schedule.getInitiationInterval()
2056                     << ")\n");
2057 
2058   if (scheduleFound) {
2059     scheduleFound = LoopPipelinerInfo->shouldUseSchedule(*this, Schedule);
2060     if (!scheduleFound)
2061       LLVM_DEBUG(dbgs() << "Target rejected schedule\n");
2062   }
2063 
2064   if (scheduleFound) {
2065     Schedule.finalizeSchedule(this);
2066     Pass.ORE->emit([&]() {
2067       return MachineOptimizationRemarkAnalysis(
2068                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
2069              << "Schedule found with Initiation Interval: "
2070              << ore::NV("II", Schedule.getInitiationInterval())
2071              << ", MaxStageCount: "
2072              << ore::NV("MaxStageCount", Schedule.getMaxStageCount());
2073     });
2074   } else
2075     Schedule.reset();
2076 
2077   return scheduleFound && Schedule.getMaxStageCount() > 0;
2078 }
2079 
2080 /// Return true if we can compute the amount the instruction changes
2081 /// during each iteration. Set Delta to the amount of the change.
2082 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
2083   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2084   const MachineOperand *BaseOp;
2085   int64_t Offset;
2086   bool OffsetIsScalable;
2087   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
2088     return false;
2089 
2090   // FIXME: This algorithm assumes instructions have fixed-size offsets.
2091   if (OffsetIsScalable)
2092     return false;
2093 
2094   if (!BaseOp->isReg())
2095     return false;
2096 
2097   Register BaseReg = BaseOp->getReg();
2098 
2099   MachineRegisterInfo &MRI = MF.getRegInfo();
2100   // Check if there is a Phi. If so, get the definition in the loop.
2101   MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
2102   if (BaseDef && BaseDef->isPHI()) {
2103     BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
2104     BaseDef = MRI.getVRegDef(BaseReg);
2105   }
2106   if (!BaseDef)
2107     return false;
2108 
2109   int D = 0;
2110   if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
2111     return false;
2112 
2113   Delta = D;
2114   return true;
2115 }
2116 
2117 /// Check if we can change the instruction to use an offset value from the
2118 /// previous iteration. If so, return true and set the base and offset values
2119 /// so that we can rewrite the load, if necessary.
2120 ///   v1 = Phi(v0, v3)
2121 ///   v2 = load v1, 0
2122 ///   v3 = post_store v1, 4, x
2123 /// This function enables the load to be rewritten as v2 = load v3, 4.
2124 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
2125                                               unsigned &BasePos,
2126                                               unsigned &OffsetPos,
2127                                               unsigned &NewBase,
2128                                               int64_t &Offset) {
2129   // Get the load instruction.
2130   if (TII->isPostIncrement(*MI))
2131     return false;
2132   unsigned BasePosLd, OffsetPosLd;
2133   if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
2134     return false;
2135   Register BaseReg = MI->getOperand(BasePosLd).getReg();
2136 
2137   // Look for the Phi instruction.
2138   MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
2139   MachineInstr *Phi = MRI.getVRegDef(BaseReg);
2140   if (!Phi || !Phi->isPHI())
2141     return false;
2142   // Get the register defined in the loop block.
2143   unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
2144   if (!PrevReg)
2145     return false;
2146 
2147   // Check for the post-increment load/store instruction.
2148   MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
2149   if (!PrevDef || PrevDef == MI)
2150     return false;
2151 
2152   if (!TII->isPostIncrement(*PrevDef))
2153     return false;
2154 
2155   unsigned BasePos1 = 0, OffsetPos1 = 0;
2156   if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
2157     return false;
2158 
2159   // Make sure that the instructions do not access the same memory location in
2160   // the next iteration.
2161   int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
2162   int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
2163   MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2164   NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
2165   bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
2166   MF.deleteMachineInstr(NewMI);
2167   if (!Disjoint)
2168     return false;
2169 
2170   // Set the return value once we determine that we return true.
2171   BasePos = BasePosLd;
2172   OffsetPos = OffsetPosLd;
2173   NewBase = PrevReg;
2174   Offset = StoreOffset;
2175   return true;
2176 }
2177 
2178 /// Apply changes to the instruction if needed. The changes are need
2179 /// to improve the scheduling and depend up on the final schedule.
2180 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
2181                                          SMSchedule &Schedule) {
2182   SUnit *SU = getSUnit(MI);
2183   DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2184       InstrChanges.find(SU);
2185   if (It != InstrChanges.end()) {
2186     std::pair<unsigned, int64_t> RegAndOffset = It->second;
2187     unsigned BasePos, OffsetPos;
2188     if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2189       return;
2190     Register BaseReg = MI->getOperand(BasePos).getReg();
2191     MachineInstr *LoopDef = findDefInLoop(BaseReg);
2192     int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
2193     int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
2194     int BaseStageNum = Schedule.stageScheduled(SU);
2195     int BaseCycleNum = Schedule.cycleScheduled(SU);
2196     if (BaseStageNum < DefStageNum) {
2197       MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2198       int OffsetDiff = DefStageNum - BaseStageNum;
2199       if (DefCycleNum < BaseCycleNum) {
2200         NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
2201         if (OffsetDiff > 0)
2202           --OffsetDiff;
2203       }
2204       int64_t NewOffset =
2205           MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
2206       NewMI->getOperand(OffsetPos).setImm(NewOffset);
2207       SU->setInstr(NewMI);
2208       MISUnitMap[NewMI] = SU;
2209       NewMIs[MI] = NewMI;
2210     }
2211   }
2212 }
2213 
2214 /// Return the instruction in the loop that defines the register.
2215 /// If the definition is a Phi, then follow the Phi operand to
2216 /// the instruction in the loop.
2217 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) {
2218   SmallPtrSet<MachineInstr *, 8> Visited;
2219   MachineInstr *Def = MRI.getVRegDef(Reg);
2220   while (Def->isPHI()) {
2221     if (!Visited.insert(Def).second)
2222       break;
2223     for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
2224       if (Def->getOperand(i + 1).getMBB() == BB) {
2225         Def = MRI.getVRegDef(Def->getOperand(i).getReg());
2226         break;
2227       }
2228   }
2229   return Def;
2230 }
2231 
2232 /// Return true for an order or output dependence that is loop carried
2233 /// potentially. A dependence is loop carried if the destination defines a valu
2234 /// that may be used or defined by the source in a subsequent iteration.
2235 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
2236                                          bool isSucc) {
2237   if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
2238       Dep.isArtificial() || Dep.getSUnit()->isBoundaryNode())
2239     return false;
2240 
2241   if (!SwpPruneLoopCarried)
2242     return true;
2243 
2244   if (Dep.getKind() == SDep::Output)
2245     return true;
2246 
2247   MachineInstr *SI = Source->getInstr();
2248   MachineInstr *DI = Dep.getSUnit()->getInstr();
2249   if (!isSucc)
2250     std::swap(SI, DI);
2251   assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
2252 
2253   // Assume ordered loads and stores may have a loop carried dependence.
2254   if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
2255       SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
2256       SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
2257     return true;
2258 
2259   // Only chain dependences between a load and store can be loop carried.
2260   if (!DI->mayStore() || !SI->mayLoad())
2261     return false;
2262 
2263   unsigned DeltaS, DeltaD;
2264   if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
2265     return true;
2266 
2267   const MachineOperand *BaseOpS, *BaseOpD;
2268   int64_t OffsetS, OffsetD;
2269   bool OffsetSIsScalable, OffsetDIsScalable;
2270   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2271   if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable,
2272                                     TRI) ||
2273       !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable,
2274                                     TRI))
2275     return true;
2276 
2277   assert(!OffsetSIsScalable && !OffsetDIsScalable &&
2278          "Expected offsets to be byte offsets");
2279 
2280   MachineInstr *DefS = MRI.getVRegDef(BaseOpS->getReg());
2281   MachineInstr *DefD = MRI.getVRegDef(BaseOpD->getReg());
2282   if (!DefS || !DefD || !DefS->isPHI() || !DefD->isPHI())
2283     return true;
2284 
2285   unsigned InitValS = 0;
2286   unsigned LoopValS = 0;
2287   unsigned InitValD = 0;
2288   unsigned LoopValD = 0;
2289   getPhiRegs(*DefS, BB, InitValS, LoopValS);
2290   getPhiRegs(*DefD, BB, InitValD, LoopValD);
2291   MachineInstr *InitDefS = MRI.getVRegDef(InitValS);
2292   MachineInstr *InitDefD = MRI.getVRegDef(InitValD);
2293 
2294   if (!InitDefS->isIdenticalTo(*InitDefD))
2295     return true;
2296 
2297   // Check that the base register is incremented by a constant value for each
2298   // iteration.
2299   MachineInstr *LoopDefS = MRI.getVRegDef(LoopValS);
2300   int D = 0;
2301   if (!LoopDefS || !TII->getIncrementValue(*LoopDefS, D))
2302     return true;
2303 
2304   uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
2305   uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
2306 
2307   // This is the main test, which checks the offset values and the loop
2308   // increment value to determine if the accesses may be loop carried.
2309   if (AccessSizeS == MemoryLocation::UnknownSize ||
2310       AccessSizeD == MemoryLocation::UnknownSize)
2311     return true;
2312 
2313   if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
2314     return true;
2315 
2316   return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
2317 }
2318 
2319 void SwingSchedulerDAG::postprocessDAG() {
2320   for (auto &M : Mutations)
2321     M->apply(this);
2322 }
2323 
2324 /// Try to schedule the node at the specified StartCycle and continue
2325 /// until the node is schedule or the EndCycle is reached.  This function
2326 /// returns true if the node is scheduled.  This routine may search either
2327 /// forward or backward for a place to insert the instruction based upon
2328 /// the relative values of StartCycle and EndCycle.
2329 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
2330   bool forward = true;
2331   LLVM_DEBUG({
2332     dbgs() << "Trying to insert node between " << StartCycle << " and "
2333            << EndCycle << " II: " << II << "\n";
2334   });
2335   if (StartCycle > EndCycle)
2336     forward = false;
2337 
2338   // The terminating condition depends on the direction.
2339   int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
2340   for (int curCycle = StartCycle; curCycle != termCycle;
2341        forward ? ++curCycle : --curCycle) {
2342 
2343     if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
2344         ProcItinResources.canReserveResources(*SU, curCycle)) {
2345       LLVM_DEBUG({
2346         dbgs() << "\tinsert at cycle " << curCycle << " ";
2347         SU->getInstr()->dump();
2348       });
2349 
2350       if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
2351         ProcItinResources.reserveResources(*SU, curCycle);
2352       ScheduledInstrs[curCycle].push_back(SU);
2353       InstrToCycle.insert(std::make_pair(SU, curCycle));
2354       if (curCycle > LastCycle)
2355         LastCycle = curCycle;
2356       if (curCycle < FirstCycle)
2357         FirstCycle = curCycle;
2358       return true;
2359     }
2360     LLVM_DEBUG({
2361       dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
2362       SU->getInstr()->dump();
2363     });
2364   }
2365   return false;
2366 }
2367 
2368 // Return the cycle of the earliest scheduled instruction in the chain.
2369 int SMSchedule::earliestCycleInChain(const SDep &Dep) {
2370   SmallPtrSet<SUnit *, 8> Visited;
2371   SmallVector<SDep, 8> Worklist;
2372   Worklist.push_back(Dep);
2373   int EarlyCycle = INT_MAX;
2374   while (!Worklist.empty()) {
2375     const SDep &Cur = Worklist.pop_back_val();
2376     SUnit *PrevSU = Cur.getSUnit();
2377     if (Visited.count(PrevSU))
2378       continue;
2379     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
2380     if (it == InstrToCycle.end())
2381       continue;
2382     EarlyCycle = std::min(EarlyCycle, it->second);
2383     for (const auto &PI : PrevSU->Preds)
2384       if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output)
2385         Worklist.push_back(PI);
2386     Visited.insert(PrevSU);
2387   }
2388   return EarlyCycle;
2389 }
2390 
2391 // Return the cycle of the latest scheduled instruction in the chain.
2392 int SMSchedule::latestCycleInChain(const SDep &Dep) {
2393   SmallPtrSet<SUnit *, 8> Visited;
2394   SmallVector<SDep, 8> Worklist;
2395   Worklist.push_back(Dep);
2396   int LateCycle = INT_MIN;
2397   while (!Worklist.empty()) {
2398     const SDep &Cur = Worklist.pop_back_val();
2399     SUnit *SuccSU = Cur.getSUnit();
2400     if (Visited.count(SuccSU) || SuccSU->isBoundaryNode())
2401       continue;
2402     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
2403     if (it == InstrToCycle.end())
2404       continue;
2405     LateCycle = std::max(LateCycle, it->second);
2406     for (const auto &SI : SuccSU->Succs)
2407       if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output)
2408         Worklist.push_back(SI);
2409     Visited.insert(SuccSU);
2410   }
2411   return LateCycle;
2412 }
2413 
2414 /// If an instruction has a use that spans multiple iterations, then
2415 /// return true. These instructions are characterized by having a back-ege
2416 /// to a Phi, which contains a reference to another Phi.
2417 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
2418   for (auto &P : SU->Preds)
2419     if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
2420       for (auto &S : P.getSUnit()->Succs)
2421         if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
2422           return P.getSUnit();
2423   return nullptr;
2424 }
2425 
2426 /// Compute the scheduling start slot for the instruction.  The start slot
2427 /// depends on any predecessor or successor nodes scheduled already.
2428 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
2429                               int *MinEnd, int *MaxStart, int II,
2430                               SwingSchedulerDAG *DAG) {
2431   // Iterate over each instruction that has been scheduled already.  The start
2432   // slot computation depends on whether the previously scheduled instruction
2433   // is a predecessor or successor of the specified instruction.
2434   for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
2435 
2436     // Iterate over each instruction in the current cycle.
2437     for (SUnit *I : getInstructions(cycle)) {
2438       // Because we're processing a DAG for the dependences, we recognize
2439       // the back-edge in recurrences by anti dependences.
2440       for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
2441         const SDep &Dep = SU->Preds[i];
2442         if (Dep.getSUnit() == I) {
2443           if (!DAG->isBackedge(SU, Dep)) {
2444             int EarlyStart = cycle + Dep.getLatency() -
2445                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2446             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2447             if (DAG->isLoopCarriedDep(SU, Dep, false)) {
2448               int End = earliestCycleInChain(Dep) + (II - 1);
2449               *MinEnd = std::min(*MinEnd, End);
2450             }
2451           } else {
2452             int LateStart = cycle - Dep.getLatency() +
2453                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2454             *MinLateStart = std::min(*MinLateStart, LateStart);
2455           }
2456         }
2457         // For instruction that requires multiple iterations, make sure that
2458         // the dependent instruction is not scheduled past the definition.
2459         SUnit *BE = multipleIterations(I, DAG);
2460         if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
2461             !SU->isPred(I))
2462           *MinLateStart = std::min(*MinLateStart, cycle);
2463       }
2464       for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
2465         if (SU->Succs[i].getSUnit() == I) {
2466           const SDep &Dep = SU->Succs[i];
2467           if (!DAG->isBackedge(SU, Dep)) {
2468             int LateStart = cycle - Dep.getLatency() +
2469                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2470             *MinLateStart = std::min(*MinLateStart, LateStart);
2471             if (DAG->isLoopCarriedDep(SU, Dep)) {
2472               int Start = latestCycleInChain(Dep) + 1 - II;
2473               *MaxStart = std::max(*MaxStart, Start);
2474             }
2475           } else {
2476             int EarlyStart = cycle + Dep.getLatency() -
2477                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2478             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2479           }
2480         }
2481       }
2482     }
2483   }
2484 }
2485 
2486 /// Order the instructions within a cycle so that the definitions occur
2487 /// before the uses. Returns true if the instruction is added to the start
2488 /// of the list, or false if added to the end.
2489 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
2490                                  std::deque<SUnit *> &Insts) {
2491   MachineInstr *MI = SU->getInstr();
2492   bool OrderBeforeUse = false;
2493   bool OrderAfterDef = false;
2494   bool OrderBeforeDef = false;
2495   unsigned MoveDef = 0;
2496   unsigned MoveUse = 0;
2497   int StageInst1 = stageScheduled(SU);
2498 
2499   unsigned Pos = 0;
2500   for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
2501        ++I, ++Pos) {
2502     for (MachineOperand &MO : MI->operands()) {
2503       if (!MO.isReg() || !MO.getReg().isVirtual())
2504         continue;
2505 
2506       Register Reg = MO.getReg();
2507       unsigned BasePos, OffsetPos;
2508       if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2509         if (MI->getOperand(BasePos).getReg() == Reg)
2510           if (unsigned NewReg = SSD->getInstrBaseReg(SU))
2511             Reg = NewReg;
2512       bool Reads, Writes;
2513       std::tie(Reads, Writes) =
2514           (*I)->getInstr()->readsWritesVirtualRegister(Reg);
2515       if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
2516         OrderBeforeUse = true;
2517         if (MoveUse == 0)
2518           MoveUse = Pos;
2519       } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
2520         // Add the instruction after the scheduled instruction.
2521         OrderAfterDef = true;
2522         MoveDef = Pos;
2523       } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
2524         if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
2525           OrderBeforeUse = true;
2526           if (MoveUse == 0)
2527             MoveUse = Pos;
2528         } else {
2529           OrderAfterDef = true;
2530           MoveDef = Pos;
2531         }
2532       } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
2533         OrderBeforeUse = true;
2534         if (MoveUse == 0)
2535           MoveUse = Pos;
2536         if (MoveUse != 0) {
2537           OrderAfterDef = true;
2538           MoveDef = Pos - 1;
2539         }
2540       } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
2541         // Add the instruction before the scheduled instruction.
2542         OrderBeforeUse = true;
2543         if (MoveUse == 0)
2544           MoveUse = Pos;
2545       } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
2546                  isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
2547         if (MoveUse == 0) {
2548           OrderBeforeDef = true;
2549           MoveUse = Pos;
2550         }
2551       }
2552     }
2553     // Check for order dependences between instructions. Make sure the source
2554     // is ordered before the destination.
2555     for (auto &S : SU->Succs) {
2556       if (S.getSUnit() != *I)
2557         continue;
2558       if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2559         OrderBeforeUse = true;
2560         if (Pos < MoveUse)
2561           MoveUse = Pos;
2562       }
2563       // We did not handle HW dependences in previous for loop,
2564       // and we normally set Latency = 0 for Anti deps,
2565       // so may have nodes in same cycle with Anti denpendent on HW regs.
2566       else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
2567         OrderBeforeUse = true;
2568         if ((MoveUse == 0) || (Pos < MoveUse))
2569           MoveUse = Pos;
2570       }
2571     }
2572     for (auto &P : SU->Preds) {
2573       if (P.getSUnit() != *I)
2574         continue;
2575       if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2576         OrderAfterDef = true;
2577         MoveDef = Pos;
2578       }
2579     }
2580   }
2581 
2582   // A circular dependence.
2583   if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
2584     OrderBeforeUse = false;
2585 
2586   // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
2587   // to a loop-carried dependence.
2588   if (OrderBeforeDef)
2589     OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
2590 
2591   // The uncommon case when the instruction order needs to be updated because
2592   // there is both a use and def.
2593   if (OrderBeforeUse && OrderAfterDef) {
2594     SUnit *UseSU = Insts.at(MoveUse);
2595     SUnit *DefSU = Insts.at(MoveDef);
2596     if (MoveUse > MoveDef) {
2597       Insts.erase(Insts.begin() + MoveUse);
2598       Insts.erase(Insts.begin() + MoveDef);
2599     } else {
2600       Insts.erase(Insts.begin() + MoveDef);
2601       Insts.erase(Insts.begin() + MoveUse);
2602     }
2603     orderDependence(SSD, UseSU, Insts);
2604     orderDependence(SSD, SU, Insts);
2605     orderDependence(SSD, DefSU, Insts);
2606     return;
2607   }
2608   // Put the new instruction first if there is a use in the list. Otherwise,
2609   // put it at the end of the list.
2610   if (OrderBeforeUse)
2611     Insts.push_front(SU);
2612   else
2613     Insts.push_back(SU);
2614 }
2615 
2616 /// Return true if the scheduled Phi has a loop carried operand.
2617 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
2618   if (!Phi.isPHI())
2619     return false;
2620   assert(Phi.isPHI() && "Expecting a Phi.");
2621   SUnit *DefSU = SSD->getSUnit(&Phi);
2622   unsigned DefCycle = cycleScheduled(DefSU);
2623   int DefStage = stageScheduled(DefSU);
2624 
2625   unsigned InitVal = 0;
2626   unsigned LoopVal = 0;
2627   getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
2628   SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
2629   if (!UseSU)
2630     return true;
2631   if (UseSU->getInstr()->isPHI())
2632     return true;
2633   unsigned LoopCycle = cycleScheduled(UseSU);
2634   int LoopStage = stageScheduled(UseSU);
2635   return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
2636 }
2637 
2638 /// Return true if the instruction is a definition that is loop carried
2639 /// and defines the use on the next iteration.
2640 ///        v1 = phi(v2, v3)
2641 ///  (Def) v3 = op v1
2642 ///  (MO)   = v1
2643 /// If MO appears before Def, then then v1 and v3 may get assigned to the same
2644 /// register.
2645 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
2646                                        MachineInstr *Def, MachineOperand &MO) {
2647   if (!MO.isReg())
2648     return false;
2649   if (Def->isPHI())
2650     return false;
2651   MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
2652   if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
2653     return false;
2654   if (!isLoopCarried(SSD, *Phi))
2655     return false;
2656   unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
2657   for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
2658     MachineOperand &DMO = Def->getOperand(i);
2659     if (!DMO.isReg() || !DMO.isDef())
2660       continue;
2661     if (DMO.getReg() == LoopReg)
2662       return true;
2663   }
2664   return false;
2665 }
2666 
2667 /// Determine transitive dependences of unpipelineable instructions
2668 SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes(
2669     SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) {
2670   SmallSet<SUnit *, 8> DoNotPipeline;
2671   SmallVector<SUnit *, 8> Worklist;
2672 
2673   for (auto &SU : SSD->SUnits)
2674     if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr()))
2675       Worklist.push_back(&SU);
2676 
2677   while (!Worklist.empty()) {
2678     auto SU = Worklist.pop_back_val();
2679     if (DoNotPipeline.count(SU))
2680       continue;
2681     LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n");
2682     DoNotPipeline.insert(SU);
2683     for (auto &Dep : SU->Preds)
2684       Worklist.push_back(Dep.getSUnit());
2685     if (SU->getInstr()->isPHI())
2686       for (auto &Dep : SU->Succs)
2687         if (Dep.getKind() == SDep::Anti)
2688           Worklist.push_back(Dep.getSUnit());
2689   }
2690   return DoNotPipeline;
2691 }
2692 
2693 // Determine all instructions upon which any unpipelineable instruction depends
2694 // and ensure that they are in stage 0.  If unable to do so, return false.
2695 bool SMSchedule::normalizeNonPipelinedInstructions(
2696     SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) {
2697   SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI);
2698 
2699   int NewLastCycle = INT_MIN;
2700   for (SUnit &SU : SSD->SUnits) {
2701     if (!SU.isInstr())
2702       continue;
2703     if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) {
2704       NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]);
2705       continue;
2706     }
2707 
2708     // Put the non-pipelined instruction as early as possible in the schedule
2709     int NewCycle = getFirstCycle();
2710     for (auto &Dep : SU.Preds)
2711       NewCycle = std::max(InstrToCycle[Dep.getSUnit()], NewCycle);
2712 
2713     int OldCycle = InstrToCycle[&SU];
2714     if (OldCycle != NewCycle) {
2715       InstrToCycle[&SU] = NewCycle;
2716       auto &OldS = getInstructions(OldCycle);
2717       llvm::erase_value(OldS, &SU);
2718       getInstructions(NewCycle).emplace_back(&SU);
2719       LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum
2720                         << ") is not pipelined; moving from cycle " << OldCycle
2721                         << " to " << NewCycle << " Instr:" << *SU.getInstr());
2722     }
2723     NewLastCycle = std::max(NewLastCycle, NewCycle);
2724   }
2725   LastCycle = NewLastCycle;
2726   return true;
2727 }
2728 
2729 // Check if the generated schedule is valid. This function checks if
2730 // an instruction that uses a physical register is scheduled in a
2731 // different stage than the definition. The pipeliner does not handle
2732 // physical register values that may cross a basic block boundary.
2733 // Furthermore, if a physical def/use pair is assigned to the same
2734 // cycle, orderDependence does not guarantee def/use ordering, so that
2735 // case should be considered invalid.  (The test checks for both
2736 // earlier and same-cycle use to be more robust.)
2737 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
2738   for (SUnit &SU : SSD->SUnits) {
2739     if (!SU.hasPhysRegDefs)
2740       continue;
2741     int StageDef = stageScheduled(&SU);
2742     int CycleDef = InstrToCycle[&SU];
2743     assert(StageDef != -1 && "Instruction should have been scheduled.");
2744     for (auto &SI : SU.Succs)
2745       if (SI.isAssignedRegDep() && !SI.getSUnit()->isBoundaryNode())
2746         if (Register::isPhysicalRegister(SI.getReg())) {
2747           if (stageScheduled(SI.getSUnit()) != StageDef)
2748             return false;
2749           if (InstrToCycle[SI.getSUnit()] <= CycleDef)
2750             return false;
2751         }
2752   }
2753   return true;
2754 }
2755 
2756 /// A property of the node order in swing-modulo-scheduling is
2757 /// that for nodes outside circuits the following holds:
2758 /// none of them is scheduled after both a successor and a
2759 /// predecessor.
2760 /// The method below checks whether the property is met.
2761 /// If not, debug information is printed and statistics information updated.
2762 /// Note that we do not use an assert statement.
2763 /// The reason is that although an invalid node oder may prevent
2764 /// the pipeliner from finding a pipelined schedule for arbitrary II,
2765 /// it does not lead to the generation of incorrect code.
2766 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
2767 
2768   // a sorted vector that maps each SUnit to its index in the NodeOrder
2769   typedef std::pair<SUnit *, unsigned> UnitIndex;
2770   std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
2771 
2772   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
2773     Indices.push_back(std::make_pair(NodeOrder[i], i));
2774 
2775   auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
2776     return std::get<0>(i1) < std::get<0>(i2);
2777   };
2778 
2779   // sort, so that we can perform a binary search
2780   llvm::sort(Indices, CompareKey);
2781 
2782   bool Valid = true;
2783   (void)Valid;
2784   // for each SUnit in the NodeOrder, check whether
2785   // it appears after both a successor and a predecessor
2786   // of the SUnit. If this is the case, and the SUnit
2787   // is not part of circuit, then the NodeOrder is not
2788   // valid.
2789   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
2790     SUnit *SU = NodeOrder[i];
2791     unsigned Index = i;
2792 
2793     bool PredBefore = false;
2794     bool SuccBefore = false;
2795 
2796     SUnit *Succ;
2797     SUnit *Pred;
2798     (void)Succ;
2799     (void)Pred;
2800 
2801     for (SDep &PredEdge : SU->Preds) {
2802       SUnit *PredSU = PredEdge.getSUnit();
2803       unsigned PredIndex = std::get<1>(
2804           *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
2805       if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
2806         PredBefore = true;
2807         Pred = PredSU;
2808         break;
2809       }
2810     }
2811 
2812     for (SDep &SuccEdge : SU->Succs) {
2813       SUnit *SuccSU = SuccEdge.getSUnit();
2814       // Do not process a boundary node, it was not included in NodeOrder,
2815       // hence not in Indices either, call to std::lower_bound() below will
2816       // return Indices.end().
2817       if (SuccSU->isBoundaryNode())
2818         continue;
2819       unsigned SuccIndex = std::get<1>(
2820           *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
2821       if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
2822         SuccBefore = true;
2823         Succ = SuccSU;
2824         break;
2825       }
2826     }
2827 
2828     if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
2829       // instructions in circuits are allowed to be scheduled
2830       // after both a successor and predecessor.
2831       bool InCircuit = llvm::any_of(
2832           Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
2833       if (InCircuit)
2834         LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
2835       else {
2836         Valid = false;
2837         NumNodeOrderIssues++;
2838         LLVM_DEBUG(dbgs() << "Predecessor ";);
2839       }
2840       LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
2841                         << " are scheduled before node " << SU->NodeNum
2842                         << "\n";);
2843     }
2844   }
2845 
2846   LLVM_DEBUG({
2847     if (!Valid)
2848       dbgs() << "Invalid node order found!\n";
2849   });
2850 }
2851 
2852 /// Attempt to fix the degenerate cases when the instruction serialization
2853 /// causes the register lifetimes to overlap. For example,
2854 ///   p' = store_pi(p, b)
2855 ///      = load p, offset
2856 /// In this case p and p' overlap, which means that two registers are needed.
2857 /// Instead, this function changes the load to use p' and updates the offset.
2858 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
2859   unsigned OverlapReg = 0;
2860   unsigned NewBaseReg = 0;
2861   for (SUnit *SU : Instrs) {
2862     MachineInstr *MI = SU->getInstr();
2863     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
2864       const MachineOperand &MO = MI->getOperand(i);
2865       // Look for an instruction that uses p. The instruction occurs in the
2866       // same cycle but occurs later in the serialized order.
2867       if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
2868         // Check that the instruction appears in the InstrChanges structure,
2869         // which contains instructions that can have the offset updated.
2870         DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2871           InstrChanges.find(SU);
2872         if (It != InstrChanges.end()) {
2873           unsigned BasePos, OffsetPos;
2874           // Update the base register and adjust the offset.
2875           if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
2876             MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2877             NewMI->getOperand(BasePos).setReg(NewBaseReg);
2878             int64_t NewOffset =
2879                 MI->getOperand(OffsetPos).getImm() - It->second.second;
2880             NewMI->getOperand(OffsetPos).setImm(NewOffset);
2881             SU->setInstr(NewMI);
2882             MISUnitMap[NewMI] = SU;
2883             NewMIs[MI] = NewMI;
2884           }
2885         }
2886         OverlapReg = 0;
2887         NewBaseReg = 0;
2888         break;
2889       }
2890       // Look for an instruction of the form p' = op(p), which uses and defines
2891       // two virtual registers that get allocated to the same physical register.
2892       unsigned TiedUseIdx = 0;
2893       if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
2894         // OverlapReg is p in the example above.
2895         OverlapReg = MI->getOperand(TiedUseIdx).getReg();
2896         // NewBaseReg is p' in the example above.
2897         NewBaseReg = MI->getOperand(i).getReg();
2898         break;
2899       }
2900     }
2901   }
2902 }
2903 
2904 /// After the schedule has been formed, call this function to combine
2905 /// the instructions from the different stages/cycles.  That is, this
2906 /// function creates a schedule that represents a single iteration.
2907 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
2908   // Move all instructions to the first stage from later stages.
2909   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2910     for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
2911          ++stage) {
2912       std::deque<SUnit *> &cycleInstrs =
2913           ScheduledInstrs[cycle + (stage * InitiationInterval)];
2914       for (SUnit *SU : llvm::reverse(cycleInstrs))
2915         ScheduledInstrs[cycle].push_front(SU);
2916     }
2917   }
2918 
2919   // Erase all the elements in the later stages. Only one iteration should
2920   // remain in the scheduled list, and it contains all the instructions.
2921   for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
2922     ScheduledInstrs.erase(cycle);
2923 
2924   // Change the registers in instruction as specified in the InstrChanges
2925   // map. We need to use the new registers to create the correct order.
2926   for (const SUnit &SU : SSD->SUnits)
2927     SSD->applyInstrChange(SU.getInstr(), *this);
2928 
2929   // Reorder the instructions in each cycle to fix and improve the
2930   // generated code.
2931   for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
2932     std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
2933     std::deque<SUnit *> newOrderPhi;
2934     for (SUnit *SU : cycleInstrs) {
2935       if (SU->getInstr()->isPHI())
2936         newOrderPhi.push_back(SU);
2937     }
2938     std::deque<SUnit *> newOrderI;
2939     for (SUnit *SU : cycleInstrs) {
2940       if (!SU->getInstr()->isPHI())
2941         orderDependence(SSD, SU, newOrderI);
2942     }
2943     // Replace the old order with the new order.
2944     cycleInstrs.swap(newOrderPhi);
2945     llvm::append_range(cycleInstrs, newOrderI);
2946     SSD->fixupRegisterOverlaps(cycleInstrs);
2947   }
2948 
2949   LLVM_DEBUG(dump(););
2950 }
2951 
2952 void NodeSet::print(raw_ostream &os) const {
2953   os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
2954      << " depth " << MaxDepth << " col " << Colocate << "\n";
2955   for (const auto &I : Nodes)
2956     os << "   SU(" << I->NodeNum << ") " << *(I->getInstr());
2957   os << "\n";
2958 }
2959 
2960 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2961 /// Print the schedule information to the given output.
2962 void SMSchedule::print(raw_ostream &os) const {
2963   // Iterate over each cycle.
2964   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2965     // Iterate over each instruction in the cycle.
2966     const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
2967     for (SUnit *CI : cycleInstrs->second) {
2968       os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
2969       os << "(" << CI->NodeNum << ") ";
2970       CI->getInstr()->print(os);
2971       os << "\n";
2972     }
2973   }
2974 }
2975 
2976 /// Utility function used for debugging to print the schedule.
2977 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
2978 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
2979 
2980 void ResourceManager::dumpMRT() const {
2981   LLVM_DEBUG({
2982     if (UseDFA)
2983       return;
2984     std::stringstream SS;
2985     SS << "MRT:\n";
2986     SS << std::setw(4) << "Slot";
2987     for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I)
2988       SS << std::setw(3) << I;
2989     SS << std::setw(7) << "#Mops"
2990        << "\n";
2991     for (int Slot = 0; Slot < InitiationInterval; ++Slot) {
2992       SS << std::setw(4) << Slot;
2993       for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I)
2994         SS << std::setw(3) << MRT[Slot][I];
2995       SS << std::setw(7) << NumScheduledMops[Slot] << "\n";
2996     }
2997     dbgs() << SS.str();
2998   });
2999 }
3000 #endif
3001 
3002 void ResourceManager::initProcResourceVectors(
3003     const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
3004   unsigned ProcResourceID = 0;
3005 
3006   // We currently limit the resource kinds to 64 and below so that we can use
3007   // uint64_t for Masks
3008   assert(SM.getNumProcResourceKinds() < 64 &&
3009          "Too many kinds of resources, unsupported");
3010   // Create a unique bitmask for every processor resource unit.
3011   // Skip resource at index 0, since it always references 'InvalidUnit'.
3012   Masks.resize(SM.getNumProcResourceKinds());
3013   for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3014     const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3015     if (Desc.SubUnitsIdxBegin)
3016       continue;
3017     Masks[I] = 1ULL << ProcResourceID;
3018     ProcResourceID++;
3019   }
3020   // Create a unique bitmask for every processor resource group.
3021   for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3022     const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3023     if (!Desc.SubUnitsIdxBegin)
3024       continue;
3025     Masks[I] = 1ULL << ProcResourceID;
3026     for (unsigned U = 0; U < Desc.NumUnits; ++U)
3027       Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
3028     ProcResourceID++;
3029   }
3030   LLVM_DEBUG({
3031     if (SwpShowResMask) {
3032       dbgs() << "ProcResourceDesc:\n";
3033       for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3034         const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
3035         dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
3036                          ProcResource->Name, I, Masks[I],
3037                          ProcResource->NumUnits);
3038       }
3039       dbgs() << " -----------------\n";
3040     }
3041   });
3042 }
3043 
3044 bool ResourceManager::canReserveResources(SUnit &SU, int Cycle) {
3045   LLVM_DEBUG({
3046     if (SwpDebugResource)
3047       dbgs() << "canReserveResources:\n";
3048   });
3049   if (UseDFA)
3050     return DFAResources[positiveModulo(Cycle, InitiationInterval)]
3051         ->canReserveResources(&SU.getInstr()->getDesc());
3052 
3053   const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU);
3054   if (!SCDesc->isValid()) {
3055     LLVM_DEBUG({
3056       dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3057       dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n";
3058     });
3059     return true;
3060   }
3061 
3062   reserveResources(SCDesc, Cycle);
3063   bool Result = !isOverbooked();
3064   unreserveResources(SCDesc, Cycle);
3065 
3066   LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return " << Result << "\n\n";);
3067   return Result;
3068 }
3069 
3070 void ResourceManager::reserveResources(SUnit &SU, int Cycle) {
3071   LLVM_DEBUG({
3072     if (SwpDebugResource)
3073       dbgs() << "reserveResources:\n";
3074   });
3075   if (UseDFA)
3076     return DFAResources[positiveModulo(Cycle, InitiationInterval)]
3077         ->reserveResources(&SU.getInstr()->getDesc());
3078 
3079   const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU);
3080   if (!SCDesc->isValid()) {
3081     LLVM_DEBUG({
3082       dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3083       dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n";
3084     });
3085     return;
3086   }
3087 
3088   reserveResources(SCDesc, Cycle);
3089 
3090   LLVM_DEBUG({
3091     if (SwpDebugResource) {
3092       dumpMRT();
3093       dbgs() << "reserveResources: done!\n\n";
3094     }
3095   });
3096 }
3097 
3098 void ResourceManager::reserveResources(const MCSchedClassDesc *SCDesc,
3099                                        int Cycle) {
3100   assert(!UseDFA);
3101   for (const MCWriteProcResEntry &PRE : make_range(
3102            STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc)))
3103     for (int C = Cycle; C < Cycle + PRE.Cycles; ++C)
3104       ++MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx];
3105 
3106   for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C)
3107     ++NumScheduledMops[positiveModulo(C, InitiationInterval)];
3108 }
3109 
3110 void ResourceManager::unreserveResources(const MCSchedClassDesc *SCDesc,
3111                                          int Cycle) {
3112   assert(!UseDFA);
3113   for (const MCWriteProcResEntry &PRE : make_range(
3114            STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc)))
3115     for (int C = Cycle; C < Cycle + PRE.Cycles; ++C)
3116       --MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx];
3117 
3118   for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C)
3119     --NumScheduledMops[positiveModulo(C, InitiationInterval)];
3120 }
3121 
3122 bool ResourceManager::isOverbooked() const {
3123   assert(!UseDFA);
3124   for (int Slot = 0; Slot < InitiationInterval; ++Slot) {
3125     for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3126       const MCProcResourceDesc *Desc = SM.getProcResource(I);
3127       if (MRT[Slot][I] > Desc->NumUnits)
3128         return true;
3129     }
3130     if (NumScheduledMops[Slot] > IssueWidth)
3131       return true;
3132   }
3133   return false;
3134 }
3135 
3136 int ResourceManager::calculateResMIIDFA() const {
3137   assert(UseDFA);
3138 
3139   // Sort the instructions by the number of available choices for scheduling,
3140   // least to most. Use the number of critical resources as the tie breaker.
3141   FuncUnitSorter FUS = FuncUnitSorter(*ST);
3142   for (SUnit &SU : DAG->SUnits)
3143     FUS.calcCriticalResources(*SU.getInstr());
3144   PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
3145       FuncUnitOrder(FUS);
3146 
3147   for (SUnit &SU : DAG->SUnits)
3148     FuncUnitOrder.push(SU.getInstr());
3149 
3150   SmallVector<std::unique_ptr<DFAPacketizer>, 8> Resources;
3151   Resources.push_back(
3152       std::unique_ptr<DFAPacketizer>(TII->CreateTargetScheduleState(*ST)));
3153 
3154   while (!FuncUnitOrder.empty()) {
3155     MachineInstr *MI = FuncUnitOrder.top();
3156     FuncUnitOrder.pop();
3157     if (TII->isZeroCost(MI->getOpcode()))
3158       continue;
3159 
3160     // Attempt to reserve the instruction in an existing DFA. At least one
3161     // DFA is needed for each cycle.
3162     unsigned NumCycles = DAG->getSUnit(MI)->Latency;
3163     unsigned ReservedCycles = 0;
3164     auto *RI = Resources.begin();
3165     auto *RE = Resources.end();
3166     LLVM_DEBUG({
3167       dbgs() << "Trying to reserve resource for " << NumCycles
3168              << " cycles for \n";
3169       MI->dump();
3170     });
3171     for (unsigned C = 0; C < NumCycles; ++C)
3172       while (RI != RE) {
3173         if ((*RI)->canReserveResources(*MI)) {
3174           (*RI)->reserveResources(*MI);
3175           ++ReservedCycles;
3176           break;
3177         }
3178         RI++;
3179       }
3180     LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
3181                       << ", NumCycles:" << NumCycles << "\n");
3182     // Add new DFAs, if needed, to reserve resources.
3183     for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
3184       LLVM_DEBUG(if (SwpDebugResource) dbgs()
3185                  << "NewResource created to reserve resources"
3186                  << "\n");
3187       auto *NewResource = TII->CreateTargetScheduleState(*ST);
3188       assert(NewResource->canReserveResources(*MI) && "Reserve error.");
3189       NewResource->reserveResources(*MI);
3190       Resources.push_back(std::unique_ptr<DFAPacketizer>(NewResource));
3191     }
3192   }
3193 
3194   int Resmii = Resources.size();
3195   LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n");
3196   return Resmii;
3197 }
3198 
3199 int ResourceManager::calculateResMII() const {
3200   if (UseDFA)
3201     return calculateResMIIDFA();
3202 
3203   // Count each resource consumption and divide it by the number of units.
3204   // ResMII is the max value among them.
3205 
3206   int NumMops = 0;
3207   SmallVector<uint64_t> ResourceCount(SM.getNumProcResourceKinds());
3208   for (SUnit &SU : DAG->SUnits) {
3209     if (TII->isZeroCost(SU.getInstr()->getOpcode()))
3210       continue;
3211 
3212     const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU);
3213     if (!SCDesc->isValid())
3214       continue;
3215 
3216     LLVM_DEBUG({
3217       if (SwpDebugResource) {
3218         DAG->dumpNode(SU);
3219         dbgs() << "  #Mops: " << SCDesc->NumMicroOps << "\n"
3220                << "  WriteProcRes: ";
3221       }
3222     });
3223     NumMops += SCDesc->NumMicroOps;
3224     for (const MCWriteProcResEntry &PRE :
3225          make_range(STI->getWriteProcResBegin(SCDesc),
3226                     STI->getWriteProcResEnd(SCDesc))) {
3227       LLVM_DEBUG({
3228         if (SwpDebugResource) {
3229           const MCProcResourceDesc *Desc =
3230               SM.getProcResource(PRE.ProcResourceIdx);
3231           dbgs() << Desc->Name << ": " << PRE.Cycles << ", ";
3232         }
3233       });
3234       ResourceCount[PRE.ProcResourceIdx] += PRE.Cycles;
3235     }
3236     LLVM_DEBUG(if (SwpDebugResource) dbgs() << "\n");
3237   }
3238 
3239   int Result = (NumMops + IssueWidth - 1) / IssueWidth;
3240   LLVM_DEBUG({
3241     if (SwpDebugResource)
3242       dbgs() << "#Mops: " << NumMops << ", "
3243              << "IssueWidth: " << IssueWidth << ", "
3244              << "Cycles: " << Result << "\n";
3245   });
3246 
3247   LLVM_DEBUG({
3248     if (SwpDebugResource) {
3249       std::stringstream SS;
3250       SS << std::setw(2) << "ID" << std::setw(16) << "Name" << std::setw(10)
3251          << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles"
3252          << "\n";
3253       dbgs() << SS.str();
3254     }
3255   });
3256   for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3257     const MCProcResourceDesc *Desc = SM.getProcResource(I);
3258     int Cycles = (ResourceCount[I] + Desc->NumUnits - 1) / Desc->NumUnits;
3259     LLVM_DEBUG({
3260       if (SwpDebugResource) {
3261         std::stringstream SS;
3262         SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10)
3263            << Desc->NumUnits << std::setw(10) << ResourceCount[I]
3264            << std::setw(10) << Cycles << "\n";
3265         dbgs() << SS.str();
3266       }
3267     });
3268     if (Cycles > Result)
3269       Result = Cycles;
3270   }
3271   return Result;
3272 }
3273 
3274 void ResourceManager::init(int II) {
3275   InitiationInterval = II;
3276   DFAResources.clear();
3277   DFAResources.resize(II);
3278   for (auto &I : DFAResources)
3279     I.reset(ST->getInstrInfo()->CreateTargetScheduleState(*ST));
3280   MRT.clear();
3281   MRT.resize(II, SmallVector<uint64_t>(SM.getNumProcResourceKinds()));
3282   NumScheduledMops.clear();
3283   NumScheduledMops.resize(II);
3284 }
3285